1 //===- ModuloSchedule.cpp - Software pipeline schedule expansion ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/CodeGen/ModuloSchedule.h"
10 #include "llvm/ADT/StringExtras.h"
11 #include "llvm/Analysis/MemoryLocation.h"
12 #include "llvm/CodeGen/LiveIntervals.h"
13 #include "llvm/CodeGen/MachineInstrBuilder.h"
14 #include "llvm/CodeGen/MachineLoopInfo.h"
15 #include "llvm/CodeGen/MachineRegisterInfo.h"
16 #include "llvm/InitializePasses.h"
17 #include "llvm/MC/MCContext.h"
18 #include "llvm/Support/Debug.h"
19 #include "llvm/Support/ErrorHandling.h"
20 #include "llvm/Support/raw_ostream.h"
21 
22 #define DEBUG_TYPE "pipeliner"
23 using namespace llvm;
24 
25 void ModuloSchedule::print(raw_ostream &OS) {
26   for (MachineInstr *MI : ScheduledInstrs)
27     OS << "[stage " << getStage(MI) << " @" << getCycle(MI) << "c] " << *MI;
28 }
29 
30 //===----------------------------------------------------------------------===//
31 // ModuloScheduleExpander implementation
32 //===----------------------------------------------------------------------===//
33 
34 /// Return the register values for  the operands of a Phi instruction.
35 /// This function assume the instruction is a Phi.
36 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
37                        unsigned &InitVal, unsigned &LoopVal) {
38   assert(Phi.isPHI() && "Expecting a Phi.");
39 
40   InitVal = 0;
41   LoopVal = 0;
42   for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
43     if (Phi.getOperand(i + 1).getMBB() != Loop)
44       InitVal = Phi.getOperand(i).getReg();
45     else
46       LoopVal = Phi.getOperand(i).getReg();
47 
48   assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
49 }
50 
51 /// Return the Phi register value that comes from the incoming block.
52 static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
53   for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
54     if (Phi.getOperand(i + 1).getMBB() != LoopBB)
55       return Phi.getOperand(i).getReg();
56   return 0;
57 }
58 
59 /// Return the Phi register value that comes the loop block.
60 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
61   for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
62     if (Phi.getOperand(i + 1).getMBB() == LoopBB)
63       return Phi.getOperand(i).getReg();
64   return 0;
65 }
66 
67 void ModuloScheduleExpander::expand() {
68   BB = Schedule.getLoop()->getTopBlock();
69   Preheader = *BB->pred_begin();
70   if (Preheader == BB)
71     Preheader = *std::next(BB->pred_begin());
72 
73   // Iterate over the definitions in each instruction, and compute the
74   // stage difference for each use.  Keep the maximum value.
75   for (MachineInstr *MI : Schedule.getInstructions()) {
76     int DefStage = Schedule.getStage(MI);
77     for (const MachineOperand &Op : MI->operands()) {
78       if (!Op.isReg() || !Op.isDef())
79         continue;
80 
81       Register Reg = Op.getReg();
82       unsigned MaxDiff = 0;
83       bool PhiIsSwapped = false;
84       for (MachineOperand &UseOp : MRI.use_operands(Reg)) {
85         MachineInstr *UseMI = UseOp.getParent();
86         int UseStage = Schedule.getStage(UseMI);
87         unsigned Diff = 0;
88         if (UseStage != -1 && UseStage >= DefStage)
89           Diff = UseStage - DefStage;
90         if (MI->isPHI()) {
91           if (isLoopCarried(*MI))
92             ++Diff;
93           else
94             PhiIsSwapped = true;
95         }
96         MaxDiff = std::max(Diff, MaxDiff);
97       }
98       RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped);
99     }
100   }
101 
102   generatePipelinedLoop();
103 }
104 
105 void ModuloScheduleExpander::generatePipelinedLoop() {
106   LoopInfo = TII->analyzeLoopForPipelining(BB);
107   assert(LoopInfo && "Must be able to analyze loop!");
108 
109   // Create a new basic block for the kernel and add it to the CFG.
110   MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
111 
112   unsigned MaxStageCount = Schedule.getNumStages() - 1;
113 
114   // Remember the registers that are used in different stages. The index is
115   // the iteration, or stage, that the instruction is scheduled in.  This is
116   // a map between register names in the original block and the names created
117   // in each stage of the pipelined loop.
118   ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2];
119 
120   // The renaming destination by Phis for the registers across stages.
121   // This map is updated during Phis generation to point to the most recent
122   // renaming destination.
123   ValueMapTy *VRMapPhi = new ValueMapTy[(MaxStageCount + 1) * 2];
124 
125   InstrMapTy InstrMap;
126 
127   SmallVector<MachineBasicBlock *, 4> PrologBBs;
128 
129   // Generate the prolog instructions that set up the pipeline.
130   generateProlog(MaxStageCount, KernelBB, VRMap, PrologBBs);
131   MF.insert(BB->getIterator(), KernelBB);
132 
133   // Rearrange the instructions to generate the new, pipelined loop,
134   // and update register names as needed.
135   for (MachineInstr *CI : Schedule.getInstructions()) {
136     if (CI->isPHI())
137       continue;
138     unsigned StageNum = Schedule.getStage(CI);
139     MachineInstr *NewMI = cloneInstr(CI, MaxStageCount, StageNum);
140     updateInstruction(NewMI, false, MaxStageCount, StageNum, VRMap);
141     KernelBB->push_back(NewMI);
142     InstrMap[NewMI] = CI;
143   }
144 
145   // Copy any terminator instructions to the new kernel, and update
146   // names as needed.
147   for (MachineInstr &MI : BB->terminators()) {
148     MachineInstr *NewMI = MF.CloneMachineInstr(&MI);
149     updateInstruction(NewMI, false, MaxStageCount, 0, VRMap);
150     KernelBB->push_back(NewMI);
151     InstrMap[NewMI] = &MI;
152   }
153 
154   NewKernel = KernelBB;
155   KernelBB->transferSuccessors(BB);
156   KernelBB->replaceSuccessor(BB, KernelBB);
157 
158   generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap,
159                        InstrMap, MaxStageCount, MaxStageCount, false);
160   generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, VRMapPhi,
161                InstrMap, MaxStageCount, MaxStageCount, false);
162 
163   LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump(););
164 
165   SmallVector<MachineBasicBlock *, 4> EpilogBBs;
166   // Generate the epilog instructions to complete the pipeline.
167   generateEpilog(MaxStageCount, KernelBB, BB, VRMap, VRMapPhi, EpilogBBs,
168                  PrologBBs);
169 
170   // We need this step because the register allocation doesn't handle some
171   // situations well, so we insert copies to help out.
172   splitLifetimes(KernelBB, EpilogBBs);
173 
174   // Remove dead instructions due to loop induction variables.
175   removeDeadInstructions(KernelBB, EpilogBBs);
176 
177   // Add branches between prolog and epilog blocks.
178   addBranches(*Preheader, PrologBBs, KernelBB, EpilogBBs, VRMap);
179 
180   delete[] VRMap;
181   delete[] VRMapPhi;
182 }
183 
184 void ModuloScheduleExpander::cleanup() {
185   // Remove the original loop since it's no longer referenced.
186   for (auto &I : *BB)
187     LIS.RemoveMachineInstrFromMaps(I);
188   BB->clear();
189   BB->eraseFromParent();
190 }
191 
192 /// Generate the pipeline prolog code.
193 void ModuloScheduleExpander::generateProlog(unsigned LastStage,
194                                             MachineBasicBlock *KernelBB,
195                                             ValueMapTy *VRMap,
196                                             MBBVectorTy &PrologBBs) {
197   MachineBasicBlock *PredBB = Preheader;
198   InstrMapTy InstrMap;
199 
200   // Generate a basic block for each stage, not including the last stage,
201   // which will be generated in the kernel. Each basic block may contain
202   // instructions from multiple stages/iterations.
203   for (unsigned i = 0; i < LastStage; ++i) {
204     // Create and insert the prolog basic block prior to the original loop
205     // basic block.  The original loop is removed later.
206     MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
207     PrologBBs.push_back(NewBB);
208     MF.insert(BB->getIterator(), NewBB);
209     NewBB->transferSuccessors(PredBB);
210     PredBB->addSuccessor(NewBB);
211     PredBB = NewBB;
212 
213     // Generate instructions for each appropriate stage. Process instructions
214     // in original program order.
215     for (int StageNum = i; StageNum >= 0; --StageNum) {
216       for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
217                                        BBE = BB->getFirstTerminator();
218            BBI != BBE; ++BBI) {
219         if (Schedule.getStage(&*BBI) == StageNum) {
220           if (BBI->isPHI())
221             continue;
222           MachineInstr *NewMI =
223               cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum);
224           updateInstruction(NewMI, false, i, (unsigned)StageNum, VRMap);
225           NewBB->push_back(NewMI);
226           InstrMap[NewMI] = &*BBI;
227         }
228       }
229     }
230     rewritePhiValues(NewBB, i, VRMap, InstrMap);
231     LLVM_DEBUG({
232       dbgs() << "prolog:\n";
233       NewBB->dump();
234     });
235   }
236 
237   PredBB->replaceSuccessor(BB, KernelBB);
238 
239   // Check if we need to remove the branch from the preheader to the original
240   // loop, and replace it with a branch to the new loop.
241   unsigned numBranches = TII->removeBranch(*Preheader);
242   if (numBranches) {
243     SmallVector<MachineOperand, 0> Cond;
244     TII->insertBranch(*Preheader, PrologBBs[0], nullptr, Cond, DebugLoc());
245   }
246 }
247 
248 /// Generate the pipeline epilog code. The epilog code finishes the iterations
249 /// that were started in either the prolog or the kernel.  We create a basic
250 /// block for each stage that needs to complete.
251 void ModuloScheduleExpander::generateEpilog(
252     unsigned LastStage, MachineBasicBlock *KernelBB, MachineBasicBlock *OrigBB,
253     ValueMapTy *VRMap, ValueMapTy *VRMapPhi, MBBVectorTy &EpilogBBs,
254     MBBVectorTy &PrologBBs) {
255   // We need to change the branch from the kernel to the first epilog block, so
256   // this call to analyze branch uses the kernel rather than the original BB.
257   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
258   SmallVector<MachineOperand, 4> Cond;
259   bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond);
260   assert(!checkBranch && "generateEpilog must be able to analyze the branch");
261   if (checkBranch)
262     return;
263 
264   MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin();
265   if (*LoopExitI == KernelBB)
266     ++LoopExitI;
267   assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor");
268   MachineBasicBlock *LoopExitBB = *LoopExitI;
269 
270   MachineBasicBlock *PredBB = KernelBB;
271   MachineBasicBlock *EpilogStart = LoopExitBB;
272   InstrMapTy InstrMap;
273 
274   // Generate a basic block for each stage, not including the last stage,
275   // which was generated for the kernel.  Each basic block may contain
276   // instructions from multiple stages/iterations.
277   int EpilogStage = LastStage + 1;
278   for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) {
279     MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock();
280     EpilogBBs.push_back(NewBB);
281     MF.insert(BB->getIterator(), NewBB);
282 
283     PredBB->replaceSuccessor(LoopExitBB, NewBB);
284     NewBB->addSuccessor(LoopExitBB);
285 
286     if (EpilogStart == LoopExitBB)
287       EpilogStart = NewBB;
288 
289     // Add instructions to the epilog depending on the current block.
290     // Process instructions in original program order.
291     for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) {
292       for (auto &BBI : *BB) {
293         if (BBI.isPHI())
294           continue;
295         MachineInstr *In = &BBI;
296         if ((unsigned)Schedule.getStage(In) == StageNum) {
297           // Instructions with memoperands in the epilog are updated with
298           // conservative values.
299           MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0);
300           updateInstruction(NewMI, i == 1, EpilogStage, 0, VRMap);
301           NewBB->push_back(NewMI);
302           InstrMap[NewMI] = In;
303         }
304       }
305     }
306     generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap,
307                          InstrMap, LastStage, EpilogStage, i == 1);
308     generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, VRMapPhi,
309                  InstrMap, LastStage, EpilogStage, i == 1);
310     PredBB = NewBB;
311 
312     LLVM_DEBUG({
313       dbgs() << "epilog:\n";
314       NewBB->dump();
315     });
316   }
317 
318   // Fix any Phi nodes in the loop exit block.
