1 //===- RegisterScavenging.cpp - Machine register scavenging ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file implements the machine register scavenger. It can provide
11 /// information, such as unused registers, at any point in a machine basic
12 /// block. It also provides a mechanism to make registers available by evicting
13 /// them to spill slots.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/CodeGen/RegisterScavenging.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/LiveRegUnits.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/TargetFrameLowering.h"
31 #include "llvm/CodeGen/TargetInstrInfo.h"
32 #include "llvm/CodeGen/TargetRegisterInfo.h"
33 #include "llvm/CodeGen/TargetSubtargetInfo.h"
34 #include "llvm/InitializePasses.h"
35 #include "llvm/MC/MCRegisterInfo.h"
36 #include "llvm/Pass.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include <cassert>
41 #include <iterator>
42 #include <limits>
43 #include <utility>
44 
45 using namespace llvm;
46 
47 #define DEBUG_TYPE "reg-scavenging"
48 
49 STATISTIC(NumScavengedRegs, "Number of frame index regs scavenged");
50 
51 void RegScavenger::setRegUsed(Register Reg, LaneBitmask LaneMask) {
52   LiveUnits.addRegMasked(Reg, LaneMask);
53 }
54 
55 void RegScavenger::init(MachineBasicBlock &MBB) {
56   MachineFunction &MF = *MBB.getParent();
57   TII = MF.getSubtarget().getInstrInfo();
58   TRI = MF.getSubtarget().getRegisterInfo();
59   MRI = &MF.getRegInfo();
60   LiveUnits.init(*TRI);
61 
62   assert((NumRegUnits == 0 || NumRegUnits == TRI->getNumRegUnits()) &&
63          "Target changed?");
64 
65   // Self-initialize.
66   if (!this->MBB) {
67     NumRegUnits = TRI->getNumRegUnits();
68     KillRegUnits.resize(NumRegUnits);
69     DefRegUnits.resize(NumRegUnits);
70     TmpRegUnits.resize(NumRegUnits);
71   }
72   this->MBB = &MBB;
73 
74   for (ScavengedInfo &SI : Scavenged) {
75     SI.Reg = 0;
76     SI.Restore = nullptr;
77   }
78 
79   Tracking = false;
80 }
81 
82 void RegScavenger::enterBasicBlock(MachineBasicBlock &MBB) {
83   init(MBB);
84   LiveUnits.addLiveIns(MBB);
85 }
86 
87 void RegScavenger::enterBasicBlockEnd(MachineBasicBlock &MBB) {
88   init(MBB);
89   LiveUnits.addLiveOuts(MBB);
90 
91   // Move internal iterator at the last instruction of the block.
92   if (!MBB.empty()) {
93     MBBI = std::prev(MBB.end());
94     Tracking = true;
95   }
96 }
97 
98 void RegScavenger::addRegUnits(BitVector &BV, MCRegister Reg) {
99   for (MCRegUnitIterator RUI(Reg, TRI); RUI.isValid(); ++RUI)
100     BV.set(*RUI);
101 }
102 
103 void RegScavenger::removeRegUnits(BitVector &BV, MCRegister Reg) {
104   for (MCRegUnitIterator RUI(Reg, TRI); RUI.isValid(); ++RUI)
105     BV.reset(*RUI);
106 }
107 
108 void RegScavenger::determineKillsAndDefs() {
109   assert(Tracking && "Must be tracking to determine kills and defs");
110 
111   MachineInstr &MI = *MBBI;
112   assert(!MI.isDebugInstr() && "Debug values have no kills or defs");
113 
114   // Find out which registers are early clobbered, killed, defined, and marked
115   // def-dead in this instruction.
116   KillRegUnits.reset();
117   DefRegUnits.reset();
118   for (const MachineOperand &MO : MI.operands()) {
119     if (MO.isRegMask()) {
120       TmpRegUnits.reset();
121       for (unsigned RU = 0, RUEnd = TRI->getNumRegUnits(); RU != RUEnd; ++RU) {
122         for (MCRegUnitRootIterator RURI(RU, TRI); RURI.isValid(); ++RURI) {
123           if (MO.clobbersPhysReg(*RURI)) {
124             TmpRegUnits.set(RU);
125             break;
126           }
127         }
128       }
129 
130       // Apply the mask.
