1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This implements the ScheduleDAGInstrs class, which implements
10 /// re-scheduling of MachineInstrs.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
15 
16 #include "llvm/ADT/IntEqClasses.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/SparseSet.h"
20 #include "llvm/ADT/iterator_range.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/CodeGen/LiveIntervals.h"
24 #include "llvm/CodeGen/LivePhysRegs.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineInstr.h"
29 #include "llvm/CodeGen/MachineInstrBundle.h"
30 #include "llvm/CodeGen/MachineMemOperand.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/PseudoSourceValue.h"
34 #include "llvm/CodeGen/RegisterPressure.h"
35 #include "llvm/CodeGen/ScheduleDAG.h"
36 #include "llvm/CodeGen/ScheduleDFS.h"
37 #include "llvm/CodeGen/SlotIndexes.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/Config/llvm-config.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/Type.h"
44 #include "llvm/IR/Value.h"
45 #include "llvm/MC/LaneBitmask.h"
46 #include "llvm/MC/MCRegisterInfo.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/Format.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include <algorithm>
55 #include <cassert>
56 #include <iterator>
57 #include <utility>
58 #include <vector>
59 
60 using namespace llvm;
61 
62 #define DEBUG_TYPE "machine-scheduler"
63 
64 static cl::opt<bool>
65     EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
66                     cl::desc("Enable use of AA during MI DAG construction"));
67 
68 static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden,
69     cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction"));
70 
71 // Note: the two options below might be used in tuning compile time vs
72 // output quality. Setting HugeRegion so large that it will never be
73 // reached means best-effort, but may be slow.
74 
75 // When Stores and Loads maps (or NonAliasStores and NonAliasLoads)
76 // together hold this many SUs, a reduction of maps will be done.
77 static cl::opt<unsigned> HugeRegion("dag-maps-huge-region", cl::Hidden,
78     cl::init(1000), cl::desc("The limit to use while constructing the DAG "
79                              "prior to scheduling, at which point a trade-off "
80                              "is made to avoid excessive compile time."));
81 
82 static cl::opt<unsigned> ReductionSize(
83     "dag-maps-reduction-size", cl::Hidden,
84     cl::desc("A huge scheduling region will have maps reduced by this many "
85              "nodes at a time. Defaults to HugeRegion / 2."));
86 
87 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
88 static cl::opt<bool> SchedPrintCycles(
89     "sched-print-cycles", cl::Hidden, cl::init(false),
90     cl::desc("Report top/bottom cycles when dumping SUnit instances"));
91 #endif
92 
93 static unsigned getReductionSize() {
94   // Always reduce a huge region with half of the elements, except
95   // when user sets this number explicitly.
96   if (ReductionSize.getNumOccurrences() == 0)
97     return HugeRegion / 2;
98   return ReductionSize;
99 }
100 
101 static void dumpSUList(const ScheduleDAGInstrs::SUList &L) {
102 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
103   dbgs() << "{ ";
104   for (const SUnit *SU : L) {
105     dbgs() << "SU(" << SU->NodeNum << ")";
106     if (SU != L.back())
107       dbgs() << ", ";
108   }
109   dbgs() << "}\n";
110 #endif
111 }
112 
113 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
114                                      const MachineLoopInfo *mli,
115                                      bool RemoveKillFlags)
116     : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()),
117       RemoveKillFlags(RemoveKillFlags),
118       UnknownValue(UndefValue::get(
119                              Type::getVoidTy(mf.getFunction().getContext()))), Topo(SUnits, &ExitSU) {
120   DbgValues.clear();
121 
122   const TargetSubtargetInfo &ST = mf.getSubtarget();
123   SchedModel.init(&ST);
124 }
125 
126 /// If this machine instr has memory reference information and it can be
127 /// tracked to a normal reference to a known object, return the Value
128 /// for that object. This function returns false the memory location is
129 /// unknown or may alias anything.
130 static bool getUnderlyingObjectsForInstr(const MachineInstr *MI,
131                                          const MachineFrameInfo &MFI,
132                                          UnderlyingObjectsVector &Objects,
133                                          const DataLayout &DL) {
134   auto AllMMOsOkay = [&]() {
135     for (const MachineMemOperand *MMO : MI->memoperands()) {
136       // TODO: Figure out whether isAtomic is really necessary (see D57601).
137       if (MMO->isVolatile() || MMO->isAtomic())
138         return false;
139 
140       if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) {
141         // Function that contain tail calls don't have unique PseudoSourceValue
142         // objects. Two PseudoSourceValues might refer to the same or
143         // overlapping locations. The client code calling this function assumes
144         // this is not the case. So return a conservative answer of no known
145         // object.
146         if (MFI.hasTailCall())
147           return false;
148 
149         // For now, ignore PseudoSourceValues which may alias LLVM IR values
150         // because the code that uses this function has no way to cope with
151         // such aliases.
152         if (PSV->isAliased(&MFI))
153           return false;
154 
155         bool MayAlias = PSV->mayAlias(&MFI);
156         Objects.emplace_back(PSV, MayAlias);
157       } else if (const Value *V = MMO->getValue()) {
158         SmallVector<Value *, 4> Objs;
159         if (!getUnderlyingObjectsForCodeGen(V, Objs))
160           return false;
161 
162         for (Value *V : Objs) {
163           assert(isIdentifiedObject(V));
164           Objects.emplace_back(V, true);
165         }
166       } else
167         return false;
168     }
169     return true;
170   };
171 
172   if (!AllMMOsOkay()) {
173     Objects.clear();
174     return false;
175   }
176 
177   return true;
178 }
179 
180 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) {
181   BB = bb;
182 }
183 
184 void ScheduleDAGInstrs::finishBlock() {
185   // Subclasses should no longer refer to the old block.
186   BB = nullptr;
187 }
188 
189 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
190                                     MachineBasicBlock::iterator begin,
191                                     MachineBasicBlock::iterator end,
192                                     unsigned regioninstrs) {
193   assert(bb == BB && "startBlock should set BB");
194   RegionBegin = begin;
195   RegionEnd = end;
196   NumRegionInstrs = regioninstrs;
197 }
198 
199 void ScheduleDAGInstrs::exitRegion() {
200   // Nothing to do.
201 }
202 
203 void ScheduleDAGInstrs::addSchedBarrierDeps() {
204   MachineInstr *ExitMI =
205       RegionEnd != BB->end()
206           ? &*skipDebugInstructionsBackward(RegionEnd, RegionBegin)
207           : nullptr;
208   ExitSU.setInstr(ExitMI);
209   // Add dependencies on the defs and uses of the instruction.
210   if (ExitMI) {
211     for (const MachineOperand &MO : ExitMI->all_uses()) {
212       Register Reg = MO.getReg();
213       if (Reg.isPhysical()) {
214         for (MCRegUnit Unit : TRI->regunits(Reg))
215           Uses.insert(PhysRegSUOper(&ExitSU, -1, Unit));
216       } else if (Reg.isVirtual() && MO.readsReg()) {
217         addVRegUseDeps(&ExitSU, MO.getOperandNo());
218       }
219     }
220   }
221   if (!ExitMI || (!ExitMI->isCall() && !ExitMI->isBarrier())) {
222     // For others, e.g. fallthrough, conditional branch, assume the exit
223     // uses all the registers that are livein to the successor blocks.
224     for (const MachineBasicBlock *Succ : BB->successors()) {
225       for (const auto &LI : Succ->liveins()) {
226         for (MCRegUnitMaskIterator U(LI.PhysReg, TRI); U.isValid(); ++U) {
227           auto [Unit, Mask] = *U;
228           if ((Mask & LI.LaneMask).any() && !Uses.contains(Unit))
229             Uses.insert(PhysRegSUOper(&ExitSU, -1, Unit));
230         }
231       }
232     }
233   }
234 }
235 
236 /// MO is an operand of SU's instruction that defines a physical register. Adds
237 /// data dependencies from SU to any uses of the physical register.
