1 //===- PeepholeOptimizer.cpp - Peephole Optimizations ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Perform peephole optimizations on the machine code:
10 //
11 // - Optimize Extensions
12 //
13 //     Optimization of sign / zero extension instructions. It may be extended to
14 //     handle other instructions with similar properties.
15 //
16 //     On some targets, some instructions, e.g. X86 sign / zero extension, may
17 //     leave the source value in the lower part of the result. This optimization
18 //     will replace some uses of the pre-extension value with uses of the
19 //     sub-register of the results.
20 //
21 // - Optimize Comparisons
22 //
23 //     Optimization of comparison instructions. For instance, in this code:
24 //
25 //       sub r1, 1
26 //       cmp r1, 0
27 //       bz  L1
28 //
29 //     If the "sub" instruction all ready sets (or could be modified to set) the
30 //     same flag that the "cmp" instruction sets and that "bz" uses, then we can
31 //     eliminate the "cmp" instruction.
32 //
33 //     Another instance, in this code:
34 //
35 //       sub r1, r3 | sub r1, imm
36 //       cmp r3, r1 or cmp r1, r3 | cmp r1, imm
37 //       bge L1
38 //
39 //     If the branch instruction can use flag from "sub", then we can replace
40 //     "sub" with "subs" and eliminate the "cmp" instruction.
41 //
42 // - Optimize Loads:
43 //
44 //     Loads that can be folded into a later instruction. A load is foldable
45 //     if it loads to virtual registers and the virtual register defined has
46 //     a single use.
47 //
48 // - Optimize Copies and Bitcast (more generally, target specific copies):
49 //
50 //     Rewrite copies and bitcasts to avoid cross register bank copies
51 //     when possible.
52 //     E.g., Consider the following example, where capital and lower
53 //     letters denote different register file:
54 //     b = copy A <-- cross-bank copy
55 //     C = copy b <-- cross-bank copy
56 //   =>
57 //     b = copy A <-- cross-bank copy
58 //     C = copy A <-- same-bank copy
59 //
60 //     E.g., for bitcast:
61 //     b = bitcast A <-- cross-bank copy
62 //     C = bitcast b <-- cross-bank copy
63 //   =>
64 //     b = bitcast A <-- cross-bank copy
65 //     C = copy A    <-- same-bank copy
66 //===----------------------------------------------------------------------===//
67 
68 #include "llvm/ADT/DenseMap.h"
69 #include "llvm/ADT/Optional.h"
70 #include "llvm/ADT/SmallPtrSet.h"
71 #include "llvm/ADT/SmallSet.h"
72 #include "llvm/ADT/SmallVector.h"
73 #include "llvm/ADT/Statistic.h"
74 #include "llvm/CodeGen/MachineBasicBlock.h"
75 #include "llvm/CodeGen/MachineDominators.h"
76 #include "llvm/CodeGen/MachineFunction.h"
77 #include "llvm/CodeGen/MachineFunctionPass.h"
78 #include "llvm/CodeGen/MachineInstr.h"
79 #include "llvm/CodeGen/MachineInstrBuilder.h"
80 #include "llvm/CodeGen/MachineLoopInfo.h"
81 #include "llvm/CodeGen/MachineOperand.h"
82 #include "llvm/CodeGen/MachineRegisterInfo.h"
83 #include "llvm/CodeGen/TargetInstrInfo.h"
84 #include "llvm/CodeGen/TargetOpcodes.h"
85 #include "llvm/CodeGen/TargetRegisterInfo.h"
86 #include "llvm/CodeGen/TargetSubtargetInfo.h"
87 #include "llvm/InitializePasses.h"
88 #include "llvm/MC/LaneBitmask.h"
89 #include "llvm/MC/MCInstrDesc.h"
90 #include "llvm/Pass.h"
91 #include "llvm/Support/CommandLine.h"
92 #include "llvm/Support/Debug.h"
93 #include "llvm/Support/ErrorHandling.h"
94 #include "llvm/Support/raw_ostream.h"
95 #include <cassert>
96 #include <cstdint>
97 #include <memory>
98 #include <utility>
99 
100 using namespace llvm;
101 using RegSubRegPair = TargetInstrInfo::RegSubRegPair;
102 using RegSubRegPairAndIdx = TargetInstrInfo::RegSubRegPairAndIdx;
103 
104 #define DEBUG_TYPE "peephole-opt"
105 
106 // Optimize Extensions
107 static cl::opt<bool>
108 Aggressive("aggressive-ext-opt", cl::Hidden,
109            cl::desc("Aggressive extension optimization"));
110 
111 static cl::opt<bool>
112 DisablePeephole("disable-peephole", cl::Hidden, cl::init(false),
113                 cl::desc("Disable the peephole optimizer"));
114 
115 /// Specifiy whether or not the value tracking looks through
116 /// complex instructions. When this is true, the value tracker
117 /// bails on everything that is not a copy or a bitcast.
118 static cl::opt<bool>
119 DisableAdvCopyOpt("disable-adv-copy-opt", cl::Hidden, cl::init(false),
120                   cl::desc("Disable advanced copy optimization"));
121 
122 static cl::opt<bool> DisableNAPhysCopyOpt(
123     "disable-non-allocatable-phys-copy-opt", cl::Hidden, cl::init(false),
124     cl::desc("Disable non-allocatable physical register copy optimization"));
125 
126 // Limit the number of PHI instructions to process
127 // in PeepholeOptimizer::getNextSource.
128 static cl::opt<unsigned> RewritePHILimit(
129     "rewrite-phi-limit", cl::Hidden, cl::init(10),
130     cl::desc("Limit the length of PHI chains to lookup"));
131 
132 // Limit the length of recurrence chain when evaluating the benefit of
133 // commuting operands.
134 static cl::opt<unsigned> MaxRecurrenceChain(
135     "recurrence-chain-limit", cl::Hidden, cl::init(3),
136     cl::desc("Maximum length of recurrence chain when evaluating the benefit "
137              "of commuting operands"));
138 
139 
140 STATISTIC(NumReuse, "Number of extension results reused");
141 STATISTIC(NumCmps, "Number of compares eliminated");
142 STATISTIC(NumImmFold, "Number of move immediate folded");
143 STATISTIC(NumLoadFold, "Number of loads folded");
144 STATISTIC(NumSelects, "Number of selects optimized");
145 STATISTIC(NumUncoalescableCopies, "Number of uncoalescable copies optimized");
146 STATISTIC(NumRewrittenCopies, "Number of copies rewritten");
147 STATISTIC(NumNAPhysCopies, "Number of non-allocatable physical copies removed");
148 
149 namespace {
150 
151   class ValueTrackerResult;
152   class RecurrenceInstr;
153 
154   class PeepholeOptimizer : public MachineFunctionPass {
155     const TargetInstrInfo *TII;
156     const TargetRegisterInfo *TRI;
157     MachineRegisterInfo *MRI;
158     MachineDominatorTree *DT;  // Machine dominator tree
159     MachineLoopInfo *MLI;
160 
161   public:
162     static char ID; // Pass identification
163 
164     PeepholeOptimizer() : MachineFunctionPass(ID) {
165       initializePeepholeOptimizerPass(*PassRegistry::getPassRegistry());
166     }
167 
168     bool runOnMachineFunction(MachineFunction &MF) override;
169 
170     void getAnalysisUsage(AnalysisUsage &AU) const override {
171       AU.setPreservesCFG();
172       MachineFunctionPass::getAnalysisUsage(AU);
173       AU.addRequired<MachineLoopInfo>();
174       AU.addPreserved<MachineLoopInfo>();
175       if (Aggressive) {
176         AU.addRequired<MachineDominatorTree>();
177         AU.addPreserved<MachineDominatorTree>();
178       }
179     }
180 
181     MachineFunctionProperties getRequiredProperties() const override {
182       return MachineFunctionProperties()
183         .set(MachineFunctionProperties::Property::IsSSA);
184     }
185 
186     /// Track Def -> Use info used for rewriting copies.
187     using RewriteMapTy = SmallDenseMap<RegSubRegPair, ValueTrackerResult>;
188 
189     /// Sequence of instructions that formulate recurrence cycle.
190     using RecurrenceCycle = SmallVector<RecurrenceInstr, 4>;
191 
192   private:
193     bool optimizeCmpInstr(MachineInstr &MI);
194     bool optimizeExtInstr(MachineInstr &MI, MachineBasicBlock &MBB,
195                           SmallPtrSetImpl<MachineInstr*> &LocalMIs);
196     bool optimizeSelect(MachineInstr &MI,
197                         SmallPtrSetImpl<MachineInstr *> &LocalMIs);
198     bool optimizeCondBranch(MachineInstr &MI);
199     bool optimizeCoalescableCopy(MachineInstr &MI);
200     bool optimizeUncoalescableCopy(MachineInstr &MI,
201                                    SmallPtrSetImpl<MachineInstr *> &LocalMIs);
202     bool optimizeRecurrence(MachineInstr &PHI);
203     bool findNextSource(RegSubRegPair RegSubReg, RewriteMapTy &RewriteMap);
204     bool isMoveImmediate(MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs,
205                          DenseMap<Register, MachineInstr *> &ImmDefMIs);
206     bool foldImmediate(MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs,
207                        DenseMap<Register, MachineInstr *> &ImmDefMIs);
208 
209     /// Finds recurrence cycles, but only ones that formulated around
210     /// a def operand and a use operand that are tied. If there is a use
211     /// operand commutable with the tied use operand, find recurrence cycle
212     /// along that operand as well.
213     bool findTargetRecurrence(Register Reg,
214                               const SmallSet<Register, 2> &TargetReg,
215                               RecurrenceCycle &RC);
216 
217     /// If copy instruction \p MI is a virtual register copy, track it in
218     /// the set \p CopyMIs. If this virtual register was previously seen as a
219     /// copy, replace the uses of this copy with the previously seen copy's
220     /// destination register.
221     bool foldRedundantCopy(MachineInstr &MI,
222                            DenseMap<RegSubRegPair, MachineInstr *> &CopyMIs);
223 
224     /// Is the register \p Reg a non-allocatable physical register?
225     bool isNAPhysCopy(Register Reg);
226 
227     /// If copy instruction \p MI is a non-allocatable virtual<->physical
228     /// register copy, track it in the \p NAPhysToVirtMIs map. If this
229     /// non-allocatable physical register was previously copied to a virtual
230     /// registered and hasn't been clobbered, the virt->phys copy can be
231     /// deleted.
232     bool foldRedundantNAPhysCopy(
233         MachineInstr &MI, DenseMap<Register, MachineInstr *> &NAPhysToVirtMIs);
234 
235     bool isLoadFoldable(MachineInstr &MI,
236                         SmallSet<Register, 16> &FoldAsLoadDefCandidates);
237 
238     /// Check whether \p MI is understood by the register coalescer
239     /// but may require some rewriting.
240     bool isCoalescableCopy(const MachineInstr &MI) {
241       // SubregToRegs are not interesting, because they are already register
242       // coalescer friendly.
243       return MI.isCopy() || (!DisableAdvCopyOpt &&
244                              (MI.isRegSequence() || MI.isInsertSubreg() ||
245                               MI.isExtractSubreg()));
246     }
247 
248     /// Check whether \p MI is a copy like instruction that is
249     /// not recognized by the register coalescer.
250     bool isUncoalescableCopy(const MachineInstr &MI) {
251       return MI.isBitcast() ||
252              (!DisableAdvCopyOpt &&
253               (MI.isRegSequenceLike() || MI.isInsertSubregLike() ||
254                MI.isExtractSubregLike()));
255     }
256 
257     MachineInstr &rewriteSource(MachineInstr &CopyLike,
258                                 RegSubRegPair Def, RewriteMapTy &RewriteMap);
259   };
260 
261   /// Helper class to hold instructions that are inside recurrence cycles.
