1 //===- FastISel.cpp - Implementation of the FastISel class ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the FastISel class.
10 //
11 // "Fast" instruction selection is designed to emit very poor code quickly.
12 // Also, it is not designed to be able to do much lowering, so most illegal
13 // types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
14 // also not intended to be able to do much optimization, except in a few cases
15 // where doing optimizations reduces overall compile time.  For example, folding
16 // constants into immediate fields is often done, because it's cheap and it
17 // reduces the number of instructions later phases have to examine.
18 //
19 // "Fast" instruction selection is able to fail gracefully and transfer
20 // control to the SelectionDAG selector for operations that it doesn't
21 // support.  In many cases, this allows us to avoid duplicating a lot of
22 // the complicated lowering logic that SelectionDAG currently has.
23 //
24 // The intended use for "fast" instruction selection is "-O0" mode
25 // compilation, where the quality of the generated code is irrelevant when
26 // weighed against the speed at which the code can be generated.  Also,
27 // at -O0, the LLVM optimizers are not running, and this makes the
28 // compile time of codegen a much higher portion of the overall compile
29 // time.  Despite its limitations, "fast" instruction selection is able to
30 // handle enough code on its own to provide noticeable overall speedups
31 // in -O0 compiles.
32 //
33 // Basic operations are supported in a target-independent way, by reading
34 // the same instruction descriptions that the SelectionDAG selector reads,
35 // and identifying simple arithmetic operations that can be directly selected
36 // from simple operators.  More complicated operations currently require
37 // target-specific code.
38 //
39 //===----------------------------------------------------------------------===//
40 
41 #include "llvm/CodeGen/FastISel.h"
42 #include "llvm/ADT/APFloat.h"
43 #include "llvm/ADT/APSInt.h"
44 #include "llvm/ADT/DenseMap.h"
45 #include "llvm/ADT/SmallPtrSet.h"
46 #include "llvm/ADT/SmallString.h"
47 #include "llvm/ADT/SmallVector.h"
48 #include "llvm/ADT/Statistic.h"
49 #include "llvm/Analysis/BranchProbabilityInfo.h"
50 #include "llvm/Analysis/TargetLibraryInfo.h"
51 #include "llvm/CodeGen/Analysis.h"
52 #include "llvm/CodeGen/FunctionLoweringInfo.h"
53 #include "llvm/CodeGen/ISDOpcodes.h"
54 #include "llvm/CodeGen/MachineBasicBlock.h"
55 #include "llvm/CodeGen/MachineFrameInfo.h"
56 #include "llvm/CodeGen/MachineInstr.h"
57 #include "llvm/CodeGen/MachineInstrBuilder.h"
58 #include "llvm/CodeGen/MachineMemOperand.h"
59 #include "llvm/CodeGen/MachineModuleInfo.h"
60 #include "llvm/CodeGen/MachineOperand.h"
61 #include "llvm/CodeGen/MachineRegisterInfo.h"
62 #include "llvm/CodeGen/MachineValueType.h"
63 #include "llvm/CodeGen/StackMaps.h"
64 #include "llvm/CodeGen/TargetInstrInfo.h"
65 #include "llvm/CodeGen/TargetLowering.h"
66 #include "llvm/CodeGen/TargetSubtargetInfo.h"
67 #include "llvm/CodeGen/ValueTypes.h"
68 #include "llvm/IR/Argument.h"
69 #include "llvm/IR/Attributes.h"
70 #include "llvm/IR/BasicBlock.h"
71 #include "llvm/IR/CallingConv.h"
72 #include "llvm/IR/Constant.h"
73 #include "llvm/IR/Constants.h"
74 #include "llvm/IR/DataLayout.h"
75 #include "llvm/IR/DebugLoc.h"
76 #include "llvm/IR/DerivedTypes.h"
77 #include "llvm/IR/DiagnosticInfo.h"
78 #include "llvm/IR/Function.h"
79 #include "llvm/IR/GetElementPtrTypeIterator.h"
80 #include "llvm/IR/GlobalValue.h"
81 #include "llvm/IR/InlineAsm.h"
82 #include "llvm/IR/InstrTypes.h"
83 #include "llvm/IR/Instruction.h"
84 #include "llvm/IR/Instructions.h"
85 #include "llvm/IR/IntrinsicInst.h"
86 #include "llvm/IR/LLVMContext.h"
87 #include "llvm/IR/Mangler.h"
88 #include "llvm/IR/Metadata.h"
89 #include "llvm/IR/Operator.h"
90 #include "llvm/IR/PatternMatch.h"
91 #include "llvm/IR/Type.h"
92 #include "llvm/IR/User.h"
93 #include "llvm/IR/Value.h"
94 #include "llvm/MC/MCContext.h"
95 #include "llvm/MC/MCInstrDesc.h"
96 #include "llvm/Support/Casting.h"
97 #include "llvm/Support/Debug.h"
98 #include "llvm/Support/ErrorHandling.h"
99 #include "llvm/Support/MathExtras.h"
100 #include "llvm/Support/raw_ostream.h"
101 #include "llvm/Target/TargetMachine.h"
102 #include "llvm/Target/TargetOptions.h"
103 #include <algorithm>
104 #include <cassert>
105 #include <cstdint>
106 #include <iterator>
107 #include <optional>
108 #include <utility>
109 
110 using namespace llvm;
111 using namespace PatternMatch;
112 
113 #define DEBUG_TYPE "isel"
114 
115 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by "
116                                          "target-independent selector");
117 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by "
118                                     "target-specific selector");
119 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure");
120 
121 /// Set the current block to which generated machine instructions will be
122 /// appended.
123 void FastISel::startNewBlock() {
124   assert(LocalValueMap.empty() &&
125          "local values should be cleared after finishing a BB");
126 
127   // Instructions are appended to FuncInfo.MBB. If the basic block already
128   // contains labels or copies, use the last instruction as the last local
129   // value.
130   EmitStartPt = nullptr;
131   if (!FuncInfo.MBB->empty())
132     EmitStartPt = &FuncInfo.MBB->back();
133   LastLocalValue = EmitStartPt;
134 }
135 
136 void FastISel::finishBasicBlock() { flushLocalValueMap(); }
137 
138 bool FastISel::lowerArguments() {
139   if (!FuncInfo.CanLowerReturn)
140     // Fallback to SDISel argument lowering code to deal with sret pointer
141     // parameter.
142     return false;
143 
144   if (!fastLowerArguments())
145     return false;
146 
147   // Enter arguments into ValueMap for uses in non-entry BBs.
148   for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(),
149                                     E = FuncInfo.Fn->arg_end();
150        I != E; ++I) {
151     DenseMap<const Value *, Register>::iterator VI = LocalValueMap.find(&*I);
152     assert(VI != LocalValueMap.end() && "Missed an argument?");
153     FuncInfo.ValueMap[&*I] = VI->second;
154   }
155   return true;
156 }
157 
158 /// Return the defined register if this instruction defines exactly one
159 /// virtual register and uses no other virtual registers. Otherwise return 0.
160 static Register findLocalRegDef(MachineInstr &MI) {
161   Register RegDef;
162   for (const MachineOperand &MO : MI.operands()) {
163     if (!MO.isReg())
164       continue;
165     if (MO.isDef()) {
166       if (RegDef)
167         return Register();
168       RegDef = MO.getReg();
169     } else if (MO.getReg().isVirtual()) {
170       // This is another use of a vreg. Don't delete it.
171       return Register();
172     }
173   }
174   return RegDef;
175 }
176 
177 static bool isRegUsedByPhiNodes(Register DefReg,
178                                 FunctionLoweringInfo &FuncInfo) {
179   for (auto &P : FuncInfo.PHINodesToUpdate)
180     if (P.second == DefReg)
181       return true;
182   return false;
183 }
184 
185 void FastISel::flushLocalValueMap() {
186   // If FastISel bails out, it could leave local value instructions behind
187   // that aren't used for anything.  Detect and erase those.
188   if (LastLocalValue != EmitStartPt) {
189     // Save the first instruction after local values, for later.
190     MachineBasicBlock::iterator FirstNonValue(LastLocalValue);
191     ++FirstNonValue;
192 
193     MachineBasicBlock::reverse_iterator RE =
194         EmitStartPt ? MachineBasicBlock::reverse_iterator(EmitStartPt)
195                     : FuncInfo.MBB->rend();
196     MachineBasicBlock::reverse_iterator RI(LastLocalValue);
197     for (MachineInstr &LocalMI :
198          llvm::make_early_inc_range(llvm::make_range(RI, RE))) {
199       Register DefReg = findLocalRegDef(LocalMI);
200       if (!DefReg)
201         continue;
202       if (FuncInfo.RegsWithFixups.count(DefReg))
203         continue;
204       bool UsedByPHI = isRegUsedByPhiNodes(DefReg, FuncInfo);
205       if (!UsedByPHI && MRI.use_nodbg_empty(DefReg)) {
206         if (EmitStartPt == &LocalMI)
207           EmitStartPt = EmitStartPt->getPrevNode();
208         LLVM_DEBUG(dbgs() << "removing dead local value materialization"
209                           << LocalMI);
210         LocalMI.eraseFromParent();
211       }
212     }
213 
214     if (FirstNonValue != FuncInfo.MBB->end()) {
215       // See if there are any local value instructions left.  If so, we want to
216       // make sure the first one has a debug location; if it doesn't, use the
217       // first non-value instruction's debug location.
218 
219       // If EmitStartPt is non-null, this block had copies at the top before
220       // FastISel started doing anything; it points to the last one, so the
221       // first local value instruction is the one after EmitStartPt.
222       // If EmitStartPt is null, the first local value instruction is at the
223       // top of the block.
224       MachineBasicBlock::iterator FirstLocalValue =
225           EmitStartPt ? ++MachineBasicBlock::iterator(EmitStartPt)
226                       : FuncInfo.MBB->begin();
227       if (FirstLocalValue != FirstNonValue && !FirstLocalValue->getDebugLoc())
228         FirstLocalValue->setDebugLoc(FirstNonValue->getDebugLoc());
229     }
230   }
231 
232   LocalValueMap.clear();
233   LastLocalValue = EmitStartPt;
234   recomputeInsertPt();
235   SavedInsertPt = FuncInfo.InsertPt;
236 }
237 
238 Register FastISel::getRegForValue(const Value *V) {
239   EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true);
240   // Don't handle non-simple values in FastISel.
241   if (!RealVT.isSimple())
242     return Register();
243 
244   // Ignore illegal types. We must do this before looking up the value
245   // in ValueMap because Arguments are given virtual registers regardless
246   // of whether FastISel can handle them.
247   MVT VT = RealVT.getSimpleVT();
248   if (!TLI.isTypeLegal(VT)) {
249     // Handle integer promotions, though, because they're common and easy.
250     if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
251       VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
252     else
253       return Register();
254   }
255 
256   // Look up the value to see if we already have a register for it.
257   Register Reg = lookUpRegForValue(V);
258   if (Reg)
259     return Reg;
260 
261   // In bottom-up mode, just create the virtual register which will be used
262   // to hold the value. It will be materialized later.