238 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) {
239   const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx);
240   assert(MO.isDef() && "expect physreg def");
241   Register Reg = MO.getReg();
242 
243   // Ask the target if address-backscheduling is desirable, and if so how much.
244   const TargetSubtargetInfo &ST = MF.getSubtarget();
245 
246   // Only use any non-zero latency for real defs/uses, in contrast to
247   // "fake" operands added by regalloc.
248   const MCInstrDesc &DefMIDesc = SU->getInstr()->getDesc();
249   bool ImplicitPseudoDef = (OperIdx >= DefMIDesc.getNumOperands() &&
250                             !DefMIDesc.hasImplicitDefOfPhysReg(Reg));
251   for (MCRegUnit Unit : TRI->regunits(Reg)) {
252     for (RegUnit2SUnitsMap::iterator I = Uses.find(Unit); I != Uses.end();
253          ++I) {
254       SUnit *UseSU = I->SU;
255       if (UseSU == SU)
256         continue;
257 
258       // Adjust the dependence latency using operand def/use information,
259       // then allow the target to perform its own adjustments.
260       MachineInstr *UseInstr = nullptr;
261       int UseOpIdx = I->OpIdx;
262       bool ImplicitPseudoUse = false;
263       SDep Dep;
264       if (UseOpIdx < 0) {
265         Dep = SDep(SU, SDep::Artificial);
266       } else {
267         // Set the hasPhysRegDefs only for physreg defs that have a use within
268         // the scheduling region.
269         SU->hasPhysRegDefs = true;
270 
271         UseInstr = UseSU->getInstr();
272         Register UseReg = UseInstr->getOperand(UseOpIdx).getReg();
273         const MCInstrDesc &UseMIDesc = UseInstr->getDesc();
274         ImplicitPseudoUse = UseOpIdx >= ((int)UseMIDesc.getNumOperands()) &&
275                             !UseMIDesc.hasImplicitUseOfPhysReg(UseReg);
276 
277         Dep = SDep(SU, SDep::Data, UseReg);
278       }
279       if (!ImplicitPseudoDef && !ImplicitPseudoUse) {
280         Dep.setLatency(SchedModel.computeOperandLatency(SU->getInstr(), OperIdx,
281                                                         UseInstr, UseOpIdx));
282       } else {
283         Dep.setLatency(0);
284       }
285       ST.adjustSchedDependency(SU, OperIdx, UseSU, UseOpIdx, Dep);
286       UseSU->addPred(Dep);
287     }
288   }
289 }
290 
291 /// Adds register dependencies (data, anti, and output) from this SUnit
292 /// to following instructions in the same scheduling region that depend the
293 /// physical register referenced at OperIdx.
294 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
295   MachineInstr *MI = SU->getInstr();
296   MachineOperand &MO = MI->getOperand(OperIdx);
297   Register Reg = MO.getReg();
298   // We do not need to track any dependencies for constant registers.
299   if (MRI.isConstantPhysReg(Reg))
300     return;
301 
302   const TargetSubtargetInfo &ST = MF.getSubtarget();
303 
304   // Optionally add output and anti dependencies. For anti
305   // dependencies we use a latency of 0 because for a multi-issue
306   // target we want to allow the defining instruction to issue
307   // in the same cycle as the using instruction.
308   // TODO: Using a latency of 1 here for output dependencies assumes
309   //       there's no cost for reusing registers.
310   SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
311   for (MCRegUnit Unit : TRI->regunits(Reg)) {
312     for (RegUnit2SUnitsMap::iterator I = Defs.find(Unit); I != Defs.end();
313          ++I) {
314       SUnit *DefSU = I->SU;
315       if (DefSU == &ExitSU)
316         continue;
317       MachineInstr *DefInstr = DefSU->getInstr();
318       MachineOperand &DefMO = DefInstr->getOperand(I->OpIdx);
319       if (DefSU != SU &&
320           (Kind != SDep::Output || !MO.isDead() || !DefMO.isDead())) {
321         SDep Dep(SU, Kind, DefMO.getReg());
322         if (Kind != SDep::Anti) {
323           Dep.setLatency(
324               SchedModel.computeOutputLatency(MI, OperIdx, DefInstr));
325         }
326         ST.adjustSchedDependency(SU, OperIdx, DefSU, I->OpIdx, Dep);
327         DefSU->addPred(Dep);
328       }
329     }
330   }
331 
332   if (MO.isUse()) {
333     SU->hasPhysRegUses = true;
334     // Either insert a new Reg2SUnits entry with an empty SUnits list, or
335     // retrieve the existing SUnits list for this register's uses.
336     // Push this SUnit on the use list.
337     for (MCRegUnit Unit : TRI->regunits(Reg))
338       Uses.insert(PhysRegSUOper(SU, OperIdx, Unit));
339     if (RemoveKillFlags)
340       MO.setIsKill(false);
341   } else {
342     addPhysRegDataDeps(SU, OperIdx);
343 
344     // Clear previous uses and defs of this register and its subregisters.
345     for (MCRegUnit Unit : TRI->regunits(Reg)) {
346       Uses.eraseAll(Unit);
347       if (!MO.isDead())
348         Defs.eraseAll(Unit);
349     }
350 
351     if (MO.isDead() && SU->isCall) {
352       // Calls will not be reordered because of chain dependencies (see
353       // below). Since call operands are dead, calls may continue to be added
354       // to the DefList making dependence checking quadratic in the size of
355       // the block. Instead, we leave only one call at the back of the
356       // DefList.
357       for (MCRegUnit Unit : TRI->regunits(Reg)) {
358         RegUnit2SUnitsMap::RangePair P = Defs.equal_range(Unit);
359         RegUnit2SUnitsMap::iterator B = P.first;
360         RegUnit2SUnitsMap::iterator I = P.second;
361         for (bool isBegin = I == B; !isBegin; /* empty */) {
362           isBegin = (--I) == B;
363           if (!I->SU->isCall)
364             break;
365           I = Defs.erase(I);
366         }
367       }
368     }
369 
370     // Defs are pushed in the order they are visited and never reordered.
371     for (MCRegUnit Unit : TRI->regunits(Reg))
372       Defs.insert(PhysRegSUOper(SU, OperIdx, Unit));
373   }
374 }
375 
376 LaneBitmask ScheduleDAGInstrs::getLaneMaskForMO(const MachineOperand &MO) const
377 {
378   Register Reg = MO.getReg();
379   // No point in tracking lanemasks if we don't have interesting subregisters.
380   const TargetRegisterClass &RC = *MRI.getRegClass(Reg);
381   if (!RC.HasDisjunctSubRegs)
382     return LaneBitmask::getAll();
383 
384   unsigned SubReg = MO.getSubReg();
385   if (SubReg == 0)
386     return RC.getLaneMask();
387   return TRI->getSubRegIndexLaneMask(SubReg);
388 }
389 
390 bool ScheduleDAGInstrs::deadDefHasNoUse(const MachineOperand &MO) {
391   auto RegUse = CurrentVRegUses.find(MO.getReg());
392   if (RegUse == CurrentVRegUses.end())
393     return true;
394   return (RegUse->LaneMask & getLaneMaskForMO(MO)).none();
395 }
396 
397 /// Adds register output and data dependencies from this SUnit to instructions
398 /// that occur later in the same scheduling region if they read from or write to
399 /// the virtual register defined at OperIdx.
400 ///
401 /// TODO: Hoist loop induction variable increments. This has to be
402 /// reevaluated. Generally, IV scheduling should be done before coalescing.
