1 //===- RegisterScavenging.cpp - Machine register scavenging ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file implements the machine register scavenger. It can provide
11 /// information, such as unused registers, at any point in a machine basic
12 /// block. It also provides a mechanism to make registers available by evicting
13 /// them to spill slots.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/CodeGen/RegisterScavenging.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/LiveRegUnits.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/TargetFrameLowering.h"
31 #include "llvm/CodeGen/TargetInstrInfo.h"
32 #include "llvm/CodeGen/TargetRegisterInfo.h"
33 #include "llvm/CodeGen/TargetSubtargetInfo.h"
34 #include "llvm/InitializePasses.h"
35 #include "llvm/MC/MCRegisterInfo.h"
36 #include "llvm/Pass.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include <algorithm>
41 #include <cassert>
42 #include <iterator>
43 #include <limits>
44 #include <string>
45 #include <utility>
46 
47 using namespace llvm;
48 
49 #define DEBUG_TYPE "reg-scavenging"
50 
51 STATISTIC(NumScavengedRegs, "Number of frame index regs scavenged");
52 
53 void RegScavenger::setRegUsed(Register Reg, LaneBitmask LaneMask) {
54   LiveUnits.addRegMasked(Reg, LaneMask);
55 }
56 
57 void RegScavenger::init(MachineBasicBlock &MBB) {
58   MachineFunction &MF = *MBB.getParent();
59   TII = MF.getSubtarget().getInstrInfo();
60   TRI = MF.getSubtarget().getRegisterInfo();
61   MRI = &MF.getRegInfo();
62   LiveUnits.init(*TRI);
63 
64   assert((NumRegUnits == 0 || NumRegUnits == TRI->getNumRegUnits()) &&
65          "Target changed?");
66 
67   // Self-initialize.
68   if (!this->MBB) {
69     NumRegUnits = TRI->getNumRegUnits();
70     KillRegUnits.resize(NumRegUnits);
71     DefRegUnits.resize(NumRegUnits);
72     TmpRegUnits.resize(NumRegUnits);
73   }
74   this->MBB = &MBB;
75 
76   for (ScavengedInfo &SI : Scavenged) {
77     SI.Reg = 0;
78     SI.Restore = nullptr;
79   }
80 
81   Tracking = false;
82 }
83 
84 void RegScavenger::enterBasicBlock(MachineBasicBlock &MBB) {
85   init(MBB);
86   LiveUnits.addLiveIns(MBB);
87 }
88 
89 void RegScavenger::enterBasicBlockEnd(MachineBasicBlock &MBB) {
90   init(MBB);
91   LiveUnits.addLiveOuts(MBB);
92 
93   // Move internal iterator at the last instruction of the block.
94   if (MBB.begin() != MBB.end()) {
95     MBBI = std::prev(MBB.end());
96     Tracking = true;
97   }
98 }
99 
100 void RegScavenger::addRegUnits(BitVector &BV, Register Reg) {
101   for (MCRegUnitIterator RUI(Reg, TRI); RUI.isValid(); ++RUI)
102     BV.set(*RUI);
103 }
104 
105 void RegScavenger::removeRegUnits(BitVector &BV, Register Reg) {
106   for (MCRegUnitIterator RUI(Reg, TRI); RUI.isValid(); ++RUI)
107     BV.reset(*RUI);
108 }
109 
110 void RegScavenger::determineKillsAndDefs() {
111   assert(Tracking && "Must be tracking to determine kills and defs");
112 
113   MachineInstr &MI = *MBBI;
114   assert(!MI.isDebugInstr() && "Debug values have no kills or defs");
115 
116   // Find out which registers are early clobbered, killed, defined, and marked
117   // def-dead in this instruction.
118   KillRegUnits.reset();
119   DefRegUnits.reset();
120   for (const MachineOperand &MO : MI.operands()) {
121     if (MO.isRegMask()) {
122       TmpRegUnits.clear();
123       for (unsigned RU = 0, RUEnd = TRI->getNumRegUnits(); RU != RUEnd; ++RU) {
124         for (MCRegUnitRootIterator RURI(RU, TRI); RURI.isValid(); ++RURI) {
125           if (MO.clobbersPhysReg(*RURI)) {
126             TmpRegUnits.set(RU);
127             break;
128           }
129         }
130       }
131 
132       // Apply the mask.