263   if (isa<Instruction>(V) &&
264       (!isa<AllocaInst>(V) ||
265        !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V))))
266     return FuncInfo.InitializeRegForValue(V);
267 
268   SavePoint SaveInsertPt = enterLocalValueArea();
269 
270   // Materialize the value in a register. Emit any instructions in the
271   // local value area.
272   Reg = materializeRegForValue(V, VT);
273 
274   leaveLocalValueArea(SaveInsertPt);
275 
276   return Reg;
277 }
278 
279 Register FastISel::materializeConstant(const Value *V, MVT VT) {
280   Register Reg;
281   if (const auto *CI = dyn_cast<ConstantInt>(V)) {
282     if (CI->getValue().getActiveBits() <= 64)
283       Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
284   } else if (isa<AllocaInst>(V))
285     Reg = fastMaterializeAlloca(cast<AllocaInst>(V));
286   else if (isa<ConstantPointerNull>(V))
287     // Translate this as an integer zero so that it can be
288     // local-CSE'd with actual integer zeros.
289     Reg =
290         getRegForValue(Constant::getNullValue(DL.getIntPtrType(V->getType())));
291   else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
292     if (CF->isNullValue())
293       Reg = fastMaterializeFloatZero(CF);
294     else
295       // Try to emit the constant directly.
296       Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF);
297 
298     if (!Reg) {
299       // Try to emit the constant by using an integer constant with a cast.
300       const APFloat &Flt = CF->getValueAPF();
301       EVT IntVT = TLI.getPointerTy(DL);
302       uint32_t IntBitWidth = IntVT.getSizeInBits();
303       APSInt SIntVal(IntBitWidth, /*isUnsigned=*/false);
304       bool isExact;
305       (void)Flt.convertToInteger(SIntVal, APFloat::rmTowardZero, &isExact);
306       if (isExact) {
307         Register IntegerReg =
308             getRegForValue(ConstantInt::get(V->getContext(), SIntVal));
309         if (IntegerReg)
310           Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP,
311                            IntegerReg);
312       }
313     }
314   } else if (const auto *Op = dyn_cast<Operator>(V)) {
315     if (!selectOperator(Op, Op->getOpcode()))
316       if (!isa<Instruction>(Op) ||
317           !fastSelectInstruction(cast<Instruction>(Op)))
318         return 0;
319     Reg = lookUpRegForValue(Op);
320   } else if (isa<UndefValue>(V)) {
321     Reg = createResultReg(TLI.getRegClassFor(VT));
322     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
323             TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
324   }
325   return Reg;
326 }
327 
328 /// Helper for getRegForValue. This function is called when the value isn't
329 /// already available in a register and must be materialized with new
330 /// instructions.
331 Register FastISel::materializeRegForValue(const Value *V, MVT VT) {
332   Register Reg;
333   // Give the target-specific code a try first.
334   if (isa<Constant>(V))
335     Reg = fastMaterializeConstant(cast<Constant>(V));
336 
337   // If target-specific code couldn't or didn't want to handle the value, then
338   // give target-independent code a try.
339   if (!Reg)
340     Reg = materializeConstant(V, VT);
341 
342   // Don't cache constant materializations in the general ValueMap.
343   // To do so would require tracking what uses they dominate.
344   if (Reg) {
345     LocalValueMap[V] = Reg;
346     LastLocalValue = MRI.getVRegDef(Reg);
347   }
348   return Reg;
349 }
350 
351 Register FastISel::lookUpRegForValue(const Value *V) {
352   // Look up the value to see if we already have a register for it. We
353   // cache values defined by Instructions across blocks, and other values
354   // only locally. This is because Instructions already have the SSA
355   // def-dominates-use requirement enforced.
356   DenseMap<const Value *, Register>::iterator I = FuncInfo.ValueMap.find(V);
357   if (I != FuncInfo.ValueMap.end())
358     return I->second;
359   return LocalValueMap[V];
360 }
361 
362 void FastISel::updateValueMap(const Value *I, Register Reg, unsigned NumRegs) {
363   if (!isa<Instruction>(I)) {
364     LocalValueMap[I] = Reg;
365     return;
366   }
367 
368   Register &AssignedReg = FuncInfo.ValueMap[I];
369   if (!AssignedReg)
370     // Use the new register.
371     AssignedReg = Reg;
372   else if (Reg != AssignedReg) {
373     // Arrange for uses of AssignedReg to be replaced by uses of Reg.
374     for (unsigned i = 0; i < NumRegs; i++) {
375       FuncInfo.RegFixups[AssignedReg + i] = Reg + i;
376       FuncInfo.RegsWithFixups.insert(Reg + i);
377     }
378 
379     AssignedReg = Reg;
380   }
381 }
382 
383 Register FastISel::getRegForGEPIndex(const Value *Idx) {
384   Register IdxN = getRegForValue(Idx);
385   if (!IdxN)
386     // Unhandled operand. Halt "fast" selection and bail.
387     return Register();
388 
389   // If the index is smaller or larger than intptr_t, truncate or extend it.
390   MVT PtrVT = TLI.getPointerTy(DL);
391   EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
392   if (IdxVT.bitsLT(PtrVT)) {
393     IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN);
394   } else if (IdxVT.bitsGT(PtrVT)) {
395     IdxN =
396         fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN);
397   }
398   return IdxN;
399 }
400 
401 void FastISel::recomputeInsertPt() {
402   if (getLastLocalValue()) {
403     FuncInfo.InsertPt = getLastLocalValue();
404     FuncInfo.MBB = FuncInfo.InsertPt->getParent();
405     ++FuncInfo.InsertPt;
406   } else
407     FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI();
408 }
409 
410 void FastISel::removeDeadCode(MachineBasicBlock::iterator I,
411                               MachineBasicBlock::iterator E) {
412   assert(I.isValid() && E.isValid() && std::distance(I, E) > 0 &&
413          "Invalid iterator!");
414   while (I != E) {
415     if (SavedInsertPt == I)
416       SavedInsertPt = E;
417     if (EmitStartPt == I)
418       EmitStartPt = E.isValid() ? &*E : nullptr;
419     if (LastLocalValue == I)
420       LastLocalValue = E.isValid() ? &*E : nullptr;
421 
422     MachineInstr *Dead = &*I;
423     ++I;
424     Dead->eraseFromParent();
425     ++NumFastIselDead;
426   }
427   recomputeInsertPt();
428 }
429 
430 FastISel::SavePoint FastISel::enterLocalValueArea() {
431   SavePoint OldInsertPt = FuncInfo.InsertPt;
432   recomputeInsertPt();
433   return OldInsertPt;
434 }
435 
436 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) {
437   if (FuncInfo.InsertPt != FuncInfo.MBB->begin())
438     LastLocalValue = &*std::prev(FuncInfo.InsertPt);
439 
440   // Restore the previous insert position.
441   FuncInfo.InsertPt = OldInsertPt;
442 }
443 
444 bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) {
445   EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
446   if (VT == MVT::Other || !VT.isSimple())
447     // Unhandled type. Halt "fast" selection and bail.
448     return false;
449 
450   // We only handle legal types. For example, on x86-32 the instruction
451   // selector contains all of the 64-bit instructions from x86-64,
452   // under the assumption that i64 won't be used if the target doesn't
453   // support it.
454   if (!TLI.isTypeLegal(VT)) {
455     // MVT::i1 is special. Allow AND, OR, or XOR because they
456     // don't require additional zeroing, which makes them easy.
457     if (VT == MVT::i1 && ISD::isBitwiseLogicOp(ISDOpcode))
458       VT = TLI.getTypeToTransformTo(I->getContext(), VT);
459     else
460       return false;
461   }
462 
463   // Check if the first operand is a constant, and handle it as "ri".  At -O0,
464   // we don't have anything that canonicalizes operand order.
465   if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0)))
466     if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) {
467       Register Op1 = getRegForValue(I->getOperand(1));
468       if (!Op1)
469         return false;
470 
471       Register ResultReg =
472           fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, CI->getZExtValue(),
473                        VT.getSimpleVT());
474       if (!ResultReg)
475         return false;
476 
477       // We successfully emitted code for the given LLVM Instruction.
478       updateValueMap(I, ResultReg);
479       return true;
480     }
481 
482   Register Op0 = getRegForValue(I->getOperand(0));
483   if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
484     return false;
485 
486   // Check if the second operand is a constant and handle it appropriately.
487   if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
488     uint64_t Imm = CI->getSExtValue();
489 
490     // Transform "sdiv exact X, 8" -> "sra X, 3".
491     if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) &&
492         cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) {
493       Imm = Log2_64(Imm);
494       ISDOpcode = ISD::SRA;
495     }
496 
497     // Transform "urem x, pow2" -> "and x, pow2-1".
498     if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) &&
499         isPowerOf2_64(Imm)) {
500       --Imm;
501       ISDOpcode = ISD::AND;
502     }
503 
504     Register ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, Imm,
505                                       VT.getSimpleVT());
506     if (!ResultReg)
507       return false;
508 
509     // We successfully emitted code for the given LLVM Instruction.
510     updateValueMap(I, ResultReg);
511     return true;
512   }
513 
514   Register Op1 = getRegForValue(I->getOperand(1));
515   if (!Op1) // Unhandled operand. Halt "fast" selection and bail.
516     return false;
517 
518   // Now we have both operands in registers. Emit the instruction.
519   Register ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
520                                    ISDOpcode, Op0, Op1);
521   if (!ResultReg)
522     // Target-specific code wasn't able to find a machine opcode for
523     // the given ISD opcode and type. Halt "fast" selection and bail.
524     return false;
525 
526   // We successfully emitted code for the given LLVM Instruction.
527   updateValueMap(I, ResultReg);
528   return true;
529 }
530 
531 bool FastISel::selectGetElementPtr(const User *I) {
532   Register N = getRegForValue(I->getOperand(0));
533   if (!N) // Unhandled operand. Halt "fast" selection and bail.
534     return false;
535 
536   // FIXME: The code below does not handle vector GEPs. Halt "fast" selection
537   // and bail.
538   if (isa<VectorType>(I->getType()))
539     return false;
540 
541   // Keep a running tab of the total offset to coalesce multiple N = N + Offset
542   // into a single N = N + TotalOffset.
543   uint64_t TotalOffs = 0;
544   // FIXME: What's a good SWAG number for MaxOffs?
545   uint64_t MaxOffs = 2048;
546   MVT VT = TLI.getPointerTy(DL);
547   for (gep_type_iterator GTI = gep_type_begin(I), E = gep_type_end(I);
548        GTI != E; ++GTI) {
549     const Value *Idx = GTI.getOperand();
550     if (StructType *StTy = GTI.getStructTypeOrNull()) {
551       uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue();
552       if (Field) {
553         // N = N + Offset
554         TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field);
555         if (TotalOffs >= MaxOffs) {
556           N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT);
557           if (!N) // Unhandled operand. Halt "fast" selection and bail.
558             return false;
559           TotalOffs = 0;
560         }
561       }
562     } else {
563       Type *Ty = GTI.getIndexedType();
564 
565       // If this is a constant subscript, handle it quickly.
566       if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
567         if (CI->isZero())
568           continue;
569         // N = N + Offset
570         uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue();
571         TotalOffs += DL.getTypeAllocSize(Ty) * IdxN;
572         if (TotalOffs >= MaxOffs) {
573           N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT);
574           if (!N) // Unhandled operand. Halt "fast" selection and bail.