319   LoopExitBB->replacePhiUsesWith(BB, PredBB);
320 
321   // Create a branch to the new epilog from the kernel.
322   // Remove the original branch and add a new branch to the epilog.
323   TII->removeBranch(*KernelBB);
324   assert((OrigBB == TBB || OrigBB == FBB) &&
325          "Unable to determine looping branch direction");
326   if (OrigBB != TBB)
327     TII->insertBranch(*KernelBB, EpilogStart, KernelBB, Cond, DebugLoc());
328   else
329     TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc());
330   // Add a branch to the loop exit.
331   if (EpilogBBs.size() > 0) {
332     MachineBasicBlock *LastEpilogBB = EpilogBBs.back();
333     SmallVector<MachineOperand, 4> Cond1;
334     TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc());
335   }
336 }
337 
338 /// Replace all uses of FromReg that appear outside the specified
339 /// basic block with ToReg.
340 static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg,
341                                     MachineBasicBlock *MBB,
342                                     MachineRegisterInfo &MRI,
343                                     LiveIntervals &LIS) {
344   for (MachineOperand &O :
345        llvm::make_early_inc_range(MRI.use_operands(FromReg)))
346     if (O.getParent()->getParent() != MBB)
347       O.setReg(ToReg);
348   if (!LIS.hasInterval(ToReg))
349     LIS.createEmptyInterval(ToReg);
350 }
351 
352 /// Return true if the register has a use that occurs outside the
353 /// specified loop.
354 static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB,
355                             MachineRegisterInfo &MRI) {
356   for (const MachineOperand &MO : MRI.use_operands(Reg))
357     if (MO.getParent()->getParent() != BB)
358       return true;
359   return false;
360 }
361 
362 /// Generate Phis for the specific block in the generated pipelined code.
363 /// This function looks at the Phis from the original code to guide the
364 /// creation of new Phis.
365 void ModuloScheduleExpander::generateExistingPhis(
366     MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
367     MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap,
368     unsigned LastStageNum, unsigned CurStageNum, bool IsLast) {
369   // Compute the stage number for the initial value of the Phi, which
370   // comes from the prolog. The prolog to use depends on to which kernel/
371   // epilog that we're adding the Phi.
372   unsigned PrologStage = 0;
373   unsigned PrevStage = 0;
374   bool InKernel = (LastStageNum == CurStageNum);
375   if (InKernel) {
376     PrologStage = LastStageNum - 1;
377     PrevStage = CurStageNum;
378   } else {
379     PrologStage = LastStageNum - (CurStageNum - LastStageNum);
380     PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1;
381   }
382 
383   for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
384                                    BBE = BB->getFirstNonPHI();
385        BBI != BBE; ++BBI) {
386     Register Def = BBI->getOperand(0).getReg();
387 
388     unsigned InitVal = 0;
389     unsigned LoopVal = 0;
390     getPhiRegs(*BBI, BB, InitVal, LoopVal);
391 
392     unsigned PhiOp1 = 0;
393     // The Phi value from the loop body typically is defined in the loop, but
394     // not always. So, we need to check if the value is defined in the loop.
395     unsigned PhiOp2 = LoopVal;
396     if (VRMap[LastStageNum].count(LoopVal))
397       PhiOp2 = VRMap[LastStageNum][LoopVal];
398 
399     int StageScheduled = Schedule.getStage(&*BBI);
400     int LoopValStage = Schedule.getStage(MRI.getVRegDef(LoopVal));
401     unsigned NumStages = getStagesForReg(Def, CurStageNum);
402     if (NumStages == 0) {
403       // We don't need to generate a Phi anymore, but we need to rename any uses
404       // of the Phi value.
405       unsigned NewReg = VRMap[PrevStage][LoopVal];
406       rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, 0, &*BBI, Def,
407                             InitVal, NewReg);
408       if (VRMap[CurStageNum].count(LoopVal))
409         VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal];
410     }
411     // Adjust the number of Phis needed depending on the number of prologs left,
412     // and the distance from where the Phi is first scheduled. The number of
413     // Phis cannot exceed the number of prolog stages. Each stage can
414     // potentially define two values.
415     unsigned MaxPhis = PrologStage + 2;
416     if (!InKernel && (int)PrologStage <= LoopValStage)
417       MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1);
418     unsigned NumPhis = std::min(NumStages, MaxPhis);
419 
420     unsigned NewReg = 0;
421     unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled;
422     // In the epilog, we may need to look back one stage to get the correct
423     // Phi name, because the epilog and prolog blocks execute the same stage.
424     // The correct name is from the previous block only when the Phi has
425     // been completely scheduled prior to the epilog, and Phi value is not
426     // needed in multiple stages.
427     int StageDiff = 0;
428     if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 &&
429         NumPhis == 1)
430       StageDiff = 1;
431     // Adjust the computations below when the phi and the loop definition
432     // are scheduled in different stages.
433     if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage)
434       StageDiff = StageScheduled - LoopValStage;
435     for (unsigned np = 0; np < NumPhis; ++np) {
436       // If the Phi hasn't been scheduled, then use the initial Phi operand
437       // value. Otherwise, use the scheduled version of the instruction. This
438       // is a little complicated when a Phi references another Phi.
439       if (np > PrologStage || StageScheduled >= (int)LastStageNum)
440         PhiOp1 = InitVal;
441       // Check if the Phi has already been scheduled in a prolog stage.
442       else if (PrologStage >= AccessStage + StageDiff + np &&
443                VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0)
444         PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal];
445       // Check if the Phi has already been scheduled, but the loop instruction
446       // is either another Phi, or doesn't occur in the loop.
447       else if (PrologStage >= AccessStage + StageDiff + np) {
448         // If the Phi references another Phi, we need to examine the other
449         // Phi to get the correct value.
450         PhiOp1 = LoopVal;
451         MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1);
452         int Indirects = 1;
453         while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) {
454           int PhiStage = Schedule.getStage(InstOp1);
455           if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects)
456             PhiOp1 = getInitPhiReg(*InstOp1, BB);
457           else
458             PhiOp1 = getLoopPhiReg(*InstOp1, BB);
459           InstOp1 = MRI.getVRegDef(PhiOp1);
460           int PhiOpStage = Schedule.getStage(InstOp1);
461           int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0);
462           if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np &&
463               VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) {
464             PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1];
465             break;
466           }
467           ++Indirects;
468         }
469       } else
470         PhiOp1 = InitVal;
471       // If this references a generated Phi in the kernel, get the Phi operand
472       // from the incoming block.
473       if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1))
474         if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
475           PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
476 
477       MachineInstr *PhiInst = MRI.getVRegDef(LoopVal);
478       bool LoopDefIsPhi = PhiInst && PhiInst->isPHI();
479       // In the epilog, a map lookup is needed to get the value from the kernel,
480       // or previous epilog block. How is does this depends on if the
481       // instruction is scheduled in the previous block.
482       if (!InKernel) {
483         int StageDiffAdj = 0;
484         if (LoopValStage != -1 && StageScheduled > LoopValStage)
485           StageDiffAdj = StageScheduled - LoopValStage;
486         // Use the loop value defined in the kernel, unless the kernel
487         // contains the last definition of the Phi.
488         if (np == 0 && PrevStage == LastStageNum &&
489             (StageScheduled != 0 || LoopValStage != 0) &&
490             VRMap[PrevStage - StageDiffAdj].count(LoopVal))
491           PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal];
492         // Use the value defined by the Phi. We add one because we switch
493         // from looking at the loop value to the Phi definition.
494         else if (np > 0 && PrevStage == LastStageNum &&
495                  VRMap[PrevStage - np + 1].count(Def))
496           PhiOp2 = VRMap[PrevStage - np + 1][Def];
497         // Use the loop value defined in the kernel.
498         else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 &&
499                  VRMap[PrevStage - StageDiffAdj - np].count(LoopVal))
500           PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal];
501         // Use the value defined by the Phi, unless we're generating the first
502         // epilog and the Phi refers to a Phi in a different stage.
503         else if (VRMap[PrevStage - np].count(Def) &&
504                  (!LoopDefIsPhi || (PrevStage != LastStageNum) ||
505                   (LoopValStage == StageScheduled)))
506           PhiOp2 = VRMap[PrevStage - np][Def];
507       }
508 
509       // Check if we can reuse an existing Phi. This occurs when a Phi
510       // references another Phi, and the other Phi is scheduled in an
511       // earlier stage. We can try to reuse an existing Phi up until the last
512       // stage of the current Phi.
513       if (LoopDefIsPhi) {
514         if (static_cast<int>(PrologStage - np) >= StageScheduled) {
515           int LVNumStages = getStagesForPhi(LoopVal);
516           int StageDiff = (StageScheduled - LoopValStage);
517           LVNumStages -= StageDiff;
518           // Make sure the loop value Phi has been processed already.
519           if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) {
520             NewReg = PhiOp2;
521             unsigned ReuseStage = CurStageNum;
522             if (isLoopCarried(*PhiInst))
523               ReuseStage -= LVNumStages;
524             // Check if the Phi to reuse has been generated yet. If not, then
525             // there is nothing to reuse.
526             if (VRMap[ReuseStage - np].count(LoopVal)) {
527               NewReg = VRMap[ReuseStage - np][LoopVal];
528 
529               rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI,
530                                     Def, NewReg);
531               // Update the map with the new Phi name.
532               VRMap[CurStageNum - np][Def] = NewReg;
533               PhiOp2 = NewReg;
534               if (VRMap[LastStageNum - np - 1].count(LoopVal))
535                 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal];
536 
537               if (IsLast && np == NumPhis - 1)
538                 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
539               continue;
540             }
541           }
542         }
543         if (InKernel && StageDiff > 0 &&
544             VRMap[CurStageNum - StageDiff - np].count(LoopVal))
545           PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal];
546       }
547 
548       const TargetRegisterClass *RC = MRI.getRegClass(Def);
549       NewReg = MRI.createVirtualRegister(RC);
550 
551       MachineInstrBuilder NewPhi =
552           BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
553                   TII->get(TargetOpcode::PHI), NewReg);
554       NewPhi.addReg(PhiOp1).addMBB(BB1);
555       NewPhi.addReg(PhiOp2).addMBB(BB2);
556       if (np == 0)
557         InstrMap[NewPhi] = &*BBI;
558 
559       // We define the Phis after creating the new pipelined code, so
560       // we need to rename the Phi values in scheduled instructions.
561 
562       unsigned PrevReg = 0;
563       if (InKernel && VRMap[PrevStage - np].count(LoopVal))
564         PrevReg = VRMap[PrevStage - np][LoopVal];
565       rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def,
566                             NewReg, PrevReg);
567       // If the Phi has been scheduled, use the new name for rewriting.
568       if (VRMap[CurStageNum - np].count(Def)) {
569         unsigned R = VRMap[CurStageNum - np][Def];
570         rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, R,
571                               NewReg);
572       }
573 
574       // Check if we need to rename any uses that occurs after the loop. The
575       // register to replace depends on whether the Phi is scheduled in the
576       // epilog.
577       if (IsLast && np == NumPhis - 1)
578         replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
579 
580       // In the kernel, a dependent Phi uses the value from this Phi.
581       if (InKernel)
582         PhiOp2 = NewReg;
583 
584       // Update the map with the new Phi name.
585       VRMap[CurStageNum - np][Def] = NewReg;
586     }
587 
588     while (NumPhis++ < NumStages) {
589       rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, NumPhis, &*BBI, Def,
590                             NewReg, 0);
591     }
592 
593     // Check if we need to rename a Phi that has been eliminated due to
594     // scheduling.
595     if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal))
596       replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS);
597   }
598 }
599 
600 /// Generate Phis for the specified block in the generated pipelined code.
601 /// These are new Phis needed because the definition is scheduled after the
602 /// use in the pipelined sequence.
603 void ModuloScheduleExpander::generatePhis(
604     MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
605     MachineBasicBlock *KernelBB, ValueMapTy *VRMap, ValueMapTy *VRMapPhi,
606     InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
607     bool IsLast) {
608   // Compute the stage number that contains the initial Phi value, and
609   // the Phi from the previous stage.
