1 //===- PhiElimination.cpp - Eliminate PHI nodes by inserting copies -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass eliminates machine instruction PHI nodes by inserting copy
10 // instructions.  This destroys SSA information, but is the desired input for
11 // some register allocators.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "PHIEliminationUtils.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/CodeGen/LiveInterval.h"
21 #include "llvm/CodeGen/LiveIntervals.h"
22 #include "llvm/CodeGen/LiveVariables.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineDominators.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineLoopInfo.h"
30 #include "llvm/CodeGen/MachineOperand.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/SlotIndexes.h"
33 #include "llvm/CodeGen/TargetInstrInfo.h"
34 #include "llvm/CodeGen/TargetLowering.h"
35 #include "llvm/CodeGen/TargetOpcodes.h"
36 #include "llvm/CodeGen/TargetPassConfig.h"
37 #include "llvm/CodeGen/TargetRegisterInfo.h"
38 #include "llvm/CodeGen/TargetSubtargetInfo.h"
39 #include "llvm/Pass.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <cassert>
44 #include <iterator>
45 #include <utility>
46 
47 using namespace llvm;
48 
49 #define DEBUG_TYPE "phi-node-elimination"
50 
51 static cl::opt<bool>
52 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
53                      cl::Hidden, cl::desc("Disable critical edge splitting "
54                                           "during PHI elimination"));
55 
56 static cl::opt<bool>
57 SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false),
58                       cl::Hidden, cl::desc("Split all critical edges during "
59                                            "PHI elimination"));
60 
61 static cl::opt<bool> NoPhiElimLiveOutEarlyExit(
62     "no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden,
63     cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true."));
64 
65 namespace {
66 
67   class PHIElimination : public MachineFunctionPass {
68     MachineRegisterInfo *MRI; // Machine register information
69     LiveVariables *LV;
70     LiveIntervals *LIS;
71 
72   public:
73     static char ID; // Pass identification, replacement for typeid
74 
75     PHIElimination() : MachineFunctionPass(ID) {
76       initializePHIEliminationPass(*PassRegistry::getPassRegistry());
77     }
78 
79     bool runOnMachineFunction(MachineFunction &MF) override;
80     void getAnalysisUsage(AnalysisUsage &AU) const override;
81 
82   private:
83     /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
84     /// in predecessor basic blocks.
85     bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
86 
87     void LowerPHINode(MachineBasicBlock &MBB,
88                       MachineBasicBlock::iterator LastPHIIt);
89 
90     /// analyzePHINodes - Gather information about the PHI nodes in
91     /// here. In particular, we want to map the number of uses of a virtual
92     /// register which is used in a PHI node. We map that to the BB the
93     /// vreg is coming from. This is used later to determine when the vreg
94     /// is killed in the BB.
95     void analyzePHINodes(const MachineFunction& MF);
96 
97     /// Split critical edges where necessary for good coalescer performance.
98     bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
99                        MachineLoopInfo *MLI,
100                        std::vector<SparseBitVector<>> *LiveInSets);
101 
102     // These functions are temporary abstractions around LiveVariables and
103     // LiveIntervals, so they can go away when LiveVariables does.
104     bool isLiveIn(Register Reg, const MachineBasicBlock *MBB);
105     bool isLiveOutPastPHIs(Register Reg, const MachineBasicBlock *MBB);
106 
107     using BBVRegPair = std::pair<unsigned, Register>;
108     using VRegPHIUse = DenseMap<BBVRegPair, unsigned>;
109 
110     VRegPHIUse VRegPHIUseCount;
111 
112     // Defs of PHI sources which are implicit_def.
113     SmallPtrSet<MachineInstr*, 4> ImpDefs;
114 
115     // Map reusable lowered PHI node -> incoming join register.