575             return false;
576           TotalOffs = 0;
577         }
578         continue;
579       }
580       if (TotalOffs) {
581         N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT);
582         if (!N) // Unhandled operand. Halt "fast" selection and bail.
583           return false;
584         TotalOffs = 0;
585       }
586 
587       // N = N + Idx * ElementSize;
588       uint64_t ElementSize = DL.getTypeAllocSize(Ty);
589       Register IdxN = getRegForGEPIndex(Idx);
590       if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
591         return false;
592 
593       if (ElementSize != 1) {
594         IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, ElementSize, VT);
595         if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
596           return false;
597       }
598       N = fastEmit_rr(VT, VT, ISD::ADD, N, IdxN);
599       if (!N) // Unhandled operand. Halt "fast" selection and bail.
600         return false;
601     }
602   }
603   if (TotalOffs) {
604     N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT);
605     if (!N) // Unhandled operand. Halt "fast" selection and bail.
606       return false;
607   }
608 
609   // We successfully emitted code for the given LLVM Instruction.
610   updateValueMap(I, N);
611   return true;
612 }
613 
614 bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops,
615                                    const CallInst *CI, unsigned StartIdx) {
616   for (unsigned i = StartIdx, e = CI->arg_size(); i != e; ++i) {
617     Value *Val = CI->getArgOperand(i);
618     // Check for constants and encode them with a StackMaps::ConstantOp prefix.
619     if (const auto *C = dyn_cast<ConstantInt>(Val)) {
620       Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
621       Ops.push_back(MachineOperand::CreateImm(C->getSExtValue()));
622     } else if (isa<ConstantPointerNull>(Val)) {
623       Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
624       Ops.push_back(MachineOperand::CreateImm(0));
625     } else if (auto *AI = dyn_cast<AllocaInst>(Val)) {
626       // Values coming from a stack location also require a special encoding,
627       // but that is added later on by the target specific frame index
628       // elimination implementation.
629       auto SI = FuncInfo.StaticAllocaMap.find(AI);
630       if (SI != FuncInfo.StaticAllocaMap.end())
631         Ops.push_back(MachineOperand::CreateFI(SI->second));
632       else
633         return false;
634     } else {
635       Register Reg = getRegForValue(Val);
636       if (!Reg)
637         return false;
638       Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false));
639     }
640   }
641   return true;
642 }
643 
644 bool FastISel::selectStackmap(const CallInst *I) {
645   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
646   //                                  [live variables...])
647   assert(I->getCalledFunction()->getReturnType()->isVoidTy() &&
648          "Stackmap cannot return a value.");
649 
650   // The stackmap intrinsic only records the live variables (the arguments
651   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
652   // intrinsic, this won't be lowered to a function call. This means we don't
653   // have to worry about calling conventions and target-specific lowering code.
654   // Instead we perform the call lowering right here.
655   //
656   // CALLSEQ_START(0, 0...)
657   // STACKMAP(id, nbytes, ...)
658   // CALLSEQ_END(0, 0)
659   //
660   SmallVector<MachineOperand, 32> Ops;
661 
662   // Add the <id> and <numBytes> constants.
663   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
664          "Expected a constant integer.");
665   const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
666   Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
667 
668   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
669          "Expected a constant integer.");
670   const auto *NumBytes =
671       cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
672   Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
673 
674   // Push live variables for the stack map (skipping the first two arguments
675   // <id> and <numBytes>).
676   if (!addStackMapLiveVars(Ops, I, 2))
677     return false;
678 
679   // We are not adding any register mask info here, because the stackmap doesn't
680   // clobber anything.
681 
682   // Add scratch registers as implicit def and early clobber.
683   CallingConv::ID CC = I->getCallingConv();
684   const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
685   for (unsigned i = 0; ScratchRegs[i]; ++i)
686     Ops.push_back(MachineOperand::CreateReg(
687         ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false,
688         /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true));
689 
690   // Issue CALLSEQ_START
691   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
692   auto Builder =
693       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AdjStackDown));
694   const MCInstrDesc &MCID = Builder.getInstr()->getDesc();
695   for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I)
696     Builder.addImm(0);
697 
698   // Issue STACKMAP.
699   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
700                                     TII.get(TargetOpcode::STACKMAP));
701   for (auto const &MO : Ops)
702     MIB.add(MO);
703 
704   // Issue CALLSEQ_END
705   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
706   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AdjStackUp))
707       .addImm(0)
708       .addImm(0);
709 
710   // Inform the Frame Information that we have a stackmap in this function.
711   FuncInfo.MF->getFrameInfo().setHasStackMap();
712 
713   return true;
714 }
715 
716 /// Lower an argument list according to the target calling convention.
717 ///
718 /// This is a helper for lowering intrinsics that follow a target calling
719 /// convention or require stack pointer adjustment. Only a subset of the
720 /// intrinsic's operands need to participate in the calling convention.
721 bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx,
722                                  unsigned NumArgs, const Value *Callee,
723                                  bool ForceRetVoidTy, CallLoweringInfo &CLI) {
724   ArgListTy Args;
725   Args.reserve(NumArgs);
726 
727   // Populate the argument list.
728   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; ArgI != ArgE; ++ArgI) {
729     Value *V = CI->getOperand(ArgI);
730 
731     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
732 
733     ArgListEntry Entry;
734     Entry.Val = V;
735     Entry.Ty = V->getType();
736     Entry.setAttributes(CI, ArgI);
737     Args.push_back(Entry);
738   }
739 
740   Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext())
741                                : CI->getType();
742   CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs);
743 
744   return lowerCallTo(CLI);
745 }
746 
747 FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee(
748     const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy,
749     StringRef Target, ArgListTy &&ArgsList, unsigned FixedArgs) {
750   SmallString<32> MangledName;
751   Mangler::getNameWithPrefix(MangledName, Target, DL);
752   MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
753   return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs);
754 }
755 
756 bool FastISel::selectPatchpoint(const CallInst *I) {
757   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
758   //                                                 i32 <numBytes>,
759   //                                                 i8* <target>,
760   //                                                 i32 <numArgs>,
761   //                                                 [Args...],
762   //                                                 [live variables...])
763   CallingConv::ID CC = I->getCallingConv();
764   bool IsAnyRegCC = CC == CallingConv::AnyReg;
765   bool HasDef = !I->getType()->isVoidTy();
766   Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts();
767 
768   // Get the real number of arguments participating in the call <numArgs>
769   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) &&
770          "Expected a constant integer.");
771   const auto *NumArgsVal =
772       cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos));
773   unsigned NumArgs = NumArgsVal->getZExtValue();
774 
775   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
776   // This includes all meta-operands up to but not including CC.
777   unsigned NumMetaOpers = PatchPointOpers::CCPos;
778   assert(I->arg_size() >= NumMetaOpers + NumArgs &&
779          "Not enough arguments provided to the patchpoint intrinsic");
780 
781   // For AnyRegCC the arguments are lowered later on manually.
782   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
783   CallLoweringInfo CLI;
784   CLI.setIsPatchPoint();
785   if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI))
786     return false;
787 
788   assert(CLI.Call && "No call instruction specified.");
789 
790   SmallVector<MachineOperand, 32> Ops;
791 
792   // Add an explicit result reg if we use the anyreg calling convention.
793   if (IsAnyRegCC && HasDef) {
794     assert(CLI.NumResultRegs == 0 && "Unexpected result register.");
795     CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64));
796     CLI.NumResultRegs = 1;
797     Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*isDef=*/true));
798   }
799 
800   // Add the <id> and <numBytes> constants.
801   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
802          "Expected a constant integer.");
803   const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
804   Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
805 
806   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
807          "Expected a constant integer.");
808   const auto *NumBytes =
809       cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
810   Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
811 
812   // Add the call target.
813   if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) {
814     uint64_t CalleeConstAddr =
815       cast<ConstantInt>(C->getOperand(0))->getZExtValue();
816     Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
817   } else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) {
818     if (C->getOpcode() == Instruction::IntToPtr) {
819       uint64_t CalleeConstAddr =
820         cast<ConstantInt>(C->getOperand(0))->getZExtValue();
821       Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
822     } else
823       llvm_unreachable("Unsupported ConstantExpr.");
824   } else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) {
825     Ops.push_back(MachineOperand::CreateGA(GV, 0));
826   } else if (isa<ConstantPointerNull>(Callee))
827     Ops.push_back(MachineOperand::CreateImm(0));
828   else
829     llvm_unreachable("Unsupported callee address.");
830 
831   // Adjust <numArgs> to account for any arguments that have been passed on
832   // the stack instead.
833   unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size();
834   Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs));
835 
836   // Add the calling convention
837   Ops.push_back(MachineOperand::CreateImm((unsigned)CC));
838 
839   // Add the arguments we omitted previously. The register allocator should
840   // place these in any free register.
841   if (IsAnyRegCC) {
842     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) {
843       Register Reg = getRegForValue(I->getArgOperand(i));
844       if (!Reg)
845         return false;
846       Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false));
847     }
848   }
849 
850   // Push the arguments from the call instruction.
851   for (auto Reg : CLI.OutRegs)
852     Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false));
853 
854   // Push live variables for the stack map.
855   if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs))
856     return false;
857 
858   // Push the register mask info.
859   Ops.push_back(MachineOperand::CreateRegMask(
860       TRI.getCallPreservedMask(*FuncInfo.MF, CC)));
861 
862   // Add scratch registers as implicit def and early clobber.
863   const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
864   for (unsigned i = 0; ScratchRegs[i]; ++i)
865     Ops.push_back(MachineOperand::CreateReg(
866         ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false,
867         /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true));
868 
869   // Add implicit defs (return values).
870   for (auto Reg : CLI.InRegs)
871     Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/true,
872                                             /*isImp=*/true));
873 
874   // Insert the patchpoint instruction before the call generated by the target.
875   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, MIMD,
876                                     TII.get(TargetOpcode::PATCHPOINT));
877 
878   for (auto &MO : Ops)
879     MIB.add(MO);
880 
881   MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI);
882 
883   // Delete the original call instruction.
884   CLI.Call->eraseFromParent();
885 
886   // Inform the Frame Information that we have a patchpoint in this function.
887   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
888 
889   if (CLI.NumResultRegs)
890     updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs);
891   return true;
892 }
893 
894 bool FastISel::selectXRayCustomEvent(const CallInst *I) {
895   const auto &Triple = TM.getTargetTriple();
896   if (Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
897     return true; // don't do anything to this instruction.
898   SmallVector<MachineOperand, 8> Ops;
899   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)),
900                                           /*isDef=*/false));
901   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)),
902                                           /*isDef=*/false));
903   MachineInstrBuilder MIB =
904       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
905               TII.get(TargetOpcode::PATCHABLE_EVENT_CALL));
906   for (auto &MO : Ops)
907     MIB.add(MO);
908 
909   // Insert the Patchable Event Call instruction, that gets lowered properly.
910   return true;
911 }
912 
913 bool FastISel::selectXRayTypedEvent(const CallInst *I) {
914   const auto &Triple = TM.getTargetTriple();
915   if (Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
916     return true; // don't do anything to this instruction.