403 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
404   MachineInstr *MI = SU->getInstr();
405   MachineOperand &MO = MI->getOperand(OperIdx);
406   Register Reg = MO.getReg();
407 
408   LaneBitmask DefLaneMask;
409   LaneBitmask KillLaneMask;
410   if (TrackLaneMasks) {
411     bool IsKill = MO.getSubReg() == 0 || MO.isUndef();
412     DefLaneMask = getLaneMaskForMO(MO);
413     // If we have a <read-undef> flag, none of the lane values comes from an
414     // earlier instruction.
415     KillLaneMask = IsKill ? LaneBitmask::getAll() : DefLaneMask;
416 
417     if (MO.getSubReg() != 0 && MO.isUndef()) {
418       // There may be other subregister defs on the same instruction of the same
419       // register in later operands. The lanes of other defs will now be live
420       // after this instruction, so these should not be treated as killed by the
421       // instruction even though they appear to be killed in this one operand.
422       for (const MachineOperand &OtherMO :
423            llvm::drop_begin(MI->operands(), OperIdx + 1))
424         if (OtherMO.isReg() && OtherMO.isDef() && OtherMO.getReg() == Reg)
425           KillLaneMask &= ~getLaneMaskForMO(OtherMO);
426     }
427 
428     // Clear undef flag, we'll re-add it later once we know which subregister
429     // Def is first.
430     MO.setIsUndef(false);
431   } else {
432     DefLaneMask = LaneBitmask::getAll();
433     KillLaneMask = LaneBitmask::getAll();
434   }
435 
436   if (MO.isDead()) {
437     assert(deadDefHasNoUse(MO) && "Dead defs should have no uses");
438   } else {
439     // Add data dependence to all uses we found so far.
440     const TargetSubtargetInfo &ST = MF.getSubtarget();
441     for (VReg2SUnitOperIdxMultiMap::iterator I = CurrentVRegUses.find(Reg),
442          E = CurrentVRegUses.end(); I != E; /*empty*/) {
443       LaneBitmask LaneMask = I->LaneMask;
444       // Ignore uses of other lanes.
445       if ((LaneMask & KillLaneMask).none()) {
446         ++I;
447         continue;
448       }
449 
450       if ((LaneMask & DefLaneMask).any()) {
451         SUnit *UseSU = I->SU;
452         MachineInstr *Use = UseSU->getInstr();
453         SDep Dep(SU, SDep::Data, Reg);
454         Dep.setLatency(SchedModel.computeOperandLatency(MI, OperIdx, Use,
455                                                         I->OperandIndex));
456         ST.adjustSchedDependency(SU, OperIdx, UseSU, I->OperandIndex, Dep);
457         UseSU->addPred(Dep);
458       }
459 
460       LaneMask &= ~KillLaneMask;
461       // If we found a Def for all lanes of this use, remove it from the list.
462       if (LaneMask.any()) {
463         I->LaneMask = LaneMask;
464         ++I;
465       } else
466         I = CurrentVRegUses.erase(I);
467     }
468   }
469 
470   // Shortcut: Singly defined vregs do not have output/anti dependencies.
471   if (MRI.hasOneDef(Reg))
472     return;
473 
474   // Add output dependence to the next nearest defs of this vreg.
475   //
476   // Unless this definition is dead, the output dependence should be
477   // transitively redundant with antidependencies from this definition's
478   // uses. We're conservative for now until we have a way to guarantee the uses
479   // are not eliminated sometime during scheduling. The output dependence edge
480   // is also useful if output latency exceeds def-use latency.
481   LaneBitmask LaneMask = DefLaneMask;
482   for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg),
483                                      CurrentVRegDefs.end())) {
484     // Ignore defs for other lanes.
485     if ((V2SU.LaneMask & LaneMask).none())
486       continue;
487     // Add an output dependence.
488     SUnit *DefSU = V2SU.SU;
489     // Ignore additional defs of the same lanes in one instruction. This can
490     // happen because lanemasks are shared for targets with too many
491     // subregisters. We also use some representration tricks/hacks where we
492     // add super-register defs/uses, to imply that although we only access parts
493     // of the reg we care about the full one.
494     if (DefSU == SU)
495       continue;
496     SDep Dep(SU, SDep::Output, Reg);
497     Dep.setLatency(
498       SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
499     DefSU->addPred(Dep);
500 
501     // Update current definition. This can get tricky if the def was about a
502     // bigger lanemask before. We then have to shrink it and create a new
503     // VReg2SUnit for the non-overlapping part.
504     LaneBitmask OverlapMask = V2SU.LaneMask & LaneMask;
505     LaneBitmask NonOverlapMask = V2SU.LaneMask & ~LaneMask;
506     V2SU.SU = SU;
507     V2SU.LaneMask = OverlapMask;
508     if (NonOverlapMask.any())
509       CurrentVRegDefs.insert(VReg2SUnit(Reg, NonOverlapMask, DefSU));
510   }
511   // If there was no CurrentVRegDefs entry for some lanes yet, create one.
512   if (LaneMask.any())
513     CurrentVRegDefs.insert(VReg2SUnit(Reg, LaneMask, SU));
514 }
515 
516 /// Adds a register data dependency if the instruction that defines the
517 /// virtual register used at OperIdx is mapped to an SUnit. Add a register
518 /// antidependency from this SUnit to instructions that occur later in the same
519 /// scheduling region if they write the virtual register.
520 ///
521 /// TODO: Handle ExitSU "uses" properly.
522 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
523   const MachineInstr *MI = SU->getInstr();
524   assert(!MI->isDebugOrPseudoInstr());
525 
526   const MachineOperand &MO = MI->getOperand(OperIdx);
527   Register Reg = MO.getReg();
528 
529   // Remember the use. Data dependencies will be added when we find the def.
530   LaneBitmask LaneMask = TrackLaneMasks ? getLaneMaskForMO(MO)
531                                         : LaneBitmask::getAll();
532   CurrentVRegUses.insert(VReg2SUnitOperIdx(Reg, LaneMask, OperIdx, SU));
533 
534   // Add antidependences to the following defs of the vreg.
535   for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg),
536                                      CurrentVRegDefs.end())) {
537     // Ignore defs for unrelated lanes.
538     LaneBitmask PrevDefLaneMask = V2SU.LaneMask;
539     if ((PrevDefLaneMask & LaneMask).none())
540       continue;
541     if (V2SU.SU == SU)
542       continue;
543 
544     V2SU.SU->addPred(SDep(SU, SDep::Anti, Reg));
545   }
546 }
547 
548 /// Returns true if MI is an instruction we are unable to reason about
549 /// (like a call or something with unmodeled side effects).
550 static inline bool isGlobalMemoryObject(MachineInstr *MI) {
551   return MI->isCall() || MI->hasUnmodeledSideEffects() ||
552          (MI->hasOrderedMemoryRef() && !MI->isDereferenceableInvariantLoad());
553 }
554 
555 void ScheduleDAGInstrs::addChainDependency (SUnit *SUa, SUnit *SUb,
556                                             unsigned Latency) {
557   if (SUa->getInstr()->mayAlias(AAForDep, *SUb->getInstr(), UseTBAA)) {
558     SDep Dep(SUa, SDep::MayAliasMem);
559     Dep.setLatency(Latency);
560     SUb->addPred(Dep);
561   }
562 }
563 
564 /// Creates an SUnit for each real instruction, numbered in top-down
565 /// topological order. The instruction order A < B, implies that no edge exists
566 /// from B to A.
567 ///
568 /// Map each real instruction to its SUnit.
569 ///
570 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may
571 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
572 /// instead of pointers.
573 ///
574 /// MachineScheduler relies on initSUnits numbering the nodes by their order in
575 /// the original instruction list.
576 void ScheduleDAGInstrs::initSUnits() {
577   // We'll be allocating one SUnit for each real instruction in the region,
578   // which is contained within a basic block.
