1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the generic RegisterCoalescer interface which
10 // is used as the common interface used by all clients and
11 // implementations of register coalescing.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "RegisterCoalescer.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/LiveInterval.h"
25 #include "llvm/CodeGen/LiveIntervals.h"
26 #include "llvm/CodeGen/LiveRangeEdit.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineLoopInfo.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/CodeGen/RegisterClassInfo.h"
37 #include "llvm/CodeGen/SlotIndexes.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetOpcodes.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/MC/LaneBitmask.h"
45 #include "llvm/MC/MCInstrDesc.h"
46 #include "llvm/MC/MCRegisterInfo.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include <algorithm>
54 #include <cassert>
55 #include <iterator>
56 #include <limits>
57 #include <tuple>
58 #include <utility>
59 #include <vector>
60 
61 using namespace llvm;
62 
63 #define DEBUG_TYPE "regalloc"
64 
65 STATISTIC(numJoins    , "Number of interval joins performed");
66 STATISTIC(numCrossRCs , "Number of cross class joins performed");
67 STATISTIC(numCommutes , "Number of instruction commuting performed");
68 STATISTIC(numExtends  , "Number of copies extended");
69 STATISTIC(NumReMats   , "Number of instructions re-materialized");
70 STATISTIC(NumInflated , "Number of register classes inflated");
71 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested");
72 STATISTIC(NumLaneResolves,  "Number of dead lane conflicts resolved");
73 STATISTIC(NumShrinkToUses,  "Number of shrinkToUses called");
74 
75 static cl::opt<bool> EnableJoining("join-liveintervals",
76                                    cl::desc("Coalesce copies (default=true)"),
77                                    cl::init(true), cl::Hidden);
78 
79 static cl::opt<bool> UseTerminalRule("terminal-rule",
80                                      cl::desc("Apply the terminal rule"),
81                                      cl::init(false), cl::Hidden);
82 
83 /// Temporary flag to test critical edge unsplitting.
84 static cl::opt<bool>
85 EnableJoinSplits("join-splitedges",
86   cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden);
87 
88 /// Temporary flag to test global copy optimization.
89 static cl::opt<cl::boolOrDefault>
90 EnableGlobalCopies("join-globalcopies",
91   cl::desc("Coalesce copies that span blocks (default=subtarget)"),
92   cl::init(cl::BOU_UNSET), cl::Hidden);
93 
94 static cl::opt<bool>
95 VerifyCoalescing("verify-coalescing",
96          cl::desc("Verify machine instrs before and after register coalescing"),
97          cl::Hidden);
98 
99 static cl::opt<unsigned> LateRematUpdateThreshold(
100     "late-remat-update-threshold", cl::Hidden,
101     cl::desc("During rematerialization for a copy, if the def instruction has "
102              "many other copy uses to be rematerialized, delay the multiple "
103              "separate live interval update work and do them all at once after "
104              "all those rematerialization are done. It will save a lot of "
105              "repeated work. "),
106     cl::init(100));
107 
108 static cl::opt<unsigned> LargeIntervalSizeThreshold(
109     "large-interval-size-threshold", cl::Hidden,
110     cl::desc("If the valnos size of an interval is larger than the threshold, "
111              "it is regarded as a large interval. "),
112     cl::init(100));
113 
114 static cl::opt<unsigned> LargeIntervalFreqThreshold(
115     "large-interval-freq-threshold", cl::Hidden,
116     cl::desc("For a large interval, if it is coalesed with other live "
117              "intervals many times more than the threshold, stop its "
118              "coalescing to control the compile time. "),
119     cl::init(100));
120 
121 namespace {
122 
123   class JoinVals;
124 
125   class RegisterCoalescer : public MachineFunctionPass,
126                             private LiveRangeEdit::Delegate {
127     MachineFunction* MF = nullptr;
128     MachineRegisterInfo* MRI = nullptr;
129     const TargetRegisterInfo* TRI = nullptr;
130     const TargetInstrInfo* TII = nullptr;
131     LiveIntervals *LIS = nullptr;
132     const MachineLoopInfo* Loops = nullptr;
133     AliasAnalysis *AA = nullptr;
134     RegisterClassInfo RegClassInfo;
135 
136     /// Debug variable location tracking -- for each VReg, maintain an
137     /// ordered-by-slot-index set of DBG_VALUEs, to help quick
138     /// identification of whether coalescing may change location validity.
139     using DbgValueLoc = std::pair<SlotIndex, MachineInstr*>;
140     DenseMap<unsigned, std::vector<DbgValueLoc>> DbgVRegToValues;
141 
142     /// VRegs may be repeatedly coalesced, and have many DBG_VALUEs attached.
143     /// To avoid repeatedly merging sets of DbgValueLocs, instead record
144     /// which vregs have been coalesced, and where to. This map is from
145     /// vreg => {set of vregs merged in}.
146     DenseMap<unsigned, SmallVector<unsigned, 4>> DbgMergedVRegNums;
147 
148     /// A LaneMask to remember on which subregister live ranges we need to call
149     /// shrinkToUses() later.
150     LaneBitmask ShrinkMask;
151 
152     /// True if the main range of the currently coalesced intervals should be
153     /// checked for smaller live intervals.
154     bool ShrinkMainRange = false;
155 
156     /// True if the coalescer should aggressively coalesce global copies
157     /// in favor of keeping local copies.
158     bool JoinGlobalCopies = false;
159 
160     /// True if the coalescer should aggressively coalesce fall-thru
161     /// blocks exclusively containing copies.
162     bool JoinSplitEdges = false;
163 
164     /// Copy instructions yet to be coalesced.
165     SmallVector<MachineInstr*, 8> WorkList;
166     SmallVector<MachineInstr*, 8> LocalWorkList;
167 
168     /// Set of instruction pointers that have been erased, and
169     /// that may be present in WorkList.
170     SmallPtrSet<MachineInstr*, 8> ErasedInstrs;
171 
172     /// Dead instructions that are about to be deleted.
173     SmallVector<MachineInstr*, 8> DeadDefs;
174 
175     /// Virtual registers to be considered for register class inflation.
176     SmallVector<unsigned, 8> InflateRegs;
177 
178     /// The collection of live intervals which should have been updated
179     /// immediately after rematerialiation but delayed until
180     /// lateLiveIntervalUpdate is called.
181     DenseSet<unsigned> ToBeUpdated;
182 
183     /// Record how many times the large live interval with many valnos
184     /// has been tried to join with other live interval.
185     DenseMap<unsigned, unsigned long> LargeLIVisitCounter;
186 
187     /// Recursively eliminate dead defs in DeadDefs.
188     void eliminateDeadDefs();
189 
190     /// LiveRangeEdit callback for eliminateDeadDefs().
191     void LRE_WillEraseInstruction(MachineInstr *MI) override;
192 
193     /// Coalesce the LocalWorkList.
194     void coalesceLocals();
195 
196     /// Join compatible live intervals
197     void joinAllIntervals();
198 
199     /// Coalesce copies in the specified MBB, putting
200     /// copies that cannot yet be coalesced into WorkList.
201     void copyCoalesceInMBB(MachineBasicBlock *MBB);
202 
203     /// Tries to coalesce all copies in CurrList. Returns true if any progress
204     /// was made.
205     bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList);
206 
207     /// If one def has many copy like uses, and those copy uses are all
208     /// rematerialized, the live interval update needed for those
209     /// rematerializations will be delayed and done all at once instead
210     /// of being done multiple times. This is to save compile cost because
211     /// live interval update is costly.
212     void lateLiveIntervalUpdate();
213 
214     /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the
215     /// src/dst of the copy instruction CopyMI.  This returns true if the copy
216     /// was successfully coalesced away. If it is not currently possible to
217     /// coalesce this interval, but it may be possible if other things get
218     /// coalesced, then it returns true by reference in 'Again'.
219     bool joinCopy(MachineInstr *CopyMI, bool &Again);
220 
221     /// Attempt to join these two intervals.  On failure, this
222     /// returns false.  The output "SrcInt" will not have been modified, so we
223     /// can use this information below to update aliases.
224     bool joinIntervals(CoalescerPair &CP);
225 
226     /// Attempt joining two virtual registers. Return true on success.
227     bool joinVirtRegs(CoalescerPair &CP);
228 
229     /// If a live interval has many valnos and is coalesced with other
230     /// live intervals many times, we regard such live interval as having
231     /// high compile time cost.
232     bool isHighCostLiveInterval(LiveInterval &LI);
233 
234     /// Attempt joining with a reserved physreg.
235     bool joinReservedPhysReg(CoalescerPair &CP);
236 
237     /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI.
238     /// Subranges in @p LI which only partially interfere with the desired
239     /// LaneMask are split as necessary. @p LaneMask are the lanes that
240     /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange
241     /// lanemasks already adjusted to the coalesced register.
242     void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge,
243                            LaneBitmask LaneMask, CoalescerPair &CP,
244                            unsigned DstIdx);
245 
246     /// Join the liveranges of two subregisters. Joins @p RRange into
247     /// @p LRange, @p RRange may be invalid afterwards.
248     void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
249                           LaneBitmask LaneMask, const CoalescerPair &CP);
250 
251     /// We found a non-trivially-coalescable copy. If the source value number is
252     /// defined by a copy from the destination reg see if we can merge these two
253     /// destination reg valno# into a single value number, eliminating a copy.
254     /// This returns true if an interval was modified.
255     bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
256 
257     /// Return true if there are definitions of IntB
258     /// other than BValNo val# that can reach uses of AValno val# of IntA.
259     bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
260                               VNInfo *AValNo, VNInfo *BValNo);
261 
262     /// We found a non-trivially-coalescable copy.
263     /// If the source value number is defined by a commutable instruction and
264     /// its other operand is coalesced to the copy dest register, see if we
265     /// can transform the copy into a noop by commuting the definition.
266     /// This returns a pair of two flags:
267     /// - the first element is true if an interval was modified,
268     /// - the second element is true if the destination interval needs
269     ///   to be shrunk after deleting the copy.
270     std::pair<bool,bool> removeCopyByCommutingDef(const CoalescerPair &CP,
271                                                   MachineInstr *CopyMI);
272 
273     /// We found a copy which can be moved to its less frequent predecessor.
274     bool removePartialRedundancy(const CoalescerPair &CP, MachineInstr &CopyMI);
275 
276     /// If the source of a copy is defined by a
277     /// trivial computation, replace the copy by rematerialize the definition.
278     bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI,
279                                  bool &IsDefCopy);
280 
281     /// Return true if a copy involving a physreg should be joined.
282     bool canJoinPhys(const CoalescerPair &CP);
283 
284     /// Replace all defs and uses of SrcReg to DstReg and update the subregister
285     /// number if it is not zero. If DstReg is a physical register and the
286     /// existing subregister number of the def / use being updated is not zero,
287     /// make sure to set it to the correct physical subregister.
288     void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx);
289 
290     /// If the given machine operand reads only undefined lanes add an undef
291     /// flag.
292     /// This can happen when undef uses were previously concealed by a copy
293     /// which we coalesced. Example:
294     ///    %0:sub0<def,read-undef> = ...
295     ///    %1 = COPY %0           <-- Coalescing COPY reveals undef
296     ///       = use %1:sub1       <-- hidden undef use
297     void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
298                       MachineOperand &MO, unsigned SubRegIdx);
299 
300     /// Handle copies of undef values. If the undef value is an incoming
301     /// PHI value, it will convert @p CopyMI to an IMPLICIT_DEF.
302     /// Returns nullptr if @p CopyMI was not in any way eliminable. Otherwise,
303     /// it returns @p CopyMI (which could be an IMPLICIT_DEF at this point).
304     MachineInstr *eliminateUndefCopy(MachineInstr *CopyMI);
305 
306     /// Check whether or not we should apply the terminal rule on the
307     /// destination (Dst) of \p Copy.
308     /// When the terminal rule applies, Copy is not profitable to
309     /// coalesce.
310     /// Dst is terminal if it has exactly one affinity (Dst, Src) and
311     /// at least one interference (Dst, Dst2). If Dst is terminal, the
312     /// terminal rule consists in checking that at least one of
313     /// interfering node, say Dst2, has an affinity of equal or greater
314     /// weight with Src.
315     /// In that case, Dst2 and Dst will not be able to be both coalesced
316     /// with Src. Since Dst2 exposes more coalescing opportunities than
317     /// Dst, we can drop \p Copy.
318     bool applyTerminalRule(const MachineInstr &Copy) const;
319 
320     /// Wrapper method for \see LiveIntervals::shrinkToUses.
321     /// This method does the proper fixing of the live-ranges when the afore
322     /// mentioned method returns true.
323     void shrinkToUses(LiveInterval *LI,
324                       SmallVectorImpl<MachineInstr * > *Dead = nullptr) {
325       NumShrinkToUses++;
326       if (LIS->shrinkToUses(LI, Dead)) {
327         /// Check whether or not \p LI is composed by multiple connected
328         /// components and if that is the case, fix that.
329         SmallVector<LiveInterval*, 8> SplitLIs;
330         LIS->splitSeparateComponents(*LI, SplitLIs);
331       }
332     }
333 
334     /// Wrapper Method to do all the necessary work when an Instruction is
335     /// deleted.
336     /// Optimizations should use this to make sure that deleted instructions
337     /// are always accounted for.
338     void deleteInstr(MachineInstr* MI) {
339       ErasedInstrs.insert(MI);
340       LIS->RemoveMachineInstrFromMaps(*MI);
341       MI->eraseFromParent();
342     }
343 
344     /// Walk over function and initialize the DbgVRegToValues map.
345     void buildVRegToDbgValueMap(MachineFunction &MF);
346 
347     /// Test whether, after merging, any DBG_VALUEs would refer to a
348     /// different value number than before merging, and whether this can
349     /// be resolved. If not, mark the DBG_VALUE as being undef.
350     void checkMergingChangesDbgValues(CoalescerPair &CP, LiveRange &LHS,
351                                       JoinVals &LHSVals, LiveRange &RHS,
352                                       JoinVals &RHSVals);
353 
354     void checkMergingChangesDbgValuesImpl(unsigned Reg, LiveRange &OtherRange,
355                                           LiveRange &RegRange, JoinVals &Vals2);
356 
357   public:
358     static char ID; ///< Class identification, replacement for typeinfo
359 
360     RegisterCoalescer() : MachineFunctionPass(ID) {
361       initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
362     }
363 
364     void getAnalysisUsage(AnalysisUsage &AU) const override;
365 
366     void releaseMemory() override;
367 
368     /// This is the pass entry point.
369     bool runOnMachineFunction(MachineFunction&) override;
370 
371     /// Implement the dump method.
372     void print(raw_ostream &O, const Module* = nullptr) const override;
373   };
374 
375 } // end anonymous namespace
376 
377 char RegisterCoalescer::ID = 0;
378 
379 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
380 
381 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
382                       "Simple Register Coalescing", false, false)
383 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
384 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
385 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
386 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
387 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
388                     "Simple Register Coalescing", false, false)
389 
390 LLVM_NODISCARD static bool isMoveInstr(const TargetRegisterInfo &tri,
391                                        const MachineInstr *MI, unsigned &Src,
392                                        unsigned &Dst, unsigned &SrcSub,
393                                        unsigned &DstSub) {
394   if (MI->isCopy()) {
395     Dst = MI->getOperand(0).getReg();
396     DstSub = MI->getOperand(0).getSubReg();
397     Src = MI->getOperand(1).getReg();
398     SrcSub = MI->getOperand(1).getSubReg();
399   } else if (MI->isSubregToReg()) {
400     Dst = MI->getOperand(0).getReg();
401     DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(),
402                                       MI->getOperand(3).getImm());
403     Src = MI->getOperand(2).getReg();
404     SrcSub = MI->getOperand(2).getSubReg();
405   } else
406     return false;
407   return true;
408 }
409 
410 /// Return true if this block should be vacated by the coalescer to eliminate
411 /// branches. The important cases to handle in the coalescer are critical edges
412 /// split during phi elimination which contain only copies. Simple blocks that
413 /// contain non-branches should also be vacated, but this can be handled by an
414 /// earlier pass similar to early if-conversion.
415 static bool isSplitEdge(const MachineBasicBlock *MBB) {
416   if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
417     return false;
418 
419   for (const auto &MI : *MBB) {
420     if (!MI.isCopyLike() && !MI.isUnconditionalBranch())
421       return false;
422   }
423   return true;
424 }
425 
426 bool CoalescerPair::setRegisters(const MachineInstr *MI) {
427   SrcReg = DstReg = 0;
428   SrcIdx = DstIdx = 0;
429   NewRC = nullptr;
430   Flipped = CrossClass = false;
431 
432   unsigned Src, Dst, SrcSub, DstSub;
433   if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
434     return false;
435   Partial = SrcSub || DstSub;
436 
437   // If one register is a physreg, it must be Dst.
438   if (Register::isPhysicalRegister(Src)) {
439     if (Register::isPhysicalRegister(Dst))
440       return false;
441     std::swap(Src, Dst);
442     std::swap(SrcSub, DstSub);
443     Flipped = true;
444   }
445 
446   const MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
447 
448   if (Register::isPhysicalRegister(Dst)) {
449     // Eliminate DstSub on a physreg.
450     if (DstSub) {
451       Dst = TRI.getSubReg(Dst, DstSub);
452       if (!Dst) return false;
453       DstSub = 0;
454     }
455 
456     // Eliminate SrcSub by picking a corresponding Dst superregister.
457     if (SrcSub) {
458       Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
459       if (!Dst) return false;
460     } else if (!MRI.getRegClass(Src)->contains(Dst)) {
461       return false;
462     }
463   } else {
464     // Both registers are virtual.
465     const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
466     const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
467 
468     // Both registers have subreg indices.
469     if (SrcSub && DstSub) {
470       // Copies between different sub-registers are never coalescable.
471       if (Src == Dst && SrcSub != DstSub)
472         return false;
473 
474       NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub,
475                                          SrcIdx, DstIdx);
476       if (!NewRC)
477         return false;
478     } else if (DstSub) {
479       // SrcReg will be merged with a sub-register of DstReg.
480       SrcIdx = DstSub;
481       NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
482     } else if (SrcSub) {
483       // DstReg will be merged with a sub-register of SrcReg.
484       DstIdx = SrcSub;
485       NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub);
486     } else {
487       // This is a straight copy without sub-registers.
488       NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
489     }
490 
491     // The combined constraint may be impossible to satisfy.
492     if (!NewRC)
493       return false;
494 
495     // Prefer SrcReg to be a sub-register of DstReg.
496     // FIXME: Coalescer should support subregs symmetrically.
497     if (DstIdx && !SrcIdx) {
498       std::swap(Src, Dst);
499       std::swap(SrcIdx, DstIdx);
500       Flipped = !Flipped;
501     }
502 
503     CrossClass = NewRC != DstRC || NewRC != SrcRC;
504   }
505   // Check our invariants
506   assert(Register::isVirtualRegister(Src) && "Src must be virtual");
507   assert(!(Register::isPhysicalRegister(Dst) && DstSub) &&
508          "Cannot have a physical SubIdx");
509   SrcReg = Src;
510   DstReg = Dst;
511   return true;
512 }
513 
514 bool CoalescerPair::flip() {
515   if (Register::isPhysicalRegister(DstReg))
516     return false;
517   std::swap(SrcReg, DstReg);
518   std::swap(SrcIdx, DstIdx);
519   Flipped = !Flipped;
520   return true;
521 }
522 
523 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
524   if (!MI)
525     return false;
526   unsigned Src, Dst, SrcSub, DstSub;
527   if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
528     return false;
529 
530   // Find the virtual register that is SrcReg.
531   if (Dst == SrcReg) {
532     std::swap(Src, Dst);
533     std::swap(SrcSub, DstSub);
534   } else if (Src != SrcReg) {
535     return false;
536   }
537 
538   // Now check that Dst matches DstReg.