131       KillRegUnits |= TmpRegUnits;
132     }
133     if (!MO.isReg())
134       continue;
135     if (!MO.getReg().isPhysical() || isReserved(MO.getReg()))
136       continue;
137     MCRegister Reg = MO.getReg().asMCReg();
138 
139     if (MO.isUse()) {
140       // Ignore undef uses.
141       if (MO.isUndef())
142         continue;
143       if (MO.isKill())
144         addRegUnits(KillRegUnits, Reg);
145     } else {
146       assert(MO.isDef());
147       if (MO.isDead())
148         addRegUnits(KillRegUnits, Reg);
149       else
150         addRegUnits(DefRegUnits, Reg);
151     }
152   }
153 }
154 
155 void RegScavenger::forward() {
156   // Move ptr forward.
157   if (!Tracking) {
158     MBBI = MBB->begin();
159     Tracking = true;
160   } else {
161     assert(MBBI != MBB->end() && "Already past the end of the basic block!");
162     MBBI = std::next(MBBI);
163   }
164   assert(MBBI != MBB->end() && "Already at the end of the basic block!");
165 
166   MachineInstr &MI = *MBBI;
167 
168   for (ScavengedInfo &I : Scavenged) {
169     if (I.Restore != &MI)
170       continue;
171 
172     I.Reg = 0;
173     I.Restore = nullptr;
174   }
175 
176   if (MI.isDebugOrPseudoInstr())
177     return;
178 
179   determineKillsAndDefs();
180 
181   // Verify uses and defs.
182 #ifndef NDEBUG
183   for (const MachineOperand &MO : MI.operands()) {
184     if (!MO.isReg())
185       continue;
186     Register Reg = MO.getReg();
187     if (!Register::isPhysicalRegister(Reg) || isReserved(Reg))
188       continue;
189     if (MO.isUse()) {
190       if (MO.isUndef())
191         continue;
192       if (!isRegUsed(Reg)) {
193         // Check if it's partial live: e.g.
194         // D0 = insert_subreg undef D0, S0
195         // ... D0
196         // The problem is the insert_subreg could be eliminated. The use of
197         // D0 is using a partially undef value. This is not *incorrect* since
198         // S1 is can be freely clobbered.
199         // Ideally we would like a way to model this, but leaving the
200         // insert_subreg around causes both correctness and performance issues.
201         bool SubUsed = false;
202         for (const MCPhysReg &SubReg : TRI->subregs(Reg))
203           if (isRegUsed(SubReg)) {
204             SubUsed = true;
205             break;
206           }
207         bool SuperUsed = false;
208         for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) {
209           if (isRegUsed(*SR)) {
210             SuperUsed = true;
211             break;
212           }
213         }
214         if (!SubUsed && !SuperUsed) {
215           MBB->getParent()->verify(nullptr, "In Register Scavenger");
216           llvm_unreachable("Using an undefined register!");
217         }
218         (void)SubUsed;
219         (void)SuperUsed;
220       }
221     } else {
222       assert(MO.isDef());
223 #if 0
224       // FIXME: Enable this once we've figured out how to correctly transfer
225       // implicit kills during codegen passes like the coalescer.
226       assert((KillRegs.test(Reg) || isUnused(Reg) ||
227               isLiveInButUnusedBefore(Reg, MI, MBB, TRI, MRI)) &&
228              "Re-defining a live register!");
229 #endif
230     }
231   }
232 #endif // NDEBUG
233 
234   // Commit the changes.
235   setUnused(KillRegUnits);
236   setUsed(DefRegUnits);
237 }
238 
239 void RegScavenger::backward() {
240   assert(Tracking && "Must be tracking to determine kills and defs");
241 
242   const MachineInstr &MI = *MBBI;
243   LiveUnits.stepBackward(MI);
244 
245   // Expire scavenge spill frameindex uses.