579   SUnits.reserve(NumRegionInstrs);
580 
581   for (MachineInstr &MI : make_range(RegionBegin, RegionEnd)) {
582     if (MI.isDebugOrPseudoInstr())
583       continue;
584 
585     SUnit *SU = newSUnit(&MI);
586     MISUnitMap[&MI] = SU;
587 
588     SU->isCall = MI.isCall();
589     SU->isCommutable = MI.isCommutable();
590 
591     // Assign the Latency field of SU using target-provided information.
592     SU->Latency = SchedModel.computeInstrLatency(SU->getInstr());
593 
594     // If this SUnit uses a reserved or unbuffered resource, mark it as such.
595     //
596     // Reserved resources block an instruction from issuing and stall the
597     // entire pipeline. These are identified by BufferSize=0.
598     //
599     // Unbuffered resources prevent execution of subsequent instructions that
600     // require the same resources. This is used for in-order execution pipelines
601     // within an out-of-order core. These are identified by BufferSize=1.
602     if (SchedModel.hasInstrSchedModel()) {
603       const MCSchedClassDesc *SC = getSchedClass(SU);
604       for (const MCWriteProcResEntry &PRE :
605            make_range(SchedModel.getWriteProcResBegin(SC),
606                       SchedModel.getWriteProcResEnd(SC))) {
607         switch (SchedModel.getProcResource(PRE.ProcResourceIdx)->BufferSize) {
608         case 0:
609           SU->hasReservedResource = true;
610           break;
611         case 1:
612           SU->isUnbuffered = true;
613           break;
614         default:
615           break;
616         }
617       }
618     }
619   }
620 }
621 
622 class ScheduleDAGInstrs::Value2SUsMap : public MapVector<ValueType, SUList> {
623   /// Current total number of SUs in map.
624   unsigned NumNodes = 0;
625 
626   /// 1 for loads, 0 for stores. (see comment in SUList)
627   unsigned TrueMemOrderLatency;
628 
629 public:
630   Value2SUsMap(unsigned lat = 0) : TrueMemOrderLatency(lat) {}
631 
632   /// To keep NumNodes up to date, insert() is used instead of
633   /// this operator w/ push_back().
634   ValueType &operator[](const SUList &Key) {
635     llvm_unreachable("Don't use. Use insert() instead."); };
636 
637   /// Adds SU to the SUList of V. If Map grows huge, reduce its size by calling
638   /// reduce().
639   void inline insert(SUnit *SU, ValueType V) {
640     MapVector::operator[](V).push_back(SU);
641     NumNodes++;
642   }
643 
644   /// Clears the list of SUs mapped to V.
645   void inline clearList(ValueType V) {
646     iterator Itr = find(V);
647     if (Itr != end()) {
648       assert(NumNodes >= Itr->second.size());
649       NumNodes -= Itr->second.size();
650 
651       Itr->second.clear();
652     }
653   }
654 
655   /// Clears map from all contents.
656   void clear() {
657     MapVector<ValueType, SUList>::clear();
658     NumNodes = 0;
659   }
660 
661   unsigned inline size() const { return NumNodes; }
662 
663   /// Counts the number of SUs in this map after a reduction.
664   void reComputeSize() {
665     NumNodes = 0;
666     for (auto &I : *this)
667       NumNodes += I.second.size();
668   }
669 
670   unsigned inline getTrueMemOrderLatency() const {
671     return TrueMemOrderLatency;
672   }
673 
674   void dump();
675 };
676 
677 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU,
678                                              Value2SUsMap &Val2SUsMap) {
679   for (auto &I : Val2SUsMap)
680     addChainDependencies(SU, I.second,
681                          Val2SUsMap.getTrueMemOrderLatency());
682 }
683 
684 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU,
685                                              Value2SUsMap &Val2SUsMap,
686                                              ValueType V) {
687   Value2SUsMap::iterator Itr = Val2SUsMap.find(V);
688   if (Itr != Val2SUsMap.end())
689     addChainDependencies(SU, Itr->second,
690                          Val2SUsMap.getTrueMemOrderLatency());
691 }
692 
693 void ScheduleDAGInstrs::addBarrierChain(Value2SUsMap &map) {
694   assert(BarrierChain != nullptr);
695 
696   for (auto &[V, SUs] : map) {
697     (void)V;
698     for (auto *SU : SUs)
699       SU->addPredBarrier(BarrierChain);
700   }
701   map.clear();
702 }
703 
704 void ScheduleDAGInstrs::insertBarrierChain(Value2SUsMap &map) {
705   assert(BarrierChain != nullptr);
706 
707   // Go through all lists of SUs.
708   for (Value2SUsMap::iterator I = map.begin(), EE = map.end(); I != EE;) {
709     Value2SUsMap::iterator CurrItr = I++;
710     SUList &sus = CurrItr->second;
711     SUList::iterator SUItr = sus.begin(), SUEE = sus.end();
712     for (; SUItr != SUEE; ++SUItr) {
713       // Stop on BarrierChain or any instruction above it.
714       if ((*SUItr)->NodeNum <= BarrierChain->NodeNum)
715         break;
716 
717       (*SUItr)->addPredBarrier(BarrierChain);
718     }
719 
720     // Remove also the BarrierChain from list if present.
721     if (SUItr != SUEE && *SUItr == BarrierChain)
722       SUItr++;
723 
724     // Remove all SUs that are now successors of BarrierChain.
725     if (SUItr != sus.begin())
726       sus.erase(sus.begin(), SUItr);
727   }
728 
729   // Remove all entries with empty su lists.
730   map.remove_if([&](std::pair<ValueType, SUList> &mapEntry) {
731       return (mapEntry.second.empty()); });
732 
733   // Recompute the size of the map (NumNodes).
734   map.reComputeSize();
735 }
736 
737 void ScheduleDAGInstrs::buildSchedGraph(AAResults *AA,
738                                         RegPressureTracker *RPTracker,
739                                         PressureDiffs *PDiffs,
740                                         LiveIntervals *LIS,
741                                         bool TrackLaneMasks) {
742   const TargetSubtargetInfo &ST = MF.getSubtarget();
743   bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI
744                                                        : ST.useAA();
745   AAForDep = UseAA ? AA : nullptr;
746 
747   BarrierChain = nullptr;
748 
749   this->TrackLaneMasks = TrackLaneMasks;
750   MISUnitMap.clear();
751   ScheduleDAG::clearDAG();
752 
753   // Create an SUnit for each real instruction.
754   initSUnits();
755 
756   if (PDiffs)
757     PDiffs->init(SUnits.size());
758 
759   // We build scheduling units by walking a block's instruction list
760   // from bottom to top.
761 
762   // Each MIs' memory operand(s) is analyzed to a list of underlying
763   // objects. The SU is then inserted in the SUList(s) mapped from the
764   // Value(s). Each Value thus gets mapped to lists of SUs depending
765   // on it, stores and loads kept separately. Two SUs are trivially
766   // non-aliasing if they both depend on only identified Values and do
767   // not share any common Value.
768   Value2SUsMap Stores, Loads(1 /*TrueMemOrderLatency*/);
769 
770   // Certain memory accesses are known to not alias any SU in Stores
771   // or Loads, and have therefore their own 'NonAlias'
772   // domain. E.g. spill / reload instructions never alias LLVM I/R
773   // Values. It would be nice to assume that this type of memory
774   // accesses always have a proper memory operand modelling, and are
775   // therefore never unanalyzable, but this is conservatively not
776   // done.
777   Value2SUsMap NonAliasStores, NonAliasLoads(1 /*TrueMemOrderLatency*/);
778 
779   // Track all instructions that may raise floating-point exceptions.
780   // These do not depend on one other (or normal loads or stores), but
781   // must not be rescheduled across global barriers.  Note that we don't
782   // really need a "map" here since we don't track those MIs by value;
783   // using the same Value2SUsMap data type here is simply a matter of
784   // convenience.
785   Value2SUsMap FPExceptions;
786 
787   // Remove any stale debug info; sometimes BuildSchedGraph is called again
788   // without emitting the info from the previous call.