610   unsigned PrologStage = 0;
611   unsigned PrevStage = 0;
612   unsigned StageDiff = CurStageNum - LastStageNum;
613   bool InKernel = (StageDiff == 0);
614   if (InKernel) {
615     PrologStage = LastStageNum - 1;
616     PrevStage = CurStageNum;
617   } else {
618     PrologStage = LastStageNum - StageDiff;
619     PrevStage = LastStageNum + StageDiff - 1;
620   }
621 
622   for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(),
623                                    BBE = BB->instr_end();
624        BBI != BBE; ++BBI) {
625     for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) {
626       MachineOperand &MO = BBI->getOperand(i);
627       if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual())
628         continue;
629 
630       int StageScheduled = Schedule.getStage(&*BBI);
631       assert(StageScheduled != -1 && "Expecting scheduled instruction.");
632       Register Def = MO.getReg();
633       unsigned NumPhis = getStagesForReg(Def, CurStageNum);
634       // An instruction scheduled in stage 0 and is used after the loop
635       // requires a phi in the epilog for the last definition from either
636       // the kernel or prolog.
637       if (!InKernel && NumPhis == 0 && StageScheduled == 0 &&
638           hasUseAfterLoop(Def, BB, MRI))
639         NumPhis = 1;
640       if (!InKernel && (unsigned)StageScheduled > PrologStage)
641         continue;
642 
643       unsigned PhiOp2;
644       if (InKernel) {
645         PhiOp2 = VRMap[PrevStage][Def];
646         if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2))
647           if (InstOp2->isPHI() && InstOp2->getParent() == NewBB)
648             PhiOp2 = getLoopPhiReg(*InstOp2, BB2);
649       }
650       // The number of Phis can't exceed the number of prolog stages. The
651       // prolog stage number is zero based.
652       if (NumPhis > PrologStage + 1 - StageScheduled)
653         NumPhis = PrologStage + 1 - StageScheduled;
654       for (unsigned np = 0; np < NumPhis; ++np) {
655         // Example for
656         // Org:
657         //   %Org = ... (Scheduled at Stage#0, NumPhi = 2)
658         //
659         // Prolog0 (Stage0):
660         //   %Clone0 = ...
661         // Prolog1 (Stage1):
662         //   %Clone1 = ...
663         // Kernel (Stage2):
664         //   %Phi0 = Phi %Clone1, Prolog1, %Clone2, Kernel
665         //   %Phi1 = Phi %Clone0, Prolog1, %Phi0, Kernel
666         //   %Clone2 = ...
667         // Epilog0 (Stage3):
668         //   %Phi2 = Phi %Clone1, Prolog1, %Clone2, Kernel
669         //   %Phi3 = Phi %Clone0, Prolog1, %Phi0, Kernel
670         // Epilog1 (Stage4):
671         //   %Phi4 = Phi %Clone0, Prolog0, %Phi2, Epilog0
672         //
673         // VRMap = {0: %Clone0, 1: %Clone1, 2: %Clone2}
674         // VRMapPhi (after Kernel) = {0: %Phi1, 1: %Phi0}
675         // VRMapPhi (after Epilog0) = {0: %Phi3, 1: %Phi2}
676 
677         unsigned PhiOp1 = VRMap[PrologStage][Def];
678         if (np <= PrologStage)
679           PhiOp1 = VRMap[PrologStage - np][Def];
680         if (!InKernel) {
681           if (PrevStage == LastStageNum && np == 0)
682             PhiOp2 = VRMap[LastStageNum][Def];
683           else
684             PhiOp2 = VRMapPhi[PrevStage - np][Def];
685         }
686 
687         const TargetRegisterClass *RC = MRI.getRegClass(Def);
688         Register NewReg = MRI.createVirtualRegister(RC);
689 
690         MachineInstrBuilder NewPhi =
691             BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
692                     TII->get(TargetOpcode::PHI), NewReg);
693         NewPhi.addReg(PhiOp1).addMBB(BB1);
694         NewPhi.addReg(PhiOp2).addMBB(BB2);
695         if (np == 0)
696           InstrMap[NewPhi] = &*BBI;
697 
698         // Rewrite uses and update the map. The actions depend upon whether
699         // we generating code for the kernel or epilog blocks.
700         if (InKernel) {
701           rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp1,
702                                 NewReg);
703           rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp2,
704                                 NewReg);
705 
706           PhiOp2 = NewReg;
707           VRMapPhi[PrevStage - np - 1][Def] = NewReg;
708         } else {
709           VRMapPhi[CurStageNum - np][Def] = NewReg;
710           if (np == NumPhis - 1)
711             rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def,
712                                   NewReg);
713         }
714         if (IsLast && np == NumPhis - 1)
715           replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
716       }
717     }
718   }
719 }
720 
721 /// Remove instructions that generate values with no uses.
722 /// Typically, these are induction variable operations that generate values
723 /// used in the loop itself.  A dead instruction has a definition with
724 /// no uses, or uses that occur in the original loop only.
725 void ModuloScheduleExpander::removeDeadInstructions(MachineBasicBlock *KernelBB,
726                                                     MBBVectorTy &EpilogBBs) {
727   // For each epilog block, check that the value defined by each instruction
728   // is used.  If not, delete it.
729   for (MachineBasicBlock *MBB : llvm::reverse(EpilogBBs))
730     for (MachineBasicBlock::reverse_instr_iterator MI = MBB->instr_rbegin(),
731                                                    ME = MBB->instr_rend();
732          MI != ME;) {
733       // From DeadMachineInstructionElem. Don't delete inline assembly.
734       if (MI->isInlineAsm()) {
735         ++MI;
736         continue;
737       }
738       bool SawStore = false;
739       // Check if it's safe to remove the instruction due to side effects.
740       // We can, and want to, remove Phis here.
741       if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) {
742         ++MI;
743         continue;
744       }
745       bool used = true;
746       for (const MachineOperand &MO : MI->operands()) {
747         if (!MO.isReg() || !MO.isDef())
748           continue;
749         Register reg = MO.getReg();
750         // Assume physical registers are used, unless they are marked dead.
751         if (reg.isPhysical()) {
752           used = !MO.isDead();
753           if (used)
754             break;
755           continue;
756         }
757         unsigned realUses = 0;
758         for (const MachineOperand &U : MRI.use_operands(reg)) {
759           // Check if there are any uses that occur only in the original
760           // loop.  If so, that's not a real use.
761           if (U.getParent()->getParent() != BB) {
762             realUses++;
763             used = true;
764             break;
765           }
766         }
767         if (realUses > 0)
768           break;
769         used = false;
770       }
771       if (!used) {
772         LIS.RemoveMachineInstrFromMaps(*MI);
773         MI++->eraseFromParent();
774         continue;
775       }
776       ++MI;
777     }
778   // In the kernel block, check if we can remove a Phi that generates a value
779   // used in an instruction removed in the epilog block.
780   for (MachineInstr &MI : llvm::make_early_inc_range(KernelBB->phis())) {
781     Register reg = MI.getOperand(0).getReg();
782     if (MRI.use_begin(reg) == MRI.use_end()) {
783       LIS.RemoveMachineInstrFromMaps(MI);
784       MI.eraseFromParent();
785     }
786   }
787 }
788 
789 /// For loop carried definitions, we split the lifetime of a virtual register
790 /// that has uses past the definition in the next iteration. A copy with a new
791 /// virtual register is inserted before the definition, which helps with
792 /// generating a better register assignment.
793 ///
794 ///   v1 = phi(a, v2)     v1 = phi(a, v2)
795 ///   v2 = phi(b, v3)     v2 = phi(b, v3)
796 ///   v3 = ..             v4 = copy v1
797 ///   .. = V1             v3 = ..
798 ///                       .. = v4
799 void ModuloScheduleExpander::splitLifetimes(MachineBasicBlock *KernelBB,
800                                             MBBVectorTy &EpilogBBs) {
801   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
802   for (auto &PHI : KernelBB->phis()) {
803     Register Def = PHI.getOperand(0).getReg();
804     // Check for any Phi definition that used as an operand of another Phi
805     // in the same block.
806     for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def),
807                                                  E = MRI.use_instr_end();
808          I != E; ++I) {
809       if (I->isPHI() && I->getParent() == KernelBB) {
810         // Get the loop carried definition.
811         unsigned LCDef = getLoopPhiReg(PHI, KernelBB);
812         if (!LCDef)
813           continue;
814         MachineInstr *MI = MRI.getVRegDef(LCDef);
815         if (!MI || MI->getParent() != KernelBB || MI->isPHI())
816           continue;
817         // Search through the rest of the block looking for uses of the Phi
818         // definition. If one occurs, then split the lifetime.
819         unsigned SplitReg = 0;
820         for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI),
821                                     KernelBB->instr_end()))
822           if (BBJ.readsRegister(Def)) {
823             // We split the lifetime when we find the first use.
824             if (SplitReg == 0) {
825               SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def));
826               BuildMI(*KernelBB, MI, MI->getDebugLoc(),
827                       TII->get(TargetOpcode::COPY), SplitReg)
828                   .addReg(Def);
829             }
830             BBJ.substituteRegister(Def, SplitReg, 0, *TRI);
831           }
832         if (!SplitReg)
833           continue;
834         // Search through each of the epilog blocks for any uses to be renamed.
835         for (auto &Epilog : EpilogBBs)
836           for (auto &I : *Epilog)
837             if (I.readsRegister(Def))
838               I.substituteRegister(Def, SplitReg, 0, *TRI);
839         break;
840       }
841     }
842   }
843 }
844 
845 /// Remove the incoming block from the Phis in a basic block.
846 static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) {
847   for (MachineInstr &MI : *BB) {
848     if (!MI.isPHI())
849       break;
850     for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2)
851       if (MI.getOperand(i + 1).getMBB() == Incoming) {
852         MI.removeOperand(i + 1);
853         MI.removeOperand(i);
854         break;
855       }
856   }
857 }
858 
859 /// Create branches from each prolog basic block to the appropriate epilog
860 /// block.  These edges are needed if the loop ends before reaching the
861 /// kernel.
862 void ModuloScheduleExpander::addBranches(MachineBasicBlock &PreheaderBB,
863                                          MBBVectorTy &PrologBBs,
864                                          MachineBasicBlock *KernelBB,
865                                          MBBVectorTy &EpilogBBs,
866                                          ValueMapTy *VRMap) {
867   assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch");
868   MachineBasicBlock *LastPro = KernelBB;
869   MachineBasicBlock *LastEpi = KernelBB;
870 
871   // Start from the blocks connected to the kernel and work "out"
872   // to the first prolog and the last epilog blocks.
873   SmallVector<MachineInstr *, 4> PrevInsts;
874   unsigned MaxIter = PrologBBs.size() - 1;
875   for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) {
876     // Add branches to the prolog that go to the corresponding
877     // epilog, and the fall-thru prolog/kernel block.
878     MachineBasicBlock *Prolog = PrologBBs[j];
879     MachineBasicBlock *Epilog = EpilogBBs[i];
880 
881     SmallVector<MachineOperand, 4> Cond;
882     std::optional<bool> StaticallyGreater =
883         LoopInfo->createTripCountGreaterCondition(j + 1, *Prolog, Cond);
884     unsigned numAdded = 0;
885     if (!StaticallyGreater) {
886       Prolog->addSuccessor(Epilog);
887       numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc());
888     } else if (*StaticallyGreater == false) {
889       Prolog->addSuccessor(Epilog);
890       Prolog->removeSuccessor(LastPro);
891       LastEpi->removeSuccessor(Epilog);
892       numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc());
893       removePhis(Epilog, LastEpi);
894       // Remove the blocks that are no longer referenced.