262   /// The recurrence cycle is formulated around 1) a def operand and its
263   /// tied use operand, or 2) a def operand and a use operand that is commutable
264   /// with another use operand which is tied to the def operand. In the latter
265   /// case, index of the tied use operand and the commutable use operand are
266   /// maintained with CommutePair.
267   class RecurrenceInstr {
268   public:
269     using IndexPair = std::pair<unsigned, unsigned>;
270 
271     RecurrenceInstr(MachineInstr *MI) : MI(MI) {}
272     RecurrenceInstr(MachineInstr *MI, unsigned Idx1, unsigned Idx2)
273       : MI(MI), CommutePair(std::make_pair(Idx1, Idx2)) {}
274 
275     MachineInstr *getMI() const { return MI; }
276     Optional<IndexPair> getCommutePair() const { return CommutePair; }
277 
278   private:
279     MachineInstr *MI;
280     Optional<IndexPair> CommutePair;
281   };
282 
283   /// Helper class to hold a reply for ValueTracker queries.
284   /// Contains the returned sources for a given search and the instructions
285   /// where the sources were tracked from.
286   class ValueTrackerResult {
287   private:
288     /// Track all sources found by one ValueTracker query.
289     SmallVector<RegSubRegPair, 2> RegSrcs;
290 
291     /// Instruction using the sources in 'RegSrcs'.
292     const MachineInstr *Inst = nullptr;
293 
294   public:
295     ValueTrackerResult() = default;
296 
297     ValueTrackerResult(Register Reg, unsigned SubReg) {
298       addSource(Reg, SubReg);
299     }
300 
301     bool isValid() const { return getNumSources() > 0; }
302 
303     void setInst(const MachineInstr *I) { Inst = I; }
304     const MachineInstr *getInst() const { return Inst; }
305 
306     void clear() {
307       RegSrcs.clear();
308       Inst = nullptr;
309     }
310 
311     void addSource(Register SrcReg, unsigned SrcSubReg) {
312       RegSrcs.push_back(RegSubRegPair(SrcReg, SrcSubReg));
313     }
314 
315     void setSource(int Idx, Register SrcReg, unsigned SrcSubReg) {
316       assert(Idx < getNumSources() && "Reg pair source out of index");
317       RegSrcs[Idx] = RegSubRegPair(SrcReg, SrcSubReg);
318     }
319 
320     int getNumSources() const { return RegSrcs.size(); }
321 
322     RegSubRegPair getSrc(int Idx) const {
323       return RegSrcs[Idx];
324     }
325 
326     Register getSrcReg(int Idx) const {
327       assert(Idx < getNumSources() && "Reg source out of index");
328       return RegSrcs[Idx].Reg;
329     }
330 
331     unsigned getSrcSubReg(int Idx) const {
332       assert(Idx < getNumSources() && "SubReg source out of index");
333       return RegSrcs[Idx].SubReg;
334     }
335 
336     bool operator==(const ValueTrackerResult &Other) const {
337       if (Other.getInst() != getInst())
338         return false;
339 
340       if (Other.getNumSources() != getNumSources())
341         return false;
342 
343       for (int i = 0, e = Other.getNumSources(); i != e; ++i)
344         if (Other.getSrcReg(i) != getSrcReg(i) ||
345             Other.getSrcSubReg(i) != getSrcSubReg(i))
346           return false;
347       return true;
348     }
349   };
350 
351   /// Helper class to track the possible sources of a value defined by
352   /// a (chain of) copy related instructions.
353   /// Given a definition (instruction and definition index), this class
354   /// follows the use-def chain to find successive suitable sources.
355   /// The given source can be used to rewrite the definition into
356   /// def = COPY src.
357   ///
358   /// For instance, let us consider the following snippet:
359   /// v0 =
360   /// v2 = INSERT_SUBREG v1, v0, sub0
361   /// def = COPY v2.sub0
362   ///
363   /// Using a ValueTracker for def = COPY v2.sub0 will give the following
364   /// suitable sources:
365   /// v2.sub0 and v0.
366   /// Then, def can be rewritten into def = COPY v0.
367   class ValueTracker {
368   private:
369     /// The current point into the use-def chain.
370     const MachineInstr *Def = nullptr;
371 
372     /// The index of the definition in Def.
373     unsigned DefIdx = 0;
374 
375     /// The sub register index of the definition.
376     unsigned DefSubReg;
377 
378     /// The register where the value can be found.
379     Register Reg;
380 
381     /// MachineRegisterInfo used to perform tracking.
382     const MachineRegisterInfo &MRI;
383 
384     /// Optional TargetInstrInfo used to perform some complex tracking.
385     const TargetInstrInfo *TII;
386 
387     /// Dispatcher to the right underlying implementation of getNextSource.
388     ValueTrackerResult getNextSourceImpl();
389 
390     /// Specialized version of getNextSource for Copy instructions.
391     ValueTrackerResult getNextSourceFromCopy();
392 
393     /// Specialized version of getNextSource for Bitcast instructions.
394     ValueTrackerResult getNextSourceFromBitcast();
395 
396     /// Specialized version of getNextSource for RegSequence instructions.
397     ValueTrackerResult getNextSourceFromRegSequence();
398 
399     /// Specialized version of getNextSource for InsertSubreg instructions.
400     ValueTrackerResult getNextSourceFromInsertSubreg();
401 
402     /// Specialized version of getNextSource for ExtractSubreg instructions.
403     ValueTrackerResult getNextSourceFromExtractSubreg();
404 
405     /// Specialized version of getNextSource for SubregToReg instructions.
406     ValueTrackerResult getNextSourceFromSubregToReg();
407 
408     /// Specialized version of getNextSource for PHI instructions.
409     ValueTrackerResult getNextSourceFromPHI();
410 
411   public:
412     /// Create a ValueTracker instance for the value defined by \p Reg.
413     /// \p DefSubReg represents the sub register index the value tracker will
414     /// track. It does not need to match the sub register index used in the
415     /// definition of \p Reg.
416     /// If \p Reg is a physical register, a value tracker constructed with
417     /// this constructor will not find any alternative source.
418     /// Indeed, when \p Reg is a physical register that constructor does not
419     /// know which definition of \p Reg it should track.
420     /// Use the next constructor to track a physical register.
421     ValueTracker(Register Reg, unsigned DefSubReg,
422                  const MachineRegisterInfo &MRI,
423                  const TargetInstrInfo *TII = nullptr)
424         : DefSubReg(DefSubReg), Reg(Reg), MRI(MRI), TII(TII) {
425       if (!Reg.isPhysical()) {
426         Def = MRI.getVRegDef(Reg);
427         DefIdx = MRI.def_begin(Reg).getOperandNo();
428       }
429     }
430 
431     /// Following the use-def chain, get the next available source
432     /// for the tracked value.
433     /// \return A ValueTrackerResult containing a set of registers
434     /// and sub registers with tracked values. A ValueTrackerResult with
435     /// an empty set of registers means no source was found.
436     ValueTrackerResult getNextSource();
437   };
438 
439 } // end anonymous namespace
440 
441 char PeepholeOptimizer::ID = 0;
442 
443 char &llvm::PeepholeOptimizerID = PeepholeOptimizer::ID;
444 
445 INITIALIZE_PASS_BEGIN(PeepholeOptimizer, DEBUG_TYPE,
446                       "Peephole Optimizations", false, false)
447 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
448 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
449 INITIALIZE_PASS_END(PeepholeOptimizer, DEBUG_TYPE,
450                     "Peephole Optimizations", false, false)
451 
452 /// If instruction is a copy-like instruction, i.e. it reads a single register
453 /// and writes a single register and it does not modify the source, and if the
454 /// source value is preserved as a sub-register of the result, then replace all
455 /// reachable uses of the source with the subreg of the result.
456 ///
457 /// Do not generate an EXTRACT that is used only in a debug use, as this changes
458 /// the code. Since this code does not currently share EXTRACTs, just ignore all
459 /// debug uses.
460 bool PeepholeOptimizer::
461 optimizeExtInstr(MachineInstr &MI, MachineBasicBlock &MBB,
462                  SmallPtrSetImpl<MachineInstr*> &LocalMIs) {
463   Register SrcReg, DstReg;
464   unsigned SubIdx;
465   if (!TII->isCoalescableExtInstr(MI, SrcReg, DstReg, SubIdx))
466     return false;
467 
468   if (DstReg.isPhysical() || SrcReg.isPhysical())
469     return false;
470 
471   if (MRI->hasOneNonDBGUse(SrcReg))
472     // No other uses.
473     return false;
474 
475   // Ensure DstReg can get a register class that actually supports
476   // sub-registers. Don't change the class until we commit.
477   const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
478   DstRC = TRI->getSubClassWithSubReg(DstRC, SubIdx);
479   if (!DstRC)
480     return false;
481 
482   // The ext instr may be operating on a sub-register of SrcReg as well.
483   // PPC::EXTSW is a 32 -> 64-bit sign extension, but it reads a 64-bit
484   // register.
485   // If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of
486   // SrcReg:SubIdx should be replaced.
487   bool UseSrcSubIdx =
488       TRI->getSubClassWithSubReg(MRI->getRegClass(SrcReg), SubIdx) != nullptr;
489 
490   // The source has other uses. See if we can replace the other uses with use of
491   // the result of the extension.
492   SmallPtrSet<MachineBasicBlock*, 4> ReachedBBs;
493   for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
494     ReachedBBs.insert(UI.getParent());
495 
496   // Uses that are in the same BB of uses of the result of the instruction.
497   SmallVector<MachineOperand*, 8> Uses;
498 
499   // Uses that the result of the instruction can reach.
500   SmallVector<MachineOperand*, 8> ExtendedUses;
501 
502   bool ExtendLife = true;
503   for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
504     MachineInstr *UseMI = UseMO.getParent();
505     if (UseMI == &MI)
506       continue;
507 
508     if (UseMI->isPHI()) {
509       ExtendLife = false;
510       continue;
511     }
512 
513     // Only accept uses of SrcReg:SubIdx.
514     if (UseSrcSubIdx && UseMO.getSubReg() != SubIdx)
515       continue;
516 
517     // It's an error to translate this:
518     //
519     //    %reg1025 = <sext> %reg1024
520     //     ...
521     //    %reg1026 = SUBREG_TO_REG 0, %reg1024, 4
522     //
523     // into this:
524     //
525     //    %reg1025 = <sext> %reg1024
526     //     ...
527     //    %reg1027 = COPY %reg1025:4
528     //    %reg1026 = SUBREG_TO_REG 0, %reg1027, 4
529     //
530     // The problem here is that SUBREG_TO_REG is there to assert that an
531     // implicit zext occurs. It doesn't insert a zext instruction. If we allow
532     // the COPY here, it will give us the value after the <sext>, not the
533     // original value of %reg1024 before <sext>.
534     if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG)
535       continue;
536 
537     MachineBasicBlock *UseMBB = UseMI->getParent();
538     if (UseMBB == &MBB) {
539       // Local uses that come after the extension.
540       if (!LocalMIs.count(UseMI))
541         Uses.push_back(&UseMO);
542     } else if (ReachedBBs.count(UseMBB)) {
543       // Non-local uses where the result of the extension is used. Always
544       // replace these unless it's a PHI.
545       Uses.push_back(&UseMO);
546     } else if (Aggressive && DT->dominates(&MBB, UseMBB)) {
547       // We may want to extend the live range of the extension result in order
548       // to replace these uses.
549       ExtendedUses.push_back(&UseMO);
550     } else {
551       // Both will be live out of the def MBB anyway. Don't extend live range of
552       // the extension result.