539   if (Register::isPhysicalRegister(DstReg)) {
540     if (!Register::isPhysicalRegister(Dst))
541       return false;
542     assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state.");
543     // DstSub could be set for a physreg from INSERT_SUBREG.
544     if (DstSub)
545       Dst = TRI.getSubReg(Dst, DstSub);
546     // Full copy of Src.
547     if (!SrcSub)
548       return DstReg == Dst;
549     // This is a partial register copy. Check that the parts match.
550     return TRI.getSubReg(DstReg, SrcSub) == Dst;
551   } else {
552     // DstReg is virtual.
553     if (DstReg != Dst)
554       return false;
555     // Registers match, do the subregisters line up?
556     return TRI.composeSubRegIndices(SrcIdx, SrcSub) ==
557            TRI.composeSubRegIndices(DstIdx, DstSub);
558   }
559 }
560 
561 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
562   AU.setPreservesCFG();
563   AU.addRequired<AAResultsWrapperPass>();
564   AU.addRequired<LiveIntervals>();
565   AU.addPreserved<LiveIntervals>();
566   AU.addPreserved<SlotIndexes>();
567   AU.addRequired<MachineLoopInfo>();
568   AU.addPreserved<MachineLoopInfo>();
569   AU.addPreservedID(MachineDominatorsID);
570   MachineFunctionPass::getAnalysisUsage(AU);
571 }
572 
573 void RegisterCoalescer::eliminateDeadDefs() {
574   SmallVector<unsigned, 8> NewRegs;
575   LiveRangeEdit(nullptr, NewRegs, *MF, *LIS,
576                 nullptr, this).eliminateDeadDefs(DeadDefs);
577 }
578 
579 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) {
580   // MI may be in WorkList. Make sure we don't visit it.
581   ErasedInstrs.insert(MI);
582 }
583 
584 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
585                                              MachineInstr *CopyMI) {
586   assert(!CP.isPartial() && "This doesn't work for partial copies.");
587   assert(!CP.isPhys() && "This doesn't work for physreg copies.");
588 
589   LiveInterval &IntA =
590     LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
591   LiveInterval &IntB =
592     LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
593   SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
594 
595   // We have a non-trivially-coalescable copy with IntA being the source and
596   // IntB being the dest, thus this defines a value number in IntB.  If the
597   // source value number (in IntA) is defined by a copy from B, see if we can
598   // merge these two pieces of B into a single value number, eliminating a copy.
599   // For example:
600   //
601   //  A3 = B0
602   //    ...
603   //  B1 = A3      <- this copy
604   //
605   // In this case, B0 can be extended to where the B1 copy lives, allowing the
606   // B1 value number to be replaced with B0 (which simplifies the B
607   // liveinterval).
608 
609   // BValNo is a value number in B that is defined by a copy from A.  'B1' in
610   // the example above.
611   LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx);
612   if (BS == IntB.end()) return false;
613   VNInfo *BValNo = BS->valno;
614 
615   // Get the location that B is defined at.  Two options: either this value has
616   // an unknown definition point or it is defined at CopyIdx.  If unknown, we
617   // can't process it.
618   if (BValNo->def != CopyIdx) return false;
619 
620   // AValNo is the value number in A that defines the copy, A3 in the example.
621   SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
622   LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx);
623   // The live segment might not exist after fun with physreg coalescing.
624   if (AS == IntA.end()) return false;
625   VNInfo *AValNo = AS->valno;
626 
627   // If AValNo is defined as a copy from IntB, we can potentially process this.
628   // Get the instruction that defines this value number.
629   MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
630   // Don't allow any partial copies, even if isCoalescable() allows them.
631   if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy())
632     return false;
633 
634   // Get the Segment in IntB that this value number starts with.
635   LiveInterval::iterator ValS =
636     IntB.FindSegmentContaining(AValNo->def.getPrevSlot());
637   if (ValS == IntB.end())
638     return false;
639 
640   // Make sure that the end of the live segment is inside the same block as
641   // CopyMI.
642   MachineInstr *ValSEndInst =
643     LIS->getInstructionFromIndex(ValS->end.getPrevSlot());
644   if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent())
645     return false;
646 
647   // Okay, we now know that ValS ends in the same block that the CopyMI
648   // live-range starts.  If there are no intervening live segments between them
649   // in IntB, we can merge them.
650   if (ValS+1 != BS) return false;
651 
652   LLVM_DEBUG(dbgs() << "Extending: " << printReg(IntB.reg, TRI));
653 
654   SlotIndex FillerStart = ValS->end, FillerEnd = BS->start;
655   // We are about to delete CopyMI, so need to remove it as the 'instruction
656   // that defines this value #'. Update the valnum with the new defining
657   // instruction #.
658   BValNo->def = FillerStart;
659 
660   // Okay, we can merge them.  We need to insert a new liverange:
661   // [ValS.end, BS.begin) of either value number, then we merge the
662   // two value numbers.
663   IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo));
664 
665   // Okay, merge "B1" into the same value number as "B0".
666   if (BValNo != ValS->valno)
667     IntB.MergeValueNumberInto(BValNo, ValS->valno);
668 
669   // Do the same for the subregister segments.
670   for (LiveInterval::SubRange &S : IntB.subranges()) {
671     // Check for SubRange Segments of the form [1234r,1234d:0) which can be
672     // removed to prevent creating bogus SubRange Segments.
673     LiveInterval::iterator SS = S.FindSegmentContaining(CopyIdx);
674     if (SS != S.end() && SlotIndex::isSameInstr(SS->start, SS->end)) {
675       S.removeSegment(*SS, true);
676       continue;
677     }
678     VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
679     S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo));
680     VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot());
681     if (SubBValNo != SubValSNo)
682       S.MergeValueNumberInto(SubBValNo, SubValSNo);
683   }
684 
685   LLVM_DEBUG(dbgs() << "   result = " << IntB << '\n');
686 
687   // If the source instruction was killing the source register before the
688   // merge, unset the isKill marker given the live range has been extended.
689   int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg, true);
690   if (UIdx != -1) {
691     ValSEndInst->getOperand(UIdx).setIsKill(false);
692   }
693 
694   // Rewrite the copy.
695   CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI);
696   // If the copy instruction was killing the destination register or any
697   // subrange before the merge trim the live range.
698   bool RecomputeLiveRange = AS->end == CopyIdx;
699   if (!RecomputeLiveRange) {
700     for (LiveInterval::SubRange &S : IntA.subranges()) {
701       LiveInterval::iterator SS = S.FindSegmentContaining(CopyUseIdx);
702       if (SS != S.end() && SS->end == CopyIdx) {
703         RecomputeLiveRange = true;
704         break;
705       }
706     }
707   }
708   if (RecomputeLiveRange)
709     shrinkToUses(&IntA);
710 
711   ++numExtends;
712   return true;
713 }
714 
715 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
716                                              LiveInterval &IntB,
717                                              VNInfo *AValNo,
718                                              VNInfo *BValNo) {
719   // If AValNo has PHI kills, conservatively assume that IntB defs can reach
720   // the PHI values.
721   if (LIS->hasPHIKill(IntA, AValNo))
722     return true;
723 
724   for (LiveRange::Segment &ASeg : IntA.segments) {
725     if (ASeg.valno != AValNo) continue;
726     LiveInterval::iterator BI = llvm::upper_bound(IntB, ASeg.start);
727     if (BI != IntB.begin())
728       --BI;
729     for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) {
730       if (BI->valno == BValNo)
731         continue;
732       if (BI->start <= ASeg.start && BI->end > ASeg.start)
733         return true;
734       if (BI->start > ASeg.start && BI->start < ASeg.end)
735         return true;
736     }
737   }
738   return false;
739 }
740 
741 /// Copy segments with value number @p SrcValNo from liverange @p Src to live
742 /// range @Dst and use value number @p DstValNo there.
743 static std::pair<bool,bool>
744 addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, const LiveRange &Src,
745                      const VNInfo *SrcValNo) {
746   bool Changed = false;
747   bool MergedWithDead = false;
748   for (const LiveRange::Segment &S : Src.segments) {
749     if (S.valno != SrcValNo)
750       continue;
751     // This is adding a segment from Src that ends in a copy that is about
752     // to be removed. This segment is going to be merged with a pre-existing
753     // segment in Dst. This works, except in cases when the corresponding
754     // segment in Dst is dead. For example: adding [192r,208r:1) from Src
755     // to [208r,208d:1) in Dst would create [192r,208d:1) in Dst.
756     // Recognized such cases, so that the segments can be shrunk.
757     LiveRange::Segment Added = LiveRange::Segment(S.start, S.end, DstValNo);
758     LiveRange::Segment &Merged = *Dst.addSegment(Added);
759     if (Merged.end.isDead())
760       MergedWithDead = true;
761     Changed = true;
762   }
763   return std::make_pair(Changed, MergedWithDead);
764 }
765 
766 std::pair<bool,bool>
767 RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
768                                             MachineInstr *CopyMI) {
769   assert(!CP.isPhys());
770 
771   LiveInterval &IntA =
772       LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
773   LiveInterval &IntB =
774       LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
775 
776   // We found a non-trivially-coalescable copy with IntA being the source and
777   // IntB being the dest, thus this defines a value number in IntB.  If the
778   // source value number (in IntA) is defined by a commutable instruction and
779   // its other operand is coalesced to the copy dest register, see if we can
780   // transform the copy into a noop by commuting the definition. For example,
781   //
782   //  A3 = op A2 killed B0
783   //    ...
784   //  B1 = A3      <- this copy
785   //    ...
786   //     = op A3   <- more uses
787   //
788   // ==>
789   //
790   //  B2 = op B0 killed A2
791   //    ...
792   //  B1 = B2      <- now an identity copy
793   //    ...
794   //     = op B2   <- more uses
795 
796   // BValNo is a value number in B that is defined by a copy from A. 'B1' in
797   // the example above.
798   SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
799   VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
800   assert(BValNo != nullptr && BValNo->def == CopyIdx);
801 
802   // AValNo is the value number in A that defines the copy, A3 in the example.
803   VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
804   assert(AValNo && !AValNo->isUnused() && "COPY source not live");
805   if (AValNo->isPHIDef())
806     return { false, false };
807   MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
808   if (!DefMI)
809     return { false, false };
810   if (!DefMI->isCommutable())
811     return { false, false };
812   // If DefMI is a two-address instruction then commuting it will change the
813   // destination register.
814   int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
815   assert(DefIdx != -1);
816   unsigned UseOpIdx;
817   if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
818     return { false, false };
819 
820   // FIXME: The code below tries to commute 'UseOpIdx' operand with some other
821   // commutable operand which is expressed by 'CommuteAnyOperandIndex'value
822   // passed to the method. That _other_ operand is chosen by
823   // the findCommutedOpIndices() method.
824   //
825   // That is obviously an area for improvement in case of instructions having
826   // more than 2 operands. For example, if some instruction has 3 commutable
827   // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3,
828   // op#2<->op#3) of commute transformation should be considered/tried here.
829   unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex;
830   if (!TII->findCommutedOpIndices(*DefMI, UseOpIdx, NewDstIdx))
831     return { false, false };
832 
833   MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
834   Register NewReg = NewDstMO.getReg();
835   if (NewReg != IntB.reg || !IntB.Query(AValNo->def).isKill())
836     return { false, false };
837 
838   // Make sure there are no other definitions of IntB that would reach the
839   // uses which the new definition can reach.
840   if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
841     return { false, false };
842 
843   // If some of the uses of IntA.reg is already coalesced away, return false.
844   // It's not possible to determine whether it's safe to perform the coalescing.
845   for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg)) {
846     MachineInstr *UseMI = MO.getParent();
847     unsigned OpNo = &MO - &UseMI->getOperand(0);
848     SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI);
849     LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
850     if (US == IntA.end() || US->valno != AValNo)
851       continue;
852     // If this use is tied to a def, we can't rewrite the register.
853     if (UseMI->isRegTiedToDefOperand(OpNo))
854       return { false, false };
855   }
856 
857   LLVM_DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t'
858                     << *DefMI);
859 
860   // At this point we have decided that it is legal to do this
861   // transformation.  Start by commuting the instruction.
862   MachineBasicBlock *MBB = DefMI->getParent();
863   MachineInstr *NewMI =
864       TII->commuteInstruction(*DefMI, false, UseOpIdx, NewDstIdx);
865   if (!NewMI)
866     return { false, false };
867   if (Register::isVirtualRegister(IntA.reg) &&
868       Register::isVirtualRegister(IntB.reg) &&
869       !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg)))
870     return { false, false };
871   if (NewMI != DefMI) {
872     LIS->ReplaceMachineInstrInMaps(*DefMI, *NewMI);
873     MachineBasicBlock::iterator Pos = DefMI;
874     MBB->insert(Pos, NewMI);
875     MBB->erase(DefMI);
876   }
877 
878   // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
879   // A = or A, B
880   // ...
881   // B = A
882   // ...
883   // C = killed A
884   // ...
885   //   = B
886 
887   // Update uses of IntA of the specific Val# with IntB.
888   for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg),
889                                          UE = MRI->use_end();
890        UI != UE; /* ++UI is below because of possible MI removal */) {
891     MachineOperand &UseMO = *UI;
892     ++UI;
893     if (UseMO.isUndef())
894       continue;
895     MachineInstr *UseMI = UseMO.getParent();
896     if (UseMI->isDebugValue()) {
897       // FIXME These don't have an instruction index.  Not clear we have enough
898       // info to decide whether to do this replacement or not.  For now do it.
899       UseMO.setReg(NewReg);
900       continue;
901     }
902     SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI).getRegSlot(true);
903     LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
904     assert(US != IntA.end() && "Use must be live");
905     if (US->valno != AValNo)
906       continue;
907     // Kill flags are no longer accurate. They are recomputed after RA.
908     UseMO.setIsKill(false);
909     if (Register::isPhysicalRegister(NewReg))
910       UseMO.substPhysReg(NewReg, *TRI);
911     else
912       UseMO.setReg(NewReg);
913     if (UseMI == CopyMI)
914       continue;
915     if (!UseMI->isCopy())
916       continue;
917     if (UseMI->getOperand(0).getReg() != IntB.reg ||
918         UseMI->getOperand(0).getSubReg())
919       continue;
920 
921     // This copy will become a noop. If it's defining a new val#, merge it into
922     // BValNo.
923     SlotIndex DefIdx = UseIdx.getRegSlot();
924     VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
925     if (!DVNI)
926       continue;
927     LLVM_DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
928     assert(DVNI->def == DefIdx);
929     BValNo = IntB.MergeValueNumberInto(DVNI, BValNo);
930     for (LiveInterval::SubRange &S : IntB.subranges()) {
931       VNInfo *SubDVNI = S.getVNInfoAt(DefIdx);
932       if (!SubDVNI)
933         continue;
934       VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
935       assert(SubBValNo->def == CopyIdx);
936       S.MergeValueNumberInto(SubDVNI, SubBValNo);
937     }
938 
939     deleteInstr(UseMI);
940   }
941 
942   // Extend BValNo by merging in IntA live segments of AValNo. Val# definition
943   // is updated.
944   bool ShrinkB = false;
945   BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
946   if (IntA.hasSubRanges() || IntB.hasSubRanges()) {
947     if (!IntA.hasSubRanges()) {
948       LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg);
949       IntA.createSubRangeFrom(Allocator, Mask, IntA);
950     } else if (!IntB.hasSubRanges()) {
951       LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntB.reg);
952       IntB.createSubRangeFrom(Allocator, Mask, IntB);
953     }
954     SlotIndex AIdx = CopyIdx.getRegSlot(true);
955     LaneBitmask MaskA;
956     const SlotIndexes &Indexes = *LIS->getSlotIndexes();
957     for (LiveInterval::SubRange &SA : IntA.subranges()) {
958       VNInfo *ASubValNo = SA.getVNInfoAt(AIdx);
959       // Even if we are dealing with a full copy, some lanes can
960       // still be undefined.
961       // E.g.,
962       // undef A.subLow = ...
963       // B = COPY A <== A.subHigh is undefined here and does
964       //                not have a value number.
965       if (!ASubValNo)
966         continue;
967       MaskA |= SA.LaneMask;
968 
969       IntB.refineSubRanges(
970           Allocator, SA.LaneMask,
971           [&Allocator, &SA, CopyIdx, ASubValNo,
972            &ShrinkB](LiveInterval::SubRange &SR) {
973             VNInfo *BSubValNo = SR.empty() ? SR.getNextValue(CopyIdx, Allocator)
974                                            : SR.getVNInfoAt(CopyIdx);
975             assert(BSubValNo != nullptr);
976             auto P = addSegmentsWithValNo(SR, BSubValNo, SA, ASubValNo);
977             ShrinkB |= P.second;
978             if (P.first)
979               BSubValNo->def = ASubValNo->def;
980           },
981           Indexes, *TRI);
982     }
983     // Go over all subranges of IntB that have not been covered by IntA,
984     // and delete the segments starting at CopyIdx. This can happen if
985     // IntA has undef lanes that are defined in IntB.
986     for (LiveInterval::SubRange &SB : IntB.subranges()) {
987       if ((SB.LaneMask & MaskA).any())
988         continue;
989       if (LiveRange::Segment *S = SB.getSegmentContaining(CopyIdx))
990         if (S->start.getBaseIndex() == CopyIdx.getBaseIndex())
991           SB.removeSegment(*S, true);
992     }
993   }
994 
995   BValNo->def = AValNo->def;
996   auto P = addSegmentsWithValNo(IntB, BValNo, IntA, AValNo);
997   ShrinkB |= P.second;
998   LLVM_DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
999 
1000   LIS->removeVRegDefAt(IntA, AValNo->def);
1001 
1002   LLVM_DEBUG(dbgs() << "\t\ttrimmed:  " << IntA << '\n');
1003   ++numCommutes;
1004   return { true, ShrinkB };
1005 }
1006 
1007 /// For copy B = A in BB2, if A is defined by A = B in BB0 which is a
1008 /// predecessor of BB2, and if B is not redefined on the way from A = B
1009 /// in BB0 to B = A in BB2, B = A in BB2 is partially redundant if the
1010 /// execution goes through the path from BB0 to BB2. We may move B = A
1011 /// to the predecessor without such reversed copy.
1012 /// So we will transform the program from:
1013 ///   BB0:
1014 ///      A = B;    BB1:
1015 ///       ...         ...
1016 ///     /     \      /
1017 ///             BB2:
1018 ///               ...
1019 ///               B = A;
1020 ///
1021 /// to:
1022 ///
1023 ///   BB0:         BB1:
1024 ///      A = B;        ...
1025 ///       ...          B = A;
1026 ///     /     \       /
1027 ///             BB2:
1028 ///               ...
1029 ///
1030 /// A special case is when BB0 and BB2 are the same BB which is the only
1031 /// BB in a loop:
1032 ///   BB1:
1033 ///        ...
1034 ///   BB0/BB2:  ----
1035 ///        B = A;   |
1036 ///        ...      |
1037 ///        A = B;   |
1038 ///          |-------
1039 ///          |
1040 /// We may hoist B = A from BB0/BB2 to BB1.
1041 ///
1042 /// The major preconditions for correctness to remove such partial
1043 /// redundancy include:
1044 /// 1. A in B = A in BB2 is defined by a PHI in BB2, and one operand of
1045 ///    the PHI is defined by the reversed copy A = B in BB0.
1046 /// 2. No B is referenced from the start of BB2 to B = A.
1047 /// 3. No B is defined from A = B to the end of BB0.
1048 /// 4. BB1 has only one successor.
1049 ///
1050 /// 2 and 4 implicitly ensure B is not live at the end of BB1.
1051 /// 4 guarantees BB2 is hotter than BB1, so we can only move a copy to a
1052 /// colder place, which not only prevent endless loop, but also make sure
1053 /// the movement of copy is beneficial.