789   DbgValues.clear();
790   FirstDbgValue = nullptr;
791 
792   assert(Defs.empty() && Uses.empty() &&
793          "Only BuildGraph should update Defs/Uses");
794   Defs.setUniverse(TRI->getNumRegs());
795   Uses.setUniverse(TRI->getNumRegs());
796 
797   assert(CurrentVRegDefs.empty() && "nobody else should use CurrentVRegDefs");
798   assert(CurrentVRegUses.empty() && "nobody else should use CurrentVRegUses");
799   unsigned NumVirtRegs = MRI.getNumVirtRegs();
800   CurrentVRegDefs.setUniverse(NumVirtRegs);
801   CurrentVRegUses.setUniverse(NumVirtRegs);
802 
803   // Model data dependencies between instructions being scheduled and the
804   // ExitSU.
805   addSchedBarrierDeps();
806 
807   // Walk the list of instructions, from bottom moving up.
808   MachineInstr *DbgMI = nullptr;
809   for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
810        MII != MIE; --MII) {
811     MachineInstr &MI = *std::prev(MII);
812     if (DbgMI) {
813       DbgValues.emplace_back(DbgMI, &MI);
814       DbgMI = nullptr;
815     }
816 
817     if (MI.isDebugValue() || MI.isDebugPHI()) {
818       DbgMI = &MI;
819       continue;
820     }
821 
822     if (MI.isDebugLabel() || MI.isDebugRef() || MI.isPseudoProbe())
823       continue;
824 
825     SUnit *SU = MISUnitMap[&MI];
826     assert(SU && "No SUnit mapped to this MI");
827 
828     if (RPTracker) {
829       RegisterOperands RegOpers;
830       RegOpers.collect(MI, *TRI, MRI, TrackLaneMasks, false);
831       if (TrackLaneMasks) {
832         SlotIndex SlotIdx = LIS->getInstructionIndex(MI);
833         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx);
834       }
835       if (PDiffs != nullptr)
836         PDiffs->addInstruction(SU->NodeNum, RegOpers, MRI);
837 
838       if (RPTracker->getPos() == RegionEnd || &*RPTracker->getPos() != &MI)
839         RPTracker->recedeSkipDebugValues();
840       assert(&*RPTracker->getPos() == &MI && "RPTracker in sync");
841       RPTracker->recede(RegOpers);
842     }
843 
844     assert(
845         (CanHandleTerminators || (!MI.isTerminator() && !MI.isPosition())) &&
846         "Cannot schedule terminators or labels!");
847 
848     // Add register-based dependencies (data, anti, and output).
849     // For some instructions (calls, returns, inline-asm, etc.) there can
850     // be explicit uses and implicit defs, in which case the use will appear
851     // on the operand list before the def. Do two passes over the operand
852     // list to make sure that defs are processed before any uses.
853     bool HasVRegDef = false;
854     for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) {
855       const MachineOperand &MO = MI.getOperand(j);
856       if (!MO.isReg() || !MO.isDef())
857         continue;
858       Register Reg = MO.getReg();
859       if (Reg.isPhysical()) {
860         addPhysRegDeps(SU, j);
861       } else if (Reg.isVirtual()) {
862         HasVRegDef = true;
863         addVRegDefDeps(SU, j);
864       }
865     }
866     // Now process all uses.
867     for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) {
868       const MachineOperand &MO = MI.getOperand(j);
869       // Only look at use operands.
870       // We do not need to check for MO.readsReg() here because subsequent
871       // subregister defs will get output dependence edges and need no
872       // additional use dependencies.
873       if (!MO.isReg() || !MO.isUse())
874         continue;
875       Register Reg = MO.getReg();
876       if (Reg.isPhysical()) {
877         addPhysRegDeps(SU, j);
878       } else if (Reg.isVirtual() && MO.readsReg()) {
879         addVRegUseDeps(SU, j);
880       }
881     }
882 
883     // If we haven't seen any uses in this scheduling region, create a
884     // dependence edge to ExitSU to model the live-out latency. This is required
885     // for vreg defs with no in-region use, and prefetches with no vreg def.
886     //
887     // FIXME: NumDataSuccs would be more precise than NumSuccs here. This
888     // check currently relies on being called before adding chain deps.
889     if (SU->NumSuccs == 0 && SU->Latency > 1 && (HasVRegDef || MI.mayLoad())) {
890       SDep Dep(SU, SDep::Artificial);
891       Dep.setLatency(SU->Latency - 1);
892       ExitSU.addPred(Dep);
893     }
894 
895     // Add memory dependencies (Note: isStoreToStackSlot and
896     // isLoadFromStackSLot are not usable after stack slots are lowered to
897     // actual addresses).
898 
899     // This is a barrier event that acts as a pivotal node in the DAG.
900     if (isGlobalMemoryObject(&MI)) {
901 
902       // Become the barrier chain.
903       if (BarrierChain)
904         BarrierChain->addPredBarrier(SU);
905       BarrierChain = SU;
906 
907       LLVM_DEBUG(dbgs() << "Global memory object and new barrier chain: SU("
908                         << BarrierChain->NodeNum << ").\n";);
909 
910       // Add dependencies against everything below it and clear maps.
911       addBarrierChain(Stores);
912       addBarrierChain(Loads);
913       addBarrierChain(NonAliasStores);
914       addBarrierChain(NonAliasLoads);
915       addBarrierChain(FPExceptions);
916 
917       continue;
918     }
919 
920     // Instructions that may raise FP exceptions may not be moved
921     // across any global barriers.
922     if (MI.mayRaiseFPException()) {
923       if (BarrierChain)
924         BarrierChain->addPredBarrier(SU);
925 
926       FPExceptions.insert(SU, UnknownValue);
927 
928       if (FPExceptions.size() >= HugeRegion) {
929         LLVM_DEBUG(dbgs() << "Reducing FPExceptions map.\n";);
930         Value2SUsMap empty;
931         reduceHugeMemNodeMaps(FPExceptions, empty, getReductionSize());
932       }
933     }
934 
935     // If it's not a store or a variant load, we're done.
936     if (!MI.mayStore() &&
937         !(MI.mayLoad() && !MI.isDereferenceableInvariantLoad()))
938       continue;
939 
940     // Always add dependecy edge to BarrierChain if present.
941     if (BarrierChain)
942       BarrierChain->addPredBarrier(SU);
943 
944     // Find the underlying objects for MI. The Objs vector is either
945     // empty, or filled with the Values of memory locations which this
946     // SU depends on.
947     UnderlyingObjectsVector Objs;
948     bool ObjsFound = getUnderlyingObjectsForInstr(&MI, MFI, Objs,
949                                                   MF.getDataLayout());
950 
951     if (MI.mayStore()) {
952       if (!ObjsFound) {
953         // An unknown store depends on all stores and loads.
954         addChainDependencies(SU, Stores);
955         addChainDependencies(SU, NonAliasStores);
956         addChainDependencies(SU, Loads);
957         addChainDependencies(SU, NonAliasLoads);
958 
959         // Map this store to 'UnknownValue'.
960         Stores.insert(SU, UnknownValue);
961       } else {
962         // Add precise dependencies against all previously seen memory
963         // accesses mapped to the same Value(s).
964         for (const UnderlyingObject &UnderlObj : Objs) {
965           ValueType V = UnderlObj.getValue();
966           bool ThisMayAlias = UnderlObj.mayAlias();
967 
968           // Add dependencies to previous stores and loads mapped to V.
969           addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V);
970           addChainDependencies(SU, (ThisMayAlias ? Loads : NonAliasLoads), V);
971         }
972         // Update the store map after all chains have been added to avoid adding
973         // self-loop edge if multiple underlying objects are present.