553       ExtendLife = false;
554       break;
555     }
556   }
557 
558   if (ExtendLife && !ExtendedUses.empty())
559     // Extend the liveness of the extension result.
560     Uses.append(ExtendedUses.begin(), ExtendedUses.end());
561 
562   // Now replace all uses.
563   bool Changed = false;
564   if (!Uses.empty()) {
565     SmallPtrSet<MachineBasicBlock*, 4> PHIBBs;
566 
567     // Look for PHI uses of the extended result, we don't want to extend the
568     // liveness of a PHI input. It breaks all kinds of assumptions down
569     // stream. A PHI use is expected to be the kill of its source values.
570     for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
571       if (UI.isPHI())
572         PHIBBs.insert(UI.getParent());
573 
574     const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
575     for (unsigned i = 0, e = Uses.size(); i != e; ++i) {
576       MachineOperand *UseMO = Uses[i];
577       MachineInstr *UseMI = UseMO->getParent();
578       MachineBasicBlock *UseMBB = UseMI->getParent();
579       if (PHIBBs.count(UseMBB))
580         continue;
581 
582       // About to add uses of DstReg, clear DstReg's kill flags.
583       if (!Changed) {
584         MRI->clearKillFlags(DstReg);
585         MRI->constrainRegClass(DstReg, DstRC);
586       }
587 
588       Register NewVR = MRI->createVirtualRegister(RC);
589       MachineInstr *Copy = BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(),
590                                    TII->get(TargetOpcode::COPY), NewVR)
591         .addReg(DstReg, 0, SubIdx);
592       // SubIdx applies to both SrcReg and DstReg when UseSrcSubIdx is set.
593       if (UseSrcSubIdx) {
594         Copy->getOperand(0).setSubReg(SubIdx);
595         Copy->getOperand(0).setIsUndef();
596       }
597       UseMO->setReg(NewVR);
598       ++NumReuse;
599       Changed = true;
600     }
601   }
602 
603   return Changed;
604 }
605 
606 /// If the instruction is a compare and the previous instruction it's comparing
607 /// against already sets (or could be modified to set) the same flag as the
608 /// compare, then we can remove the comparison and use the flag from the
609 /// previous instruction.
610 bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr &MI) {
611   // If this instruction is a comparison against zero and isn't comparing a
612   // physical register, we can try to optimize it.
613   Register SrcReg, SrcReg2;
614   int CmpMask, CmpValue;
615   if (!TII->analyzeCompare(MI, SrcReg, SrcReg2, CmpMask, CmpValue) ||
616       SrcReg.isPhysical() || SrcReg2.isPhysical())
617     return false;
618 
619   // Attempt to optimize the comparison instruction.
620   LLVM_DEBUG(dbgs() << "Attempting to optimize compare: " << MI);
621   if (TII->optimizeCompareInstr(MI, SrcReg, SrcReg2, CmpMask, CmpValue, MRI)) {
622     LLVM_DEBUG(dbgs() << "  -> Successfully optimized compare!\n");
623     ++NumCmps;
624     return true;
625   }
626 
627   return false;
628 }
629 
630 /// Optimize a select instruction.
631 bool PeepholeOptimizer::optimizeSelect(MachineInstr &MI,
632                             SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
633   unsigned TrueOp = 0;
634   unsigned FalseOp = 0;
635   bool Optimizable = false;
636   SmallVector<MachineOperand, 4> Cond;
637   if (TII->analyzeSelect(MI, Cond, TrueOp, FalseOp, Optimizable))
638     return false;
639   if (!Optimizable)
640     return false;
641   if (!TII->optimizeSelect(MI, LocalMIs))
642     return false;
643   LLVM_DEBUG(dbgs() << "Deleting select: " << MI);
644   MI.eraseFromParent();
645   ++NumSelects;
646   return true;
647 }
648 
649 /// Check if a simpler conditional branch can be generated.
650 bool PeepholeOptimizer::optimizeCondBranch(MachineInstr &MI) {
651   return TII->optimizeCondBranch(MI);
652 }
653 
654 /// Try to find the next source that share the same register file
655 /// for the value defined by \p Reg and \p SubReg.
656 /// When true is returned, the \p RewriteMap can be used by the client to
657 /// retrieve all Def -> Use along the way up to the next source. Any found
658 /// Use that is not itself a key for another entry, is the next source to
659 /// use. During the search for the next source, multiple sources can be found
660 /// given multiple incoming sources of a PHI instruction. In this case, we
661 /// look in each PHI source for the next source; all found next sources must
662 /// share the same register file as \p Reg and \p SubReg. The client should
663 /// then be capable to rewrite all intermediate PHIs to get the next source.
664 /// \return False if no alternative sources are available. True otherwise.
665 bool PeepholeOptimizer::findNextSource(RegSubRegPair RegSubReg,
666                                        RewriteMapTy &RewriteMap) {
667   // Do not try to find a new source for a physical register.
668   // So far we do not have any motivating example for doing that.
669   // Thus, instead of maintaining untested code, we will revisit that if
670   // that changes at some point.
671   Register Reg = RegSubReg.Reg;
672   if (Reg.isPhysical())
673     return false;
674   const TargetRegisterClass *DefRC = MRI->getRegClass(Reg);
675 
676   SmallVector<RegSubRegPair, 4> SrcToLook;
677   RegSubRegPair CurSrcPair = RegSubReg;
678   SrcToLook.push_back(CurSrcPair);
679 
680   unsigned PHICount = 0;
681   do {
682     CurSrcPair = SrcToLook.pop_back_val();
683     // As explained above, do not handle physical registers
684     if (Register::isPhysicalRegister(CurSrcPair.Reg))
685       return false;
686 
687     ValueTracker ValTracker(CurSrcPair.Reg, CurSrcPair.SubReg, *MRI, TII);
688 
689     // Follow the chain of copies until we find a more suitable source, a phi
690     // or have to abort.
691     while (true) {
692       ValueTrackerResult Res = ValTracker.getNextSource();
693       // Abort at the end of a chain (without finding a suitable source).
694       if (!Res.isValid())
695         return false;
696 
697       // Insert the Def -> Use entry for the recently found source.
698       ValueTrackerResult CurSrcRes = RewriteMap.lookup(CurSrcPair);
699       if (CurSrcRes.isValid()) {
700         assert(CurSrcRes == Res && "ValueTrackerResult found must match");
701         // An existent entry with multiple sources is a PHI cycle we must avoid.
702         // Otherwise it's an entry with a valid next source we already found.
703         if (CurSrcRes.getNumSources() > 1) {
704           LLVM_DEBUG(dbgs()
705                      << "findNextSource: found PHI cycle, aborting...\n");
706           return false;
707         }
708         break;
709       }
710       RewriteMap.insert(std::make_pair(CurSrcPair, Res));
711 
712       // ValueTrackerResult usually have one source unless it's the result from
713       // a PHI instruction. Add the found PHI edges to be looked up further.
714       unsigned NumSrcs = Res.getNumSources();
715       if (NumSrcs > 1) {
716         PHICount++;
717         if (PHICount >= RewritePHILimit) {
718           LLVM_DEBUG(dbgs() << "findNextSource: PHI limit reached\n");
719           return false;
720         }
721 
722         for (unsigned i = 0; i < NumSrcs; ++i)
723           SrcToLook.push_back(Res.getSrc(i));
724         break;
725       }
726 
727       CurSrcPair = Res.getSrc(0);
728       // Do not extend the live-ranges of physical registers as they add
729       // constraints to the register allocator. Moreover, if we want to extend
730       // the live-range of a physical register, unlike SSA virtual register,
731       // we will have to check that they aren't redefine before the related use.
732       if (Register::isPhysicalRegister(CurSrcPair.Reg))
733         return false;
734 
735       // Keep following the chain if the value isn't any better yet.
736       const TargetRegisterClass *SrcRC = MRI->getRegClass(CurSrcPair.Reg);
737       if (!TRI->shouldRewriteCopySrc(DefRC, RegSubReg.SubReg, SrcRC,
738                                      CurSrcPair.SubReg))
739         continue;
740 
741       // We currently cannot deal with subreg operands on PHI instructions
742       // (see insertPHI()).
743       if (PHICount > 0 && CurSrcPair.SubReg != 0)
744         continue;
745 
746       // We found a suitable source, and are done with this chain.
747       break;
748     }
749   } while (!SrcToLook.empty());
750 
751   // If we did not find a more suitable source, there is nothing to optimize.
752   return CurSrcPair.Reg != Reg;
753 }
754 
755 /// Insert a PHI instruction with incoming edges \p SrcRegs that are
756 /// guaranteed to have the same register class. This is necessary whenever we
757 /// successfully traverse a PHI instruction and find suitable sources coming
758 /// from its edges. By inserting a new PHI, we provide a rewritten PHI def
759 /// suitable to be used in a new COPY instruction.
760 static MachineInstr &
761 insertPHI(MachineRegisterInfo &MRI, const TargetInstrInfo &TII,
762           const SmallVectorImpl<RegSubRegPair> &SrcRegs,
763           MachineInstr &OrigPHI) {
764   assert(!SrcRegs.empty() && "No sources to create a PHI instruction?");
765 
766   const TargetRegisterClass *NewRC = MRI.getRegClass(SrcRegs[0].Reg);
767   // NewRC is only correct if no subregisters are involved. findNextSource()
768   // should have rejected those cases already.
769   assert(SrcRegs[0].SubReg == 0 && "should not have subreg operand");
770   Register NewVR = MRI.createVirtualRegister(NewRC);
771   MachineBasicBlock *MBB = OrigPHI.getParent();
772   MachineInstrBuilder MIB = BuildMI(*MBB, &OrigPHI, OrigPHI.getDebugLoc(),
773                                     TII.get(TargetOpcode::PHI), NewVR);
774 
775   unsigned MBBOpIdx = 2;
776   for (const RegSubRegPair &RegPair : SrcRegs) {
777     MIB.addReg(RegPair.Reg, 0, RegPair.SubReg);
778     MIB.addMBB(OrigPHI.getOperand(MBBOpIdx).getMBB());
779     // Since we're extended the lifetime of RegPair.Reg, clear the
780     // kill flags to account for that and make RegPair.Reg reaches
781     // the new PHI.
782     MRI.clearKillFlags(RegPair.Reg);
783     MBBOpIdx += 2;
784   }
785 
786   return *MIB;
787 }
788 
789 namespace {
790 
791 /// Interface to query instructions amenable to copy rewriting.
792 class Rewriter {
793 protected:
794   MachineInstr &CopyLike;
795   unsigned CurrentSrcIdx = 0;   ///< The index of the source being rewritten.
796 public:
797   Rewriter(MachineInstr &CopyLike) : CopyLike(CopyLike) {}
798   virtual ~Rewriter() {}
799 
800   /// Get the next rewritable source (SrcReg, SrcSubReg) and
801   /// the related value that it affects (DstReg, DstSubReg).
802   /// A source is considered rewritable if its register class and the
803   /// register class of the related DstReg may not be register
804   /// coalescer friendly. In other words, given a copy-like instruction
805   /// not all the arguments may be returned at rewritable source, since
806   /// some arguments are none to be register coalescer friendly.
807   ///
808   /// Each call of this method moves the current source to the next
809   /// rewritable source.
810   /// For instance, let CopyLike be the instruction to rewrite.
811   /// CopyLike has one definition and one source:
812   /// dst.dstSubIdx = CopyLike src.srcSubIdx.
813   ///
814   /// The first call will give the first rewritable source, i.e.,
815   /// the only source this instruction has:
816   /// (SrcReg, SrcSubReg) = (src, srcSubIdx).
817   /// This source defines the whole definition, i.e.,
818   /// (DstReg, DstSubReg) = (dst, dstSubIdx).