116     using LoweredPHIMap =
117         DenseMap<MachineInstr*, unsigned, MachineInstrExpressionTrait>;
118     LoweredPHIMap LoweredPHIs;
119   };
120 
121 } // end anonymous namespace
122 
123 STATISTIC(NumLowered, "Number of phis lowered");
124 STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
125 STATISTIC(NumReused, "Number of reused lowered phis");
126 
127 char PHIElimination::ID = 0;
128 
129 char& llvm::PHIEliminationID = PHIElimination::ID;
130 
131 INITIALIZE_PASS_BEGIN(PHIElimination, DEBUG_TYPE,
132                       "Eliminate PHI nodes for register allocation",
133                       false, false)
134 INITIALIZE_PASS_DEPENDENCY(LiveVariables)
135 INITIALIZE_PASS_END(PHIElimination, DEBUG_TYPE,
136                     "Eliminate PHI nodes for register allocation", false, false)
137 
138 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
139   AU.addUsedIfAvailable<LiveVariables>();
140   AU.addPreserved<LiveVariables>();
141   AU.addPreserved<SlotIndexes>();
142   AU.addPreserved<LiveIntervals>();
143   AU.addPreserved<MachineDominatorTree>();
144   AU.addPreserved<MachineLoopInfo>();
145   MachineFunctionPass::getAnalysisUsage(AU);
146 }
147 
148 bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
149   MRI = &MF.getRegInfo();
150   LV = getAnalysisIfAvailable<LiveVariables>();
151   LIS = getAnalysisIfAvailable<LiveIntervals>();
152 
153   bool Changed = false;
154 
155   // Split critical edges to help the coalescer.
156   if (!DisableEdgeSplitting && (LV || LIS)) {
157     // A set of live-in regs for each MBB which is used to update LV
158     // efficiently also with large functions.
159     std::vector<SparseBitVector<>> LiveInSets;
160     if (LV) {
161       LiveInSets.resize(MF.size());
162       for (unsigned Index = 0, e = MRI->getNumVirtRegs(); Index != e; ++Index) {
163         // Set the bit for this register for each MBB where it is
164         // live-through or live-in (killed).
165         unsigned VirtReg = Register::index2VirtReg(Index);
166         MachineInstr *DefMI = MRI->getVRegDef(VirtReg);
167         if (!DefMI)
168           continue;
169         LiveVariables::VarInfo &VI = LV->getVarInfo(VirtReg);
170         SparseBitVector<>::iterator AliveBlockItr = VI.AliveBlocks.begin();
171         SparseBitVector<>::iterator EndItr = VI.AliveBlocks.end();
172         while (AliveBlockItr != EndItr) {
173           unsigned BlockNum = *(AliveBlockItr++);
174           LiveInSets[BlockNum].set(Index);
175         }
176         // The register is live into an MBB in which it is killed but not
177         // defined. See comment for VarInfo in LiveVariables.h.
178         MachineBasicBlock *DefMBB = DefMI->getParent();
179         if (VI.Kills.size() > 1 ||
180             (!VI.Kills.empty() && VI.Kills.front()->getParent() != DefMBB))
181           for (auto *MI : VI.Kills)
182             LiveInSets[MI->getParent()->getNumber()].set(Index);
183       }
184     }
185 
186     MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
187     for (auto &MBB : MF)
188       Changed |= SplitPHIEdges(MF, MBB, MLI, (LV ? &LiveInSets : nullptr));
189   }
190 
191   // This pass takes the function out of SSA form.
192   MRI->leaveSSA();
193 
194   // Populate VRegPHIUseCount
195   analyzePHINodes(MF);
196 
197   // Eliminate PHI instructions by inserting copies into predecessor blocks.
198   for (auto &MBB : MF)
199     Changed |= EliminatePHINodes(MF, MBB);
200 
201   // Remove dead IMPLICIT_DEF instructions.
202   for (MachineInstr *DefMI : ImpDefs) {
203     Register DefReg = DefMI->getOperand(0).getReg();
204     if (MRI->use_nodbg_empty(DefReg)) {
205       if (LIS)
206         LIS->RemoveMachineInstrFromMaps(*DefMI);
207       DefMI->eraseFromParent();
208     }
209   }
210 
211   // Clean up the lowered PHI instructions.
212   for (auto &I : LoweredPHIs) {
213     if (LIS)
214       LIS->RemoveMachineInstrFromMaps(*I.first);
215     MF.DeleteMachineInstr(I.first);
216   }
217 
218   // TODO: we should use the incremental DomTree updater here.