1054 bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair &CP,
1055                                                 MachineInstr &CopyMI) {
1056   assert(!CP.isPhys());
1057   if (!CopyMI.isFullCopy())
1058     return false;
1059 
1060   MachineBasicBlock &MBB = *CopyMI.getParent();
1061   if (MBB.isEHPad())
1062     return false;
1063 
1064   if (MBB.pred_size() != 2)
1065     return false;
1066 
1067   LiveInterval &IntA =
1068       LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
1069   LiveInterval &IntB =
1070       LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
1071 
1072   // A is defined by PHI at the entry of MBB.
1073   SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true);
1074   VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx);
1075   assert(AValNo && !AValNo->isUnused() && "COPY source not live");
1076   if (!AValNo->isPHIDef())
1077     return false;
1078 
1079   // No B is referenced before CopyMI in MBB.
1080   if (IntB.overlaps(LIS->getMBBStartIdx(&MBB), CopyIdx))
1081     return false;
1082 
1083   // MBB has two predecessors: one contains A = B so no copy will be inserted
1084   // for it. The other one will have a copy moved from MBB.
1085   bool FoundReverseCopy = false;
1086   MachineBasicBlock *CopyLeftBB = nullptr;
1087   for (MachineBasicBlock *Pred : MBB.predecessors()) {
1088     VNInfo *PVal = IntA.getVNInfoBefore(LIS->getMBBEndIdx(Pred));
1089     MachineInstr *DefMI = LIS->getInstructionFromIndex(PVal->def);
1090     if (!DefMI || !DefMI->isFullCopy()) {
1091       CopyLeftBB = Pred;
1092       continue;
1093     }
1094     // Check DefMI is a reverse copy and it is in BB Pred.
1095     if (DefMI->getOperand(0).getReg() != IntA.reg ||
1096         DefMI->getOperand(1).getReg() != IntB.reg ||
1097         DefMI->getParent() != Pred) {
1098       CopyLeftBB = Pred;
1099       continue;
1100     }
1101     // If there is any other def of B after DefMI and before the end of Pred,
1102     // we need to keep the copy of B = A at the end of Pred if we remove
1103     // B = A from MBB.
1104     bool ValB_Changed = false;
1105     for (auto VNI : IntB.valnos) {
1106       if (VNI->isUnused())
1107         continue;
1108       if (PVal->def < VNI->def && VNI->def < LIS->getMBBEndIdx(Pred)) {
1109         ValB_Changed = true;
1110         break;
1111       }
1112     }
1113     if (ValB_Changed) {
1114       CopyLeftBB = Pred;
1115       continue;
1116     }
1117     FoundReverseCopy = true;
1118   }
1119 
1120   // If no reverse copy is found in predecessors, nothing to do.
1121   if (!FoundReverseCopy)
1122     return false;
1123 
1124   // If CopyLeftBB is nullptr, it means every predecessor of MBB contains
1125   // reverse copy, CopyMI can be removed trivially if only IntA/IntB is updated.
1126   // If CopyLeftBB is not nullptr, move CopyMI from MBB to CopyLeftBB and
1127   // update IntA/IntB.
1128   //
1129   // If CopyLeftBB is not nullptr, ensure CopyLeftBB has a single succ so
1130   // MBB is hotter than CopyLeftBB.
1131   if (CopyLeftBB && CopyLeftBB->succ_size() > 1)
1132     return false;
1133 
1134   // Now (almost sure it's) ok to move copy.
1135   if (CopyLeftBB) {
1136     // Position in CopyLeftBB where we should insert new copy.
1137     auto InsPos = CopyLeftBB->getFirstTerminator();
1138 
1139     // Make sure that B isn't referenced in the terminators (if any) at the end
1140     // of the predecessor since we're about to insert a new definition of B
1141     // before them.
1142     if (InsPos != CopyLeftBB->end()) {
1143       SlotIndex InsPosIdx = LIS->getInstructionIndex(*InsPos).getRegSlot(true);
1144       if (IntB.overlaps(InsPosIdx, LIS->getMBBEndIdx(CopyLeftBB)))
1145         return false;
1146     }
1147 
1148     LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to "
1149                       << printMBBReference(*CopyLeftBB) << '\t' << CopyMI);
1150 
1151     // Insert new copy to CopyLeftBB.
1152     MachineInstr *NewCopyMI = BuildMI(*CopyLeftBB, InsPos, CopyMI.getDebugLoc(),
1153                                       TII->get(TargetOpcode::COPY), IntB.reg)
1154                                   .addReg(IntA.reg);
1155     SlotIndex NewCopyIdx =
1156         LIS->InsertMachineInstrInMaps(*NewCopyMI).getRegSlot();
1157     IntB.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator());
1158     for (LiveInterval::SubRange &SR : IntB.subranges())
1159       SR.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator());
1160 
1161     // If the newly created Instruction has an address of an instruction that was
1162     // deleted before (object recycled by the allocator) it needs to be removed from
1163     // the deleted list.
1164     ErasedInstrs.erase(NewCopyMI);
1165   } else {
1166     LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from "
1167                       << printMBBReference(MBB) << '\t' << CopyMI);
1168   }
1169 
1170   // Remove CopyMI.
1171   // Note: This is fine to remove the copy before updating the live-ranges.
1172   // While updating the live-ranges, we only look at slot indices and
1173   // never go back to the instruction.
1174   // Mark instructions as deleted.
1175   deleteInstr(&CopyMI);
1176 
1177   // Update the liveness.
1178   SmallVector<SlotIndex, 8> EndPoints;
1179   VNInfo *BValNo = IntB.Query(CopyIdx).valueOutOrDead();
1180   LIS->pruneValue(*static_cast<LiveRange *>(&IntB), CopyIdx.getRegSlot(),
1181                   &EndPoints);
1182   BValNo->markUnused();
1183   // Extend IntB to the EndPoints of its original live interval.
1184   LIS->extendToIndices(IntB, EndPoints);
1185 
1186   // Now, do the same for its subranges.
1187   for (LiveInterval::SubRange &SR : IntB.subranges()) {
1188     EndPoints.clear();
1189     VNInfo *BValNo = SR.Query(CopyIdx).valueOutOrDead();
1190     assert(BValNo && "All sublanes should be live");
1191     LIS->pruneValue(SR, CopyIdx.getRegSlot(), &EndPoints);
1192     BValNo->markUnused();
1193     // We can have a situation where the result of the original copy is live,
1194     // but is immediately dead in this subrange, e.g. [336r,336d:0). That makes
1195     // the copy appear as an endpoint from pruneValue(), but we don't want it
1196     // to because the copy has been removed.  We can go ahead and remove that
1197     // endpoint; there is no other situation here that there could be a use at
1198     // the same place as we know that the copy is a full copy.
1199     for (unsigned I = 0; I != EndPoints.size(); ) {
1200       if (SlotIndex::isSameInstr(EndPoints[I], CopyIdx)) {
1201         EndPoints[I] = EndPoints.back();
1202         EndPoints.pop_back();
1203         continue;
1204       }
1205       ++I;
1206     }
1207     LIS->extendToIndices(SR, EndPoints);
1208   }
1209   // If any dead defs were extended, truncate them.
1210   shrinkToUses(&IntB);
1211 
1212   // Finally, update the live-range of IntA.
1213   shrinkToUses(&IntA);
1214   return true;
1215 }
1216 
1217 /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just
1218 /// defining a subregister.
1219 static bool definesFullReg(const MachineInstr &MI, unsigned Reg) {
1220   assert(!Register::isPhysicalRegister(Reg) &&
1221          "This code cannot handle physreg aliasing");
1222   for (const MachineOperand &Op : MI.operands()) {
1223     if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg)
1224       continue;
1225     // Return true if we define the full register or don't care about the value
1226     // inside other subregisters.
1227     if (Op.getSubReg() == 0 || Op.isUndef())
1228       return true;
1229   }
1230   return false;
1231 }
1232 
1233 bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP,
1234                                                 MachineInstr *CopyMI,
1235                                                 bool &IsDefCopy) {
1236   IsDefCopy = false;
1237   unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg();
1238   unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx();
1239   unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
1240   unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx();
1241   if (Register::isPhysicalRegister(SrcReg))
1242     return false;
1243 
1244   LiveInterval &SrcInt = LIS->getInterval(SrcReg);
1245   SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
1246   VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn();
1247   if (!ValNo)
1248     return false;
1249   if (ValNo->isPHIDef() || ValNo->isUnused())
1250     return false;
1251   MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
1252   if (!DefMI)
1253     return false;
1254   if (DefMI->isCopyLike()) {
1255     IsDefCopy = true;
1256     return false;
1257   }
1258   if (!TII->isAsCheapAsAMove(*DefMI))
1259     return false;
1260   if (!TII->isTriviallyReMaterializable(*DefMI, AA))
1261     return false;
1262   if (!definesFullReg(*DefMI, SrcReg))
1263     return false;
1264   bool SawStore = false;
1265   if (!DefMI->isSafeToMove(AA, SawStore))
1266     return false;
1267   const MCInstrDesc &MCID = DefMI->getDesc();
1268   if (MCID.getNumDefs() != 1)
1269     return false;
1270   // Only support subregister destinations when the def is read-undef.
1271   MachineOperand &DstOperand = CopyMI->getOperand(0);
1272   Register CopyDstReg = DstOperand.getReg();
1273   if (DstOperand.getSubReg() && !DstOperand.isUndef())
1274     return false;
1275 
1276   // If both SrcIdx and DstIdx are set, correct rematerialization would widen
1277   // the register substantially (beyond both source and dest size). This is bad
1278   // for performance since it can cascade through a function, introducing many
1279   // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers
1280   // around after a few subreg copies).
1281   if (SrcIdx && DstIdx)
1282     return false;
1283 
1284   const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF);
1285   if (!DefMI->isImplicitDef()) {
1286     if (Register::isPhysicalRegister(DstReg)) {
1287       unsigned NewDstReg = DstReg;
1288 
1289       unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(),
1290                                               DefMI->getOperand(0).getSubReg());
1291       if (NewDstIdx)
1292         NewDstReg = TRI->getSubReg(DstReg, NewDstIdx);
1293 
1294       // Finally, make sure that the physical subregister that will be
1295       // constructed later is permitted for the instruction.
1296       if (!DefRC->contains(NewDstReg))
1297         return false;
1298     } else {
1299       // Theoretically, some stack frame reference could exist. Just make sure
1300       // it hasn't actually happened.
1301       assert(Register::isVirtualRegister(DstReg) &&
1302              "Only expect to deal with virtual or physical registers");
1303     }
1304   }
1305 
1306   DebugLoc DL = CopyMI->getDebugLoc();
1307   MachineBasicBlock *MBB = CopyMI->getParent();
1308   MachineBasicBlock::iterator MII =
1309     std::next(MachineBasicBlock::iterator(CopyMI));
1310   TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, *DefMI, *TRI);
1311   MachineInstr &NewMI = *std::prev(MII);
1312   NewMI.setDebugLoc(DL);
1313 
1314   // In a situation like the following:
1315   //     %0:subreg = instr              ; DefMI, subreg = DstIdx
1316   //     %1        = copy %0:subreg ; CopyMI, SrcIdx = 0
1317   // instead of widening %1 to the register class of %0 simply do:
1318   //     %1 = instr
1319   const TargetRegisterClass *NewRC = CP.getNewRC();
1320   if (DstIdx != 0) {
1321     MachineOperand &DefMO = NewMI.getOperand(0);
1322     if (DefMO.getSubReg() == DstIdx) {
1323       assert(SrcIdx == 0 && CP.isFlipped()
1324              && "Shouldn't have SrcIdx+DstIdx at this point");
1325       const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
1326       const TargetRegisterClass *CommonRC =
1327         TRI->getCommonSubClass(DefRC, DstRC);
1328       if (CommonRC != nullptr) {
1329         NewRC = CommonRC;
1330         DstIdx = 0;
1331         DefMO.setSubReg(0);
1332         DefMO.setIsUndef(false); // Only subregs can have def+undef.
1333       }
1334     }
1335   }
1336 
1337   // CopyMI may have implicit operands, save them so that we can transfer them
1338   // over to the newly materialized instruction after CopyMI is removed.
1339   SmallVector<MachineOperand, 4> ImplicitOps;
1340   ImplicitOps.reserve(CopyMI->getNumOperands() -
1341                       CopyMI->getDesc().getNumOperands());
1342   for (unsigned I = CopyMI->getDesc().getNumOperands(),
1343                 E = CopyMI->getNumOperands();
1344        I != E; ++I) {
1345     MachineOperand &MO = CopyMI->getOperand(I);
1346     if (MO.isReg()) {
1347       assert(MO.isImplicit() && "No explicit operands after implicit operands.");
1348       // Discard VReg implicit defs.
1349       if (Register::isPhysicalRegister(MO.getReg()))
1350         ImplicitOps.push_back(MO);
1351     }
1352   }
1353 
1354   LIS->ReplaceMachineInstrInMaps(*CopyMI, NewMI);
1355   CopyMI->eraseFromParent();
1356   ErasedInstrs.insert(CopyMI);
1357 
1358   // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
1359   // We need to remember these so we can add intervals once we insert
1360   // NewMI into SlotIndexes.
1361   SmallVector<unsigned, 4> NewMIImplDefs;
1362   for (unsigned i = NewMI.getDesc().getNumOperands(),
1363                 e = NewMI.getNumOperands();
1364        i != e; ++i) {
1365     MachineOperand &MO = NewMI.getOperand(i);
1366     if (MO.isReg() && MO.isDef()) {
1367       assert(MO.isImplicit() && MO.isDead() &&
1368              Register::isPhysicalRegister(MO.getReg()));
1369       NewMIImplDefs.push_back(MO.getReg());
1370     }
1371   }
1372 
1373   if (Register::isVirtualRegister(DstReg)) {
1374     unsigned NewIdx = NewMI.getOperand(0).getSubReg();
1375 
1376     if (DefRC != nullptr) {
1377       if (NewIdx)
1378         NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx);
1379       else
1380         NewRC = TRI->getCommonSubClass(NewRC, DefRC);
1381       assert(NewRC && "subreg chosen for remat incompatible with instruction");
1382     }
1383     // Remap subranges to new lanemask and change register class.
1384     LiveInterval &DstInt = LIS->getInterval(DstReg);
1385     for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1386       SR.LaneMask = TRI->composeSubRegIndexLaneMask(DstIdx, SR.LaneMask);
1387     }
1388     MRI->setRegClass(DstReg, NewRC);
1389 
1390     // Update machine operands and add flags.
1391     updateRegDefsUses(DstReg, DstReg, DstIdx);
1392     NewMI.getOperand(0).setSubReg(NewIdx);
1393     // updateRegDefUses can add an "undef" flag to the definition, since
1394     // it will replace DstReg with DstReg.DstIdx. If NewIdx is 0, make
1395     // sure that "undef" is not set.
1396     if (NewIdx == 0)
1397       NewMI.getOperand(0).setIsUndef(false);
1398     // Add dead subregister definitions if we are defining the whole register
1399     // but only part of it is live.
1400     // This could happen if the rematerialization instruction is rematerializing
1401     // more than actually is used in the register.
1402     // An example would be:
1403     // %1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs
1404     // ; Copying only part of the register here, but the rest is undef.
1405     // %2:sub_16bit<def, read-undef> = COPY %1:sub_16bit
1406     // ==>
1407     // ; Materialize all the constants but only using one
1408     // %2 = LOAD_CONSTANTS 5, 8
1409     //
1410     // at this point for the part that wasn't defined before we could have
1411     // subranges missing the definition.
1412     if (NewIdx == 0 && DstInt.hasSubRanges()) {
1413       SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
1414       SlotIndex DefIndex =
1415           CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber());
1416       LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(DstReg);
1417       VNInfo::Allocator& Alloc = LIS->getVNInfoAllocator();
1418       for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1419         if (!SR.liveAt(DefIndex))
1420           SR.createDeadDef(DefIndex, Alloc);
1421         MaxMask &= ~SR.LaneMask;
1422       }
1423       if (MaxMask.any()) {
1424         LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask);
1425         SR->createDeadDef(DefIndex, Alloc);
1426       }
1427     }
1428 
1429     // Make sure that the subrange for resultant undef is removed
1430     // For example:
1431     //   %1:sub1<def,read-undef> = LOAD CONSTANT 1
1432     //   %2 = COPY %1
1433     // ==>
1434     //   %2:sub1<def, read-undef> = LOAD CONSTANT 1
1435     //     ; Correct but need to remove the subrange for %2:sub0
1436     //     ; as it is now undef
1437     if (NewIdx != 0 && DstInt.hasSubRanges()) {
1438       // The affected subregister segments can be removed.
1439       SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
1440       LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(NewIdx);
1441       bool UpdatedSubRanges = false;
1442       for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1443         if ((SR.LaneMask & DstMask).none()) {
1444           LLVM_DEBUG(dbgs()
1445                      << "Removing undefined SubRange "
1446                      << PrintLaneMask(SR.LaneMask) << " : " << SR << "\n");
1447           // VNI is in ValNo - remove any segments in this SubRange that have this ValNo
1448           if (VNInfo *RmValNo = SR.getVNInfoAt(CurrIdx.getRegSlot())) {
1449             SR.removeValNo(RmValNo);
1450             UpdatedSubRanges = true;
1451           }
1452         }
1453       }
1454       if (UpdatedSubRanges)
1455         DstInt.removeEmptySubRanges();
1456     }
1457   } else if (NewMI.getOperand(0).getReg() != CopyDstReg) {
1458     // The New instruction may be defining a sub-register of what's actually
1459     // been asked for. If so it must implicitly define the whole thing.
1460     assert(Register::isPhysicalRegister(DstReg) &&
1461            "Only expect virtual or physical registers in remat");
1462     NewMI.getOperand(0).setIsDead(true);
1463     NewMI.addOperand(MachineOperand::CreateReg(
1464         CopyDstReg, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/));
1465     // Record small dead def live-ranges for all the subregisters
1466     // of the destination register.
1467     // Otherwise, variables that live through may miss some
1468     // interferences, thus creating invalid allocation.
1469     // E.g., i386 code:
1470     // %1 = somedef ; %1 GR8
1471     // %2 = remat ; %2 GR32
1472     // CL = COPY %2.sub_8bit
1473     // = somedef %1 ; %1 GR8
1474     // =>
1475     // %1 = somedef ; %1 GR8
1476     // dead ECX = remat ; implicit-def CL
1477     // = somedef %1 ; %1 GR8
1478     // %1 will see the interferences with CL but not with CH since
1479     // no live-ranges would have been created for ECX.
1480     // Fix that!
1481     SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1482     for (MCRegUnitIterator Units(NewMI.getOperand(0).getReg(), TRI);
1483          Units.isValid(); ++Units)
1484       if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
1485         LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1486   }
1487 
1488   if (NewMI.getOperand(0).getSubReg())
1489     NewMI.getOperand(0).setIsUndef();
1490 
1491   // Transfer over implicit operands to the rematerialized instruction.
1492   for (MachineOperand &MO : ImplicitOps)
1493     NewMI.addOperand(MO);
1494 
1495   SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1496   for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
1497     unsigned Reg = NewMIImplDefs[i];
1498     for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1499       if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
1500         LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1501   }
1502 
1503   LLVM_DEBUG(dbgs() << "Remat: " << NewMI);
1504   ++NumReMats;
1505 
1506   // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs
1507   // to describe DstReg instead.
1508   if (MRI->use_nodbg_empty(SrcReg)) {
1509     for (MachineOperand &UseMO : MRI->use_operands(SrcReg)) {
1510       MachineInstr *UseMI = UseMO.getParent();
1511       if (UseMI->isDebugValue()) {
1512         if (Register::isPhysicalRegister(DstReg))
1513           UseMO.substPhysReg(DstReg, *TRI);
1514         else
1515           UseMO.setReg(DstReg);
1516         // Move the debug value directly after the def of the rematerialized
1517         // value in DstReg.