974         for (const UnderlyingObject &UnderlObj : Objs) {
975           ValueType V = UnderlObj.getValue();
976           bool ThisMayAlias = UnderlObj.mayAlias();
977 
978           // Map this store to V.
979           (ThisMayAlias ? Stores : NonAliasStores).insert(SU, V);
980         }
981         // The store may have dependencies to unanalyzable loads and
982         // stores.
983         addChainDependencies(SU, Loads, UnknownValue);
984         addChainDependencies(SU, Stores, UnknownValue);
985       }
986     } else { // SU is a load.
987       if (!ObjsFound) {
988         // An unknown load depends on all stores.
989         addChainDependencies(SU, Stores);
990         addChainDependencies(SU, NonAliasStores);
991 
992         Loads.insert(SU, UnknownValue);
993       } else {
994         for (const UnderlyingObject &UnderlObj : Objs) {
995           ValueType V = UnderlObj.getValue();
996           bool ThisMayAlias = UnderlObj.mayAlias();
997 
998           // Add precise dependencies against all previously seen stores
999           // mapping to the same Value(s).
1000           addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V);
1001 
1002           // Map this load to V.
1003           (ThisMayAlias ? Loads : NonAliasLoads).insert(SU, V);
1004         }
1005         // The load may have dependencies to unanalyzable stores.
1006         addChainDependencies(SU, Stores, UnknownValue);
1007       }
1008     }
1009 
1010     // Reduce maps if they grow huge.
1011     if (Stores.size() + Loads.size() >= HugeRegion) {
1012       LLVM_DEBUG(dbgs() << "Reducing Stores and Loads maps.\n";);
1013       reduceHugeMemNodeMaps(Stores, Loads, getReductionSize());
1014     }
1015     if (NonAliasStores.size() + NonAliasLoads.size() >= HugeRegion) {
1016       LLVM_DEBUG(
1017           dbgs() << "Reducing NonAliasStores and NonAliasLoads maps.\n";);
1018       reduceHugeMemNodeMaps(NonAliasStores, NonAliasLoads, getReductionSize());
1019     }
1020   }
1021 
1022   if (DbgMI)
1023     FirstDbgValue = DbgMI;
1024 
1025   Defs.clear();
1026   Uses.clear();
1027   CurrentVRegDefs.clear();
1028   CurrentVRegUses.clear();
1029 
1030   Topo.MarkDirty();
1031 }
1032 
1033 raw_ostream &llvm::operator<<(raw_ostream &OS, const PseudoSourceValue* PSV) {
1034   PSV->printCustom(OS);
1035   return OS;
1036 }
1037 
1038 void ScheduleDAGInstrs::Value2SUsMap::dump() {
1039   for (const auto &[ValType, SUs] : *this) {
1040     if (isa<const Value *>(ValType)) {
1041       const Value *V = cast<const Value *>(ValType);
1042       if (isa<UndefValue>(V))
1043         dbgs() << "Unknown";
1044       else
1045         V->printAsOperand(dbgs());
1046     } else if (isa<const PseudoSourceValue *>(ValType))
1047       dbgs() << cast<const PseudoSourceValue *>(ValType);
1048     else
1049       llvm_unreachable("Unknown Value type.");
1050 
1051     dbgs() << " : ";
1052     dumpSUList(SUs);
1053   }
1054 }
1055 
1056 void ScheduleDAGInstrs::reduceHugeMemNodeMaps(Value2SUsMap &stores,
1057                                               Value2SUsMap &loads, unsigned N) {
1058   LLVM_DEBUG(dbgs() << "Before reduction:\nStoring SUnits:\n"; stores.dump();
1059              dbgs() << "Loading SUnits:\n"; loads.dump());
1060 
1061   // Insert all SU's NodeNums into a vector and sort it.
1062   std::vector<unsigned> NodeNums;
1063   NodeNums.reserve(stores.size() + loads.size());
1064   for (const auto &[V, SUs] : stores) {
1065     (void)V;
1066     for (const auto *SU : SUs)
1067       NodeNums.push_back(SU->NodeNum);
1068   }
1069   for (const auto &[V, SUs] : loads) {
1070     (void)V;
1071     for (const auto *SU : SUs)
1072       NodeNums.push_back(SU->NodeNum);
1073   }
1074   llvm::sort(NodeNums);
1075 
1076   // The N last elements in NodeNums will be removed, and the SU with
1077   // the lowest NodeNum of them will become the new BarrierChain to
1078   // let the not yet seen SUs have a dependency to the removed SUs.
1079   assert(N <= NodeNums.size());
1080   SUnit *newBarrierChain = &SUnits[*(NodeNums.end() - N)];
1081   if (BarrierChain) {
1082     // The aliasing and non-aliasing maps reduce independently of each
1083     // other, but share a common BarrierChain. Check if the
1084     // newBarrierChain is above the former one. If it is not, it may
1085     // introduce a loop to use newBarrierChain, so keep the old one.
1086     if (newBarrierChain->NodeNum < BarrierChain->NodeNum) {
1087       BarrierChain->addPredBarrier(newBarrierChain);
1088       BarrierChain = newBarrierChain;
1089       LLVM_DEBUG(dbgs() << "Inserting new barrier chain: SU("
1090                         << BarrierChain->NodeNum << ").\n";);
1091     }
1092     else
1093       LLVM_DEBUG(dbgs() << "Keeping old barrier chain: SU("
1094                         << BarrierChain->NodeNum << ").\n";);
1095   }
1096   else
1097     BarrierChain = newBarrierChain;
1098 
1099   insertBarrierChain(stores);
1100   insertBarrierChain(loads);
1101 
1102   LLVM_DEBUG(dbgs() << "After reduction:\nStoring SUnits:\n"; stores.dump();
1103              dbgs() << "Loading SUnits:\n"; loads.dump());
1104 }
1105 
1106 static void toggleKills(const MachineRegisterInfo &MRI, LivePhysRegs &LiveRegs,
1107                         MachineInstr &MI, bool addToLiveRegs) {
1108   for (MachineOperand &MO : MI.operands()) {
1109     if (!MO.isReg() || !MO.readsReg())
1110       continue;
1111     Register Reg = MO.getReg();
1112     if (!Reg)
1113       continue;
1114 
1115     // Things that are available after the instruction are killed by it.
1116     bool IsKill = LiveRegs.available(MRI, Reg);
1117     MO.setIsKill(IsKill);
1118     if (addToLiveRegs)
1119       LiveRegs.addReg(Reg);
1120   }
1121 }
1122 
1123 void ScheduleDAGInstrs::fixupKills(MachineBasicBlock &MBB) {
1124   LLVM_DEBUG(dbgs() << "Fixup kills for " << printMBBReference(MBB) << '\n');
1125 
1126   LiveRegs.init(*TRI);
1127   LiveRegs.addLiveOuts(MBB);
1128 
1129   // Examine block from end to start...
1130   for (MachineInstr &MI : llvm::reverse(MBB)) {
1131     if (MI.isDebugOrPseudoInstr())
1132       continue;
1133 
1134     // Update liveness.  Registers that are defed but not used in this
1135     // instruction are now dead. Mark register and all subregs as they
1136     // are completely defined.
1137     for (ConstMIBundleOperands O(MI); O.isValid(); ++O) {
1138       const MachineOperand &MO = *O;
1139       if (MO.isReg()) {
1140         if (!MO.isDef())
1141           continue;
1142         Register Reg = MO.getReg();
1143         if (!Reg)
1144           continue;
1145         LiveRegs.removeReg(Reg);
1146       } else if (MO.isRegMask()) {
1147         LiveRegs.removeRegsInMask(MO);
1148       }
1149     }
1150 
1151     // If there is a bundle header fix it up first.