219   if (Changed)
220     if (auto *MDT = getAnalysisIfAvailable<MachineDominatorTree>())
221       MDT->getBase().recalculate(MF);
222 
223   LoweredPHIs.clear();
224   ImpDefs.clear();
225   VRegPHIUseCount.clear();
226 
227   MF.getProperties().set(MachineFunctionProperties::Property::NoPHIs);
228 
229   return Changed;
230 }
231 
232 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
233 /// predecessor basic blocks.
234 bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
235                                        MachineBasicBlock &MBB) {
236   if (MBB.empty() || !MBB.front().isPHI())
237     return false;   // Quick exit for basic blocks without PHIs.
238 
239   // Get an iterator to the last PHI node.
240   MachineBasicBlock::iterator LastPHIIt =
241     std::prev(MBB.SkipPHIsAndLabels(MBB.begin()));
242 
243   while (MBB.front().isPHI())
244     LowerPHINode(MBB, LastPHIIt);
245 
246   return true;
247 }
248 
249 /// Return true if all defs of VirtReg are implicit-defs.
250 /// This includes registers with no defs.
251 static bool isImplicitlyDefined(unsigned VirtReg,
252                                 const MachineRegisterInfo &MRI) {
253   for (MachineInstr &DI : MRI.def_instructions(VirtReg))
254     if (!DI.isImplicitDef())
255       return false;
256   return true;
257 }
258 
259 /// Return true if all sources of the phi node are implicit_def's, or undef's.
260 static bool allPhiOperandsUndefined(const MachineInstr &MPhi,
261                                     const MachineRegisterInfo &MRI) {
262   for (unsigned I = 1, E = MPhi.getNumOperands(); I != E; I += 2) {
263     const MachineOperand &MO = MPhi.getOperand(I);
264     if (!isImplicitlyDefined(MO.getReg(), MRI) && !MO.isUndef())
265       return false;
266   }
267   return true;
268 }
269 /// LowerPHINode - Lower the PHI node at the top of the specified block.
270 void PHIElimination::LowerPHINode(MachineBasicBlock &MBB,
271                                   MachineBasicBlock::iterator LastPHIIt) {
272   ++NumLowered;
273 
274   MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt);
275 
276   // Unlink the PHI node from the basic block, but don't delete the PHI yet.
277   MachineInstr *MPhi = MBB.remove(&*MBB.begin());
278 
279   unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
280   Register DestReg = MPhi->getOperand(0).getReg();
281   assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
282   bool isDead = MPhi->getOperand(0).isDead();
283 
284   // Create a new register for the incoming PHI arguments.
285   MachineFunction &MF = *MBB.getParent();
286   unsigned IncomingReg = 0;
287   bool reusedIncoming = false;  // Is IncomingReg reused from an earlier PHI?
288 
289   // Insert a register to register copy at the top of the current block (but
290   // after any remaining phi nodes) which copies the new incoming register
291   // into the phi node destination.
292   MachineInstr *PHICopy = nullptr;
293   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
294   if (allPhiOperandsUndefined(*MPhi, *MRI))
295     // If all sources of a PHI node are implicit_def or undef uses, just emit an
296     // implicit_def instead of a copy.
297     PHICopy = BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
298             TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
299   else {
300     // Can we reuse an earlier PHI node? This only happens for critical edges,
301     // typically those created by tail duplication.
302     unsigned &entry = LoweredPHIs[MPhi];
303     if (entry) {
304       // An identical PHI node was already lowered. Reuse the incoming register.
305       IncomingReg = entry;
306       reusedIncoming = true;
307       ++NumReused;
308       LLVM_DEBUG(dbgs() << "Reusing " << printReg(IncomingReg) << " for "
309                         << *MPhi);
310     } else {
311       const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
312       entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
313     }
314     // Give the target possiblity to handle special cases fallthrough otherwise
315     PHICopy = TII->createPHIDestinationCopy(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
316                                   IncomingReg, DestReg);
317   }
318 
319   if (MPhi->peekDebugInstrNum()) {
320     // If referred to by debug-info, store where this PHI was.
321     MachineFunction *MF = MBB.getParent();
322     unsigned ID = MPhi->peekDebugInstrNum();
323     auto P = MachineFunction::DebugPHIRegallocPos(&MBB, IncomingReg, 0);
324     auto Res = MF->DebugPHIPositions.insert({ID, P});
325     assert(Res.second);
326     (void)Res;
327   }
328 
329   // Update live variable information if there is any.