133       KillRegUnits |= TmpRegUnits;
134     }
135     if (!MO.isReg())
136       continue;
137     Register Reg = MO.getReg();
138     if (!Register::isPhysicalRegister(Reg) || isReserved(Reg))
139       continue;
140 
141     if (MO.isUse()) {
142       // Ignore undef uses.
143       if (MO.isUndef())
144         continue;
145       if (MO.isKill())
146         addRegUnits(KillRegUnits, Reg);
147     } else {
148       assert(MO.isDef());
149       if (MO.isDead())
150         addRegUnits(KillRegUnits, Reg);
151       else
152         addRegUnits(DefRegUnits, Reg);
153     }
154   }
155 }
156 
157 void RegScavenger::unprocess() {
158   assert(Tracking && "Cannot unprocess because we're not tracking");
159 
160   MachineInstr &MI = *MBBI;
161   if (!MI.isDebugInstr()) {
162     determineKillsAndDefs();
163 
164     // Commit the changes.
165     setUnused(DefRegUnits);
166     setUsed(KillRegUnits);
167   }
168 
169   if (MBBI == MBB->begin()) {
170     MBBI = MachineBasicBlock::iterator(nullptr);
171     Tracking = false;
172   } else
173     --MBBI;
174 }
175 
176 void RegScavenger::forward() {
177   // Move ptr forward.
178   if (!Tracking) {
179     MBBI = MBB->begin();
180     Tracking = true;
181   } else {
182     assert(MBBI != MBB->end() && "Already past the end of the basic block!");
183     MBBI = std::next(MBBI);
184   }
185   assert(MBBI != MBB->end() && "Already at the end of the basic block!");
186 
187   MachineInstr &MI = *MBBI;
188 
189   for (SmallVectorImpl<ScavengedInfo>::iterator I = Scavenged.begin(),
190          IE = Scavenged.end(); I != IE; ++I) {
191     if (I->Restore != &MI)
192       continue;
193 
194     I->Reg = 0;
195     I->Restore = nullptr;
196   }
197 
198   if (MI.isDebugInstr())
199     return;
200 
201   determineKillsAndDefs();
202 
203   // Verify uses and defs.
204 #ifndef NDEBUG
205   for (const MachineOperand &MO : MI.operands()) {
206     if (!MO.isReg())
207       continue;
208     Register Reg = MO.getReg();
209     if (!Register::isPhysicalRegister(Reg) || isReserved(Reg))
210       continue;
211     if (MO.isUse()) {
212       if (MO.isUndef())
213         continue;
214       if (!isRegUsed(Reg)) {
215         // Check if it's partial live: e.g.
216         // D0 = insert_subreg undef D0, S0
217         // ... D0
218         // The problem is the insert_subreg could be eliminated. The use of
219         // D0 is using a partially undef value. This is not *incorrect* since
220         // S1 is can be freely clobbered.
221         // Ideally we would like a way to model this, but leaving the
222         // insert_subreg around causes both correctness and performance issues.
223         bool SubUsed = false;
224         for (const MCPhysReg &SubReg : TRI->subregs(Reg))
225           if (isRegUsed(SubReg)) {
226             SubUsed = true;
227             break;
228           }
229         bool SuperUsed = false;
230         for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) {
231           if (isRegUsed(*SR)) {
232             SuperUsed = true;
233             break;
234           }
235         }
236         if (!SubUsed && !SuperUsed) {
237           MBB->getParent()->verify(nullptr, "In Register Scavenger");
238           llvm_unreachable("Using an undefined register!");
239         }
240         (void)SubUsed;
241         (void)SuperUsed;
242       }
243     } else {
244       assert(MO.isDef());
245 #if 0
246       // FIXME: Enable this once we've figured out how to correctly transfer
247       // implicit kills during codegen passes like the coalescer.