895       if (LastPro != LastEpi) {
896         LastEpi->clear();
897         LastEpi->eraseFromParent();
898       }
899       if (LastPro == KernelBB) {
900         LoopInfo->disposed();
901         NewKernel = nullptr;
902       }
903       LastPro->clear();
904       LastPro->eraseFromParent();
905     } else {
906       numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc());
907       removePhis(Epilog, Prolog);
908     }
909     LastPro = Prolog;
910     LastEpi = Epilog;
911     for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(),
912                                                    E = Prolog->instr_rend();
913          I != E && numAdded > 0; ++I, --numAdded)
914       updateInstruction(&*I, false, j, 0, VRMap);
915   }
916 
917   if (NewKernel) {
918     LoopInfo->setPreheader(PrologBBs[MaxIter]);
919     LoopInfo->adjustTripCount(-(MaxIter + 1));
920   }
921 }
922 
923 /// Return true if we can compute the amount the instruction changes
924 /// during each iteration. Set Delta to the amount of the change.
925 bool ModuloScheduleExpander::computeDelta(MachineInstr &MI, unsigned &Delta) {
926   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
927   const MachineOperand *BaseOp;
928   int64_t Offset;
929   bool OffsetIsScalable;
930   if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI))
931     return false;
932 
933   // FIXME: This algorithm assumes instructions have fixed-size offsets.
934   if (OffsetIsScalable)
935     return false;
936 
937   if (!BaseOp->isReg())
938     return false;
939 
940   Register BaseReg = BaseOp->getReg();
941 
942   MachineRegisterInfo &MRI = MF.getRegInfo();
943   // Check if there is a Phi. If so, get the definition in the loop.
944   MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
945   if (BaseDef && BaseDef->isPHI()) {
946     BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
947     BaseDef = MRI.getVRegDef(BaseReg);
948   }
949   if (!BaseDef)
950     return false;
951 
952   int D = 0;
953   if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
954     return false;
955 
956   Delta = D;
957   return true;
958 }
959 
960 /// Update the memory operand with a new offset when the pipeliner
961 /// generates a new copy of the instruction that refers to a
962 /// different memory location.
963 void ModuloScheduleExpander::updateMemOperands(MachineInstr &NewMI,
964                                                MachineInstr &OldMI,
965                                                unsigned Num) {
966   if (Num == 0)
967     return;
968   // If the instruction has memory operands, then adjust the offset
969   // when the instruction appears in different stages.
970   if (NewMI.memoperands_empty())
971     return;
972   SmallVector<MachineMemOperand *, 2> NewMMOs;
973   for (MachineMemOperand *MMO : NewMI.memoperands()) {
974     // TODO: Figure out whether isAtomic is really necessary (see D57601).
975     if (MMO->isVolatile() || MMO->isAtomic() ||
976         (MMO->isInvariant() && MMO->isDereferenceable()) ||
977         (!MMO->getValue())) {
978       NewMMOs.push_back(MMO);
979       continue;
980     }
981     unsigned Delta;
982     if (Num != UINT_MAX && computeDelta(OldMI, Delta)) {
983       int64_t AdjOffset = Delta * Num;
984       NewMMOs.push_back(
985           MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize()));
986     } else {
987       NewMMOs.push_back(
988           MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize));
989     }
990   }
991   NewMI.setMemRefs(MF, NewMMOs);
992 }
993 
994 /// Clone the instruction for the new pipelined loop and update the
995 /// memory operands, if needed.
996 MachineInstr *ModuloScheduleExpander::cloneInstr(MachineInstr *OldMI,
997                                                  unsigned CurStageNum,
998                                                  unsigned InstStageNum) {
999   MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
1000   updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
1001   return NewMI;
1002 }
1003 
1004 /// Clone the instruction for the new pipelined loop. If needed, this
1005 /// function updates the instruction using the values saved in the
1006 /// InstrChanges structure.
1007 MachineInstr *ModuloScheduleExpander::cloneAndChangeInstr(
1008     MachineInstr *OldMI, unsigned CurStageNum, unsigned InstStageNum) {
1009   MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
1010   auto It = InstrChanges.find(OldMI);
1011   if (It != InstrChanges.end()) {
1012     std::pair<unsigned, int64_t> RegAndOffset = It->second;
1013     unsigned BasePos, OffsetPos;
1014     if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos))
1015       return nullptr;
1016     int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm();
1017     MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first);
1018     if (Schedule.getStage(LoopDef) > (signed)InstStageNum)
1019       NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum);
1020     NewMI->getOperand(OffsetPos).setImm(NewOffset);
1021   }
1022   updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
1023   return NewMI;
1024 }
1025 
1026 /// Update the machine instruction with new virtual registers.  This
1027 /// function may change the definitions and/or uses.
1028 void ModuloScheduleExpander::updateInstruction(MachineInstr *NewMI,
1029                                                bool LastDef,
1030                                                unsigned CurStageNum,
1031                                                unsigned InstrStageNum,
1032                                                ValueMapTy *VRMap) {
1033   for (MachineOperand &MO : NewMI->operands()) {
1034     if (!MO.isReg() || !MO.getReg().isVirtual())
1035       continue;
1036     Register reg = MO.getReg();
1037     if (MO.isDef()) {
1038       // Create a new virtual register for the definition.
1039       const TargetRegisterClass *RC = MRI.getRegClass(reg);
1040       Register NewReg = MRI.createVirtualRegister(RC);
1041       MO.setReg(NewReg);
1042       VRMap[CurStageNum][reg] = NewReg;
1043       if (LastDef)
1044         replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS);
1045     } else if (MO.isUse()) {
1046       MachineInstr *Def = MRI.getVRegDef(reg);
1047       // Compute the stage that contains the last definition for instruction.
1048       int DefStageNum = Schedule.getStage(Def);
1049       unsigned StageNum = CurStageNum;
1050       if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) {
1051         // Compute the difference in stages between the defintion and the use.
1052         unsigned StageDiff = (InstrStageNum - DefStageNum);
1053         // Make an adjustment to get the last definition.
1054         StageNum -= StageDiff;
1055       }
1056       if (VRMap[StageNum].count(reg))
1057         MO.setReg(VRMap[StageNum][reg]);
1058     }
1059   }
1060 }
1061 
1062 /// Return the instruction in the loop that defines the register.
1063 /// If the definition is a Phi, then follow the Phi operand to
1064 /// the instruction in the loop.
1065 MachineInstr *ModuloScheduleExpander::findDefInLoop(unsigned Reg) {
1066   SmallPtrSet<MachineInstr *, 8> Visited;
1067   MachineInstr *Def = MRI.getVRegDef(Reg);
1068   while (Def->isPHI()) {
1069     if (!Visited.insert(Def).second)
1070       break;
1071     for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
1072       if (Def->getOperand(i + 1).getMBB() == BB) {
1073         Def = MRI.getVRegDef(Def->getOperand(i).getReg());
1074         break;
1075       }
1076   }
1077   return Def;
1078 }
1079 
1080 /// Return the new name for the value from the previous stage.
1081 unsigned ModuloScheduleExpander::getPrevMapVal(
1082     unsigned StageNum, unsigned PhiStage, unsigned LoopVal, unsigned LoopStage,
1083     ValueMapTy *VRMap, MachineBasicBlock *BB) {
1084   unsigned PrevVal = 0;
1085   if (StageNum > PhiStage) {
1086     MachineInstr *LoopInst = MRI.getVRegDef(LoopVal);
1087     if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal))
1088       // The name is defined in the previous stage.
1089       PrevVal = VRMap[StageNum - 1][LoopVal];
1090     else if (VRMap[StageNum].count(LoopVal))
1091       // The previous name is defined in the current stage when the instruction
1092       // order is swapped.
1093       PrevVal = VRMap[StageNum][LoopVal];
1094     else if (!LoopInst->isPHI() || LoopInst->getParent() != BB)
1095       // The loop value hasn't yet been scheduled.
1096       PrevVal = LoopVal;
1097     else if (StageNum == PhiStage + 1)
1098       // The loop value is another phi, which has not been scheduled.
1099       PrevVal = getInitPhiReg(*LoopInst, BB);
1100     else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB)
1101       // The loop value is another phi, which has been scheduled.
1102       PrevVal =
1103           getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB),
1104                         LoopStage, VRMap, BB);
1105   }
1106   return PrevVal;
1107 }
1108 
1109 /// Rewrite the Phi values in the specified block to use the mappings
1110 /// from the initial operand. Once the Phi is scheduled, we switch
1111 /// to using the loop value instead of the Phi value, so those names
1112 /// do not need to be rewritten.
1113 void ModuloScheduleExpander::rewritePhiValues(MachineBasicBlock *NewBB,
1114                                               unsigned StageNum,
1115                                               ValueMapTy *VRMap,
1116                                               InstrMapTy &InstrMap) {
1117   for (auto &PHI : BB->phis()) {
1118     unsigned InitVal = 0;
1119     unsigned LoopVal = 0;
1120     getPhiRegs(PHI, BB, InitVal, LoopVal);
1121     Register PhiDef = PHI.getOperand(0).getReg();
1122 
1123     unsigned PhiStage = (unsigned)Schedule.getStage(MRI.getVRegDef(PhiDef));
1124     unsigned LoopStage = (unsigned)Schedule.getStage(MRI.getVRegDef(LoopVal));
1125     unsigned NumPhis = getStagesForPhi(PhiDef);
1126     if (NumPhis > StageNum)
1127       NumPhis = StageNum;
1128     for (unsigned np = 0; np <= NumPhis; ++np) {
1129       unsigned NewVal =
1130           getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB);
1131       if (!NewVal)
1132         NewVal = InitVal;
1133       rewriteScheduledInstr(NewBB, InstrMap, StageNum - np, np, &PHI, PhiDef,
1134                             NewVal);
1135     }
1136   }
1137 }
1138 
1139 /// Rewrite a previously scheduled instruction to use the register value
1140 /// from the new instruction. Make sure the instruction occurs in the
1141 /// basic block, and we don't change the uses in the new instruction.
1142 void ModuloScheduleExpander::rewriteScheduledInstr(
1143     MachineBasicBlock *BB, InstrMapTy &InstrMap, unsigned CurStageNum,
1144     unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, unsigned NewReg,
1145     unsigned PrevReg) {
1146   bool InProlog = (CurStageNum < (unsigned)Schedule.getNumStages() - 1);
1147   int StagePhi = Schedule.getStage(Phi) + PhiNum;
1148   // Rewrite uses that have been scheduled already to use the new
1149   // Phi register.
1150   for (MachineOperand &UseOp :
1151        llvm::make_early_inc_range(MRI.use_operands(OldReg))) {
1152     MachineInstr *UseMI = UseOp.getParent();
1153     if (UseMI->getParent() != BB)
1154       continue;
1155     if (UseMI->isPHI()) {
1156       if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg)
1157         continue;
1158       if (getLoopPhiReg(*UseMI, BB) != OldReg)
1159         continue;
1160     }
1161     InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI);
1162     assert(OrigInstr != InstrMap.end() && "Instruction not scheduled.");
1163     MachineInstr *OrigMI = OrigInstr->second;
1164     int StageSched = Schedule.getStage(OrigMI);
1165     int CycleSched = Schedule.getCycle(OrigMI);
1166     unsigned ReplaceReg = 0;
1167     // This is the stage for the scheduled instruction.
1168     if (StagePhi == StageSched && Phi->isPHI()) {
1169       int CyclePhi = Schedule.getCycle(Phi);
1170       if (PrevReg && InProlog)
1171         ReplaceReg = PrevReg;
1172       else if (PrevReg && !isLoopCarried(*Phi) &&
1173                (CyclePhi <= CycleSched || OrigMI->isPHI()))
1174         ReplaceReg = PrevReg;
1175       else
1176         ReplaceReg = NewReg;
1177     }
1178     // The scheduled instruction occurs before the scheduled Phi, and the
1179     // Phi is not loop carried.
