1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the generic RegisterCoalescer interface which
10 // is used as the common interface used by all clients and
11 // implementations of register coalescing.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "RegisterCoalescer.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/LiveInterval.h"
25 #include "llvm/CodeGen/LiveIntervals.h"
26 #include "llvm/CodeGen/LiveRangeEdit.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineLoopInfo.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/CodeGen/RegisterClassInfo.h"
37 #include "llvm/CodeGen/SlotIndexes.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetOpcodes.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/MC/LaneBitmask.h"
45 #include "llvm/MC/MCInstrDesc.h"
46 #include "llvm/MC/MCRegisterInfo.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include <algorithm>
54 #include <cassert>
55 #include <iterator>
56 #include <limits>
57 #include <tuple>
58 #include <utility>
59 #include <vector>
60 
61 using namespace llvm;
62 
63 #define DEBUG_TYPE "regalloc"
64 
65 STATISTIC(numJoins    , "Number of interval joins performed");
66 STATISTIC(numCrossRCs , "Number of cross class joins performed");
67 STATISTIC(numCommutes , "Number of instruction commuting performed");
68 STATISTIC(numExtends  , "Number of copies extended");
69 STATISTIC(NumReMats   , "Number of instructions re-materialized");
70 STATISTIC(NumInflated , "Number of register classes inflated");
71 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested");
72 STATISTIC(NumLaneResolves,  "Number of dead lane conflicts resolved");
73 STATISTIC(NumShrinkToUses,  "Number of shrinkToUses called");
74 
75 static cl::opt<bool> EnableJoining("join-liveintervals",
76                                    cl::desc("Coalesce copies (default=true)"),
77                                    cl::init(true), cl::Hidden);
78 
79 static cl::opt<bool> UseTerminalRule("terminal-rule",
80                                      cl::desc("Apply the terminal rule"),
81                                      cl::init(false), cl::Hidden);
82 
83 /// Temporary flag to test critical edge unsplitting.
84 static cl::opt<bool>
85 EnableJoinSplits("join-splitedges",
86   cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden);
87 
88 /// Temporary flag to test global copy optimization.
89 static cl::opt<cl::boolOrDefault>
90 EnableGlobalCopies("join-globalcopies",
91   cl::desc("Coalesce copies that span blocks (default=subtarget)"),
92   cl::init(cl::BOU_UNSET), cl::Hidden);
93 
94 static cl::opt<bool>
95 VerifyCoalescing("verify-coalescing",
96          cl::desc("Verify machine instrs before and after register coalescing"),
97          cl::Hidden);
98 
99 static cl::opt<unsigned> LateRematUpdateThreshold(
100     "late-remat-update-threshold", cl::Hidden,
101     cl::desc("During rematerialization for a copy, if the def instruction has "
102              "many other copy uses to be rematerialized, delay the multiple "
103              "separate live interval update work and do them all at once after "
104              "all those rematerialization are done. It will save a lot of "
105              "repeated work. "),
106     cl::init(100));
107 
108 static cl::opt<unsigned> LargeIntervalSizeThreshold(
109     "large-interval-size-threshold", cl::Hidden,
110     cl::desc("If the valnos size of an interval is larger than the threshold, "
111              "it is regarded as a large interval. "),
112     cl::init(100));
113 
114 static cl::opt<unsigned> LargeIntervalFreqThreshold(
115     "large-interval-freq-threshold", cl::Hidden,
116     cl::desc("For a large interval, if it is coalesed with other live "
117              "intervals many times more than the threshold, stop its "
118              "coalescing to control the compile time. "),
119     cl::init(100));
120 
121 namespace {
122 
123   class JoinVals;
124 
125   class RegisterCoalescer : public MachineFunctionPass,
126                             private LiveRangeEdit::Delegate {
127     MachineFunction* MF = nullptr;
128     MachineRegisterInfo* MRI = nullptr;
129     const TargetRegisterInfo* TRI = nullptr;
130     const TargetInstrInfo* TII = nullptr;
131     LiveIntervals *LIS = nullptr;
132     const MachineLoopInfo* Loops = nullptr;
133     AliasAnalysis *AA = nullptr;
134     RegisterClassInfo RegClassInfo;
135 
136     /// Position and VReg of a PHI instruction during coalescing.
137     struct PHIValPos {
138       SlotIndex SI;    ///< Slot where this PHI occurs.
139       Register Reg;    ///< VReg the PHI occurs in.
140       unsigned SubReg; ///< Qualifying subregister for Reg.
141     };
142 
143     /// Map from debug instruction number to PHI position during coalescing.
144     DenseMap<unsigned, PHIValPos> PHIValToPos;
145     /// Index of, for each VReg, which debug instruction numbers and
146     /// corresponding PHIs are sensitive to coalescing. Each VReg may have
147     /// multiple PHI defs, at different positions.
148     DenseMap<Register, SmallVector<unsigned, 2>> RegToPHIIdx;
149 
150     /// Debug variable location tracking -- for each VReg, maintain an
151     /// ordered-by-slot-index set of DBG_VALUEs, to help quick
152     /// identification of whether coalescing may change location validity.
153     using DbgValueLoc = std::pair<SlotIndex, MachineInstr*>;
154     DenseMap<Register, std::vector<DbgValueLoc>> DbgVRegToValues;
155 
156     /// VRegs may be repeatedly coalesced, and have many DBG_VALUEs attached.
157     /// To avoid repeatedly merging sets of DbgValueLocs, instead record
158     /// which vregs have been coalesced, and where to. This map is from
159     /// vreg => {set of vregs merged in}.
160     DenseMap<Register, SmallVector<Register, 4>> DbgMergedVRegNums;
161 
162     /// A LaneMask to remember on which subregister live ranges we need to call
163     /// shrinkToUses() later.
164     LaneBitmask ShrinkMask;
165 
166     /// True if the main range of the currently coalesced intervals should be
167     /// checked for smaller live intervals.
168     bool ShrinkMainRange = false;
169 
170     /// True if the coalescer should aggressively coalesce global copies
171     /// in favor of keeping local copies.
172     bool JoinGlobalCopies = false;
173 
174     /// True if the coalescer should aggressively coalesce fall-thru
175     /// blocks exclusively containing copies.
176     bool JoinSplitEdges = false;
177 
178     /// Copy instructions yet to be coalesced.
179     SmallVector<MachineInstr*, 8> WorkList;
180     SmallVector<MachineInstr*, 8> LocalWorkList;
181 
182     /// Set of instruction pointers that have been erased, and
183     /// that may be present in WorkList.
184     SmallPtrSet<MachineInstr*, 8> ErasedInstrs;
185 
186     /// Dead instructions that are about to be deleted.
187     SmallVector<MachineInstr*, 8> DeadDefs;
188 
189     /// Virtual registers to be considered for register class inflation.
190     SmallVector<Register, 8> InflateRegs;
191 
192     /// The collection of live intervals which should have been updated
193     /// immediately after rematerialiation but delayed until
194     /// lateLiveIntervalUpdate is called.
195     DenseSet<Register> ToBeUpdated;
196 
197     /// Record how many times the large live interval with many valnos
198     /// has been tried to join with other live interval.
199     DenseMap<Register, unsigned long> LargeLIVisitCounter;
200 
201     /// Recursively eliminate dead defs in DeadDefs.
202     void eliminateDeadDefs();
203 
204     /// allUsesAvailableAt - Return true if all registers used by OrigMI at
205     /// OrigIdx are also available with the same value at UseIdx.
206     bool allUsesAvailableAt(const MachineInstr *OrigMI, SlotIndex OrigIdx,
207                             SlotIndex UseIdx);
208 
209     /// LiveRangeEdit callback for eliminateDeadDefs().
210     void LRE_WillEraseInstruction(MachineInstr *MI) override;
211 
212     /// Coalesce the LocalWorkList.
213     void coalesceLocals();
214 
215     /// Join compatible live intervals
216     void joinAllIntervals();
217 
218     /// Coalesce copies in the specified MBB, putting
219     /// copies that cannot yet be coalesced into WorkList.
220     void copyCoalesceInMBB(MachineBasicBlock *MBB);
221 
222     /// Tries to coalesce all copies in CurrList. Returns true if any progress
223     /// was made.
224     bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList);
225 
226     /// If one def has many copy like uses, and those copy uses are all
227     /// rematerialized, the live interval update needed for those
228     /// rematerializations will be delayed and done all at once instead
229     /// of being done multiple times. This is to save compile cost because
230     /// live interval update is costly.
231     void lateLiveIntervalUpdate();
232 
233     /// Check if the incoming value defined by a COPY at \p SLRQ in the subrange
234     /// has no value defined in the predecessors. If the incoming value is the
235     /// same as defined by the copy itself, the value is considered undefined.
236     bool copyValueUndefInPredecessors(LiveRange &S,
237                                       const MachineBasicBlock *MBB,
238                                       LiveQueryResult SLRQ);
239 
240     /// Set necessary undef flags on subregister uses after pruning out undef
241     /// lane segments from the subrange.
242     void setUndefOnPrunedSubRegUses(LiveInterval &LI, Register Reg,
243                                     LaneBitmask PrunedLanes);
244 
245     /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the
246     /// src/dst of the copy instruction CopyMI.  This returns true if the copy
247     /// was successfully coalesced away. If it is not currently possible to
248     /// coalesce this interval, but it may be possible if other things get
249     /// coalesced, then it returns true by reference in 'Again'.
250     bool joinCopy(MachineInstr *CopyMI, bool &Again);
251 
252     /// Attempt to join these two intervals.  On failure, this
253     /// returns false.  The output "SrcInt" will not have been modified, so we
254     /// can use this information below to update aliases.
255     bool joinIntervals(CoalescerPair &CP);
256 
257     /// Attempt joining two virtual registers. Return true on success.
258     bool joinVirtRegs(CoalescerPair &CP);
259 
260     /// If a live interval has many valnos and is coalesced with other
261     /// live intervals many times, we regard such live interval as having
262     /// high compile time cost.
263     bool isHighCostLiveInterval(LiveInterval &LI);
264 
265     /// Attempt joining with a reserved physreg.
266     bool joinReservedPhysReg(CoalescerPair &CP);
267 
268     /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI.
269     /// Subranges in @p LI which only partially interfere with the desired
270     /// LaneMask are split as necessary. @p LaneMask are the lanes that
271     /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange
272     /// lanemasks already adjusted to the coalesced register.
273     void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge,
274                            LaneBitmask LaneMask, CoalescerPair &CP,
275                            unsigned DstIdx);
276 
277     /// Join the liveranges of two subregisters. Joins @p RRange into
278     /// @p LRange, @p RRange may be invalid afterwards.
279     void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
280                           LaneBitmask LaneMask, const CoalescerPair &CP);
281 
282     /// We found a non-trivially-coalescable copy. If the source value number is
283     /// defined by a copy from the destination reg see if we can merge these two
284     /// destination reg valno# into a single value number, eliminating a copy.
285     /// This returns true if an interval was modified.
286     bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
287 
288     /// Return true if there are definitions of IntB
289     /// other than BValNo val# that can reach uses of AValno val# of IntA.
290     bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
291                               VNInfo *AValNo, VNInfo *BValNo);
292 
293     /// We found a non-trivially-coalescable copy.
294     /// If the source value number is defined by a commutable instruction and
295     /// its other operand is coalesced to the copy dest register, see if we
296     /// can transform the copy into a noop by commuting the definition.
297     /// This returns a pair of two flags:
298     /// - the first element is true if an interval was modified,
299     /// - the second element is true if the destination interval needs
300     ///   to be shrunk after deleting the copy.
301     std::pair<bool,bool> removeCopyByCommutingDef(const CoalescerPair &CP,
302                                                   MachineInstr *CopyMI);
303 
304     /// We found a copy which can be moved to its less frequent predecessor.
305     bool removePartialRedundancy(const CoalescerPair &CP, MachineInstr &CopyMI);
306 
307     /// If the source of a copy is defined by a
308     /// trivial computation, replace the copy by rematerialize the definition.
309     bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI,
310                                  bool &IsDefCopy);
311 
312     /// Return true if a copy involving a physreg should be joined.
313     bool canJoinPhys(const CoalescerPair &CP);
314 
315     /// Replace all defs and uses of SrcReg to DstReg and update the subregister
316     /// number if it is not zero. If DstReg is a physical register and the
317     /// existing subregister number of the def / use being updated is not zero,
318     /// make sure to set it to the correct physical subregister.
319     void updateRegDefsUses(Register SrcReg, Register DstReg, unsigned SubIdx);
320 
321     /// If the given machine operand reads only undefined lanes add an undef
322     /// flag.
323     /// This can happen when undef uses were previously concealed by a copy
324     /// which we coalesced. Example:
325     ///    %0:sub0<def,read-undef> = ...
326     ///    %1 = COPY %0           <-- Coalescing COPY reveals undef
327     ///       = use %1:sub1       <-- hidden undef use
328     void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
329                       MachineOperand &MO, unsigned SubRegIdx);
330 
331     /// Handle copies of undef values. If the undef value is an incoming
332     /// PHI value, it will convert @p CopyMI to an IMPLICIT_DEF.
333     /// Returns nullptr if @p CopyMI was not in any way eliminable. Otherwise,
334     /// it returns @p CopyMI (which could be an IMPLICIT_DEF at this point).
335     MachineInstr *eliminateUndefCopy(MachineInstr *CopyMI);
336 
337     /// Check whether or not we should apply the terminal rule on the
338     /// destination (Dst) of \p Copy.
339     /// When the terminal rule applies, Copy is not profitable to
340     /// coalesce.
341     /// Dst is terminal if it has exactly one affinity (Dst, Src) and
342     /// at least one interference (Dst, Dst2). If Dst is terminal, the
343     /// terminal rule consists in checking that at least one of
344     /// interfering node, say Dst2, has an affinity of equal or greater
345     /// weight with Src.
346     /// In that case, Dst2 and Dst will not be able to be both coalesced
347     /// with Src. Since Dst2 exposes more coalescing opportunities than
348     /// Dst, we can drop \p Copy.
349     bool applyTerminalRule(const MachineInstr &Copy) const;
350 
351     /// Wrapper method for \see LiveIntervals::shrinkToUses.
352     /// This method does the proper fixing of the live-ranges when the afore
353     /// mentioned method returns true.
354     void shrinkToUses(LiveInterval *LI,
355                       SmallVectorImpl<MachineInstr * > *Dead = nullptr) {
356       NumShrinkToUses++;
357       if (LIS->shrinkToUses(LI, Dead)) {
358         /// Check whether or not \p LI is composed by multiple connected
359         /// components and if that is the case, fix that.
360         SmallVector<LiveInterval*, 8> SplitLIs;
361         LIS->splitSeparateComponents(*LI, SplitLIs);
362       }
363     }
364 
365     /// Wrapper Method to do all the necessary work when an Instruction is
366     /// deleted.
367     /// Optimizations should use this to make sure that deleted instructions
368     /// are always accounted for.
369     void deleteInstr(MachineInstr* MI) {
370       ErasedInstrs.insert(MI);
371       LIS->RemoveMachineInstrFromMaps(*MI);
372       MI->eraseFromParent();
373     }
374 
375     /// Walk over function and initialize the DbgVRegToValues map.
376     void buildVRegToDbgValueMap(MachineFunction &MF);
377 
378     /// Test whether, after merging, any DBG_VALUEs would refer to a
379     /// different value number than before merging, and whether this can
380     /// be resolved. If not, mark the DBG_VALUE as being undef.
381     void checkMergingChangesDbgValues(CoalescerPair &CP, LiveRange &LHS,
382                                       JoinVals &LHSVals, LiveRange &RHS,
383                                       JoinVals &RHSVals);
384 
385     void checkMergingChangesDbgValuesImpl(Register Reg, LiveRange &OtherRange,
386                                           LiveRange &RegRange, JoinVals &Vals2);
387 
388   public:
389     static char ID; ///< Class identification, replacement for typeinfo
390 
391     RegisterCoalescer() : MachineFunctionPass(ID) {
392       initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
393     }
394 
395     void getAnalysisUsage(AnalysisUsage &AU) const override;
396 
397     void releaseMemory() override;
398 
399     /// This is the pass entry point.
400     bool runOnMachineFunction(MachineFunction&) override;
401 
402     /// Implement the dump method.
403     void print(raw_ostream &O, const Module* = nullptr) const override;
404   };
405 
406 } // end anonymous namespace
407 
408 char RegisterCoalescer::ID = 0;
409 
410 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
411 
412 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
413                       "Simple Register Coalescing", false, false)
414 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
415 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
416 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
417 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
418 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
419                     "Simple Register Coalescing", false, false)
420 
421 LLVM_NODISCARD static bool isMoveInstr(const TargetRegisterInfo &tri,
422                                        const MachineInstr *MI, Register &Src,
423                                        Register &Dst, unsigned &SrcSub,
424                                        unsigned &DstSub) {
425   if (MI->isCopy()) {
426     Dst = MI->getOperand(0).getReg();
427     DstSub = MI->getOperand(0).getSubReg();
428     Src = MI->getOperand(1).getReg();
429     SrcSub = MI->getOperand(1).getSubReg();
430   } else if (MI->isSubregToReg()) {
431     Dst = MI->getOperand(0).getReg();
432     DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(),
433                                       MI->getOperand(3).getImm());
434     Src = MI->getOperand(2).getReg();
435     SrcSub = MI->getOperand(2).getSubReg();
436   } else
437     return false;
438   return true;
439 }
440 
441 /// Return true if this block should be vacated by the coalescer to eliminate
442 /// branches. The important cases to handle in the coalescer are critical edges
443 /// split during phi elimination which contain only copies. Simple blocks that
444 /// contain non-branches should also be vacated, but this can be handled by an
445 /// earlier pass similar to early if-conversion.
446 static bool isSplitEdge(const MachineBasicBlock *MBB) {
447   if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
448     return false;
449 
450   for (const auto &MI : *MBB) {
451     if (!MI.isCopyLike() && !MI.isUnconditionalBranch())
452       return false;
453   }
454   return true;
455 }
456 
457 bool CoalescerPair::setRegisters(const MachineInstr *MI) {
458   SrcReg = DstReg = Register();
459   SrcIdx = DstIdx = 0;
460   NewRC = nullptr;
461   Flipped = CrossClass = false;
462 
463   Register Src, Dst;
464   unsigned SrcSub = 0, DstSub = 0;
465   if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
466     return false;
467   Partial = SrcSub || DstSub;
468 
469   // If one register is a physreg, it must be Dst.
470   if (Register::isPhysicalRegister(Src)) {
471     if (Register::isPhysicalRegister(Dst))
472       return false;
473     std::swap(Src, Dst);
474     std::swap(SrcSub, DstSub);
475     Flipped = true;
476   }
477 
478   const MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
479 
480   if (Register::isPhysicalRegister(Dst)) {
481     // Eliminate DstSub on a physreg.
482     if (DstSub) {
483       Dst = TRI.getSubReg(Dst, DstSub);
484       if (!Dst) return false;
485       DstSub = 0;
486     }
487 
488     // Eliminate SrcSub by picking a corresponding Dst superregister.
489     if (SrcSub) {
490       Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
491       if (!Dst) return false;
492     } else if (!MRI.getRegClass(Src)->contains(Dst)) {
493       return false;
494     }
495   } else {
496     // Both registers are virtual.
497     const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
498     const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
499 
500     // Both registers have subreg indices.
501     if (SrcSub && DstSub) {
502       // Copies between different sub-registers are never coalescable.
503       if (Src == Dst && SrcSub != DstSub)
504         return false;
505 
506       NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub,
507                                          SrcIdx, DstIdx);
508       if (!NewRC)
509         return false;
510     } else if (DstSub) {
511       // SrcReg will be merged with a sub-register of DstReg.
512       SrcIdx = DstSub;
513       NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
514     } else if (SrcSub) {
515       // DstReg will be merged with a sub-register of SrcReg.
516       DstIdx = SrcSub;
517       NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub);
518     } else {
519       // This is a straight copy without sub-registers.
520       NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
521     }
522 
523     // The combined constraint may be impossible to satisfy.
524     if (!NewRC)
525       return false;
526 
527     // Prefer SrcReg to be a sub-register of DstReg.
528     // FIXME: Coalescer should support subregs symmetrically.
529     if (DstIdx && !SrcIdx) {
530       std::swap(Src, Dst);
531       std::swap(SrcIdx, DstIdx);
532       Flipped = !Flipped;
533     }
534 
535     CrossClass = NewRC != DstRC || NewRC != SrcRC;
536   }
537   // Check our invariants
538   assert(Register::isVirtualRegister(Src) && "Src must be virtual");
539   assert(!(Register::isPhysicalRegister(Dst) && DstSub) &&
540          "Cannot have a physical SubIdx");
541   SrcReg = Src;
542   DstReg = Dst;
543   return true;
544 }
545 
546 bool CoalescerPair::flip() {
547   if (Register::isPhysicalRegister(DstReg))
548     return false;
549   std::swap(SrcReg, DstReg);
550   std::swap(SrcIdx, DstIdx);
551   Flipped = !Flipped;
552   return true;
553 }
554 
555 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
556   if (!MI)
557     return false;
558   Register Src, Dst;
559   unsigned SrcSub = 0, DstSub = 0;
560   if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
561     return false;
562 
563   // Find the virtual register that is SrcReg.
564   if (Dst == SrcReg) {
565     std::swap(Src, Dst);
566     std::swap(SrcSub, DstSub);
567   } else if (Src != SrcReg) {
568     return false;
569   }
570 
571   // Now check that Dst matches DstReg.