248       assert((KillRegs.test(Reg) || isUnused(Reg) ||
249               isLiveInButUnusedBefore(Reg, MI, MBB, TRI, MRI)) &&
250              "Re-defining a live register!");
251 #endif
252     }
253   }
254 #endif // NDEBUG
255 
256   // Commit the changes.
257   setUnused(KillRegUnits);
258   setUsed(DefRegUnits);
259 }
260 
261 void RegScavenger::backward() {
262   assert(Tracking && "Must be tracking to determine kills and defs");
263 
264   const MachineInstr &MI = *MBBI;
265   LiveUnits.stepBackward(MI);
266 
267   // Expire scavenge spill frameindex uses.
268   for (ScavengedInfo &I : Scavenged) {
269     if (I.Restore == &MI) {
270       I.Reg = 0;
271       I.Restore = nullptr;
272     }
273   }
274 
275   if (MBBI == MBB->begin()) {
276     MBBI = MachineBasicBlock::iterator(nullptr);
277     Tracking = false;
278   } else
279     --MBBI;
280 }
281 
282 bool RegScavenger::isRegUsed(Register Reg, bool includeReserved) const {
283   if (isReserved(Reg))
284     return includeReserved;
285   return !LiveUnits.available(Reg);
286 }
287 
288 Register RegScavenger::FindUnusedReg(const TargetRegisterClass *RC) const {
289   for (Register Reg : *RC) {
290     if (!isRegUsed(Reg)) {
291       LLVM_DEBUG(dbgs() << "Scavenger found unused reg: " << printReg(Reg, TRI)
292                         << "\n");
293       return Reg;
294     }
295   }
296   return 0;
297 }
298 
299 BitVector RegScavenger::getRegsAvailable(const TargetRegisterClass *RC) {
300   BitVector Mask(TRI->getNumRegs());
301   for (Register Reg : *RC)
302     if (!isRegUsed(Reg))
303       Mask.set(Reg);
304   return Mask;
305 }
306 
307 Register RegScavenger::findSurvivorReg(MachineBasicBlock::iterator StartMI,
308                                        BitVector &Candidates,
309                                        unsigned InstrLimit,
310                                        MachineBasicBlock::iterator &UseMI) {
311   int Survivor = Candidates.find_first();
312   assert(Survivor > 0 && "No candidates for scavenging");
313 
314   MachineBasicBlock::iterator ME = MBB->getFirstTerminator();
315   assert(StartMI != ME && "MI already at terminator");
316   MachineBasicBlock::iterator RestorePointMI = StartMI;
317   MachineBasicBlock::iterator MI = StartMI;
318 
319   bool inVirtLiveRange = false;
320   for (++MI; InstrLimit > 0 && MI != ME; ++MI, --InstrLimit) {
321     if (MI->isDebugInstr()) {
322       ++InstrLimit; // Don't count debug instructions
323       continue;
324     }
325     bool isVirtKillInsn = false;
326     bool isVirtDefInsn = false;
327     // Remove any candidates touched by instruction.
328     for (const MachineOperand &MO : MI->operands()) {
329       if (MO.isRegMask())
330         Candidates.clearBitsNotInMask(MO.getRegMask());
331       if (!MO.isReg() || MO.isUndef() || !MO.getReg())
332         continue;
333       if (Register::isVirtualRegister(MO.getReg())) {
334         if (MO.isDef())
335           isVirtDefInsn = true;
336         else if (MO.isKill())
337           isVirtKillInsn = true;
338         continue;
339       }
340       for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid(); ++AI)
341         Candidates.reset(*AI);
342     }
343     // If we're not in a virtual reg's live range, this is a valid
344     // restore point.
345     if (!inVirtLiveRange) RestorePointMI = MI;
346 
347     // Update whether we're in the live range of a virtual register
348     if (isVirtKillInsn) inVirtLiveRange = false;
349     if (isVirtDefInsn) inVirtLiveRange = true;
350 
351     // Was our survivor untouched by this instruction?
352     if (Candidates.test(Survivor))
353       continue;
354 
355     // All candidates gone?