1518         MBB->splice(std::next(NewMI.getIterator()), UseMI->getParent(), UseMI);
1519         LLVM_DEBUG(dbgs() << "\t\tupdated: " << *UseMI);
1520       }
1521     }
1522   }
1523 
1524   if (ToBeUpdated.count(SrcReg))
1525     return true;
1526 
1527   unsigned NumCopyUses = 0;
1528   for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
1529     if (UseMO.getParent()->isCopyLike())
1530       NumCopyUses++;
1531   }
1532   if (NumCopyUses < LateRematUpdateThreshold) {
1533     // The source interval can become smaller because we removed a use.
1534     shrinkToUses(&SrcInt, &DeadDefs);
1535     if (!DeadDefs.empty())
1536       eliminateDeadDefs();
1537   } else {
1538     ToBeUpdated.insert(SrcReg);
1539   }
1540   return true;
1541 }
1542 
1543 MachineInstr *RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) {
1544   // ProcessImplicitDefs may leave some copies of <undef> values, it only
1545   // removes local variables. When we have a copy like:
1546   //
1547   //   %1 = COPY undef %2
1548   //
1549   // We delete the copy and remove the corresponding value number from %1.
1550   // Any uses of that value number are marked as <undef>.
1551 
1552   // Note that we do not query CoalescerPair here but redo isMoveInstr as the
1553   // CoalescerPair may have a new register class with adjusted subreg indices
1554   // at this point.
1555   unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
1556   if(!isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx))
1557     return nullptr;
1558 
1559   SlotIndex Idx = LIS->getInstructionIndex(*CopyMI);
1560   const LiveInterval &SrcLI = LIS->getInterval(SrcReg);
1561   // CopyMI is undef iff SrcReg is not live before the instruction.
1562   if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) {
1563     LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx);
1564     for (const LiveInterval::SubRange &SR : SrcLI.subranges()) {
1565       if ((SR.LaneMask & SrcMask).none())
1566         continue;
1567       if (SR.liveAt(Idx))
1568         return nullptr;
1569     }
1570   } else if (SrcLI.liveAt(Idx))
1571     return nullptr;
1572 
1573   // If the undef copy defines a live-out value (i.e. an input to a PHI def),
1574   // then replace it with an IMPLICIT_DEF.
1575   LiveInterval &DstLI = LIS->getInterval(DstReg);
1576   SlotIndex RegIndex = Idx.getRegSlot();
1577   LiveRange::Segment *Seg = DstLI.getSegmentContaining(RegIndex);
1578   assert(Seg != nullptr && "No segment for defining instruction");
1579   if (VNInfo *V = DstLI.getVNInfoAt(Seg->end)) {
1580     if (V->isPHIDef()) {
1581       CopyMI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1582       for (unsigned i = CopyMI->getNumOperands(); i != 0; --i) {
1583         MachineOperand &MO = CopyMI->getOperand(i-1);
1584         if (MO.isReg() && MO.isUse())
1585           CopyMI->RemoveOperand(i-1);
1586       }
1587       LLVM_DEBUG(dbgs() << "\tReplaced copy of <undef> value with an "
1588                            "implicit def\n");
1589       return CopyMI;
1590     }
1591   }
1592 
1593   // Remove any DstReg segments starting at the instruction.
1594   LLVM_DEBUG(dbgs() << "\tEliminating copy of <undef> value\n");
1595 
1596   // Remove value or merge with previous one in case of a subregister def.
1597   if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) {
1598     VNInfo *VNI = DstLI.getVNInfoAt(RegIndex);
1599     DstLI.MergeValueNumberInto(VNI, PrevVNI);
1600 
1601     // The affected subregister segments can be removed.
1602     LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx);
1603     for (LiveInterval::SubRange &SR : DstLI.subranges()) {
1604       if ((SR.LaneMask & DstMask).none())
1605         continue;
1606 
1607       VNInfo *SVNI = SR.getVNInfoAt(RegIndex);
1608       assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex));
1609       SR.removeValNo(SVNI);
1610     }
1611     DstLI.removeEmptySubRanges();
1612   } else
1613     LIS->removeVRegDefAt(DstLI, RegIndex);
1614 
1615   // Mark uses as undef.
1616   for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) {
1617     if (MO.isDef() /*|| MO.isUndef()*/)
1618       continue;
1619     const MachineInstr &MI = *MO.getParent();
1620     SlotIndex UseIdx = LIS->getInstructionIndex(MI);
1621     LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
1622     bool isLive;
1623     if (!UseMask.all() && DstLI.hasSubRanges()) {
1624       isLive = false;
1625       for (const LiveInterval::SubRange &SR : DstLI.subranges()) {
1626         if ((SR.LaneMask & UseMask).none())
1627           continue;
1628         if (SR.liveAt(UseIdx)) {
1629           isLive = true;
1630           break;
1631         }
1632       }
1633     } else
1634       isLive = DstLI.liveAt(UseIdx);
1635     if (isLive)
1636       continue;
1637     MO.setIsUndef(true);
1638     LLVM_DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI);
1639   }
1640 
1641   // A def of a subregister may be a use of the other subregisters, so
1642   // deleting a def of a subregister may also remove uses. Since CopyMI
1643   // is still part of the function (but about to be erased), mark all
1644   // defs of DstReg in it as <undef>, so that shrinkToUses would
1645   // ignore them.
1646   for (MachineOperand &MO : CopyMI->operands())
1647     if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg)
1648       MO.setIsUndef(true);
1649   LIS->shrinkToUses(&DstLI);
1650 
1651   return CopyMI;
1652 }
1653 
1654 void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
1655                                      MachineOperand &MO, unsigned SubRegIdx) {
1656   LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubRegIdx);
1657   if (MO.isDef())
1658     Mask = ~Mask;
1659   bool IsUndef = true;
1660   for (const LiveInterval::SubRange &S : Int.subranges()) {
1661     if ((S.LaneMask & Mask).none())
1662       continue;
1663     if (S.liveAt(UseIdx)) {
1664       IsUndef = false;
1665       break;
1666     }
1667   }
1668   if (IsUndef) {
1669     MO.setIsUndef(true);
1670     // We found out some subregister use is actually reading an undefined
1671     // value. In some cases the whole vreg has become undefined at this
1672     // point so we have to potentially shrink the main range if the
1673     // use was ending a live segment there.
1674     LiveQueryResult Q = Int.Query(UseIdx);
1675     if (Q.valueOut() == nullptr)
1676       ShrinkMainRange = true;
1677   }
1678 }
1679 
1680 void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg, unsigned DstReg,
1681                                           unsigned SubIdx) {
1682   bool DstIsPhys = Register::isPhysicalRegister(DstReg);
1683   LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg);
1684 
1685   if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) {
1686     for (MachineOperand &MO : MRI->reg_operands(DstReg)) {
1687       unsigned SubReg = MO.getSubReg();
1688       if (SubReg == 0 || MO.isUndef())
1689         continue;
1690       MachineInstr &MI = *MO.getParent();
1691       if (MI.isDebugValue())
1692         continue;
1693       SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(true);
1694       addUndefFlag(*DstInt, UseIdx, MO, SubReg);
1695     }
1696   }
1697 
1698   SmallPtrSet<MachineInstr*, 8> Visited;
1699   for (MachineRegisterInfo::reg_instr_iterator
1700        I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end();
1701        I != E; ) {
1702     MachineInstr *UseMI = &*(I++);
1703 
1704     // Each instruction can only be rewritten once because sub-register
1705     // composition is not always idempotent. When SrcReg != DstReg, rewriting
1706     // the UseMI operands removes them from the SrcReg use-def chain, but when
1707     // SrcReg is DstReg we could encounter UseMI twice if it has multiple
1708     // operands mentioning the virtual register.
1709     if (SrcReg == DstReg && !Visited.insert(UseMI).second)
1710       continue;
1711 
1712     SmallVector<unsigned,8> Ops;
1713     bool Reads, Writes;
1714     std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
1715 
1716     // If SrcReg wasn't read, it may still be the case that DstReg is live-in
1717     // because SrcReg is a sub-register.
1718     if (DstInt && !Reads && SubIdx && !UseMI->isDebugValue())
1719       Reads = DstInt->liveAt(LIS->getInstructionIndex(*UseMI));
1720 
1721     // Replace SrcReg with DstReg in all UseMI operands.
1722     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1723       MachineOperand &MO = UseMI->getOperand(Ops[i]);
1724 
1725       // Adjust <undef> flags in case of sub-register joins. We don't want to
1726       // turn a full def into a read-modify-write sub-register def and vice
1727       // versa.
1728       if (SubIdx && MO.isDef())
1729         MO.setIsUndef(!Reads);
1730 
1731       // A subreg use of a partially undef (super) register may be a complete
1732       // undef use now and then has to be marked that way.
1733       if (SubIdx != 0 && MO.isUse() && MRI->shouldTrackSubRegLiveness(DstReg)) {
1734         if (!DstInt->hasSubRanges()) {
1735           BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
1736           LaneBitmask FullMask = MRI->getMaxLaneMaskForVReg(DstInt->reg);
1737           LaneBitmask UsedLanes = TRI->getSubRegIndexLaneMask(SubIdx);
1738           LaneBitmask UnusedLanes = FullMask & ~UsedLanes;
1739           DstInt->createSubRangeFrom(Allocator, UsedLanes, *DstInt);
1740           // The unused lanes are just empty live-ranges at this point.
1741           // It is the caller responsibility to set the proper
1742           // dead segments if there is an actual dead def of the
1743           // unused lanes. This may happen with rematerialization.
1744           DstInt->createSubRange(Allocator, UnusedLanes);
1745         }
1746         SlotIndex MIIdx = UseMI->isDebugValue()
1747                               ? LIS->getSlotIndexes()->getIndexBefore(*UseMI)
1748                               : LIS->getInstructionIndex(*UseMI);
1749         SlotIndex UseIdx = MIIdx.getRegSlot(true);
1750         addUndefFlag(*DstInt, UseIdx, MO, SubIdx);
1751       }
1752 
1753       if (DstIsPhys)
1754         MO.substPhysReg(DstReg, *TRI);
1755       else
1756         MO.substVirtReg(DstReg, SubIdx, *TRI);
1757     }
1758 
1759     LLVM_DEBUG({
1760       dbgs() << "\t\tupdated: ";
1761       if (!UseMI->isDebugValue())
1762         dbgs() << LIS->getInstructionIndex(*UseMI) << "\t";
1763       dbgs() << *UseMI;
1764     });
1765   }
1766 }
1767 
1768 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) {
1769   // Always join simple intervals that are defined by a single copy from a
1770   // reserved register. This doesn't increase register pressure, so it is
1771   // always beneficial.
1772   if (!MRI->isReserved(CP.getDstReg())) {
1773     LLVM_DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
1774     return false;
1775   }
1776 
1777   LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
1778   if (JoinVInt.containsOneValue())
1779     return true;
1780 
1781   LLVM_DEBUG(
1782       dbgs() << "\tCannot join complex intervals into reserved register.\n");
1783   return false;
1784 }
1785 
1786 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
1787   Again = false;
1788   LLVM_DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI);
1789 
1790   CoalescerPair CP(*TRI);
1791   if (!CP.setRegisters(CopyMI)) {
1792     LLVM_DEBUG(dbgs() << "\tNot coalescable.\n");
1793     return false;
1794   }
1795 
1796   if (CP.getNewRC()) {
1797     auto SrcRC = MRI->getRegClass(CP.getSrcReg());
1798     auto DstRC = MRI->getRegClass(CP.getDstReg());
1799     unsigned SrcIdx = CP.getSrcIdx();
1800     unsigned DstIdx = CP.getDstIdx();
1801     if (CP.isFlipped()) {
1802       std::swap(SrcIdx, DstIdx);
1803       std::swap(SrcRC, DstRC);
1804     }
1805     if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx,
1806                              CP.getNewRC(), *LIS)) {
1807       LLVM_DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n");
1808       return false;
1809     }
1810   }
1811 
1812   // Dead code elimination. This really should be handled by MachineDCE, but
1813   // sometimes dead copies slip through, and we can't generate invalid live
1814   // ranges.
1815   if (!CP.isPhys() && CopyMI->allDefsAreDead()) {
1816     LLVM_DEBUG(dbgs() << "\tCopy is dead.\n");
1817     DeadDefs.push_back(CopyMI);
1818     eliminateDeadDefs();
1819     return true;
1820   }
1821 
1822   // Eliminate undefs.
1823   if (!CP.isPhys()) {
1824     // If this is an IMPLICIT_DEF, leave it alone, but don't try to coalesce.
1825     if (MachineInstr *UndefMI = eliminateUndefCopy(CopyMI)) {
1826       if (UndefMI->isImplicitDef())
1827         return false;
1828       deleteInstr(CopyMI);
1829       return false;  // Not coalescable.
1830     }
1831   }
1832 
1833   // Coalesced copies are normally removed immediately, but transformations
1834   // like removeCopyByCommutingDef() can inadvertently create identity copies.
1835   // When that happens, just join the values and remove the copy.
1836   if (CP.getSrcReg() == CP.getDstReg()) {
1837     LiveInterval &LI = LIS->getInterval(CP.getSrcReg());
1838     LLVM_DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n');
1839     const SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
1840     LiveQueryResult LRQ = LI.Query(CopyIdx);
1841     if (VNInfo *DefVNI = LRQ.valueDefined()) {
1842       VNInfo *ReadVNI = LRQ.valueIn();
1843       assert(ReadVNI && "No value before copy and no <undef> flag.");
1844       assert(ReadVNI != DefVNI && "Cannot read and define the same value.");
1845       LI.MergeValueNumberInto(DefVNI, ReadVNI);
1846 
1847       // Process subregister liveranges.
1848       for (LiveInterval::SubRange &S : LI.subranges()) {
1849         LiveQueryResult SLRQ = S.Query(CopyIdx);
1850         if (VNInfo *SDefVNI = SLRQ.valueDefined()) {
1851           VNInfo *SReadVNI = SLRQ.valueIn();
1852           S.MergeValueNumberInto(SDefVNI, SReadVNI);
1853         }
1854       }
1855       LLVM_DEBUG(dbgs() << "\tMerged values:          " << LI << '\n');
1856     }
1857     deleteInstr(CopyMI);
1858     return true;
1859   }
1860 
1861   // Enforce policies.
1862   if (CP.isPhys()) {
1863     LLVM_DEBUG(dbgs() << "\tConsidering merging "
1864                       << printReg(CP.getSrcReg(), TRI) << " with "
1865                       << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n');
1866     if (!canJoinPhys(CP)) {
1867       // Before giving up coalescing, if definition of source is defined by
1868       // trivial computation, try rematerializing it.
1869       bool IsDefCopy;
1870       if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
1871         return true;
1872       if (IsDefCopy)
1873         Again = true;  // May be possible to coalesce later.
1874       return false;
1875     }
1876   } else {
1877     // When possible, let DstReg be the larger interval.
1878     if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() >
1879                            LIS->getInterval(CP.getDstReg()).size())
1880       CP.flip();
1881 
1882     LLVM_DEBUG({
1883       dbgs() << "\tConsidering merging to "
1884              << TRI->getRegClassName(CP.getNewRC()) << " with ";
1885       if (CP.getDstIdx() && CP.getSrcIdx())
1886         dbgs() << printReg(CP.getDstReg()) << " in "
1887                << TRI->getSubRegIndexName(CP.getDstIdx()) << " and "
1888                << printReg(CP.getSrcReg()) << " in "
1889                << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n';
1890       else
1891         dbgs() << printReg(CP.getSrcReg(), TRI) << " in "
1892                << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';
1893     });
1894   }
1895 
1896   ShrinkMask = LaneBitmask::getNone();
1897   ShrinkMainRange = false;
1898 
1899   // Okay, attempt to join these two intervals.  On failure, this returns false.
1900   // Otherwise, if one of the intervals being joined is a physreg, this method
1901   // always canonicalizes DstInt to be it.  The output "SrcInt" will not have
1902   // been modified, so we can use this information below to update aliases.
1903   if (!joinIntervals(CP)) {
1904     // Coalescing failed.
1905 
1906     // If definition of source is defined by trivial computation, try
1907     // rematerializing it.
1908     bool IsDefCopy;
1909     if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
1910       return true;
1911 
1912     // If we can eliminate the copy without merging the live segments, do so
1913     // now.
1914     if (!CP.isPartial() && !CP.isPhys()) {
1915       bool Changed = adjustCopiesBackFrom(CP, CopyMI);
1916       bool Shrink = false;
1917       if (!Changed)
1918         std::tie(Changed, Shrink) = removeCopyByCommutingDef(CP, CopyMI);
1919       if (Changed) {
1920         deleteInstr(CopyMI);
1921         if (Shrink) {
1922           unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
1923           LiveInterval &DstLI = LIS->getInterval(DstReg);
1924           shrinkToUses(&DstLI);
1925           LLVM_DEBUG(dbgs() << "\t\tshrunk:   " << DstLI << '\n');
1926         }
1927         LLVM_DEBUG(dbgs() << "\tTrivial!\n");
1928         return true;
1929       }
1930     }
1931 
1932     // Try and see if we can partially eliminate the copy by moving the copy to
1933     // its predecessor.
1934     if (!CP.isPartial() && !CP.isPhys())
1935       if (removePartialRedundancy(CP, *CopyMI))
1936         return true;
1937 
1938     // Otherwise, we are unable to join the intervals.
1939     LLVM_DEBUG(dbgs() << "\tInterference!\n");
1940     Again = true;  // May be possible to coalesce later.
1941     return false;
1942   }
1943 
1944   // Coalescing to a virtual register that is of a sub-register class of the
1945   // other. Make sure the resulting register is set to the right register class.
1946   if (CP.isCrossClass()) {
1947     ++numCrossRCs;
1948     MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
1949   }
1950 
1951   // Removing sub-register copies can ease the register class constraints.
1952   // Make sure we attempt to inflate the register class of DstReg.
1953   if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC()))
1954     InflateRegs.push_back(CP.getDstReg());
1955 
1956   // CopyMI has been erased by joinIntervals at this point. Remove it from
1957   // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
1958   // to the work list. This keeps ErasedInstrs from growing needlessly.
1959   ErasedInstrs.erase(CopyMI);
1960 
1961   // Rewrite all SrcReg operands to DstReg.
1962   // Also update DstReg operands to include DstIdx if it is set.
1963   if (CP.getDstIdx())
1964     updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx());
1965   updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx());
1966 
1967   // Shrink subregister ranges if necessary.
1968   if (ShrinkMask.any()) {
1969     LiveInterval &LI = LIS->getInterval(CP.getDstReg());
1970     for (LiveInterval::SubRange &S : LI.subranges()) {
1971       if ((S.LaneMask & ShrinkMask).none())
1972         continue;
1973       LLVM_DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask)
1974                         << ")\n");
1975       LIS->shrinkToUses(S, LI.reg);
1976     }
1977     LI.removeEmptySubRanges();
1978   }
1979 
1980   // CP.getSrcReg()'s live interval has been merged into CP.getDstReg's live
1981   // interval. Since CP.getSrcReg() is in ToBeUpdated set and its live interval
1982   // is not up-to-date, need to update the merged live interval here.
1983   if (ToBeUpdated.count(CP.getSrcReg()))
1984     ShrinkMainRange = true;
1985 
1986   if (ShrinkMainRange) {
1987     LiveInterval &LI = LIS->getInterval(CP.getDstReg());
1988     shrinkToUses(&LI);
1989   }
1990 
1991   // SrcReg is guaranteed to be the register whose live interval that is
1992   // being merged.
1993   LIS->removeInterval(CP.getSrcReg());
1994 
1995   // Update regalloc hint.