246   for (ScavengedInfo &I : Scavenged) {
247     if (I.Restore == &MI) {
248       I.Reg = 0;
249       I.Restore = nullptr;
250     }
251   }
252 
253   if (MBBI == MBB->begin()) {
254     MBBI = MachineBasicBlock::iterator(nullptr);
255     Tracking = false;
256   } else
257     --MBBI;
258 }
259 
260 bool RegScavenger::isRegUsed(Register Reg, bool includeReserved) const {
261   if (isReserved(Reg))
262     return includeReserved;
263   return !LiveUnits.available(Reg);
264 }
265 
266 Register RegScavenger::FindUnusedReg(const TargetRegisterClass *RC) const {
267   for (Register Reg : *RC) {
268     if (!isRegUsed(Reg)) {
269       LLVM_DEBUG(dbgs() << "Scavenger found unused reg: " << printReg(Reg, TRI)
270                         << "\n");
271       return Reg;
272     }
273   }
274   return 0;
275 }
276 
277 BitVector RegScavenger::getRegsAvailable(const TargetRegisterClass *RC) {
278   BitVector Mask(TRI->getNumRegs());
279   for (Register Reg : *RC)
280     if (!isRegUsed(Reg))
281       Mask.set(Reg);
282   return Mask;
283 }
284 
285 Register RegScavenger::findSurvivorReg(MachineBasicBlock::iterator StartMI,
286                                        BitVector &Candidates,
287                                        unsigned InstrLimit,
288                                        MachineBasicBlock::iterator &UseMI) {
289   int Survivor = Candidates.find_first();
290   assert(Survivor > 0 && "No candidates for scavenging");
291 
292   MachineBasicBlock::iterator ME = MBB->getFirstTerminator();
293   assert(StartMI != ME && "MI already at terminator");
294   MachineBasicBlock::iterator RestorePointMI = StartMI;
295   MachineBasicBlock::iterator MI = StartMI;
296 
297   bool inVirtLiveRange = false;
298   for (++MI; InstrLimit > 0 && MI != ME; ++MI, --InstrLimit) {
299     if (MI->isDebugOrPseudoInstr()) {
300       ++InstrLimit; // Don't count debug instructions
301       continue;
302     }
303     bool isVirtKillInsn = false;
304     bool isVirtDefInsn = false;
305     // Remove any candidates touched by instruction.
306     for (const MachineOperand &MO : MI->operands()) {
307       if (MO.isRegMask())
308         Candidates.clearBitsNotInMask(MO.getRegMask());
309       if (!MO.isReg() || MO.isUndef() || !MO.getReg())
310         continue;
311       if (Register::isVirtualRegister(MO.getReg())) {
312         if (MO.isDef())
313           isVirtDefInsn = true;
314         else if (MO.isKill())
315           isVirtKillInsn = true;
316         continue;
317       }
318       for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid(); ++AI)
319         Candidates.reset(*AI);
320     }
321     // If we're not in a virtual reg's live range, this is a valid
322     // restore point.
323     if (!inVirtLiveRange) RestorePointMI = MI;
324 
325     // Update whether we're in the live range of a virtual register
326     if (isVirtKillInsn) inVirtLiveRange = false;
327     if (isVirtDefInsn) inVirtLiveRange = true;
328 
329     // Was our survivor untouched by this instruction?
330     if (Candidates.test(Survivor))
331       continue;
332 
333     // All candidates gone?
334     if (Candidates.none())
335       break;
336 
337     Survivor = Candidates.find_first();
338   }
339   // If we ran off the end, that's where we want to restore.
340   if (MI == ME) RestorePointMI = ME;
341   assert(RestorePointMI != StartMI &&
342          "No available scavenger restore location!");
343 
344   // We ran out of candidates, so stop the search.
345   UseMI = RestorePointMI;
346   return Survivor;
347 }
348 
349 /// Given the bitvector \p Available of free register units at position
350 /// \p From. Search backwards to find a register that is part of \p
351 /// Candidates and not used/clobbered until the point \p To. If there is
352 /// multiple candidates continue searching and pick the one that is not used/
353 /// clobbered for the longest time.
354 /// Returns the register and the earliest position we know it to be free or
355 /// the position MBB.end() if no register is available.