1180     if (!InProlog && StagePhi + 1 == StageSched && !isLoopCarried(*Phi))
1181       ReplaceReg = NewReg;
1182     if (StagePhi > StageSched && Phi->isPHI())
1183       ReplaceReg = NewReg;
1184     if (!InProlog && !Phi->isPHI() && StagePhi < StageSched)
1185       ReplaceReg = NewReg;
1186     if (ReplaceReg) {
1187       const TargetRegisterClass *NRC =
1188           MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg));
1189       if (NRC)
1190         UseOp.setReg(ReplaceReg);
1191       else {
1192         Register SplitReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
1193         BuildMI(*BB, UseMI, UseMI->getDebugLoc(), TII->get(TargetOpcode::COPY),
1194                 SplitReg)
1195             .addReg(ReplaceReg);
1196         UseOp.setReg(SplitReg);
1197       }
1198     }
1199   }
1200 }
1201 
1202 bool ModuloScheduleExpander::isLoopCarried(MachineInstr &Phi) {
1203   if (!Phi.isPHI())
1204     return false;
1205   int DefCycle = Schedule.getCycle(&Phi);
1206   int DefStage = Schedule.getStage(&Phi);
1207 
1208   unsigned InitVal = 0;
1209   unsigned LoopVal = 0;
1210   getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
1211   MachineInstr *Use = MRI.getVRegDef(LoopVal);
1212   if (!Use || Use->isPHI())
1213     return true;
1214   int LoopCycle = Schedule.getCycle(Use);
1215   int LoopStage = Schedule.getStage(Use);
1216   return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
1217 }
1218 
1219 //===----------------------------------------------------------------------===//
1220 // PeelingModuloScheduleExpander implementation
1221 //===----------------------------------------------------------------------===//
1222 // This is a reimplementation of ModuloScheduleExpander that works by creating
1223 // a fully correct steady-state kernel and peeling off the prolog and epilogs.
1224 //===----------------------------------------------------------------------===//
1225 
1226 namespace {
1227 // Remove any dead phis in MBB. Dead phis either have only one block as input
1228 // (in which case they are the identity) or have no uses.
1229 void EliminateDeadPhis(MachineBasicBlock *MBB, MachineRegisterInfo &MRI,
1230                        LiveIntervals *LIS, bool KeepSingleSrcPhi = false) {
1231   bool Changed = true;
1232   while (Changed) {
1233     Changed = false;
1234     for (MachineInstr &MI : llvm::make_early_inc_range(MBB->phis())) {
1235       assert(MI.isPHI());
1236       if (MRI.use_empty(MI.getOperand(0).getReg())) {
1237         if (LIS)
1238           LIS->RemoveMachineInstrFromMaps(MI);
1239         MI.eraseFromParent();
1240         Changed = true;
1241       } else if (!KeepSingleSrcPhi && MI.getNumExplicitOperands() == 3) {
1242         const TargetRegisterClass *ConstrainRegClass =
1243             MRI.constrainRegClass(MI.getOperand(1).getReg(),
1244                                   MRI.getRegClass(MI.getOperand(0).getReg()));
1245         assert(ConstrainRegClass &&
1246                "Expected a valid constrained register class!");
1247         (void)ConstrainRegClass;
1248         MRI.replaceRegWith(MI.getOperand(0).getReg(),
1249                            MI.getOperand(1).getReg());
1250         if (LIS)
1251           LIS->RemoveMachineInstrFromMaps(MI);
1252         MI.eraseFromParent();
1253         Changed = true;
1254       }
1255     }
1256   }
1257 }
1258 
1259 /// Rewrites the kernel block in-place to adhere to the given schedule.
1260 /// KernelRewriter holds all of the state required to perform the rewriting.
1261 class KernelRewriter {
1262   ModuloSchedule &S;
1263   MachineBasicBlock *BB;
1264   MachineBasicBlock *PreheaderBB, *ExitBB;
1265   MachineRegisterInfo &MRI;
1266   const TargetInstrInfo *TII;
1267   LiveIntervals *LIS;
1268 
1269   // Map from register class to canonical undef register for that class.
1270   DenseMap<const TargetRegisterClass *, Register> Undefs;
1271   // Map from <LoopReg, InitReg> to phi register for all created phis. Note that
1272   // this map is only used when InitReg is non-undef.
1273   DenseMap<std::pair<unsigned, unsigned>, Register> Phis;
1274   // Map from LoopReg to phi register where the InitReg is undef.
1275   DenseMap<Register, Register> UndefPhis;
1276 
1277   // Reg is used by MI. Return the new register MI should use to adhere to the
1278   // schedule. Insert phis as necessary.
1279   Register remapUse(Register Reg, MachineInstr &MI);
1280   // Insert a phi that carries LoopReg from the loop body and InitReg otherwise.
1281   // If InitReg is not given it is chosen arbitrarily. It will either be undef
1282   // or will be chosen so as to share another phi.
1283   Register phi(Register LoopReg, std::optional<Register> InitReg = {},
1284                const TargetRegisterClass *RC = nullptr);
1285   // Create an undef register of the given register class.
1286   Register undef(const TargetRegisterClass *RC);
1287 
1288 public:
1289   KernelRewriter(MachineLoop &L, ModuloSchedule &S, MachineBasicBlock *LoopBB,
1290                  LiveIntervals *LIS = nullptr);
1291   void rewrite();
1292 };
1293 } // namespace
1294 
1295 KernelRewriter::KernelRewriter(MachineLoop &L, ModuloSchedule &S,
1296                                MachineBasicBlock *LoopBB, LiveIntervals *LIS)
1297     : S(S), BB(LoopBB), PreheaderBB(L.getLoopPreheader()),
1298       ExitBB(L.getExitBlock()), MRI(BB->getParent()->getRegInfo()),
1299       TII(BB->getParent()->getSubtarget().getInstrInfo()), LIS(LIS) {
1300   PreheaderBB = *BB->pred_begin();
1301   if (PreheaderBB == BB)
1302     PreheaderBB = *std::next(BB->pred_begin());
1303 }
1304 
1305 void KernelRewriter::rewrite() {
1306   // Rearrange the loop to be in schedule order. Note that the schedule may
1307   // contain instructions that are not owned by the loop block (InstrChanges and
1308   // friends), so we gracefully handle unowned instructions and delete any
1309   // instructions that weren't in the schedule.
1310   auto InsertPt = BB->getFirstTerminator();
1311   MachineInstr *FirstMI = nullptr;
1312   for (MachineInstr *MI : S.getInstructions()) {
1313     if (MI->isPHI())
1314       continue;
1315     if (MI->getParent())
1316       MI->removeFromParent();
1317     BB->insert(InsertPt, MI);
1318     if (!FirstMI)
1319       FirstMI = MI;
1320   }
1321   assert(FirstMI && "Failed to find first MI in schedule");
1322 
1323   // At this point all of the scheduled instructions are between FirstMI
1324   // and the end of the block. Kill from the first non-phi to FirstMI.
1325   for (auto I = BB->getFirstNonPHI(); I != FirstMI->getIterator();) {
1326     if (LIS)
1327       LIS->RemoveMachineInstrFromMaps(*I);
1328     (I++)->eraseFromParent();
1329   }
1330 
1331   // Now remap every instruction in the loop.
1332   for (MachineInstr &MI : *BB) {
1333     if (MI.isPHI() || MI.isTerminator())
1334       continue;
1335     for (MachineOperand &MO : MI.uses()) {
1336       if (!MO.isReg() || MO.getReg().isPhysical() || MO.isImplicit())
1337         continue;
1338       Register Reg = remapUse(MO.getReg(), MI);
1339       MO.setReg(Reg);
1340     }
1341   }
1342   EliminateDeadPhis(BB, MRI, LIS);
1343 
1344   // Ensure a phi exists for all instructions that are either referenced by
1345   // an illegal phi or by an instruction outside the loop. This allows us to
1346   // treat remaps of these values the same as "normal" values that come from
1347   // loop-carried phis.
1348   for (auto MI = BB->getFirstNonPHI(); MI != BB->end(); ++MI) {
1349     if (MI->isPHI()) {
1350       Register R = MI->getOperand(0).getReg();
1351       phi(R);
1352       continue;
1353     }
1354 
1355     for (MachineOperand &Def : MI->defs()) {
1356       for (MachineInstr &MI : MRI.use_instructions(Def.getReg())) {
1357         if (MI.getParent() != BB) {
1358           phi(Def.getReg());
1359           break;
1360         }
1361       }
1362     }
1363   }
1364 }
1365 
1366 Register KernelRewriter::remapUse(Register Reg, MachineInstr &MI) {
1367   MachineInstr *Producer = MRI.getUniqueVRegDef(Reg);
1368   if (!Producer)
1369     return Reg;
1370 
1371   int ConsumerStage = S.getStage(&MI);
1372   if (!Producer->isPHI()) {
1373     // Non-phi producers are simple to remap. Insert as many phis as the
1374     // difference between the consumer and producer stages.
1375     if (Producer->getParent() != BB)
1376       // Producer was not inside the loop. Use the register as-is.
1377       return Reg;
1378     int ProducerStage = S.getStage(Producer);
1379     assert(ConsumerStage != -1 &&
1380            "In-loop consumer should always be scheduled!");
1381     assert(ConsumerStage >= ProducerStage);
1382     unsigned StageDiff = ConsumerStage - ProducerStage;
1383 
1384     for (unsigned I = 0; I < StageDiff; ++I)
1385       Reg = phi(Reg);
1386     return Reg;
1387   }
1388 
1389   // First, dive through the phi chain to find the defaults for the generated
1390   // phis.
1391   SmallVector<std::optional<Register>, 4> Defaults;
1392   Register LoopReg = Reg;
1393   auto LoopProducer = Producer;
1394   while (LoopProducer->isPHI() && LoopProducer->getParent() == BB) {
1395     LoopReg = getLoopPhiReg(*LoopProducer, BB);
1396     Defaults.emplace_back(getInitPhiReg(*LoopProducer, BB));
1397     LoopProducer = MRI.getUniqueVRegDef(LoopReg);
1398     assert(LoopProducer);
1399   }
1400   int LoopProducerStage = S.getStage(LoopProducer);
1401 
1402   std::optional<Register> IllegalPhiDefault;
1403 
1404   if (LoopProducerStage == -1) {
1405     // Do nothing.
1406   } else if (LoopProducerStage > ConsumerStage) {
1407     // This schedule is only representable if ProducerStage == ConsumerStage+1.
1408     // In addition, Consumer's cycle must be scheduled after Producer in the
1409     // rescheduled loop. This is enforced by the pipeliner's ASAP and ALAP
1410     // functions.
1411 #ifndef NDEBUG // Silence unused variables in non-asserts mode.
1412     int LoopProducerCycle = S.getCycle(LoopProducer);
1413     int ConsumerCycle = S.getCycle(&MI);
1414 #endif
1415     assert(LoopProducerCycle <= ConsumerCycle);
1416     assert(LoopProducerStage == ConsumerStage + 1);
1417     // Peel off the first phi from Defaults and insert a phi between producer
1418     // and consumer. This phi will not be at the front of the block so we
1419     // consider it illegal. It will only exist during the rewrite process; it
1420     // needs to exist while we peel off prologs because these could take the
1421     // default value. After that we can replace all uses with the loop producer
1422     // value.
1423     IllegalPhiDefault = Defaults.front();
1424     Defaults.erase(Defaults.begin());
1425   } else {
1426     assert(ConsumerStage >= LoopProducerStage);
1427     int StageDiff = ConsumerStage - LoopProducerStage;
1428     if (StageDiff > 0) {
1429       LLVM_DEBUG(dbgs() << " -- padding defaults array from " << Defaults.size()
1430                         << " to " << (Defaults.size() + StageDiff) << "\n");
1431       // If we need more phis than we have defaults for, pad out with undefs for
1432       // the earliest phis, which are at the end of the defaults chain (the
1433       // chain is in reverse order).
1434       Defaults.resize(Defaults.size() + StageDiff,
1435                       Defaults.empty() ? std::optional<Register>()
1436                                        : Defaults.back());
1437     }
1438   }
1439 
1440   // Now we know the number of stages to jump back, insert the phi chain.
1441   auto DefaultI = Defaults.rbegin();
1442   while (DefaultI != Defaults.rend())
1443     LoopReg = phi(LoopReg, *DefaultI++, MRI.getRegClass(Reg));
1444 
1445   if (IllegalPhiDefault) {
1446     // The consumer optionally consumes LoopProducer in the same iteration
1447     // (because the producer is scheduled at an earlier cycle than the consumer)
1448     // or the initial value. To facilitate this we create an illegal block here
1449     // by embedding a phi in the middle of the block. We will fix this up
1450     // immediately prior to pruning.