1996   TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
1997 
1998   LLVM_DEBUG({
1999     dbgs() << "\tSuccess: " << printReg(CP.getSrcReg(), TRI, CP.getSrcIdx())
2000            << " -> " << printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n';
2001     dbgs() << "\tResult = ";
2002     if (CP.isPhys())
2003       dbgs() << printReg(CP.getDstReg(), TRI);
2004     else
2005       dbgs() << LIS->getInterval(CP.getDstReg());
2006     dbgs() << '\n';
2007   });
2008 
2009   ++numJoins;
2010   return true;
2011 }
2012 
2013 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
2014   unsigned DstReg = CP.getDstReg();
2015   unsigned SrcReg = CP.getSrcReg();
2016   assert(CP.isPhys() && "Must be a physreg copy");
2017   assert(MRI->isReserved(DstReg) && "Not a reserved register");
2018   LiveInterval &RHS = LIS->getInterval(SrcReg);
2019   LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n');
2020 
2021   assert(RHS.containsOneValue() && "Invalid join with reserved register");
2022 
2023   // Optimization for reserved registers like ESP. We can only merge with a
2024   // reserved physreg if RHS has a single value that is a copy of DstReg.
2025   // The live range of the reserved register will look like a set of dead defs
2026   // - we don't properly track the live range of reserved registers.
2027 
2028   // Deny any overlapping intervals.  This depends on all the reserved
2029   // register live ranges to look like dead defs.
2030   if (!MRI->isConstantPhysReg(DstReg)) {
2031     for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
2032       // Abort if not all the regunits are reserved.
2033       for (MCRegUnitRootIterator RI(*UI, TRI); RI.isValid(); ++RI) {
2034         if (!MRI->isReserved(*RI))
2035           return false;
2036       }
2037       if (RHS.overlaps(LIS->getRegUnit(*UI))) {
2038         LLVM_DEBUG(dbgs() << "\t\tInterference: " << printRegUnit(*UI, TRI)
2039                           << '\n');
2040         return false;
2041       }
2042     }
2043 
2044     // We must also check for overlaps with regmask clobbers.
2045     BitVector RegMaskUsable;
2046     if (LIS->checkRegMaskInterference(RHS, RegMaskUsable) &&
2047         !RegMaskUsable.test(DstReg)) {
2048       LLVM_DEBUG(dbgs() << "\t\tRegMask interference\n");
2049       return false;
2050     }
2051   }
2052 
2053   // Skip any value computations, we are not adding new values to the
2054   // reserved register.  Also skip merging the live ranges, the reserved
2055   // register live range doesn't need to be accurate as long as all the
2056   // defs are there.
2057 
2058   // Delete the identity copy.
2059   MachineInstr *CopyMI;
2060   if (CP.isFlipped()) {
2061     // Physreg is copied into vreg
2062     //   %y = COPY %physreg_x
2063     //   ...  //< no other def of %physreg_x here
2064     //   use %y
2065     // =>
2066     //   ...
2067     //   use %physreg_x
2068     CopyMI = MRI->getVRegDef(SrcReg);
2069   } else {
2070     // VReg is copied into physreg:
2071     //   %y = def
2072     //   ... //< no other def or use of %physreg_x here
2073     //   %physreg_x = COPY %y
2074     // =>
2075     //   %physreg_x = def
2076     //   ...
2077     if (!MRI->hasOneNonDBGUse(SrcReg)) {
2078       LLVM_DEBUG(dbgs() << "\t\tMultiple vreg uses!\n");
2079       return false;
2080     }
2081 
2082     if (!LIS->intervalIsInOneMBB(RHS)) {
2083       LLVM_DEBUG(dbgs() << "\t\tComplex control flow!\n");
2084       return false;
2085     }
2086 
2087     MachineInstr &DestMI = *MRI->getVRegDef(SrcReg);
2088     CopyMI = &*MRI->use_instr_nodbg_begin(SrcReg);
2089     SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
2090     SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot();
2091 
2092     if (!MRI->isConstantPhysReg(DstReg)) {
2093       // We checked above that there are no interfering defs of the physical
2094       // register. However, for this case, where we intend to move up the def of
2095       // the physical register, we also need to check for interfering uses.
2096       SlotIndexes *Indexes = LIS->getSlotIndexes();
2097       for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx);
2098            SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) {
2099         MachineInstr *MI = LIS->getInstructionFromIndex(SI);
2100         if (MI->readsRegister(DstReg, TRI)) {
2101           LLVM_DEBUG(dbgs() << "\t\tInterference (read): " << *MI);
2102           return false;
2103         }
2104       }
2105     }
2106 
2107     // We're going to remove the copy which defines a physical reserved
2108     // register, so remove its valno, etc.
2109     LLVM_DEBUG(dbgs() << "\t\tRemoving phys reg def of "
2110                       << printReg(DstReg, TRI) << " at " << CopyRegIdx << "\n");
2111 
2112     LIS->removePhysRegDefAt(DstReg, CopyRegIdx);
2113     // Create a new dead def at the new def location.
2114     for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
2115       LiveRange &LR = LIS->getRegUnit(*UI);
2116       LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator());
2117     }
2118   }
2119 
2120   deleteInstr(CopyMI);
2121 
2122   // We don't track kills for reserved registers.
2123   MRI->clearKillFlags(CP.getSrcReg());
2124 
2125   return true;
2126 }
2127 
2128 //===----------------------------------------------------------------------===//
2129 //                 Interference checking and interval joining
2130 //===----------------------------------------------------------------------===//
2131 //
2132 // In the easiest case, the two live ranges being joined are disjoint, and
2133 // there is no interference to consider. It is quite common, though, to have
2134 // overlapping live ranges, and we need to check if the interference can be
2135 // resolved.
2136 //
2137 // The live range of a single SSA value forms a sub-tree of the dominator tree.
2138 // This means that two SSA values overlap if and only if the def of one value
2139 // is contained in the live range of the other value. As a special case, the
2140 // overlapping values can be defined at the same index.
2141 //
2142 // The interference from an overlapping def can be resolved in these cases:
2143 //
2144 // 1. Coalescable copies. The value is defined by a copy that would become an
2145 //    identity copy after joining SrcReg and DstReg. The copy instruction will
2146 //    be removed, and the value will be merged with the source value.
2147 //
2148 //    There can be several copies back and forth, causing many values to be
2149 //    merged into one. We compute a list of ultimate values in the joined live
2150 //    range as well as a mappings from the old value numbers.
2151 //
2152 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI
2153 //    predecessors have a live out value. It doesn't cause real interference,
2154 //    and can be merged into the value it overlaps. Like a coalescable copy, it
2155 //    can be erased after joining.
2156 //
2157 // 3. Copy of external value. The overlapping def may be a copy of a value that
2158 //    is already in the other register. This is like a coalescable copy, but
2159 //    the live range of the source register must be trimmed after erasing the
2160 //    copy instruction:
2161 //
2162 //      %src = COPY %ext
2163 //      %dst = COPY %ext  <-- Remove this COPY, trim the live range of %ext.
2164 //
2165 // 4. Clobbering undefined lanes. Vector registers are sometimes built by
2166 //    defining one lane at a time:
2167 //
2168 //      %dst:ssub0<def,read-undef> = FOO
2169 //      %src = BAR
2170 //      %dst:ssub1 = COPY %src
2171 //
2172 //    The live range of %src overlaps the %dst value defined by FOO, but
2173 //    merging %src into %dst:ssub1 is only going to clobber the ssub1 lane
2174 //    which was undef anyway.
2175 //
2176 //    The value mapping is more complicated in this case. The final live range
2177 //    will have different value numbers for both FOO and BAR, but there is no
2178 //    simple mapping from old to new values. It may even be necessary to add
2179 //    new PHI values.
2180 //
2181 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that
2182 //    is live, but never read. This can happen because we don't compute
2183 //    individual live ranges per lane.
2184 //
2185 //      %dst = FOO
2186 //      %src = BAR
2187 //      %dst:ssub1 = COPY %src
2188 //
2189 //    This kind of interference is only resolved locally. If the clobbered
2190 //    lane value escapes the block, the join is aborted.
2191 
2192 namespace {
2193 
2194 /// Track information about values in a single virtual register about to be
2195 /// joined. Objects of this class are always created in pairs - one for each
2196 /// side of the CoalescerPair (or one for each lane of a side of the coalescer
2197 /// pair)
2198 class JoinVals {
2199   /// Live range we work on.
2200   LiveRange &LR;
2201 
2202   /// (Main) register we work on.
2203   const unsigned Reg;
2204 
2205   /// Reg (and therefore the values in this liverange) will end up as
2206   /// subregister SubIdx in the coalesced register. Either CP.DstIdx or
2207   /// CP.SrcIdx.
2208   const unsigned SubIdx;
2209 
2210   /// The LaneMask that this liverange will occupy the coalesced register. May
2211   /// be smaller than the lanemask produced by SubIdx when merging subranges.
2212   const LaneBitmask LaneMask;
2213 
2214   /// This is true when joining sub register ranges, false when joining main
2215   /// ranges.
2216   const bool SubRangeJoin;
2217 
2218   /// Whether the current LiveInterval tracks subregister liveness.
2219   const bool TrackSubRegLiveness;
2220 
2221   /// Values that will be present in the final live range.
2222   SmallVectorImpl<VNInfo*> &NewVNInfo;
2223 
2224   const CoalescerPair &CP;
2225   LiveIntervals *LIS;
2226   SlotIndexes *Indexes;
2227   const TargetRegisterInfo *TRI;
2228 
2229   /// Value number assignments. Maps value numbers in LI to entries in
2230   /// NewVNInfo. This is suitable for passing to LiveInterval::join().
2231   SmallVector<int, 8> Assignments;
2232 
2233   public:
2234   /// Conflict resolution for overlapping values.
2235   enum ConflictResolution {
2236     /// No overlap, simply keep this value.
2237     CR_Keep,
2238 
2239     /// Merge this value into OtherVNI and erase the defining instruction.
2240     /// Used for IMPLICIT_DEF, coalescable copies, and copies from external
2241     /// values.
2242     CR_Erase,
2243 
2244     /// Merge this value into OtherVNI but keep the defining instruction.
2245     /// This is for the special case where OtherVNI is defined by the same
2246     /// instruction.
2247     CR_Merge,
2248 
2249     /// Keep this value, and have it replace OtherVNI where possible. This
2250     /// complicates value mapping since OtherVNI maps to two different values
2251     /// before and after this def.
2252     /// Used when clobbering undefined or dead lanes.
2253     CR_Replace,
2254 
2255     /// Unresolved conflict. Visit later when all values have been mapped.
2256     CR_Unresolved,
2257 
2258     /// Unresolvable conflict. Abort the join.
2259     CR_Impossible
2260   };
2261 
2262   private:
2263   /// Per-value info for LI. The lane bit masks are all relative to the final
2264   /// joined register, so they can be compared directly between SrcReg and
2265   /// DstReg.
2266   struct Val {
2267     ConflictResolution Resolution = CR_Keep;
2268 
2269     /// Lanes written by this def, 0 for unanalyzed values.
2270     LaneBitmask WriteLanes;
2271 
2272     /// Lanes with defined values in this register. Other lanes are undef and
2273     /// safe to clobber.
2274     LaneBitmask ValidLanes;
2275 
2276     /// Value in LI being redefined by this def.
2277     VNInfo *RedefVNI = nullptr;
2278 
2279     /// Value in the other live range that overlaps this def, if any.
2280     VNInfo *OtherVNI = nullptr;
2281 
2282     /// Is this value an IMPLICIT_DEF that can be erased?
2283     ///
2284     /// IMPLICIT_DEF values should only exist at the end of a basic block that
2285     /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be
2286     /// safely erased if they are overlapping a live value in the other live
2287     /// interval.
2288     ///
2289     /// Weird control flow graphs and incomplete PHI handling in
2290     /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with
2291     /// longer live ranges. Such IMPLICIT_DEF values should be treated like
2292     /// normal values.
2293     bool ErasableImplicitDef = false;
2294 
2295     /// True when the live range of this value will be pruned because of an
2296     /// overlapping CR_Replace value in the other live range.
2297     bool Pruned = false;
2298 
2299     /// True once Pruned above has been computed.
2300     bool PrunedComputed = false;
2301 
2302     /// True if this value is determined to be identical to OtherVNI
2303     /// (in valuesIdentical). This is used with CR_Erase where the erased
2304     /// copy is redundant, i.e. the source value is already the same as
2305     /// the destination. In such cases the subranges need to be updated
2306     /// properly. See comment at pruneSubRegValues for more info.
2307     bool Identical = false;
2308 
2309     Val() = default;
2310 
2311     bool isAnalyzed() const { return WriteLanes.any(); }
2312   };
2313 
2314   /// One entry per value number in LI.
2315   SmallVector<Val, 8> Vals;
2316 
2317   /// Compute the bitmask of lanes actually written by DefMI.
2318   /// Set Redef if there are any partial register definitions that depend on the
2319   /// previous value of the register.
2320   LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const;
2321 
2322   /// Find the ultimate value that VNI was copied from.
2323   std::pair<const VNInfo*,unsigned> followCopyChain(const VNInfo *VNI) const;
2324 
2325   bool valuesIdentical(VNInfo *Value0, VNInfo *Value1, const JoinVals &Other) const;
2326 
2327   /// Analyze ValNo in this live range, and set all fields of Vals[ValNo].
2328   /// Return a conflict resolution when possible, but leave the hard cases as
2329   /// CR_Unresolved.
2330   /// Recursively calls computeAssignment() on this and Other, guaranteeing that
2331   /// both OtherVNI and RedefVNI have been analyzed and mapped before returning.
2332   /// The recursion always goes upwards in the dominator tree, making loops
2333   /// impossible.
2334   ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other);
2335 
2336   /// Compute the value assignment for ValNo in RI.
2337   /// This may be called recursively by analyzeValue(), but never for a ValNo on
2338   /// the stack.
2339   void computeAssignment(unsigned ValNo, JoinVals &Other);
2340 
2341   /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute
2342   /// the extent of the tainted lanes in the block.
2343   ///
2344   /// Multiple values in Other.LR can be affected since partial redefinitions
2345   /// can preserve previously tainted lanes.
2346   ///
2347   ///   1 %dst = VLOAD           <-- Define all lanes in %dst
2348   ///   2 %src = FOO             <-- ValNo to be joined with %dst:ssub0
2349   ///   3 %dst:ssub1 = BAR       <-- Partial redef doesn't clear taint in ssub0
2350   ///   4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read
2351   ///
2352   /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes)
2353   /// entry to TaintedVals.
2354   ///
2355   /// Returns false if the tainted lanes extend beyond the basic block.
2356   bool
2357   taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
2358               SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent);
2359 
2360   /// Return true if MI uses any of the given Lanes from Reg.
2361   /// This does not include partial redefinitions of Reg.
2362   bool usesLanes(const MachineInstr &MI, unsigned, unsigned, LaneBitmask) const;
2363 
2364   /// Determine if ValNo is a copy of a value number in LR or Other.LR that will
2365   /// be pruned:
2366   ///
2367   ///   %dst = COPY %src
2368   ///   %src = COPY %dst  <-- This value to be pruned.
2369   ///   %dst = COPY %src  <-- This value is a copy of a pruned value.
2370   bool isPrunedValue(unsigned ValNo, JoinVals &Other);
2371 
2372 public:
2373   JoinVals(LiveRange &LR, unsigned Reg, unsigned SubIdx, LaneBitmask LaneMask,
2374            SmallVectorImpl<VNInfo*> &newVNInfo, const CoalescerPair &cp,
2375            LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin,
2376            bool TrackSubRegLiveness)
2377     : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask),
2378       SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness),
2379       NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()),
2380       TRI(TRI), Assignments(LR.getNumValNums(), -1), Vals(LR.getNumValNums()) {}
2381 
2382   /// Analyze defs in LR and compute a value mapping in NewVNInfo.
2383   /// Returns false if any conflicts were impossible to resolve.
2384   bool mapValues(JoinVals &Other);
2385 
2386   /// Try to resolve conflicts that require all values to be mapped.
2387   /// Returns false if any conflicts were impossible to resolve.
2388   bool resolveConflicts(JoinVals &Other);
2389 
2390   /// Prune the live range of values in Other.LR where they would conflict with
2391   /// CR_Replace values in LR. Collect end points for restoring the live range
2392   /// after joining.
2393   void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints,
2394                    bool changeInstrs);
2395 
2396   /// Removes subranges starting at copies that get removed. This sometimes
2397   /// happens when undefined subranges are copied around. These ranges contain
2398   /// no useful information and can be removed.
2399   void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask);
2400 
2401   /// Pruning values in subranges can lead to removing segments in these
2402   /// subranges started by IMPLICIT_DEFs. The corresponding segments in
2403   /// the main range also need to be removed. This function will mark
2404   /// the corresponding values in the main range as pruned, so that
2405   /// eraseInstrs can do the final cleanup.
2406   /// The parameter @p LI must be the interval whose main range is the
2407   /// live range LR.
2408   void pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange);
2409 
2410   /// Erase any machine instructions that have been coalesced away.
2411   /// Add erased instructions to ErasedInstrs.
2412   /// Add foreign virtual registers to ShrinkRegs if their live range ended at
2413   /// the erased instrs.
2414   void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
2415                    SmallVectorImpl<unsigned> &ShrinkRegs,
2416                    LiveInterval *LI = nullptr);
2417 
2418   /// Remove liverange defs at places where implicit defs will be removed.
2419   void removeImplicitDefs();
2420 
2421   /// Get the value assignments suitable for passing to LiveInterval::join.
2422   const int *getAssignments() const { return Assignments.data(); }
2423 
2424   /// Get the conflict resolution for a value number.
2425   ConflictResolution getResolution(unsigned Num) const {
2426     return Vals[Num].Resolution;
2427   }
2428 };
2429 
2430 } // end anonymous namespace
2431 
2432 LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef)
2433   const {
2434   LaneBitmask L;
2435   for (const MachineOperand &MO : DefMI->operands()) {
2436     if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef())
2437       continue;
2438     L |= TRI->getSubRegIndexLaneMask(
2439            TRI->composeSubRegIndices(SubIdx, MO.getSubReg()));
2440     if (MO.readsReg())
2441       Redef = true;
2442   }
2443   return L;
2444 }
2445 
2446 std::pair<const VNInfo*, unsigned> JoinVals::followCopyChain(
2447     const VNInfo *VNI) const {
2448   unsigned TrackReg = Reg;
2449 
2450   while (!VNI->isPHIDef()) {
2451     SlotIndex Def = VNI->def;
2452     MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
2453     assert(MI && "No defining instruction");
2454     if (!MI->isFullCopy())
2455       return std::make_pair(VNI, TrackReg);
2456     Register SrcReg = MI->getOperand(1).getReg();
2457     if (!Register::isVirtualRegister(SrcReg))
2458       return std::make_pair(VNI, TrackReg);
2459 
2460     const LiveInterval &LI = LIS->getInterval(SrcReg);
2461     const VNInfo *ValueIn;
2462     // No subrange involved.
2463     if (!SubRangeJoin || !LI.hasSubRanges()) {
2464       LiveQueryResult LRQ = LI.Query(Def);
2465       ValueIn = LRQ.valueIn();
2466     } else {
2467       // Query subranges. Ensure that all matching ones take us to the same def
2468       // (allowing some of them to be undef).
2469       ValueIn = nullptr;
2470       for (const LiveInterval::SubRange &S : LI.subranges()) {
2471         // Transform lanemask to a mask in the joined live interval.
2472         LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask);
2473         if ((SMask & LaneMask).none())
2474           continue;
2475         LiveQueryResult LRQ = S.Query(Def);
2476         if (!ValueIn) {
2477           ValueIn = LRQ.valueIn();
2478           continue;
2479         }
2480         if (LRQ.valueIn() && ValueIn != LRQ.valueIn())
2481           return std::make_pair(VNI, TrackReg);
2482       }
2483     }
2484     if (ValueIn == nullptr) {
2485       // Reaching an undefined value is legitimate, for example:
2486       //
2487       // 1   undef %0.sub1 = ...  ;; %0.sub0 == undef
2488       // 2   %1 = COPY %0         ;; %1 is defined here.