572   if (DstReg.isPhysical()) {
573     if (!Dst.isPhysical())
574       return false;
575     assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state.");
576     // DstSub could be set for a physreg from INSERT_SUBREG.
577     if (DstSub)
578       Dst = TRI.getSubReg(Dst, DstSub);
579     // Full copy of Src.
580     if (!SrcSub)
581       return DstReg == Dst;
582     // This is a partial register copy. Check that the parts match.
583     return Register(TRI.getSubReg(DstReg, SrcSub)) == Dst;
584   } else {
585     // DstReg is virtual.
586     if (DstReg != Dst)
587       return false;
588     // Registers match, do the subregisters line up?
589     return TRI.composeSubRegIndices(SrcIdx, SrcSub) ==
590            TRI.composeSubRegIndices(DstIdx, DstSub);
591   }
592 }
593 
594 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
595   AU.setPreservesCFG();
596   AU.addRequired<AAResultsWrapperPass>();
597   AU.addRequired<LiveIntervals>();
598   AU.addPreserved<LiveIntervals>();
599   AU.addPreserved<SlotIndexes>();
600   AU.addRequired<MachineLoopInfo>();
601   AU.addPreserved<MachineLoopInfo>();
602   AU.addPreservedID(MachineDominatorsID);
603   MachineFunctionPass::getAnalysisUsage(AU);
604 }
605 
606 void RegisterCoalescer::eliminateDeadDefs() {
607   SmallVector<Register, 8> NewRegs;
608   LiveRangeEdit(nullptr, NewRegs, *MF, *LIS,
609                 nullptr, this).eliminateDeadDefs(DeadDefs);
610 }
611 
612 bool RegisterCoalescer::allUsesAvailableAt(const MachineInstr *OrigMI,
613                                            SlotIndex OrigIdx,
614                                            SlotIndex UseIdx) {
615   SmallVector<Register, 8> NewRegs;
616   return LiveRangeEdit(nullptr, NewRegs, *MF, *LIS, nullptr, this)
617       .allUsesAvailableAt(OrigMI, OrigIdx, UseIdx);
618 }
619 
620 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) {
621   // MI may be in WorkList. Make sure we don't visit it.
622   ErasedInstrs.insert(MI);
623 }
624 
625 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
626                                              MachineInstr *CopyMI) {
627   assert(!CP.isPartial() && "This doesn't work for partial copies.");
628   assert(!CP.isPhys() && "This doesn't work for physreg copies.");
629 
630   LiveInterval &IntA =
631     LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
632   LiveInterval &IntB =
633     LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
634   SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
635 
636   // We have a non-trivially-coalescable copy with IntA being the source and
637   // IntB being the dest, thus this defines a value number in IntB.  If the
638   // source value number (in IntA) is defined by a copy from B, see if we can
639   // merge these two pieces of B into a single value number, eliminating a copy.
640   // For example:
641   //
642   //  A3 = B0
643   //    ...
644   //  B1 = A3      <- this copy
645   //
646   // In this case, B0 can be extended to where the B1 copy lives, allowing the
647   // B1 value number to be replaced with B0 (which simplifies the B
648   // liveinterval).
649 
650   // BValNo is a value number in B that is defined by a copy from A.  'B1' in
651   // the example above.
652   LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx);
653   if (BS == IntB.end()) return false;
654   VNInfo *BValNo = BS->valno;
655 
656   // Get the location that B is defined at.  Two options: either this value has
657   // an unknown definition point or it is defined at CopyIdx.  If unknown, we
658   // can't process it.
659   if (BValNo->def != CopyIdx) return false;
660 
661   // AValNo is the value number in A that defines the copy, A3 in the example.
662   SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
663   LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx);
664   // The live segment might not exist after fun with physreg coalescing.
665   if (AS == IntA.end()) return false;
666   VNInfo *AValNo = AS->valno;
667 
668   // If AValNo is defined as a copy from IntB, we can potentially process this.
669   // Get the instruction that defines this value number.
670   MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
671   // Don't allow any partial copies, even if isCoalescable() allows them.
672   if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy())
673     return false;
674 
675   // Get the Segment in IntB that this value number starts with.
676   LiveInterval::iterator ValS =
677     IntB.FindSegmentContaining(AValNo->def.getPrevSlot());
678   if (ValS == IntB.end())
679     return false;
680 
681   // Make sure that the end of the live segment is inside the same block as
682   // CopyMI.
683   MachineInstr *ValSEndInst =
684     LIS->getInstructionFromIndex(ValS->end.getPrevSlot());
685   if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent())
686     return false;
687 
688   // Okay, we now know that ValS ends in the same block that the CopyMI
689   // live-range starts.  If there are no intervening live segments between them
690   // in IntB, we can merge them.
691   if (ValS+1 != BS) return false;
692 
693   LLVM_DEBUG(dbgs() << "Extending: " << printReg(IntB.reg(), TRI));
694 
695   SlotIndex FillerStart = ValS->end, FillerEnd = BS->start;
696   // We are about to delete CopyMI, so need to remove it as the 'instruction
697   // that defines this value #'. Update the valnum with the new defining
698   // instruction #.
699   BValNo->def = FillerStart;
700 
701   // Okay, we can merge them.  We need to insert a new liverange:
702   // [ValS.end, BS.begin) of either value number, then we merge the
703   // two value numbers.
704   IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo));
705 
706   // Okay, merge "B1" into the same value number as "B0".
707   if (BValNo != ValS->valno)
708     IntB.MergeValueNumberInto(BValNo, ValS->valno);
709 
710   // Do the same for the subregister segments.
711   for (LiveInterval::SubRange &S : IntB.subranges()) {
712     // Check for SubRange Segments of the form [1234r,1234d:0) which can be
713     // removed to prevent creating bogus SubRange Segments.
714     LiveInterval::iterator SS = S.FindSegmentContaining(CopyIdx);
715     if (SS != S.end() && SlotIndex::isSameInstr(SS->start, SS->end)) {
716       S.removeSegment(*SS, true);
717       continue;
718     }
719     // The subrange may have ended before FillerStart. If so, extend it.
720     if (!S.getVNInfoAt(FillerStart)) {
721       SlotIndex BBStart =
722           LIS->getMBBStartIdx(LIS->getMBBFromIndex(FillerStart));
723       S.extendInBlock(BBStart, FillerStart);
724     }
725     VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
726     S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo));
727     VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot());
728     if (SubBValNo != SubValSNo)
729       S.MergeValueNumberInto(SubBValNo, SubValSNo);
730   }
731 
732   LLVM_DEBUG(dbgs() << "   result = " << IntB << '\n');
733 
734   // If the source instruction was killing the source register before the
735   // merge, unset the isKill marker given the live range has been extended.
736   int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg(), true);
737   if (UIdx != -1) {
738     ValSEndInst->getOperand(UIdx).setIsKill(false);
739   }
740 
741   // Rewrite the copy.
742   CopyMI->substituteRegister(IntA.reg(), IntB.reg(), 0, *TRI);
743   // If the copy instruction was killing the destination register or any
744   // subrange before the merge trim the live range.
745   bool RecomputeLiveRange = AS->end == CopyIdx;
746   if (!RecomputeLiveRange) {
747     for (LiveInterval::SubRange &S : IntA.subranges()) {
748       LiveInterval::iterator SS = S.FindSegmentContaining(CopyUseIdx);
749       if (SS != S.end() && SS->end == CopyIdx) {
750         RecomputeLiveRange = true;
751         break;
752       }
753     }
754   }
755   if (RecomputeLiveRange)
756     shrinkToUses(&IntA);
757 
758   ++numExtends;
759   return true;
760 }
761 
762 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
763                                              LiveInterval &IntB,
764                                              VNInfo *AValNo,
765                                              VNInfo *BValNo) {
766   // If AValNo has PHI kills, conservatively assume that IntB defs can reach
767   // the PHI values.
768   if (LIS->hasPHIKill(IntA, AValNo))
769     return true;
770 
771   for (LiveRange::Segment &ASeg : IntA.segments) {
772     if (ASeg.valno != AValNo) continue;
773     LiveInterval::iterator BI = llvm::upper_bound(IntB, ASeg.start);
774     if (BI != IntB.begin())
775       --BI;
776     for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) {
777       if (BI->valno == BValNo)
778         continue;
779       if (BI->start <= ASeg.start && BI->end > ASeg.start)
780         return true;
781       if (BI->start > ASeg.start && BI->start < ASeg.end)
782         return true;
783     }
784   }
785   return false;
786 }
787 
788 /// Copy segments with value number @p SrcValNo from liverange @p Src to live
789 /// range @Dst and use value number @p DstValNo there.
790 static std::pair<bool,bool>
791 addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, const LiveRange &Src,
792                      const VNInfo *SrcValNo) {
793   bool Changed = false;
794   bool MergedWithDead = false;
795   for (const LiveRange::Segment &S : Src.segments) {
796     if (S.valno != SrcValNo)
797       continue;
798     // This is adding a segment from Src that ends in a copy that is about
799     // to be removed. This segment is going to be merged with a pre-existing
800     // segment in Dst. This works, except in cases when the corresponding
801     // segment in Dst is dead. For example: adding [192r,208r:1) from Src
802     // to [208r,208d:1) in Dst would create [192r,208d:1) in Dst.
803     // Recognized such cases, so that the segments can be shrunk.
804     LiveRange::Segment Added = LiveRange::Segment(S.start, S.end, DstValNo);
805     LiveRange::Segment &Merged = *Dst.addSegment(Added);
806     if (Merged.end.isDead())
807       MergedWithDead = true;
808     Changed = true;
809   }
810   return std::make_pair(Changed, MergedWithDead);
811 }
812 
813 std::pair<bool,bool>
814 RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
815                                             MachineInstr *CopyMI) {
816   assert(!CP.isPhys());
817 
818   LiveInterval &IntA =
819       LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
820   LiveInterval &IntB =
821       LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
822 
823   // We found a non-trivially-coalescable copy with IntA being the source and
824   // IntB being the dest, thus this defines a value number in IntB.  If the
825   // source value number (in IntA) is defined by a commutable instruction and
826   // its other operand is coalesced to the copy dest register, see if we can
827   // transform the copy into a noop by commuting the definition. For example,
828   //
829   //  A3 = op A2 killed B0
830   //    ...
831   //  B1 = A3      <- this copy
832   //    ...
833   //     = op A3   <- more uses
834   //
835   // ==>
836   //
837   //  B2 = op B0 killed A2
838   //    ...
839   //  B1 = B2      <- now an identity copy
840   //    ...
841   //     = op B2   <- more uses
842 
843   // BValNo is a value number in B that is defined by a copy from A. 'B1' in
844   // the example above.
845   SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
846   VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
847   assert(BValNo != nullptr && BValNo->def == CopyIdx);
848 
849   // AValNo is the value number in A that defines the copy, A3 in the example.
850   VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
851   assert(AValNo && !AValNo->isUnused() && "COPY source not live");
852   if (AValNo->isPHIDef())
853     return { false, false };
854   MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
855   if (!DefMI)
856     return { false, false };
857   if (!DefMI->isCommutable())
858     return { false, false };
859   // If DefMI is a two-address instruction then commuting it will change the
860   // destination register.
861   int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg());
862   assert(DefIdx != -1);
863   unsigned UseOpIdx;
864   if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
865     return { false, false };
866 
867   // FIXME: The code below tries to commute 'UseOpIdx' operand with some other
868   // commutable operand which is expressed by 'CommuteAnyOperandIndex'value
869   // passed to the method. That _other_ operand is chosen by
870   // the findCommutedOpIndices() method.
871   //
872   // That is obviously an area for improvement in case of instructions having
873   // more than 2 operands. For example, if some instruction has 3 commutable
874   // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3,
875   // op#2<->op#3) of commute transformation should be considered/tried here.
876   unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex;
877   if (!TII->findCommutedOpIndices(*DefMI, UseOpIdx, NewDstIdx))
878     return { false, false };
879 
880   MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
881   Register NewReg = NewDstMO.getReg();
882   if (NewReg != IntB.reg() || !IntB.Query(AValNo->def).isKill())
883     return { false, false };
884 
885   // Make sure there are no other definitions of IntB that would reach the
886   // uses which the new definition can reach.
887   if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
888     return { false, false };
889 
890   // If some of the uses of IntA.reg is already coalesced away, return false.
891   // It's not possible to determine whether it's safe to perform the coalescing.
892   for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg())) {
893     MachineInstr *UseMI = MO.getParent();
894     unsigned OpNo = &MO - &UseMI->getOperand(0);
895     SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI);
896     LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
897     if (US == IntA.end() || US->valno != AValNo)
898       continue;
899     // If this use is tied to a def, we can't rewrite the register.
900     if (UseMI->isRegTiedToDefOperand(OpNo))
901       return { false, false };
902   }
903 
904   LLVM_DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t'
905                     << *DefMI);
906 
907   // At this point we have decided that it is legal to do this
908   // transformation.  Start by commuting the instruction.
909   MachineBasicBlock *MBB = DefMI->getParent();
910   MachineInstr *NewMI =
911       TII->commuteInstruction(*DefMI, false, UseOpIdx, NewDstIdx);
912   if (!NewMI)
913     return { false, false };
914   if (Register::isVirtualRegister(IntA.reg()) &&
915       Register::isVirtualRegister(IntB.reg()) &&
916       !MRI->constrainRegClass(IntB.reg(), MRI->getRegClass(IntA.reg())))
917     return { false, false };
918   if (NewMI != DefMI) {
919     LIS->ReplaceMachineInstrInMaps(*DefMI, *NewMI);
920     MachineBasicBlock::iterator Pos = DefMI;
921     MBB->insert(Pos, NewMI);
922     MBB->erase(DefMI);
923   }
924 
925   // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
926   // A = or A, B
927   // ...
928   // B = A
929   // ...
930   // C = killed A
931   // ...
932   //   = B
933 
934   // Update uses of IntA of the specific Val# with IntB.
935   for (MachineOperand &UseMO :
936        llvm::make_early_inc_range(MRI->use_operands(IntA.reg()))) {
937     if (UseMO.isUndef())
938       continue;
939     MachineInstr *UseMI = UseMO.getParent();
940     if (UseMI->isDebugInstr()) {
941       // FIXME These don't have an instruction index.  Not clear we have enough
942       // info to decide whether to do this replacement or not.  For now do it.
943       UseMO.setReg(NewReg);
944       continue;
945     }
946     SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI).getRegSlot(true);
947     LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
948     assert(US != IntA.end() && "Use must be live");
949     if (US->valno != AValNo)
950       continue;
951     // Kill flags are no longer accurate. They are recomputed after RA.
952     UseMO.setIsKill(false);
953     if (Register::isPhysicalRegister(NewReg))
954       UseMO.substPhysReg(NewReg, *TRI);
955     else
956       UseMO.setReg(NewReg);
957     if (UseMI == CopyMI)
958       continue;
959     if (!UseMI->isCopy())
960       continue;
961     if (UseMI->getOperand(0).getReg() != IntB.reg() ||
962         UseMI->getOperand(0).getSubReg())
963       continue;
964 
965     // This copy will become a noop. If it's defining a new val#, merge it into
966     // BValNo.
967     SlotIndex DefIdx = UseIdx.getRegSlot();
968     VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
969     if (!DVNI)
970       continue;
971     LLVM_DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
972     assert(DVNI->def == DefIdx);
973     BValNo = IntB.MergeValueNumberInto(DVNI, BValNo);
974     for (LiveInterval::SubRange &S : IntB.subranges()) {
975       VNInfo *SubDVNI = S.getVNInfoAt(DefIdx);
976       if (!SubDVNI)
977         continue;
978       VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
979       assert(SubBValNo->def == CopyIdx);
980       S.MergeValueNumberInto(SubDVNI, SubBValNo);
981     }
982 
983     deleteInstr(UseMI);
984   }
985 
986   // Extend BValNo by merging in IntA live segments of AValNo. Val# definition
987   // is updated.
988   bool ShrinkB = false;
989   BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
990   if (IntA.hasSubRanges() || IntB.hasSubRanges()) {
991     if (!IntA.hasSubRanges()) {
992       LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg());
993       IntA.createSubRangeFrom(Allocator, Mask, IntA);
994     } else if (!IntB.hasSubRanges()) {
995       LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntB.reg());
996       IntB.createSubRangeFrom(Allocator, Mask, IntB);
997     }
998     SlotIndex AIdx = CopyIdx.getRegSlot(true);
999     LaneBitmask MaskA;
1000     const SlotIndexes &Indexes = *LIS->getSlotIndexes();
1001     for (LiveInterval::SubRange &SA : IntA.subranges()) {
1002       VNInfo *ASubValNo = SA.getVNInfoAt(AIdx);
1003       // Even if we are dealing with a full copy, some lanes can
1004       // still be undefined.
1005       // E.g.,
1006       // undef A.subLow = ...
1007       // B = COPY A <== A.subHigh is undefined here and does
1008       //                not have a value number.
1009       if (!ASubValNo)
1010         continue;
1011       MaskA |= SA.LaneMask;
1012 
1013       IntB.refineSubRanges(
1014           Allocator, SA.LaneMask,
1015           [&Allocator, &SA, CopyIdx, ASubValNo,
1016            &ShrinkB](LiveInterval::SubRange &SR) {
1017             VNInfo *BSubValNo = SR.empty() ? SR.getNextValue(CopyIdx, Allocator)
1018                                            : SR.getVNInfoAt(CopyIdx);
1019             assert(BSubValNo != nullptr);
1020             auto P = addSegmentsWithValNo(SR, BSubValNo, SA, ASubValNo);
1021             ShrinkB |= P.second;
1022             if (P.first)
1023               BSubValNo->def = ASubValNo->def;
1024           },
1025           Indexes, *TRI);
1026     }
1027     // Go over all subranges of IntB that have not been covered by IntA,
1028     // and delete the segments starting at CopyIdx. This can happen if
1029     // IntA has undef lanes that are defined in IntB.
1030     for (LiveInterval::SubRange &SB : IntB.subranges()) {
1031       if ((SB.LaneMask & MaskA).any())
1032         continue;
1033       if (LiveRange::Segment *S = SB.getSegmentContaining(CopyIdx))
1034         if (S->start.getBaseIndex() == CopyIdx.getBaseIndex())
1035           SB.removeSegment(*S, true);
1036     }
1037   }
1038 
1039   BValNo->def = AValNo->def;
1040   auto P = addSegmentsWithValNo(IntB, BValNo, IntA, AValNo);
1041   ShrinkB |= P.second;
1042   LLVM_DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
1043 
1044   LIS->removeVRegDefAt(IntA, AValNo->def);
1045 
1046   LLVM_DEBUG(dbgs() << "\t\ttrimmed:  " << IntA << '\n');
1047   ++numCommutes;
1048   return { true, ShrinkB };
1049 }
1050 
1051 /// For copy B = A in BB2, if A is defined by A = B in BB0 which is a
1052 /// predecessor of BB2, and if B is not redefined on the way from A = B
1053 /// in BB0 to B = A in BB2, B = A in BB2 is partially redundant if the
1054 /// execution goes through the path from BB0 to BB2. We may move B = A
1055 /// to the predecessor without such reversed copy.
1056 /// So we will transform the program from:
1057 ///   BB0:
1058 ///      A = B;    BB1:
1059 ///       ...         ...
1060 ///     /     \      /
1061 ///             BB2:
1062 ///               ...
1063 ///               B = A;
1064 ///
1065 /// to:
1066 ///
1067 ///   BB0:         BB1:
1068 ///      A = B;        ...
1069 ///       ...          B = A;
1070 ///     /     \       /
1071 ///             BB2:
1072 ///               ...
1073 ///
1074 /// A special case is when BB0 and BB2 are the same BB which is the only
1075 /// BB in a loop:
1076 ///   BB1:
1077 ///        ...
1078 ///   BB0/BB2:  ----
1079 ///        B = A;   |
1080 ///        ...      |
1081 ///        A = B;   |
1082 ///          |-------
1083 ///          |
1084 /// We may hoist B = A from BB0/BB2 to BB1.
1085 ///
1086 /// The major preconditions for correctness to remove such partial
1087 /// redundancy include:
1088 /// 1. A in B = A in BB2 is defined by a PHI in BB2, and one operand of
1089 ///    the PHI is defined by the reversed copy A = B in BB0.
1090 /// 2. No B is referenced from the start of BB2 to B = A.
1091 /// 3. No B is defined from A = B to the end of BB0.
1092 /// 4. BB1 has only one successor.
1093 ///
1094 /// 2 and 4 implicitly ensure B is not live at the end of BB1.
1095 /// 4 guarantees BB2 is hotter than BB1, so we can only move a copy to a
1096 /// colder place, which not only prevent endless loop, but also make sure
1097 /// the movement of copy is beneficial.
1098 bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair &CP,
1099                                                 MachineInstr &CopyMI) {
1100   assert(!CP.isPhys());
1101   if (!CopyMI.isFullCopy())
1102     return false;
1103 
1104   MachineBasicBlock &MBB = *CopyMI.getParent();
1105   // If this block is the target of an invoke/inlineasm_br, moving the copy into
1106   // the predecessor is tricker, and we don't handle it.
1107   if (MBB.isEHPad() || MBB.isInlineAsmBrIndirectTarget())
1108     return false;
1109 
1110   if (MBB.pred_size() != 2)
1111     return false;
1112 
1113   LiveInterval &IntA =
1114       LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
1115   LiveInterval &IntB =
1116       LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
1117 
1118   // A is defined by PHI at the entry of MBB.
1119   SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true);
1120   VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx);
1121   assert(AValNo && !AValNo->isUnused() && "COPY source not live");
1122   if (!AValNo->isPHIDef())
1123     return false;
1124 
1125   // No B is referenced before CopyMI in MBB.