819   ///
820   /// The second and subsequent calls will return false, as there is only one
821   /// rewritable source.
822   ///
823   /// \return True if a rewritable source has been found, false otherwise.
824   /// The output arguments are valid if and only if true is returned.
825   virtual bool getNextRewritableSource(RegSubRegPair &Src,
826                                        RegSubRegPair &Dst) = 0;
827 
828   /// Rewrite the current source with \p NewReg and \p NewSubReg if possible.
829   /// \return True if the rewriting was possible, false otherwise.
830   virtual bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) = 0;
831 };
832 
833 /// Rewriter for COPY instructions.
834 class CopyRewriter : public Rewriter {
835 public:
836   CopyRewriter(MachineInstr &MI) : Rewriter(MI) {
837     assert(MI.isCopy() && "Expected copy instruction");
838   }
839   virtual ~CopyRewriter() = default;
840 
841   bool getNextRewritableSource(RegSubRegPair &Src,
842                                RegSubRegPair &Dst) override {
843     // CurrentSrcIdx > 0 means this function has already been called.
844     if (CurrentSrcIdx > 0)
845       return false;
846     // This is the first call to getNextRewritableSource.
847     // Move the CurrentSrcIdx to remember that we made that call.
848     CurrentSrcIdx = 1;
849     // The rewritable source is the argument.
850     const MachineOperand &MOSrc = CopyLike.getOperand(1);
851     Src = RegSubRegPair(MOSrc.getReg(), MOSrc.getSubReg());
852     // What we track are the alternative sources of the definition.
853     const MachineOperand &MODef = CopyLike.getOperand(0);
854     Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg());
855     return true;
856   }
857 
858   bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override {
859     if (CurrentSrcIdx != 1)
860       return false;
861     MachineOperand &MOSrc = CopyLike.getOperand(CurrentSrcIdx);
862     MOSrc.setReg(NewReg);
863     MOSrc.setSubReg(NewSubReg);
864     return true;
865   }
866 };
867 
868 /// Helper class to rewrite uncoalescable copy like instructions
869 /// into new COPY (coalescable friendly) instructions.
870 class UncoalescableRewriter : public Rewriter {
871   unsigned NumDefs;  ///< Number of defs in the bitcast.
872 
873 public:
874   UncoalescableRewriter(MachineInstr &MI) : Rewriter(MI) {
875     NumDefs = MI.getDesc().getNumDefs();
876   }
877 
878   /// \see See Rewriter::getNextRewritableSource()
879   /// All such sources need to be considered rewritable in order to
880   /// rewrite a uncoalescable copy-like instruction. This method return
881   /// each definition that must be checked if rewritable.
882   bool getNextRewritableSource(RegSubRegPair &Src,
883                                RegSubRegPair &Dst) override {
884     // Find the next non-dead definition and continue from there.
885     if (CurrentSrcIdx == NumDefs)
886       return false;
887 
888     while (CopyLike.getOperand(CurrentSrcIdx).isDead()) {
889       ++CurrentSrcIdx;
890       if (CurrentSrcIdx == NumDefs)
891         return false;
892     }
893 
894     // What we track are the alternative sources of the definition.
895     Src = RegSubRegPair(0, 0);
896     const MachineOperand &MODef = CopyLike.getOperand(CurrentSrcIdx);
897     Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg());
898 
899     CurrentSrcIdx++;
900     return true;
901   }
902 
903   bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override {
904     return false;
905   }
906 };
907 
908 /// Specialized rewriter for INSERT_SUBREG instruction.
909 class InsertSubregRewriter : public Rewriter {
910 public:
911   InsertSubregRewriter(MachineInstr &MI) : Rewriter(MI) {
912     assert(MI.isInsertSubreg() && "Invalid instruction");
913   }
914 
915   /// \see See Rewriter::getNextRewritableSource()
916   /// Here CopyLike has the following form:
917   /// dst = INSERT_SUBREG Src1, Src2.src2SubIdx, subIdx.
918   /// Src1 has the same register class has dst, hence, there is
919   /// nothing to rewrite.
920   /// Src2.src2SubIdx, may not be register coalescer friendly.
921   /// Therefore, the first call to this method returns:
922   /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
923   /// (DstReg, DstSubReg) = (dst, subIdx).
924   ///
925   /// Subsequence calls will return false.
926   bool getNextRewritableSource(RegSubRegPair &Src,
927                                RegSubRegPair &Dst) override {
928     // If we already get the only source we can rewrite, return false.
929     if (CurrentSrcIdx == 2)
930       return false;
931     // We are looking at v2 = INSERT_SUBREG v0, v1, sub0.
932     CurrentSrcIdx = 2;
933     const MachineOperand &MOInsertedReg = CopyLike.getOperand(2);
934     Src = RegSubRegPair(MOInsertedReg.getReg(), MOInsertedReg.getSubReg());
935     const MachineOperand &MODef = CopyLike.getOperand(0);
936 
937     // We want to track something that is compatible with the
938     // partial definition.
939     if (MODef.getSubReg())
940       // Bail if we have to compose sub-register indices.
941       return false;
942     Dst = RegSubRegPair(MODef.getReg(),
943                         (unsigned)CopyLike.getOperand(3).getImm());
944     return true;
945   }
946 
947   bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override {
948     if (CurrentSrcIdx != 2)
949       return false;
950     // We are rewriting the inserted reg.
951     MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
952     MO.setReg(NewReg);
953     MO.setSubReg(NewSubReg);
954     return true;
955   }
956 };
957 
958 /// Specialized rewriter for EXTRACT_SUBREG instruction.
959 class ExtractSubregRewriter : public Rewriter {
960   const TargetInstrInfo &TII;
961 
962 public:
963   ExtractSubregRewriter(MachineInstr &MI, const TargetInstrInfo &TII)
964       : Rewriter(MI), TII(TII) {
965     assert(MI.isExtractSubreg() && "Invalid instruction");
966   }
967 
968   /// \see Rewriter::getNextRewritableSource()
969   /// Here CopyLike has the following form:
970   /// dst.dstSubIdx = EXTRACT_SUBREG Src, subIdx.
971   /// There is only one rewritable source: Src.subIdx,
972   /// which defines dst.dstSubIdx.
973   bool getNextRewritableSource(RegSubRegPair &Src,
974                                RegSubRegPair &Dst) override {
975     // If we already get the only source we can rewrite, return false.
976     if (CurrentSrcIdx == 1)
977       return false;
978     // We are looking at v1 = EXTRACT_SUBREG v0, sub0.
979     CurrentSrcIdx = 1;
980     const MachineOperand &MOExtractedReg = CopyLike.getOperand(1);
981     // If we have to compose sub-register indices, bail out.
982     if (MOExtractedReg.getSubReg())
983       return false;
984 
985     Src = RegSubRegPair(MOExtractedReg.getReg(),
986                         CopyLike.getOperand(2).getImm());
987 
988     // We want to track something that is compatible with the definition.
989     const MachineOperand &MODef = CopyLike.getOperand(0);
990     Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg());
991     return true;
992   }
993 
994   bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override {
995     // The only source we can rewrite is the input register.
996     if (CurrentSrcIdx != 1)
997       return false;
998 
999     CopyLike.getOperand(CurrentSrcIdx).setReg(NewReg);
1000 
1001     // If we find a source that does not require to extract something,
1002     // rewrite the operation with a copy.
1003     if (!NewSubReg) {
1004       // Move the current index to an invalid position.
1005       // We do not want another call to this method to be able
1006       // to do any change.
1007       CurrentSrcIdx = -1;
1008       // Rewrite the operation as a COPY.
1009       // Get rid of the sub-register index.
1010       CopyLike.RemoveOperand(2);
1011       // Morph the operation into a COPY.
1012       CopyLike.setDesc(TII.get(TargetOpcode::COPY));
1013       return true;
1014     }
1015     CopyLike.getOperand(CurrentSrcIdx + 1).setImm(NewSubReg);
1016     return true;
1017   }
1018 };
1019 
1020 /// Specialized rewriter for REG_SEQUENCE instruction.
1021 class RegSequenceRewriter : public Rewriter {
1022 public:
1023   RegSequenceRewriter(MachineInstr &MI) : Rewriter(MI) {
1024     assert(MI.isRegSequence() && "Invalid instruction");
1025   }
1026 
1027   /// \see Rewriter::getNextRewritableSource()
1028   /// Here CopyLike has the following form:
1029   /// dst = REG_SEQUENCE Src1.src1SubIdx, subIdx1, Src2.src2SubIdx, subIdx2.
1030   /// Each call will return a different source, walking all the available
1031   /// source.
1032   ///
1033   /// The first call returns:
1034   /// (SrcReg, SrcSubReg) = (Src1, src1SubIdx).
1035   /// (DstReg, DstSubReg) = (dst, subIdx1).
1036   ///
1037   /// The second call returns:
1038   /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
1039   /// (DstReg, DstSubReg) = (dst, subIdx2).
1040   ///
1041   /// And so on, until all the sources have been traversed, then
1042   /// it returns false.
1043   bool getNextRewritableSource(RegSubRegPair &Src,
1044                                RegSubRegPair &Dst) override {
1045     // We are looking at v0 = REG_SEQUENCE v1, sub1, v2, sub2, etc.
1046 
1047     // If this is the first call, move to the first argument.
1048     if (CurrentSrcIdx == 0) {
1049       CurrentSrcIdx = 1;
1050     } else {
1051       // Otherwise, move to the next argument and check that it is valid.
1052       CurrentSrcIdx += 2;
1053       if (CurrentSrcIdx >= CopyLike.getNumOperands())
1054         return false;
1055     }
1056     const MachineOperand &MOInsertedReg = CopyLike.getOperand(CurrentSrcIdx);
1057     Src.Reg = MOInsertedReg.getReg();
1058     // If we have to compose sub-register indices, bail out.
1059     if ((Src.SubReg = MOInsertedReg.getSubReg()))
1060       return false;
1061 
1062     // We want to track something that is compatible with the related
1063     // partial definition.
1064     Dst.SubReg = CopyLike.getOperand(CurrentSrcIdx + 1).getImm();
1065 
1066     const MachineOperand &MODef = CopyLike.getOperand(0);
1067     Dst.Reg = MODef.getReg();
1068     // If we have to compose sub-registers, bail.
1069     return MODef.getSubReg() == 0;
1070   }
1071 
1072   bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override {
1073     // We cannot rewrite out of bound operands.
1074     // Moreover, rewritable sources are at odd positions.
1075     if ((CurrentSrcIdx & 1) != 1 || CurrentSrcIdx > CopyLike.getNumOperands())
1076       return false;
1077 
1078     MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
1079     MO.setReg(NewReg);
1080     MO.setSubReg(NewSubReg);
1081     return true;
1082   }
1083 };
1084 
1085 } // end anonymous namespace
1086 
1087 /// Get the appropriated Rewriter for \p MI.
1088 /// \return A pointer to a dynamically allocated Rewriter or nullptr if no
1089 /// rewriter works for \p MI.
1090 static Rewriter *getCopyRewriter(MachineInstr &MI, const TargetInstrInfo &TII) {
1091   // Handle uncoalescable copy-like instructions.
1092   if (MI.isBitcast() || MI.isRegSequenceLike() || MI.isInsertSubregLike() ||
1093       MI.isExtractSubregLike())
1094     return new UncoalescableRewriter(MI);
1095 
1096   switch (MI.getOpcode()) {
1097   default:
1098     return nullptr;
1099   case TargetOpcode::COPY:
1100     return new CopyRewriter(MI);
1101   case TargetOpcode::INSERT_SUBREG:
1102     return new InsertSubregRewriter(MI);
1103   case TargetOpcode::EXTRACT_SUBREG:
1104     return new ExtractSubregRewriter(MI, TII);
1105   case TargetOpcode::REG_SEQUENCE:
1106     return new RegSequenceRewriter(MI);
1107   }
1108 }
1109 
1110 /// Given a \p Def.Reg and Def.SubReg  pair, use \p RewriteMap to find
1111 /// the new source to use for rewrite. If \p HandleMultipleSources is true and
1112 /// multiple sources for a given \p Def are found along the way, we found a
1113 /// PHI instructions that needs to be rewritten.