2489       // 3   %0 = COPY %1         ;; Now %0.sub0 has a definition,
2490       //                          ;; but it's equivalent to "undef".
2491       return std::make_pair(nullptr, SrcReg);
2492     }
2493     VNI = ValueIn;
2494     TrackReg = SrcReg;
2495   }
2496   return std::make_pair(VNI, TrackReg);
2497 }
2498 
2499 bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1,
2500                                const JoinVals &Other) const {
2501   const VNInfo *Orig0;
2502   unsigned Reg0;
2503   std::tie(Orig0, Reg0) = followCopyChain(Value0);
2504   if (Orig0 == Value1 && Reg0 == Other.Reg)
2505     return true;
2506 
2507   const VNInfo *Orig1;
2508   unsigned Reg1;
2509   std::tie(Orig1, Reg1) = Other.followCopyChain(Value1);
2510   // If both values are undefined, and the source registers are the same
2511   // register, the values are identical. Filter out cases where only one
2512   // value is defined.
2513   if (Orig0 == nullptr || Orig1 == nullptr)
2514     return Orig0 == Orig1 && Reg0 == Reg1;
2515 
2516   // The values are equal if they are defined at the same place and use the
2517   // same register. Note that we cannot compare VNInfos directly as some of
2518   // them might be from a copy created in mergeSubRangeInto()  while the other
2519   // is from the original LiveInterval.
2520   return Orig0->def == Orig1->def && Reg0 == Reg1;
2521 }
2522 
2523 JoinVals::ConflictResolution
2524 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
2525   Val &V = Vals[ValNo];
2526   assert(!V.isAnalyzed() && "Value has already been analyzed!");
2527   VNInfo *VNI = LR.getValNumInfo(ValNo);
2528   if (VNI->isUnused()) {
2529     V.WriteLanes = LaneBitmask::getAll();
2530     return CR_Keep;
2531   }
2532 
2533   // Get the instruction defining this value, compute the lanes written.
2534   const MachineInstr *DefMI = nullptr;
2535   if (VNI->isPHIDef()) {
2536     // Conservatively assume that all lanes in a PHI are valid.
2537     LaneBitmask Lanes = SubRangeJoin ? LaneBitmask::getLane(0)
2538                                      : TRI->getSubRegIndexLaneMask(SubIdx);
2539     V.ValidLanes = V.WriteLanes = Lanes;
2540   } else {
2541     DefMI = Indexes->getInstructionFromIndex(VNI->def);
2542     assert(DefMI != nullptr);
2543     if (SubRangeJoin) {
2544       // We don't care about the lanes when joining subregister ranges.
2545       V.WriteLanes = V.ValidLanes = LaneBitmask::getLane(0);
2546       if (DefMI->isImplicitDef()) {
2547         V.ValidLanes = LaneBitmask::getNone();
2548         V.ErasableImplicitDef = true;
2549       }
2550     } else {
2551       bool Redef = false;
2552       V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef);
2553 
2554       // If this is a read-modify-write instruction, there may be more valid
2555       // lanes than the ones written by this instruction.
2556       // This only covers partial redef operands. DefMI may have normal use
2557       // operands reading the register. They don't contribute valid lanes.
2558       //
2559       // This adds ssub1 to the set of valid lanes in %src:
2560       //
2561       //   %src:ssub1 = FOO
2562       //
2563       // This leaves only ssub1 valid, making any other lanes undef:
2564       //
2565       //   %src:ssub1<def,read-undef> = FOO %src:ssub2
2566       //
2567       // The <read-undef> flag on the def operand means that old lane values are
2568       // not important.
2569       if (Redef) {
2570         V.RedefVNI = LR.Query(VNI->def).valueIn();
2571         assert((TrackSubRegLiveness || V.RedefVNI) &&
2572                "Instruction is reading nonexistent value");
2573         if (V.RedefVNI != nullptr) {
2574           computeAssignment(V.RedefVNI->id, Other);
2575           V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes;
2576         }
2577       }
2578 
2579       // An IMPLICIT_DEF writes undef values.
2580       if (DefMI->isImplicitDef()) {
2581         // We normally expect IMPLICIT_DEF values to be live only until the end
2582         // of their block. If the value is really live longer and gets pruned in
2583         // another block, this flag is cleared again.
2584         //
2585         // Clearing the valid lanes is deferred until it is sure this can be
2586         // erased.
2587         V.ErasableImplicitDef = true;
2588       }
2589     }
2590   }
2591 
2592   // Find the value in Other that overlaps VNI->def, if any.
2593   LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def);
2594 
2595   // It is possible that both values are defined by the same instruction, or
2596   // the values are PHIs defined in the same block. When that happens, the two
2597   // values should be merged into one, but not into any preceding value.
2598   // The first value defined or visited gets CR_Keep, the other gets CR_Merge.
2599   if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) {
2600     assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ");
2601 
2602     // One value stays, the other is merged. Keep the earlier one, or the first
2603     // one we see.
2604     if (OtherVNI->def < VNI->def)
2605       Other.computeAssignment(OtherVNI->id, *this);
2606     else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) {
2607       // This is an early-clobber def overlapping a live-in value in the other
2608       // register. Not mergeable.
2609       V.OtherVNI = OtherLRQ.valueIn();
2610       return CR_Impossible;
2611     }
2612     V.OtherVNI = OtherVNI;
2613     Val &OtherV = Other.Vals[OtherVNI->id];
2614     // Keep this value, check for conflicts when analyzing OtherVNI.
2615     if (!OtherV.isAnalyzed())
2616       return CR_Keep;
2617     // Both sides have been analyzed now.
2618     // Allow overlapping PHI values. Any real interference would show up in a
2619     // predecessor, the PHI itself can't introduce any conflicts.
2620     if (VNI->isPHIDef())
2621       return CR_Merge;
2622     if ((V.ValidLanes & OtherV.ValidLanes).any())
2623       // Overlapping lanes can't be resolved.
2624       return CR_Impossible;
2625     else
2626       return CR_Merge;
2627   }
2628 
2629   // No simultaneous def. Is Other live at the def?
2630   V.OtherVNI = OtherLRQ.valueIn();
2631   if (!V.OtherVNI)
2632     // No overlap, no conflict.
2633     return CR_Keep;
2634 
2635   assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ");
2636 
2637   // We have overlapping values, or possibly a kill of Other.
2638   // Recursively compute assignments up the dominator tree.
2639   Other.computeAssignment(V.OtherVNI->id, *this);
2640   Val &OtherV = Other.Vals[V.OtherVNI->id];
2641 
2642   if (OtherV.ErasableImplicitDef) {
2643     // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block.
2644     // This shouldn't normally happen, but ProcessImplicitDefs can leave such
2645     // IMPLICIT_DEF instructions behind, and there is nothing wrong with it
2646     // technically.
2647     //
2648     // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try
2649     // to erase the IMPLICIT_DEF instruction.
2650     if (DefMI &&
2651         DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) {
2652       LLVM_DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def
2653                  << " extends into "
2654                  << printMBBReference(*DefMI->getParent())
2655                  << ", keeping it.\n");
2656       OtherV.ErasableImplicitDef = false;
2657     } else {
2658       // We deferred clearing these lanes in case we needed to save them
2659       OtherV.ValidLanes &= ~OtherV.WriteLanes;
2660     }
2661   }
2662 
2663   // Allow overlapping PHI values. Any real interference would show up in a
2664   // predecessor, the PHI itself can't introduce any conflicts.
2665   if (VNI->isPHIDef())
2666     return CR_Replace;
2667 
2668   // Check for simple erasable conflicts.
2669   if (DefMI->isImplicitDef()) {
2670     // We need the def for the subregister if there is nothing else live at the
2671     // subrange at this point.
2672     if (TrackSubRegLiveness
2673         && (V.WriteLanes & (OtherV.ValidLanes | OtherV.WriteLanes)).none())
2674       return CR_Replace;
2675     return CR_Erase;
2676   }
2677 
2678   // Include the non-conflict where DefMI is a coalescable copy that kills
2679   // OtherVNI. We still want the copy erased and value numbers merged.
2680   if (CP.isCoalescable(DefMI)) {
2681     // Some of the lanes copied from OtherVNI may be undef, making them undef
2682     // here too.
2683     V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes;
2684     return CR_Erase;
2685   }
2686 
2687   // This may not be a real conflict if DefMI simply kills Other and defines
2688   // VNI.
2689   if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def)
2690     return CR_Keep;
2691 
2692   // Handle the case where VNI and OtherVNI can be proven to be identical:
2693   //
2694   //   %other = COPY %ext
2695   //   %this  = COPY %ext <-- Erase this copy
2696   //
2697   if (DefMI->isFullCopy() && !CP.isPartial() &&
2698       valuesIdentical(VNI, V.OtherVNI, Other)) {
2699     V.Identical = true;
2700     return CR_Erase;
2701   }
2702 
2703   // The remaining checks apply to the lanes, which aren't tracked here.  This
2704   // was already decided to be OK via the following CR_Replace condition.
2705   // CR_Replace.
2706   if (SubRangeJoin)
2707     return CR_Replace;
2708 
2709   // If the lanes written by this instruction were all undef in OtherVNI, it is
2710   // still safe to join the live ranges. This can't be done with a simple value
2711   // mapping, though - OtherVNI will map to multiple values:
2712   //
2713   //   1 %dst:ssub0 = FOO                <-- OtherVNI
2714   //   2 %src = BAR                      <-- VNI
2715   //   3 %dst:ssub1 = COPY killed %src    <-- Eliminate this copy.
2716   //   4 BAZ killed %dst
2717   //   5 QUUX killed %src
2718   //
2719   // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace
2720   // handles this complex value mapping.
2721   if ((V.WriteLanes & OtherV.ValidLanes).none())
2722     return CR_Replace;
2723 
2724   // If the other live range is killed by DefMI and the live ranges are still
2725   // overlapping, it must be because we're looking at an early clobber def:
2726   //
2727   //   %dst<def,early-clobber> = ASM killed %src
2728   //
2729   // In this case, it is illegal to merge the two live ranges since the early
2730   // clobber def would clobber %src before it was read.
2731   if (OtherLRQ.isKill()) {
2732     // This case where the def doesn't overlap the kill is handled above.
2733     assert(VNI->def.isEarlyClobber() &&
2734            "Only early clobber defs can overlap a kill");
2735     return CR_Impossible;
2736   }
2737 
2738   // VNI is clobbering live lanes in OtherVNI, but there is still the
2739   // possibility that no instructions actually read the clobbered lanes.
2740   // If we're clobbering all the lanes in OtherVNI, at least one must be read.
2741   // Otherwise Other.RI wouldn't be live here.
2742   if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes).none())
2743     return CR_Impossible;
2744 
2745   // We need to verify that no instructions are reading the clobbered lanes. To
2746   // save compile time, we'll only check that locally. Don't allow the tainted
2747   // value to escape the basic block.
2748   MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2749   if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB))
2750     return CR_Impossible;
2751 
2752   // There are still some things that could go wrong besides clobbered lanes
2753   // being read, for example OtherVNI may be only partially redefined in MBB,
2754   // and some clobbered lanes could escape the block. Save this analysis for
2755   // resolveConflicts() when all values have been mapped. We need to know
2756   // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute
2757   // that now - the recursive analyzeValue() calls must go upwards in the
2758   // dominator tree.
2759   return CR_Unresolved;
2760 }
2761 
2762 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) {
2763   Val &V = Vals[ValNo];
2764   if (V.isAnalyzed()) {
2765     // Recursion should always move up the dominator tree, so ValNo is not
2766     // supposed to reappear before it has been assigned.
2767     assert(Assignments[ValNo] != -1 && "Bad recursion?");
2768     return;
2769   }
2770   switch ((V.Resolution = analyzeValue(ValNo, Other))) {
2771   case CR_Erase:
2772   case CR_Merge:
2773     // Merge this ValNo into OtherVNI.
2774     assert(V.OtherVNI && "OtherVNI not assigned, can't merge.");
2775     assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion");
2776     Assignments[ValNo] = Other.Assignments[V.OtherVNI->id];
2777     LLVM_DEBUG(dbgs() << "\t\tmerge " << printReg(Reg) << ':' << ValNo << '@'
2778                       << LR.getValNumInfo(ValNo)->def << " into "
2779                       << printReg(Other.Reg) << ':' << V.OtherVNI->id << '@'
2780                       << V.OtherVNI->def << " --> @"
2781                       << NewVNInfo[Assignments[ValNo]]->def << '\n');
2782     break;
2783   case CR_Replace:
2784   case CR_Unresolved: {
2785     // The other value is going to be pruned if this join is successful.
2786     assert(V.OtherVNI && "OtherVNI not assigned, can't prune");
2787     Val &OtherV = Other.Vals[V.OtherVNI->id];
2788     // We cannot erase an IMPLICIT_DEF if we don't have valid values for all
2789     // its lanes.
2790     if (OtherV.ErasableImplicitDef &&
2791         TrackSubRegLiveness &&
2792         (OtherV.WriteLanes & ~V.ValidLanes).any()) {
2793       LLVM_DEBUG(dbgs() << "Cannot erase implicit_def with missing values\n");
2794 
2795       OtherV.ErasableImplicitDef = false;
2796       // The valid lanes written by the implicit_def were speculatively cleared
2797       // before, so make this more conservative. It may be better to track this,
2798       // I haven't found a testcase where it matters.
2799       OtherV.ValidLanes = LaneBitmask::getAll();
2800     }
2801 
2802     OtherV.Pruned = true;
2803     LLVM_FALLTHROUGH;
2804   }
2805   default:
2806     // This value number needs to go in the final joined live range.
2807     Assignments[ValNo] = NewVNInfo.size();
2808     NewVNInfo.push_back(LR.getValNumInfo(ValNo));
2809     break;
2810   }
2811 }
2812 
2813 bool JoinVals::mapValues(JoinVals &Other) {
2814   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2815     computeAssignment(i, Other);
2816     if (Vals[i].Resolution == CR_Impossible) {
2817       LLVM_DEBUG(dbgs() << "\t\tinterference at " << printReg(Reg) << ':' << i
2818                         << '@' << LR.getValNumInfo(i)->def << '\n');
2819       return false;
2820     }
2821   }
2822   return true;
2823 }
2824 
2825 bool JoinVals::
2826 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
2827             SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent) {
2828   VNInfo *VNI = LR.getValNumInfo(ValNo);
2829   MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2830   SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB);
2831 
2832   // Scan Other.LR from VNI.def to MBBEnd.
2833   LiveInterval::iterator OtherI = Other.LR.find(VNI->def);
2834   assert(OtherI != Other.LR.end() && "No conflict?");
2835   do {
2836     // OtherI is pointing to a tainted value. Abort the join if the tainted
2837     // lanes escape the block.
2838     SlotIndex End = OtherI->end;
2839     if (End >= MBBEnd) {
2840       LLVM_DEBUG(dbgs() << "\t\ttaints global " << printReg(Other.Reg) << ':'
2841                         << OtherI->valno->id << '@' << OtherI->start << '\n');
2842       return false;
2843     }
2844     LLVM_DEBUG(dbgs() << "\t\ttaints local " << printReg(Other.Reg) << ':'
2845                       << OtherI->valno->id << '@' << OtherI->start << " to "
2846                       << End << '\n');
2847     // A dead def is not a problem.
2848     if (End.isDead())
2849       break;
2850     TaintExtent.push_back(std::make_pair(End, TaintedLanes));
2851 
2852     // Check for another def in the MBB.
2853     if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd)
2854       break;
2855 
2856     // Lanes written by the new def are no longer tainted.
2857     const Val &OV = Other.Vals[OtherI->valno->id];
2858     TaintedLanes &= ~OV.WriteLanes;
2859     if (!OV.RedefVNI)
2860       break;
2861   } while (TaintedLanes.any());
2862   return true;
2863 }
2864 
2865 bool JoinVals::usesLanes(const MachineInstr &MI, unsigned Reg, unsigned SubIdx,
2866                          LaneBitmask Lanes) const {
2867   if (MI.isDebugInstr())
2868     return false;
2869   for (const MachineOperand &MO : MI.operands()) {
2870     if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg)
2871       continue;
2872     if (!MO.readsReg())
2873       continue;
2874     unsigned S = TRI->composeSubRegIndices(SubIdx, MO.getSubReg());
2875     if ((Lanes & TRI->getSubRegIndexLaneMask(S)).any())
2876       return true;
2877   }
2878   return false;
2879 }
2880 
2881 bool JoinVals::resolveConflicts(JoinVals &Other) {
2882   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2883     Val &V = Vals[i];
2884     assert(V.Resolution != CR_Impossible && "Unresolvable conflict");
2885     if (V.Resolution != CR_Unresolved)
2886       continue;
2887     LLVM_DEBUG(dbgs() << "\t\tconflict at " << printReg(Reg) << ':' << i << '@'
2888                       << LR.getValNumInfo(i)->def << '\n');
2889     if (SubRangeJoin)
2890       return false;
2891 
2892     ++NumLaneConflicts;
2893     assert(V.OtherVNI && "Inconsistent conflict resolution.");
2894     VNInfo *VNI = LR.getValNumInfo(i);
2895     const Val &OtherV = Other.Vals[V.OtherVNI->id];
2896 
2897     // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the
2898     // join, those lanes will be tainted with a wrong value. Get the extent of
2899     // the tainted lanes.
2900     LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes;
2901     SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent;
2902     if (!taintExtent(i, TaintedLanes, Other, TaintExtent))
2903       // Tainted lanes would extend beyond the basic block.
2904       return false;
2905 
2906     assert(!TaintExtent.empty() && "There should be at least one conflict.");
2907 
2908     // Now look at the instructions from VNI->def to TaintExtent (inclusive).
2909     MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2910     MachineBasicBlock::iterator MI = MBB->begin();
2911     if (!VNI->isPHIDef()) {
2912       MI = Indexes->getInstructionFromIndex(VNI->def);
2913       // No need to check the instruction defining VNI for reads.
2914       ++MI;
2915     }
2916     assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) &&
2917            "Interference ends on VNI->def. Should have been handled earlier");
2918     MachineInstr *LastMI =
2919       Indexes->getInstructionFromIndex(TaintExtent.front().first);
2920     assert(LastMI && "Range must end at a proper instruction");
2921     unsigned TaintNum = 0;
2922     while (true) {
2923       assert(MI != MBB->end() && "Bad LastMI");
2924       if (usesLanes(*MI, Other.Reg, Other.SubIdx, TaintedLanes)) {
2925         LLVM_DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI);
2926         return false;
2927       }
2928       // LastMI is the last instruction to use the current value.
2929       if (&*MI == LastMI) {
2930         if (++TaintNum == TaintExtent.size())
2931           break;
2932         LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first);
2933         assert(LastMI && "Range must end at a proper instruction");
2934         TaintedLanes = TaintExtent[TaintNum].second;
2935       }
2936       ++MI;
2937     }
2938 
2939     // The tainted lanes are unused.
2940     V.Resolution = CR_Replace;
2941     ++NumLaneResolves;
2942   }
2943   return true;
2944 }
2945 
2946 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) {
2947   Val &V = Vals[ValNo];
2948   if (V.Pruned || V.PrunedComputed)
2949     return V.Pruned;
2950 
2951   if (V.Resolution != CR_Erase && V.Resolution != CR_Merge)
2952     return V.Pruned;
2953 
2954   // Follow copies up the dominator tree and check if any intermediate value
2955   // has been pruned.