1126   if (IntB.overlaps(LIS->getMBBStartIdx(&MBB), CopyIdx))
1127     return false;
1128 
1129   // MBB has two predecessors: one contains A = B so no copy will be inserted
1130   // for it. The other one will have a copy moved from MBB.
1131   bool FoundReverseCopy = false;
1132   MachineBasicBlock *CopyLeftBB = nullptr;
1133   for (MachineBasicBlock *Pred : MBB.predecessors()) {
1134     VNInfo *PVal = IntA.getVNInfoBefore(LIS->getMBBEndIdx(Pred));
1135     MachineInstr *DefMI = LIS->getInstructionFromIndex(PVal->def);
1136     if (!DefMI || !DefMI->isFullCopy()) {
1137       CopyLeftBB = Pred;
1138       continue;
1139     }
1140     // Check DefMI is a reverse copy and it is in BB Pred.
1141     if (DefMI->getOperand(0).getReg() != IntA.reg() ||
1142         DefMI->getOperand(1).getReg() != IntB.reg() ||
1143         DefMI->getParent() != Pred) {
1144       CopyLeftBB = Pred;
1145       continue;
1146     }
1147     // If there is any other def of B after DefMI and before the end of Pred,
1148     // we need to keep the copy of B = A at the end of Pred if we remove
1149     // B = A from MBB.
1150     bool ValB_Changed = false;
1151     for (auto VNI : IntB.valnos) {
1152       if (VNI->isUnused())
1153         continue;
1154       if (PVal->def < VNI->def && VNI->def < LIS->getMBBEndIdx(Pred)) {
1155         ValB_Changed = true;
1156         break;
1157       }
1158     }
1159     if (ValB_Changed) {
1160       CopyLeftBB = Pred;
1161       continue;
1162     }
1163     FoundReverseCopy = true;
1164   }
1165 
1166   // If no reverse copy is found in predecessors, nothing to do.
1167   if (!FoundReverseCopy)
1168     return false;
1169 
1170   // If CopyLeftBB is nullptr, it means every predecessor of MBB contains
1171   // reverse copy, CopyMI can be removed trivially if only IntA/IntB is updated.
1172   // If CopyLeftBB is not nullptr, move CopyMI from MBB to CopyLeftBB and
1173   // update IntA/IntB.
1174   //
1175   // If CopyLeftBB is not nullptr, ensure CopyLeftBB has a single succ so
1176   // MBB is hotter than CopyLeftBB.
1177   if (CopyLeftBB && CopyLeftBB->succ_size() > 1)
1178     return false;
1179 
1180   // Now (almost sure it's) ok to move copy.
1181   if (CopyLeftBB) {
1182     // Position in CopyLeftBB where we should insert new copy.
1183     auto InsPos = CopyLeftBB->getFirstTerminator();
1184 
1185     // Make sure that B isn't referenced in the terminators (if any) at the end
1186     // of the predecessor since we're about to insert a new definition of B
1187     // before them.
1188     if (InsPos != CopyLeftBB->end()) {
1189       SlotIndex InsPosIdx = LIS->getInstructionIndex(*InsPos).getRegSlot(true);
1190       if (IntB.overlaps(InsPosIdx, LIS->getMBBEndIdx(CopyLeftBB)))
1191         return false;
1192     }
1193 
1194     LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to "
1195                       << printMBBReference(*CopyLeftBB) << '\t' << CopyMI);
1196 
1197     // Insert new copy to CopyLeftBB.
1198     MachineInstr *NewCopyMI = BuildMI(*CopyLeftBB, InsPos, CopyMI.getDebugLoc(),
1199                                       TII->get(TargetOpcode::COPY), IntB.reg())
1200                                   .addReg(IntA.reg());
1201     SlotIndex NewCopyIdx =
1202         LIS->InsertMachineInstrInMaps(*NewCopyMI).getRegSlot();
1203     IntB.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator());
1204     for (LiveInterval::SubRange &SR : IntB.subranges())
1205       SR.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator());
1206 
1207     // If the newly created Instruction has an address of an instruction that was
1208     // deleted before (object recycled by the allocator) it needs to be removed from
1209     // the deleted list.
1210     ErasedInstrs.erase(NewCopyMI);
1211   } else {
1212     LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from "
1213                       << printMBBReference(MBB) << '\t' << CopyMI);
1214   }
1215 
1216   // Remove CopyMI.
1217   // Note: This is fine to remove the copy before updating the live-ranges.
1218   // While updating the live-ranges, we only look at slot indices and
1219   // never go back to the instruction.
1220   // Mark instructions as deleted.
1221   deleteInstr(&CopyMI);
1222 
1223   // Update the liveness.
1224   SmallVector<SlotIndex, 8> EndPoints;
1225   VNInfo *BValNo = IntB.Query(CopyIdx).valueOutOrDead();
1226   LIS->pruneValue(*static_cast<LiveRange *>(&IntB), CopyIdx.getRegSlot(),
1227                   &EndPoints);
1228   BValNo->markUnused();
1229   // Extend IntB to the EndPoints of its original live interval.
1230   LIS->extendToIndices(IntB, EndPoints);
1231 
1232   // Now, do the same for its subranges.
1233   for (LiveInterval::SubRange &SR : IntB.subranges()) {
1234     EndPoints.clear();
1235     VNInfo *BValNo = SR.Query(CopyIdx).valueOutOrDead();
1236     assert(BValNo && "All sublanes should be live");
1237     LIS->pruneValue(SR, CopyIdx.getRegSlot(), &EndPoints);
1238     BValNo->markUnused();
1239     // We can have a situation where the result of the original copy is live,
1240     // but is immediately dead in this subrange, e.g. [336r,336d:0). That makes
1241     // the copy appear as an endpoint from pruneValue(), but we don't want it
1242     // to because the copy has been removed.  We can go ahead and remove that
1243     // endpoint; there is no other situation here that there could be a use at
1244     // the same place as we know that the copy is a full copy.
1245     for (unsigned I = 0; I != EndPoints.size(); ) {
1246       if (SlotIndex::isSameInstr(EndPoints[I], CopyIdx)) {
1247         EndPoints[I] = EndPoints.back();
1248         EndPoints.pop_back();
1249         continue;
1250       }
1251       ++I;
1252     }
1253     SmallVector<SlotIndex, 8> Undefs;
1254     IntB.computeSubRangeUndefs(Undefs, SR.LaneMask, *MRI,
1255                                *LIS->getSlotIndexes());
1256     LIS->extendToIndices(SR, EndPoints, Undefs);
1257   }
1258   // If any dead defs were extended, truncate them.
1259   shrinkToUses(&IntB);
1260 
1261   // Finally, update the live-range of IntA.
1262   shrinkToUses(&IntA);
1263   return true;
1264 }
1265 
1266 /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just
1267 /// defining a subregister.
1268 static bool definesFullReg(const MachineInstr &MI, Register Reg) {
1269   assert(!Reg.isPhysical() && "This code cannot handle physreg aliasing");
1270 
1271   for (const MachineOperand &Op : MI.operands()) {
1272     if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg)
1273       continue;
1274     // Return true if we define the full register or don't care about the value
1275     // inside other subregisters.
1276     if (Op.getSubReg() == 0 || Op.isUndef())
1277       return true;
1278   }
1279   return false;
1280 }
1281 
1282 bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP,
1283                                                 MachineInstr *CopyMI,
1284                                                 bool &IsDefCopy) {
1285   IsDefCopy = false;
1286   Register SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg();
1287   unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx();
1288   Register DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
1289   unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx();
1290   if (Register::isPhysicalRegister(SrcReg))
1291     return false;
1292 
1293   LiveInterval &SrcInt = LIS->getInterval(SrcReg);
1294   SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
1295   VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn();
1296   if (!ValNo)
1297     return false;
1298   if (ValNo->isPHIDef() || ValNo->isUnused())
1299     return false;
1300   MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
1301   if (!DefMI)
1302     return false;
1303   if (DefMI->isCopyLike()) {
1304     IsDefCopy = true;
1305     return false;
1306   }
1307   if (!TII->isAsCheapAsAMove(*DefMI))
1308     return false;
1309   if (!TII->isTriviallyReMaterializable(*DefMI, AA))
1310     return false;
1311   if (!definesFullReg(*DefMI, SrcReg))
1312     return false;
1313   bool SawStore = false;
1314   if (!DefMI->isSafeToMove(AA, SawStore))
1315     return false;
1316   const MCInstrDesc &MCID = DefMI->getDesc();
1317   if (MCID.getNumDefs() != 1)
1318     return false;
1319   // Only support subregister destinations when the def is read-undef.
1320   MachineOperand &DstOperand = CopyMI->getOperand(0);
1321   Register CopyDstReg = DstOperand.getReg();
1322   if (DstOperand.getSubReg() && !DstOperand.isUndef())
1323     return false;
1324 
1325   // If both SrcIdx and DstIdx are set, correct rematerialization would widen
1326   // the register substantially (beyond both source and dest size). This is bad
1327   // for performance since it can cascade through a function, introducing many
1328   // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers
1329   // around after a few subreg copies).
1330   if (SrcIdx && DstIdx)
1331     return false;
1332 
1333   const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF);
1334   if (!DefMI->isImplicitDef()) {
1335     if (DstReg.isPhysical()) {
1336       Register NewDstReg = DstReg;
1337 
1338       unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(),
1339                                               DefMI->getOperand(0).getSubReg());
1340       if (NewDstIdx)
1341         NewDstReg = TRI->getSubReg(DstReg, NewDstIdx);
1342 
1343       // Finally, make sure that the physical subregister that will be
1344       // constructed later is permitted for the instruction.
1345       if (!DefRC->contains(NewDstReg))
1346         return false;
1347     } else {
1348       // Theoretically, some stack frame reference could exist. Just make sure
1349       // it hasn't actually happened.
1350       assert(Register::isVirtualRegister(DstReg) &&
1351              "Only expect to deal with virtual or physical registers");
1352     }
1353   }
1354 
1355   if (!allUsesAvailableAt(DefMI, ValNo->def, CopyIdx))
1356     return false;
1357 
1358   DebugLoc DL = CopyMI->getDebugLoc();
1359   MachineBasicBlock *MBB = CopyMI->getParent();
1360   MachineBasicBlock::iterator MII =
1361     std::next(MachineBasicBlock::iterator(CopyMI));
1362   TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, *DefMI, *TRI);
1363   MachineInstr &NewMI = *std::prev(MII);
1364   NewMI.setDebugLoc(DL);
1365 
1366   // In a situation like the following:
1367   //     %0:subreg = instr              ; DefMI, subreg = DstIdx
1368   //     %1        = copy %0:subreg ; CopyMI, SrcIdx = 0
1369   // instead of widening %1 to the register class of %0 simply do:
1370   //     %1 = instr
1371   const TargetRegisterClass *NewRC = CP.getNewRC();
1372   if (DstIdx != 0) {
1373     MachineOperand &DefMO = NewMI.getOperand(0);
1374     if (DefMO.getSubReg() == DstIdx) {
1375       assert(SrcIdx == 0 && CP.isFlipped()
1376              && "Shouldn't have SrcIdx+DstIdx at this point");
1377       const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
1378       const TargetRegisterClass *CommonRC =
1379         TRI->getCommonSubClass(DefRC, DstRC);
1380       if (CommonRC != nullptr) {
1381         NewRC = CommonRC;
1382         DstIdx = 0;
1383         DefMO.setSubReg(0);
1384         DefMO.setIsUndef(false); // Only subregs can have def+undef.
1385       }
1386     }
1387   }
1388 
1389   // CopyMI may have implicit operands, save them so that we can transfer them
1390   // over to the newly materialized instruction after CopyMI is removed.
1391   SmallVector<MachineOperand, 4> ImplicitOps;
1392   ImplicitOps.reserve(CopyMI->getNumOperands() -
1393                       CopyMI->getDesc().getNumOperands());
1394   for (unsigned I = CopyMI->getDesc().getNumOperands(),
1395                 E = CopyMI->getNumOperands();
1396        I != E; ++I) {
1397     MachineOperand &MO = CopyMI->getOperand(I);
1398     if (MO.isReg()) {
1399       assert(MO.isImplicit() && "No explicit operands after implicit operands.");
1400       // Discard VReg implicit defs.
1401       if (Register::isPhysicalRegister(MO.getReg()))
1402         ImplicitOps.push_back(MO);
1403     }
1404   }
1405 
1406   LIS->ReplaceMachineInstrInMaps(*CopyMI, NewMI);
1407   CopyMI->eraseFromParent();
1408   ErasedInstrs.insert(CopyMI);
1409 
1410   // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
1411   // We need to remember these so we can add intervals once we insert
1412   // NewMI into SlotIndexes.
1413   SmallVector<MCRegister, 4> NewMIImplDefs;
1414   for (unsigned i = NewMI.getDesc().getNumOperands(),
1415                 e = NewMI.getNumOperands();
1416        i != e; ++i) {
1417     MachineOperand &MO = NewMI.getOperand(i);
1418     if (MO.isReg() && MO.isDef()) {
1419       assert(MO.isImplicit() && MO.isDead() &&
1420              Register::isPhysicalRegister(MO.getReg()));
1421       NewMIImplDefs.push_back(MO.getReg().asMCReg());
1422     }
1423   }
1424 
1425   if (DstReg.isVirtual()) {
1426     unsigned NewIdx = NewMI.getOperand(0).getSubReg();
1427 
1428     if (DefRC != nullptr) {
1429       if (NewIdx)
1430         NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx);
1431       else
1432         NewRC = TRI->getCommonSubClass(NewRC, DefRC);
1433       assert(NewRC && "subreg chosen for remat incompatible with instruction");
1434     }
1435     // Remap subranges to new lanemask and change register class.
1436     LiveInterval &DstInt = LIS->getInterval(DstReg);
1437     for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1438       SR.LaneMask = TRI->composeSubRegIndexLaneMask(DstIdx, SR.LaneMask);
1439     }
1440     MRI->setRegClass(DstReg, NewRC);
1441 
1442     // Update machine operands and add flags.
1443     updateRegDefsUses(DstReg, DstReg, DstIdx);
1444     NewMI.getOperand(0).setSubReg(NewIdx);
1445     // updateRegDefUses can add an "undef" flag to the definition, since
1446     // it will replace DstReg with DstReg.DstIdx. If NewIdx is 0, make
1447     // sure that "undef" is not set.
1448     if (NewIdx == 0)
1449       NewMI.getOperand(0).setIsUndef(false);
1450     // Add dead subregister definitions if we are defining the whole register
1451     // but only part of it is live.
1452     // This could happen if the rematerialization instruction is rematerializing
1453     // more than actually is used in the register.
1454     // An example would be:
1455     // %1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs
1456     // ; Copying only part of the register here, but the rest is undef.
1457     // %2:sub_16bit<def, read-undef> = COPY %1:sub_16bit
1458     // ==>
1459     // ; Materialize all the constants but only using one
1460     // %2 = LOAD_CONSTANTS 5, 8
1461     //
1462     // at this point for the part that wasn't defined before we could have
1463     // subranges missing the definition.
1464     if (NewIdx == 0 && DstInt.hasSubRanges()) {
1465       SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
1466       SlotIndex DefIndex =
1467           CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber());
1468       LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(DstReg);
1469       VNInfo::Allocator& Alloc = LIS->getVNInfoAllocator();
1470       for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1471         if (!SR.liveAt(DefIndex))
1472           SR.createDeadDef(DefIndex, Alloc);
1473         MaxMask &= ~SR.LaneMask;
1474       }
1475       if (MaxMask.any()) {
1476         LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask);
1477         SR->createDeadDef(DefIndex, Alloc);
1478       }
1479     }
1480 
1481     // Make sure that the subrange for resultant undef is removed
1482     // For example:
1483     //   %1:sub1<def,read-undef> = LOAD CONSTANT 1
1484     //   %2 = COPY %1
1485     // ==>
1486     //   %2:sub1<def, read-undef> = LOAD CONSTANT 1
1487     //     ; Correct but need to remove the subrange for %2:sub0
1488     //     ; as it is now undef
1489     if (NewIdx != 0 && DstInt.hasSubRanges()) {
1490       // The affected subregister segments can be removed.
1491       SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
1492       LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(NewIdx);
1493       bool UpdatedSubRanges = false;
1494       SlotIndex DefIndex =
1495           CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber());
1496       VNInfo::Allocator &Alloc = LIS->getVNInfoAllocator();
1497       for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1498         if ((SR.LaneMask & DstMask).none()) {
1499           LLVM_DEBUG(dbgs()
1500                      << "Removing undefined SubRange "
1501                      << PrintLaneMask(SR.LaneMask) << " : " << SR << "\n");
1502           // VNI is in ValNo - remove any segments in this SubRange that have this ValNo
1503           if (VNInfo *RmValNo = SR.getVNInfoAt(CurrIdx.getRegSlot())) {
1504             SR.removeValNo(RmValNo);
1505             UpdatedSubRanges = true;
1506           }
1507         } else {
1508           // We know that this lane is defined by this instruction,
1509           // but at this point it may be empty because it is not used by
1510           // anything. This happens when updateRegDefUses adds the missing
1511           // lanes. Assign that lane a dead def so that the interferences
1512           // are properly modeled.
1513           if (SR.empty())
1514             SR.createDeadDef(DefIndex, Alloc);
1515         }
1516       }
1517       if (UpdatedSubRanges)
1518         DstInt.removeEmptySubRanges();
1519     }
1520   } else if (NewMI.getOperand(0).getReg() != CopyDstReg) {
1521     // The New instruction may be defining a sub-register of what's actually
1522     // been asked for. If so it must implicitly define the whole thing.
1523     assert(Register::isPhysicalRegister(DstReg) &&
1524            "Only expect virtual or physical registers in remat");
1525     NewMI.getOperand(0).setIsDead(true);
1526     NewMI.addOperand(MachineOperand::CreateReg(
1527         CopyDstReg, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/));
1528     // Record small dead def live-ranges for all the subregisters
1529     // of the destination register.
1530     // Otherwise, variables that live through may miss some
1531     // interferences, thus creating invalid allocation.
1532     // E.g., i386 code:
1533     // %1 = somedef ; %1 GR8
1534     // %2 = remat ; %2 GR32
1535     // CL = COPY %2.sub_8bit
1536     // = somedef %1 ; %1 GR8
1537     // =>
1538     // %1 = somedef ; %1 GR8
1539     // dead ECX = remat ; implicit-def CL
1540     // = somedef %1 ; %1 GR8
1541     // %1 will see the interferences with CL but not with CH since
1542     // no live-ranges would have been created for ECX.
1543     // Fix that!
1544     SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1545     for (MCRegUnitIterator Units(NewMI.getOperand(0).getReg(), TRI);
1546          Units.isValid(); ++Units)
1547       if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
1548         LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1549   }
1550 
1551   if (NewMI.getOperand(0).getSubReg())
1552     NewMI.getOperand(0).setIsUndef();
1553 
1554   // Transfer over implicit operands to the rematerialized instruction.
1555   for (MachineOperand &MO : ImplicitOps)
1556     NewMI.addOperand(MO);
1557 
1558   SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1559   for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
1560     MCRegister Reg = NewMIImplDefs[i];
1561     for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1562       if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
1563         LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1564   }
1565 
1566   LLVM_DEBUG(dbgs() << "Remat: " << NewMI);
1567   ++NumReMats;
1568 
1569   // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs
1570   // to describe DstReg instead.
1571   if (MRI->use_nodbg_empty(SrcReg)) {
1572     for (MachineOperand &UseMO :
1573          llvm::make_early_inc_range(MRI->use_operands(SrcReg))) {
1574       MachineInstr *UseMI = UseMO.getParent();
1575       if (UseMI->isDebugInstr()) {
1576         if (Register::isPhysicalRegister(DstReg))
1577           UseMO.substPhysReg(DstReg, *TRI);
1578         else
1579           UseMO.setReg(DstReg);
1580         // Move the debug value directly after the def of the rematerialized
1581         // value in DstReg.
1582         MBB->splice(std::next(NewMI.getIterator()), UseMI->getParent(), UseMI);
1583         LLVM_DEBUG(dbgs() << "\t\tupdated: " << *UseMI);
1584       }
1585     }
1586   }
1587 
1588   if (ToBeUpdated.count(SrcReg))
1589     return true;
1590 
1591   unsigned NumCopyUses = 0;
1592   for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
1593     if (UseMO.getParent()->isCopyLike())
1594       NumCopyUses++;
1595   }
1596   if (NumCopyUses < LateRematUpdateThreshold) {
1597     // The source interval can become smaller because we removed a use.
1598     shrinkToUses(&SrcInt, &DeadDefs);
1599     if (!DeadDefs.empty())
1600       eliminateDeadDefs();
1601   } else {
1602     ToBeUpdated.insert(SrcReg);
1603   }
1604   return true;
1605 }
1606 
1607 MachineInstr *RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) {
1608   // ProcessImplicitDefs may leave some copies of <undef> values, it only
1609   // removes local variables. When we have a copy like:
1610   //
1611   //   %1 = COPY undef %2
1612   //
1613   // We delete the copy and remove the corresponding value number from %1.
1614   // Any uses of that value number are marked as <undef>.
1615 
1616   // Note that we do not query CoalescerPair here but redo isMoveInstr as the
1617   // CoalescerPair may have a new register class with adjusted subreg indices
1618   // at this point.