1114 /// TODO: HandleMultipleSources should be removed once we test PHI handling
1115 /// with coalescable copies.
1116 static RegSubRegPair
1117 getNewSource(MachineRegisterInfo *MRI, const TargetInstrInfo *TII,
1118              RegSubRegPair Def,
1119              const PeepholeOptimizer::RewriteMapTy &RewriteMap,
1120              bool HandleMultipleSources = true) {
1121   RegSubRegPair LookupSrc(Def.Reg, Def.SubReg);
1122   while (true) {
1123     ValueTrackerResult Res = RewriteMap.lookup(LookupSrc);
1124     // If there are no entries on the map, LookupSrc is the new source.
1125     if (!Res.isValid())
1126       return LookupSrc;
1127 
1128     // There's only one source for this definition, keep searching...
1129     unsigned NumSrcs = Res.getNumSources();
1130     if (NumSrcs == 1) {
1131       LookupSrc.Reg = Res.getSrcReg(0);
1132       LookupSrc.SubReg = Res.getSrcSubReg(0);
1133       continue;
1134     }
1135 
1136     // TODO: Remove once multiple srcs w/ coalescable copies are supported.
1137     if (!HandleMultipleSources)
1138       break;
1139 
1140     // Multiple sources, recurse into each source to find a new source
1141     // for it. Then, rewrite the PHI accordingly to its new edges.
1142     SmallVector<RegSubRegPair, 4> NewPHISrcs;
1143     for (unsigned i = 0; i < NumSrcs; ++i) {
1144       RegSubRegPair PHISrc(Res.getSrcReg(i), Res.getSrcSubReg(i));
1145       NewPHISrcs.push_back(
1146           getNewSource(MRI, TII, PHISrc, RewriteMap, HandleMultipleSources));
1147     }
1148 
1149     // Build the new PHI node and return its def register as the new source.
1150     MachineInstr &OrigPHI = const_cast<MachineInstr &>(*Res.getInst());
1151     MachineInstr &NewPHI = insertPHI(*MRI, *TII, NewPHISrcs, OrigPHI);
1152     LLVM_DEBUG(dbgs() << "-- getNewSource\n");
1153     LLVM_DEBUG(dbgs() << "   Replacing: " << OrigPHI);
1154     LLVM_DEBUG(dbgs() << "        With: " << NewPHI);
1155     const MachineOperand &MODef = NewPHI.getOperand(0);
1156     return RegSubRegPair(MODef.getReg(), MODef.getSubReg());
1157   }
1158 
1159   return RegSubRegPair(0, 0);
1160 }
1161 
1162 /// Optimize generic copy instructions to avoid cross register bank copy.
1163 /// The optimization looks through a chain of copies and tries to find a source
1164 /// that has a compatible register class.
1165 /// Two register classes are considered to be compatible if they share the same
1166 /// register bank.
1167 /// New copies issued by this optimization are register allocator
1168 /// friendly. This optimization does not remove any copy as it may
1169 /// overconstrain the register allocator, but replaces some operands
1170 /// when possible.
1171 /// \pre isCoalescableCopy(*MI) is true.
1172 /// \return True, when \p MI has been rewritten. False otherwise.
1173 bool PeepholeOptimizer::optimizeCoalescableCopy(MachineInstr &MI) {
1174   assert(isCoalescableCopy(MI) && "Invalid argument");
1175   assert(MI.getDesc().getNumDefs() == 1 &&
1176          "Coalescer can understand multiple defs?!");
1177   const MachineOperand &MODef = MI.getOperand(0);
1178   // Do not rewrite physical definitions.
1179   if (Register::isPhysicalRegister(MODef.getReg()))
1180     return false;
1181 
1182   bool Changed = false;
1183   // Get the right rewriter for the current copy.
1184   std::unique_ptr<Rewriter> CpyRewriter(getCopyRewriter(MI, *TII));
1185   // If none exists, bail out.
1186   if (!CpyRewriter)
1187     return false;
1188   // Rewrite each rewritable source.
1189   RegSubRegPair Src;
1190   RegSubRegPair TrackPair;
1191   while (CpyRewriter->getNextRewritableSource(Src, TrackPair)) {
1192     // Keep track of PHI nodes and its incoming edges when looking for sources.
1193     RewriteMapTy RewriteMap;
1194     // Try to find a more suitable source. If we failed to do so, or get the
1195     // actual source, move to the next source.
1196     if (!findNextSource(TrackPair, RewriteMap))
1197       continue;
1198 
1199     // Get the new source to rewrite. TODO: Only enable handling of multiple
1200     // sources (PHIs) once we have a motivating example and testcases for it.
1201     RegSubRegPair NewSrc = getNewSource(MRI, TII, TrackPair, RewriteMap,
1202                                         /*HandleMultipleSources=*/false);
1203     if (Src.Reg == NewSrc.Reg || NewSrc.Reg == 0)
1204       continue;
1205 
1206     // Rewrite source.
1207     if (CpyRewriter->RewriteCurrentSource(NewSrc.Reg, NewSrc.SubReg)) {
1208       // We may have extended the live-range of NewSrc, account for that.
1209       MRI->clearKillFlags(NewSrc.Reg);
1210       Changed = true;
1211     }
1212   }
1213   // TODO: We could have a clean-up method to tidy the instruction.
1214   // E.g., v0 = INSERT_SUBREG v1, v1.sub0, sub0
1215   // => v0 = COPY v1
1216   // Currently we haven't seen motivating example for that and we
1217   // want to avoid untested code.
1218   NumRewrittenCopies += Changed;
1219   return Changed;
1220 }
1221 
1222 /// Rewrite the source found through \p Def, by using the \p RewriteMap
1223 /// and create a new COPY instruction. More info about RewriteMap in
1224 /// PeepholeOptimizer::findNextSource. Right now this is only used to handle
1225 /// Uncoalescable copies, since they are copy like instructions that aren't
1226 /// recognized by the register allocator.
1227 MachineInstr &
1228 PeepholeOptimizer::rewriteSource(MachineInstr &CopyLike,
1229                                  RegSubRegPair Def, RewriteMapTy &RewriteMap) {
1230   assert(!Register::isPhysicalRegister(Def.Reg) &&
1231          "We do not rewrite physical registers");
1232 
1233   // Find the new source to use in the COPY rewrite.
1234   RegSubRegPair NewSrc = getNewSource(MRI, TII, Def, RewriteMap);
1235 
1236   // Insert the COPY.
1237   const TargetRegisterClass *DefRC = MRI->getRegClass(Def.Reg);
1238   Register NewVReg = MRI->createVirtualRegister(DefRC);
1239 
1240   MachineInstr *NewCopy =
1241       BuildMI(*CopyLike.getParent(), &CopyLike, CopyLike.getDebugLoc(),
1242               TII->get(TargetOpcode::COPY), NewVReg)
1243           .addReg(NewSrc.Reg, 0, NewSrc.SubReg);
1244 
1245   if (Def.SubReg) {
1246     NewCopy->getOperand(0).setSubReg(Def.SubReg);
1247     NewCopy->getOperand(0).setIsUndef();
1248   }
1249 
1250   LLVM_DEBUG(dbgs() << "-- RewriteSource\n");
1251   LLVM_DEBUG(dbgs() << "   Replacing: " << CopyLike);
1252   LLVM_DEBUG(dbgs() << "        With: " << *NewCopy);
1253   MRI->replaceRegWith(Def.Reg, NewVReg);
1254   MRI->clearKillFlags(NewVReg);
1255 
1256   // We extended the lifetime of NewSrc.Reg, clear the kill flags to
1257   // account for that.
1258   MRI->clearKillFlags(NewSrc.Reg);
1259 
1260   return *NewCopy;
1261 }
1262 
1263 /// Optimize copy-like instructions to create
1264 /// register coalescer friendly instruction.
1265 /// The optimization tries to kill-off the \p MI by looking
1266 /// through a chain of copies to find a source that has a compatible
1267 /// register class.
1268 /// If such a source is found, it replace \p MI by a generic COPY
1269 /// operation.
1270 /// \pre isUncoalescableCopy(*MI) is true.
1271 /// \return True, when \p MI has been optimized. In that case, \p MI has
1272 /// been removed from its parent.
1273 /// All COPY instructions created, are inserted in \p LocalMIs.
1274 bool PeepholeOptimizer::optimizeUncoalescableCopy(
1275     MachineInstr &MI, SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
1276   assert(isUncoalescableCopy(MI) && "Invalid argument");
1277   UncoalescableRewriter CpyRewriter(MI);
1278 
1279   // Rewrite each rewritable source by generating new COPYs. This works
1280   // differently from optimizeCoalescableCopy since it first makes sure that all
1281   // definitions can be rewritten.
1282   RewriteMapTy RewriteMap;
1283   RegSubRegPair Src;
1284   RegSubRegPair Def;
1285   SmallVector<RegSubRegPair, 4> RewritePairs;
1286   while (CpyRewriter.getNextRewritableSource(Src, Def)) {
1287     // If a physical register is here, this is probably for a good reason.
1288     // Do not rewrite that.
1289     if (Register::isPhysicalRegister(Def.Reg))
1290       return false;
1291 
1292     // If we do not know how to rewrite this definition, there is no point
1293     // in trying to kill this instruction.
1294     if (!findNextSource(Def, RewriteMap))
1295       return false;
1296 
1297     RewritePairs.push_back(Def);
1298   }
1299 
1300   // The change is possible for all defs, do it.
1301   for (const RegSubRegPair &Def : RewritePairs) {
1302     // Rewrite the "copy" in a way the register coalescer understands.
1303     MachineInstr &NewCopy = rewriteSource(MI, Def, RewriteMap);
1304     LocalMIs.insert(&NewCopy);
1305   }
1306 
1307   // MI is now dead.
1308   LLVM_DEBUG(dbgs() << "Deleting uncoalescable copy: " << MI);
1309   MI.eraseFromParent();
1310   ++NumUncoalescableCopies;
1311   return true;
1312 }
1313 
1314 /// Check whether MI is a candidate for folding into a later instruction.
1315 /// We only fold loads to virtual registers and the virtual register defined
1316 /// has a single user.
1317 bool PeepholeOptimizer::isLoadFoldable(
1318     MachineInstr &MI, SmallSet<Register, 16> &FoldAsLoadDefCandidates) {
1319   if (!MI.canFoldAsLoad() || !MI.mayLoad())
1320     return false;
1321   const MCInstrDesc &MCID = MI.getDesc();
1322   if (MCID.getNumDefs() != 1)
1323     return false;
1324 
1325   Register Reg = MI.getOperand(0).getReg();
1326   // To reduce compilation time, we check MRI->hasOneNonDBGUser when inserting
1327   // loads. It should be checked when processing uses of the load, since
1328   // uses can be removed during peephole.