356     if (Candidates.none())
357       break;
358 
359     Survivor = Candidates.find_first();
360   }
361   // If we ran off the end, that's where we want to restore.
362   if (MI == ME) RestorePointMI = ME;
363   assert(RestorePointMI != StartMI &&
364          "No available scavenger restore location!");
365 
366   // We ran out of candidates, so stop the search.
367   UseMI = RestorePointMI;
368   return Survivor;
369 }
370 
371 /// Given the bitvector \p Available of free register units at position
372 /// \p From. Search backwards to find a register that is part of \p
373 /// Candidates and not used/clobbered until the point \p To. If there is
374 /// multiple candidates continue searching and pick the one that is not used/
375 /// clobbered for the longest time.
376 /// Returns the register and the earliest position we know it to be free or
377 /// the position MBB.end() if no register is available.
378 static std::pair<MCPhysReg, MachineBasicBlock::iterator>
379 findSurvivorBackwards(const MachineRegisterInfo &MRI,
380     MachineBasicBlock::iterator From, MachineBasicBlock::iterator To,
381     const LiveRegUnits &LiveOut, ArrayRef<MCPhysReg> AllocationOrder,
382     bool RestoreAfter) {
383   bool FoundTo = false;
384   MCPhysReg Survivor = 0;
385   MachineBasicBlock::iterator Pos;
386   MachineBasicBlock &MBB = *From->getParent();
387   unsigned InstrLimit = 25;
388   unsigned InstrCountDown = InstrLimit;
389   const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
390   LiveRegUnits Used(TRI);
391 
392   for (MachineBasicBlock::iterator I = From;; --I) {
393     const MachineInstr &MI = *I;
394 
395     Used.accumulate(MI);
396 
397     if (I == To) {
398       // See if one of the registers in RC wasn't used so far.
399       for (MCPhysReg Reg : AllocationOrder) {
400         if (!MRI.isReserved(Reg) && Used.available(Reg) &&
401             LiveOut.available(Reg))
402           return std::make_pair(Reg, MBB.end());
403       }
404       // Otherwise we will continue up to InstrLimit instructions to find
405       // the register which is not defined/used for the longest time.
406       FoundTo = true;
407       Pos = To;
408       // Note: It was fine so far to start our search at From, however now that
409       // we have to spill, and can only place the restore after From then
410       // add the regs used/defed by std::next(From) to the set.
411       if (RestoreAfter)
412         Used.accumulate(*std::next(From));
413     }
414     if (FoundTo) {
415       if (Survivor == 0 || !Used.available(Survivor)) {
416         MCPhysReg AvilableReg = 0;
417         for (MCPhysReg Reg : AllocationOrder) {
418           if (!MRI.isReserved(Reg) && Used.available(Reg)) {
419             AvilableReg = Reg;
420             break;
421           }
422         }
423         if (AvilableReg == 0)
424           break;
425         Survivor = AvilableReg;
426       }
427       if (--InstrCountDown == 0)
428         break;
429 
430       // Keep searching when we find a vreg since the spilled register will
431       // be usefull for this other vreg as well later.
432       bool FoundVReg = false;
433       for (const MachineOperand &MO : MI.operands()) {
434         if (MO.isReg() && Register::isVirtualRegister(MO.getReg())) {
435           FoundVReg = true;
436           break;
437         }
438       }
439       if (FoundVReg) {
440         InstrCountDown = InstrLimit;
441         Pos = I;
442       }
443       if (I == MBB.begin())
444         break;
445     }
446   }
447 
448   return std::make_pair(Survivor, Pos);
449 }
450 
451 static unsigned getFrameIndexOperandNum(MachineInstr &MI) {
452   unsigned i = 0;
453   while (!MI.getOperand(i).isFI()) {
454     ++i;
455     assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
456   }
457   return i;
458 }
459 
460 RegScavenger::ScavengedInfo &
461 RegScavenger::spill(Register Reg, const TargetRegisterClass &RC, int SPAdj,
462                     MachineBasicBlock::iterator Before,
463                     MachineBasicBlock::iterator &UseMI) {
464   // Find an available scavenging slot with size and alignment matching
465   // the requirements of the class RC.