917   SmallVector<MachineOperand, 8> Ops;
918   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)),
919                                           /*isDef=*/false));
920   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)),
921                                           /*isDef=*/false));
922   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(2)),
923                                           /*isDef=*/false));
924   MachineInstrBuilder MIB =
925       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
926               TII.get(TargetOpcode::PATCHABLE_TYPED_EVENT_CALL));
927   for (auto &MO : Ops)
928     MIB.add(MO);
929 
930   // Insert the Patchable Typed Event Call instruction, that gets lowered properly.
931   return true;
932 }
933 
934 /// Returns an AttributeList representing the attributes applied to the return
935 /// value of the given call.
936 static AttributeList getReturnAttrs(FastISel::CallLoweringInfo &CLI) {
937   SmallVector<Attribute::AttrKind, 2> Attrs;
938   if (CLI.RetSExt)
939     Attrs.push_back(Attribute::SExt);
940   if (CLI.RetZExt)
941     Attrs.push_back(Attribute::ZExt);
942   if (CLI.IsInReg)
943     Attrs.push_back(Attribute::InReg);
944 
945   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
946                             Attrs);
947 }
948 
949 bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName,
950                            unsigned NumArgs) {
951   MCContext &Ctx = MF->getContext();
952   SmallString<32> MangledName;
953   Mangler::getNameWithPrefix(MangledName, SymName, DL);
954   MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
955   return lowerCallTo(CI, Sym, NumArgs);
956 }
957 
958 bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol,
959                            unsigned NumArgs) {
960   FunctionType *FTy = CI->getFunctionType();
961   Type *RetTy = CI->getType();
962 
963   ArgListTy Args;
964   Args.reserve(NumArgs);
965 
966   // Populate the argument list.
967   // Attributes for args start at offset 1, after the return attribute.
968   for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) {
969     Value *V = CI->getOperand(ArgI);
970 
971     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
972 
973     ArgListEntry Entry;
974     Entry.Val = V;
975     Entry.Ty = V->getType();
976     Entry.setAttributes(CI, ArgI);
977     Args.push_back(Entry);
978   }
979   TLI.markLibCallAttributes(MF, CI->getCallingConv(), Args);
980 
981   CallLoweringInfo CLI;
982   CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), *CI, NumArgs);
983 
984   return lowerCallTo(CLI);
985 }
986 
987 bool FastISel::lowerCallTo(CallLoweringInfo &CLI) {
988   // Handle the incoming return values from the call.
989   CLI.clearIns();
990   SmallVector<EVT, 4> RetTys;
991   ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys);
992 
993   SmallVector<ISD::OutputArg, 4> Outs;
994   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL);
995 
996   bool CanLowerReturn = TLI.CanLowerReturn(
997       CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext());
998 
999   // FIXME: sret demotion isn't supported yet - bail out.
1000   if (!CanLowerReturn)
1001     return false;
1002 
1003   for (EVT VT : RetTys) {
1004     MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT);
1005     unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT);
1006     for (unsigned i = 0; i != NumRegs; ++i) {
1007       ISD::InputArg MyFlags;
1008       MyFlags.VT = RegisterVT;
1009       MyFlags.ArgVT = VT;
1010       MyFlags.Used = CLI.IsReturnValueUsed;
1011       if (CLI.RetSExt)
1012         MyFlags.Flags.setSExt();
1013       if (CLI.RetZExt)
1014         MyFlags.Flags.setZExt();
1015       if (CLI.IsInReg)
1016         MyFlags.Flags.setInReg();
1017       CLI.Ins.push_back(MyFlags);
1018     }
1019   }
1020 
1021   // Handle all of the outgoing arguments.
1022   CLI.clearOuts();
1023   for (auto &Arg : CLI.getArgs()) {
1024     Type *FinalType = Arg.Ty;
1025     if (Arg.IsByVal)
1026       FinalType = Arg.IndirectType;
1027     bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1028         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
1029 
1030     ISD::ArgFlagsTy Flags;
1031     if (Arg.IsZExt)
1032       Flags.setZExt();
1033     if (Arg.IsSExt)
1034       Flags.setSExt();
1035     if (Arg.IsInReg)
1036       Flags.setInReg();
1037     if (Arg.IsSRet)
1038       Flags.setSRet();
1039     if (Arg.IsSwiftSelf)
1040       Flags.setSwiftSelf();
1041     if (Arg.IsSwiftAsync)
1042       Flags.setSwiftAsync();
1043     if (Arg.IsSwiftError)
1044       Flags.setSwiftError();
1045     if (Arg.IsCFGuardTarget)
1046       Flags.setCFGuardTarget();
1047     if (Arg.IsByVal)
1048       Flags.setByVal();
1049     if (Arg.IsInAlloca) {
1050       Flags.setInAlloca();
1051       // Set the byval flag for CCAssignFn callbacks that don't know about
1052       // inalloca. This way we can know how many bytes we should've allocated
1053       // and how many bytes a callee cleanup function will pop.  If we port
1054       // inalloca to more targets, we'll have to add custom inalloca handling in
1055       // the various CC lowering callbacks.
1056       Flags.setByVal();
1057     }
1058     if (Arg.IsPreallocated) {
1059       Flags.setPreallocated();
1060       // Set the byval flag for CCAssignFn callbacks that don't know about
1061       // preallocated. This way we can know how many bytes we should've
1062       // allocated and how many bytes a callee cleanup function will pop.  If we
1063       // port preallocated to more targets, we'll have to add custom
1064       // preallocated handling in the various CC lowering callbacks.
1065       Flags.setByVal();
1066     }
1067     MaybeAlign MemAlign = Arg.Alignment;
1068     if (Arg.IsByVal || Arg.IsInAlloca || Arg.IsPreallocated) {
1069       unsigned FrameSize = DL.getTypeAllocSize(Arg.IndirectType);
1070 
1071       // For ByVal, alignment should come from FE. BE will guess if this info
1072       // is not there, but there are cases it cannot get right.
1073       if (!MemAlign)
1074         MemAlign = Align(TLI.getByValTypeAlignment(Arg.IndirectType, DL));
1075       Flags.setByValSize(FrameSize);
1076     } else if (!MemAlign) {
1077       MemAlign = DL.getABITypeAlign(Arg.Ty);
1078     }
1079     Flags.setMemAlign(*MemAlign);
1080     if (Arg.IsNest)
1081       Flags.setNest();
1082     if (NeedsRegBlock)
1083       Flags.setInConsecutiveRegs();
1084     Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));
1085     CLI.OutVals.push_back(Arg.Val);
1086     CLI.OutFlags.push_back(Flags);
1087   }
1088 
1089   if (!fastLowerCall(CLI))
1090     return false;
1091 
1092   // Set all unused physreg defs as dead.
1093   assert(CLI.Call && "No call instruction specified.");
1094   CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI);
1095 
1096   if (CLI.NumResultRegs && CLI.CB)
1097     updateValueMap(CLI.CB, CLI.ResultReg, CLI.NumResultRegs);
1098 
1099   // Set labels for heapallocsite call.
1100   if (CLI.CB)
1101     if (MDNode *MD = CLI.CB->getMetadata("heapallocsite"))
1102       CLI.Call->setHeapAllocMarker(*MF, MD);
1103 
1104   return true;
1105 }
1106 
1107 bool FastISel::lowerCall(const CallInst *CI) {
1108   FunctionType *FuncTy = CI->getFunctionType();
1109   Type *RetTy = CI->getType();
1110 
1111   ArgListTy Args;
1112   ArgListEntry Entry;
1113   Args.reserve(CI->arg_size());
1114 
1115   for (auto i = CI->arg_begin(), e = CI->arg_end(); i != e; ++i) {
1116     Value *V = *i;
1117 
1118     // Skip empty types
1119     if (V->getType()->isEmptyTy())
1120       continue;
1121 
1122     Entry.Val = V;
1123     Entry.Ty = V->getType();
1124 
1125     // Skip the first return-type Attribute to get to params.
1126     Entry.setAttributes(CI, i - CI->arg_begin());
1127     Args.push_back(Entry);
1128   }
1129 
1130   // Check if target-independent constraints permit a tail call here.
1131   // Target-dependent constraints are checked within fastLowerCall.
1132   bool IsTailCall = CI->isTailCall();
1133   if (IsTailCall && !isInTailCallPosition(*CI, TM))
1134     IsTailCall = false;
1135   if (IsTailCall && !CI->isMustTailCall() &&
1136       MF->getFunction().getFnAttribute("disable-tail-calls").getValueAsBool())
1137     IsTailCall = false;
1138 
1139   CallLoweringInfo CLI;
1140   CLI.setCallee(RetTy, FuncTy, CI->getCalledOperand(), std::move(Args), *CI)
1141       .setTailCall(IsTailCall);
1142 
1143   diagnoseDontCall(*CI);
1144 
1145   return lowerCallTo(CLI);
1146 }
1147 
1148 bool FastISel::selectCall(const User *I) {
1149   const CallInst *Call = cast<CallInst>(I);
1150 
1151   // Handle simple inline asms.
1152   if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledOperand())) {
1153     // Don't attempt to handle constraints.
1154     if (!IA->getConstraintString().empty())
1155       return false;
1156 
1157     unsigned ExtraInfo = 0;
1158     if (IA->hasSideEffects())
1159       ExtraInfo |= InlineAsm::Extra_HasSideEffects;
1160     if (IA->isAlignStack())
1161       ExtraInfo |= InlineAsm::Extra_IsAlignStack;
1162     if (Call->isConvergent())
1163       ExtraInfo |= InlineAsm::Extra_IsConvergent;
1164     ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
1165 
1166     MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1167                                       TII.get(TargetOpcode::INLINEASM));
1168     MIB.addExternalSymbol(IA->getAsmString().c_str());
1169     MIB.addImm(ExtraInfo);
1170 
1171     const MDNode *SrcLoc = Call->getMetadata("srcloc");
1172     if (SrcLoc)
1173       MIB.addMetadata(SrcLoc);
1174 
1175     return true;
1176   }
1177 
1178   // Handle intrinsic function calls.
1179   if (const auto *II = dyn_cast<IntrinsicInst>(Call))
1180     return selectIntrinsicCall(II);
1181 
1182   return lowerCall(Call);
1183 }
1184 
1185 bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) {
1186   switch (II->getIntrinsicID()) {
1187   default:
1188     break;
1189   // At -O0 we don't care about the lifetime intrinsics.
1190   case Intrinsic::lifetime_start:
1191   case Intrinsic::lifetime_end:
1192   // The donothing intrinsic does, well, nothing.
1193   case Intrinsic::donothing:
1194   // Neither does the sideeffect intrinsic.
1195   case Intrinsic::sideeffect:
1196   // Neither does the assume intrinsic; it's also OK not to codegen its operand.