1329   if (Reg.isVirtual() && !MI.getOperand(0).getSubReg() &&
1330       MRI->hasOneNonDBGUser(Reg)) {
1331     FoldAsLoadDefCandidates.insert(Reg);
1332     return true;
1333   }
1334   return false;
1335 }
1336 
1337 bool PeepholeOptimizer::isMoveImmediate(
1338     MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs,
1339     DenseMap<Register, MachineInstr *> &ImmDefMIs) {
1340   const MCInstrDesc &MCID = MI.getDesc();
1341   if (!MI.isMoveImmediate())
1342     return false;
1343   if (MCID.getNumDefs() != 1)
1344     return false;
1345   Register Reg = MI.getOperand(0).getReg();
1346   if (Reg.isVirtual()) {
1347     ImmDefMIs.insert(std::make_pair(Reg, &MI));
1348     ImmDefRegs.insert(Reg);
1349     return true;
1350   }
1351 
1352   return false;
1353 }
1354 
1355 /// Try folding register operands that are defined by move immediate
1356 /// instructions, i.e. a trivial constant folding optimization, if
1357 /// and only if the def and use are in the same BB.
1358 bool PeepholeOptimizer::foldImmediate(
1359     MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs,
1360     DenseMap<Register, MachineInstr *> &ImmDefMIs) {
1361   for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) {
1362     MachineOperand &MO = MI.getOperand(i);
1363     if (!MO.isReg() || MO.isDef())
1364       continue;
1365     Register Reg = MO.getReg();
1366     if (!Reg.isVirtual())
1367       continue;
1368     if (ImmDefRegs.count(Reg) == 0)
1369       continue;
1370     DenseMap<Register, MachineInstr *>::iterator II = ImmDefMIs.find(Reg);
1371     assert(II != ImmDefMIs.end() && "couldn't find immediate definition");
1372     if (TII->FoldImmediate(MI, *II->second, Reg, MRI)) {
1373       ++NumImmFold;
1374       return true;
1375     }
1376   }
1377   return false;
1378 }
1379 
1380 // FIXME: This is very simple and misses some cases which should be handled when
1381 // motivating examples are found.
1382 //
1383 // The copy rewriting logic should look at uses as well as defs and be able to
1384 // eliminate copies across blocks.
1385 //
1386 // Later copies that are subregister extracts will also not be eliminated since
1387 // only the first copy is considered.
1388 //
1389 // e.g.
1390 // %1 = COPY %0
1391 // %2 = COPY %0:sub1
1392 //
1393 // Should replace %2 uses with %1:sub1
1394 bool PeepholeOptimizer::foldRedundantCopy(
1395     MachineInstr &MI, DenseMap<RegSubRegPair, MachineInstr *> &CopyMIs) {
1396   assert(MI.isCopy() && "expected a COPY machine instruction");
1397 
1398   Register SrcReg = MI.getOperand(1).getReg();
1399   unsigned SrcSubReg = MI.getOperand(1).getSubReg();
1400   if (!SrcReg.isVirtual())
1401     return false;
1402 
1403   Register DstReg = MI.getOperand(0).getReg();
1404   if (!DstReg.isVirtual())
1405     return false;
1406 
1407   RegSubRegPair SrcPair(SrcReg, SrcSubReg);
1408 
1409   if (CopyMIs.insert(std::make_pair(SrcPair, &MI)).second) {
1410     // First copy of this reg seen.
1411     return false;
1412   }
1413 
1414   MachineInstr *PrevCopy = CopyMIs.find(SrcPair)->second;
1415 
1416   assert(SrcSubReg == PrevCopy->getOperand(1).getSubReg() &&
1417          "Unexpected mismatching subreg!");
1418 
1419   Register PrevDstReg = PrevCopy->getOperand(0).getReg();
1420 
1421   // Only replace if the copy register class is the same.
1422   //
1423   // TODO: If we have multiple copies to different register classes, we may want
1424   // to track multiple copies of the same source register.
1425   if (MRI->getRegClass(DstReg) != MRI->getRegClass(PrevDstReg))
1426     return false;
1427 
1428   MRI->replaceRegWith(DstReg, PrevDstReg);
1429 
1430   // Lifetime of the previous copy has been extended.
1431   MRI->clearKillFlags(PrevDstReg);
1432   return true;
1433 }
1434 
1435 bool PeepholeOptimizer::isNAPhysCopy(Register Reg) {
1436   return Reg.isPhysical() && !MRI->isAllocatable(Reg);
1437 }
1438 
1439 bool PeepholeOptimizer::foldRedundantNAPhysCopy(
1440     MachineInstr &MI, DenseMap<Register, MachineInstr *> &NAPhysToVirtMIs) {
1441   assert(MI.isCopy() && "expected a COPY machine instruction");
1442 
1443   if (DisableNAPhysCopyOpt)
1444     return false;
1445 
1446   Register DstReg = MI.getOperand(0).getReg();
1447   Register SrcReg = MI.getOperand(1).getReg();
1448   if (isNAPhysCopy(SrcReg) && Register::isVirtualRegister(DstReg)) {
1449     // %vreg = COPY $physreg
1450     // Avoid using a datastructure which can track multiple live non-allocatable
1451     // phys->virt copies since LLVM doesn't seem to do this.
1452     NAPhysToVirtMIs.insert({SrcReg, &MI});
1453     return false;
1454   }
1455 
1456   if (!(SrcReg.isVirtual() && isNAPhysCopy(DstReg)))
1457     return false;
1458 
1459   // $physreg = COPY %vreg
1460   auto PrevCopy = NAPhysToVirtMIs.find(DstReg);
1461   if (PrevCopy == NAPhysToVirtMIs.end()) {
1462     // We can't remove the copy: there was an intervening clobber of the
1463     // non-allocatable physical register after the copy to virtual.
1464     LLVM_DEBUG(dbgs() << "NAPhysCopy: intervening clobber forbids erasing "
1465                       << MI);
1466     return false;
1467   }
1468 
1469   Register PrevDstReg = PrevCopy->second->getOperand(0).getReg();
1470   if (PrevDstReg == SrcReg) {
1471     // Remove the virt->phys copy: we saw the virtual register definition, and
1472     // the non-allocatable physical register's state hasn't changed since then.
1473     LLVM_DEBUG(dbgs() << "NAPhysCopy: erasing " << MI);
1474     ++NumNAPhysCopies;
1475     return true;
1476   }
1477 
1478   // Potential missed optimization opportunity: we saw a different virtual
1479   // register get a copy of the non-allocatable physical register, and we only
1480   // track one such copy. Avoid getting confused by this new non-allocatable
1481   // physical register definition, and remove it from the tracked copies.
1482   LLVM_DEBUG(dbgs() << "NAPhysCopy: missed opportunity " << MI);
1483   NAPhysToVirtMIs.erase(PrevCopy);
1484   return false;
1485 }
1486 
1487 /// \bried Returns true if \p MO is a virtual register operand.
1488 static bool isVirtualRegisterOperand(MachineOperand &MO) {
1489   return MO.isReg() && MO.getReg().isVirtual();
1490 }
1491 
1492 bool PeepholeOptimizer::findTargetRecurrence(
1493     Register Reg, const SmallSet<Register, 2> &TargetRegs,
1494     RecurrenceCycle &RC) {
1495   // Recurrence found if Reg is in TargetRegs.
1496   if (TargetRegs.count(Reg))
1497     return true;
1498 
1499   // TODO: Curerntly, we only allow the last instruction of the recurrence
1500   // cycle (the instruction that feeds the PHI instruction) to have more than
1501   // one uses to guarantee that commuting operands does not tie registers
1502   // with overlapping live range. Once we have actual live range info of
1503   // each register, this constraint can be relaxed.
1504   if (!MRI->hasOneNonDBGUse(Reg))
1505     return false;
1506 
1507   // Give up if the reccurrence chain length is longer than the limit.
1508   if (RC.size() >= MaxRecurrenceChain)
1509     return false;
1510 
1511   MachineInstr &MI = *(MRI->use_instr_nodbg_begin(Reg));
1512   unsigned Idx = MI.findRegisterUseOperandIdx(Reg);
1513 
1514   // Only interested in recurrences whose instructions have only one def, which
1515   // is a virtual register.
1516   if (MI.getDesc().getNumDefs() != 1)
1517     return false;
1518 
1519   MachineOperand &DefOp = MI.getOperand(0);
1520   if (!isVirtualRegisterOperand(DefOp))
1521     return false;
1522 
1523   // Check if def operand of MI is tied to any use operand. We are only
1524   // interested in the case that all the instructions in the recurrence chain
1525   // have there def operand tied with one of the use operand.
1526   unsigned TiedUseIdx;
1527   if (!MI.isRegTiedToUseOperand(0, &TiedUseIdx))
1528     return false;
1529 
1530   if (Idx == TiedUseIdx) {
1531     RC.push_back(RecurrenceInstr(&MI));
1532     return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC);
1533   } else {
1534     // If Idx is not TiedUseIdx, check if Idx is commutable with TiedUseIdx.
1535     unsigned CommIdx = TargetInstrInfo::CommuteAnyOperandIndex;
1536     if (TII->findCommutedOpIndices(MI, Idx, CommIdx) && CommIdx == TiedUseIdx) {
1537       RC.push_back(RecurrenceInstr(&MI, Idx, CommIdx));
1538       return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC);
1539     }
1540   }
1541 
1542   return false;
1543 }
1544 
1545 /// Phi instructions will eventually be lowered to copy instructions.
1546 /// If phi is in a loop header, a recurrence may formulated around the source
1547 /// and destination of the phi. For such case commuting operands of the
1548 /// instructions in the recurrence may enable coalescing of the copy instruction
1549 /// generated from the phi. For example, if there is a recurrence of
1550 ///
1551 /// LoopHeader:
1552 ///   %1 = phi(%0, %100)
1553 /// LoopLatch:
1554 ///   %0<def, tied1> = ADD %2<def, tied0>, %1
1555 ///
1556 /// , the fact that %0 and %2 are in the same tied operands set makes
1557 /// the coalescing of copy instruction generated from the phi in
1558 /// LoopHeader(i.e. %1 = COPY %0) impossible, because %1 and
1559 /// %2 have overlapping live range. This introduces additional move
1560 /// instruction to the final assembly. However, if we commute %2 and
1561 /// %1 of ADD instruction, the redundant move instruction can be
1562 /// avoided.
1563 bool PeepholeOptimizer::optimizeRecurrence(MachineInstr &PHI) {
1564   SmallSet<Register, 2> TargetRegs;
1565   for (unsigned Idx = 1; Idx < PHI.getNumOperands(); Idx += 2) {
1566     MachineOperand &MO = PHI.getOperand(Idx);
1567     assert(isVirtualRegisterOperand(MO) && "Invalid PHI instruction");
1568     TargetRegs.insert(MO.getReg());
1569   }
1570 
1571   bool Changed = false;
1572   RecurrenceCycle RC;
1573   if (findTargetRecurrence(PHI.getOperand(0).getReg(), TargetRegs, RC)) {
1574     // Commutes operands of instructions in RC if necessary so that the copy to
1575     // be generated from PHI can be coalesced.
1576     LLVM_DEBUG(dbgs() << "Optimize recurrence chain from " << PHI);
1577     for (auto &RI : RC) {
1578       LLVM_DEBUG(dbgs() << "\tInst: " << *(RI.getMI()));
1579       auto CP = RI.getCommutePair();
1580       if (CP) {
1581         Changed = true;
1582         TII->commuteInstruction(*(RI.getMI()), false, (*CP).first,
1583                                 (*CP).second);
1584         LLVM_DEBUG(dbgs() << "\t\tCommuted: " << *(RI.getMI()));
1585       }
1586     }
1587   }
1588 
1589   return Changed;
1590 }
1591 
1592 bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) {
1593   if (skipFunction(MF.getFunction()))
1594     return false;
1595 
1596   LLVM_DEBUG(dbgs() << "********** PEEPHOLE OPTIMIZER **********\n");
1597   LLVM_DEBUG(dbgs() << "********** Function: " << MF.getName() << '\n');
1598 
1599   if (DisablePeephole)
1600     return false;
1601 
1602   TII = MF.getSubtarget().getInstrInfo();
1603   TRI = MF.getSubtarget().getRegisterInfo();
1604   MRI = &MF.getRegInfo();
1605   DT  = Aggressive ? &getAnalysis<MachineDominatorTree>() : nullptr;
1606   MLI = &getAnalysis<MachineLoopInfo>();
1607 
1608   bool Changed = false;
1609 
1610   for (MachineBasicBlock &MBB : MF) {
1611     bool SeenMoveImm = false;
1612 
1613     // During this forward scan, at some point it needs to answer the question
1614     // "given a pointer to an MI in the current BB, is it located before or
1615     // after the current instruction".