466   const MachineFunction &MF = *Before->getMF();
467   const MachineFrameInfo &MFI = MF.getFrameInfo();
468   unsigned NeedSize = TRI->getSpillSize(RC);
469   unsigned NeedAlign = TRI->getSpillAlignment(RC);
470 
471   unsigned SI = Scavenged.size(), Diff = std::numeric_limits<unsigned>::max();
472   int FIB = MFI.getObjectIndexBegin(), FIE = MFI.getObjectIndexEnd();
473   for (unsigned I = 0; I < Scavenged.size(); ++I) {
474     if (Scavenged[I].Reg != 0)
475       continue;
476     // Verify that this slot is valid for this register.
477     int FI = Scavenged[I].FrameIndex;
478     if (FI < FIB || FI >= FIE)
479       continue;
480     unsigned S = MFI.getObjectSize(FI);
481     unsigned A = MFI.getObjectAlignment(FI);
482     if (NeedSize > S || NeedAlign > A)
483       continue;
484     // Avoid wasting slots with large size and/or large alignment. Pick one
485     // that is the best fit for this register class (in street metric).
486     // Picking a larger slot than necessary could happen if a slot for a
487     // larger register is reserved before a slot for a smaller one. When
488     // trying to spill a smaller register, the large slot would be found
489     // first, thus making it impossible to spill the larger register later.
490     unsigned D = (S-NeedSize) + (A-NeedAlign);
491     if (D < Diff) {
492       SI = I;
493       Diff = D;
494     }
495   }
496 
497   if (SI == Scavenged.size()) {
498     // We need to scavenge a register but have no spill slot, the target
499     // must know how to do it (if not, we'll assert below).
500     Scavenged.push_back(ScavengedInfo(FIE));
501   }
502 
503   // Avoid infinite regress
504   Scavenged[SI].Reg = Reg;
505 
506   // If the target knows how to save/restore the register, let it do so;
507   // otherwise, use the emergency stack spill slot.
508   if (!TRI->saveScavengerRegister(*MBB, Before, UseMI, &RC, Reg)) {
509     // Spill the scavenged register before \p Before.
510     int FI = Scavenged[SI].FrameIndex;
511     if (FI < FIB || FI >= FIE) {
512       std::string Msg = std::string("Error while trying to spill ") +
513           TRI->getName(Reg) + " from class " + TRI->getRegClassName(&RC) +
514           ": Cannot scavenge register without an emergency spill slot!";
515       report_fatal_error(Msg.c_str());
516     }
517     TII->storeRegToStackSlot(*MBB, Before, Reg, true, Scavenged[SI].FrameIndex,
518                              &RC, TRI);
519     MachineBasicBlock::iterator II = std::prev(Before);
520 
521     unsigned FIOperandNum = getFrameIndexOperandNum(*II);
522     TRI->eliminateFrameIndex(II, SPAdj, FIOperandNum, this);
523 
524     // Restore the scavenged register before its use (or first terminator).
525     TII->loadRegFromStackSlot(*MBB, UseMI, Reg, Scavenged[SI].FrameIndex,
526                               &RC, TRI);
527     II = std::prev(UseMI);
528 
529     FIOperandNum = getFrameIndexOperandNum(*II);
530     TRI->eliminateFrameIndex(II, SPAdj, FIOperandNum, this);
531   }
532   return Scavenged[SI];
533 }
534 
535 Register RegScavenger::scavengeRegister(const TargetRegisterClass *RC,
536                                         MachineBasicBlock::iterator I,
537                                         int SPAdj, bool AllowSpill) {
538   MachineInstr &MI = *I;
539   const MachineFunction &MF = *MI.getMF();
540   // Consider all allocatable registers in the register class initially
541   BitVector Candidates = TRI->getAllocatableSet(MF, RC);
542 
543   // Exclude all the registers being used by the instruction.