1197   case Intrinsic::assume:
1198   // Neither does the llvm.experimental.noalias.scope.decl intrinsic
1199   case Intrinsic::experimental_noalias_scope_decl:
1200     return true;
1201   case Intrinsic::dbg_declare: {
1202     const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
1203     assert(DI->getVariable() && "Missing variable");
1204     if (!FuncInfo.MF->getMMI().hasDebugInfo()) {
1205       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI
1206                         << " (!hasDebugInfo)\n");
1207       return true;
1208     }
1209 
1210     if (FuncInfo.PreprocessedDbgDeclares.contains(DI))
1211       return true;
1212 
1213     const Value *Address = DI->getAddress();
1214     if (!Address || isa<UndefValue>(Address)) {
1215       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI
1216                         << " (bad/undef address)\n");
1217       return true;
1218     }
1219 
1220     std::optional<MachineOperand> Op;
1221     if (Register Reg = lookUpRegForValue(Address))
1222       Op = MachineOperand::CreateReg(Reg, false);
1223 
1224     // If we have a VLA that has a "use" in a metadata node that's then used
1225     // here but it has no other uses, then we have a problem. E.g.,
1226     //
1227     //   int foo (const int *x) {
1228     //     char a[*x];
1229     //     return 0;
1230     //   }
1231     //
1232     // If we assign 'a' a vreg and fast isel later on has to use the selection
1233     // DAG isel, it will want to copy the value to the vreg. However, there are
1234     // no uses, which goes counter to what selection DAG isel expects.
1235     if (!Op && !Address->use_empty() && isa<Instruction>(Address) &&
1236         (!isa<AllocaInst>(Address) ||
1237          !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address))))
1238       Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address),
1239                                      false);
1240 
1241     if (Op) {
1242       assert(DI->getVariable()->isValidLocationForIntrinsic(MIMD.getDL()) &&
1243              "Expected inlined-at fields to agree");
1244       if (FuncInfo.MF->useDebugInstrRef() && Op->isReg()) {
1245         // If using instruction referencing, produce this as a DBG_INSTR_REF,
1246         // to be later patched up by finalizeDebugInstrRefs. Tack a deref onto
1247         // the expression, we don't have an "indirect" flag in DBG_INSTR_REF.
1248         SmallVector<uint64_t, 3> Ops(
1249             {dwarf::DW_OP_LLVM_arg, 0, dwarf::DW_OP_deref});
1250         auto *NewExpr = DIExpression::prependOpcodes(DI->getExpression(), Ops);
1251         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD.getDL(),
1252                 TII.get(TargetOpcode::DBG_INSTR_REF), /*IsIndirect*/ false, *Op,
1253                 DI->getVariable(), NewExpr);
1254       } else {
1255         // A dbg.declare describes the address of a source variable, so lower it
1256         // into an indirect DBG_VALUE.
1257         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD.getDL(),
1258                 TII.get(TargetOpcode::DBG_VALUE), /*IsIndirect*/ true, *Op,
1259                 DI->getVariable(), DI->getExpression());
1260       }
1261     } else {
1262       // We can't yet handle anything else here because it would require
1263       // generating code, thus altering codegen because of debug info.
1264       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI
1265                         << " (no materialized reg for address)\n");
1266     }
1267     return true;
1268   }
1269   case Intrinsic::dbg_value: {
1270     // This form of DBG_VALUE is target-independent.
1271     const DbgValueInst *DI = cast<DbgValueInst>(II);
1272     const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
1273     const Value *V = DI->getValue();
1274     DIExpression *Expr = DI->getExpression();
1275     DILocalVariable *Var = DI->getVariable();
1276     assert(Var->isValidLocationForIntrinsic(MIMD.getDL()) &&
1277            "Expected inlined-at fields to agree");
1278     if (!V || isa<UndefValue>(V) || DI->hasArgList()) {
1279       // DI is either undef or cannot produce a valid DBG_VALUE, so produce an
1280       // undef DBG_VALUE to terminate any prior location.
1281       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD.getDL(), II, false, 0U,
1282               Var, Expr);
1283       return true;
1284     }
1285     if (const auto *CI = dyn_cast<ConstantInt>(V)) {
1286       // See if there's an expression to constant-fold.
1287       if (Expr)
1288         std::tie(Expr, CI) = Expr->constantFold(CI);
1289       if (CI->getBitWidth() > 64)
1290         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
1291             .addCImm(CI)
1292             .addImm(0U)
1293             .addMetadata(Var)
1294             .addMetadata(Expr);
1295       else
1296         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
1297             .addImm(CI->getZExtValue())
1298             .addImm(0U)
1299             .addMetadata(Var)
1300             .addMetadata(Expr);
1301       return true;
1302     }
1303     if (const auto *CF = dyn_cast<ConstantFP>(V)) {
1304       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
1305           .addFPImm(CF)
1306           .addImm(0U)
1307           .addMetadata(Var)
1308           .addMetadata(Expr);
1309       return true;
1310     }
1311     if (const auto *Arg = dyn_cast<Argument>(V);
1312         Arg && Expr && Expr->isEntryValue()) {
1313       // As per the Verifier, this case is only valid for swift async Args.
1314       assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync));
1315 
1316       Register Reg = getRegForValue(Arg);
1317       for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins())
1318         if (Reg == VirtReg || Reg == PhysReg) {
1319           BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD.getDL(), II,
1320                   false /*IsIndirect*/, PhysReg, Var, Expr);
1321           return true;
1322         }
1323 
1324       LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but "
1325                            "couldn't find a physical register\n"
1326                         << *DI << "\n");
1327       return true;
1328     }
1329     if (auto SI = FuncInfo.StaticAllocaMap.find(dyn_cast<AllocaInst>(V));
1330         SI != FuncInfo.StaticAllocaMap.end()) {
1331       MachineOperand FrameIndexOp = MachineOperand::CreateFI(SI->second);
1332       bool IsIndirect = false;
1333       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD.getDL(), II, IsIndirect,
1334               FrameIndexOp, Var, Expr);
1335       return true;
1336     }
1337     if (Register Reg = lookUpRegForValue(V)) {
1338       // FIXME: This does not handle register-indirect values at offset 0.
1339       if (!FuncInfo.MF->useDebugInstrRef()) {
1340         bool IsIndirect = false;
1341         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD.getDL(), II, IsIndirect,
1342                 Reg, Var, Expr);
1343         return true;
1344       }
1345       // If using instruction referencing, produce this as a DBG_INSTR_REF,
1346       // to be later patched up by finalizeDebugInstrRefs.
1347       SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg(
1348           /* Reg */ Reg, /* isDef */ false, /* isImp */ false,
1349           /* isKill */ false, /* isDead */ false,
1350           /* isUndef */ false, /* isEarlyClobber */ false,
1351           /* SubReg */ 0, /* isDebug */ true)});
1352       SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0});
1353       auto *NewExpr = DIExpression::prependOpcodes(Expr, Ops);
1354       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD.getDL(),
1355               TII.get(TargetOpcode::DBG_INSTR_REF), /*IsIndirect*/ false, MOs,
1356               Var, NewExpr);
1357       return true;
1358     }
1359     // We don't know how to handle other cases, so we drop.
1360     LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1361     return true;
1362   }
1363   case Intrinsic::dbg_label: {
1364     const DbgLabelInst *DI = cast<DbgLabelInst>(II);
1365     assert(DI->getLabel() && "Missing label");
1366     if (!FuncInfo.MF->getMMI().hasDebugInfo()) {
1367       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1368       return true;
1369     }
1370 
1371     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1372             TII.get(TargetOpcode::DBG_LABEL)).addMetadata(DI->getLabel());
1373     return true;
1374   }
1375   case Intrinsic::objectsize:
1376     llvm_unreachable("llvm.objectsize.* should have been lowered already");
1377 
1378   case Intrinsic::is_constant:
1379     llvm_unreachable("llvm.is.constant.* should have been lowered already");
1380 
1381   case Intrinsic::launder_invariant_group:
1382   case Intrinsic::strip_invariant_group:
1383   case Intrinsic::expect: {
1384     Register ResultReg = getRegForValue(II->getArgOperand(0));
1385     if (!ResultReg)
1386       return false;
1387     updateValueMap(II, ResultReg);
1388     return true;
1389   }
1390   case Intrinsic::experimental_stackmap:
1391     return selectStackmap(II);
1392   case Intrinsic::experimental_patchpoint_void:
1393   case Intrinsic::experimental_patchpoint_i64:
1394     return selectPatchpoint(II);
1395 
1396   case Intrinsic::xray_customevent:
1397     return selectXRayCustomEvent(II);
1398   case Intrinsic::xray_typedevent:
1399     return selectXRayTypedEvent(II);
1400   }
1401 
1402   return fastLowerIntrinsicCall(II);
1403 }
1404 
1405 bool FastISel::selectCast(const User *I, unsigned Opcode) {
1406   EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1407   EVT DstVT = TLI.getValueType(DL, I->getType());
1408 
1409   if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other ||
1410       !DstVT.isSimple())
1411     // Unhandled type. Halt "fast" selection and bail.
1412     return false;
1413 
1414   // Check if the destination type is legal.
1415   if (!TLI.isTypeLegal(DstVT))
1416     return false;
1417 
1418   // Check if the source operand is legal.
1419   if (!TLI.isTypeLegal(SrcVT))
1420     return false;
1421 
1422   Register InputReg = getRegForValue(I->getOperand(0));
1423   if (!InputReg)
1424     // Unhandled operand.  Halt "fast" selection and bail.
1425     return false;
1426 
1427   Register ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
1428                                   Opcode, InputReg);
1429   if (!ResultReg)
1430     return false;
1431 
1432   updateValueMap(I, ResultReg);
1433   return true;
1434 }
1435 
1436 bool FastISel::selectBitCast(const User *I) {
1437   EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1438   EVT DstEVT = TLI.getValueType(DL, I->getType());
1439   if (SrcEVT == MVT::Other || DstEVT == MVT::Other ||
1440       !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT))
1441     // Unhandled type. Halt "fast" selection and bail.
1442     return false;
1443 
1444   MVT SrcVT = SrcEVT.getSimpleVT();
1445   MVT DstVT = DstEVT.getSimpleVT();
1446   Register Op0 = getRegForValue(I->getOperand(0));
1447   if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
1448     return false;
1449 
1450   // If the bitcast doesn't change the type, just use the operand value.
1451   if (SrcVT == DstVT) {
1452     updateValueMap(I, Op0);
1453     return true;
1454   }
1455 
1456   // Otherwise, select a BITCAST opcode.
1457   Register ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0);
1458   if (!ResultReg)
1459     return false;
1460 
1461   updateValueMap(I, ResultReg);
1462   return true;
1463 }
1464 
1465 bool FastISel::selectFreeze(const User *I) {
1466   Register Reg = getRegForValue(I->getOperand(0));
1467   if (!Reg)
1468     // Unhandled operand.
1469     return false;
1470 
1471   EVT ETy = TLI.getValueType(DL, I->getOperand(0)->getType());
1472   if (ETy == MVT::Other || !TLI.isTypeLegal(ETy))
1473     // Unhandled type, bail out.
1474     return false;
1475 
1476   MVT Ty = ETy.getSimpleVT();
1477   const TargetRegisterClass *TyRegClass = TLI.getRegClassFor(Ty);
1478   Register ResultReg = createResultReg(TyRegClass);
1479   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1480           TII.get(TargetOpcode::COPY), ResultReg).addReg(Reg);
1481 
1482   updateValueMap(I, ResultReg);
1483   return true;
1484 }
1485 
1486 // Remove local value instructions starting from the instruction after
1487 // SavedLastLocalValue to the current function insert point.
1488 void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue)
1489 {
1490   MachineInstr *CurLastLocalValue = getLastLocalValue();
1491   if (CurLastLocalValue != SavedLastLocalValue) {
1492     // Find the first local value instruction to be deleted.