1616     // To perform this, the following set keeps track of the MIs already seen
1617     // during the scan, if a MI is not in the set, it is assumed to be located
1618     // after. Newly created MIs have to be inserted in the set as well.
1619     SmallPtrSet<MachineInstr*, 16> LocalMIs;
1620     SmallSet<Register, 4> ImmDefRegs;
1621     DenseMap<Register, MachineInstr *> ImmDefMIs;
1622     SmallSet<Register, 16> FoldAsLoadDefCandidates;
1623 
1624     // Track when a non-allocatable physical register is copied to a virtual
1625     // register so that useless moves can be removed.
1626     //
1627     // $physreg is the map index; MI is the last valid `%vreg = COPY $physreg`
1628     // without any intervening re-definition of $physreg.
1629     DenseMap<Register, MachineInstr *> NAPhysToVirtMIs;
1630 
1631     // Set of pairs of virtual registers and their subregs that are copied
1632     // from.
1633     DenseMap<RegSubRegPair, MachineInstr *> CopySrcMIs;
1634 
1635     bool IsLoopHeader = MLI->isLoopHeader(&MBB);
1636 
1637     for (MachineBasicBlock::iterator MII = MBB.begin(), MIE = MBB.end();
1638          MII != MIE; ) {
1639       MachineInstr *MI = &*MII;
1640       // We may be erasing MI below, increment MII now.
1641       ++MII;
1642       LocalMIs.insert(MI);
1643 
1644       // Skip debug instructions. They should not affect this peephole
1645       // optimization.
1646       if (MI->isDebugInstr())
1647         continue;
1648 
1649       if (MI->isPosition())
1650         continue;
1651 
1652       if (IsLoopHeader && MI->isPHI()) {
1653         if (optimizeRecurrence(*MI)) {
1654           Changed = true;
1655           continue;
1656         }
1657       }
1658 
1659       if (!MI->isCopy()) {
1660         for (const MachineOperand &MO : MI->operands()) {
1661           // Visit all operands: definitions can be implicit or explicit.
1662           if (MO.isReg()) {
1663             Register Reg = MO.getReg();
1664             if (MO.isDef() && isNAPhysCopy(Reg)) {
1665               const auto &Def = NAPhysToVirtMIs.find(Reg);
1666               if (Def != NAPhysToVirtMIs.end()) {
1667                 // A new definition of the non-allocatable physical register
1668                 // invalidates previous copies.
1669                 LLVM_DEBUG(dbgs()
1670                            << "NAPhysCopy: invalidating because of " << *MI);
1671                 NAPhysToVirtMIs.erase(Def);
1672               }
1673             }
1674           } else if (MO.isRegMask()) {
1675             const uint32_t *RegMask = MO.getRegMask();
1676             for (auto &RegMI : NAPhysToVirtMIs) {
1677               Register Def = RegMI.first;
1678               if (MachineOperand::clobbersPhysReg(RegMask, Def)) {
1679                 LLVM_DEBUG(dbgs()
1680                            << "NAPhysCopy: invalidating because of " << *MI);
1681                 NAPhysToVirtMIs.erase(Def);
1682               }
1683             }
1684           }
1685         }
1686       }
1687 
1688       if (MI->isImplicitDef() || MI->isKill())
1689         continue;
1690 
1691       if (MI->isInlineAsm() || MI->hasUnmodeledSideEffects()) {
1692         // Blow away all non-allocatable physical registers knowledge since we
1693         // don't know what's correct anymore.
1694         //
1695         // FIXME: handle explicit asm clobbers.
1696         LLVM_DEBUG(dbgs() << "NAPhysCopy: blowing away all info due to "
1697                           << *MI);
1698         NAPhysToVirtMIs.clear();
1699       }
1700 
1701       if ((isUncoalescableCopy(*MI) &&
1702            optimizeUncoalescableCopy(*MI, LocalMIs)) ||
1703           (MI->isCompare() && optimizeCmpInstr(*MI)) ||
1704           (MI->isSelect() && optimizeSelect(*MI, LocalMIs))) {
1705         // MI is deleted.
1706         LocalMIs.erase(MI);
1707         Changed = true;
1708         continue;
1709       }
1710 
1711       if (MI->isConditionalBranch() && optimizeCondBranch(*MI)) {
1712         Changed = true;
1713         continue;
1714       }
1715 
1716       if (isCoalescableCopy(*MI) && optimizeCoalescableCopy(*MI)) {
1717         // MI is just rewritten.
1718         Changed = true;
1719         continue;
1720       }
1721 
1722       if (MI->isCopy() && (foldRedundantCopy(*MI, CopySrcMIs) ||
1723                            foldRedundantNAPhysCopy(*MI, NAPhysToVirtMIs))) {
1724         LocalMIs.erase(MI);
1725         LLVM_DEBUG(dbgs() << "Deleting redundant copy: " << *MI << "\n");
1726         MI->eraseFromParent();
1727         Changed = true;
1728         continue;
1729       }
1730 
1731       if (isMoveImmediate(*MI, ImmDefRegs, ImmDefMIs)) {
1732         SeenMoveImm = true;
1733       } else {
1734         Changed |= optimizeExtInstr(*MI, MBB, LocalMIs);
1735         // optimizeExtInstr might have created new instructions after MI
1736         // and before the already incremented MII. Adjust MII so that the
1737         // next iteration sees the new instructions.
1738         MII = MI;
1739         ++MII;
1740         if (SeenMoveImm)
1741           Changed |= foldImmediate(*MI, ImmDefRegs, ImmDefMIs);
1742       }
1743 
1744       // Check whether MI is a load candidate for folding into a later
1745       // instruction. If MI is not a candidate, check whether we can fold an
1746       // earlier load into MI.
1747       if (!isLoadFoldable(*MI, FoldAsLoadDefCandidates) &&
1748           !FoldAsLoadDefCandidates.empty()) {
1749 
1750         // We visit each operand even after successfully folding a previous
1751         // one.  This allows us to fold multiple loads into a single
1752         // instruction.  We do assume that optimizeLoadInstr doesn't insert
1753         // foldable uses earlier in the argument list.  Since we don't restart
1754         // iteration, we'd miss such cases.
1755         const MCInstrDesc &MIDesc = MI->getDesc();
1756         for (unsigned i = MIDesc.getNumDefs(); i != MI->getNumOperands();
1757              ++i) {
1758           const MachineOperand &MOp = MI->getOperand(i);
1759           if (!MOp.isReg())
1760             continue;
1761           Register FoldAsLoadDefReg = MOp.getReg();
1762           if (FoldAsLoadDefCandidates.count(FoldAsLoadDefReg)) {
1763             // We need to fold load after optimizeCmpInstr, since
1764             // optimizeCmpInstr can enable folding by converting SUB to CMP.
1765             // Save FoldAsLoadDefReg because optimizeLoadInstr() resets it and
1766             // we need it for markUsesInDebugValueAsUndef().
1767             Register FoldedReg = FoldAsLoadDefReg;
1768             MachineInstr *DefMI = nullptr;
1769             if (MachineInstr *FoldMI =
1770                     TII->optimizeLoadInstr(*MI, MRI, FoldAsLoadDefReg, DefMI)) {
1771               // Update LocalMIs since we replaced MI with FoldMI and deleted
1772               // DefMI.
1773               LLVM_DEBUG(dbgs() << "Replacing: " << *MI);
1774               LLVM_DEBUG(dbgs() << "     With: " << *FoldMI);
1775               LocalMIs.erase(MI);
1776               LocalMIs.erase(DefMI);
1777               LocalMIs.insert(FoldMI);
1778               // Update the call site info.
1779               if (MI->shouldUpdateCallSiteInfo())
1780                 MI->getMF()->moveCallSiteInfo(MI, FoldMI);
1781               MI->eraseFromParent();
1782               DefMI->eraseFromParent();
1783               MRI->markUsesInDebugValueAsUndef(FoldedReg);
1784               FoldAsLoadDefCandidates.erase(FoldedReg);
1785               ++NumLoadFold;
1786 
1787               // MI is replaced with FoldMI so we can continue trying to fold
1788               Changed = true;
1789               MI = FoldMI;
1790             }
1791           }
1792         }
1793       }
1794 
1795       // If we run into an instruction we can't fold across, discard
1796       // the load candidates.  Note: We might be able to fold *into* this
1797       // instruction, so this needs to be after the folding logic.
1798       if (MI->isLoadFoldBarrier()) {
1799         LLVM_DEBUG(dbgs() << "Encountered load fold barrier on " << *MI);
1800         FoldAsLoadDefCandidates.clear();
1801       }
1802     }
1803   }
1804 
1805   return Changed;
1806 }
1807 
1808 ValueTrackerResult ValueTracker::getNextSourceFromCopy() {
1809   assert(Def->isCopy() && "Invalid definition");
1810   // Copy instruction are supposed to be: Def = Src.
1811   // If someone breaks this assumption, bad things will happen everywhere.
1812   // There may be implicit uses preventing the copy to be moved across
1813   // some target specific register definitions
1814   assert(Def->getNumOperands() - Def->getNumImplicitOperands() == 2 &&
1815          "Invalid number of operands");
1816   assert(!Def->hasImplicitDef() && "Only implicit uses are allowed");
1817 
1818   if (Def->getOperand(DefIdx).getSubReg() != DefSubReg)
1819     // If we look for a different subreg, it means we want a subreg of src.
1820     // Bails as we do not support composing subregs yet.
1821     return ValueTrackerResult();
1822   // Otherwise, we want the whole source.
1823   const MachineOperand &Src = Def->getOperand(1);
1824   if (Src.isUndef())
1825     return ValueTrackerResult();
1826   return ValueTrackerResult(Src.getReg(), Src.getSubReg());
1827 }
1828 
1829 ValueTrackerResult ValueTracker::getNextSourceFromBitcast() {
1830   assert(Def->isBitcast() && "Invalid definition");
1831 
1832   // Bail if there are effects that a plain copy will not expose.
1833   if (Def->mayRaiseFPException() || Def->hasUnmodeledSideEffects())
1834     return ValueTrackerResult();
1835 
1836   // Bitcasts with more than one def are not supported.
1837   if (Def->getDesc().getNumDefs() != 1)
1838     return ValueTrackerResult();
1839   const MachineOperand DefOp = Def->getOperand(DefIdx);
1840   if (DefOp.getSubReg() != DefSubReg)
1841     // If we look for a different subreg, it means we want a subreg of the src.
1842     // Bails as we do not support composing subregs yet.
1843     return ValueTrackerResult();
1844 
1845   unsigned SrcIdx = Def->getNumOperands();
1846   for (unsigned OpIdx = DefIdx + 1, EndOpIdx = SrcIdx; OpIdx != EndOpIdx;
1847        ++OpIdx) {
1848     const MachineOperand &MO = Def->getOperand(OpIdx);
1849     if (!MO.isReg() || !MO.getReg())
1850       continue;
1851     // Ignore dead implicit defs.
1852     if (MO.isImplicit() && MO.isDead())
1853       continue;
1854     assert(!MO.isDef() && "We should have skipped all the definitions by now");
1855     if (SrcIdx != EndOpIdx)
1856       // Multiple sources?