330   if (LV) {
331     if (IncomingReg) {
332       LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
333 
334       // Increment use count of the newly created virtual register.
335       LV->setPHIJoin(IncomingReg);
336 
337       MachineInstr *OldKill = nullptr;
338       bool IsPHICopyAfterOldKill = false;
339 
340       if (reusedIncoming && (OldKill = VI.findKill(&MBB))) {
341         // Calculate whether the PHICopy is after the OldKill.
342         // In general, the PHICopy is inserted as the first non-phi instruction
343         // by default, so it's before the OldKill. But some Target hooks for
344         // createPHIDestinationCopy() may modify the default insert position of
345         // PHICopy.
346         for (auto I = MBB.SkipPHIsAndLabels(MBB.begin()), E = MBB.end();
347              I != E; ++I) {
348           if (I == PHICopy)
349             break;
350 
351           if (I == OldKill) {
352             IsPHICopyAfterOldKill = true;
353             break;
354           }
355         }
356       }
357 
358       // When we are reusing the incoming register and it has been marked killed
359       // by OldKill, if the PHICopy is after the OldKill, we should remove the
360       // killed flag from OldKill.
361       if (IsPHICopyAfterOldKill) {
362         LLVM_DEBUG(dbgs() << "Remove old kill from " << *OldKill);
363         LV->removeVirtualRegisterKilled(IncomingReg, *OldKill);
364         LLVM_DEBUG(MBB.dump());
365       }
366 
367       // Add information to LiveVariables to know that the first used incoming
368       // value or the resued incoming value whose PHICopy is after the OldKIll
369       // is killed. Note that because the value is defined in several places
370       // (once each for each incoming block), the "def" block and instruction
371       // fields for the VarInfo is not filled in.
372       if (!OldKill || IsPHICopyAfterOldKill)
373         LV->addVirtualRegisterKilled(IncomingReg, *PHICopy);
374     }
375 
376     // Since we are going to be deleting the PHI node, if it is the last use of
377     // any registers, or if the value itself is dead, we need to move this
378     // information over to the new copy we just inserted.
379     LV->removeVirtualRegistersKilled(*MPhi);
380 
381     // If the result is dead, update LV.
382     if (isDead) {
383       LV->addVirtualRegisterDead(DestReg, *PHICopy);
384       LV->removeVirtualRegisterDead(DestReg, *MPhi);
385     }
386   }
387 
388   // Update LiveIntervals for the new copy or implicit def.
389   if (LIS) {
390     SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(*PHICopy);
391 
392     SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB);
393     if (IncomingReg) {
394       // Add the region from the beginning of MBB to the copy instruction to
395       // IncomingReg's live interval.
396       LiveInterval &IncomingLI = LIS->createEmptyInterval(IncomingReg);
397       VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex);
398       if (!IncomingVNI)
399         IncomingVNI = IncomingLI.getNextValue(MBBStartIndex,
400                                               LIS->getVNInfoAllocator());
401       IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex,
402                                                   DestCopyIndex.getRegSlot(),
403                                                   IncomingVNI));
404     }
405 
406     LiveInterval &DestLI = LIS->getInterval(DestReg);
407     assert(!DestLI.empty() && "PHIs should have nonempty LiveIntervals.");
408     if (DestLI.endIndex().isDead()) {
409       // A dead PHI's live range begins and ends at the start of the MBB, but
410       // the lowered copy, which will still be dead, needs to begin and end at
411       // the copy instruction.
412       VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex);
413       assert(OrigDestVNI && "PHI destination should be live at block entry.");
414       DestLI.removeSegment(MBBStartIndex, MBBStartIndex.getDeadSlot());
415       DestLI.createDeadDef(DestCopyIndex.getRegSlot(),
416                            LIS->getVNInfoAllocator());
417       DestLI.removeValNo(OrigDestVNI);
418     } else {
419       // Otherwise, remove the region from the beginning of MBB to the copy
420       // instruction from DestReg's live interval.