1493     // This is the instruction after SavedLastLocalValue if it is non-NULL.
1494     // Otherwise it's the first instruction in the block.
1495     MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue);
1496     if (SavedLastLocalValue)
1497       ++FirstDeadInst;
1498     else
1499       FirstDeadInst = FuncInfo.MBB->getFirstNonPHI();
1500     setLastLocalValue(SavedLastLocalValue);
1501     removeDeadCode(FirstDeadInst, FuncInfo.InsertPt);
1502   }
1503 }
1504 
1505 bool FastISel::selectInstruction(const Instruction *I) {
1506   // Flush the local value map before starting each instruction.
1507   // This improves locality and debugging, and can reduce spills.
1508   // Reuse of values across IR instructions is relatively uncommon.
1509   flushLocalValueMap();
1510 
1511   MachineInstr *SavedLastLocalValue = getLastLocalValue();
1512   // Just before the terminator instruction, insert instructions to
1513   // feed PHI nodes in successor blocks.
1514   if (I->isTerminator()) {
1515     if (!handlePHINodesInSuccessorBlocks(I->getParent())) {
1516       // PHI node handling may have generated local value instructions,
1517       // even though it failed to handle all PHI nodes.
1518       // We remove these instructions because SelectionDAGISel will generate
1519       // them again.
1520       removeDeadLocalValueCode(SavedLastLocalValue);
1521       return false;
1522     }
1523   }
1524 
1525   // FastISel does not handle any operand bundles except OB_funclet.
1526   if (auto *Call = dyn_cast<CallBase>(I))
1527     for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i)
1528       if (Call->getOperandBundleAt(i).getTagID() != LLVMContext::OB_funclet)
1529         return false;
1530 
1531   MIMD = MIMetadata(*I);
1532 
1533   SavedInsertPt = FuncInfo.InsertPt;
1534 
1535   if (const auto *Call = dyn_cast<CallInst>(I)) {
1536     const Function *F = Call->getCalledFunction();
1537     LibFunc Func;
1538 
1539     // As a special case, don't handle calls to builtin library functions that
1540     // may be translated directly to target instructions.
1541     if (F && !F->hasLocalLinkage() && F->hasName() &&
1542         LibInfo->getLibFunc(F->getName(), Func) &&
1543         LibInfo->hasOptimizedCodeGen(Func))
1544       return false;
1545 
1546     // Don't handle Intrinsic::trap if a trap function is specified.
1547     if (F && F->getIntrinsicID() == Intrinsic::trap &&
1548         Call->hasFnAttr("trap-func-name"))
1549       return false;
1550   }
1551 
1552   // First, try doing target-independent selection.
1553   if (!SkipTargetIndependentISel) {
1554     if (selectOperator(I, I->getOpcode())) {
1555       ++NumFastIselSuccessIndependent;
1556       MIMD = {};
1557       return true;
1558     }
1559     // Remove dead code.
1560     recomputeInsertPt();
1561     if (SavedInsertPt != FuncInfo.InsertPt)
1562       removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
1563     SavedInsertPt = FuncInfo.InsertPt;
1564   }
1565   // Next, try calling the target to attempt to handle the instruction.
1566   if (fastSelectInstruction(I)) {
1567     ++NumFastIselSuccessTarget;
1568     MIMD = {};
1569     return true;
1570   }
1571   // Remove dead code.
1572   recomputeInsertPt();
1573   if (SavedInsertPt != FuncInfo.InsertPt)
1574     removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
1575 
1576   MIMD = {};
1577   // Undo phi node updates, because they will be added again by SelectionDAG.
1578   if (I->isTerminator()) {
1579     // PHI node handling may have generated local value instructions.
1580     // We remove them because SelectionDAGISel will generate them again.
1581     removeDeadLocalValueCode(SavedLastLocalValue);
1582     FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
1583   }
1584   return false;
1585 }
1586 
1587 /// Emit an unconditional branch to the given block, unless it is the immediate
1588 /// (fall-through) successor, and update the CFG.
1589 void FastISel::fastEmitBranch(MachineBasicBlock *MSucc,
1590                               const DebugLoc &DbgLoc) {
1591   if (FuncInfo.MBB->getBasicBlock()->sizeWithoutDebug() > 1 &&
1592       FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
1593     // For more accurate line information if this is the only non-debug
1594     // instruction in the block then emit it, otherwise we have the
1595     // unconditional fall-through case, which needs no instructions.
1596   } else {
1597     // The unconditional branch case.
1598     TII.insertBranch(*FuncInfo.MBB, MSucc, nullptr,
1599                      SmallVector<MachineOperand, 0>(), DbgLoc);
1600   }
1601   if (FuncInfo.BPI) {
1602     auto BranchProbability = FuncInfo.BPI->getEdgeProbability(
1603         FuncInfo.MBB->getBasicBlock(), MSucc->getBasicBlock());
1604     FuncInfo.MBB->addSuccessor(MSucc, BranchProbability);
1605   } else
1606     FuncInfo.MBB->addSuccessorWithoutProb(MSucc);
1607 }
1608 
1609 void FastISel::finishCondBranch(const BasicBlock *BranchBB,
1610                                 MachineBasicBlock *TrueMBB,
1611                                 MachineBasicBlock *FalseMBB) {
1612   // Add TrueMBB as successor unless it is equal to the FalseMBB: This can
1613   // happen in degenerate IR and MachineIR forbids to have a block twice in the
1614   // successor/predecessor lists.
1615   if (TrueMBB != FalseMBB) {
1616     if (FuncInfo.BPI) {
1617       auto BranchProbability =
1618           FuncInfo.BPI->getEdgeProbability(BranchBB, TrueMBB->getBasicBlock());
1619       FuncInfo.MBB->addSuccessor(TrueMBB, BranchProbability);
1620     } else
1621       FuncInfo.MBB->addSuccessorWithoutProb(TrueMBB);
1622   }
1623 
1624   fastEmitBranch(FalseMBB, MIMD.getDL());
1625 }
1626 
1627 /// Emit an FNeg operation.
1628 bool FastISel::selectFNeg(const User *I, const Value *In) {
1629   Register OpReg = getRegForValue(In);
1630   if (!OpReg)
1631     return false;
1632 
1633   // If the target has ISD::FNEG, use it.
1634   EVT VT = TLI.getValueType(DL, I->getType());
1635   Register ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG,
1636                                   OpReg);
1637   if (ResultReg) {
1638     updateValueMap(I, ResultReg);
1639     return true;
1640   }
1641 
1642   // Bitcast the value to integer, twiddle the sign bit with xor,
1643   // and then bitcast it back to floating-point.
1644   if (VT.getSizeInBits() > 64)
1645     return false;
1646   EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
1647   if (!TLI.isTypeLegal(IntVT))
1648     return false;
1649 
1650   Register IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
1651                                ISD::BITCAST, OpReg);
1652   if (!IntReg)
1653     return false;
1654 
1655   Register IntResultReg = fastEmit_ri_(
1656       IntVT.getSimpleVT(), ISD::XOR, IntReg,
1657       UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT());
1658   if (!IntResultReg)
1659     return false;
1660 
1661   ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST,
1662                          IntResultReg);
1663   if (!ResultReg)
1664     return false;
1665 
1666   updateValueMap(I, ResultReg);
1667   return true;
1668 }
1669 
1670 bool FastISel::selectExtractValue(const User *U) {
1671   const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U);
1672   if (!EVI)
1673     return false;
1674 
1675   // Make sure we only try to handle extracts with a legal result.  But also
1676   // allow i1 because it's easy.
1677   EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true);
1678   if (!RealVT.isSimple())
1679     return false;
1680   MVT VT = RealVT.getSimpleVT();
1681   if (!TLI.isTypeLegal(VT) && VT != MVT::i1)
1682     return false;
1683 
1684   const Value *Op0 = EVI->getOperand(0);
1685   Type *AggTy = Op0->getType();
1686 
1687   // Get the base result register.
1688   unsigned ResultReg;
1689   DenseMap<const Value *, Register>::iterator I = FuncInfo.ValueMap.find(Op0);
1690   if (I != FuncInfo.ValueMap.end())
1691     ResultReg = I->second;
1692   else if (isa<Instruction>(Op0))
1693     ResultReg = FuncInfo.InitializeRegForValue(Op0);
1694   else
1695     return false; // fast-isel can't handle aggregate constants at the moment
1696 
1697   // Get the actual result register, which is an offset from the base register.
1698   unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices());
1699 
1700   SmallVector<EVT, 4> AggValueVTs;
1701   ComputeValueVTs(TLI, DL, AggTy, AggValueVTs);
1702 
1703   for (unsigned i = 0; i < VTIndex; i++)
1704     ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]);
1705 
1706   updateValueMap(EVI, ResultReg);
1707   return true;
1708 }
1709 
1710 bool FastISel::selectOperator(const User *I, unsigned Opcode) {
1711   switch (Opcode) {
1712   case Instruction::Add:
1713     return selectBinaryOp(I, ISD::ADD);
1714   case Instruction::FAdd:
1715     return selectBinaryOp(I, ISD::FADD);
1716   case Instruction::Sub:
1717     return selectBinaryOp(I, ISD::SUB);
1718   case Instruction::FSub:
1719     return selectBinaryOp(I, ISD::FSUB);
1720   case Instruction::Mul:
1721     return selectBinaryOp(I, ISD::MUL);
1722   case Instruction::FMul:
1723     return selectBinaryOp(I, ISD::FMUL);
1724   case Instruction::SDiv:
1725     return selectBinaryOp(I, ISD::SDIV);
1726   case Instruction::UDiv:
1727     return selectBinaryOp(I, ISD::UDIV);
1728   case Instruction::FDiv:
1729     return selectBinaryOp(I, ISD::FDIV);
1730   case Instruction::SRem:
1731     return selectBinaryOp(I, ISD::SREM);
1732   case Instruction::URem:
1733     return selectBinaryOp(I, ISD::UREM);
1734   case Instruction::FRem:
1735     return selectBinaryOp(I, ISD::FREM);
1736   case Instruction::Shl:
1737     return selectBinaryOp(I, ISD::SHL);
1738   case Instruction::LShr:
1739     return selectBinaryOp(I, ISD::SRL);
1740   case Instruction::AShr:
1741     return selectBinaryOp(I, ISD::SRA);
1742   case Instruction::And:
1743     return selectBinaryOp(I, ISD::AND);
1744   case Instruction::Or:
1745     return selectBinaryOp(I, ISD::OR);
1746   case Instruction::Xor:
1747     return selectBinaryOp(I, ISD::XOR);
1748 
1749   case Instruction::FNeg:
1750     return selectFNeg(I, I->getOperand(0));
1751 
1752   case Instruction::GetElementPtr:
1753     return selectGetElementPtr(I);
1754 
1755   case Instruction::Br: {
1756     const BranchInst *BI = cast<BranchInst>(I);
1757 
1758     if (BI->isUnconditional()) {
1759       const BasicBlock *LLVMSucc = BI->getSuccessor(0);
1760       MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc];
1761       fastEmitBranch(MSucc, BI->getDebugLoc());
1762       return true;
1763     }
1764 
1765     // Conditional branches are not handed yet.
1766     // Halt "fast" selection and bail.