1619   Register SrcReg, DstReg;
1620   unsigned SrcSubIdx = 0, DstSubIdx = 0;
1621   if(!isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx))
1622     return nullptr;
1623 
1624   SlotIndex Idx = LIS->getInstructionIndex(*CopyMI);
1625   const LiveInterval &SrcLI = LIS->getInterval(SrcReg);
1626   // CopyMI is undef iff SrcReg is not live before the instruction.
1627   if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) {
1628     LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx);
1629     for (const LiveInterval::SubRange &SR : SrcLI.subranges()) {
1630       if ((SR.LaneMask & SrcMask).none())
1631         continue;
1632       if (SR.liveAt(Idx))
1633         return nullptr;
1634     }
1635   } else if (SrcLI.liveAt(Idx))
1636     return nullptr;
1637 
1638   // If the undef copy defines a live-out value (i.e. an input to a PHI def),
1639   // then replace it with an IMPLICIT_DEF.
1640   LiveInterval &DstLI = LIS->getInterval(DstReg);
1641   SlotIndex RegIndex = Idx.getRegSlot();
1642   LiveRange::Segment *Seg = DstLI.getSegmentContaining(RegIndex);
1643   assert(Seg != nullptr && "No segment for defining instruction");
1644   if (VNInfo *V = DstLI.getVNInfoAt(Seg->end)) {
1645     if (V->isPHIDef()) {
1646       CopyMI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1647       for (unsigned i = CopyMI->getNumOperands(); i != 0; --i) {
1648         MachineOperand &MO = CopyMI->getOperand(i-1);
1649         if (MO.isReg() && MO.isUse())
1650           CopyMI->RemoveOperand(i-1);
1651       }
1652       LLVM_DEBUG(dbgs() << "\tReplaced copy of <undef> value with an "
1653                            "implicit def\n");
1654       return CopyMI;
1655     }
1656   }
1657 
1658   // Remove any DstReg segments starting at the instruction.
1659   LLVM_DEBUG(dbgs() << "\tEliminating copy of <undef> value\n");
1660 
1661   // Remove value or merge with previous one in case of a subregister def.
1662   if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) {
1663     VNInfo *VNI = DstLI.getVNInfoAt(RegIndex);
1664     DstLI.MergeValueNumberInto(VNI, PrevVNI);
1665 
1666     // The affected subregister segments can be removed.
1667     LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx);
1668     for (LiveInterval::SubRange &SR : DstLI.subranges()) {
1669       if ((SR.LaneMask & DstMask).none())
1670         continue;
1671 
1672       VNInfo *SVNI = SR.getVNInfoAt(RegIndex);
1673       assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex));
1674       SR.removeValNo(SVNI);
1675     }
1676     DstLI.removeEmptySubRanges();
1677   } else
1678     LIS->removeVRegDefAt(DstLI, RegIndex);
1679 
1680   // Mark uses as undef.
1681   for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) {
1682     if (MO.isDef() /*|| MO.isUndef()*/)
1683       continue;
1684     const MachineInstr &MI = *MO.getParent();
1685     SlotIndex UseIdx = LIS->getInstructionIndex(MI);
1686     LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
1687     bool isLive;
1688     if (!UseMask.all() && DstLI.hasSubRanges()) {
1689       isLive = false;
1690       for (const LiveInterval::SubRange &SR : DstLI.subranges()) {
1691         if ((SR.LaneMask & UseMask).none())
1692           continue;
1693         if (SR.liveAt(UseIdx)) {
1694           isLive = true;
1695           break;
1696         }
1697       }
1698     } else
1699       isLive = DstLI.liveAt(UseIdx);
1700     if (isLive)
1701       continue;
1702     MO.setIsUndef(true);
1703     LLVM_DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI);
1704   }
1705 
1706   // A def of a subregister may be a use of the other subregisters, so
1707   // deleting a def of a subregister may also remove uses. Since CopyMI
1708   // is still part of the function (but about to be erased), mark all
1709   // defs of DstReg in it as <undef>, so that shrinkToUses would
1710   // ignore them.
1711   for (MachineOperand &MO : CopyMI->operands())
1712     if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg)
1713       MO.setIsUndef(true);
1714   LIS->shrinkToUses(&DstLI);
1715 
1716   return CopyMI;
1717 }
1718 
1719 void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
1720                                      MachineOperand &MO, unsigned SubRegIdx) {
1721   LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubRegIdx);
1722   if (MO.isDef())
1723     Mask = ~Mask;
1724   bool IsUndef = true;
1725   for (const LiveInterval::SubRange &S : Int.subranges()) {
1726     if ((S.LaneMask & Mask).none())
1727       continue;
1728     if (S.liveAt(UseIdx)) {
1729       IsUndef = false;
1730       break;
1731     }
1732   }
1733   if (IsUndef) {
1734     MO.setIsUndef(true);
1735     // We found out some subregister use is actually reading an undefined
1736     // value. In some cases the whole vreg has become undefined at this
1737     // point so we have to potentially shrink the main range if the
1738     // use was ending a live segment there.
1739     LiveQueryResult Q = Int.Query(UseIdx);
1740     if (Q.valueOut() == nullptr)
1741       ShrinkMainRange = true;
1742   }
1743 }
1744 
1745 void RegisterCoalescer::updateRegDefsUses(Register SrcReg, Register DstReg,
1746                                           unsigned SubIdx) {
1747   bool DstIsPhys = Register::isPhysicalRegister(DstReg);
1748   LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg);
1749 
1750   if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) {
1751     for (MachineOperand &MO : MRI->reg_operands(DstReg)) {
1752       unsigned SubReg = MO.getSubReg();
1753       if (SubReg == 0 || MO.isUndef())
1754         continue;
1755       MachineInstr &MI = *MO.getParent();
1756       if (MI.isDebugInstr())
1757         continue;
1758       SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(true);
1759       addUndefFlag(*DstInt, UseIdx, MO, SubReg);
1760     }
1761   }
1762 
1763   SmallPtrSet<MachineInstr*, 8> Visited;
1764   for (MachineRegisterInfo::reg_instr_iterator
1765        I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end();
1766        I != E; ) {
1767     MachineInstr *UseMI = &*(I++);
1768 
1769     // Each instruction can only be rewritten once because sub-register
1770     // composition is not always idempotent. When SrcReg != DstReg, rewriting
1771     // the UseMI operands removes them from the SrcReg use-def chain, but when
1772     // SrcReg is DstReg we could encounter UseMI twice if it has multiple
1773     // operands mentioning the virtual register.
1774     if (SrcReg == DstReg && !Visited.insert(UseMI).second)
1775       continue;
1776 
1777     SmallVector<unsigned,8> Ops;
1778     bool Reads, Writes;
1779     std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
1780 
1781     // If SrcReg wasn't read, it may still be the case that DstReg is live-in
1782     // because SrcReg is a sub-register.
1783     if (DstInt && !Reads && SubIdx && !UseMI->isDebugInstr())
1784       Reads = DstInt->liveAt(LIS->getInstructionIndex(*UseMI));
1785 
1786     // Replace SrcReg with DstReg in all UseMI operands.
1787     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1788       MachineOperand &MO = UseMI->getOperand(Ops[i]);
1789 
1790       // Adjust <undef> flags in case of sub-register joins. We don't want to
1791       // turn a full def into a read-modify-write sub-register def and vice
1792       // versa.
1793       if (SubIdx && MO.isDef())
1794         MO.setIsUndef(!Reads);
1795 
1796       // A subreg use of a partially undef (super) register may be a complete
1797       // undef use now and then has to be marked that way.
1798       if (MO.isUse() && !DstIsPhys) {
1799         unsigned SubUseIdx = TRI->composeSubRegIndices(SubIdx, MO.getSubReg());
1800         if (SubUseIdx != 0 && MRI->shouldTrackSubRegLiveness(DstReg)) {
1801           if (!DstInt->hasSubRanges()) {
1802             BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
1803             LaneBitmask FullMask = MRI->getMaxLaneMaskForVReg(DstInt->reg());
1804             LaneBitmask UsedLanes = TRI->getSubRegIndexLaneMask(SubIdx);
1805             LaneBitmask UnusedLanes = FullMask & ~UsedLanes;
1806             DstInt->createSubRangeFrom(Allocator, UsedLanes, *DstInt);
1807             // The unused lanes are just empty live-ranges at this point.
1808             // It is the caller responsibility to set the proper
1809             // dead segments if there is an actual dead def of the
1810             // unused lanes. This may happen with rematerialization.
1811             DstInt->createSubRange(Allocator, UnusedLanes);
1812           }
1813           SlotIndex MIIdx = UseMI->isDebugInstr()
1814             ? LIS->getSlotIndexes()->getIndexBefore(*UseMI)
1815             : LIS->getInstructionIndex(*UseMI);
1816           SlotIndex UseIdx = MIIdx.getRegSlot(true);
1817           addUndefFlag(*DstInt, UseIdx, MO, SubUseIdx);
1818         }
1819       }
1820 
1821       if (DstIsPhys)
1822         MO.substPhysReg(DstReg, *TRI);
1823       else
1824         MO.substVirtReg(DstReg, SubIdx, *TRI);
1825     }
1826 
1827     LLVM_DEBUG({
1828       dbgs() << "\t\tupdated: ";
1829       if (!UseMI->isDebugInstr())
1830         dbgs() << LIS->getInstructionIndex(*UseMI) << "\t";
1831       dbgs() << *UseMI;
1832     });
1833   }
1834 }
1835 
1836 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) {
1837   // Always join simple intervals that are defined by a single copy from a
1838   // reserved register. This doesn't increase register pressure, so it is
1839   // always beneficial.
1840   if (!MRI->isReserved(CP.getDstReg())) {
1841     LLVM_DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
1842     return false;
1843   }
1844 
1845   LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
1846   if (JoinVInt.containsOneValue())
1847     return true;
1848 
1849   LLVM_DEBUG(
1850       dbgs() << "\tCannot join complex intervals into reserved register.\n");
1851   return false;
1852 }
1853 
1854 bool RegisterCoalescer::copyValueUndefInPredecessors(
1855     LiveRange &S, const MachineBasicBlock *MBB, LiveQueryResult SLRQ) {
1856   for (const MachineBasicBlock *Pred : MBB->predecessors()) {
1857     SlotIndex PredEnd = LIS->getMBBEndIdx(Pred);
1858     if (VNInfo *V = S.getVNInfoAt(PredEnd.getPrevSlot())) {
1859       // If this is a self loop, we may be reading the same value.
1860       if (V->id != SLRQ.valueOutOrDead()->id)
1861         return false;
1862     }
1863   }
1864 
1865   return true;
1866 }
1867 
1868 void RegisterCoalescer::setUndefOnPrunedSubRegUses(LiveInterval &LI,
1869                                                    Register Reg,
1870                                                    LaneBitmask PrunedLanes) {
1871   // If we had other instructions in the segment reading the undef sublane
1872   // value, we need to mark them with undef.
1873   for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
1874     unsigned SubRegIdx = MO.getSubReg();
1875     if (SubRegIdx == 0 || MO.isUndef())
1876       continue;
1877 
1878     LaneBitmask SubRegMask = TRI->getSubRegIndexLaneMask(SubRegIdx);
1879     SlotIndex Pos = LIS->getInstructionIndex(*MO.getParent());
1880     for (LiveInterval::SubRange &S : LI.subranges()) {
1881       if (!S.liveAt(Pos) && (PrunedLanes & SubRegMask).any()) {
1882         MO.setIsUndef();
1883         break;
1884       }
1885     }
1886   }
1887 
1888   LI.removeEmptySubRanges();
1889 
1890   // A def of a subregister may be a use of other register lanes. Replacing
1891   // such a def with a def of a different register will eliminate the use,
1892   // and may cause the recorded live range to be larger than the actual
1893   // liveness in the program IR.
1894   LIS->shrinkToUses(&LI);
1895 }
1896 
1897 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
1898   Again = false;
1899   LLVM_DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI);
1900 
1901   CoalescerPair CP(*TRI);
1902   if (!CP.setRegisters(CopyMI)) {
1903     LLVM_DEBUG(dbgs() << "\tNot coalescable.\n");
1904     return false;
1905   }
1906 
1907   if (CP.getNewRC()) {
1908     auto SrcRC = MRI->getRegClass(CP.getSrcReg());
1909     auto DstRC = MRI->getRegClass(CP.getDstReg());
1910     unsigned SrcIdx = CP.getSrcIdx();
1911     unsigned DstIdx = CP.getDstIdx();
1912     if (CP.isFlipped()) {
1913       std::swap(SrcIdx, DstIdx);
1914       std::swap(SrcRC, DstRC);
1915     }
1916     if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx,
1917                              CP.getNewRC(), *LIS)) {
1918       LLVM_DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n");
1919       return false;
1920     }
1921   }
1922 
1923   // Dead code elimination. This really should be handled by MachineDCE, but
1924   // sometimes dead copies slip through, and we can't generate invalid live
1925   // ranges.
1926   if (!CP.isPhys() && CopyMI->allDefsAreDead()) {
1927     LLVM_DEBUG(dbgs() << "\tCopy is dead.\n");
1928     DeadDefs.push_back(CopyMI);
1929     eliminateDeadDefs();
1930     return true;
1931   }
1932 
1933   // Eliminate undefs.
1934   if (!CP.isPhys()) {
1935     // If this is an IMPLICIT_DEF, leave it alone, but don't try to coalesce.
1936     if (MachineInstr *UndefMI = eliminateUndefCopy(CopyMI)) {
1937       if (UndefMI->isImplicitDef())
1938         return false;
1939       deleteInstr(CopyMI);
1940       return false;  // Not coalescable.
1941     }
1942   }
1943 
1944   // Coalesced copies are normally removed immediately, but transformations
1945   // like removeCopyByCommutingDef() can inadvertently create identity copies.
1946   // When that happens, just join the values and remove the copy.
1947   if (CP.getSrcReg() == CP.getDstReg()) {
1948     LiveInterval &LI = LIS->getInterval(CP.getSrcReg());
1949     LLVM_DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n');
1950     const SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
1951     LiveQueryResult LRQ = LI.Query(CopyIdx);
1952     if (VNInfo *DefVNI = LRQ.valueDefined()) {
1953       VNInfo *ReadVNI = LRQ.valueIn();
1954       assert(ReadVNI && "No value before copy and no <undef> flag.");
1955       assert(ReadVNI != DefVNI && "Cannot read and define the same value.");
1956 
1957       // Track incoming undef lanes we need to eliminate from the subrange.
1958       LaneBitmask PrunedLanes;
1959       MachineBasicBlock *MBB = CopyMI->getParent();
1960 
1961       // Process subregister liveranges.
1962       for (LiveInterval::SubRange &S : LI.subranges()) {
1963         LiveQueryResult SLRQ = S.Query(CopyIdx);
1964         if (VNInfo *SDefVNI = SLRQ.valueDefined()) {
1965           if (VNInfo *SReadVNI = SLRQ.valueIn())
1966             SDefVNI = S.MergeValueNumberInto(SDefVNI, SReadVNI);
1967 
1968           // If this copy introduced an undef subrange from an incoming value,
1969           // we need to eliminate the undef live in values from the subrange.
1970           if (copyValueUndefInPredecessors(S, MBB, SLRQ)) {
1971             LLVM_DEBUG(dbgs() << "Incoming sublane value is undef at copy\n");
1972             PrunedLanes |= S.LaneMask;
1973             S.removeValNo(SDefVNI);
1974           }
1975         }
1976       }
1977 
1978       LI.MergeValueNumberInto(DefVNI, ReadVNI);
1979       if (PrunedLanes.any()) {
1980         LLVM_DEBUG(dbgs() << "Pruning undef incoming lanes: "
1981                           << PrunedLanes << '\n');
1982         setUndefOnPrunedSubRegUses(LI, CP.getSrcReg(), PrunedLanes);
1983       }
1984 
1985       LLVM_DEBUG(dbgs() << "\tMerged values:          " << LI << '\n');
1986     }
1987     deleteInstr(CopyMI);
1988     return true;
1989   }
1990 
1991   // Enforce policies.
1992   if (CP.isPhys()) {
1993     LLVM_DEBUG(dbgs() << "\tConsidering merging "
1994                       << printReg(CP.getSrcReg(), TRI) << " with "
1995                       << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n');
1996     if (!canJoinPhys(CP)) {
1997       // Before giving up coalescing, if definition of source is defined by
1998       // trivial computation, try rematerializing it.
1999       bool IsDefCopy = false;
2000       if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
2001         return true;
2002       if (IsDefCopy)
2003         Again = true;  // May be possible to coalesce later.
2004       return false;
2005     }
2006   } else {
2007     // When possible, let DstReg be the larger interval.
2008     if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() >
2009                            LIS->getInterval(CP.getDstReg()).size())
2010       CP.flip();
2011 
2012     LLVM_DEBUG({
2013       dbgs() << "\tConsidering merging to "
2014              << TRI->getRegClassName(CP.getNewRC()) << " with ";
2015       if (CP.getDstIdx() && CP.getSrcIdx())
2016         dbgs() << printReg(CP.getDstReg()) << " in "
2017                << TRI->getSubRegIndexName(CP.getDstIdx()) << " and "
2018                << printReg(CP.getSrcReg()) << " in "
2019                << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n';
2020       else
2021         dbgs() << printReg(CP.getSrcReg(), TRI) << " in "
2022                << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';
2023     });
2024   }
2025 
2026   ShrinkMask = LaneBitmask::getNone();
2027   ShrinkMainRange = false;
2028 
2029   // Okay, attempt to join these two intervals.  On failure, this returns false.
2030   // Otherwise, if one of the intervals being joined is a physreg, this method
2031   // always canonicalizes DstInt to be it.  The output "SrcInt" will not have
2032   // been modified, so we can use this information below to update aliases.
2033   if (!joinIntervals(CP)) {
2034     // Coalescing failed.
2035 
2036     // If definition of source is defined by trivial computation, try
2037     // rematerializing it.
2038     bool IsDefCopy = false;
2039     if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
2040       return true;
2041 
2042     // If we can eliminate the copy without merging the live segments, do so
2043     // now.
2044     if (!CP.isPartial() && !CP.isPhys()) {
2045       bool Changed = adjustCopiesBackFrom(CP, CopyMI);
2046       bool Shrink = false;
2047       if (!Changed)
2048         std::tie(Changed, Shrink) = removeCopyByCommutingDef(CP, CopyMI);
2049       if (Changed) {
2050         deleteInstr(CopyMI);
2051         if (Shrink) {
2052           Register DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
2053           LiveInterval &DstLI = LIS->getInterval(DstReg);
2054           shrinkToUses(&DstLI);
2055           LLVM_DEBUG(dbgs() << "\t\tshrunk:   " << DstLI << '\n');
2056         }
2057         LLVM_DEBUG(dbgs() << "\tTrivial!\n");
2058         return true;
2059       }
2060     }
2061 
2062     // Try and see if we can partially eliminate the copy by moving the copy to
2063     // its predecessor.
2064     if (!CP.isPartial() && !CP.isPhys())
2065       if (removePartialRedundancy(CP, *CopyMI))
2066         return true;
2067 
2068     // Otherwise, we are unable to join the intervals.
2069     LLVM_DEBUG(dbgs() << "\tInterference!\n");
2070     Again = true;  // May be possible to coalesce later.
2071     return false;
2072   }
2073 
2074   // Coalescing to a virtual register that is of a sub-register class of the
2075   // other. Make sure the resulting register is set to the right register class.
2076   if (CP.isCrossClass()) {
2077     ++numCrossRCs;
2078     MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
2079   }
2080 
2081   // Removing sub-register copies can ease the register class constraints.
2082   // Make sure we attempt to inflate the register class of DstReg.
2083   if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC()))
2084     InflateRegs.push_back(CP.getDstReg());
2085 
2086   // CopyMI has been erased by joinIntervals at this point. Remove it from
2087   // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
2088   // to the work list. This keeps ErasedInstrs from growing needlessly.
2089   ErasedInstrs.erase(CopyMI);
2090 
2091   // Rewrite all SrcReg operands to DstReg.
2092   // Also update DstReg operands to include DstIdx if it is set.
2093   if (CP.getDstIdx())
2094     updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx());
2095   updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx());
2096 
2097   // Shrink subregister ranges if necessary.
2098   if (ShrinkMask.any()) {
2099     LiveInterval &LI = LIS->getInterval(CP.getDstReg());
2100     for (LiveInterval::SubRange &S : LI.subranges()) {
2101       if ((S.LaneMask & ShrinkMask).none())
2102         continue;
2103       LLVM_DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask)
2104                         << ")\n");
2105       LIS->shrinkToUses(S, LI.reg());
2106     }
2107     LI.removeEmptySubRanges();
2108   }
2109 
2110   // CP.getSrcReg()'s live interval has been merged into CP.getDstReg's live
2111   // interval. Since CP.getSrcReg() is in ToBeUpdated set and its live interval
2112   // is not up-to-date, need to update the merged live interval here.
2113   if (ToBeUpdated.count(CP.getSrcReg()))
2114     ShrinkMainRange = true;
2115 
2116   if (ShrinkMainRange) {
2117     LiveInterval &LI = LIS->getInterval(CP.getDstReg());
2118     shrinkToUses(&LI);
2119   }
2120 
2121   // SrcReg is guaranteed to be the register whose live interval that is
2122   // being merged.
2123   LIS->removeInterval(CP.getSrcReg());
2124 
2125   // Update regalloc hint.