356 static std::pair<MCPhysReg, MachineBasicBlock::iterator>
357 findSurvivorBackwards(const MachineRegisterInfo &MRI,
358     MachineBasicBlock::iterator From, MachineBasicBlock::iterator To,
359     const LiveRegUnits &LiveOut, ArrayRef<MCPhysReg> AllocationOrder,
360     bool RestoreAfter) {
361   bool FoundTo = false;
362   MCPhysReg Survivor = 0;
363   MachineBasicBlock::iterator Pos;
364   MachineBasicBlock &MBB = *From->getParent();
365   unsigned InstrLimit = 25;
366   unsigned InstrCountDown = InstrLimit;
367   const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
368   LiveRegUnits Used(TRI);
369 
370   assert(From->getParent() == To->getParent() &&
371          "Target instruction is in other than current basic block, use "
372          "enterBasicBlockEnd first");
373 
374   for (MachineBasicBlock::iterator I = From;; --I) {
375     const MachineInstr &MI = *I;
376 
377     Used.accumulate(MI);
378 
379     if (I == To) {
380       // See if one of the registers in RC wasn't used so far.
381       for (MCPhysReg Reg : AllocationOrder) {
382         if (!MRI.isReserved(Reg) && Used.available(Reg) &&
383             LiveOut.available(Reg))
384           return std::make_pair(Reg, MBB.end());
385       }
386       // Otherwise we will continue up to InstrLimit instructions to find
387       // the register which is not defined/used for the longest time.
388       FoundTo = true;
389       Pos = To;
390       // Note: It was fine so far to start our search at From, however now that
391       // we have to spill, and can only place the restore after From then
392       // add the regs used/defed by std::next(From) to the set.
393       if (RestoreAfter)
394         Used.accumulate(*std::next(From));
395     }
396     if (FoundTo) {
397       if (Survivor == 0 || !Used.available(Survivor)) {
398         MCPhysReg AvilableReg = 0;
399         for (MCPhysReg Reg : AllocationOrder) {
400           if (!MRI.isReserved(Reg) && Used.available(Reg)) {
401             AvilableReg = Reg;
402             break;
403           }
404         }
405         if (AvilableReg == 0)
406           break;
407         Survivor = AvilableReg;
408       }
409       if (--InstrCountDown == 0)
410         break;
411 
412       // Keep searching when we find a vreg since the spilled register will
413       // be usefull for this other vreg as well later.
414       bool FoundVReg = false;
415       for (const MachineOperand &MO : MI.operands()) {
416         if (MO.isReg() && Register::isVirtualRegister(MO.getReg())) {
417           FoundVReg = true;
418           break;
419         }
420       }
421       if (FoundVReg) {
422         InstrCountDown = InstrLimit;
423         Pos = I;
424       }
425       if (I == MBB.begin())
426         break;
427     }
428     assert(I != MBB.begin() && "Did not find target instruction while "
429                                "iterating backwards");
430   }
431 
432   return std::make_pair(Survivor, Pos);
433 }
434 
435 static unsigned getFrameIndexOperandNum(MachineInstr &MI) {
436   unsigned i = 0;
437   while (!MI.getOperand(i).isFI()) {
438     ++i;
439     assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
440   }
441   return i;
442 }
443 
444 RegScavenger::ScavengedInfo &
445 RegScavenger::spill(Register Reg, const TargetRegisterClass &RC, int SPAdj,
446                     MachineBasicBlock::iterator Before,
447                     MachineBasicBlock::iterator &UseMI) {
448   // Find an available scavenging slot with size and alignment matching
449   // the requirements of the class RC.
450   const MachineFunction &MF = *Before->getMF();
451   const MachineFrameInfo &MFI = MF.getFrameInfo();
452   unsigned NeedSize = TRI->getSpillSize(RC);
453   Align NeedAlign = TRI->getSpillAlign(RC);
454 
455   unsigned SI = Scavenged.size(), Diff = std::numeric_limits<unsigned>::max();
456   int FIB = MFI.getObjectIndexBegin(), FIE = MFI.getObjectIndexEnd();
457   for (unsigned I = 0; I < Scavenged.size(); ++I) {
458     if (Scavenged[I].Reg != 0)
459       continue;
460     // Verify that this slot is valid for this register.