1767     return false;
1768   }
1769 
1770   case Instruction::Unreachable:
1771     if (TM.Options.TrapUnreachable)
1772       return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0;
1773     else
1774       return true;
1775 
1776   case Instruction::Alloca:
1777     // FunctionLowering has the static-sized case covered.
1778     if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I)))
1779       return true;
1780 
1781     // Dynamic-sized alloca is not handled yet.
1782     return false;
1783 
1784   case Instruction::Call:
1785     // On AIX, normal call lowering uses the DAG-ISEL path currently so that the
1786     // callee of the direct function call instruction will be mapped to the
1787     // symbol for the function's entry point, which is distinct from the
1788     // function descriptor symbol. The latter is the symbol whose XCOFF symbol
1789     // name is the C-linkage name of the source level function.
1790     // But fast isel still has the ability to do selection for intrinsics.
1791     if (TM.getTargetTriple().isOSAIX() && !isa<IntrinsicInst>(I))
1792       return false;
1793     return selectCall(I);
1794 
1795   case Instruction::BitCast:
1796     return selectBitCast(I);
1797 
1798   case Instruction::FPToSI:
1799     return selectCast(I, ISD::FP_TO_SINT);
1800   case Instruction::ZExt:
1801     return selectCast(I, ISD::ZERO_EXTEND);
1802   case Instruction::SExt:
1803     return selectCast(I, ISD::SIGN_EXTEND);
1804   case Instruction::Trunc:
1805     return selectCast(I, ISD::TRUNCATE);
1806   case Instruction::SIToFP:
1807     return selectCast(I, ISD::SINT_TO_FP);
1808 
1809   case Instruction::IntToPtr: // Deliberate fall-through.
1810   case Instruction::PtrToInt: {
1811     EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1812     EVT DstVT = TLI.getValueType(DL, I->getType());
1813     if (DstVT.bitsGT(SrcVT))
1814       return selectCast(I, ISD::ZERO_EXTEND);
1815     if (DstVT.bitsLT(SrcVT))
1816       return selectCast(I, ISD::TRUNCATE);
1817     Register Reg = getRegForValue(I->getOperand(0));
1818     if (!Reg)
1819       return false;
1820     updateValueMap(I, Reg);
1821     return true;
1822   }
1823 
1824   case Instruction::ExtractValue:
1825     return selectExtractValue(I);
1826 
1827   case Instruction::Freeze:
1828     return selectFreeze(I);
1829 
1830   case Instruction::PHI:
1831     llvm_unreachable("FastISel shouldn't visit PHI nodes!");
1832 
1833   default:
1834     // Unhandled instruction. Halt "fast" selection and bail.
1835     return false;
1836   }
1837 }
1838 
1839 FastISel::FastISel(FunctionLoweringInfo &FuncInfo,
1840                    const TargetLibraryInfo *LibInfo,
1841                    bool SkipTargetIndependentISel)
1842     : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()),
1843       MFI(FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()),
1844       TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()),
1845       TII(*MF->getSubtarget().getInstrInfo()),
1846       TLI(*MF->getSubtarget().getTargetLowering()),
1847       TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo),
1848       SkipTargetIndependentISel(SkipTargetIndependentISel) {}
1849 
1850 FastISel::~FastISel() = default;
1851 
1852 bool FastISel::fastLowerArguments() { return false; }
1853 
1854 bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; }
1855 
1856 bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) {
1857   return false;
1858 }
1859 
1860 unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; }
1861 
1862 unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/) {
1863   return 0;
1864 }
1865 
1866 unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/,
1867                                unsigned /*Op1*/) {
1868   return 0;
1869 }
1870 
1871 unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
1872   return 0;
1873 }
1874 
1875 unsigned FastISel::fastEmit_f(MVT, MVT, unsigned,
1876                               const ConstantFP * /*FPImm*/) {
1877   return 0;
1878 }
1879 
1880 unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/,
1881                                uint64_t /*Imm*/) {
1882   return 0;
1883 }
1884 
1885 /// This method is a wrapper of fastEmit_ri. It first tries to emit an
1886 /// instruction with an immediate operand using fastEmit_ri.
1887 /// If that fails, it materializes the immediate into a register and try
1888 /// fastEmit_rr instead.
1889 Register FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0,
1890                                 uint64_t Imm, MVT ImmType) {
1891   // If this is a multiply by a power of two, emit this as a shift left.
1892   if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) {
1893     Opcode = ISD::SHL;
1894     Imm = Log2_64(Imm);
1895   } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) {
1896     // div x, 8 -> srl x, 3
1897     Opcode = ISD::SRL;
1898     Imm = Log2_64(Imm);
1899   }
1900 
1901   // Horrible hack (to be removed), check to make sure shift amounts are
1902   // in-range.
1903   if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) &&
1904       Imm >= VT.getSizeInBits())
1905     return 0;
1906 
1907   // First check if immediate type is legal. If not, we can't use the ri form.
1908   Register ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Imm);
1909   if (ResultReg)
1910     return ResultReg;
1911   Register MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
1912   if (!MaterialReg) {
1913     // This is a bit ugly/slow, but failing here means falling out of
1914     // fast-isel, which would be very slow.
1915     IntegerType *ITy =
1916         IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits());
1917     MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm));
1918     if (!MaterialReg)
1919       return 0;
1920   }
1921   return fastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
1922 }
1923 
1924 Register FastISel::createResultReg(const TargetRegisterClass *RC) {
1925   return MRI.createVirtualRegister(RC);
1926 }
1927 
1928 Register FastISel::constrainOperandRegClass(const MCInstrDesc &II, Register Op,
1929                                             unsigned OpNum) {
1930   if (Op.isVirtual()) {
1931     const TargetRegisterClass *RegClass =
1932         TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF);
1933     if (!MRI.constrainRegClass(Op, RegClass)) {
1934       // If it's not legal to COPY between the register classes, something
1935       // has gone very wrong before we got here.
1936       Register NewOp = createResultReg(RegClass);
1937       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1938               TII.get(TargetOpcode::COPY), NewOp).addReg(Op);
1939       return NewOp;
1940     }
1941   }
1942   return Op;
1943 }
1944 
1945 Register FastISel::fastEmitInst_(unsigned MachineInstOpcode,
1946                                  const TargetRegisterClass *RC) {
1947   Register ResultReg = createResultReg(RC);
1948   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1949 
1950   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg);
1951   return ResultReg;
1952 }
1953 
1954 Register FastISel::fastEmitInst_r(unsigned MachineInstOpcode,
1955                                   const TargetRegisterClass *RC, unsigned Op0) {
1956   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1957 
1958   Register ResultReg = createResultReg(RC);
1959   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1960 
1961   if (II.getNumDefs() >= 1)
1962     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
1963         .addReg(Op0);
1964   else {
1965     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
1966         .addReg(Op0);
1967     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
1968             ResultReg)
1969         .addReg(II.implicit_defs()[0]);
1970   }
1971 
1972   return ResultReg;
1973 }
1974 
1975 Register FastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
1976                                    const TargetRegisterClass *RC, unsigned Op0,
1977                                    unsigned Op1) {
1978   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1979 
1980   Register ResultReg = createResultReg(RC);
1981   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1982   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
1983 
1984   if (II.getNumDefs() >= 1)
1985     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
1986         .addReg(Op0)
1987         .addReg(Op1);
1988   else {
1989     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
1990         .addReg(Op0)
1991         .addReg(Op1);
1992     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
1993             ResultReg)
1994         .addReg(II.implicit_defs()[0]);
1995   }
1996   return ResultReg;
1997 }
1998 
1999 Register FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode,
2000                                     const TargetRegisterClass *RC, unsigned Op0,
2001                                     unsigned Op1, unsigned Op2) {
2002   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2003 
2004   Register ResultReg = createResultReg(RC);
2005   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2006   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2007   Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2);
2008 
2009   if (II.getNumDefs() >= 1)
2010     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
2011         .addReg(Op0)
2012         .addReg(Op1)
2013         .addReg(Op2);
2014   else {
2015     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
2016         .addReg(Op0)
2017         .addReg(Op1)
2018         .addReg(Op2);
2019     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
2020             ResultReg)
2021         .addReg(II.implicit_defs()[0]);
2022   }
2023   return ResultReg;
2024 }
2025 
2026 Register FastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
2027                                    const TargetRegisterClass *RC, unsigned Op0,
2028                                    uint64_t Imm) {
2029   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2030 
2031   Register ResultReg = createResultReg(RC);
2032   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2033 
2034   if (II.getNumDefs() >= 1)
2035     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
2036         .addReg(Op0)
2037         .addImm(Imm);
2038   else {
2039     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
2040         .addReg(Op0)
2041         .addImm(Imm);
2042     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
2043             ResultReg)
2044         .addReg(II.implicit_defs()[0]);
2045   }
2046   return ResultReg;
2047 }
2048 
2049 Register FastISel::fastEmitInst_rii(unsigned MachineInstOpcode,
2050                                     const TargetRegisterClass *RC, unsigned Op0,
2051                                     uint64_t Imm1, uint64_t Imm2) {
2052   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2053 
2054   Register ResultReg = createResultReg(RC);
2055   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2056 
2057   if (II.getNumDefs() >= 1)
2058     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
2059         .addReg(Op0)
2060         .addImm(Imm1)
2061         .addImm(Imm2);
2062   else {
2063     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
2064         .addReg(Op0)
2065         .addImm(Imm1)
2066         .addImm(Imm2);
2067     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
2068             ResultReg)
2069         .addReg(II.implicit_defs()[0]);
2070   }
2071   return ResultReg;
2072 }
2073 
2074 Register FastISel::fastEmitInst_f(unsigned MachineInstOpcode,
2075                                   const TargetRegisterClass *RC,
2076                                   const ConstantFP *FPImm) {
2077   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2078 
2079   Register ResultReg = createResultReg(RC);
2080 
2081   if (II.getNumDefs() >= 1)
2082     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
2083         .addFPImm(FPImm);
2084   else {
2085     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
2086         .addFPImm(FPImm);
2087     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
2088             ResultReg)
2089         .addReg(II.implicit_defs()[0]);
2090   }
2091   return ResultReg;
2092 }
2093 
2094 Register FastISel::fastEmitInst_rri(unsigned MachineInstOpcode,
2095                                     const TargetRegisterClass *RC, unsigned Op0,
2096                                     unsigned Op1, uint64_t Imm) {
2097   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2098 
2099   Register ResultReg = createResultReg(RC);
2100   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2101   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2102 
2103   if (II.getNumDefs() >= 1)
2104     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
2105         .addReg(Op0)
2106         .addReg(Op1)
2107         .addImm(Imm);
2108   else {
2109     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
2110         .addReg(Op0)
2111         .addReg(Op1)
2112         .addImm(Imm);
2113     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
2114             ResultReg)
2115         .addReg(II.implicit_defs()[0]);
2116   }
2117   return ResultReg;
2118 }
2119 
2120 Register FastISel::fastEmitInst_i(unsigned MachineInstOpcode,
2121                                   const TargetRegisterClass *RC, uint64_t Imm) {
2122   Register ResultReg = createResultReg(RC);
2123   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2124 
2125   if (II.getNumDefs() >= 1)
2126     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
2127         .addImm(Imm);
2128   else {
2129     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II).addImm(Imm);
2130     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
2131             ResultReg)
2132         .addReg(II.implicit_defs()[0]);
2133   }
2134   return ResultReg;
2135 }
2136 
2137 Register FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0,
2138                                               uint32_t Idx) {
2139   Register ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
2140   assert(Register::isVirtualRegister(Op0) &&
2141          "Cannot yet extract from physregs");
2142   const TargetRegisterClass *RC = MRI.getRegClass(Op0);
2143   MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx));
2144   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
2145           ResultReg).addReg(Op0, 0, Idx);
2146   return ResultReg;
2147 }
2148 
2149 /// Emit MachineInstrs to compute the value of Op with all but the least
2150 /// significant bit set to zero.