421       DestLI.removeSegment(MBBStartIndex, DestCopyIndex.getRegSlot());
422       VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot());
423       assert(DestVNI && "PHI destination should be live at its definition.");
424       DestVNI->def = DestCopyIndex.getRegSlot();
425     }
426   }
427 
428   // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
429   for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
430     --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
431                                  MPhi->getOperand(i).getReg())];
432 
433   // Now loop over all of the incoming arguments, changing them to copy into the
434   // IncomingReg register in the corresponding predecessor basic block.
435   SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
436   for (int i = NumSrcs - 1; i >= 0; --i) {
437     Register SrcReg = MPhi->getOperand(i * 2 + 1).getReg();
438     unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
439     bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() ||
440       isImplicitlyDefined(SrcReg, *MRI);
441     assert(Register::isVirtualRegister(SrcReg) &&
442            "Machine PHI Operands must all be virtual registers!");
443 
444     // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
445     // path the PHI.
446     MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
447 
448     // Check to make sure we haven't already emitted the copy for this block.
449     // This can happen because PHI nodes may have multiple entries for the same
450     // basic block.
451     if (!MBBsInsertedInto.insert(&opBlock).second)
452       continue;  // If the copy has already been emitted, we're done.
453 
454     MachineInstr *SrcRegDef = MRI->getVRegDef(SrcReg);
455     if (SrcRegDef && TII->isUnspillableTerminator(SrcRegDef)) {
456       assert(SrcRegDef->getOperand(0).isReg() &&
457              SrcRegDef->getOperand(0).isDef() &&
458              "Expected operand 0 to be a reg def!");
459       // Now that the PHI's use has been removed (as the instruction was
460       // removed) there should be no other uses of the SrcReg.
461       assert(MRI->use_empty(SrcReg) &&
462              "Expected a single use from UnspillableTerminator");
463       SrcRegDef->getOperand(0).setReg(IncomingReg);
464       continue;
465     }
466 
467     // Find a safe location to insert the copy, this may be the first terminator
468     // in the block (or end()).
469     MachineBasicBlock::iterator InsertPos =
470       findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
471 
472     // Insert the copy.
473     MachineInstr *NewSrcInstr = nullptr;
474     if (!reusedIncoming && IncomingReg) {
475       if (SrcUndef) {
476         // The source register is undefined, so there is no need for a real
477         // COPY, but we still need to ensure joint dominance by defs.
478         // Insert an IMPLICIT_DEF instruction.
479         NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
480                               TII->get(TargetOpcode::IMPLICIT_DEF),
481                               IncomingReg);
482 
483         // Clean up the old implicit-def, if there even was one.
484         if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg))
485           if (DefMI->isImplicitDef())
486             ImpDefs.insert(DefMI);
487       } else {
488         // Delete the debug location, since the copy is inserted into a
489         // different basic block.
490         NewSrcInstr = TII->createPHISourceCopy(opBlock, InsertPos, nullptr,
491                                                SrcReg, SrcSubReg, IncomingReg);
492       }
493     }
494 
495     // We only need to update the LiveVariables kill of SrcReg if this was the
496     // last PHI use of SrcReg to be lowered on this CFG edge and it is not live
497     // out of the predecessor. We can also ignore undef sources.
498     if (LV && !SrcUndef &&
499         !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] &&
500         !LV->isLiveOut(SrcReg, opBlock)) {
501       // We want to be able to insert a kill of the register if this PHI (aka,
502       // the copy we just inserted) is the last use of the source value. Live
503       // variable analysis conservatively handles this by saying that the value
504       // is live until the end of the block the PHI entry lives in. If the value
505       // really is dead at the PHI copy, there will be no successor blocks which
506       // have the value live-in.
507 
508       // Okay, if we now know that the value is not live out of the block, we
509       // can add a kill marker in this block saying that it kills the incoming
510       // value!
511 
512       // In our final twist, we have to decide which instruction kills the
513       // register.  In most cases this is the copy, however, terminator
514       // instructions at the end of the block may also use the value. In this
515       // case, we should mark the last such terminator as being the killing
516       // block, not the copy.
517       MachineBasicBlock::iterator KillInst = opBlock.end();
518       MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
519       for (MachineBasicBlock::iterator Term = FirstTerm;
520           Term != opBlock.end(); ++Term) {
521         if (Term->readsRegister(SrcReg))
522           KillInst = Term;
523       }
524 
525       if (KillInst == opBlock.end()) {
526         // No terminator uses the register.