544   for (const MachineOperand &MO : MI.operands()) {
545     if (MO.isReg() && MO.getReg() != 0 && !(MO.isUse() && MO.isUndef()) &&
546         !Register::isVirtualRegister(MO.getReg()))
547       for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid(); ++AI)
548         Candidates.reset(*AI);
549   }
550 
551   // Try to find a register that's unused if there is one, as then we won't
552   // have to spill.
553   BitVector Available = getRegsAvailable(RC);
554   Available &= Candidates;
555   if (Available.any())
556     Candidates = Available;
557 
558   // Find the register whose use is furthest away.
559   MachineBasicBlock::iterator UseMI;
560   Register SReg = findSurvivorReg(I, Candidates, 25, UseMI);
561 
562   // If we found an unused register there is no reason to spill it.
563   if (!isRegUsed(SReg)) {
564     LLVM_DEBUG(dbgs() << "Scavenged register: " << printReg(SReg, TRI) << "\n");
565     return SReg;
566   }
567 
568   if (!AllowSpill)
569     return 0;
570 
571   ScavengedInfo &Scavenged = spill(SReg, *RC, SPAdj, I, UseMI);
572   Scavenged.Restore = &*std::prev(UseMI);
573 
574   LLVM_DEBUG(dbgs() << "Scavenged register (with spill): "
575                     << printReg(SReg, TRI) << "\n");
576 
577   return SReg;
578 }
579 
580 Register RegScavenger::scavengeRegisterBackwards(const TargetRegisterClass &RC,
581                                                  MachineBasicBlock::iterator To,
582                                                  bool RestoreAfter, int SPAdj,
583                                                  bool AllowSpill) {
584   const MachineBasicBlock &MBB = *To->getParent();
585   const MachineFunction &MF = *MBB.getParent();
586 
587   // Find the register whose use is furthest away.
588   MachineBasicBlock::iterator UseMI;
589   ArrayRef<MCPhysReg> AllocationOrder = RC.getRawAllocationOrder(MF);
590   std::pair<MCPhysReg, MachineBasicBlock::iterator> P =
591       findSurvivorBackwards(*MRI, MBBI, To, LiveUnits, AllocationOrder,
592                             RestoreAfter);
593   MCPhysReg Reg = P.first;
594   MachineBasicBlock::iterator SpillBefore = P.second;
595   assert(Reg != 0 && "No register left to scavenge!");
596   // Found an available register?
597   if (SpillBefore == MBB.end()) {
598     LLVM_DEBUG(dbgs() << "Scavenged free register: " << printReg(Reg, TRI)
599                << '\n');
600     return Reg;
601   }
602 
603   if (!AllowSpill)
604     return 0;
605 
606   MachineBasicBlock::iterator ReloadAfter =
607     RestoreAfter ? std::next(MBBI) : MBBI;
608   MachineBasicBlock::iterator ReloadBefore = std::next(ReloadAfter);
609   if (ReloadBefore != MBB.end())
610     LLVM_DEBUG(dbgs() << "Reload before: " << *ReloadBefore << '\n');
611   ScavengedInfo &Scavenged = spill(Reg, RC, SPAdj, SpillBefore, ReloadBefore);
612   Scavenged.Restore = &*std::prev(SpillBefore);
613   LiveUnits.removeReg(Reg);
614   LLVM_DEBUG(dbgs() << "Scavenged register with spill: " << printReg(Reg, TRI)
615              << " until " << *SpillBefore);
616   return Reg;
617 }
618 
619 /// Allocate a register for the virtual register \p VReg. The last use of
620 /// \p VReg is around the current position of the register scavenger \p RS.
621 /// \p ReserveAfter controls whether the scavenged register needs to be reserved
622 /// after the current instruction, otherwise it will only be reserved before the
623 /// current instruction.
624 static Register scavengeVReg(MachineRegisterInfo &MRI, RegScavenger &RS,
625                              Register VReg, bool ReserveAfter) {
626   const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
627 #ifndef NDEBUG
628   // Verify that all definitions and uses are in the same basic block.
629   const MachineBasicBlock *CommonMBB = nullptr;
630   // Real definition for the reg, re-definitions are not considered.