2151 Register FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0) {
2152   return fastEmit_ri(VT, VT, ISD::AND, Op0, 1);
2153 }
2154 
2155 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
2156 /// Emit code to ensure constants are copied into registers when needed.
2157 /// Remember the virtual registers that need to be added to the Machine PHI
2158 /// nodes as input.  We cannot just directly add them, because expansion
2159 /// might result in multiple MBB's for one BB.  As such, the start of the
2160 /// BB might correspond to a different MBB than the end.
2161 bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
2162   const Instruction *TI = LLVMBB->getTerminator();
2163 
2164   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
2165   FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();
2166 
2167   // Check successor nodes' PHI nodes that expect a constant to be available
2168   // from this block.
2169   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
2170     const BasicBlock *SuccBB = TI->getSuccessor(succ);
2171     if (!isa<PHINode>(SuccBB->begin()))
2172       continue;
2173     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
2174 
2175     // If this terminator has multiple identical successors (common for
2176     // switches), only handle each succ once.
2177     if (!SuccsHandled.insert(SuccMBB).second)
2178       continue;
2179 
2180     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
2181 
2182     // At this point we know that there is a 1-1 correspondence between LLVM PHI
2183     // nodes and Machine PHI nodes, but the incoming operands have not been
2184     // emitted yet.
2185     for (const PHINode &PN : SuccBB->phis()) {
2186       // Ignore dead phi's.
2187       if (PN.use_empty())
2188         continue;
2189 
2190       // Only handle legal types. Two interesting things to note here. First,
2191       // by bailing out early, we may leave behind some dead instructions,
2192       // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
2193       // own moves. Second, this check is necessary because FastISel doesn't
2194       // use CreateRegs to create registers, so it always creates
2195       // exactly one register for each non-void instruction.
2196       EVT VT = TLI.getValueType(DL, PN.getType(), /*AllowUnknown=*/true);
2197       if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
2198         // Handle integer promotions, though, because they're common and easy.
2199         if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) {
2200           FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
2201           return false;
2202         }
2203       }
2204 
2205       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
2206 
2207       // Set the DebugLoc for the copy. Use the location of the operand if
2208       // there is one; otherwise no location, flushLocalValueMap will fix it.
2209       MIMD = {};
2210       if (const auto *Inst = dyn_cast<Instruction>(PHIOp))
2211         MIMD = MIMetadata(*Inst);
2212 
2213       Register Reg = getRegForValue(PHIOp);
2214       if (!Reg) {
2215         FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
2216         return false;
2217       }
2218       FuncInfo.PHINodesToUpdate.push_back(std::make_pair(&*MBBI++, Reg));
2219       MIMD = {};
2220     }
2221   }
2222 
2223   return true;
2224 }
2225 
2226 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) {
2227   assert(LI->hasOneUse() &&
2228          "tryToFoldLoad expected a LoadInst with a single use");
2229   // We know that the load has a single use, but don't know what it is.  If it
2230   // isn't one of the folded instructions, then we can't succeed here.  Handle
2231   // this by scanning the single-use users of the load until we get to FoldInst.
2232   unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs.
2233 
2234   const Instruction *TheUser = LI->user_back();
2235   while (TheUser != FoldInst && // Scan up until we find FoldInst.
2236          // Stay in the right block.
2237          TheUser->getParent() == FoldInst->getParent() &&
2238          --MaxUsers) { // Don't scan too far.
2239     // If there are multiple or no uses of this instruction, then bail out.
2240     if (!TheUser->hasOneUse())
2241       return false;
2242 
2243     TheUser = TheUser->user_back();
2244   }
2245 
2246   // If we didn't find the fold instruction, then we failed to collapse the
2247   // sequence.
2248   if (TheUser != FoldInst)
2249     return false;
2250 
2251   // Don't try to fold volatile loads.  Target has to deal with alignment
2252   // constraints.
2253   if (LI->isVolatile())
2254     return false;
2255 
2256   // Figure out which vreg this is going into.  If there is no assigned vreg yet
2257   // then there actually was no reference to it.  Perhaps the load is referenced
2258   // by a dead instruction.
2259   Register LoadReg = getRegForValue(LI);
2260   if (!LoadReg)
2261     return false;
2262 
2263   // We can't fold if this vreg has no uses or more than one use.  Multiple uses
2264   // may mean that the instruction got lowered to multiple MIs, or the use of
2265   // the loaded value ended up being multiple operands of the result.
2266   if (!MRI.hasOneUse(LoadReg))
2267     return false;
2268 
2269   // If the register has fixups, there may be additional uses through a
2270   // different alias of the register.
2271   if (FuncInfo.RegsWithFixups.contains(LoadReg))
2272     return false;
2273 
2274   MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg);
2275   MachineInstr *User = RI->getParent();
2276 
2277   // Set the insertion point properly.  Folding the load can cause generation of
2278   // other random instructions (like sign extends) for addressing modes; make
2279   // sure they get inserted in a logical place before the new instruction.
2280   FuncInfo.InsertPt = User;
2281   FuncInfo.MBB = User->getParent();
2282 
2283   // Ask the target to try folding the load.
2284   return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI);
2285 }
2286 
2287 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) {
2288   // Must be an add.
2289   if (!isa<AddOperator>(Add))
2290     return false;
2291   // Type size needs to match.
2292   if (DL.getTypeSizeInBits(GEP->getType()) !=
2293       DL.getTypeSizeInBits(Add->getType()))
2294     return false;
2295   // Must be in the same basic block.
2296   if (isa<Instruction>(Add) &&
2297       FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB)
2298     return false;
2299   // Must have a constant operand.
2300   return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1));
2301 }
2302 
2303 MachineMemOperand *
2304 FastISel::createMachineMemOperandFor(const Instruction *I) const {
2305   const Value *Ptr;
2306   Type *ValTy;
2307   MaybeAlign Alignment;
2308   MachineMemOperand::Flags Flags;
2309   bool IsVolatile;
2310 
2311   if (const auto *LI = dyn_cast<LoadInst>(I)) {
2312     Alignment = LI->getAlign();
2313     IsVolatile = LI->isVolatile();
2314     Flags = MachineMemOperand::MOLoad;
2315     Ptr = LI->getPointerOperand();
2316     ValTy = LI->getType();
2317   } else if (const auto *SI = dyn_cast<StoreInst>(I)) {
2318     Alignment = SI->getAlign();
2319     IsVolatile = SI->isVolatile();
2320     Flags = MachineMemOperand::MOStore;
2321     Ptr = SI->getPointerOperand();
2322     ValTy = SI->getValueOperand()->getType();
2323   } else
2324     return nullptr;
2325 
2326   bool IsNonTemporal = I->hasMetadata(LLVMContext::MD_nontemporal);
2327   bool IsInvariant = I->hasMetadata(LLVMContext::MD_invariant_load);
2328   bool IsDereferenceable = I->hasMetadata(LLVMContext::MD_dereferenceable);
2329   const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range);
2330 
2331   AAMDNodes AAInfo = I->getAAMetadata();
2332 
2333   if (!Alignment) // Ensure that codegen never sees alignment 0.
2334     Alignment = DL.getABITypeAlign(ValTy);
2335 
2336   unsigned Size = DL.getTypeStoreSize(ValTy);
2337 
2338   if (IsVolatile)
2339     Flags |= MachineMemOperand::MOVolatile;
2340   if (IsNonTemporal)
2341     Flags |= MachineMemOperand::MONonTemporal;
2342   if (IsDereferenceable)
2343     Flags |= MachineMemOperand::MODereferenceable;
2344   if (IsInvariant)
2345     Flags |= MachineMemOperand::MOInvariant;
2346 
2347   return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size,
2348                                            *Alignment, AAInfo, Ranges);
2349 }
2350 
2351 CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const {
2352   // If both operands are the same, then try to optimize or fold the cmp.
2353   CmpInst::Predicate Predicate = CI->getPredicate();
2354   if (CI->getOperand(0) != CI->getOperand(1))
2355     return Predicate;
2356 
2357   switch (Predicate) {
2358   default: llvm_unreachable("Invalid predicate!");
2359   case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break;
2360   case CmpInst::FCMP_OEQ:   Predicate = CmpInst::FCMP_ORD;   break;
2361   case CmpInst::FCMP_OGT:   Predicate = CmpInst::FCMP_FALSE; break;
2362   case CmpInst::FCMP_OGE:   Predicate = CmpInst::FCMP_ORD;   break;
2363   case CmpInst::FCMP_OLT:   Predicate = CmpInst::FCMP_FALSE; break;
2364   case CmpInst::FCMP_OLE:   Predicate = CmpInst::FCMP_ORD;   break;
2365   case CmpInst::FCMP_ONE:   Predicate = CmpInst::FCMP_FALSE; break;
2366   case CmpInst::FCMP_ORD:   Predicate = CmpInst::FCMP_ORD;   break;
2367   case CmpInst::FCMP_UNO:   Predicate = CmpInst::FCMP_UNO;   break;
2368   case CmpInst::FCMP_UEQ:   Predicate = CmpInst::FCMP_TRUE;  break;
2369   case CmpInst::FCMP_UGT:   Predicate = CmpInst::FCMP_UNO;   break;
2370   case CmpInst::FCMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2371   case CmpInst::FCMP_ULT:   Predicate = CmpInst::FCMP_UNO;   break;
2372   case CmpInst::FCMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break;
2373   case CmpInst::FCMP_UNE:   Predicate = CmpInst::FCMP_UNO;   break;
2374   case CmpInst::FCMP_TRUE:  Predicate = CmpInst::FCMP_TRUE;  break;
2375 
2376   case CmpInst::ICMP_EQ:    Predicate = CmpInst::FCMP_TRUE;  break;
2377   case CmpInst::ICMP_NE:    Predicate = CmpInst::FCMP_FALSE; break;
2378   case CmpInst::ICMP_UGT:   Predicate = CmpInst::FCMP_FALSE; break;
2379   case CmpInst::ICMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2380   case CmpInst::ICMP_ULT:   Predicate = CmpInst::FCMP_FALSE; break;
2381   case CmpInst::ICMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break;
2382   case CmpInst::ICMP_SGT:   Predicate = CmpInst::FCMP_FALSE; break;
2383   case CmpInst::ICMP_SGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2384   case CmpInst::ICMP_SLT:   Predicate = CmpInst::FCMP_FALSE; break;
2385   case CmpInst::ICMP_SLE:   Predicate = CmpInst::FCMP_TRUE;  break;
2386   }
2387 
2388   return Predicate;
2389 }
2390