1451     auto RC = MRI.getRegClass(Reg);
1452     Register R = MRI.createVirtualRegister(RC);
1453     MachineInstr *IllegalPhi =
1454         BuildMI(*BB, MI, DebugLoc(), TII->get(TargetOpcode::PHI), R)
1455             .addReg(*IllegalPhiDefault)
1456             .addMBB(PreheaderBB) // Block choice is arbitrary and has no effect.
1457             .addReg(LoopReg)
1458             .addMBB(BB); // Block choice is arbitrary and has no effect.
1459     // Illegal phi should belong to the producer stage so that it can be
1460     // filtered correctly during peeling.
1461     S.setStage(IllegalPhi, LoopProducerStage);
1462     return R;
1463   }
1464 
1465   return LoopReg;
1466 }
1467 
1468 Register KernelRewriter::phi(Register LoopReg, std::optional<Register> InitReg,
1469                              const TargetRegisterClass *RC) {
1470   // If the init register is not undef, try and find an existing phi.
1471   if (InitReg) {
1472     auto I = Phis.find({LoopReg, *InitReg});
1473     if (I != Phis.end())
1474       return I->second;
1475   } else {
1476     for (auto &KV : Phis) {
1477       if (KV.first.first == LoopReg)
1478         return KV.second;
1479     }
1480   }
1481 
1482   // InitReg is either undef or no existing phi takes InitReg as input. Try and
1483   // find a phi that takes undef as input.
1484   auto I = UndefPhis.find(LoopReg);
1485   if (I != UndefPhis.end()) {
1486     Register R = I->second;
1487     if (!InitReg)
1488       // Found a phi taking undef as input, and this input is undef so return
1489       // without any more changes.
1490       return R;
1491     // Found a phi taking undef as input, so rewrite it to take InitReg.
1492     MachineInstr *MI = MRI.getVRegDef(R);
1493     MI->getOperand(1).setReg(*InitReg);
1494     Phis.insert({{LoopReg, *InitReg}, R});
1495     const TargetRegisterClass *ConstrainRegClass =
1496         MRI.constrainRegClass(R, MRI.getRegClass(*InitReg));
1497     assert(ConstrainRegClass && "Expected a valid constrained register class!");
1498     (void)ConstrainRegClass;
1499     UndefPhis.erase(I);
1500     return R;
1501   }
1502 
1503   // Failed to find any existing phi to reuse, so create a new one.
1504   if (!RC)
1505     RC = MRI.getRegClass(LoopReg);
1506   Register R = MRI.createVirtualRegister(RC);
1507   if (InitReg) {
1508     const TargetRegisterClass *ConstrainRegClass =
1509         MRI.constrainRegClass(R, MRI.getRegClass(*InitReg));
1510     assert(ConstrainRegClass && "Expected a valid constrained register class!");
1511     (void)ConstrainRegClass;
1512   }
1513   BuildMI(*BB, BB->getFirstNonPHI(), DebugLoc(), TII->get(TargetOpcode::PHI), R)
1514       .addReg(InitReg ? *InitReg : undef(RC))
1515       .addMBB(PreheaderBB)
1516       .addReg(LoopReg)
1517       .addMBB(BB);
1518   if (!InitReg)
1519     UndefPhis[LoopReg] = R;
1520   else
1521     Phis[{LoopReg, *InitReg}] = R;
1522   return R;
1523 }
1524 
1525 Register KernelRewriter::undef(const TargetRegisterClass *RC) {
1526   Register &R = Undefs[RC];
1527   if (R == 0) {
1528     // Create an IMPLICIT_DEF that defines this register if we need it.
1529     // All uses of this should be removed by the time we have finished unrolling
1530     // prologs and epilogs.
1531     R = MRI.createVirtualRegister(RC);
1532     auto *InsertBB = &PreheaderBB->getParent()->front();
1533     BuildMI(*InsertBB, InsertBB->getFirstTerminator(), DebugLoc(),
1534             TII->get(TargetOpcode::IMPLICIT_DEF), R);
1535   }
1536   return R;
1537 }
1538 
1539 namespace {
1540 /// Describes an operand in the kernel of a pipelined loop. Characteristics of
1541 /// the operand are discovered, such as how many in-loop PHIs it has to jump
1542 /// through and defaults for these phis.
1543 class KernelOperandInfo {
1544   MachineBasicBlock *BB;
1545   MachineRegisterInfo &MRI;
1546   SmallVector<Register, 4> PhiDefaults;
1547   MachineOperand *Source;
1548   MachineOperand *Target;
1549 
1550 public:
1551   KernelOperandInfo(MachineOperand *MO, MachineRegisterInfo &MRI,
1552                     const SmallPtrSetImpl<MachineInstr *> &IllegalPhis)
1553       : MRI(MRI) {
1554     Source = MO;
1555     BB = MO->getParent()->getParent();
1556     while (isRegInLoop(MO)) {
1557       MachineInstr *MI = MRI.getVRegDef(MO->getReg());
1558       if (MI->isFullCopy()) {
1559         MO = &MI->getOperand(1);
1560         continue;
1561       }
1562       if (!MI->isPHI())
1563         break;
1564       // If this is an illegal phi, don't count it in distance.
1565       if (IllegalPhis.count(MI)) {
1566         MO = &MI->getOperand(3);
1567         continue;
1568       }
1569 
1570       Register Default = getInitPhiReg(*MI, BB);
1571       MO = MI->getOperand(2).getMBB() == BB ? &MI->getOperand(1)
1572                                             : &MI->getOperand(3);
1573       PhiDefaults.push_back(Default);
1574     }
1575     Target = MO;
1576   }
1577 
1578   bool operator==(const KernelOperandInfo &Other) const {
1579     return PhiDefaults.size() == Other.PhiDefaults.size();
1580   }
1581 
1582   void print(raw_ostream &OS) const {
1583     OS << "use of " << *Source << ": distance(" << PhiDefaults.size() << ") in "
1584        << *Source->getParent();
1585   }
1586 
1587 private:
1588   bool isRegInLoop(MachineOperand *MO) {
1589     return MO->isReg() && MO->getReg().isVirtual() &&
1590            MRI.getVRegDef(MO->getReg())->getParent() == BB;
1591   }
1592 };
1593 } // namespace
1594 
1595 MachineBasicBlock *
1596 PeelingModuloScheduleExpander::peelKernel(LoopPeelDirection LPD) {
1597   MachineBasicBlock *NewBB = PeelSingleBlockLoop(LPD, BB, MRI, TII);
1598   if (LPD == LPD_Front)
1599     PeeledFront.push_back(NewBB);
1600   else
1601     PeeledBack.push_front(NewBB);
1602   for (auto I = BB->begin(), NI = NewBB->begin(); !I->isTerminator();
1603        ++I, ++NI) {
1604     CanonicalMIs[&*I] = &*I;
1605     CanonicalMIs[&*NI] = &*I;
1606     BlockMIs[{NewBB, &*I}] = &*NI;
1607     BlockMIs[{BB, &*I}] = &*I;
1608   }
1609   return NewBB;
1610 }
1611 
1612 void PeelingModuloScheduleExpander::filterInstructions(MachineBasicBlock *MB,
1613                                                        int MinStage) {
1614   for (auto I = MB->getFirstInstrTerminator()->getReverseIterator();
1615        I != std::next(MB->getFirstNonPHI()->getReverseIterator());) {
1616     MachineInstr *MI = &*I++;
1617     int Stage = getStage(MI);
1618     if (Stage == -1 || Stage >= MinStage)
1619       continue;
1620 
1621     for (MachineOperand &DefMO : MI->defs()) {
1622       SmallVector<std::pair<MachineInstr *, Register>, 4> Subs;
1623       for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) {
1624         // Only PHIs can use values from this block by construction.
1625         // Match with the equivalent PHI in B.
1626         assert(UseMI.isPHI());
1627         Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(),
1628                                                MI->getParent());
1629         Subs.emplace_back(&UseMI, Reg);
1630       }
1631       for (auto &Sub : Subs)
1632         Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0,
1633                                       *MRI.getTargetRegisterInfo());
1634     }
1635     if (LIS)
1636       LIS->RemoveMachineInstrFromMaps(*MI);
1637     MI->eraseFromParent();
1638   }
1639 }
1640 
1641 void PeelingModuloScheduleExpander::moveStageBetweenBlocks(
1642     MachineBasicBlock *DestBB, MachineBasicBlock *SourceBB, unsigned Stage) {
1643   auto InsertPt = DestBB->getFirstNonPHI();
1644   DenseMap<Register, Register> Remaps;
1645   for (MachineInstr &MI : llvm::make_early_inc_range(
1646            llvm::make_range(SourceBB->getFirstNonPHI(), SourceBB->end()))) {
1647     if (MI.isPHI()) {
1648       // This is an illegal PHI. If we move any instructions using an illegal
1649       // PHI, we need to create a legal Phi.
1650       if (getStage(&MI) != Stage) {
1651         // The legal Phi is not necessary if the illegal phi's stage
1652         // is being moved.
1653         Register PhiR = MI.getOperand(0).getReg();
1654         auto RC = MRI.getRegClass(PhiR);
1655         Register NR = MRI.createVirtualRegister(RC);
1656         MachineInstr *NI = BuildMI(*DestBB, DestBB->getFirstNonPHI(),
1657                                    DebugLoc(), TII->get(TargetOpcode::PHI), NR)
1658                                .addReg(PhiR)
1659                                .addMBB(SourceBB);
1660         BlockMIs[{DestBB, CanonicalMIs[&MI]}] = NI;
1661         CanonicalMIs[NI] = CanonicalMIs[&MI];
1662         Remaps[PhiR] = NR;
1663       }
1664     }
1665     if (getStage(&MI) != Stage)
1666       continue;
1667     MI.removeFromParent();
1668     DestBB->insert(InsertPt, &MI);
1669     auto *KernelMI = CanonicalMIs[&MI];
1670     BlockMIs[{DestBB, KernelMI}] = &MI;
1671     BlockMIs.erase({SourceBB, KernelMI});
1672   }
1673   SmallVector<MachineInstr *, 4> PhiToDelete;
1674   for (MachineInstr &MI : DestBB->phis()) {
1675     assert(MI.getNumOperands() == 3);
1676     MachineInstr *Def = MRI.getVRegDef(MI.getOperand(1).getReg());
1677     // If the instruction referenced by the phi is moved inside the block
1678     // we don't need the phi anymore.
1679     if (getStage(Def) == Stage) {
1680       Register PhiReg = MI.getOperand(0).getReg();
1681       assert(Def->findRegisterDefOperandIdx(MI.getOperand(1).getReg()) != -1);
1682       MRI.replaceRegWith(MI.getOperand(0).getReg(), MI.getOperand(1).getReg());
1683       MI.getOperand(0).setReg(PhiReg);
1684       PhiToDelete.push_back(&MI);
1685     }
1686   }
1687   for (auto *P : PhiToDelete)
1688     P->eraseFromParent();
1689   InsertPt = DestBB->getFirstNonPHI();
1690   // Helper to clone Phi instructions into the destination block. We clone Phi
1691   // greedily to avoid combinatorial explosion of Phi instructions.
1692   auto clonePhi = [&](MachineInstr *Phi) {
1693     MachineInstr *NewMI = MF.CloneMachineInstr(Phi);
1694     DestBB->insert(InsertPt, NewMI);
1695     Register OrigR = Phi->getOperand(0).getReg();
1696     Register R = MRI.createVirtualRegister(MRI.getRegClass(OrigR));
1697     NewMI->getOperand(0).setReg(R);
1698     NewMI->getOperand(1).setReg(OrigR);
1699     NewMI->getOperand(2).setMBB(*DestBB->pred_begin());
1700     Remaps[OrigR] = R;
1701     CanonicalMIs[NewMI] = CanonicalMIs[Phi];
1702     BlockMIs[{DestBB, CanonicalMIs[Phi]}] = NewMI;
1703     PhiNodeLoopIteration[NewMI] = PhiNodeLoopIteration[Phi];
1704     return R;
1705   };
1706   for (auto I = DestBB->getFirstNonPHI(); I != DestBB->end(); ++I) {
1707     for (MachineOperand &MO : I->uses()) {
1708       if (!MO.isReg())
1709         continue;
1710       if (Remaps.count(MO.getReg()))
1711         MO.setReg(Remaps[MO.getReg()]);
1712       else {
1713         // If we are using a phi from the source block we need to add a new phi
1714         // pointing to the old one.