2126   TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
2127 
2128   LLVM_DEBUG({
2129     dbgs() << "\tSuccess: " << printReg(CP.getSrcReg(), TRI, CP.getSrcIdx())
2130            << " -> " << printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n';
2131     dbgs() << "\tResult = ";
2132     if (CP.isPhys())
2133       dbgs() << printReg(CP.getDstReg(), TRI);
2134     else
2135       dbgs() << LIS->getInterval(CP.getDstReg());
2136     dbgs() << '\n';
2137   });
2138 
2139   ++numJoins;
2140   return true;
2141 }
2142 
2143 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
2144   Register DstReg = CP.getDstReg();
2145   Register SrcReg = CP.getSrcReg();
2146   assert(CP.isPhys() && "Must be a physreg copy");
2147   assert(MRI->isReserved(DstReg) && "Not a reserved register");
2148   LiveInterval &RHS = LIS->getInterval(SrcReg);
2149   LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n');
2150 
2151   assert(RHS.containsOneValue() && "Invalid join with reserved register");
2152 
2153   // Optimization for reserved registers like ESP. We can only merge with a
2154   // reserved physreg if RHS has a single value that is a copy of DstReg.
2155   // The live range of the reserved register will look like a set of dead defs
2156   // - we don't properly track the live range of reserved registers.
2157 
2158   // Deny any overlapping intervals.  This depends on all the reserved
2159   // register live ranges to look like dead defs.
2160   if (!MRI->isConstantPhysReg(DstReg)) {
2161     for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
2162       // Abort if not all the regunits are reserved.
2163       for (MCRegUnitRootIterator RI(*UI, TRI); RI.isValid(); ++RI) {
2164         if (!MRI->isReserved(*RI))
2165           return false;
2166       }
2167       if (RHS.overlaps(LIS->getRegUnit(*UI))) {
2168         LLVM_DEBUG(dbgs() << "\t\tInterference: " << printRegUnit(*UI, TRI)
2169                           << '\n');
2170         return false;
2171       }
2172     }
2173 
2174     // We must also check for overlaps with regmask clobbers.
2175     BitVector RegMaskUsable;
2176     if (LIS->checkRegMaskInterference(RHS, RegMaskUsable) &&
2177         !RegMaskUsable.test(DstReg)) {
2178       LLVM_DEBUG(dbgs() << "\t\tRegMask interference\n");
2179       return false;
2180     }
2181   }
2182 
2183   // Skip any value computations, we are not adding new values to the
2184   // reserved register.  Also skip merging the live ranges, the reserved
2185   // register live range doesn't need to be accurate as long as all the
2186   // defs are there.
2187 
2188   // Delete the identity copy.
2189   MachineInstr *CopyMI;
2190   if (CP.isFlipped()) {
2191     // Physreg is copied into vreg
2192     //   %y = COPY %physreg_x
2193     //   ...  //< no other def of %physreg_x here
2194     //   use %y
2195     // =>
2196     //   ...
2197     //   use %physreg_x
2198     CopyMI = MRI->getVRegDef(SrcReg);
2199   } else {
2200     // VReg is copied into physreg:
2201     //   %y = def
2202     //   ... //< no other def or use of %physreg_x here
2203     //   %physreg_x = COPY %y
2204     // =>
2205     //   %physreg_x = def
2206     //   ...
2207     if (!MRI->hasOneNonDBGUse(SrcReg)) {
2208       LLVM_DEBUG(dbgs() << "\t\tMultiple vreg uses!\n");
2209       return false;
2210     }
2211 
2212     if (!LIS->intervalIsInOneMBB(RHS)) {
2213       LLVM_DEBUG(dbgs() << "\t\tComplex control flow!\n");
2214       return false;
2215     }
2216 
2217     MachineInstr &DestMI = *MRI->getVRegDef(SrcReg);
2218     CopyMI = &*MRI->use_instr_nodbg_begin(SrcReg);
2219     SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
2220     SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot();
2221 
2222     if (!MRI->isConstantPhysReg(DstReg)) {
2223       // We checked above that there are no interfering defs of the physical
2224       // register. However, for this case, where we intend to move up the def of
2225       // the physical register, we also need to check for interfering uses.
2226       SlotIndexes *Indexes = LIS->getSlotIndexes();
2227       for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx);
2228            SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) {
2229         MachineInstr *MI = LIS->getInstructionFromIndex(SI);
2230         if (MI->readsRegister(DstReg, TRI)) {
2231           LLVM_DEBUG(dbgs() << "\t\tInterference (read): " << *MI);
2232           return false;
2233         }
2234       }
2235     }
2236 
2237     // We're going to remove the copy which defines a physical reserved
2238     // register, so remove its valno, etc.
2239     LLVM_DEBUG(dbgs() << "\t\tRemoving phys reg def of "
2240                       << printReg(DstReg, TRI) << " at " << CopyRegIdx << "\n");
2241 
2242     LIS->removePhysRegDefAt(DstReg.asMCReg(), CopyRegIdx);
2243     // Create a new dead def at the new def location.
2244     for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
2245       LiveRange &LR = LIS->getRegUnit(*UI);
2246       LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator());
2247     }
2248   }
2249 
2250   deleteInstr(CopyMI);
2251 
2252   // We don't track kills for reserved registers.
2253   MRI->clearKillFlags(CP.getSrcReg());
2254 
2255   return true;
2256 }
2257 
2258 //===----------------------------------------------------------------------===//
2259 //                 Interference checking and interval joining
2260 //===----------------------------------------------------------------------===//
2261 //
2262 // In the easiest case, the two live ranges being joined are disjoint, and
2263 // there is no interference to consider. It is quite common, though, to have
2264 // overlapping live ranges, and we need to check if the interference can be
2265 // resolved.
2266 //
2267 // The live range of a single SSA value forms a sub-tree of the dominator tree.
2268 // This means that two SSA values overlap if and only if the def of one value
2269 // is contained in the live range of the other value. As a special case, the
2270 // overlapping values can be defined at the same index.
2271 //
2272 // The interference from an overlapping def can be resolved in these cases:
2273 //
2274 // 1. Coalescable copies. The value is defined by a copy that would become an
2275 //    identity copy after joining SrcReg and DstReg. The copy instruction will
2276 //    be removed, and the value will be merged with the source value.
2277 //
2278 //    There can be several copies back and forth, causing many values to be
2279 //    merged into one. We compute a list of ultimate values in the joined live
2280 //    range as well as a mappings from the old value numbers.
2281 //
2282 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI
2283 //    predecessors have a live out value. It doesn't cause real interference,
2284 //    and can be merged into the value it overlaps. Like a coalescable copy, it
2285 //    can be erased after joining.
2286 //
2287 // 3. Copy of external value. The overlapping def may be a copy of a value that
2288 //    is already in the other register. This is like a coalescable copy, but
2289 //    the live range of the source register must be trimmed after erasing the
2290 //    copy instruction:
2291 //
2292 //      %src = COPY %ext
2293 //      %dst = COPY %ext  <-- Remove this COPY, trim the live range of %ext.
2294 //
2295 // 4. Clobbering undefined lanes. Vector registers are sometimes built by
2296 //    defining one lane at a time:
2297 //
2298 //      %dst:ssub0<def,read-undef> = FOO
2299 //      %src = BAR
2300 //      %dst:ssub1 = COPY %src
2301 //
2302 //    The live range of %src overlaps the %dst value defined by FOO, but
2303 //    merging %src into %dst:ssub1 is only going to clobber the ssub1 lane
2304 //    which was undef anyway.
2305 //
2306 //    The value mapping is more complicated in this case. The final live range
2307 //    will have different value numbers for both FOO and BAR, but there is no
2308 //    simple mapping from old to new values. It may even be necessary to add
2309 //    new PHI values.
2310 //
2311 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that
2312 //    is live, but never read. This can happen because we don't compute
2313 //    individual live ranges per lane.
2314 //
2315 //      %dst = FOO
2316 //      %src = BAR
2317 //      %dst:ssub1 = COPY %src
2318 //
2319 //    This kind of interference is only resolved locally. If the clobbered
2320 //    lane value escapes the block, the join is aborted.
2321 
2322 namespace {
2323 
2324 /// Track information about values in a single virtual register about to be
2325 /// joined. Objects of this class are always created in pairs - one for each
2326 /// side of the CoalescerPair (or one for each lane of a side of the coalescer
2327 /// pair)
2328 class JoinVals {
2329   /// Live range we work on.
2330   LiveRange &LR;
2331 
2332   /// (Main) register we work on.
2333   const Register Reg;
2334 
2335   /// Reg (and therefore the values in this liverange) will end up as
2336   /// subregister SubIdx in the coalesced register. Either CP.DstIdx or
2337   /// CP.SrcIdx.
2338   const unsigned SubIdx;
2339 
2340   /// The LaneMask that this liverange will occupy the coalesced register. May
2341   /// be smaller than the lanemask produced by SubIdx when merging subranges.
2342   const LaneBitmask LaneMask;
2343 
2344   /// This is true when joining sub register ranges, false when joining main
2345   /// ranges.
2346   const bool SubRangeJoin;
2347 
2348   /// Whether the current LiveInterval tracks subregister liveness.
2349   const bool TrackSubRegLiveness;
2350 
2351   /// Values that will be present in the final live range.
2352   SmallVectorImpl<VNInfo*> &NewVNInfo;
2353 
2354   const CoalescerPair &CP;
2355   LiveIntervals *LIS;
2356   SlotIndexes *Indexes;
2357   const TargetRegisterInfo *TRI;
2358 
2359   /// Value number assignments. Maps value numbers in LI to entries in
2360   /// NewVNInfo. This is suitable for passing to LiveInterval::join().
2361   SmallVector<int, 8> Assignments;
2362 
2363   public:
2364   /// Conflict resolution for overlapping values.
2365   enum ConflictResolution {
2366     /// No overlap, simply keep this value.
2367     CR_Keep,
2368 
2369     /// Merge this value into OtherVNI and erase the defining instruction.
2370     /// Used for IMPLICIT_DEF, coalescable copies, and copies from external
2371     /// values.
2372     CR_Erase,
2373 
2374     /// Merge this value into OtherVNI but keep the defining instruction.
2375     /// This is for the special case where OtherVNI is defined by the same
2376     /// instruction.
2377     CR_Merge,
2378 
2379     /// Keep this value, and have it replace OtherVNI where possible. This
2380     /// complicates value mapping since OtherVNI maps to two different values
2381     /// before and after this def.
2382     /// Used when clobbering undefined or dead lanes.
2383     CR_Replace,
2384 
2385     /// Unresolved conflict. Visit later when all values have been mapped.
2386     CR_Unresolved,
2387 
2388     /// Unresolvable conflict. Abort the join.
2389     CR_Impossible
2390   };
2391 
2392   private:
2393   /// Per-value info for LI. The lane bit masks are all relative to the final
2394   /// joined register, so they can be compared directly between SrcReg and
2395   /// DstReg.
2396   struct Val {
2397     ConflictResolution Resolution = CR_Keep;
2398 
2399     /// Lanes written by this def, 0 for unanalyzed values.
2400     LaneBitmask WriteLanes;
2401 
2402     /// Lanes with defined values in this register. Other lanes are undef and
2403     /// safe to clobber.
2404     LaneBitmask ValidLanes;
2405 
2406     /// Value in LI being redefined by this def.
2407     VNInfo *RedefVNI = nullptr;
2408 
2409     /// Value in the other live range that overlaps this def, if any.
2410     VNInfo *OtherVNI = nullptr;
2411 
2412     /// Is this value an IMPLICIT_DEF that can be erased?
2413     ///
2414     /// IMPLICIT_DEF values should only exist at the end of a basic block that
2415     /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be
2416     /// safely erased if they are overlapping a live value in the other live
2417     /// interval.
2418     ///
2419     /// Weird control flow graphs and incomplete PHI handling in
2420     /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with
2421     /// longer live ranges. Such IMPLICIT_DEF values should be treated like
2422     /// normal values.
2423     bool ErasableImplicitDef = false;
2424 
2425     /// True when the live range of this value will be pruned because of an
2426     /// overlapping CR_Replace value in the other live range.
2427     bool Pruned = false;
2428 
2429     /// True once Pruned above has been computed.
2430     bool PrunedComputed = false;
2431 
2432     /// True if this value is determined to be identical to OtherVNI
2433     /// (in valuesIdentical). This is used with CR_Erase where the erased
2434     /// copy is redundant, i.e. the source value is already the same as
2435     /// the destination. In such cases the subranges need to be updated
2436     /// properly. See comment at pruneSubRegValues for more info.
2437     bool Identical = false;
2438 
2439     Val() = default;
2440 
2441     bool isAnalyzed() const { return WriteLanes.any(); }
2442   };
2443 
2444   /// One entry per value number in LI.
2445   SmallVector<Val, 8> Vals;
2446 
2447   /// Compute the bitmask of lanes actually written by DefMI.
2448   /// Set Redef if there are any partial register definitions that depend on the
2449   /// previous value of the register.
2450   LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const;
2451 
2452   /// Find the ultimate value that VNI was copied from.
2453   std::pair<const VNInfo *, Register> followCopyChain(const VNInfo *VNI) const;
2454 
2455   bool valuesIdentical(VNInfo *Value0, VNInfo *Value1, const JoinVals &Other) const;
2456 
2457   /// Analyze ValNo in this live range, and set all fields of Vals[ValNo].
2458   /// Return a conflict resolution when possible, but leave the hard cases as
2459   /// CR_Unresolved.
2460   /// Recursively calls computeAssignment() on this and Other, guaranteeing that
2461   /// both OtherVNI and RedefVNI have been analyzed and mapped before returning.
2462   /// The recursion always goes upwards in the dominator tree, making loops
2463   /// impossible.
2464   ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other);
2465 
2466   /// Compute the value assignment for ValNo in RI.
2467   /// This may be called recursively by analyzeValue(), but never for a ValNo on
2468   /// the stack.
2469   void computeAssignment(unsigned ValNo, JoinVals &Other);
2470 
2471   /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute
2472   /// the extent of the tainted lanes in the block.
2473   ///
2474   /// Multiple values in Other.LR can be affected since partial redefinitions
2475   /// can preserve previously tainted lanes.
2476   ///
2477   ///   1 %dst = VLOAD           <-- Define all lanes in %dst
2478   ///   2 %src = FOO             <-- ValNo to be joined with %dst:ssub0
2479   ///   3 %dst:ssub1 = BAR       <-- Partial redef doesn't clear taint in ssub0
2480   ///   4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read
2481   ///
2482   /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes)
2483   /// entry to TaintedVals.
2484   ///
2485   /// Returns false if the tainted lanes extend beyond the basic block.
2486   bool
2487   taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
2488               SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent);
2489 
2490   /// Return true if MI uses any of the given Lanes from Reg.
2491   /// This does not include partial redefinitions of Reg.
2492   bool usesLanes(const MachineInstr &MI, Register, unsigned, LaneBitmask) const;
2493 
2494   /// Determine if ValNo is a copy of a value number in LR or Other.LR that will
2495   /// be pruned:
2496   ///
2497   ///   %dst = COPY %src
2498   ///   %src = COPY %dst  <-- This value to be pruned.
2499   ///   %dst = COPY %src  <-- This value is a copy of a pruned value.
2500   bool isPrunedValue(unsigned ValNo, JoinVals &Other);
2501 
2502 public:
2503   JoinVals(LiveRange &LR, Register Reg, unsigned SubIdx, LaneBitmask LaneMask,
2504            SmallVectorImpl<VNInfo *> &newVNInfo, const CoalescerPair &cp,
2505            LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin,
2506            bool TrackSubRegLiveness)
2507       : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask),
2508         SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness),
2509         NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()),
2510         TRI(TRI), Assignments(LR.getNumValNums(), -1),
2511         Vals(LR.getNumValNums()) {}
2512 
2513   /// Analyze defs in LR and compute a value mapping in NewVNInfo.
2514   /// Returns false if any conflicts were impossible to resolve.
2515   bool mapValues(JoinVals &Other);
2516 
2517   /// Try to resolve conflicts that require all values to be mapped.
2518   /// Returns false if any conflicts were impossible to resolve.
2519   bool resolveConflicts(JoinVals &Other);
2520 
2521   /// Prune the live range of values in Other.LR where they would conflict with
2522   /// CR_Replace values in LR. Collect end points for restoring the live range
2523   /// after joining.
2524   void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints,
2525                    bool changeInstrs);
2526 
2527   /// Removes subranges starting at copies that get removed. This sometimes
2528   /// happens when undefined subranges are copied around. These ranges contain
2529   /// no useful information and can be removed.
2530   void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask);
2531 
2532   /// Pruning values in subranges can lead to removing segments in these
2533   /// subranges started by IMPLICIT_DEFs. The corresponding segments in
2534   /// the main range also need to be removed. This function will mark
2535   /// the corresponding values in the main range as pruned, so that
2536   /// eraseInstrs can do the final cleanup.
2537   /// The parameter @p LI must be the interval whose main range is the
2538   /// live range LR.
2539   void pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange);
2540 
2541   /// Erase any machine instructions that have been coalesced away.
2542   /// Add erased instructions to ErasedInstrs.
2543   /// Add foreign virtual registers to ShrinkRegs if their live range ended at
2544   /// the erased instrs.
2545   void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
2546                    SmallVectorImpl<Register> &ShrinkRegs,
2547                    LiveInterval *LI = nullptr);
2548 
2549   /// Remove liverange defs at places where implicit defs will be removed.
2550   void removeImplicitDefs();
2551 
2552   /// Get the value assignments suitable for passing to LiveInterval::join.
2553   const int *getAssignments() const { return Assignments.data(); }
2554 
2555   /// Get the conflict resolution for a value number.
2556   ConflictResolution getResolution(unsigned Num) const {
2557     return Vals[Num].Resolution;
2558   }
2559 };
2560 
2561 } // end anonymous namespace
2562 
2563 LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef)
2564   const {
2565   LaneBitmask L;
2566   for (const MachineOperand &MO : DefMI->operands()) {
2567     if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef())
2568       continue;
2569     L |= TRI->getSubRegIndexLaneMask(
2570            TRI->composeSubRegIndices(SubIdx, MO.getSubReg()));
2571     if (MO.readsReg())
2572       Redef = true;
2573   }
2574   return L;
2575 }
2576 
2577 std::pair<const VNInfo *, Register>
2578 JoinVals::followCopyChain(const VNInfo *VNI) const {
2579   Register TrackReg = Reg;
2580 
2581   while (!VNI->isPHIDef()) {
2582     SlotIndex Def = VNI->def;
2583     MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
2584     assert(MI && "No defining instruction");
2585     if (!MI->isFullCopy())
2586       return std::make_pair(VNI, TrackReg);
2587     Register SrcReg = MI->getOperand(1).getReg();
2588     if (!SrcReg.isVirtual())
2589       return std::make_pair(VNI, TrackReg);
2590 
2591     const LiveInterval &LI = LIS->getInterval(SrcReg);
2592     const VNInfo *ValueIn;
2593     // No subrange involved.
2594     if (!SubRangeJoin || !LI.hasSubRanges()) {
2595       LiveQueryResult LRQ = LI.Query(Def);
2596       ValueIn = LRQ.valueIn();
2597     } else {
2598       // Query subranges. Ensure that all matching ones take us to the same def
2599       // (allowing some of them to be undef).
2600       ValueIn = nullptr;
2601       for (const LiveInterval::SubRange &S : LI.subranges()) {
2602         // Transform lanemask to a mask in the joined live interval.
2603         LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask);
2604         if ((SMask & LaneMask).none())
2605           continue;
2606         LiveQueryResult LRQ = S.Query(Def);
2607         if (!ValueIn) {
2608           ValueIn = LRQ.valueIn();
2609           continue;
2610         }
2611         if (LRQ.valueIn() && ValueIn != LRQ.valueIn())
2612           return std::make_pair(VNI, TrackReg);
2613       }
2614     }
2615     if (ValueIn == nullptr) {
2616       // Reaching an undefined value is legitimate, for example:
2617       //
2618       // 1   undef %0.sub1 = ...  ;; %0.sub0 == undef
2619       // 2   %1 = COPY %0         ;; %1 is defined here.
2620       // 3   %0 = COPY %1         ;; Now %0.sub0 has a definition,
2621       //                          ;; but it's equivalent to "undef".
2622       return std::make_pair(nullptr, SrcReg);
2623     }
2624     VNI = ValueIn;
2625     TrackReg = SrcReg;
2626   }
2627   return std::make_pair(VNI, TrackReg);
2628 }
2629 
2630 bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1,
2631                                const JoinVals &Other) const {
2632   const VNInfo *Orig0;
2633   Register Reg0;
2634   std::tie(Orig0, Reg0) = followCopyChain(Value0);
2635   if (Orig0 == Value1 && Reg0 == Other.Reg)
2636     return true;
2637 
2638   const VNInfo *Orig1;
2639   Register Reg1;
2640   std::tie(Orig1, Reg1) = Other.followCopyChain(Value1);
2641   // If both values are undefined, and the source registers are the same
2642   // register, the values are identical. Filter out cases where only one
2643   // value is defined.
2644   if (Orig0 == nullptr || Orig1 == nullptr)
2645     return Orig0 == Orig1 && Reg0 == Reg1;
2646 
2647   // The values are equal if they are defined at the same place and use the
2648   // same register. Note that we cannot compare VNInfos directly as some of
2649   // them might be from a copy created in mergeSubRangeInto()  while the other
2650   // is from the original LiveInterval.
2651   return Orig0->def == Orig1->def && Reg0 == Reg1;
2652 }
2653 
2654 JoinVals::ConflictResolution
2655 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
2656   Val &V = Vals[ValNo];
2657   assert(!V.isAnalyzed() && "Value has already been analyzed!");
2658   VNInfo *VNI = LR.getValNumInfo(ValNo);
2659   if (VNI->isUnused()) {
2660     V.WriteLanes = LaneBitmask::getAll();
2661     return CR_Keep;
2662   }
2663 
2664   // Get the instruction defining this value, compute the lanes written.