461     int FI = Scavenged[I].FrameIndex;
462     if (FI < FIB || FI >= FIE)
463       continue;
464     unsigned S = MFI.getObjectSize(FI);
465     Align A = MFI.getObjectAlign(FI);
466     if (NeedSize > S || NeedAlign > A)
467       continue;
468     // Avoid wasting slots with large size and/or large alignment. Pick one
469     // that is the best fit for this register class (in street metric).
470     // Picking a larger slot than necessary could happen if a slot for a
471     // larger register is reserved before a slot for a smaller one. When
472     // trying to spill a smaller register, the large slot would be found
473     // first, thus making it impossible to spill the larger register later.
474     unsigned D = (S - NeedSize) + (A.value() - NeedAlign.value());
475     if (D < Diff) {
476       SI = I;
477       Diff = D;
478     }
479   }
480 
481   if (SI == Scavenged.size()) {
482     // We need to scavenge a register but have no spill slot, the target
483     // must know how to do it (if not, we'll assert below).
484     Scavenged.push_back(ScavengedInfo(FIE));
485   }
486 
487   // Avoid infinite regress
488   Scavenged[SI].Reg = Reg;
489 
490   // If the target knows how to save/restore the register, let it do so;
491   // otherwise, use the emergency stack spill slot.
492   if (!TRI->saveScavengerRegister(*MBB, Before, UseMI, &RC, Reg)) {
493     // Spill the scavenged register before \p Before.
494     int FI = Scavenged[SI].FrameIndex;
495     if (FI < FIB || FI >= FIE) {
496       report_fatal_error(Twine("Error while trying to spill ") +
497                          TRI->getName(Reg) + " from class " +
498                          TRI->getRegClassName(&RC) +
499                          ": Cannot scavenge register without an emergency "
500                          "spill slot!");
501     }
502     TII->storeRegToStackSlot(*MBB, Before, Reg, true, FI, &RC, TRI);
503     MachineBasicBlock::iterator II = std::prev(Before);
504 
505     unsigned FIOperandNum = getFrameIndexOperandNum(*II);
506     TRI->eliminateFrameIndex(II, SPAdj, FIOperandNum, this);
507 
508     // Restore the scavenged register before its use (or first terminator).
509     TII->loadRegFromStackSlot(*MBB, UseMI, Reg, FI, &RC, TRI);
510     II = std::prev(UseMI);
511 
512     FIOperandNum = getFrameIndexOperandNum(*II);
513     TRI->eliminateFrameIndex(II, SPAdj, FIOperandNum, this);
514   }
515   return Scavenged[SI];
516 }
517 
518 Register RegScavenger::scavengeRegister(const TargetRegisterClass *RC,
519                                         MachineBasicBlock::iterator I,
520                                         int SPAdj, bool AllowSpill) {
521   MachineInstr &MI = *I;
522   const MachineFunction &MF = *MI.getMF();
523   // Consider all allocatable registers in the register class initially
524   BitVector Candidates = TRI->getAllocatableSet(MF, RC);
525 
526   // Exclude all the registers being used by the instruction.
527   for (const MachineOperand &MO : MI.operands()) {
528     if (MO.isReg() && MO.getReg() != 0 && !(MO.isUse() && MO.isUndef()) &&
529         !Register::isVirtualRegister(MO.getReg()))
530       for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid(); ++AI)
531         Candidates.reset(*AI);
532   }
533 
534   // If we have already scavenged some registers, remove them from the
535   // candidates. If we end up recursively calling eliminateFrameIndex, we don't
536   // want to be clobbering previously scavenged registers or their associated
537   // stack slots.
538   for (ScavengedInfo &SI : Scavenged) {
539     if (SI.Reg) {
540       if (isRegUsed(SI.Reg)) {
541         LLVM_DEBUG(
542           dbgs() << "Removing " << printReg(SI.Reg, TRI) <<
543           " from scavenging candidates since it was already scavenged\n");
544         for (MCRegAliasIterator AI(SI.Reg, TRI, true); AI.isValid(); ++AI)
545           Candidates.reset(*AI);
546       }
547     }
548   }
549 
550   // Try to find a register that's unused if there is one, as then we won't
551   // have to spill.