1715         MachineInstr *Use = MRI.getUniqueVRegDef(MO.getReg());
1716         if (Use && Use->isPHI() && Use->getParent() == SourceBB) {
1717           Register R = clonePhi(Use);
1718           MO.setReg(R);
1719         }
1720       }
1721     }
1722   }
1723 }
1724 
1725 Register
1726 PeelingModuloScheduleExpander::getPhiCanonicalReg(MachineInstr *CanonicalPhi,
1727                                                   MachineInstr *Phi) {
1728   unsigned distance = PhiNodeLoopIteration[Phi];
1729   MachineInstr *CanonicalUse = CanonicalPhi;
1730   Register CanonicalUseReg = CanonicalUse->getOperand(0).getReg();
1731   for (unsigned I = 0; I < distance; ++I) {
1732     assert(CanonicalUse->isPHI());
1733     assert(CanonicalUse->getNumOperands() == 5);
1734     unsigned LoopRegIdx = 3, InitRegIdx = 1;
1735     if (CanonicalUse->getOperand(2).getMBB() == CanonicalUse->getParent())
1736       std::swap(LoopRegIdx, InitRegIdx);
1737     CanonicalUseReg = CanonicalUse->getOperand(LoopRegIdx).getReg();
1738     CanonicalUse = MRI.getVRegDef(CanonicalUseReg);
1739   }
1740   return CanonicalUseReg;
1741 }
1742 
1743 void PeelingModuloScheduleExpander::peelPrologAndEpilogs() {
1744   BitVector LS(Schedule.getNumStages(), true);
1745   BitVector AS(Schedule.getNumStages(), true);
1746   LiveStages[BB] = LS;
1747   AvailableStages[BB] = AS;
1748 
1749   // Peel out the prologs.
1750   LS.reset();
1751   for (int I = 0; I < Schedule.getNumStages() - 1; ++I) {
1752     LS[I] = true;
1753     Prologs.push_back(peelKernel(LPD_Front));
1754     LiveStages[Prologs.back()] = LS;
1755     AvailableStages[Prologs.back()] = LS;
1756   }
1757 
1758   // Create a block that will end up as the new loop exiting block (dominated by
1759   // all prologs and epilogs). It will only contain PHIs, in the same order as
1760   // BB's PHIs. This gives us a poor-man's LCSSA with the inductive property
1761   // that the exiting block is a (sub) clone of BB. This in turn gives us the
1762   // property that any value deffed in BB but used outside of BB is used by a
1763   // PHI in the exiting block.
1764   MachineBasicBlock *ExitingBB = CreateLCSSAExitingBlock();
1765   EliminateDeadPhis(ExitingBB, MRI, LIS, /*KeepSingleSrcPhi=*/true);
1766   // Push out the epilogs, again in reverse order.
1767   // We can't assume anything about the minumum loop trip count at this point,
1768   // so emit a fairly complex epilog.
1769 
1770   // We first peel number of stages minus one epilogue. Then we remove dead
1771   // stages and reorder instructions based on their stage. If we have 3 stages
1772   // we generate first:
1773   // E0[3, 2, 1]
1774   // E1[3', 2']
1775   // E2[3'']
1776   // And then we move instructions based on their stages to have:
1777   // E0[3]
1778   // E1[2, 3']
1779   // E2[1, 2', 3'']
1780   // The transformation is legal because we only move instructions past
1781   // instructions of a previous loop iteration.
1782   for (int I = 1; I <= Schedule.getNumStages() - 1; ++I) {
1783     Epilogs.push_back(peelKernel(LPD_Back));
1784     MachineBasicBlock *B = Epilogs.back();
1785     filterInstructions(B, Schedule.getNumStages() - I);
1786     // Keep track at which iteration each phi belongs to. We need it to know
1787     // what version of the variable to use during prologue/epilogue stitching.
1788     EliminateDeadPhis(B, MRI, LIS, /*KeepSingleSrcPhi=*/true);
1789     for (MachineInstr &Phi : B->phis())
1790       PhiNodeLoopIteration[&Phi] = Schedule.getNumStages() - I;
1791   }
1792   for (size_t I = 0; I < Epilogs.size(); I++) {
1793     LS.reset();
1794     for (size_t J = I; J < Epilogs.size(); J++) {
1795       int Iteration = J;
1796       unsigned Stage = Schedule.getNumStages() - 1 + I - J;
1797       // Move stage one block at a time so that Phi nodes are updated correctly.
1798       for (size_t K = Iteration; K > I; K--)
1799         moveStageBetweenBlocks(Epilogs[K - 1], Epilogs[K], Stage);
1800       LS[Stage] = true;
1801     }
1802     LiveStages[Epilogs[I]] = LS;
1803     AvailableStages[Epilogs[I]] = AS;
1804   }
1805 
1806   // Now we've defined all the prolog and epilog blocks as a fallthrough
1807   // sequence, add the edges that will be followed if the loop trip count is
1808   // lower than the number of stages (connecting prologs directly with epilogs).
1809   auto PI = Prologs.begin();
1810   auto EI = Epilogs.begin();
1811   assert(Prologs.size() == Epilogs.size());
1812   for (; PI != Prologs.end(); ++PI, ++EI) {
1813     MachineBasicBlock *Pred = *(*EI)->pred_begin();
1814     (*PI)->addSuccessor(*EI);
1815     for (MachineInstr &MI : (*EI)->phis()) {
1816       Register Reg = MI.getOperand(1).getReg();
1817       MachineInstr *Use = MRI.getUniqueVRegDef(Reg);
1818       if (Use && Use->getParent() == Pred) {
1819         MachineInstr *CanonicalUse = CanonicalMIs[Use];
1820         if (CanonicalUse->isPHI()) {
1821           // If the use comes from a phi we need to skip as many phi as the
1822           // distance between the epilogue and the kernel. Trace through the phi
1823           // chain to find the right value.
1824           Reg = getPhiCanonicalReg(CanonicalUse, Use);
1825         }
1826         Reg = getEquivalentRegisterIn(Reg, *PI);
1827       }
1828       MI.addOperand(MachineOperand::CreateReg(Reg, /*isDef=*/false));
1829       MI.addOperand(MachineOperand::CreateMBB(*PI));
1830     }
1831   }
1832 
1833   // Create a list of all blocks in order.
1834   SmallVector<MachineBasicBlock *, 8> Blocks;
1835   llvm::copy(PeeledFront, std::back_inserter(Blocks));
1836   Blocks.push_back(BB);
1837   llvm::copy(PeeledBack, std::back_inserter(Blocks));
1838 
1839   // Iterate in reverse order over all instructions, remapping as we go.
1840   for (MachineBasicBlock *B : reverse(Blocks)) {
1841     for (auto I = B->instr_rbegin();
1842          I != std::next(B->getFirstNonPHI()->getReverseIterator());) {
1843       MachineBasicBlock::reverse_instr_iterator MI = I++;
1844       rewriteUsesOf(&*MI);
1845     }
1846   }
1847   for (auto *MI : IllegalPhisToDelete) {
1848     if (LIS)
1849       LIS->RemoveMachineInstrFromMaps(*MI);
1850     MI->eraseFromParent();
1851   }
1852   IllegalPhisToDelete.clear();
1853 
1854   // Now all remapping has been done, we're free to optimize the generated code.
1855   for (MachineBasicBlock *B : reverse(Blocks))
1856     EliminateDeadPhis(B, MRI, LIS);
1857   EliminateDeadPhis(ExitingBB, MRI, LIS);
1858 }
1859 
1860 MachineBasicBlock *PeelingModuloScheduleExpander::CreateLCSSAExitingBlock() {
1861   MachineFunction &MF = *BB->getParent();
1862   MachineBasicBlock *Exit = *BB->succ_begin();
1863   if (Exit == BB)
1864     Exit = *std::next(BB->succ_begin());
1865 
1866   MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
1867   MF.insert(std::next(BB->getIterator()), NewBB);
1868 
1869   // Clone all phis in BB into NewBB and rewrite.
1870   for (MachineInstr &MI : BB->phis()) {
1871     auto RC = MRI.getRegClass(MI.getOperand(0).getReg());
1872     Register OldR = MI.getOperand(3).getReg();
1873     Register R = MRI.createVirtualRegister(RC);
1874     SmallVector<MachineInstr *, 4> Uses;
1875     for (MachineInstr &Use : MRI.use_instructions(OldR))
1876       if (Use.getParent() != BB)
1877         Uses.push_back(&Use);
1878     for (MachineInstr *Use : Uses)
1879       Use->substituteRegister(OldR, R, /*SubIdx=*/0,
1880                               *MRI.getTargetRegisterInfo());
1881     MachineInstr *NI = BuildMI(NewBB, DebugLoc(), TII->get(TargetOpcode::PHI), R)
1882         .addReg(OldR)
1883         .addMBB(BB);
1884     BlockMIs[{NewBB, &MI}] = NI;
1885     CanonicalMIs[NI] = &MI;
1886   }
1887   BB->replaceSuccessor(Exit, NewBB);
1888   Exit->replacePhiUsesWith(BB, NewBB);
1889   NewBB->addSuccessor(Exit);
1890 
1891   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1892   SmallVector<MachineOperand, 4> Cond;
1893   bool CanAnalyzeBr = !TII->analyzeBranch(*BB, TBB, FBB, Cond);
1894   (void)CanAnalyzeBr;
1895   assert(CanAnalyzeBr && "Must be able to analyze the loop branch!");
1896   TII->removeBranch(*BB);
1897   TII->insertBranch(*BB, TBB == Exit ? NewBB : TBB, FBB == Exit ? NewBB : FBB,
1898                     Cond, DebugLoc());
1899   TII->insertUnconditionalBranch(*NewBB, Exit, DebugLoc());
1900   return NewBB;
1901 }
1902 
1903 Register
1904 PeelingModuloScheduleExpander::getEquivalentRegisterIn(Register Reg,
1905                                                        MachineBasicBlock *BB) {
1906   MachineInstr *MI = MRI.getUniqueVRegDef(Reg);
1907   unsigned OpIdx = MI->findRegisterDefOperandIdx(Reg);
1908   return BlockMIs[{BB, CanonicalMIs[MI]}]->getOperand(OpIdx).getReg();
1909 }
1910 
1911 void PeelingModuloScheduleExpander::rewriteUsesOf(MachineInstr *MI) {
1912   if (MI->isPHI()) {
1913     // This is an illegal PHI. The loop-carried (desired) value is operand 3,
1914     // and it is produced by this block.
1915     Register PhiR = MI->getOperand(0).getReg();
1916     Register R = MI->getOperand(3).getReg();
1917     int RMIStage = getStage(MRI.getUniqueVRegDef(R));
1918     if (RMIStage != -1 && !AvailableStages[MI->getParent()].test(RMIStage))
1919       R = MI->getOperand(1).getReg();
1920     MRI.setRegClass(R, MRI.getRegClass(PhiR));
1921     MRI.replaceRegWith(PhiR, R);
1922     // Postpone deleting the Phi as it may be referenced by BlockMIs and used
1923     // later to figure out how to remap registers.
1924     MI->getOperand(0).setReg(PhiR);
1925     IllegalPhisToDelete.push_back(MI);
1926     return;
1927   }
1928 
1929   int Stage = getStage(MI);
1930   if (Stage == -1 || LiveStages.count(MI->getParent()) == 0 ||
1931       LiveStages[MI->getParent()].test(Stage))
1932     // Instruction is live, no rewriting to do.
1933     return;
1934 
1935   for (MachineOperand &DefMO : MI->defs()) {
1936     SmallVector<std::pair<MachineInstr *, Register>, 4> Subs;
1937     for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) {
1938       // Only PHIs can use values from this block by construction.
1939       // Match with the equivalent PHI in B.
1940       assert(UseMI.isPHI());
1941       Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(),
1942                                              MI->getParent());
1943       Subs.emplace_back(&UseMI, Reg);
1944     }
1945     for (auto &Sub : Subs)
1946       Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0,
1947                                     *MRI.getTargetRegisterInfo());
1948   }
1949   if (LIS)
1950     LIS->RemoveMachineInstrFromMaps(*MI);
1951   MI->eraseFromParent();
1952 }
1953 
1954 void PeelingModuloScheduleExpander::fixupBranches() {
1955   // Work outwards from the kernel.