2665   const MachineInstr *DefMI = nullptr;
2666   if (VNI->isPHIDef()) {
2667     // Conservatively assume that all lanes in a PHI are valid.
2668     LaneBitmask Lanes = SubRangeJoin ? LaneBitmask::getLane(0)
2669                                      : TRI->getSubRegIndexLaneMask(SubIdx);
2670     V.ValidLanes = V.WriteLanes = Lanes;
2671   } else {
2672     DefMI = Indexes->getInstructionFromIndex(VNI->def);
2673     assert(DefMI != nullptr);
2674     if (SubRangeJoin) {
2675       // We don't care about the lanes when joining subregister ranges.
2676       V.WriteLanes = V.ValidLanes = LaneBitmask::getLane(0);
2677       if (DefMI->isImplicitDef()) {
2678         V.ValidLanes = LaneBitmask::getNone();
2679         V.ErasableImplicitDef = true;
2680       }
2681     } else {
2682       bool Redef = false;
2683       V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef);
2684 
2685       // If this is a read-modify-write instruction, there may be more valid
2686       // lanes than the ones written by this instruction.
2687       // This only covers partial redef operands. DefMI may have normal use
2688       // operands reading the register. They don't contribute valid lanes.
2689       //
2690       // This adds ssub1 to the set of valid lanes in %src:
2691       //
2692       //   %src:ssub1 = FOO
2693       //
2694       // This leaves only ssub1 valid, making any other lanes undef:
2695       //
2696       //   %src:ssub1<def,read-undef> = FOO %src:ssub2
2697       //
2698       // The <read-undef> flag on the def operand means that old lane values are
2699       // not important.
2700       if (Redef) {
2701         V.RedefVNI = LR.Query(VNI->def).valueIn();
2702         assert((TrackSubRegLiveness || V.RedefVNI) &&
2703                "Instruction is reading nonexistent value");
2704         if (V.RedefVNI != nullptr) {
2705           computeAssignment(V.RedefVNI->id, Other);
2706           V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes;
2707         }
2708       }
2709 
2710       // An IMPLICIT_DEF writes undef values.
2711       if (DefMI->isImplicitDef()) {
2712         // We normally expect IMPLICIT_DEF values to be live only until the end
2713         // of their block. If the value is really live longer and gets pruned in
2714         // another block, this flag is cleared again.
2715         //
2716         // Clearing the valid lanes is deferred until it is sure this can be
2717         // erased.
2718         V.ErasableImplicitDef = true;
2719       }
2720     }
2721   }
2722 
2723   // Find the value in Other that overlaps VNI->def, if any.
2724   LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def);
2725 
2726   // It is possible that both values are defined by the same instruction, or
2727   // the values are PHIs defined in the same block. When that happens, the two
2728   // values should be merged into one, but not into any preceding value.
2729   // The first value defined or visited gets CR_Keep, the other gets CR_Merge.
2730   if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) {
2731     assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ");
2732 
2733     // One value stays, the other is merged. Keep the earlier one, or the first
2734     // one we see.
2735     if (OtherVNI->def < VNI->def)
2736       Other.computeAssignment(OtherVNI->id, *this);
2737     else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) {
2738       // This is an early-clobber def overlapping a live-in value in the other
2739       // register. Not mergeable.
2740       V.OtherVNI = OtherLRQ.valueIn();
2741       return CR_Impossible;
2742     }
2743     V.OtherVNI = OtherVNI;
2744     Val &OtherV = Other.Vals[OtherVNI->id];
2745     // Keep this value, check for conflicts when analyzing OtherVNI.
2746     if (!OtherV.isAnalyzed())
2747       return CR_Keep;
2748     // Both sides have been analyzed now.
2749     // Allow overlapping PHI values. Any real interference would show up in a
2750     // predecessor, the PHI itself can't introduce any conflicts.
2751     if (VNI->isPHIDef())
2752       return CR_Merge;
2753     if ((V.ValidLanes & OtherV.ValidLanes).any())
2754       // Overlapping lanes can't be resolved.
2755       return CR_Impossible;
2756     else
2757       return CR_Merge;
2758   }
2759 
2760   // No simultaneous def. Is Other live at the def?
2761   V.OtherVNI = OtherLRQ.valueIn();
2762   if (!V.OtherVNI)
2763     // No overlap, no conflict.
2764     return CR_Keep;
2765 
2766   assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ");
2767 
2768   // We have overlapping values, or possibly a kill of Other.
2769   // Recursively compute assignments up the dominator tree.
2770   Other.computeAssignment(V.OtherVNI->id, *this);
2771   Val &OtherV = Other.Vals[V.OtherVNI->id];
2772 
2773   if (OtherV.ErasableImplicitDef) {
2774     // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block.
2775     // This shouldn't normally happen, but ProcessImplicitDefs can leave such
2776     // IMPLICIT_DEF instructions behind, and there is nothing wrong with it
2777     // technically.
2778     //
2779     // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try
2780     // to erase the IMPLICIT_DEF instruction.
2781     if (DefMI &&
2782         DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) {
2783       LLVM_DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def
2784                  << " extends into "
2785                  << printMBBReference(*DefMI->getParent())
2786                  << ", keeping it.\n");
2787       OtherV.ErasableImplicitDef = false;
2788     } else {
2789       // We deferred clearing these lanes in case we needed to save them
2790       OtherV.ValidLanes &= ~OtherV.WriteLanes;
2791     }
2792   }
2793 
2794   // Allow overlapping PHI values. Any real interference would show up in a
2795   // predecessor, the PHI itself can't introduce any conflicts.
2796   if (VNI->isPHIDef())
2797     return CR_Replace;
2798 
2799   // Check for simple erasable conflicts.
2800   if (DefMI->isImplicitDef())
2801     return CR_Erase;
2802 
2803   // Include the non-conflict where DefMI is a coalescable copy that kills
2804   // OtherVNI. We still want the copy erased and value numbers merged.
2805   if (CP.isCoalescable(DefMI)) {
2806     // Some of the lanes copied from OtherVNI may be undef, making them undef
2807     // here too.
2808     V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes;
2809     return CR_Erase;
2810   }
2811 
2812   // This may not be a real conflict if DefMI simply kills Other and defines
2813   // VNI.
2814   if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def)
2815     return CR_Keep;
2816 
2817   // Handle the case where VNI and OtherVNI can be proven to be identical:
2818   //
2819   //   %other = COPY %ext
2820   //   %this  = COPY %ext <-- Erase this copy
2821   //
2822   if (DefMI->isFullCopy() && !CP.isPartial() &&
2823       valuesIdentical(VNI, V.OtherVNI, Other)) {
2824     V.Identical = true;
2825     return CR_Erase;
2826   }
2827 
2828   // The remaining checks apply to the lanes, which aren't tracked here.  This
2829   // was already decided to be OK via the following CR_Replace condition.
2830   // CR_Replace.
2831   if (SubRangeJoin)
2832     return CR_Replace;
2833 
2834   // If the lanes written by this instruction were all undef in OtherVNI, it is
2835   // still safe to join the live ranges. This can't be done with a simple value
2836   // mapping, though - OtherVNI will map to multiple values:
2837   //
2838   //   1 %dst:ssub0 = FOO                <-- OtherVNI
2839   //   2 %src = BAR                      <-- VNI
2840   //   3 %dst:ssub1 = COPY killed %src    <-- Eliminate this copy.
2841   //   4 BAZ killed %dst
2842   //   5 QUUX killed %src
2843   //
2844   // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace
2845   // handles this complex value mapping.
2846   if ((V.WriteLanes & OtherV.ValidLanes).none())
2847     return CR_Replace;
2848 
2849   // If the other live range is killed by DefMI and the live ranges are still
2850   // overlapping, it must be because we're looking at an early clobber def:
2851   //
2852   //   %dst<def,early-clobber> = ASM killed %src
2853   //
2854   // In this case, it is illegal to merge the two live ranges since the early
2855   // clobber def would clobber %src before it was read.
2856   if (OtherLRQ.isKill()) {
2857     // This case where the def doesn't overlap the kill is handled above.
2858     assert(VNI->def.isEarlyClobber() &&
2859            "Only early clobber defs can overlap a kill");
2860     return CR_Impossible;
2861   }
2862 
2863   // VNI is clobbering live lanes in OtherVNI, but there is still the
2864   // possibility that no instructions actually read the clobbered lanes.
2865   // If we're clobbering all the lanes in OtherVNI, at least one must be read.
2866   // Otherwise Other.RI wouldn't be live here.
2867   if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes).none())
2868     return CR_Impossible;
2869 
2870   if (TrackSubRegLiveness) {
2871     auto &OtherLI = LIS->getInterval(Other.Reg);
2872     // If OtherVNI does not have subranges, it means all the lanes of OtherVNI
2873     // share the same live range, so we just need to check whether they have
2874     // any conflict bit in their LaneMask.
2875     if (!OtherLI.hasSubRanges()) {
2876       LaneBitmask OtherMask = TRI->getSubRegIndexLaneMask(Other.SubIdx);
2877       return (OtherMask & V.WriteLanes).none() ? CR_Replace : CR_Impossible;
2878     }
2879 
2880     // If we are clobbering some active lanes of OtherVNI at VNI->def, it is
2881     // impossible to resolve the conflict. Otherwise, we can just replace
2882     // OtherVNI because of no real conflict.
2883     for (LiveInterval::SubRange &OtherSR : OtherLI.subranges()) {
2884       LaneBitmask OtherMask =
2885           TRI->composeSubRegIndexLaneMask(Other.SubIdx, OtherSR.LaneMask);
2886       if ((OtherMask & V.WriteLanes).none())
2887         continue;
2888 
2889       auto OtherSRQ = OtherSR.Query(VNI->def);
2890       if (OtherSRQ.valueIn() && OtherSRQ.endPoint() > VNI->def) {
2891         // VNI is clobbering some lanes of OtherVNI, they have real conflict.
2892         return CR_Impossible;
2893       }
2894     }
2895 
2896     // VNI is NOT clobbering any lane of OtherVNI, just replace OtherVNI.
2897     return CR_Replace;
2898   }
2899 
2900   // We need to verify that no instructions are reading the clobbered lanes.
2901   // To save compile time, we'll only check that locally. Don't allow the
2902   // tainted value to escape the basic block.
2903   MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2904   if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB))
2905     return CR_Impossible;
2906 
2907   // There are still some things that could go wrong besides clobbered lanes
2908   // being read, for example OtherVNI may be only partially redefined in MBB,
2909   // and some clobbered lanes could escape the block. Save this analysis for
2910   // resolveConflicts() when all values have been mapped. We need to know
2911   // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute
2912   // that now - the recursive analyzeValue() calls must go upwards in the
2913   // dominator tree.
2914   return CR_Unresolved;
2915 }
2916 
2917 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) {
2918   Val &V = Vals[ValNo];
2919   if (V.isAnalyzed()) {
2920     // Recursion should always move up the dominator tree, so ValNo is not
2921     // supposed to reappear before it has been assigned.
2922     assert(Assignments[ValNo] != -1 && "Bad recursion?");
2923     return;
2924   }
2925   switch ((V.Resolution = analyzeValue(ValNo, Other))) {
2926   case CR_Erase:
2927   case CR_Merge:
2928     // Merge this ValNo into OtherVNI.
2929     assert(V.OtherVNI && "OtherVNI not assigned, can't merge.");
2930     assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion");
2931     Assignments[ValNo] = Other.Assignments[V.OtherVNI->id];
2932     LLVM_DEBUG(dbgs() << "\t\tmerge " << printReg(Reg) << ':' << ValNo << '@'
2933                       << LR.getValNumInfo(ValNo)->def << " into "
2934                       << printReg(Other.Reg) << ':' << V.OtherVNI->id << '@'
2935                       << V.OtherVNI->def << " --> @"
2936                       << NewVNInfo[Assignments[ValNo]]->def << '\n');
2937     break;
2938   case CR_Replace:
2939   case CR_Unresolved: {
2940     // The other value is going to be pruned if this join is successful.
2941     assert(V.OtherVNI && "OtherVNI not assigned, can't prune");
2942     Val &OtherV = Other.Vals[V.OtherVNI->id];
2943     // We cannot erase an IMPLICIT_DEF if we don't have valid values for all
2944     // its lanes.
2945     if (OtherV.ErasableImplicitDef &&
2946         TrackSubRegLiveness &&
2947         (OtherV.WriteLanes & ~V.ValidLanes).any()) {
2948       LLVM_DEBUG(dbgs() << "Cannot erase implicit_def with missing values\n");
2949 
2950       OtherV.ErasableImplicitDef = false;
2951       // The valid lanes written by the implicit_def were speculatively cleared
2952       // before, so make this more conservative. It may be better to track this,
2953       // I haven't found a testcase where it matters.
2954       OtherV.ValidLanes = LaneBitmask::getAll();
2955     }
2956 
2957     OtherV.Pruned = true;
2958     LLVM_FALLTHROUGH;
2959   }
2960   default:
2961     // This value number needs to go in the final joined live range.
2962     Assignments[ValNo] = NewVNInfo.size();
2963     NewVNInfo.push_back(LR.getValNumInfo(ValNo));
2964     break;
2965   }
2966 }
2967 
2968 bool JoinVals::mapValues(JoinVals &Other) {
2969   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2970     computeAssignment(i, Other);
2971     if (Vals[i].Resolution == CR_Impossible) {
2972       LLVM_DEBUG(dbgs() << "\t\tinterference at " << printReg(Reg) << ':' << i
2973                         << '@' << LR.getValNumInfo(i)->def << '\n');
2974       return false;
2975     }
2976   }
2977   return true;
2978 }
2979 
2980 bool JoinVals::
2981 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
2982             SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent) {
2983   VNInfo *VNI = LR.getValNumInfo(ValNo);
2984   MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2985   SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB);
2986 
2987   // Scan Other.LR from VNI.def to MBBEnd.
2988   LiveInterval::iterator OtherI = Other.LR.find(VNI->def);
2989   assert(OtherI != Other.LR.end() && "No conflict?");
2990   do {
2991     // OtherI is pointing to a tainted value. Abort the join if the tainted
2992     // lanes escape the block.
2993     SlotIndex End = OtherI->end;
2994     if (End >= MBBEnd) {
2995       LLVM_DEBUG(dbgs() << "\t\ttaints global " << printReg(Other.Reg) << ':'
2996                         << OtherI->valno->id << '@' << OtherI->start << '\n');
2997       return false;
2998     }
2999     LLVM_DEBUG(dbgs() << "\t\ttaints local " << printReg(Other.Reg) << ':'
3000                       << OtherI->valno->id << '@' << OtherI->start << " to "
3001                       << End << '\n');
3002     // A dead def is not a problem.
3003     if (End.isDead())
3004       break;
3005     TaintExtent.push_back(std::make_pair(End, TaintedLanes));
3006 
3007     // Check for another def in the MBB.
3008     if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd)
3009       break;
3010 
3011     // Lanes written by the new def are no longer tainted.
3012     const Val &OV = Other.Vals[OtherI->valno->id];
3013     TaintedLanes &= ~OV.WriteLanes;
3014     if (!OV.RedefVNI)
3015       break;
3016   } while (TaintedLanes.any());
3017   return true;
3018 }
3019 
3020 bool JoinVals::usesLanes(const MachineInstr &MI, Register Reg, unsigned SubIdx,
3021                          LaneBitmask Lanes) const {
3022   if (MI.isDebugOrPseudoInstr())
3023     return false;
3024   for (const MachineOperand &MO : MI.operands()) {
3025     if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg)
3026       continue;
3027     if (!MO.readsReg())
3028       continue;
3029     unsigned S = TRI->composeSubRegIndices(SubIdx, MO.getSubReg());
3030     if ((Lanes & TRI->getSubRegIndexLaneMask(S)).any())
3031       return true;
3032   }
3033   return false;
3034 }
3035 
3036 bool JoinVals::resolveConflicts(JoinVals &Other) {
3037   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3038     Val &V = Vals[i];
3039     assert(V.Resolution != CR_Impossible && "Unresolvable conflict");
3040     if (V.Resolution != CR_Unresolved)
3041       continue;
3042     LLVM_DEBUG(dbgs() << "\t\tconflict at " << printReg(Reg) << ':' << i << '@'
3043                       << LR.getValNumInfo(i)->def
3044                       << ' ' << PrintLaneMask(LaneMask) << '\n');
3045     if (SubRangeJoin)
3046       return false;
3047 
3048     ++NumLaneConflicts;
3049     assert(V.OtherVNI && "Inconsistent conflict resolution.");
3050     VNInfo *VNI = LR.getValNumInfo(i);
3051     const Val &OtherV = Other.Vals[V.OtherVNI->id];
3052 
3053     // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the
3054     // join, those lanes will be tainted with a wrong value. Get the extent of
3055     // the tainted lanes.
3056     LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes;
3057     SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent;
3058     if (!taintExtent(i, TaintedLanes, Other, TaintExtent))
3059       // Tainted lanes would extend beyond the basic block.
3060       return false;
3061 
3062     assert(!TaintExtent.empty() && "There should be at least one conflict.");
3063 
3064     // Now look at the instructions from VNI->def to TaintExtent (inclusive).
3065     MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
3066     MachineBasicBlock::iterator MI = MBB->begin();
3067     if (!VNI->isPHIDef()) {
3068       MI = Indexes->getInstructionFromIndex(VNI->def);
3069       if (!VNI->def.isEarlyClobber()) {
3070         // No need to check the instruction defining VNI for reads.
3071         ++MI;
3072       }
3073     }
3074     assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) &&
3075            "Interference ends on VNI->def. Should have been handled earlier");
3076     MachineInstr *LastMI =
3077       Indexes->getInstructionFromIndex(TaintExtent.front().first);
3078     assert(LastMI && "Range must end at a proper instruction");
3079     unsigned TaintNum = 0;
3080     while (true) {
3081       assert(MI != MBB->end() && "Bad LastMI");
3082       if (usesLanes(*MI, Other.Reg, Other.SubIdx, TaintedLanes)) {
3083         LLVM_DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI);
3084         return false;
3085       }
3086       // LastMI is the last instruction to use the current value.
3087       if (&*MI == LastMI) {
3088         if (++TaintNum == TaintExtent.size())
3089           break;
3090         LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first);
3091         assert(LastMI && "Range must end at a proper instruction");
3092         TaintedLanes = TaintExtent[TaintNum].second;
3093       }
3094       ++MI;
3095     }
3096 
3097     // The tainted lanes are unused.
3098     V.Resolution = CR_Replace;
3099     ++NumLaneResolves;
3100   }
3101   return true;
3102 }
3103 
3104 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) {
3105   Val &V = Vals[ValNo];
3106   if (V.Pruned || V.PrunedComputed)
3107     return V.Pruned;
3108 
3109   if (V.Resolution != CR_Erase && V.Resolution != CR_Merge)
3110     return V.Pruned;
3111 
3112   // Follow copies up the dominator tree and check if any intermediate value
3113   // has been pruned.
3114   V.PrunedComputed = true;
3115   V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this);
3116   return V.Pruned;
3117 }
3118 
3119 void JoinVals::pruneValues(JoinVals &Other,
3120                            SmallVectorImpl<SlotIndex> &EndPoints,
3121                            bool changeInstrs) {
3122   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3123     SlotIndex Def = LR.getValNumInfo(i)->def;
3124     switch (Vals[i].Resolution) {
3125     case CR_Keep:
3126       break;
3127     case CR_Replace: {
3128       // This value takes precedence over the value in Other.LR.
3129       LIS->pruneValue(Other.LR, Def, &EndPoints);
3130       // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF
3131       // instructions are only inserted to provide a live-out value for PHI
3132       // predecessors, so the instruction should simply go away once its value
3133       // has been replaced.
3134       Val &OtherV = Other.Vals[Vals[i].OtherVNI->id];
3135       bool EraseImpDef = OtherV.ErasableImplicitDef &&
3136                          OtherV.Resolution == CR_Keep;
3137       if (!Def.isBlock()) {
3138         if (changeInstrs) {
3139           // Remove <def,read-undef> flags. This def is now a partial redef.
3140           // Also remove dead flags since the joined live range will
3141           // continue past this instruction.
3142           for (MachineOperand &MO :
3143                Indexes->getInstructionFromIndex(Def)->operands()) {
3144             if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) {
3145               if (MO.getSubReg() != 0 && MO.isUndef() && !EraseImpDef)
3146                 MO.setIsUndef(false);
3147               MO.setIsDead(false);
3148             }
3149           }
3150         }
3151         // This value will reach instructions below, but we need to make sure
3152         // the live range also reaches the instruction at Def.
3153         if (!EraseImpDef)
3154           EndPoints.push_back(Def);
3155       }
3156       LLVM_DEBUG(dbgs() << "\t\tpruned " << printReg(Other.Reg) << " at " << Def
3157                         << ": " << Other.LR << '\n');
3158       break;
3159     }
3160     case CR_Erase:
3161     case CR_Merge:
3162       if (isPrunedValue(i, Other)) {
3163         // This value is ultimately a copy of a pruned value in LR or Other.LR.
3164         // We can no longer trust the value mapping computed by
3165         // computeAssignment(), the value that was originally copied could have
3166         // been replaced.