552   BitVector Available = getRegsAvailable(RC);
553   Available &= Candidates;
554   if (Available.any())
555     Candidates = Available;
556 
557   // Find the register whose use is furthest away.
558   MachineBasicBlock::iterator UseMI;
559   Register SReg = findSurvivorReg(I, Candidates, 25, UseMI);
560 
561   // If we found an unused register there is no reason to spill it.
562   if (!isRegUsed(SReg)) {
563     LLVM_DEBUG(dbgs() << "Scavenged register: " << printReg(SReg, TRI) << "\n");
564     return SReg;
565   }
566 
567   if (!AllowSpill)
568     return 0;
569 
570 #ifndef NDEBUG
571   for (ScavengedInfo &SI : Scavenged) {
572     assert(SI.Reg != SReg && "scavenged a previously scavenged register");
573   }
574 #endif
575 
576   ScavengedInfo &Scavenged = spill(SReg, *RC, SPAdj, I, UseMI);
577   Scavenged.Restore = &*std::prev(UseMI);
578 
579   LLVM_DEBUG(dbgs() << "Scavenged register (with spill): "
580                     << printReg(SReg, TRI) << "\n");
581 
582   return SReg;
583 }
584 
585 Register RegScavenger::scavengeRegisterBackwards(const TargetRegisterClass &RC,
586                                                  MachineBasicBlock::iterator To,
587                                                  bool RestoreAfter, int SPAdj,
588                                                  bool AllowSpill) {
589   const MachineBasicBlock &MBB = *To->getParent();
590   const MachineFunction &MF = *MBB.getParent();
591 
592   // Find the register whose use is furthest away.
593   MachineBasicBlock::iterator UseMI;
594   ArrayRef<MCPhysReg> AllocationOrder = RC.getRawAllocationOrder(MF);
595   std::pair<MCPhysReg, MachineBasicBlock::iterator> P =
596       findSurvivorBackwards(*MRI, MBBI, To, LiveUnits, AllocationOrder,
597                             RestoreAfter);
598   MCPhysReg Reg = P.first;
599   MachineBasicBlock::iterator SpillBefore = P.second;
600   // Found an available register?
601   if (Reg != 0 && SpillBefore == MBB.end()) {
602     LLVM_DEBUG(dbgs() << "Scavenged free register: " << printReg(Reg, TRI)
603                << '\n');
604     return Reg;
605   }
606 
607   if (!AllowSpill)
608     return 0;
609 
610   assert(Reg != 0 && "No register left to scavenge!");
611 
612   MachineBasicBlock::iterator ReloadAfter =
613     RestoreAfter ? std::next(MBBI) : MBBI;
614   MachineBasicBlock::iterator ReloadBefore = std::next(ReloadAfter);
615   if (ReloadBefore != MBB.end())
616     LLVM_DEBUG(dbgs() << "Reload before: " << *ReloadBefore << '\n');
617   ScavengedInfo &Scavenged = spill(Reg, RC, SPAdj, SpillBefore, ReloadBefore);
618   Scavenged.Restore = &*std::prev(SpillBefore);
619   LiveUnits.removeReg(Reg);
620   LLVM_DEBUG(dbgs() << "Scavenged register with spill: " << printReg(Reg, TRI)
621              << " until " << *SpillBefore);
622   return Reg;
623 }
624 
625 /// Allocate a register for the virtual register \p VReg. The last use of
626 /// \p VReg is around the current position of the register scavenger \p RS.
627 /// \p ReserveAfter controls whether the scavenged register needs to be reserved
628 /// after the current instruction, otherwise it will only be reserved before the
629 /// current instruction.
630 static Register scavengeVReg(MachineRegisterInfo &MRI, RegScavenger &RS,
631                              Register VReg, bool ReserveAfter) {
632   const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
633 #ifndef NDEBUG
634   // Verify that all definitions and uses are in the same basic block.