1956   bool KernelDisposed = false;
1957   int TC = Schedule.getNumStages() - 1;
1958   for (auto PI = Prologs.rbegin(), EI = Epilogs.rbegin(); PI != Prologs.rend();
1959        ++PI, ++EI, --TC) {
1960     MachineBasicBlock *Prolog = *PI;
1961     MachineBasicBlock *Fallthrough = *Prolog->succ_begin();
1962     MachineBasicBlock *Epilog = *EI;
1963     SmallVector<MachineOperand, 4> Cond;
1964     TII->removeBranch(*Prolog);
1965     std::optional<bool> StaticallyGreater =
1966         LoopInfo->createTripCountGreaterCondition(TC, *Prolog, Cond);
1967     if (!StaticallyGreater) {
1968       LLVM_DEBUG(dbgs() << "Dynamic: TC > " << TC << "\n");
1969       // Dynamically branch based on Cond.
1970       TII->insertBranch(*Prolog, Epilog, Fallthrough, Cond, DebugLoc());
1971     } else if (*StaticallyGreater == false) {
1972       LLVM_DEBUG(dbgs() << "Static-false: TC > " << TC << "\n");
1973       // Prolog never falls through; branch to epilog and orphan interior
1974       // blocks. Leave it to unreachable-block-elim to clean up.
1975       Prolog->removeSuccessor(Fallthrough);
1976       for (MachineInstr &P : Fallthrough->phis()) {
1977         P.removeOperand(2);
1978         P.removeOperand(1);
1979       }
1980       TII->insertUnconditionalBranch(*Prolog, Epilog, DebugLoc());
1981       KernelDisposed = true;
1982     } else {
1983       LLVM_DEBUG(dbgs() << "Static-true: TC > " << TC << "\n");
1984       // Prolog always falls through; remove incoming values in epilog.
1985       Prolog->removeSuccessor(Epilog);
1986       for (MachineInstr &P : Epilog->phis()) {
1987         P.removeOperand(4);
1988         P.removeOperand(3);
1989       }
1990     }
1991   }
1992 
1993   if (!KernelDisposed) {
1994     LoopInfo->adjustTripCount(-(Schedule.getNumStages() - 1));
1995     LoopInfo->setPreheader(Prologs.back());
1996   } else {
1997     LoopInfo->disposed();
1998   }
1999 }
2000 
2001 void PeelingModuloScheduleExpander::rewriteKernel() {
2002   KernelRewriter KR(*Schedule.getLoop(), Schedule, BB);
2003   KR.rewrite();
2004 }
2005 
2006 void PeelingModuloScheduleExpander::expand() {
2007   BB = Schedule.getLoop()->getTopBlock();
2008   Preheader = Schedule.getLoop()->getLoopPreheader();
2009   LLVM_DEBUG(Schedule.dump());
2010   LoopInfo = TII->analyzeLoopForPipelining(BB);
2011   assert(LoopInfo);
2012 
2013   rewriteKernel();
2014   peelPrologAndEpilogs();
2015   fixupBranches();
2016 }
2017 
2018 void PeelingModuloScheduleExpander::validateAgainstModuloScheduleExpander() {
2019   BB = Schedule.getLoop()->getTopBlock();
2020   Preheader = Schedule.getLoop()->getLoopPreheader();
2021 
2022   // Dump the schedule before we invalidate and remap all its instructions.
2023   // Stash it in a string so we can print it if we found an error.
2024   std::string ScheduleDump;
2025   raw_string_ostream OS(ScheduleDump);
2026   Schedule.print(OS);
2027   OS.flush();
2028 
2029   // First, run the normal ModuleScheduleExpander. We don't support any
2030   // InstrChanges.
2031   assert(LIS && "Requires LiveIntervals!");
2032   ModuloScheduleExpander MSE(MF, Schedule, *LIS,
2033                              ModuloScheduleExpander::InstrChangesTy());
2034   MSE.expand();
2035   MachineBasicBlock *ExpandedKernel = MSE.getRewrittenKernel();
2036   if (!ExpandedKernel) {
2037     // The expander optimized away the kernel. We can't do any useful checking.
2038     MSE.cleanup();
2039     return;
2040   }
2041   // Before running the KernelRewriter, re-add BB into the CFG.
2042   Preheader->addSuccessor(BB);
2043 
2044   // Now run the new expansion algorithm.
2045   KernelRewriter KR(*Schedule.getLoop(), Schedule, BB);
2046   KR.rewrite();
2047   peelPrologAndEpilogs();
2048 
2049   // Collect all illegal phis that the new algorithm created. We'll give these
2050   // to KernelOperandInfo.
2051   SmallPtrSet<MachineInstr *, 4> IllegalPhis;
2052   for (auto NI = BB->getFirstNonPHI(); NI != BB->end(); ++NI) {
2053     if (NI->isPHI())
2054       IllegalPhis.insert(&*NI);
2055   }
2056 
2057   // Co-iterate across both kernels. We expect them to be identical apart from
2058   // phis and full COPYs (we look through both).
2059   SmallVector<std::pair<KernelOperandInfo, KernelOperandInfo>, 8> KOIs;
2060   auto OI = ExpandedKernel->begin();
2061   auto NI = BB->begin();
2062   for (; !OI->isTerminator() && !NI->isTerminator(); ++OI, ++NI) {
2063     while (OI->isPHI() || OI->isFullCopy())
2064       ++OI;
2065     while (NI->isPHI() || NI->isFullCopy())
2066       ++NI;
2067     assert(OI->getOpcode() == NI->getOpcode() && "Opcodes don't match?!");
2068     // Analyze every operand separately.
2069     for (auto OOpI = OI->operands_begin(), NOpI = NI->operands_begin();
2070          OOpI != OI->operands_end(); ++OOpI, ++NOpI)
2071       KOIs.emplace_back(KernelOperandInfo(&*OOpI, MRI, IllegalPhis),
2072                         KernelOperandInfo(&*NOpI, MRI, IllegalPhis));
2073   }
2074 
2075   bool Failed = false;
2076   for (auto &OldAndNew : KOIs) {
2077     if (OldAndNew.first == OldAndNew.second)
2078       continue;
2079     Failed = true;
2080     errs() << "Modulo kernel validation error: [\n";
2081     errs() << " [golden] ";
2082     OldAndNew.first.print(errs());
2083     errs() << "          ";
2084     OldAndNew.second.print(errs());
2085     errs() << "]\n";
2086   }
2087 
2088   if (Failed) {
2089     errs() << "Golden reference kernel:\n";
2090     ExpandedKernel->print(errs());
2091     errs() << "New kernel:\n";
2092     BB->print(errs());
2093     errs() << ScheduleDump;
2094     report_fatal_error(
2095         "Modulo kernel validation (-pipeliner-experimental-cg) failed");
2096   }
2097 
2098   // Cleanup by removing BB from the CFG again as the original
2099   // ModuloScheduleExpander intended.
2100   Preheader->removeSuccessor(BB);
2101   MSE.cleanup();
2102 }
2103 
2104 //===----------------------------------------------------------------------===//
2105 // ModuloScheduleTestPass implementation
2106 //===----------------------------------------------------------------------===//
2107 // This pass constructs a ModuloSchedule from its module and runs
2108 // ModuloScheduleExpander.
2109 //
2110 // The module is expected to contain a single-block analyzable loop.
2111 // The total order of instructions is taken from the loop as-is.
2112 // Instructions are expected to be annotated with a PostInstrSymbol.
2113 // This PostInstrSymbol must have the following format:
2114 //  "Stage=%d Cycle=%d".
2115 //===----------------------------------------------------------------------===//
2116 
2117 namespace {
2118 class ModuloScheduleTest : public MachineFunctionPass {
2119 public:
2120   static char ID;
2121 
2122   ModuloScheduleTest() : MachineFunctionPass(ID) {
2123     initializeModuloScheduleTestPass(*PassRegistry::getPassRegistry());
2124   }
2125 
2126   bool runOnMachineFunction(MachineFunction &MF) override;
2127   void runOnLoop(MachineFunction &MF, MachineLoop &L);
2128 
2129   void getAnalysisUsage(AnalysisUsage &AU) const override {
2130     AU.addRequired<MachineLoopInfo>();
2131     AU.addRequired<LiveIntervals>();
2132     MachineFunctionPass::getAnalysisUsage(AU);
2133   }
2134 };
2135 } // namespace
2136 
2137 char ModuloScheduleTest::ID = 0;
2138 
2139 INITIALIZE_PASS_BEGIN(ModuloScheduleTest, "modulo-schedule-test",
2140                       "Modulo Schedule test pass", false, false)
2141 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
2142 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
2143 INITIALIZE_PASS_END(ModuloScheduleTest, "modulo-schedule-test",
2144                     "Modulo Schedule test pass", false, false)
2145 
2146 bool ModuloScheduleTest::runOnMachineFunction(MachineFunction &MF) {
2147   MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
2148   for (auto *L : MLI) {
2149     if (L->getTopBlock() != L->getBottomBlock())
2150       continue;
2151     runOnLoop(MF, *L);
2152     return false;
2153   }
2154   return false;
2155 }
2156 
2157 static void parseSymbolString(StringRef S, int &Cycle, int &Stage) {
2158   std::pair<StringRef, StringRef> StageAndCycle = getToken(S, "_");
2159   std::pair<StringRef, StringRef> StageTokenAndValue =
2160       getToken(StageAndCycle.first, "-");
2161   std::pair<StringRef, StringRef> CycleTokenAndValue =
2162       getToken(StageAndCycle.second, "-");
2163   if (StageTokenAndValue.first != "Stage" ||
2164       CycleTokenAndValue.first != "_Cycle") {
2165     llvm_unreachable(
2166         "Bad post-instr symbol syntax: see comment in ModuloScheduleTest");
2167     return;
2168   }
2169 
2170   StageTokenAndValue.second.drop_front().getAsInteger(10, Stage);
2171   CycleTokenAndValue.second.drop_front().getAsInteger(10, Cycle);
2172 
2173   dbgs() << "  Stage=" << Stage << ", Cycle=" << Cycle << "\n";
2174 }
2175 
2176 void ModuloScheduleTest::runOnLoop(MachineFunction &MF, MachineLoop &L) {
2177   LiveIntervals &LIS = getAnalysis<LiveIntervals>();
2178   MachineBasicBlock *BB = L.getTopBlock();
2179   dbgs() << "--- ModuloScheduleTest running on BB#" << BB->getNumber() << "\n";
2180 
2181   DenseMap<MachineInstr *, int> Cycle, Stage;
2182   std::vector<MachineInstr *> Instrs;
2183   for (MachineInstr &MI : *BB) {
2184     if (MI.isTerminator())
2185       continue;
2186     Instrs.push_back(&MI);
2187     if (MCSymbol *Sym = MI.getPostInstrSymbol()) {
2188       dbgs() << "Parsing post-instr symbol for " << MI;
2189       parseSymbolString(Sym->getName(), Cycle[&MI], Stage[&MI]);
2190     }
2191   }
2192 
2193   ModuloSchedule MS(MF, &L, std::move(Instrs), std::move(Cycle),
2194                     std::move(Stage));
2195   ModuloScheduleExpander MSE(
2196       MF, MS, LIS, /*InstrChanges=*/ModuloScheduleExpander::InstrChangesTy());
2197   MSE.expand();
2198   MSE.cleanup();
2199 }
2200 
2201 //===----------------------------------------------------------------------===//
2202 // ModuloScheduleTestAnnotater implementation
2203 //===----------------------------------------------------------------------===//
2204 
2205 void ModuloScheduleTestAnnotater::annotate() {
2206   for (MachineInstr *MI : S.getInstructions()) {
2207     SmallVector<char, 16> SV;
2208     raw_svector_ostream OS(SV);
2209     OS << "Stage-" << S.getStage(MI) << "_Cycle-" << S.getCycle(MI);
2210     MCSymbol *Sym = MF.getContext().getOrCreateSymbol(OS.str());
2211     MI->setPostInstrSymbol(MF, Sym);
2212   }
2213 }
2214