3167         LIS->pruneValue(LR, Def, &EndPoints);
3168         LLVM_DEBUG(dbgs() << "\t\tpruned all of " << printReg(Reg) << " at "
3169                           << Def << ": " << LR << '\n');
3170       }
3171       break;
3172     case CR_Unresolved:
3173     case CR_Impossible:
3174       llvm_unreachable("Unresolved conflicts");
3175     }
3176   }
3177 }
3178 
3179 // Check if the segment consists of a copied live-through value (i.e. the copy
3180 // in the block only extended the liveness, of an undef value which we may need
3181 // to handle).
3182 static bool isLiveThrough(const LiveQueryResult Q) {
3183   return Q.valueIn() && Q.valueIn()->isPHIDef() && Q.valueIn() == Q.valueOut();
3184 }
3185 
3186 /// Consider the following situation when coalescing the copy between
3187 /// %31 and %45 at 800. (The vertical lines represent live range segments.)
3188 ///
3189 ///                              Main range         Subrange 0004 (sub2)
3190 ///                              %31    %45           %31    %45
3191 ///  544    %45 = COPY %28               +                    +
3192 ///                                      | v1                 | v1
3193 ///  560B bb.1:                          +                    +
3194 ///  624        = %45.sub2               | v2                 | v2
3195 ///  800    %31 = COPY %45        +      +             +      +
3196 ///                               | v0                 | v0
3197 ///  816    %31.sub1 = ...        +                    |
3198 ///  880    %30 = COPY %31        | v1                 +
3199 ///  928    %45 = COPY %30        |      +                    +
3200 ///                               |      | v0                 | v0  <--+
3201 ///  992B   ; backedge -> bb.1    |      +                    +        |
3202 /// 1040        = %31.sub0        +                                    |
3203 ///                                                 This value must remain
3204 ///                                                 live-out!
3205 ///
3206 /// Assuming that %31 is coalesced into %45, the copy at 928 becomes
3207 /// redundant, since it copies the value from %45 back into it. The
3208 /// conflict resolution for the main range determines that %45.v0 is
3209 /// to be erased, which is ok since %31.v1 is identical to it.
3210 /// The problem happens with the subrange for sub2: it has to be live
3211 /// on exit from the block, but since 928 was actually a point of
3212 /// definition of %45.sub2, %45.sub2 was not live immediately prior
3213 /// to that definition. As a result, when 928 was erased, the value v0
3214 /// for %45.sub2 was pruned in pruneSubRegValues. Consequently, an
3215 /// IMPLICIT_DEF was inserted as a "backedge" definition for %45.sub2,
3216 /// providing an incorrect value to the use at 624.
3217 ///
3218 /// Since the main-range values %31.v1 and %45.v0 were proved to be
3219 /// identical, the corresponding values in subranges must also be the
3220 /// same. A redundant copy is removed because it's not needed, and not
3221 /// because it copied an undefined value, so any liveness that originated
3222 /// from that copy cannot disappear. When pruning a value that started
3223 /// at the removed copy, the corresponding identical value must be
3224 /// extended to replace it.
3225 void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) {
3226   // Look for values being erased.
3227   bool DidPrune = false;
3228   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3229     Val &V = Vals[i];
3230     // We should trigger in all cases in which eraseInstrs() does something.
3231     // match what eraseInstrs() is doing, print a message so
3232     if (V.Resolution != CR_Erase &&
3233         (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned))
3234       continue;
3235 
3236     // Check subranges at the point where the copy will be removed.
3237     SlotIndex Def = LR.getValNumInfo(i)->def;
3238     SlotIndex OtherDef;
3239     if (V.Identical)
3240       OtherDef = V.OtherVNI->def;
3241 
3242     // Print message so mismatches with eraseInstrs() can be diagnosed.
3243     LLVM_DEBUG(dbgs() << "\t\tExpecting instruction removal at " << Def
3244                       << '\n');
3245     for (LiveInterval::SubRange &S : LI.subranges()) {
3246       LiveQueryResult Q = S.Query(Def);
3247 
3248       // If a subrange starts at the copy then an undefined value has been
3249       // copied and we must remove that subrange value as well.
3250       VNInfo *ValueOut = Q.valueOutOrDead();
3251       if (ValueOut != nullptr && (Q.valueIn() == nullptr ||
3252                                   (V.Identical && V.Resolution == CR_Erase &&
3253                                    ValueOut->def == Def))) {
3254         LLVM_DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask)
3255                           << " at " << Def << "\n");
3256         SmallVector<SlotIndex,8> EndPoints;
3257         LIS->pruneValue(S, Def, &EndPoints);
3258         DidPrune = true;
3259         // Mark value number as unused.
3260         ValueOut->markUnused();
3261 
3262         if (V.Identical && S.Query(OtherDef).valueOutOrDead()) {
3263           // If V is identical to V.OtherVNI (and S was live at OtherDef),
3264           // then we can't simply prune V from S. V needs to be replaced
3265           // with V.OtherVNI.
3266           LIS->extendToIndices(S, EndPoints);
3267         }
3268 
3269         // We may need to eliminate the subrange if the copy introduced a live
3270         // out undef value.
3271         if (ValueOut->isPHIDef())
3272           ShrinkMask |= S.LaneMask;
3273         continue;
3274       }
3275 
3276       // If a subrange ends at the copy, then a value was copied but only
3277       // partially used later. Shrink the subregister range appropriately.
3278       //
3279       // Ultimately this calls shrinkToUses, so assuming ShrinkMask is
3280       // conservatively correct.
3281       if ((Q.valueIn() != nullptr && Q.valueOut() == nullptr) ||
3282           (V.Resolution == CR_Erase && isLiveThrough(Q))) {
3283         LLVM_DEBUG(dbgs() << "\t\tDead uses at sublane "
3284                           << PrintLaneMask(S.LaneMask) << " at " << Def
3285                           << "\n");
3286         ShrinkMask |= S.LaneMask;
3287       }
3288     }
3289   }
3290   if (DidPrune)
3291     LI.removeEmptySubRanges();
3292 }
3293 
3294 /// Check if any of the subranges of @p LI contain a definition at @p Def.
3295 static bool isDefInSubRange(LiveInterval &LI, SlotIndex Def) {
3296   for (LiveInterval::SubRange &SR : LI.subranges()) {
3297     if (VNInfo *VNI = SR.Query(Def).valueOutOrDead())
3298       if (VNI->def == Def)
3299         return true;
3300   }
3301   return false;
3302 }
3303 
3304 void JoinVals::pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange) {
3305   assert(&static_cast<LiveRange&>(LI) == &LR);
3306 
3307   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3308     if (Vals[i].Resolution != CR_Keep)
3309       continue;
3310     VNInfo *VNI = LR.getValNumInfo(i);
3311     if (VNI->isUnused() || VNI->isPHIDef() || isDefInSubRange(LI, VNI->def))
3312       continue;
3313     Vals[i].Pruned = true;
3314     ShrinkMainRange = true;
3315   }
3316 }
3317 
3318 void JoinVals::removeImplicitDefs() {
3319   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3320     Val &V = Vals[i];
3321     if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned)
3322       continue;
3323 
3324     VNInfo *VNI = LR.getValNumInfo(i);
3325     VNI->markUnused();
3326     LR.removeValNo(VNI);
3327   }
3328 }
3329 
3330 void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
3331                            SmallVectorImpl<Register> &ShrinkRegs,
3332                            LiveInterval *LI) {
3333   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3334     // Get the def location before markUnused() below invalidates it.
3335     VNInfo *VNI = LR.getValNumInfo(i);
3336     SlotIndex Def = VNI->def;
3337     switch (Vals[i].Resolution) {
3338     case CR_Keep: {
3339       // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any
3340       // longer. The IMPLICIT_DEF instructions are only inserted by
3341       // PHIElimination to guarantee that all PHI predecessors have a value.
3342       if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned)
3343         break;
3344       // Remove value number i from LR.
3345       // For intervals with subranges, removing a segment from the main range
3346       // may require extending the previous segment: for each definition of
3347       // a subregister, there will be a corresponding def in the main range.
3348       // That def may fall in the middle of a segment from another subrange.
3349       // In such cases, removing this def from the main range must be
3350       // complemented by extending the main range to account for the liveness
3351       // of the other subrange.
3352       // The new end point of the main range segment to be extended.
3353       SlotIndex NewEnd;
3354       if (LI != nullptr) {
3355         LiveRange::iterator I = LR.FindSegmentContaining(Def);
3356         assert(I != LR.end());
3357         // Do not extend beyond the end of the segment being removed.
3358         // The segment may have been pruned in preparation for joining
3359         // live ranges.
3360         NewEnd = I->end;
3361       }
3362 
3363       LR.removeValNo(VNI);
3364       // Note that this VNInfo is reused and still referenced in NewVNInfo,
3365       // make it appear like an unused value number.
3366       VNI->markUnused();
3367 
3368       if (LI != nullptr && LI->hasSubRanges()) {
3369         assert(static_cast<LiveRange*>(LI) == &LR);
3370         // Determine the end point based on the subrange information:
3371         // minimum of (earliest def of next segment,
3372         //             latest end point of containing segment)
3373         SlotIndex ED, LE;
3374         for (LiveInterval::SubRange &SR : LI->subranges()) {
3375           LiveRange::iterator I = SR.find(Def);
3376           if (I == SR.end())
3377             continue;
3378           if (I->start > Def)
3379             ED = ED.isValid() ? std::min(ED, I->start) : I->start;
3380           else
3381             LE = LE.isValid() ? std::max(LE, I->end) : I->end;
3382         }
3383         if (LE.isValid())
3384           NewEnd = std::min(NewEnd, LE);
3385         if (ED.isValid())
3386           NewEnd = std::min(NewEnd, ED);
3387 
3388         // We only want to do the extension if there was a subrange that
3389         // was live across Def.
3390         if (LE.isValid()) {
3391           LiveRange::iterator S = LR.find(Def);
3392           if (S != LR.begin())
3393             std::prev(S)->end = NewEnd;
3394         }
3395       }
3396       LLVM_DEBUG({
3397         dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n';
3398         if (LI != nullptr)
3399           dbgs() << "\t\t  LHS = " << *LI << '\n';
3400       });
3401       LLVM_FALLTHROUGH;
3402     }
3403 
3404     case CR_Erase: {
3405       MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
3406       assert(MI && "No instruction to erase");
3407       if (MI->isCopy()) {
3408         Register Reg = MI->getOperand(1).getReg();
3409         if (Register::isVirtualRegister(Reg) && Reg != CP.getSrcReg() &&
3410             Reg != CP.getDstReg())
3411           ShrinkRegs.push_back(Reg);
3412       }
3413       ErasedInstrs.insert(MI);
3414       LLVM_DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI);
3415       LIS->RemoveMachineInstrFromMaps(*MI);
3416       MI->eraseFromParent();
3417       break;
3418     }
3419     default:
3420       break;
3421     }
3422   }
3423 }
3424 
3425 void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
3426                                          LaneBitmask LaneMask,
3427                                          const CoalescerPair &CP) {
3428   SmallVector<VNInfo*, 16> NewVNInfo;
3429   JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask,
3430                    NewVNInfo, CP, LIS, TRI, true, true);
3431   JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask,
3432                    NewVNInfo, CP, LIS, TRI, true, true);
3433 
3434   // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs())
3435   // We should be able to resolve all conflicts here as we could successfully do
3436   // it on the mainrange already. There is however a problem when multiple
3437   // ranges get mapped to the "overflow" lane mask bit which creates unexpected
3438   // interferences.
3439   if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) {
3440     // We already determined that it is legal to merge the intervals, so this
3441     // should never fail.
3442     llvm_unreachable("*** Couldn't join subrange!\n");
3443   }
3444   if (!LHSVals.resolveConflicts(RHSVals) ||
3445       !RHSVals.resolveConflicts(LHSVals)) {
3446     // We already determined that it is legal to merge the intervals, so this
3447     // should never fail.
3448     llvm_unreachable("*** Couldn't join subrange!\n");
3449   }
3450 
3451   // The merging algorithm in LiveInterval::join() can't handle conflicting
3452   // value mappings, so we need to remove any live ranges that overlap a
3453   // CR_Replace resolution. Collect a set of end points that can be used to
3454   // restore the live range after joining.
3455   SmallVector<SlotIndex, 8> EndPoints;
3456   LHSVals.pruneValues(RHSVals, EndPoints, false);
3457   RHSVals.pruneValues(LHSVals, EndPoints, false);
3458 
3459   LHSVals.removeImplicitDefs();
3460   RHSVals.removeImplicitDefs();
3461 
3462   LRange.verify();
3463   RRange.verify();
3464 
3465   // Join RRange into LHS.
3466   LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(),
3467               NewVNInfo);
3468 
3469   LLVM_DEBUG(dbgs() << "\t\tjoined lanes: " << PrintLaneMask(LaneMask)
3470                     << ' ' << LRange << "\n");
3471   if (EndPoints.empty())
3472     return;
3473 
3474   // Recompute the parts of the live range we had to remove because of
3475   // CR_Replace conflicts.
3476   LLVM_DEBUG({
3477     dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
3478     for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
3479       dbgs() << EndPoints[i];
3480       if (i != n-1)
3481         dbgs() << ',';
3482     }
3483     dbgs() << ":  " << LRange << '\n';
3484   });
3485   LIS->extendToIndices(LRange, EndPoints);
3486 }
3487 
3488 void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI,
3489                                           const LiveRange &ToMerge,
3490                                           LaneBitmask LaneMask,
3491                                           CoalescerPair &CP,
3492                                           unsigned ComposeSubRegIdx) {
3493   BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
3494   LI.refineSubRanges(
3495       Allocator, LaneMask,
3496       [this, &Allocator, &ToMerge, &CP](LiveInterval::SubRange &SR) {
3497         if (SR.empty()) {
3498           SR.assign(ToMerge, Allocator);
3499         } else {
3500           // joinSubRegRange() destroys the merged range, so we need a copy.
3501           LiveRange RangeCopy(ToMerge, Allocator);
3502           joinSubRegRanges(SR, RangeCopy, SR.LaneMask, CP);
3503         }
3504       },
3505       *LIS->getSlotIndexes(), *TRI, ComposeSubRegIdx);
3506 }
3507 
3508 bool RegisterCoalescer::isHighCostLiveInterval(LiveInterval &LI) {
3509   if (LI.valnos.size() < LargeIntervalSizeThreshold)
3510     return false;
3511   auto &Counter = LargeLIVisitCounter[LI.reg()];
3512   if (Counter < LargeIntervalFreqThreshold) {
3513     Counter++;
3514     return false;
3515   }
3516   return true;
3517 }
3518 
3519 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
3520   SmallVector<VNInfo*, 16> NewVNInfo;
3521   LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
3522   LiveInterval &LHS = LIS->getInterval(CP.getDstReg());
3523   bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC());
3524   JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), LaneBitmask::getNone(),
3525                    NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
3526   JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), LaneBitmask::getNone(),
3527                    NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
3528 
3529   LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << "\n\t\tLHS = " << LHS << '\n');
3530 
3531   if (isHighCostLiveInterval(LHS) || isHighCostLiveInterval(RHS))
3532     return false;
3533 
3534   // First compute NewVNInfo and the simple value mappings.
3535   // Detect impossible conflicts early.
3536   if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals))
3537     return false;
3538 
3539   // Some conflicts can only be resolved after all values have been mapped.
3540   if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals))
3541     return false;
3542 
3543   // All clear, the live ranges can be merged.
3544   if (RHS.hasSubRanges() || LHS.hasSubRanges()) {
3545     BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
3546 
3547     // Transform lanemasks from the LHS to masks in the coalesced register and
3548     // create initial subranges if necessary.
3549     unsigned DstIdx = CP.getDstIdx();
3550     if (!LHS.hasSubRanges()) {
3551       LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask()
3552                                      : TRI->getSubRegIndexLaneMask(DstIdx);
3553       // LHS must support subregs or we wouldn't be in this codepath.
3554       assert(Mask.any());
3555       LHS.createSubRangeFrom(Allocator, Mask, LHS);
3556     } else if (DstIdx != 0) {
3557       // Transform LHS lanemasks to new register class if necessary.
3558       for (LiveInterval::SubRange &R : LHS.subranges()) {
3559         LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask);
3560         R.LaneMask = Mask;
3561       }
3562     }
3563     LLVM_DEBUG(dbgs() << "\t\tLHST = " << printReg(CP.getDstReg()) << ' ' << LHS
3564                       << '\n');
3565 
3566     // Determine lanemasks of RHS in the coalesced register and merge subranges.
3567     unsigned SrcIdx = CP.getSrcIdx();
3568     if (!RHS.hasSubRanges()) {
3569       LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask()
3570                                      : TRI->getSubRegIndexLaneMask(SrcIdx);
3571       mergeSubRangeInto(LHS, RHS, Mask, CP, DstIdx);
3572     } else {
3573       // Pair up subranges and merge.
3574       for (LiveInterval::SubRange &R : RHS.subranges()) {
3575         LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask);
3576         mergeSubRangeInto(LHS, R, Mask, CP, DstIdx);
3577       }
3578     }
3579     LLVM_DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n");
3580 
3581     // Pruning implicit defs from subranges may result in the main range
3582     // having stale segments.
3583     LHSVals.pruneMainSegments(LHS, ShrinkMainRange);
3584 
3585     LHSVals.pruneSubRegValues(LHS, ShrinkMask);
3586     RHSVals.pruneSubRegValues(LHS, ShrinkMask);
3587   }
3588 
3589   // The merging algorithm in LiveInterval::join() can't handle conflicting
3590   // value mappings, so we need to remove any live ranges that overlap a
3591   // CR_Replace resolution. Collect a set of end points that can be used to
3592   // restore the live range after joining.
3593   SmallVector<SlotIndex, 8> EndPoints;
3594   LHSVals.pruneValues(RHSVals, EndPoints, true);
3595   RHSVals.pruneValues(LHSVals, EndPoints, true);
3596 
3597   // Erase COPY and IMPLICIT_DEF instructions. This may cause some external
3598   // registers to require trimming.
3599   SmallVector<Register, 8> ShrinkRegs;
3600   LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs, &LHS);
3601   RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
3602   while (!ShrinkRegs.empty())
3603     shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val()));
3604 
3605   // Scan and mark undef any DBG_VALUEs that would refer to a different value.
3606   checkMergingChangesDbgValues(CP, LHS, LHSVals, RHS, RHSVals);
3607 
3608   // If the RHS covers any PHI locations that were tracked for debug-info, we
3609   // must update tracking information to reflect the join.
3610   auto RegIt = RegToPHIIdx.find(CP.getSrcReg());
3611   if (RegIt != RegToPHIIdx.end()) {
3612     // Iterate over all the debug instruction numbers assigned this register.
3613     for (unsigned InstID : RegIt->second) {
3614       auto PHIIt = PHIValToPos.find(InstID);
3615       assert(PHIIt != PHIValToPos.end());
3616       const SlotIndex &SI = PHIIt->second.SI;
3617 
3618       // Does the RHS cover the position of this PHI?
3619       auto LII = RHS.find(SI);
3620       if (LII == RHS.end() || LII->start > SI)
3621         continue;
3622 
3623       // Accept two kinds of subregister movement:
3624       //  * When we merge from one register class into a larger register:
3625       //        %1:gr16 = some-inst
3626       //                ->
3627       //        %2:gr32.sub_16bit = some-inst
3628       //  * When the PHI is already in a subregister, and the larger class
3629       //    is coalesced:
3630       //        %2:gr32.sub_16bit = some-inst
3631       //        %3:gr32 = COPY %2
3632       //                ->
3633       //        %3:gr32.sub_16bit = some-inst
3634       // Test for subregister move:
3635       if (CP.getSrcIdx() != 0 || CP.getDstIdx() != 0)
3636         // If we're moving between different subregisters, ignore this join.
3637         // The PHI will not get a location, dropping variable locations.
3638         if (PHIIt->second.SubReg && PHIIt->second.SubReg != CP.getSrcIdx())
3639           continue;
3640 
3641       // Update our tracking of where the PHI is.
3642       PHIIt->second.Reg = CP.getDstReg();
3643 
3644       // If we merge into a sub-register of a larger class (test above),
3645       // update SubReg.
3646       if (CP.getSrcIdx() != 0)
3647         PHIIt->second.SubReg = CP.getSrcIdx();
3648     }
3649 
3650     // Rebuild the register index in RegToPHIIdx to account for PHIs tracking
3651     // different VRegs now. Copy old collection of debug instruction numbers and
3652     // erase the old one:
3653     auto InstrNums = RegIt->second;
3654     RegToPHIIdx.erase(RegIt);
3655 
3656     // There might already be PHIs being tracked in the destination VReg. Insert
3657     // into an existing tracking collection, or insert a new one.
3658     RegIt = RegToPHIIdx.find(CP.getDstReg());
3659     if (RegIt != RegToPHIIdx.end())
3660       RegIt->second.insert(RegIt->second.end(), InstrNums.begin(),
3661                            InstrNums.end());
3662     else
3663       RegToPHIIdx.insert({CP.getDstReg(), InstrNums});
3664   }
3665 
3666   // Join RHS into LHS.
3667   LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo);
3668 
3669   // Kill flags are going to be wrong if the live ranges were overlapping.
3670   // Eventually, we should simply clear all kill flags when computing live
3671   // ranges. They are reinserted after register allocation.
3672   MRI->clearKillFlags(LHS.reg());
3673   MRI->clearKillFlags(RHS.reg());
3674 
3675   if (!EndPoints.empty()) {
3676     // Recompute the parts of the live range we had to remove because of
3677     // CR_Replace conflicts.