635   const MachineBasicBlock *CommonMBB = nullptr;
636   // Real definition for the reg, re-definitions are not considered.
637   const MachineInstr *RealDef = nullptr;
638   for (MachineOperand &MO : MRI.reg_nodbg_operands(VReg)) {
639     MachineBasicBlock *MBB = MO.getParent()->getParent();
640     if (CommonMBB == nullptr)
641       CommonMBB = MBB;
642     assert(MBB == CommonMBB && "All defs+uses must be in the same basic block");
643     if (MO.isDef()) {
644       const MachineInstr &MI = *MO.getParent();
645       if (!MI.readsRegister(VReg, &TRI)) {
646         assert((!RealDef || RealDef == &MI) &&
647                "Can have at most one definition which is not a redefinition");
648         RealDef = &MI;
649       }
650     }
651   }
652   assert(RealDef != nullptr && "Must have at least 1 Def");
653 #endif
654 
655   // We should only have one definition of the register. However to accommodate
656   // the requirements of two address code we also allow definitions in
657   // subsequent instructions provided they also read the register. That way
658   // we get a single contiguous lifetime.
659   //
660   // Definitions in MRI.def_begin() are unordered, search for the first.
661   MachineRegisterInfo::def_iterator FirstDef = llvm::find_if(
662       MRI.def_operands(VReg), [VReg, &TRI](const MachineOperand &MO) {
663         return !MO.getParent()->readsRegister(VReg, &TRI);
664       });
665   assert(FirstDef != MRI.def_end() &&
666          "Must have one definition that does not redefine vreg");
667   MachineInstr &DefMI = *FirstDef->getParent();
668 
669   // The register scavenger will report a free register inserting an emergency
670   // spill/reload if necessary.
671   int SPAdj = 0;
672   const TargetRegisterClass &RC = *MRI.getRegClass(VReg);
673   Register SReg = RS.scavengeRegisterBackwards(RC, DefMI.getIterator(),
674                                                ReserveAfter, SPAdj);
675   MRI.replaceRegWith(VReg, SReg);
676   ++NumScavengedRegs;
677   return SReg;
678 }
679 
680 /// Allocate (scavenge) vregs inside a single basic block.
681 /// Returns true if the target spill callback created new vregs and a 2nd pass
682 /// is necessary.
683 static bool scavengeFrameVirtualRegsInBlock(MachineRegisterInfo &MRI,
684                                             RegScavenger &RS,
685                                             MachineBasicBlock &MBB) {
686   const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
687   RS.enterBasicBlockEnd(MBB);
688 
689   unsigned InitialNumVirtRegs = MRI.getNumVirtRegs();
690   bool NextInstructionReadsVReg = false;
691   for (MachineBasicBlock::iterator I = MBB.end(); I != MBB.begin(); ) {
692     --I;
693     // Move RegScavenger to the position between *I and *std::next(I).
694     RS.backward(I);
695 
696     // Look for unassigned vregs in the uses of *std::next(I).
697     if (NextInstructionReadsVReg) {
698       MachineBasicBlock::iterator N = std::next(I);
699       const MachineInstr &NMI = *N;
700       for (const MachineOperand &MO : NMI.operands()) {
701         if (!MO.isReg())
702           continue;
703         Register Reg = MO.getReg();
704         // We only care about virtual registers and ignore virtual registers
705         // created by the target callbacks in the process (those will be handled
706         // in a scavenging round).
707         if (!Register::isVirtualRegister(Reg) ||
708             Register::virtReg2Index(Reg) >= InitialNumVirtRegs)
709           continue;
710         if (!MO.readsReg())
711           continue;
712 
713         Register SReg = scavengeVReg(MRI, RS, Reg, true);
714         N->addRegisterKilled(SReg, &TRI, false);
715         RS.setRegUsed(SReg);
716       }
717     }
718 
719     // Look for unassigned vregs in the defs of *I.
720     NextInstructionReadsVReg = false;
721     const MachineInstr &MI = *I;
722     for (const MachineOperand &MO : MI.operands()) {
723       if (!MO.isReg())
724         continue;
725       Register Reg = MO.getReg();
726       // Only vregs, no newly created vregs (see above).