1152     if (!MI.isBundled()) {
1153       toggleKills(MRI, LiveRegs, MI, true);
1154     } else {
1155       MachineBasicBlock::instr_iterator Bundle = MI.getIterator();
1156       if (MI.isBundle())
1157         toggleKills(MRI, LiveRegs, MI, false);
1158 
1159       // Some targets make the (questionable) assumtion that the instructions
1160       // inside the bundle are ordered and consequently only the last use of
1161       // a register inside the bundle can kill it.
1162       MachineBasicBlock::instr_iterator I = std::next(Bundle);
1163       while (I->isBundledWithSucc())
1164         ++I;
1165       do {
1166         if (!I->isDebugOrPseudoInstr())
1167           toggleKills(MRI, LiveRegs, *I, true);
1168         --I;
1169       } while (I != Bundle);
1170     }
1171   }
1172 }
1173 
1174 void ScheduleDAGInstrs::dumpNode(const SUnit &SU) const {
1175 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1176   dumpNodeName(SU);
1177   if (SchedPrintCycles)
1178     dbgs() << " [TopReadyCycle = " << SU.TopReadyCycle
1179            << ", BottomReadyCycle = " << SU.BotReadyCycle << "]";
1180   dbgs() << ": ";
1181   SU.getInstr()->dump();
1182 #endif
1183 }
1184 
1185 void ScheduleDAGInstrs::dump() const {
1186 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1187   if (EntrySU.getInstr() != nullptr)
1188     dumpNodeAll(EntrySU);
1189   for (const SUnit &SU : SUnits)
1190     dumpNodeAll(SU);
1191   if (ExitSU.getInstr() != nullptr)
1192     dumpNodeAll(ExitSU);
1193 #endif
1194 }
1195 
1196 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
1197   std::string s;
1198   raw_string_ostream oss(s);
1199   if (SU == &EntrySU)
1200     oss << "<entry>";
1201   else if (SU == &ExitSU)
1202     oss << "<exit>";
1203   else
1204     SU->getInstr()->print(oss, /*IsStandalone=*/true);
1205   return oss.str();
1206 }
1207 
1208 /// Return the basic block label. It is not necessarilly unique because a block
1209 /// contains multiple scheduling regions. But it is fine for visualization.
1210 std::string ScheduleDAGInstrs::getDAGName() const {
1211   return "dag." + BB->getFullName();
1212 }
1213 
1214 bool ScheduleDAGInstrs::canAddEdge(SUnit *SuccSU, SUnit *PredSU) {
1215   return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU);
1216 }
1217 
1218 bool ScheduleDAGInstrs::addEdge(SUnit *SuccSU, const SDep &PredDep) {
1219   if (SuccSU != &ExitSU) {
1220     // Do not use WillCreateCycle, it assumes SD scheduling.
1221     // If Pred is reachable from Succ, then the edge creates a cycle.
1222     if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
1223       return false;
1224     Topo.AddPredQueued(SuccSU, PredDep.getSUnit());
1225   }
1226   SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
1227   // Return true regardless of whether a new edge needed to be inserted.
1228   return true;
1229 }
1230 
1231 //===----------------------------------------------------------------------===//
1232 // SchedDFSResult Implementation
1233 //===----------------------------------------------------------------------===//
1234 
1235 namespace llvm {
1236 
1237 /// Internal state used to compute SchedDFSResult.
1238 class SchedDFSImpl {
1239   SchedDFSResult &R;
1240 
1241   /// Join DAG nodes into equivalence classes by their subtree.
1242   IntEqClasses SubtreeClasses;
1243   /// List PredSU, SuccSU pairs that represent data edges between subtrees.
1244   std::vector<std::pair<const SUnit *, const SUnit*>> ConnectionPairs;
1245 
1246   struct RootData {
1247     unsigned NodeID;
1248     unsigned ParentNodeID;  ///< Parent node (member of the parent subtree).
1249     unsigned SubInstrCount = 0; ///< Instr count in this tree only, not
1250                                 /// children.
1251 
1252     RootData(unsigned id): NodeID(id),
1253                            ParentNodeID(SchedDFSResult::InvalidSubtreeID) {}
1254 
1255     unsigned getSparseSetIndex() const { return NodeID; }
1256   };
1257 
1258   SparseSet<RootData> RootSet;
1259 
1260 public:
1261   SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) {
1262     RootSet.setUniverse(R.DFSNodeData.size());
1263   }
1264 
1265   /// Returns true if this node been visited by the DFS traversal.
1266   ///
1267   /// During visitPostorderNode the Node's SubtreeID is assigned to the Node
1268   /// ID. Later, SubtreeID is updated but remains valid.
1269   bool isVisited(const SUnit *SU) const {
1270     return R.DFSNodeData[SU->NodeNum].SubtreeID
1271       != SchedDFSResult::InvalidSubtreeID;
1272   }
1273 
1274   /// Initializes this node's instruction count. We don't need to flag the node
1275   /// visited until visitPostorder because the DAG cannot have cycles.
1276   void visitPreorder(const SUnit *SU) {
1277     R.DFSNodeData[SU->NodeNum].InstrCount =
1278       SU->getInstr()->isTransient() ? 0 : 1;
1279   }
1280 
1281   /// Called once for each node after all predecessors are visited. Revisit this
1282   /// node's predecessors and potentially join them now that we know the ILP of
1283   /// the other predecessors.
1284   void visitPostorderNode(const SUnit *SU) {
1285     // Mark this node as the root of a subtree. It may be joined with its
1286     // successors later.
1287     R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum;
1288     RootData RData(SU->NodeNum);
1289     RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1;
1290 
1291     // If any predecessors are still in their own subtree, they either cannot be
1292     // joined or are large enough to remain separate. If this parent node's
1293     // total instruction count is not greater than a child subtree by at least
1294     // the subtree limit, then try to join it now since splitting subtrees is
1295     // only useful if multiple high-pressure paths are possible.
1296     unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount;
1297     for (const SDep &PredDep : SU->Preds) {
1298       if (PredDep.getKind() != SDep::Data)
1299         continue;
1300       unsigned PredNum = PredDep.getSUnit()->NodeNum;
1301       if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit)
1302         joinPredSubtree(PredDep, SU, /*CheckLimit=*/false);
1303 
1304       // Either link or merge the TreeData entry from the child to the parent.
1305       if (R.DFSNodeData[PredNum].SubtreeID == PredNum) {
1306         // If the predecessor's parent is invalid, this is a tree edge and the
1307         // current node is the parent.
1308         if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID)
1309           RootSet[PredNum].ParentNodeID = SU->NodeNum;
1310       }
1311       else if (RootSet.count(PredNum)) {
1312         // The predecessor is not a root, but is still in the root set. This
1313         // must be the new parent that it was just joined to. Note that
1314         // RootSet[PredNum].ParentNodeID may either be invalid or may still be
1315         // set to the original parent.
1316         RData.SubInstrCount += RootSet[PredNum].SubInstrCount;
1317         RootSet.erase(PredNum);
1318       }
1319     }
1320     RootSet[SU->NodeNum] = RData;
1321   }
1322 
1323   /// Called once for each tree edge after calling visitPostOrderNode on
1324   /// the predecessor. Increment the parent node's instruction count and
1325   /// preemptively join this subtree to its parent's if it is small enough.
1326   void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) {
1327     R.DFSNodeData[Succ->NodeNum].InstrCount
1328       += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount;
1329     joinPredSubtree(PredDep, Succ);
1330   }
1331 
1332   /// Adds a connection for cross edges.
1333   void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) {
1334     ConnectionPairs.emplace_back(PredDep.getSUnit(), Succ);
1335   }
1336 
1337   /// Sets each node's subtree ID to the representative ID and record
1338   /// connections between trees.