631   const MachineInstr *RealDef = nullptr;
632   for (MachineOperand &MO : MRI.reg_nodbg_operands(VReg)) {
633     MachineBasicBlock *MBB = MO.getParent()->getParent();
634     if (CommonMBB == nullptr)
635       CommonMBB = MBB;
636     assert(MBB == CommonMBB && "All defs+uses must be in the same basic block");
637     if (MO.isDef()) {
638       const MachineInstr &MI = *MO.getParent();
639       if (!MI.readsRegister(VReg, &TRI)) {
640         assert((!RealDef || RealDef == &MI) &&
641                "Can have at most one definition which is not a redefinition");
642         RealDef = &MI;
643       }
644     }
645   }
646   assert(RealDef != nullptr && "Must have at least 1 Def");
647 #endif
648 
649   // We should only have one definition of the register. However to accommodate
650   // the requirements of two address code we also allow definitions in
651   // subsequent instructions provided they also read the register. That way
652   // we get a single contiguous lifetime.
653   //
654   // Definitions in MRI.def_begin() are unordered, search for the first.
655   MachineRegisterInfo::def_iterator FirstDef =
656     std::find_if(MRI.def_begin(VReg), MRI.def_end(),
657                  [VReg, &TRI](const MachineOperand &MO) {
658       return !MO.getParent()->readsRegister(VReg, &TRI);
659     });
660   assert(FirstDef != MRI.def_end() &&
661          "Must have one definition that does not redefine vreg");
662   MachineInstr &DefMI = *FirstDef->getParent();
663 
664   // The register scavenger will report a free register inserting an emergency
665   // spill/reload if necessary.
666   int SPAdj = 0;
667   const TargetRegisterClass &RC = *MRI.getRegClass(VReg);
668   Register SReg = RS.scavengeRegisterBackwards(RC, DefMI.getIterator(),
669                                                ReserveAfter, SPAdj);
670   MRI.replaceRegWith(VReg, SReg);
671   ++NumScavengedRegs;
672   return SReg;
673 }
674 
675 /// Allocate (scavenge) vregs inside a single basic block.
676 /// Returns true if the target spill callback created new vregs and a 2nd pass
677 /// is necessary.
678 static bool scavengeFrameVirtualRegsInBlock(MachineRegisterInfo &MRI,
679                                             RegScavenger &RS,
680                                             MachineBasicBlock &MBB) {
681   const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
682   RS.enterBasicBlockEnd(MBB);
683 
684   unsigned InitialNumVirtRegs = MRI.getNumVirtRegs();
685   bool NextInstructionReadsVReg = false;
686   for (MachineBasicBlock::iterator I = MBB.end(); I != MBB.begin(); ) {
687     --I;
688     // Move RegScavenger to the position between *I and *std::next(I).
689     RS.backward(I);
690 
691     // Look for unassigned vregs in the uses of *std::next(I).
692     if (NextInstructionReadsVReg) {
693       MachineBasicBlock::iterator N = std::next(I);
694       const MachineInstr &NMI = *N;
695       for (const MachineOperand &MO : NMI.operands()) {
696         if (!MO.isReg())
697           continue;
698         Register Reg = MO.getReg();
699         // We only care about virtual registers and ignore virtual registers
700         // created by the target callbacks in the process (those will be handled
701         // in a scavenging round).
702         if (!Register::isVirtualRegister(Reg) ||
703             Register::virtReg2Index(Reg) >= InitialNumVirtRegs)
704           continue;
705         if (!MO.readsReg())
706           continue;
707 
708         Register SReg = scavengeVReg(MRI, RS, Reg, true);
709         N->addRegisterKilled(SReg, &TRI, false);
710         RS.setRegUsed(SReg);
711       }
712     }
713 
714     // Look for unassigned vregs in the defs of *I.
715     NextInstructionReadsVReg = false;
716     const MachineInstr &MI = *I;
717     for (const MachineOperand &MO : MI.operands()) {
718       if (!MO.isReg())
719         continue;
720       Register Reg = MO.getReg();
721       // Only vregs, no newly created vregs (see above).