527 
528         if (reusedIncoming || !IncomingReg) {
529           // We may have to rewind a bit if we didn't insert a copy this time.
530           KillInst = FirstTerm;
531           while (KillInst != opBlock.begin()) {
532             --KillInst;
533             if (KillInst->isDebugInstr())
534               continue;
535             if (KillInst->readsRegister(SrcReg))
536               break;
537           }
538         } else {
539           // We just inserted this copy.
540           KillInst = NewSrcInstr;
541         }
542       }
543       assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
544 
545       // Finally, mark it killed.
546       LV->addVirtualRegisterKilled(SrcReg, *KillInst);
547 
548       // This vreg no longer lives all of the way through opBlock.
549       unsigned opBlockNum = opBlock.getNumber();
550       LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
551     }
552 
553     if (LIS) {
554       if (NewSrcInstr) {
555         LIS->InsertMachineInstrInMaps(*NewSrcInstr);
556         LIS->addSegmentToEndOfBlock(IncomingReg, *NewSrcInstr);
557       }
558 
559       if (!SrcUndef &&
560           !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) {
561         LiveInterval &SrcLI = LIS->getInterval(SrcReg);
562 
563         bool isLiveOut = false;
564         for (MachineBasicBlock *Succ : opBlock.successors()) {
565           SlotIndex startIdx = LIS->getMBBStartIdx(Succ);
566           VNInfo *VNI = SrcLI.getVNInfoAt(startIdx);
567 
568           // Definitions by other PHIs are not truly live-in for our purposes.
569           if (VNI && VNI->def != startIdx) {
570             isLiveOut = true;
571             break;
572           }
573         }
574 
575         if (!isLiveOut) {
576           MachineBasicBlock::iterator KillInst = opBlock.end();
577           MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
578           for (MachineBasicBlock::iterator Term = FirstTerm;
579               Term != opBlock.end(); ++Term) {
580             if (Term->readsRegister(SrcReg))
581               KillInst = Term;
582           }
583 
584           if (KillInst == opBlock.end()) {
585             // No terminator uses the register.
586 
587             if (reusedIncoming || !IncomingReg) {
588               // We may have to rewind a bit if we didn't just insert a copy.
589               KillInst = FirstTerm;
590               while (KillInst != opBlock.begin()) {
591                 --KillInst;
592                 if (KillInst->isDebugInstr())
593                   continue;
594                 if (KillInst->readsRegister(SrcReg))
595                   break;
596               }
597             } else {
598               // We just inserted this copy.
599               KillInst = std::prev(InsertPos);
600             }
601           }
602           assert(KillInst->readsRegister(SrcReg) &&
603                  "Cannot find kill instruction");
604 
605           SlotIndex LastUseIndex = LIS->getInstructionIndex(*KillInst);
606           SrcLI.removeSegment(LastUseIndex.getRegSlot(),
607                               LIS->getMBBEndIdx(&opBlock));
608         }
609       }
610     }
611   }
612 
613   // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
614   if (reusedIncoming || !IncomingReg) {
615     if (LIS)
616       LIS->RemoveMachineInstrFromMaps(*MPhi);
617     MF.DeleteMachineInstr(MPhi);
618   }
619 }
620 
621 /// analyzePHINodes - Gather information about the PHI nodes in here. In
622 /// particular, we want to map the number of uses of a virtual register which is
623 /// used in a PHI node. We map that to the BB the vreg is coming from. This is
624 /// used later to determine when the vreg is killed in the BB.
625 void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
626   for (const auto &MBB : MF)
627     for (const auto &BBI : MBB) {
628       if (!BBI.isPHI())
629         break;
630       for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2)
631         ++VRegPHIUseCount[BBVRegPair(BBI.getOperand(i+1).getMBB()->getNumber(),
632                                      BBI.getOperand(i).getReg())];
633     }
634 }
635 
636 bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
637                                    MachineBasicBlock &MBB,
638                                    MachineLoopInfo *MLI,
639                                    std::vector<SparseBitVector<>> *LiveInSets) {
640   if (MBB.empty() || !MBB.front().isPHI() || MBB.isEHPad())
641     return false;   // Quick exit for basic blocks without PHIs.