3678     LLVM_DEBUG({
3679       dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
3680       for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
3681         dbgs() << EndPoints[i];
3682         if (i != n-1)
3683           dbgs() << ',';
3684       }
3685       dbgs() << ":  " << LHS << '\n';
3686     });
3687     LIS->extendToIndices((LiveRange&)LHS, EndPoints);
3688   }
3689 
3690   return true;
3691 }
3692 
3693 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
3694   return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP);
3695 }
3696 
3697 void RegisterCoalescer::buildVRegToDbgValueMap(MachineFunction &MF)
3698 {
3699   const SlotIndexes &Slots = *LIS->getSlotIndexes();
3700   SmallVector<MachineInstr *, 8> ToInsert;
3701 
3702   // After collecting a block of DBG_VALUEs into ToInsert, enter them into the
3703   // vreg => DbgValueLoc map.
3704   auto CloseNewDVRange = [this, &ToInsert](SlotIndex Slot) {
3705     for (auto *X : ToInsert) {
3706       for (const auto &Op : X->debug_operands()) {
3707         if (Op.isReg() && Op.getReg().isVirtual())
3708           DbgVRegToValues[Op.getReg()].push_back({Slot, X});
3709       }
3710     }
3711 
3712     ToInsert.clear();
3713   };
3714 
3715   // Iterate over all instructions, collecting them into the ToInsert vector.
3716   // Once a non-debug instruction is found, record the slot index of the
3717   // collected DBG_VALUEs.
3718   for (auto &MBB : MF) {
3719     SlotIndex CurrentSlot = Slots.getMBBStartIdx(&MBB);
3720 
3721     for (auto &MI : MBB) {
3722       if (MI.isDebugValue()) {
3723         if (any_of(MI.debug_operands(), [](const MachineOperand &MO) {
3724               return MO.isReg() && MO.getReg().isVirtual();
3725             }))
3726           ToInsert.push_back(&MI);
3727       } else if (!MI.isDebugOrPseudoInstr()) {
3728         CurrentSlot = Slots.getInstructionIndex(MI);
3729         CloseNewDVRange(CurrentSlot);
3730       }
3731     }
3732 
3733     // Close range of DBG_VALUEs at the end of blocks.
3734     CloseNewDVRange(Slots.getMBBEndIdx(&MBB));
3735   }
3736 
3737   // Sort all DBG_VALUEs we've seen by slot number.
3738   for (auto &Pair : DbgVRegToValues)
3739     llvm::sort(Pair.second);
3740 }
3741 
3742 void RegisterCoalescer::checkMergingChangesDbgValues(CoalescerPair &CP,
3743                                                      LiveRange &LHS,
3744                                                      JoinVals &LHSVals,
3745                                                      LiveRange &RHS,
3746                                                      JoinVals &RHSVals) {
3747   auto ScanForDstReg = [&](Register Reg) {
3748     checkMergingChangesDbgValuesImpl(Reg, RHS, LHS, LHSVals);
3749   };
3750 
3751   auto ScanForSrcReg = [&](Register Reg) {
3752     checkMergingChangesDbgValuesImpl(Reg, LHS, RHS, RHSVals);
3753   };
3754 
3755   // Scan for potentially unsound DBG_VALUEs: examine first the register number
3756   // Reg, and then any other vregs that may have been merged into  it.
3757   auto PerformScan = [this](Register Reg, std::function<void(Register)> Func) {
3758     Func(Reg);
3759     if (DbgMergedVRegNums.count(Reg))
3760       for (Register X : DbgMergedVRegNums[Reg])
3761         Func(X);
3762   };
3763 
3764   // Scan for unsound updates of both the source and destination register.
3765   PerformScan(CP.getSrcReg(), ScanForSrcReg);
3766   PerformScan(CP.getDstReg(), ScanForDstReg);
3767 }
3768 
3769 void RegisterCoalescer::checkMergingChangesDbgValuesImpl(Register Reg,
3770                                                          LiveRange &OtherLR,
3771                                                          LiveRange &RegLR,
3772                                                          JoinVals &RegVals) {
3773   // Are there any DBG_VALUEs to examine?
3774   auto VRegMapIt = DbgVRegToValues.find(Reg);
3775   if (VRegMapIt == DbgVRegToValues.end())
3776     return;
3777 
3778   auto &DbgValueSet = VRegMapIt->second;
3779   auto DbgValueSetIt = DbgValueSet.begin();
3780   auto SegmentIt = OtherLR.begin();
3781 
3782   bool LastUndefResult = false;
3783   SlotIndex LastUndefIdx;
3784 
3785   // If the "Other" register is live at a slot Idx, test whether Reg can
3786   // safely be merged with it, or should be marked undef.
3787   auto ShouldUndef = [&RegVals, &RegLR, &LastUndefResult,
3788                       &LastUndefIdx](SlotIndex Idx) -> bool {
3789     // Our worst-case performance typically happens with asan, causing very
3790     // many DBG_VALUEs of the same location. Cache a copy of the most recent
3791     // result for this edge-case.
3792     if (LastUndefIdx == Idx)
3793       return LastUndefResult;
3794 
3795     // If the other range was live, and Reg's was not, the register coalescer
3796     // will not have tried to resolve any conflicts. We don't know whether
3797     // the DBG_VALUE will refer to the same value number, so it must be made
3798     // undef.
3799     auto OtherIt = RegLR.find(Idx);
3800     if (OtherIt == RegLR.end())
3801       return true;
3802 
3803     // Both the registers were live: examine the conflict resolution record for
3804     // the value number Reg refers to. CR_Keep meant that this value number
3805     // "won" and the merged register definitely refers to that value. CR_Erase
3806     // means the value number was a redundant copy of the other value, which
3807     // was coalesced and Reg deleted. It's safe to refer to the other register
3808     // (which will be the source of the copy).
3809     auto Resolution = RegVals.getResolution(OtherIt->valno->id);
3810     LastUndefResult = Resolution != JoinVals::CR_Keep &&
3811                       Resolution != JoinVals::CR_Erase;
3812     LastUndefIdx = Idx;
3813     return LastUndefResult;
3814   };
3815 
3816   // Iterate over both the live-range of the "Other" register, and the set of
3817   // DBG_VALUEs for Reg at the same time. Advance whichever one has the lowest
3818   // slot index. This relies on the DbgValueSet being ordered.
3819   while (DbgValueSetIt != DbgValueSet.end() && SegmentIt != OtherLR.end()) {
3820     if (DbgValueSetIt->first < SegmentIt->end) {
3821       // "Other" is live and there is a DBG_VALUE of Reg: test if we should
3822       // set it undef.
3823       if (DbgValueSetIt->first >= SegmentIt->start) {
3824         bool HasReg = DbgValueSetIt->second->hasDebugOperandForReg(Reg);
3825         bool ShouldUndefReg = ShouldUndef(DbgValueSetIt->first);
3826         if (HasReg && ShouldUndefReg) {
3827           // Mark undef, erase record of this DBG_VALUE to avoid revisiting.
3828           DbgValueSetIt->second->setDebugValueUndef();
3829           continue;
3830         }
3831       }
3832       ++DbgValueSetIt;
3833     } else {
3834       ++SegmentIt;
3835     }
3836   }
3837 }
3838 
3839 namespace {
3840 
3841 /// Information concerning MBB coalescing priority.
3842 struct MBBPriorityInfo {
3843   MachineBasicBlock *MBB;
3844   unsigned Depth;
3845   bool IsSplit;
3846 
3847   MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit)
3848     : MBB(mbb), Depth(depth), IsSplit(issplit) {}
3849 };
3850 
3851 } // end anonymous namespace
3852 
3853 /// C-style comparator that sorts first based on the loop depth of the basic
3854 /// block (the unsigned), and then on the MBB number.
3855 ///
3856 /// EnableGlobalCopies assumes that the primary sort key is loop depth.
3857 static int compareMBBPriority(const MBBPriorityInfo *LHS,
3858                               const MBBPriorityInfo *RHS) {
3859   // Deeper loops first
3860   if (LHS->Depth != RHS->Depth)
3861     return LHS->Depth > RHS->Depth ? -1 : 1;
3862 
3863   // Try to unsplit critical edges next.
3864   if (LHS->IsSplit != RHS->IsSplit)
3865     return LHS->IsSplit ? -1 : 1;
3866 
3867   // Prefer blocks that are more connected in the CFG. This takes care of
3868   // the most difficult copies first while intervals are short.
3869   unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size();
3870   unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size();
3871   if (cl != cr)
3872     return cl > cr ? -1 : 1;
3873 
3874   // As a last resort, sort by block number.
3875   return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1;
3876 }
3877 
3878 /// \returns true if the given copy uses or defines a local live range.
3879 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) {
3880   if (!Copy->isCopy())
3881     return false;
3882 
3883   if (Copy->getOperand(1).isUndef())
3884     return false;
3885 
3886   Register SrcReg = Copy->getOperand(1).getReg();
3887   Register DstReg = Copy->getOperand(0).getReg();
3888   if (Register::isPhysicalRegister(SrcReg) ||
3889       Register::isPhysicalRegister(DstReg))
3890     return false;
3891 
3892   return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg))
3893     || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg));
3894 }
3895 
3896 void RegisterCoalescer::lateLiveIntervalUpdate() {
3897   for (Register reg : ToBeUpdated) {
3898     if (!LIS->hasInterval(reg))
3899       continue;
3900     LiveInterval &LI = LIS->getInterval(reg);
3901     shrinkToUses(&LI, &DeadDefs);
3902     if (!DeadDefs.empty())
3903       eliminateDeadDefs();
3904   }
3905   ToBeUpdated.clear();
3906 }
3907 
3908 bool RegisterCoalescer::
3909 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) {
3910   bool Progress = false;
3911   for (MachineInstr *&MI : CurrList) {
3912     if (!MI)
3913       continue;
3914     // Skip instruction pointers that have already been erased, for example by
3915     // dead code elimination.
3916     if (ErasedInstrs.count(MI)) {
3917       MI = nullptr;
3918       continue;
3919     }
3920     bool Again = false;
3921     bool Success = joinCopy(MI, Again);
3922     Progress |= Success;
3923     if (Success || !Again)
3924       MI = nullptr;
3925   }
3926   return Progress;
3927 }
3928 
3929 /// Check if DstReg is a terminal node.
3930 /// I.e., it does not have any affinity other than \p Copy.
3931 static bool isTerminalReg(Register DstReg, const MachineInstr &Copy,
3932                           const MachineRegisterInfo *MRI) {
3933   assert(Copy.isCopyLike());
3934   // Check if the destination of this copy as any other affinity.
3935   for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg))
3936     if (&MI != &Copy && MI.isCopyLike())
3937       return false;
3938   return true;
3939 }
3940 
3941 bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const {
3942   assert(Copy.isCopyLike());
3943   if (!UseTerminalRule)
3944     return false;
3945   Register SrcReg, DstReg;
3946   unsigned SrcSubReg = 0, DstSubReg = 0;
3947   if (!isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg))
3948     return false;
3949   // Check if the destination of this copy has any other affinity.
3950   if (DstReg.isPhysical() ||
3951       // If SrcReg is a physical register, the copy won't be coalesced.
3952       // Ignoring it may have other side effect (like missing
3953       // rematerialization). So keep it.
3954       SrcReg.isPhysical() || !isTerminalReg(DstReg, Copy, MRI))
3955     return false;
3956 
3957   // DstReg is a terminal node. Check if it interferes with any other
3958   // copy involving SrcReg.
3959   const MachineBasicBlock *OrigBB = Copy.getParent();
3960   const LiveInterval &DstLI = LIS->getInterval(DstReg);
3961   for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) {
3962     // Technically we should check if the weight of the new copy is
3963     // interesting compared to the other one and update the weight
3964     // of the copies accordingly. However, this would only work if
3965     // we would gather all the copies first then coalesce, whereas
3966     // right now we interleave both actions.
3967     // For now, just consider the copies that are in the same block.
3968     if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB)
3969       continue;
3970     Register OtherSrcReg, OtherReg;
3971     unsigned OtherSrcSubReg = 0, OtherSubReg = 0;
3972     if (!isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg,
3973                 OtherSubReg))
3974       return false;
3975     if (OtherReg == SrcReg)
3976       OtherReg = OtherSrcReg;
3977     // Check if OtherReg is a non-terminal.
3978     if (Register::isPhysicalRegister(OtherReg) ||
3979         isTerminalReg(OtherReg, MI, MRI))
3980       continue;
3981     // Check that OtherReg interfere with DstReg.
3982     if (LIS->getInterval(OtherReg).overlaps(DstLI)) {
3983       LLVM_DEBUG(dbgs() << "Apply terminal rule for: " << printReg(DstReg)
3984                         << '\n');
3985       return true;
3986     }
3987   }
3988   return false;
3989 }
3990 
3991 void
3992 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) {
3993   LLVM_DEBUG(dbgs() << MBB->getName() << ":\n");
3994 
3995   // Collect all copy-like instructions in MBB. Don't start coalescing anything
3996   // yet, it might invalidate the iterator.
3997   const unsigned PrevSize = WorkList.size();
3998   if (JoinGlobalCopies) {
3999     SmallVector<MachineInstr*, 2> LocalTerminals;
4000     SmallVector<MachineInstr*, 2> GlobalTerminals;
4001     // Coalesce copies bottom-up to coalesce local defs before local uses. They
4002     // are not inherently easier to resolve, but slightly preferable until we
4003     // have local live range splitting. In particular this is required by
4004     // cmp+jmp macro fusion.
4005     for (MachineInstr &MI : *MBB) {
4006       if (!MI.isCopyLike())
4007         continue;
4008       bool ApplyTerminalRule = applyTerminalRule(MI);
4009       if (isLocalCopy(&MI, LIS)) {
4010         if (ApplyTerminalRule)
4011           LocalTerminals.push_back(&MI);
4012         else
4013           LocalWorkList.push_back(&MI);
4014       } else {
4015         if (ApplyTerminalRule)
4016           GlobalTerminals.push_back(&MI);
4017         else
4018           WorkList.push_back(&MI);
4019       }
4020     }
4021     // Append the copies evicted by the terminal rule at the end of the list.
4022     LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end());
4023     WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end());
4024   }
4025   else {
4026     SmallVector<MachineInstr*, 2> Terminals;
4027     for (MachineInstr &MII : *MBB)
4028       if (MII.isCopyLike()) {
4029         if (applyTerminalRule(MII))
4030           Terminals.push_back(&MII);
4031         else
4032           WorkList.push_back(&MII);
4033       }
4034     // Append the copies evicted by the terminal rule at the end of the list.
4035     WorkList.append(Terminals.begin(), Terminals.end());
4036   }
4037   // Try coalescing the collected copies immediately, and remove the nulls.
4038   // This prevents the WorkList from getting too large since most copies are
4039   // joinable on the first attempt.
4040   MutableArrayRef<MachineInstr*>
4041     CurrList(WorkList.begin() + PrevSize, WorkList.end());
4042   if (copyCoalesceWorkList(CurrList))
4043     WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(),
4044                                nullptr), WorkList.end());
4045 }
4046 
4047 void RegisterCoalescer::coalesceLocals() {
4048   copyCoalesceWorkList(LocalWorkList);
4049   for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) {
4050     if (LocalWorkList[j])
4051       WorkList.push_back(LocalWorkList[j]);
4052   }
4053   LocalWorkList.clear();
4054 }
4055 
4056 void RegisterCoalescer::joinAllIntervals() {
4057   LLVM_DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
4058   assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around.");
4059 
4060   std::vector<MBBPriorityInfo> MBBs;
4061   MBBs.reserve(MF->size());
4062   for (MachineBasicBlock &MBB : *MF) {
4063     MBBs.push_back(MBBPriorityInfo(&MBB, Loops->getLoopDepth(&MBB),
4064                                    JoinSplitEdges && isSplitEdge(&MBB)));
4065   }
4066   array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority);
4067 
4068   // Coalesce intervals in MBB priority order.
4069   unsigned CurrDepth = std::numeric_limits<unsigned>::max();
4070   for (MBBPriorityInfo &MBB : MBBs) {
4071     // Try coalescing the collected local copies for deeper loops.
4072     if (JoinGlobalCopies && MBB.Depth < CurrDepth) {
4073       coalesceLocals();
4074       CurrDepth = MBB.Depth;
4075     }
4076     copyCoalesceInMBB(MBB.MBB);
4077   }
4078   lateLiveIntervalUpdate();
4079   coalesceLocals();
4080 
4081   // Joining intervals can allow other intervals to be joined.  Iteratively join
4082   // until we make no progress.
4083   while (copyCoalesceWorkList(WorkList))
4084     /* empty */ ;
4085   lateLiveIntervalUpdate();
4086 }
4087 
4088 void RegisterCoalescer::releaseMemory() {
4089   ErasedInstrs.clear();
4090   WorkList.clear();
4091   DeadDefs.clear();
4092   InflateRegs.clear();
4093   LargeLIVisitCounter.clear();
4094 }
4095 
4096 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
4097   LLVM_DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
4098                     << "********** Function: " << fn.getName() << '\n');
4099 
4100   // Variables changed between a setjmp and a longjump can have undefined value
4101   // after the longjmp. This behaviour can be observed if such a variable is
4102   // spilled, so longjmp won't restore the value in the spill slot.
4103   // RegisterCoalescer should not run in functions with a setjmp to avoid
4104   // merging such undefined variables with predictable ones.
4105   //
4106   // TODO: Could specifically disable coalescing registers live across setjmp
4107   // calls
4108   if (fn.exposesReturnsTwice()) {
4109     LLVM_DEBUG(
4110         dbgs() << "* Skipped as it exposes funcions that returns twice.\n");
4111     return false;
4112   }
4113 
4114   MF = &fn;
4115   MRI = &fn.getRegInfo();
4116   const TargetSubtargetInfo &STI = fn.getSubtarget();
4117   TRI = STI.getRegisterInfo();
4118   TII = STI.getInstrInfo();
4119   LIS = &getAnalysis<LiveIntervals>();
4120   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
4121   Loops = &getAnalysis<MachineLoopInfo>();
4122   if (EnableGlobalCopies == cl::BOU_UNSET)
4123     JoinGlobalCopies = STI.enableJoinGlobalCopies();
4124   else
4125     JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE);
4126 
4127   // If there are PHIs tracked by debug-info, they will need updating during
4128   // coalescing. Build an index of those PHIs to ease updating.
4129   SlotIndexes *Slots = LIS->getSlotIndexes();
4130   for (const auto &DebugPHI : MF->DebugPHIPositions) {
4131     MachineBasicBlock *MBB = DebugPHI.second.MBB;
4132     Register Reg = DebugPHI.second.Reg;
4133     unsigned SubReg = DebugPHI.second.SubReg;
4134     SlotIndex SI = Slots->getMBBStartIdx(MBB);
4135     PHIValPos P = {SI, Reg, SubReg};
4136     PHIValToPos.insert(std::make_pair(DebugPHI.first, P));
4137     RegToPHIIdx[Reg].push_back(DebugPHI.first);
4138   }
4139 
4140   // The MachineScheduler does not currently require JoinSplitEdges. This will
4141   // either be enabled unconditionally or replaced by a more general live range
4142   // splitting optimization.
4143   JoinSplitEdges = EnableJoinSplits;
4144 
4145   if (VerifyCoalescing)
4146     MF->verify(this, "Before register coalescing");
4147 
4148   DbgVRegToValues.clear();
4149   DbgMergedVRegNums.clear();
4150   buildVRegToDbgValueMap(fn);
4151 
4152   RegClassInfo.runOnMachineFunction(fn);
4153 
4154   // Join (coalesce) intervals if requested.
4155   if (EnableJoining)
4156     joinAllIntervals();
4157 
4158   // After deleting a lot of copies, register classes may be less constrained.
4159   // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
4160   // DPR inflation.
4161   array_pod_sort(InflateRegs.begin(), InflateRegs.end());
4162   InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
4163                     InflateRegs.end());
4164   LLVM_DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size()
4165                     << " regs.\n");
4166   for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
4167     Register Reg = InflateRegs[i];
4168     if (MRI->reg_nodbg_empty(Reg))
4169       continue;
4170     if (MRI->recomputeRegClass(Reg)) {
4171       LLVM_DEBUG(dbgs() << printReg(Reg) << " inflated to "
4172                         << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n');
4173       ++NumInflated;
4174 
4175       LiveInterval &LI = LIS->getInterval(Reg);
4176       if (LI.hasSubRanges()) {
4177         // If the inflated register class does not support subregisters anymore
4178         // remove the subranges.
4179         if (!MRI->shouldTrackSubRegLiveness(Reg)) {
4180           LI.clearSubRanges();
4181         } else {
4182 #ifndef NDEBUG
4183           LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
4184           // If subranges are still supported, then the same subregs
4185           // should still be supported.
4186           for (LiveInterval::SubRange &S : LI.subranges()) {
4187             assert((S.LaneMask & ~MaxMask).none());
4188           }
4189 #endif
4190         }
4191       }
4192     }
4193   }
4194 
4195   // After coalescing, update any PHIs that are being tracked by debug-info
4196   // with their new VReg locations.
4197   for (auto &p : MF->DebugPHIPositions) {
4198     auto it = PHIValToPos.find(p.first);
4199     assert(it != PHIValToPos.end());
4200     p.second.Reg = it->second.Reg;
4201     p.second.SubReg = it->second.SubReg;
4202   }
4203 
4204   PHIValToPos.clear();
4205   RegToPHIIdx.clear();
4206 
4207   LLVM_DEBUG(dump());
4208   if (VerifyCoalescing)
4209     MF->verify(this, "After register coalescing");
4210   return true;
4211 }
4212 
4213 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
4214    LIS->print(O, m);
4215 }
4216