722       if (!Register::isVirtualRegister(Reg) ||
723           Register::virtReg2Index(Reg) >= InitialNumVirtRegs)
724         continue;
725       // We have to look at all operands anyway so we can precalculate here
726       // whether there is a reading operand. This allows use to skip the use
727       // step in the next iteration if there was none.
728       assert(!MO.isInternalRead() && "Cannot assign inside bundles");
729       assert((!MO.isUndef() || MO.isDef()) && "Cannot handle undef uses");
730       if (MO.readsReg()) {
731         NextInstructionReadsVReg = true;
732       }
733       if (MO.isDef()) {
734         Register SReg = scavengeVReg(MRI, RS, Reg, false);
735         I->addRegisterDead(SReg, &TRI, false);
736       }
737     }
738   }
739 #ifndef NDEBUG
740   for (const MachineOperand &MO : MBB.front().operands()) {
741     if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg()))
742       continue;
743     assert(!MO.isInternalRead() && "Cannot assign inside bundles");
744     assert((!MO.isUndef() || MO.isDef()) && "Cannot handle undef uses");
745     assert(!MO.readsReg() && "Vreg use in first instruction not allowed");
746   }
747 #endif
748 
749   return MRI.getNumVirtRegs() != InitialNumVirtRegs;
750 }
751 
752 void llvm::scavengeFrameVirtualRegs(MachineFunction &MF, RegScavenger &RS) {
753   // FIXME: Iterating over the instruction stream is unnecessary. We can simply
754   // iterate over the vreg use list, which at this point only contains machine
755   // operands for which eliminateFrameIndex need a new scratch reg.
756   MachineRegisterInfo &MRI = MF.getRegInfo();
757   // Shortcut.
758   if (MRI.getNumVirtRegs() == 0) {
759     MF.getProperties().set(MachineFunctionProperties::Property::NoVRegs);
760     return;
761   }
762 
763   // Run through the instructions and find any virtual registers.
764   for (MachineBasicBlock &MBB : MF) {
765     if (MBB.empty())
766       continue;
767 
768     bool Again = scavengeFrameVirtualRegsInBlock(MRI, RS, MBB);
769     if (Again) {
770       LLVM_DEBUG(dbgs() << "Warning: Required two scavenging passes for block "
771                         << MBB.getName() << '\n');
772       Again = scavengeFrameVirtualRegsInBlock(MRI, RS, MBB);
773       // The target required a 2nd run (because it created new vregs while
774       // spilling). Refuse to do another pass to keep compiletime in check.
775       if (Again)
776         report_fatal_error("Incomplete scavenging after 2nd pass");
777     }
778   }
779 
780   MRI.clearVirtRegs();
781   MF.getProperties().set(MachineFunctionProperties::Property::NoVRegs);
782 }
783 
784 namespace {
785 
786 /// This class runs register scavenging independ of the PrologEpilogInserter.
787 /// This is used in for testing.
788 class ScavengerTest : public MachineFunctionPass {
789 public:
790   static char ID;
791 
792   ScavengerTest() : MachineFunctionPass(ID) {}
793 
794   bool runOnMachineFunction(MachineFunction &MF) override {
795     const TargetSubtargetInfo &STI = MF.getSubtarget();
796     const TargetFrameLowering &TFL = *STI.getFrameLowering();
797 
798     RegScavenger RS;
799     // Let's hope that calling those outside of PrologEpilogueInserter works
800     // well enough to initialize the scavenger with some emergency spillslots
801     // for the target.
802     BitVector SavedRegs;
803     TFL.determineCalleeSaves(MF, SavedRegs, &RS);
804     TFL.processFunctionBeforeFrameFinalized(MF, &RS);
805 
806     // Let's scavenge the current function
807     scavengeFrameVirtualRegs(MF, RS);
808     return true;
809   }
810 };
811 
812 } // end anonymous namespace
813 
814 char ScavengerTest::ID;
815 
816 INITIALIZE_PASS(ScavengerTest, "scavenger-test",
817                 "Scavenge virtual registers inside basic blocks", false, false)
818