2956   V.PrunedComputed = true;
2957   V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this);
2958   return V.Pruned;
2959 }
2960 
2961 void JoinVals::pruneValues(JoinVals &Other,
2962                            SmallVectorImpl<SlotIndex> &EndPoints,
2963                            bool changeInstrs) {
2964   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2965     SlotIndex Def = LR.getValNumInfo(i)->def;
2966     switch (Vals[i].Resolution) {
2967     case CR_Keep:
2968       break;
2969     case CR_Replace: {
2970       // This value takes precedence over the value in Other.LR.
2971       LIS->pruneValue(Other.LR, Def, &EndPoints);
2972       // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF
2973       // instructions are only inserted to provide a live-out value for PHI
2974       // predecessors, so the instruction should simply go away once its value
2975       // has been replaced.
2976       Val &OtherV = Other.Vals[Vals[i].OtherVNI->id];
2977       bool EraseImpDef = OtherV.ErasableImplicitDef &&
2978                          OtherV.Resolution == CR_Keep;
2979       if (!Def.isBlock()) {
2980         if (changeInstrs) {
2981           // Remove <def,read-undef> flags. This def is now a partial redef.
2982           // Also remove dead flags since the joined live range will
2983           // continue past this instruction.
2984           for (MachineOperand &MO :
2985                Indexes->getInstructionFromIndex(Def)->operands()) {
2986             if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) {
2987               if (MO.getSubReg() != 0 && MO.isUndef() && !EraseImpDef)
2988                 MO.setIsUndef(false);
2989               MO.setIsDead(false);
2990             }
2991           }
2992         }
2993         // This value will reach instructions below, but we need to make sure
2994         // the live range also reaches the instruction at Def.
2995         if (!EraseImpDef)
2996           EndPoints.push_back(Def);
2997       }
2998       LLVM_DEBUG(dbgs() << "\t\tpruned " << printReg(Other.Reg) << " at " << Def
2999                         << ": " << Other.LR << '\n');
3000       break;
3001     }
3002     case CR_Erase:
3003     case CR_Merge:
3004       if (isPrunedValue(i, Other)) {
3005         // This value is ultimately a copy of a pruned value in LR or Other.LR.
3006         // We can no longer trust the value mapping computed by
3007         // computeAssignment(), the value that was originally copied could have
3008         // been replaced.
3009         LIS->pruneValue(LR, Def, &EndPoints);
3010         LLVM_DEBUG(dbgs() << "\t\tpruned all of " << printReg(Reg) << " at "
3011                           << Def << ": " << LR << '\n');
3012       }
3013       break;
3014     case CR_Unresolved:
3015     case CR_Impossible:
3016       llvm_unreachable("Unresolved conflicts");
3017     }
3018   }
3019 }
3020 
3021 /// Consider the following situation when coalescing the copy between
3022 /// %31 and %45 at 800. (The vertical lines represent live range segments.)
3023 ///
3024 ///                              Main range         Subrange 0004 (sub2)
3025 ///                              %31    %45           %31    %45
3026 ///  544    %45 = COPY %28               +                    +
3027 ///                                      | v1                 | v1
3028 ///  560B bb.1:                          +                    +
3029 ///  624        = %45.sub2               | v2                 | v2
3030 ///  800    %31 = COPY %45        +      +             +      +
3031 ///                               | v0                 | v0
3032 ///  816    %31.sub1 = ...        +                    |
3033 ///  880    %30 = COPY %31        | v1                 +
3034 ///  928    %45 = COPY %30        |      +                    +
3035 ///                               |      | v0                 | v0  <--+
3036 ///  992B   ; backedge -> bb.1    |      +                    +        |
3037 /// 1040        = %31.sub0        +                                    |
3038 ///                                                 This value must remain
3039 ///                                                 live-out!
3040 ///
3041 /// Assuming that %31 is coalesced into %45, the copy at 928 becomes
3042 /// redundant, since it copies the value from %45 back into it. The
3043 /// conflict resolution for the main range determines that %45.v0 is
3044 /// to be erased, which is ok since %31.v1 is identical to it.
3045 /// The problem happens with the subrange for sub2: it has to be live
3046 /// on exit from the block, but since 928 was actually a point of
3047 /// definition of %45.sub2, %45.sub2 was not live immediately prior
3048 /// to that definition. As a result, when 928 was erased, the value v0
3049 /// for %45.sub2 was pruned in pruneSubRegValues. Consequently, an
3050 /// IMPLICIT_DEF was inserted as a "backedge" definition for %45.sub2,
3051 /// providing an incorrect value to the use at 624.
3052 ///
3053 /// Since the main-range values %31.v1 and %45.v0 were proved to be
3054 /// identical, the corresponding values in subranges must also be the
3055 /// same. A redundant copy is removed because it's not needed, and not
3056 /// because it copied an undefined value, so any liveness that originated
3057 /// from that copy cannot disappear. When pruning a value that started
3058 /// at the removed copy, the corresponding identical value must be
3059 /// extended to replace it.
3060 void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) {
3061   // Look for values being erased.
3062   bool DidPrune = false;
3063   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3064     Val &V = Vals[i];
3065     // We should trigger in all cases in which eraseInstrs() does something.
3066     // match what eraseInstrs() is doing, print a message so
3067     if (V.Resolution != CR_Erase &&
3068         (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned))
3069       continue;
3070 
3071     // Check subranges at the point where the copy will be removed.
3072     SlotIndex Def = LR.getValNumInfo(i)->def;
3073     SlotIndex OtherDef;
3074     if (V.Identical)
3075       OtherDef = V.OtherVNI->def;
3076 
3077     // Print message so mismatches with eraseInstrs() can be diagnosed.
3078     LLVM_DEBUG(dbgs() << "\t\tExpecting instruction removal at " << Def
3079                       << '\n');
3080     for (LiveInterval::SubRange &S : LI.subranges()) {
3081       LiveQueryResult Q = S.Query(Def);
3082 
3083       // If a subrange starts at the copy then an undefined value has been
3084       // copied and we must remove that subrange value as well.
3085       VNInfo *ValueOut = Q.valueOutOrDead();
3086       if (ValueOut != nullptr && (Q.valueIn() == nullptr ||
3087                                   (V.Identical && V.Resolution == CR_Erase &&
3088                                    ValueOut->def == Def))) {
3089         LLVM_DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask)
3090                           << " at " << Def << "\n");
3091         SmallVector<SlotIndex,8> EndPoints;
3092         LIS->pruneValue(S, Def, &EndPoints);
3093         DidPrune = true;
3094         // Mark value number as unused.
3095         ValueOut->markUnused();
3096 
3097         if (V.Identical && S.Query(OtherDef).valueOutOrDead()) {
3098           // If V is identical to V.OtherVNI (and S was live at OtherDef),
3099           // then we can't simply prune V from S. V needs to be replaced
3100           // with V.OtherVNI.
3101           LIS->extendToIndices(S, EndPoints);
3102         }
3103         continue;
3104       }
3105       // If a subrange ends at the copy, then a value was copied but only
3106       // partially used later. Shrink the subregister range appropriately.
3107       if (Q.valueIn() != nullptr && Q.valueOut() == nullptr) {
3108         LLVM_DEBUG(dbgs() << "\t\tDead uses at sublane "
3109                           << PrintLaneMask(S.LaneMask) << " at " << Def
3110                           << "\n");
3111         ShrinkMask |= S.LaneMask;
3112       }
3113     }
3114   }
3115   if (DidPrune)
3116     LI.removeEmptySubRanges();
3117 }
3118 
3119 /// Check if any of the subranges of @p LI contain a definition at @p Def.
3120 static bool isDefInSubRange(LiveInterval &LI, SlotIndex Def) {
3121   for (LiveInterval::SubRange &SR : LI.subranges()) {
3122     if (VNInfo *VNI = SR.Query(Def).valueOutOrDead())
3123       if (VNI->def == Def)
3124         return true;
3125   }
3126   return false;
3127 }
3128 
3129 void JoinVals::pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange) {
3130   assert(&static_cast<LiveRange&>(LI) == &LR);
3131 
3132   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3133     if (Vals[i].Resolution != CR_Keep)
3134       continue;
3135     VNInfo *VNI = LR.getValNumInfo(i);
3136     if (VNI->isUnused() || VNI->isPHIDef() || isDefInSubRange(LI, VNI->def))
3137       continue;
3138     Vals[i].Pruned = true;
3139     ShrinkMainRange = true;
3140   }
3141 }
3142 
3143 void JoinVals::removeImplicitDefs() {
3144   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3145     Val &V = Vals[i];
3146     if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned)
3147       continue;
3148 
3149     VNInfo *VNI = LR.getValNumInfo(i);
3150     VNI->markUnused();
3151     LR.removeValNo(VNI);
3152   }
3153 }
3154 
3155 void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
3156                            SmallVectorImpl<unsigned> &ShrinkRegs,
3157                            LiveInterval *LI) {
3158   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3159     // Get the def location before markUnused() below invalidates it.
3160     VNInfo *VNI = LR.getValNumInfo(i);
3161     SlotIndex Def = VNI->def;
3162     switch (Vals[i].Resolution) {
3163     case CR_Keep: {
3164       // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any
3165       // longer. The IMPLICIT_DEF instructions are only inserted by
3166       // PHIElimination to guarantee that all PHI predecessors have a value.
3167       if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned)
3168         break;
3169       // Remove value number i from LR.
3170       // For intervals with subranges, removing a segment from the main range
3171       // may require extending the previous segment: for each definition of
3172       // a subregister, there will be a corresponding def in the main range.
3173       // That def may fall in the middle of a segment from another subrange.
3174       // In such cases, removing this def from the main range must be
3175       // complemented by extending the main range to account for the liveness
3176       // of the other subrange.
3177       // The new end point of the main range segment to be extended.
3178       SlotIndex NewEnd;
3179       if (LI != nullptr) {
3180         LiveRange::iterator I = LR.FindSegmentContaining(Def);
3181         assert(I != LR.end());
3182         // Do not extend beyond the end of the segment being removed.
3183         // The segment may have been pruned in preparation for joining
3184         // live ranges.
3185         NewEnd = I->end;
3186       }
3187 
3188       LR.removeValNo(VNI);
3189       // Note that this VNInfo is reused and still referenced in NewVNInfo,
3190       // make it appear like an unused value number.
3191       VNI->markUnused();
3192 
3193       if (LI != nullptr && LI->hasSubRanges()) {
3194         assert(static_cast<LiveRange*>(LI) == &LR);
3195         // Determine the end point based on the subrange information:
3196         // minimum of (earliest def of next segment,
3197         //             latest end point of containing segment)
3198         SlotIndex ED, LE;
3199         for (LiveInterval::SubRange &SR : LI->subranges()) {
3200           LiveRange::iterator I = SR.find(Def);
3201           if (I == SR.end())
3202             continue;
3203           if (I->start > Def)
3204             ED = ED.isValid() ? std::min(ED, I->start) : I->start;
3205           else
3206             LE = LE.isValid() ? std::max(LE, I->end) : I->end;
3207         }
3208         if (LE.isValid())
3209           NewEnd = std::min(NewEnd, LE);
3210         if (ED.isValid())
3211           NewEnd = std::min(NewEnd, ED);
3212 
3213         // We only want to do the extension if there was a subrange that
3214         // was live across Def.
3215         if (LE.isValid()) {
3216           LiveRange::iterator S = LR.find(Def);
3217           if (S != LR.begin())
3218             std::prev(S)->end = NewEnd;
3219         }
3220       }
3221       LLVM_DEBUG({
3222         dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n';
3223         if (LI != nullptr)
3224           dbgs() << "\t\t  LHS = " << *LI << '\n';
3225       });
3226       LLVM_FALLTHROUGH;
3227     }
3228 
3229     case CR_Erase: {
3230       MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
3231       assert(MI && "No instruction to erase");
3232       if (MI->isCopy()) {
3233         Register Reg = MI->getOperand(1).getReg();
3234         if (Register::isVirtualRegister(Reg) && Reg != CP.getSrcReg() &&
3235             Reg != CP.getDstReg())
3236           ShrinkRegs.push_back(Reg);
3237       }
3238       ErasedInstrs.insert(MI);
3239       LLVM_DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI);
3240       LIS->RemoveMachineInstrFromMaps(*MI);
3241       MI->eraseFromParent();
3242       break;
3243     }
3244     default:
3245       break;
3246     }
3247   }
3248 }
3249 
3250 void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
3251                                          LaneBitmask LaneMask,
3252                                          const CoalescerPair &CP) {
3253   SmallVector<VNInfo*, 16> NewVNInfo;
3254   JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask,
3255                    NewVNInfo, CP, LIS, TRI, true, true);
3256   JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask,
3257                    NewVNInfo, CP, LIS, TRI, true, true);
3258 
3259   // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs())
3260   // We should be able to resolve all conflicts here as we could successfully do
3261   // it on the mainrange already. There is however a problem when multiple
3262   // ranges get mapped to the "overflow" lane mask bit which creates unexpected
3263   // interferences.
3264   if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) {
3265     // We already determined that it is legal to merge the intervals, so this
3266     // should never fail.
3267     llvm_unreachable("*** Couldn't join subrange!\n");
3268   }
3269   if (!LHSVals.resolveConflicts(RHSVals) ||
3270       !RHSVals.resolveConflicts(LHSVals)) {
3271     // We already determined that it is legal to merge the intervals, so this
3272     // should never fail.
3273     llvm_unreachable("*** Couldn't join subrange!\n");
3274   }
3275 
3276   // The merging algorithm in LiveInterval::join() can't handle conflicting
3277   // value mappings, so we need to remove any live ranges that overlap a
3278   // CR_Replace resolution. Collect a set of end points that can be used to
3279   // restore the live range after joining.
3280   SmallVector<SlotIndex, 8> EndPoints;
3281   LHSVals.pruneValues(RHSVals, EndPoints, false);
3282   RHSVals.pruneValues(LHSVals, EndPoints, false);
3283 
3284   LHSVals.removeImplicitDefs();
3285   RHSVals.removeImplicitDefs();
3286 
3287   LRange.verify();
3288   RRange.verify();
3289 
3290   // Join RRange into LHS.
3291   LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(),
3292               NewVNInfo);
3293 
3294   LLVM_DEBUG(dbgs() << "\t\tjoined lanes: " << PrintLaneMask(LaneMask)
3295                     << ' ' << LRange << "\n");
3296   if (EndPoints.empty())
3297     return;
3298 
3299   // Recompute the parts of the live range we had to remove because of
3300   // CR_Replace conflicts.
3301   LLVM_DEBUG({
3302     dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
3303     for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
3304       dbgs() << EndPoints[i];
3305       if (i != n-1)
3306         dbgs() << ',';
3307     }
3308     dbgs() << ":  " << LRange << '\n';
3309   });
3310   LIS->extendToIndices(LRange, EndPoints);
3311 }
3312 
3313 void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI,
3314                                           const LiveRange &ToMerge,
3315                                           LaneBitmask LaneMask,
3316                                           CoalescerPair &CP,
3317                                           unsigned ComposeSubRegIdx) {
3318   BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
3319   LI.refineSubRanges(
3320       Allocator, LaneMask,
3321       [this, &Allocator, &ToMerge, &CP](LiveInterval::SubRange &SR) {
3322         if (SR.empty()) {
3323           SR.assign(ToMerge, Allocator);
3324         } else {
3325           // joinSubRegRange() destroys the merged range, so we need a copy.
3326           LiveRange RangeCopy(ToMerge, Allocator);
3327           joinSubRegRanges(SR, RangeCopy, SR.LaneMask, CP);
3328         }
3329       },
3330       *LIS->getSlotIndexes(), *TRI, ComposeSubRegIdx);
3331 }
3332 
3333 bool RegisterCoalescer::isHighCostLiveInterval(LiveInterval &LI) {
3334   if (LI.valnos.size() < LargeIntervalSizeThreshold)
3335     return false;
3336   auto &Counter = LargeLIVisitCounter[LI.reg];
3337   if (Counter < LargeIntervalFreqThreshold) {
3338     Counter++;
3339     return false;
3340   }
3341   return true;
3342 }
3343 
3344 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
3345   SmallVector<VNInfo*, 16> NewVNInfo;
3346   LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
3347   LiveInterval &LHS = LIS->getInterval(CP.getDstReg());
3348   bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC());
3349   JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), LaneBitmask::getNone(),
3350                    NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
3351   JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), LaneBitmask::getNone(),
3352                    NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
3353 
3354   LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << "\n\t\tLHS = " << LHS << '\n');
3355 
3356   if (isHighCostLiveInterval(LHS) || isHighCostLiveInterval(RHS))
3357     return false;
3358 
3359   // First compute NewVNInfo and the simple value mappings.
3360   // Detect impossible conflicts early.
3361   if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals))
3362     return false;
3363 
3364   // Some conflicts can only be resolved after all values have been mapped.
3365   if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals))
3366     return false;
3367 
3368   // All clear, the live ranges can be merged.
3369   if (RHS.hasSubRanges() || LHS.hasSubRanges()) {
3370     BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
3371 
3372     // Transform lanemasks from the LHS to masks in the coalesced register and
3373     // create initial subranges if necessary.
3374     unsigned DstIdx = CP.getDstIdx();
3375     if (!LHS.hasSubRanges()) {
3376       LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask()
3377                                      : TRI->getSubRegIndexLaneMask(DstIdx);
3378       // LHS must support subregs or we wouldn't be in this codepath.
3379       assert(Mask.any());
3380       LHS.createSubRangeFrom(Allocator, Mask, LHS);
3381     } else if (DstIdx != 0) {
3382       // Transform LHS lanemasks to new register class if necessary.
3383       for (LiveInterval::SubRange &R : LHS.subranges()) {
3384         LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask);
3385         R.LaneMask = Mask;
3386       }
3387     }
3388     LLVM_DEBUG(dbgs() << "\t\tLHST = " << printReg(CP.getDstReg()) << ' ' << LHS
3389                       << '\n');
3390 
3391     // Determine lanemasks of RHS in the coalesced register and merge subranges.
3392     unsigned SrcIdx = CP.getSrcIdx();
3393     if (!RHS.hasSubRanges()) {
3394       LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask()
3395                                      : TRI->getSubRegIndexLaneMask(SrcIdx);
3396       mergeSubRangeInto(LHS, RHS, Mask, CP, DstIdx);
3397     } else {
3398       // Pair up subranges and merge.
3399       for (LiveInterval::SubRange &R : RHS.subranges()) {
3400         LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask);
3401         mergeSubRangeInto(LHS, R, Mask, CP, DstIdx);
3402       }
3403     }
3404     LLVM_DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n");
3405 
3406     // Pruning implicit defs from subranges may result in the main range
3407     // having stale segments.
3408     LHSVals.pruneMainSegments(LHS, ShrinkMainRange);
3409 
3410     LHSVals.pruneSubRegValues(LHS, ShrinkMask);
3411     RHSVals.pruneSubRegValues(LHS, ShrinkMask);
3412   }
3413 
3414   // The merging algorithm in LiveInterval::join() can't handle conflicting
3415   // value mappings, so we need to remove any live ranges that overlap a
3416   // CR_Replace resolution. Collect a set of end points that can be used to
3417   // restore the live range after joining.
3418   SmallVector<SlotIndex, 8> EndPoints;
3419   LHSVals.pruneValues(RHSVals, EndPoints, true);
3420   RHSVals.pruneValues(LHSVals, EndPoints, true);
3421 
3422   // Erase COPY and IMPLICIT_DEF instructions. This may cause some external
3423   // registers to require trimming.
3424   SmallVector<unsigned, 8> ShrinkRegs;
3425   LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs, &LHS);
3426   RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
3427   while (!ShrinkRegs.empty())
3428     shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val()));
3429 
3430   // Scan and mark undef any DBG_VALUEs that would refer to a different value.
3431   checkMergingChangesDbgValues(CP, LHS, LHSVals, RHS, RHSVals);
3432 
3433   // Join RHS into LHS.
3434   LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo);
3435 
3436   // Kill flags are going to be wrong if the live ranges were overlapping.