642 
643   const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr;
644   bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader();
645 
646   bool Changed = false;
647   for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end();
648        BBI != BBE && BBI->isPHI(); ++BBI) {
649     for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
650       Register Reg = BBI->getOperand(i).getReg();
651       MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
652       // Is there a critical edge from PreMBB to MBB?
653       if (PreMBB->succ_size() == 1)
654         continue;
655 
656       // Avoid splitting backedges of loops. It would introduce small
657       // out-of-line blocks into the loop which is very bad for code placement.
658       if (PreMBB == &MBB && !SplitAllCriticalEdges)
659         continue;
660       const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr;
661       if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges)
662         continue;
663 
664       // LV doesn't consider a phi use live-out, so isLiveOut only returns true
665       // when the source register is live-out for some other reason than a phi
666       // use. That means the copy we will insert in PreMBB won't be a kill, and
667       // there is a risk it may not be coalesced away.
668       //
669       // If the copy would be a kill, there is no need to split the edge.
670       bool ShouldSplit = isLiveOutPastPHIs(Reg, PreMBB);
671       if (!ShouldSplit && !NoPhiElimLiveOutEarlyExit)
672         continue;
673       if (ShouldSplit) {
674         LLVM_DEBUG(dbgs() << printReg(Reg) << " live-out before critical edge "
675                           << printMBBReference(*PreMBB) << " -> "
676                           << printMBBReference(MBB) << ": " << *BBI);
677       }
678 
679       // If Reg is not live-in to MBB, it means it must be live-in to some
680       // other PreMBB successor, and we can avoid the interference by splitting
681       // the edge.
682       //
683       // If Reg *is* live-in to MBB, the interference is inevitable and a copy
684       // is likely to be left after coalescing. If we are looking at a loop
685       // exiting edge, split it so we won't insert code in the loop, otherwise
686       // don't bother.
687       ShouldSplit = ShouldSplit && !isLiveIn(Reg, &MBB);
688 
689       // Check for a loop exiting edge.
690       if (!ShouldSplit && CurLoop != PreLoop) {
691         LLVM_DEBUG({
692           dbgs() << "Split wouldn't help, maybe avoid loop copies?\n";
693           if (PreLoop)
694             dbgs() << "PreLoop: " << *PreLoop;
695           if (CurLoop)
696             dbgs() << "CurLoop: " << *CurLoop;
697         });
698         // This edge could be entering a loop, exiting a loop, or it could be
699         // both: Jumping directly form one loop to the header of a sibling
700         // loop.
701         // Split unless this edge is entering CurLoop from an outer loop.
702         ShouldSplit = PreLoop && !PreLoop->contains(CurLoop);
703       }
704       if (!ShouldSplit && !SplitAllCriticalEdges)
705         continue;
706       if (!PreMBB->SplitCriticalEdge(&MBB, *this, LiveInSets)) {
707         LLVM_DEBUG(dbgs() << "Failed to split critical edge.\n");
708         continue;
709       }
710       Changed = true;
711       ++NumCriticalEdgesSplit;
712     }
713   }
714   return Changed;
715 }
716 
717 bool PHIElimination::isLiveIn(Register Reg, const MachineBasicBlock *MBB) {
718   assert((LV || LIS) &&
719          "isLiveIn() requires either LiveVariables or LiveIntervals");
720   if (LIS)
721     return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB);
722   else
723     return LV->isLiveIn(Reg, *MBB);
724 }
725 
726 bool PHIElimination::isLiveOutPastPHIs(Register Reg,
727                                        const MachineBasicBlock *MBB) {
728   assert((LV || LIS) &&
729          "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals");
730   // LiveVariables considers uses in PHIs to be in the predecessor basic block,
731   // so that a register used only in a PHI is not live out of the block. In
732   // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than
733   // in the predecessor basic block, so that a register used only in a PHI is live
734   // out of the block.
735   if (LIS) {
736     const LiveInterval &LI = LIS->getInterval(Reg);
737     for (const MachineBasicBlock *SI : MBB->successors())
738       if (LI.liveAt(LIS->getMBBStartIdx(SI)))
739         return true;
740     return false;
741   } else {
742     return LV->isLiveOut(Reg, *MBB);
743   }
744 }
745