1857       return ValueTrackerResult();
1858     SrcIdx = OpIdx;
1859   }
1860 
1861   // In some rare case, Def has no input, SrcIdx is out of bound,
1862   // getOperand(SrcIdx) will fail below.
1863   if (SrcIdx >= Def->getNumOperands())
1864     return ValueTrackerResult();
1865 
1866   // Stop when any user of the bitcast is a SUBREG_TO_REG, replacing with a COPY
1867   // will break the assumed guarantees for the upper bits.
1868   for (const MachineInstr &UseMI : MRI.use_nodbg_instructions(DefOp.getReg())) {
1869     if (UseMI.isSubregToReg())
1870       return ValueTrackerResult();
1871   }
1872 
1873   const MachineOperand &Src = Def->getOperand(SrcIdx);
1874   if (Src.isUndef())
1875     return ValueTrackerResult();
1876   return ValueTrackerResult(Src.getReg(), Src.getSubReg());
1877 }
1878 
1879 ValueTrackerResult ValueTracker::getNextSourceFromRegSequence() {
1880   assert((Def->isRegSequence() || Def->isRegSequenceLike()) &&
1881          "Invalid definition");
1882 
1883   if (Def->getOperand(DefIdx).getSubReg())
1884     // If we are composing subregs, bail out.
1885     // The case we are checking is Def.<subreg> = REG_SEQUENCE.
1886     // This should almost never happen as the SSA property is tracked at
1887     // the register level (as opposed to the subreg level).
1888     // I.e.,
1889     // Def.sub0 =
1890     // Def.sub1 =
1891     // is a valid SSA representation for Def.sub0 and Def.sub1, but not for
1892     // Def. Thus, it must not be generated.
1893     // However, some code could theoretically generates a single
1894     // Def.sub0 (i.e, not defining the other subregs) and we would
1895     // have this case.
1896     // If we can ascertain (or force) that this never happens, we could
1897     // turn that into an assertion.
1898     return ValueTrackerResult();
1899 
1900   if (!TII)
1901     // We could handle the REG_SEQUENCE here, but we do not want to
1902     // duplicate the code from the generic TII.
1903     return ValueTrackerResult();
1904 
1905   SmallVector<RegSubRegPairAndIdx, 8> RegSeqInputRegs;
1906   if (!TII->getRegSequenceInputs(*Def, DefIdx, RegSeqInputRegs))
1907     return ValueTrackerResult();
1908 
1909   // We are looking at:
1910   // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
1911   // Check if one of the operand defines the subreg we are interested in.
1912   for (const RegSubRegPairAndIdx &RegSeqInput : RegSeqInputRegs) {
1913     if (RegSeqInput.SubIdx == DefSubReg)
1914       return ValueTrackerResult(RegSeqInput.Reg, RegSeqInput.SubReg);
1915   }
1916 
1917   // If the subreg we are tracking is super-defined by another subreg,
1918   // we could follow this value. However, this would require to compose
1919   // the subreg and we do not do that for now.
1920   return ValueTrackerResult();
1921 }
1922 
1923 ValueTrackerResult ValueTracker::getNextSourceFromInsertSubreg() {
1924   assert((Def->isInsertSubreg() || Def->isInsertSubregLike()) &&
1925          "Invalid definition");
1926 
1927   if (Def->getOperand(DefIdx).getSubReg())
1928     // If we are composing subreg, bail out.
1929     // Same remark as getNextSourceFromRegSequence.
1930     // I.e., this may be turned into an assert.
1931     return ValueTrackerResult();
1932 
1933   if (!TII)
1934     // We could handle the REG_SEQUENCE here, but we do not want to
1935     // duplicate the code from the generic TII.
1936     return ValueTrackerResult();
1937 
1938   RegSubRegPair BaseReg;
1939   RegSubRegPairAndIdx InsertedReg;
1940   if (!TII->getInsertSubregInputs(*Def, DefIdx, BaseReg, InsertedReg))
1941     return ValueTrackerResult();
1942 
1943   // We are looking at:
1944   // Def = INSERT_SUBREG v0, v1, sub1
1945   // There are two cases:
1946   // 1. DefSubReg == sub1, get v1.
1947   // 2. DefSubReg != sub1, the value may be available through v0.
1948 
1949   // #1 Check if the inserted register matches the required sub index.
1950   if (InsertedReg.SubIdx == DefSubReg) {
1951     return ValueTrackerResult(InsertedReg.Reg, InsertedReg.SubReg);
1952   }
1953   // #2 Otherwise, if the sub register we are looking for is not partial
1954   // defined by the inserted element, we can look through the main
1955   // register (v0).
1956   const MachineOperand &MODef = Def->getOperand(DefIdx);
1957   // If the result register (Def) and the base register (v0) do not
1958   // have the same register class or if we have to compose
1959   // subregisters, bail out.
1960   if (MRI.getRegClass(MODef.getReg()) != MRI.getRegClass(BaseReg.Reg) ||
1961       BaseReg.SubReg)
1962     return ValueTrackerResult();
1963 
1964   // Get the TRI and check if the inserted sub-register overlaps with the
1965   // sub-register we are tracking.
1966   const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
1967   if (!TRI ||
1968       !(TRI->getSubRegIndexLaneMask(DefSubReg) &
1969         TRI->getSubRegIndexLaneMask(InsertedReg.SubIdx)).none())
1970     return ValueTrackerResult();
1971   // At this point, the value is available in v0 via the same subreg
1972   // we used for Def.
1973   return ValueTrackerResult(BaseReg.Reg, DefSubReg);
1974 }
1975 
1976 ValueTrackerResult ValueTracker::getNextSourceFromExtractSubreg() {
1977   assert((Def->isExtractSubreg() ||
1978           Def->isExtractSubregLike()) && "Invalid definition");
1979   // We are looking at:
1980   // Def = EXTRACT_SUBREG v0, sub0
1981 
1982   // Bail if we have to compose sub registers.
1983   // Indeed, if DefSubReg != 0, we would have to compose it with sub0.
1984   if (DefSubReg)
1985     return ValueTrackerResult();
1986 
1987   if (!TII)
1988     // We could handle the EXTRACT_SUBREG here, but we do not want to
1989     // duplicate the code from the generic TII.
1990     return ValueTrackerResult();
1991 
1992   RegSubRegPairAndIdx ExtractSubregInputReg;
1993   if (!TII->getExtractSubregInputs(*Def, DefIdx, ExtractSubregInputReg))
1994     return ValueTrackerResult();
1995 
1996   // Bail if we have to compose sub registers.
1997   // Likewise, if v0.subreg != 0, we would have to compose v0.subreg with sub0.
1998   if (ExtractSubregInputReg.SubReg)
1999     return ValueTrackerResult();
2000   // Otherwise, the value is available in the v0.sub0.
2001   return ValueTrackerResult(ExtractSubregInputReg.Reg,
2002                             ExtractSubregInputReg.SubIdx);
2003 }
2004 
2005 ValueTrackerResult ValueTracker::getNextSourceFromSubregToReg() {
2006   assert(Def->isSubregToReg() && "Invalid definition");
2007   // We are looking at:
2008   // Def = SUBREG_TO_REG Imm, v0, sub0
2009 
2010   // Bail if we have to compose sub registers.
2011   // If DefSubReg != sub0, we would have to check that all the bits
2012   // we track are included in sub0 and if yes, we would have to
2013   // determine the right subreg in v0.
2014   if (DefSubReg != Def->getOperand(3).getImm())
2015     return ValueTrackerResult();
2016   // Bail if we have to compose sub registers.
2017   // Likewise, if v0.subreg != 0, we would have to compose it with sub0.
2018   if (Def->getOperand(2).getSubReg())
2019     return ValueTrackerResult();
2020 
2021   return ValueTrackerResult(Def->getOperand(2).getReg(),
2022                             Def->getOperand(3).getImm());
2023 }
2024 
2025 /// Explore each PHI incoming operand and return its sources.
2026 ValueTrackerResult ValueTracker::getNextSourceFromPHI() {
2027   assert(Def->isPHI() && "Invalid definition");
2028   ValueTrackerResult Res;
2029 
2030   // If we look for a different subreg, bail as we do not support composing
2031   // subregs yet.
2032   if (Def->getOperand(0).getSubReg() != DefSubReg)
2033     return ValueTrackerResult();
2034 
2035   // Return all register sources for PHI instructions.
2036   for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) {
2037     const MachineOperand &MO = Def->getOperand(i);
2038     assert(MO.isReg() && "Invalid PHI instruction");
2039     // We have no code to deal with undef operands. They shouldn't happen in
2040     // normal programs anyway.
2041     if (MO.isUndef())
2042       return ValueTrackerResult();
2043     Res.addSource(MO.getReg(), MO.getSubReg());
2044   }
2045 
2046   return Res;
2047 }
2048 
2049 ValueTrackerResult ValueTracker::getNextSourceImpl() {
2050   assert(Def && "This method needs a valid definition");
2051 
2052   assert(((Def->getOperand(DefIdx).isDef() &&
2053            (DefIdx < Def->getDesc().getNumDefs() ||
2054             Def->getDesc().isVariadic())) ||
2055           Def->getOperand(DefIdx).isImplicit()) &&
2056          "Invalid DefIdx");
2057   if (Def->isCopy())
2058     return getNextSourceFromCopy();
2059   if (Def->isBitcast())
2060     return getNextSourceFromBitcast();
2061   // All the remaining cases involve "complex" instructions.
2062   // Bail if we did not ask for the advanced tracking.
2063   if (DisableAdvCopyOpt)
2064     return ValueTrackerResult();
2065   if (Def->isRegSequence() || Def->isRegSequenceLike())
2066     return getNextSourceFromRegSequence();
2067   if (Def->isInsertSubreg() || Def->isInsertSubregLike())
2068     return getNextSourceFromInsertSubreg();
2069   if (Def->isExtractSubreg() || Def->isExtractSubregLike())
2070     return getNextSourceFromExtractSubreg();
2071   if (Def->isSubregToReg())
2072     return getNextSourceFromSubregToReg();
2073   if (Def->isPHI())
2074     return getNextSourceFromPHI();
2075   return ValueTrackerResult();
2076 }
2077 
2078 ValueTrackerResult ValueTracker::getNextSource() {
2079   // If we reach a point where we cannot move up in the use-def chain,
2080   // there is nothing we can get.
2081   if (!Def)
2082     return ValueTrackerResult();
2083 
2084   ValueTrackerResult Res = getNextSourceImpl();
2085   if (Res.isValid()) {
2086     // Update definition, definition index, and subregister for the
2087     // next call of getNextSource.
2088     // Update the current register.
2089     bool OneRegSrc = Res.getNumSources() == 1;
2090     if (OneRegSrc)
2091       Reg = Res.getSrcReg(0);
2092     // Update the result before moving up in the use-def chain
2093     // with the instruction containing the last found sources.
2094     Res.setInst(Def);
2095 
2096     // If we can still move up in the use-def chain, move to the next
2097     // definition.
2098     if (!Register::isPhysicalRegister(Reg) && OneRegSrc) {
2099       MachineRegisterInfo::def_iterator DI = MRI.def_begin(Reg);
2100       if (DI != MRI.def_end()) {
2101         Def = DI->getParent();
2102         DefIdx = DI.getOperandNo();
2103         DefSubReg = Res.getSrcSubReg(0);
2104       } else {
2105         Def = nullptr;
2106       }
2107       return Res;
2108     }
2109   }
2110   // If we end up here, this means we will not be able to find another source
2111   // for the next iteration. Make sure any new call to getNextSource bails out
2112   // early by cutting the use-def chain.
2113   Def = nullptr;
2114   return Res;
2115 }
2116