727       if (!Register::isVirtualRegister(Reg) ||
728           Register::virtReg2Index(Reg) >= InitialNumVirtRegs)
729         continue;
730       // We have to look at all operands anyway so we can precalculate here
731       // whether there is a reading operand. This allows use to skip the use
732       // step in the next iteration if there was none.
733       assert(!MO.isInternalRead() && "Cannot assign inside bundles");
734       assert((!MO.isUndef() || MO.isDef()) && "Cannot handle undef uses");
735       if (MO.readsReg()) {
736         NextInstructionReadsVReg = true;
737       }
738       if (MO.isDef()) {
739         Register SReg = scavengeVReg(MRI, RS, Reg, false);
740         I->addRegisterDead(SReg, &TRI, false);
741       }
742     }
743   }
744 #ifndef NDEBUG
745   for (const MachineOperand &MO : MBB.front().operands()) {
746     if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg()))
747       continue;
748     assert(!MO.isInternalRead() && "Cannot assign inside bundles");
749     assert((!MO.isUndef() || MO.isDef()) && "Cannot handle undef uses");
750     assert(!MO.readsReg() && "Vreg use in first instruction not allowed");
751   }
752 #endif
753 
754   return MRI.getNumVirtRegs() != InitialNumVirtRegs;
755 }
756 
757 void llvm::scavengeFrameVirtualRegs(MachineFunction &MF, RegScavenger &RS) {
758   // FIXME: Iterating over the instruction stream is unnecessary. We can simply
759   // iterate over the vreg use list, which at this point only contains machine
760   // operands for which eliminateFrameIndex need a new scratch reg.
761   MachineRegisterInfo &MRI = MF.getRegInfo();
762   // Shortcut.
763   if (MRI.getNumVirtRegs() == 0) {
764     MF.getProperties().set(MachineFunctionProperties::Property::NoVRegs);
765     return;
766   }
767 
768   // Run through the instructions and find any virtual registers.
769   for (MachineBasicBlock &MBB : MF) {
770     if (MBB.empty())
771       continue;
772 
773     bool Again = scavengeFrameVirtualRegsInBlock(MRI, RS, MBB);
774     if (Again) {
775       LLVM_DEBUG(dbgs() << "Warning: Required two scavenging passes for block "
776                         << MBB.getName() << '\n');
777       Again = scavengeFrameVirtualRegsInBlock(MRI, RS, MBB);
778       // The target required a 2nd run (because it created new vregs while
779       // spilling). Refuse to do another pass to keep compiletime in check.
780       if (Again)
781         report_fatal_error("Incomplete scavenging after 2nd pass");
782     }
783   }
784 
785   MRI.clearVirtRegs();
786   MF.getProperties().set(MachineFunctionProperties::Property::NoVRegs);
787 }
788 
789 namespace {
790 
791 /// This class runs register scavenging independ of the PrologEpilogInserter.
792 /// This is used in for testing.
793 class ScavengerTest : public MachineFunctionPass {
794 public:
795   static char ID;
796 
797   ScavengerTest() : MachineFunctionPass(ID) {}
798 
799   bool runOnMachineFunction(MachineFunction &MF) override {
800     const TargetSubtargetInfo &STI = MF.getSubtarget();
801     const TargetFrameLowering &TFL = *STI.getFrameLowering();
802 
803     RegScavenger RS;
804     // Let's hope that calling those outside of PrologEpilogueInserter works
805     // well enough to initialize the scavenger with some emergency spillslots
806     // for the target.
807     BitVector SavedRegs;
808     TFL.determineCalleeSaves(MF, SavedRegs, &RS);
809     TFL.processFunctionBeforeFrameFinalized(MF, &RS);
810 
811     // Let's scavenge the current function
812     scavengeFrameVirtualRegs(MF, RS);
813     return true;
814   }
815 };
816 
817 } // end anonymous namespace
818 
819 char ScavengerTest::ID;
820 
821 INITIALIZE_PASS(ScavengerTest, "scavenger-test",
822                 "Scavenge virtual registers inside basic blocks", false, false)
823