3437   // Eventually, we should simply clear all kill flags when computing live
3438   // ranges. They are reinserted after register allocation.
3439   MRI->clearKillFlags(LHS.reg);
3440   MRI->clearKillFlags(RHS.reg);
3441 
3442   if (!EndPoints.empty()) {
3443     // Recompute the parts of the live range we had to remove because of
3444     // CR_Replace conflicts.
3445     LLVM_DEBUG({
3446       dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
3447       for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
3448         dbgs() << EndPoints[i];
3449         if (i != n-1)
3450           dbgs() << ',';
3451       }
3452       dbgs() << ":  " << LHS << '\n';
3453     });
3454     LIS->extendToIndices((LiveRange&)LHS, EndPoints);
3455   }
3456 
3457   return true;
3458 }
3459 
3460 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
3461   return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP);
3462 }
3463 
3464 void RegisterCoalescer::buildVRegToDbgValueMap(MachineFunction &MF)
3465 {
3466   const SlotIndexes &Slots = *LIS->getSlotIndexes();
3467   SmallVector<MachineInstr *, 8> ToInsert;
3468 
3469   // After collecting a block of DBG_VALUEs into ToInsert, enter them into the
3470   // vreg => DbgValueLoc map.
3471   auto CloseNewDVRange = [this, &ToInsert](SlotIndex Slot) {
3472     for (auto *X : ToInsert)
3473       DbgVRegToValues[X->getOperand(0).getReg()].push_back({Slot, X});
3474 
3475     ToInsert.clear();
3476   };
3477 
3478   // Iterate over all instructions, collecting them into the ToInsert vector.
3479   // Once a non-debug instruction is found, record the slot index of the
3480   // collected DBG_VALUEs.
3481   for (auto &MBB : MF) {
3482     SlotIndex CurrentSlot = Slots.getMBBStartIdx(&MBB);
3483 
3484     for (auto &MI : MBB) {
3485       if (MI.isDebugValue() && MI.getOperand(0).isReg() &&
3486           MI.getOperand(0).getReg().isVirtual()) {
3487         ToInsert.push_back(&MI);
3488       } else if (!MI.isDebugInstr()) {
3489         CurrentSlot = Slots.getInstructionIndex(MI);
3490         CloseNewDVRange(CurrentSlot);
3491       }
3492     }
3493 
3494     // Close range of DBG_VALUEs at the end of blocks.
3495     CloseNewDVRange(Slots.getMBBEndIdx(&MBB));
3496   }
3497 
3498   // Sort all DBG_VALUEs we've seen by slot number.
3499   for (auto &Pair : DbgVRegToValues)
3500     llvm::sort(Pair.second);
3501 }
3502 
3503 void RegisterCoalescer::checkMergingChangesDbgValues(CoalescerPair &CP,
3504                                                      LiveRange &LHS,
3505                                                      JoinVals &LHSVals,
3506                                                      LiveRange &RHS,
3507                                                      JoinVals &RHSVals) {
3508   auto ScanForDstReg = [&](unsigned Reg) {
3509     checkMergingChangesDbgValuesImpl(Reg, RHS, LHS, LHSVals);
3510   };
3511 
3512   auto ScanForSrcReg = [&](unsigned Reg) {
3513     checkMergingChangesDbgValuesImpl(Reg, LHS, RHS, RHSVals);
3514   };
3515 
3516   // Scan for potentially unsound DBG_VALUEs: examine first the register number
3517   // Reg, and then any other vregs that may have been merged into  it.
3518   auto PerformScan = [this](unsigned Reg, std::function<void(unsigned)> Func) {
3519     Func(Reg);
3520     if (DbgMergedVRegNums.count(Reg))
3521       for (unsigned X : DbgMergedVRegNums[Reg])
3522         Func(X);
3523   };
3524 
3525   // Scan for unsound updates of both the source and destination register.
3526   PerformScan(CP.getSrcReg(), ScanForSrcReg);
3527   PerformScan(CP.getDstReg(), ScanForDstReg);
3528 }
3529 
3530 void RegisterCoalescer::checkMergingChangesDbgValuesImpl(unsigned Reg,
3531                                                          LiveRange &OtherLR,
3532                                                          LiveRange &RegLR,
3533                                                          JoinVals &RegVals) {
3534   // Are there any DBG_VALUEs to examine?
3535   auto VRegMapIt = DbgVRegToValues.find(Reg);
3536   if (VRegMapIt == DbgVRegToValues.end())
3537     return;
3538 
3539   auto &DbgValueSet = VRegMapIt->second;
3540   auto DbgValueSetIt = DbgValueSet.begin();
3541   auto SegmentIt = OtherLR.begin();
3542 
3543   bool LastUndefResult = false;
3544   SlotIndex LastUndefIdx;
3545 
3546   // If the "Other" register is live at a slot Idx, test whether Reg can
3547   // safely be merged with it, or should be marked undef.
3548   auto ShouldUndef = [&RegVals, &RegLR, &LastUndefResult,
3549                       &LastUndefIdx](SlotIndex Idx) -> bool {
3550     // Our worst-case performance typically happens with asan, causing very
3551     // many DBG_VALUEs of the same location. Cache a copy of the most recent
3552     // result for this edge-case.
3553     if (LastUndefIdx == Idx)
3554       return LastUndefResult;
3555 
3556     // If the other range was live, and Reg's was not, the register coalescer
3557     // will not have tried to resolve any conflicts. We don't know whether
3558     // the DBG_VALUE will refer to the same value number, so it must be made
3559     // undef.
3560     auto OtherIt = RegLR.find(Idx);
3561     if (OtherIt == RegLR.end())
3562       return true;
3563 
3564     // Both the registers were live: examine the conflict resolution record for
3565     // the value number Reg refers to. CR_Keep meant that this value number
3566     // "won" and the merged register definitely refers to that value. CR_Erase
3567     // means the value number was a redundant copy of the other value, which
3568     // was coalesced and Reg deleted. It's safe to refer to the other register
3569     // (which will be the source of the copy).
3570     auto Resolution = RegVals.getResolution(OtherIt->valno->id);
3571     LastUndefResult = Resolution != JoinVals::CR_Keep &&
3572                       Resolution != JoinVals::CR_Erase;
3573     LastUndefIdx = Idx;
3574     return LastUndefResult;
3575   };
3576 
3577   // Iterate over both the live-range of the "Other" register, and the set of
3578   // DBG_VALUEs for Reg at the same time. Advance whichever one has the lowest
3579   // slot index. This relies on the DbgValueSet being ordered.
3580   while (DbgValueSetIt != DbgValueSet.end() && SegmentIt != OtherLR.end()) {
3581     if (DbgValueSetIt->first < SegmentIt->end) {
3582       // "Other" is live and there is a DBG_VALUE of Reg: test if we should
3583       // set it undef.
3584       if (DbgValueSetIt->first >= SegmentIt->start &&
3585           DbgValueSetIt->second->getOperand(0).getReg() != 0 &&
3586           ShouldUndef(DbgValueSetIt->first)) {
3587         // Mark undef, erase record of this DBG_VALUE to avoid revisiting.
3588         DbgValueSetIt->second->getOperand(0).setReg(0);
3589         continue;
3590       }
3591       ++DbgValueSetIt;
3592     } else {
3593       ++SegmentIt;
3594     }
3595   }
3596 }
3597 
3598 namespace {
3599 
3600 /// Information concerning MBB coalescing priority.
3601 struct MBBPriorityInfo {
3602   MachineBasicBlock *MBB;
3603   unsigned Depth;
3604   bool IsSplit;
3605 
3606   MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit)
3607     : MBB(mbb), Depth(depth), IsSplit(issplit) {}
3608 };
3609 
3610 } // end anonymous namespace
3611 
3612 /// C-style comparator that sorts first based on the loop depth of the basic
3613 /// block (the unsigned), and then on the MBB number.
3614 ///
3615 /// EnableGlobalCopies assumes that the primary sort key is loop depth.
3616 static int compareMBBPriority(const MBBPriorityInfo *LHS,
3617                               const MBBPriorityInfo *RHS) {
3618   // Deeper loops first
3619   if (LHS->Depth != RHS->Depth)
3620     return LHS->Depth > RHS->Depth ? -1 : 1;
3621 
3622   // Try to unsplit critical edges next.
3623   if (LHS->IsSplit != RHS->IsSplit)
3624     return LHS->IsSplit ? -1 : 1;
3625 
3626   // Prefer blocks that are more connected in the CFG. This takes care of
3627   // the most difficult copies first while intervals are short.
3628   unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size();
3629   unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size();
3630   if (cl != cr)
3631     return cl > cr ? -1 : 1;
3632 
3633   // As a last resort, sort by block number.
3634   return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1;
3635 }
3636 
3637 /// \returns true if the given copy uses or defines a local live range.
3638 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) {
3639   if (!Copy->isCopy())
3640     return false;
3641 
3642   if (Copy->getOperand(1).isUndef())
3643     return false;
3644 
3645   Register SrcReg = Copy->getOperand(1).getReg();
3646   Register DstReg = Copy->getOperand(0).getReg();
3647   if (Register::isPhysicalRegister(SrcReg) ||
3648       Register::isPhysicalRegister(DstReg))
3649     return false;
3650 
3651   return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg))
3652     || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg));
3653 }
3654 
3655 void RegisterCoalescer::lateLiveIntervalUpdate() {
3656   for (unsigned reg : ToBeUpdated) {
3657     if (!LIS->hasInterval(reg))
3658       continue;
3659     LiveInterval &LI = LIS->getInterval(reg);
3660     shrinkToUses(&LI, &DeadDefs);
3661     if (!DeadDefs.empty())
3662       eliminateDeadDefs();
3663   }
3664   ToBeUpdated.clear();
3665 }
3666 
3667 bool RegisterCoalescer::
3668 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) {
3669   bool Progress = false;
3670   for (unsigned i = 0, e = CurrList.size(); i != e; ++i) {
3671     if (!CurrList[i])
3672       continue;
3673     // Skip instruction pointers that have already been erased, for example by
3674     // dead code elimination.
3675     if (ErasedInstrs.count(CurrList[i])) {
3676       CurrList[i] = nullptr;
3677       continue;
3678     }
3679     bool Again = false;
3680     bool Success = joinCopy(CurrList[i], Again);
3681     Progress |= Success;
3682     if (Success || !Again)
3683       CurrList[i] = nullptr;
3684   }
3685   return Progress;
3686 }
3687 
3688 /// Check if DstReg is a terminal node.
3689 /// I.e., it does not have any affinity other than \p Copy.
3690 static bool isTerminalReg(unsigned DstReg, const MachineInstr &Copy,
3691                           const MachineRegisterInfo *MRI) {
3692   assert(Copy.isCopyLike());
3693   // Check if the destination of this copy as any other affinity.
3694   for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg))
3695     if (&MI != &Copy && MI.isCopyLike())
3696       return false;
3697   return true;
3698 }
3699 
3700 bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const {
3701   assert(Copy.isCopyLike());
3702   if (!UseTerminalRule)
3703     return false;
3704   unsigned DstReg, DstSubReg, SrcReg, SrcSubReg;
3705   if (!isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg))
3706     return false;
3707   // Check if the destination of this copy has any other affinity.
3708   if (Register::isPhysicalRegister(DstReg) ||
3709       // If SrcReg is a physical register, the copy won't be coalesced.
3710       // Ignoring it may have other side effect (like missing
3711       // rematerialization). So keep it.
3712       Register::isPhysicalRegister(SrcReg) || !isTerminalReg(DstReg, Copy, MRI))
3713     return false;
3714 
3715   // DstReg is a terminal node. Check if it interferes with any other
3716   // copy involving SrcReg.
3717   const MachineBasicBlock *OrigBB = Copy.getParent();
3718   const LiveInterval &DstLI = LIS->getInterval(DstReg);
3719   for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) {
3720     // Technically we should check if the weight of the new copy is
3721     // interesting compared to the other one and update the weight
3722     // of the copies accordingly. However, this would only work if
3723     // we would gather all the copies first then coalesce, whereas
3724     // right now we interleave both actions.
3725     // For now, just consider the copies that are in the same block.
3726     if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB)
3727       continue;
3728     unsigned OtherReg, OtherSubReg, OtherSrcReg, OtherSrcSubReg;
3729     if (!isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg,
3730                 OtherSubReg))
3731       return false;
3732     if (OtherReg == SrcReg)
3733       OtherReg = OtherSrcReg;
3734     // Check if OtherReg is a non-terminal.
3735     if (Register::isPhysicalRegister(OtherReg) ||
3736         isTerminalReg(OtherReg, MI, MRI))
3737       continue;
3738     // Check that OtherReg interfere with DstReg.
3739     if (LIS->getInterval(OtherReg).overlaps(DstLI)) {
3740       LLVM_DEBUG(dbgs() << "Apply terminal rule for: " << printReg(DstReg)
3741                         << '\n');
3742       return true;
3743     }
3744   }
3745   return false;
3746 }
3747 
3748 void
3749 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) {
3750   LLVM_DEBUG(dbgs() << MBB->getName() << ":\n");
3751 
3752   // Collect all copy-like instructions in MBB. Don't start coalescing anything
3753   // yet, it might invalidate the iterator.
3754   const unsigned PrevSize = WorkList.size();
3755   if (JoinGlobalCopies) {
3756     SmallVector<MachineInstr*, 2> LocalTerminals;
3757     SmallVector<MachineInstr*, 2> GlobalTerminals;
3758     // Coalesce copies bottom-up to coalesce local defs before local uses. They
3759     // are not inherently easier to resolve, but slightly preferable until we
3760     // have local live range splitting. In particular this is required by
3761     // cmp+jmp macro fusion.
3762     for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
3763          MII != E; ++MII) {
3764       if (!MII->isCopyLike())
3765         continue;
3766       bool ApplyTerminalRule = applyTerminalRule(*MII);
3767       if (isLocalCopy(&(*MII), LIS)) {
3768         if (ApplyTerminalRule)
3769           LocalTerminals.push_back(&(*MII));
3770         else
3771           LocalWorkList.push_back(&(*MII));
3772       } else {
3773         if (ApplyTerminalRule)
3774           GlobalTerminals.push_back(&(*MII));
3775         else
3776           WorkList.push_back(&(*MII));
3777       }
3778     }
3779     // Append the copies evicted by the terminal rule at the end of the list.
3780     LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end());
3781     WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end());
3782   }
3783   else {
3784     SmallVector<MachineInstr*, 2> Terminals;
3785     for (MachineInstr &MII : *MBB)
3786       if (MII.isCopyLike()) {
3787         if (applyTerminalRule(MII))
3788           Terminals.push_back(&MII);
3789         else
3790           WorkList.push_back(&MII);
3791       }
3792     // Append the copies evicted by the terminal rule at the end of the list.
3793     WorkList.append(Terminals.begin(), Terminals.end());
3794   }
3795   // Try coalescing the collected copies immediately, and remove the nulls.
3796   // This prevents the WorkList from getting too large since most copies are
3797   // joinable on the first attempt.
3798   MutableArrayRef<MachineInstr*>
3799     CurrList(WorkList.begin() + PrevSize, WorkList.end());
3800   if (copyCoalesceWorkList(CurrList))
3801     WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(),
3802                                nullptr), WorkList.end());
3803 }
3804 
3805 void RegisterCoalescer::coalesceLocals() {
3806   copyCoalesceWorkList(LocalWorkList);
3807   for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) {
3808     if (LocalWorkList[j])
3809       WorkList.push_back(LocalWorkList[j]);
3810   }
3811   LocalWorkList.clear();
3812 }
3813 
3814 void RegisterCoalescer::joinAllIntervals() {
3815   LLVM_DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
3816   assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around.");
3817 
3818   std::vector<MBBPriorityInfo> MBBs;
3819   MBBs.reserve(MF->size());
3820   for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) {
3821     MachineBasicBlock *MBB = &*I;
3822     MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB),
3823                                    JoinSplitEdges && isSplitEdge(MBB)));
3824   }
3825   array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority);
3826 
3827   // Coalesce intervals in MBB priority order.
3828   unsigned CurrDepth = std::numeric_limits<unsigned>::max();
3829   for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
3830     // Try coalescing the collected local copies for deeper loops.
3831     if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) {
3832       coalesceLocals();
3833       CurrDepth = MBBs[i].Depth;
3834     }
3835     copyCoalesceInMBB(MBBs[i].MBB);
3836   }
3837   lateLiveIntervalUpdate();
3838   coalesceLocals();
3839 
3840   // Joining intervals can allow other intervals to be joined.  Iteratively join
3841   // until we make no progress.
3842   while (copyCoalesceWorkList(WorkList))
3843     /* empty */ ;
3844   lateLiveIntervalUpdate();
3845 }
3846 
3847 void RegisterCoalescer::releaseMemory() {
3848   ErasedInstrs.clear();
3849   WorkList.clear();
3850   DeadDefs.clear();
3851   InflateRegs.clear();
3852   LargeLIVisitCounter.clear();
3853 }
3854 
3855 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
3856   MF = &fn;
3857   MRI = &fn.getRegInfo();
3858   const TargetSubtargetInfo &STI = fn.getSubtarget();
3859   TRI = STI.getRegisterInfo();
3860   TII = STI.getInstrInfo();
3861   LIS = &getAnalysis<LiveIntervals>();
3862   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3863   Loops = &getAnalysis<MachineLoopInfo>();
3864   if (EnableGlobalCopies == cl::BOU_UNSET)
3865     JoinGlobalCopies = STI.enableJoinGlobalCopies();
3866   else
3867     JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE);
3868 
3869   // The MachineScheduler does not currently require JoinSplitEdges. This will
3870   // either be enabled unconditionally or replaced by a more general live range
3871   // splitting optimization.
3872   JoinSplitEdges = EnableJoinSplits;
3873 
3874   LLVM_DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
3875                     << "********** Function: " << MF->getName() << '\n');
3876 
3877   if (VerifyCoalescing)
3878     MF->verify(this, "Before register coalescing");
3879 
3880   DbgVRegToValues.clear();
3881   DbgMergedVRegNums.clear();
3882   buildVRegToDbgValueMap(fn);
3883 
3884   RegClassInfo.runOnMachineFunction(fn);
3885 
3886   // Join (coalesce) intervals if requested.
3887   if (EnableJoining)
3888     joinAllIntervals();
3889 
3890   // After deleting a lot of copies, register classes may be less constrained.
3891   // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
3892   // DPR inflation.
3893   array_pod_sort(InflateRegs.begin(), InflateRegs.end());
3894   InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
3895                     InflateRegs.end());
3896   LLVM_DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size()
3897                     << " regs.\n");
3898   for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
3899     unsigned Reg = InflateRegs[i];
3900     if (MRI->reg_nodbg_empty(Reg))
3901       continue;
3902     if (MRI->recomputeRegClass(Reg)) {
3903       LLVM_DEBUG(dbgs() << printReg(Reg) << " inflated to "
3904                         << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n');
3905       ++NumInflated;
3906 
3907       LiveInterval &LI = LIS->getInterval(Reg);
3908       if (LI.hasSubRanges()) {
3909         // If the inflated register class does not support subregisters anymore
3910         // remove the subranges.
3911         if (!MRI->shouldTrackSubRegLiveness(Reg)) {
3912           LI.clearSubRanges();
3913         } else {
3914 #ifndef NDEBUG
3915           LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
3916           // If subranges are still supported, then the same subregs
3917           // should still be supported.
3918           for (LiveInterval::SubRange &S : LI.subranges()) {
3919             assert((S.LaneMask & ~MaxMask).none());
3920           }
3921 #endif
3922         }
3923       }
3924     }
3925   }
3926 
3927   LLVM_DEBUG(dump());
3928   if (VerifyCoalescing)
3929     MF->verify(this, "After register coalescing");
3930   return true;
3931 }
3932 
3933 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
3934    LIS->print(O, m);
3935 }
3936