1339   void finalize() {
1340     SubtreeClasses.compress();
1341     R.DFSTreeData.resize(SubtreeClasses.getNumClasses());
1342     assert(SubtreeClasses.getNumClasses() == RootSet.size()
1343            && "number of roots should match trees");
1344     for (const RootData &Root : RootSet) {
1345       unsigned TreeID = SubtreeClasses[Root.NodeID];
1346       if (Root.ParentNodeID != SchedDFSResult::InvalidSubtreeID)
1347         R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[Root.ParentNodeID];
1348       R.DFSTreeData[TreeID].SubInstrCount = Root.SubInstrCount;
1349       // Note that SubInstrCount may be greater than InstrCount if we joined
1350       // subtrees across a cross edge. InstrCount will be attributed to the
1351       // original parent, while SubInstrCount will be attributed to the joined
1352       // parent.
1353     }
1354     R.SubtreeConnections.resize(SubtreeClasses.getNumClasses());
1355     R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses());
1356     LLVM_DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n");
1357     for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) {
1358       R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx];
1359       LLVM_DEBUG(dbgs() << "  SU(" << Idx << ") in tree "
1360                         << R.DFSNodeData[Idx].SubtreeID << '\n');
1361     }
1362     for (const auto &[Pred, Succ] : ConnectionPairs) {
1363       unsigned PredTree = SubtreeClasses[Pred->NodeNum];
1364       unsigned SuccTree = SubtreeClasses[Succ->NodeNum];
1365       if (PredTree == SuccTree)
1366         continue;
1367       unsigned Depth = Pred->getDepth();
1368       addConnection(PredTree, SuccTree, Depth);
1369       addConnection(SuccTree, PredTree, Depth);
1370     }
1371   }
1372 
1373 protected:
1374   /// Joins the predecessor subtree with the successor that is its DFS parent.
1375   /// Applies some heuristics before joining.
1376   bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ,
1377                        bool CheckLimit = true) {
1378     assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges");
1379 
1380     // Check if the predecessor is already joined.
1381     const SUnit *PredSU = PredDep.getSUnit();
1382     unsigned PredNum = PredSU->NodeNum;
1383     if (R.DFSNodeData[PredNum].SubtreeID != PredNum)
1384       return false;
1385 
1386     // Four is the magic number of successors before a node is considered a
1387     // pinch point.
1388     unsigned NumDataSucs = 0;
1389     for (const SDep &SuccDep : PredSU->Succs) {
1390       if (SuccDep.getKind() == SDep::Data) {
1391         if (++NumDataSucs >= 4)
1392           return false;
1393       }
1394     }
1395     if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit)
1396       return false;
1397     R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum;
1398     SubtreeClasses.join(Succ->NodeNum, PredNum);
1399     return true;
1400   }
1401 
1402   /// Called by finalize() to record a connection between trees.
1403   void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) {
1404     if (!Depth)
1405       return;
1406 
1407     do {
1408       SmallVectorImpl<SchedDFSResult::Connection> &Connections =
1409         R.SubtreeConnections[FromTree];
1410       for (SchedDFSResult::Connection &C : Connections) {
1411         if (C.TreeID == ToTree) {
1412           C.Level = std::max(C.Level, Depth);
1413           return;
1414         }
1415       }
1416       Connections.push_back(SchedDFSResult::Connection(ToTree, Depth));
1417       FromTree = R.DFSTreeData[FromTree].ParentTreeID;
1418     } while (FromTree != SchedDFSResult::InvalidSubtreeID);
1419   }
1420 };
1421 
1422 } // end namespace llvm
1423 
1424 namespace {
1425 
1426 /// Manage the stack used by a reverse depth-first search over the DAG.
1427 class SchedDAGReverseDFS {
1428   std::vector<std::pair<const SUnit *, SUnit::const_pred_iterator>> DFSStack;
1429 
1430 public:
1431   bool isComplete() const { return DFSStack.empty(); }
1432 
1433   void follow(const SUnit *SU) {
1434     DFSStack.emplace_back(SU, SU->Preds.begin());
1435   }
1436   void advance() { ++DFSStack.back().second; }
1437 
1438   const SDep *backtrack() {
1439     DFSStack.pop_back();
1440     return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second);
1441   }
1442 
1443   const SUnit *getCurr() const { return DFSStack.back().first; }
1444 
1445   SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; }
1446 
1447   SUnit::const_pred_iterator getPredEnd() const {
1448     return getCurr()->Preds.end();
1449   }
1450 };
1451 
1452 } // end anonymous namespace
1453 
1454 static bool hasDataSucc(const SUnit *SU) {
1455   for (const SDep &SuccDep : SU->Succs) {
1456     if (SuccDep.getKind() == SDep::Data &&
1457         !SuccDep.getSUnit()->isBoundaryNode())
1458       return true;
1459   }
1460   return false;
1461 }
1462 
1463 /// Computes an ILP metric for all nodes in the subDAG reachable via depth-first
1464 /// search from this root.
1465 void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) {
1466   if (!IsBottomUp)
1467     llvm_unreachable("Top-down ILP metric is unimplemented");
1468 
1469   SchedDFSImpl Impl(*this);
1470   for (const SUnit &SU : SUnits) {
1471     if (Impl.isVisited(&SU) || hasDataSucc(&SU))
1472       continue;
1473 
1474     SchedDAGReverseDFS DFS;
1475     Impl.visitPreorder(&SU);
1476     DFS.follow(&SU);
1477     while (true) {
1478       // Traverse the leftmost path as far as possible.
1479       while (DFS.getPred() != DFS.getPredEnd()) {
1480         const SDep &PredDep = *DFS.getPred();
1481         DFS.advance();
1482         // Ignore non-data edges.
1483         if (PredDep.getKind() != SDep::Data
1484             || PredDep.getSUnit()->isBoundaryNode()) {
1485           continue;
1486         }
1487         // An already visited edge is a cross edge, assuming an acyclic DAG.
1488         if (Impl.isVisited(PredDep.getSUnit())) {
1489           Impl.visitCrossEdge(PredDep, DFS.getCurr());
1490           continue;
1491         }
1492         Impl.visitPreorder(PredDep.getSUnit());
1493         DFS.follow(PredDep.getSUnit());
1494       }
1495       // Visit the top of the stack in postorder and backtrack.
1496       const SUnit *Child = DFS.getCurr();
1497       const SDep *PredDep = DFS.backtrack();
1498       Impl.visitPostorderNode(Child);
1499       if (PredDep)
1500         Impl.visitPostorderEdge(*PredDep, DFS.getCurr());
1501       if (DFS.isComplete())
1502         break;
1503     }
1504   }
1505   Impl.finalize();
1506 }
1507 
1508 /// The root of the given SubtreeID was just scheduled. For all subtrees
1509 /// connected to this tree, record the depth of the connection so that the
1510 /// nearest connected subtrees can be prioritized.
1511 void SchedDFSResult::scheduleTree(unsigned SubtreeID) {
1512   for (const Connection &C : SubtreeConnections[SubtreeID]) {
1513     SubtreeConnectLevels[C.TreeID] =
1514       std::max(SubtreeConnectLevels[C.TreeID], C.Level);
1515     LLVM_DEBUG(dbgs() << "  Tree: " << C.TreeID << " @"
1516                       << SubtreeConnectLevels[C.TreeID] << '\n');
1517   }
1518 }
1519 
1520 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1521 LLVM_DUMP_METHOD void ILPValue::print(raw_ostream &OS) const {
1522   OS << InstrCount << " / " << Length << " = ";
1523   if (!Length)
1524     OS << "BADILP";
1525   else
1526     OS << format("%g", ((double)InstrCount / Length));
1527 }
1528 
1529 LLVM_DUMP_METHOD void ILPValue::dump() const {
1530   dbgs() << *this << '\n';
1531 }
1532 
1533 namespace llvm {
1534 
1535 LLVM_ATTRIBUTE_UNUSED
1536 raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) {
1537   Val.print(OS);
1538   return OS;
1539 }
1540 
1541 } // end namespace llvm
1542 
1543 #endif
1544