1 //==--- InstrEmitter.cpp - Emit MachineInstrs for the SelectionDAG class ---==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the Emit routines for the SelectionDAG class, which creates
10 // MachineInstrs based on the decisions of the SelectionDAG instruction
11 // selection.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "InstrEmitter.h"
16 #include "SDNodeDbgValue.h"
17 #include "llvm/BinaryFormat/Dwarf.h"
18 #include "llvm/CodeGen/MachineConstantPool.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/StackMaps.h"
23 #include "llvm/CodeGen/TargetInstrInfo.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetSubtargetInfo.h"
26 #include "llvm/IR/DebugInfoMetadata.h"
27 #include "llvm/IR/PseudoProbe.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Target/TargetMachine.h"
30 using namespace llvm;
31 
32 #define DEBUG_TYPE "instr-emitter"
33 
34 /// MinRCSize - Smallest register class we allow when constraining virtual
35 /// registers.  If satisfying all register class constraints would require
36 /// using a smaller register class, emit a COPY to a new virtual register
37 /// instead.
38 const unsigned MinRCSize = 4;
39 
40 /// CountResults - The results of target nodes have register or immediate
41 /// operands first, then an optional chain, and optional glue operands (which do
42 /// not go into the resulting MachineInstr).
43 unsigned InstrEmitter::CountResults(SDNode *Node) {
44   unsigned N = Node->getNumValues();
45   while (N && Node->getValueType(N - 1) == MVT::Glue)
46     --N;
47   if (N && Node->getValueType(N - 1) == MVT::Other)
48     --N;    // Skip over chain result.
49   return N;
50 }
51 
52 /// countOperands - The inputs to target nodes have any actual inputs first,
53 /// followed by an optional chain operand, then an optional glue operand.
54 /// Compute the number of actual operands that will go into the resulting
55 /// MachineInstr.
56 ///
57 /// Also count physreg RegisterSDNode and RegisterMaskSDNode operands preceding
58 /// the chain and glue. These operands may be implicit on the machine instr.
59 static unsigned countOperands(SDNode *Node, unsigned NumExpUses,
60                               unsigned &NumImpUses) {
61   unsigned N = Node->getNumOperands();
62   while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue)
63     --N;
64   if (N && Node->getOperand(N - 1).getValueType() == MVT::Other)
65     --N; // Ignore chain if it exists.
66 
67   // Count RegisterSDNode and RegisterMaskSDNode operands for NumImpUses.
68   NumImpUses = N - NumExpUses;
69   for (unsigned I = N; I > NumExpUses; --I) {
70     if (isa<RegisterMaskSDNode>(Node->getOperand(I - 1)))
71       continue;
72     if (RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Node->getOperand(I - 1)))
73       if (RN->getReg().isPhysical())
74         continue;
75     NumImpUses = N - I;
76     break;
77   }
78 
79   return N;
80 }
81 
82 /// EmitCopyFromReg - Generate machine code for an CopyFromReg node or an
83 /// implicit physical register output.
84 void InstrEmitter::EmitCopyFromReg(SDNode *Node, unsigned ResNo, bool IsClone,
85                                    Register SrcReg,
86                                    DenseMap<SDValue, Register> &VRBaseMap) {
87   Register VRBase;
88   if (SrcReg.isVirtual()) {
89     // Just use the input register directly!
90     SDValue Op(Node, ResNo);
91     if (IsClone)
92       VRBaseMap.erase(Op);
93     bool isNew = VRBaseMap.insert(std::make_pair(Op, SrcReg)).second;
94     (void)isNew; // Silence compiler warning.
95     assert(isNew && "Node emitted out of order - early");
96     return;
97   }
98 
99   // If the node is only used by a CopyToReg and the dest reg is a vreg, use
100   // the CopyToReg'd destination register instead of creating a new vreg.
101   bool MatchReg = true;
102   const TargetRegisterClass *UseRC = nullptr;
103   MVT VT = Node->getSimpleValueType(ResNo);
104 
105   // Stick to the preferred register classes for legal types.
106   if (TLI->isTypeLegal(VT))
107     UseRC = TLI->getRegClassFor(VT, Node->isDivergent());
108 
109   for (SDNode *User : Node->uses()) {
110     bool Match = true;
111     if (User->getOpcode() == ISD::CopyToReg &&
112         User->getOperand(2).getNode() == Node &&
113         User->getOperand(2).getResNo() == ResNo) {
114       Register DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
115       if (DestReg.isVirtual()) {
116         VRBase = DestReg;
117         Match = false;
118       } else if (DestReg != SrcReg)
119         Match = false;
120     } else {
121       for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
122         SDValue Op = User->getOperand(i);
123         if (Op.getNode() != Node || Op.getResNo() != ResNo)
124           continue;
125         MVT VT = Node->getSimpleValueType(Op.getResNo());
126         if (VT == MVT::Other || VT == MVT::Glue)
127           continue;
128         Match = false;
129         if (User->isMachineOpcode()) {
130           const MCInstrDesc &II = TII->get(User->getMachineOpcode());
131           const TargetRegisterClass *RC = nullptr;
132           if (i + II.getNumDefs() < II.getNumOperands()) {
133             RC = TRI->getAllocatableClass(
134                 TII->getRegClass(II, i + II.getNumDefs(), TRI, *MF));
135           }
136           if (!UseRC)
137             UseRC = RC;
138           else if (RC) {
139             const TargetRegisterClass *ComRC =
140                 TRI->getCommonSubClass(UseRC, RC);
141             // If multiple uses expect disjoint register classes, we emit
142             // copies in AddRegisterOperand.
143             if (ComRC)
144               UseRC = ComRC;
145           }
146         }
147       }
148     }
149     MatchReg &= Match;
150     if (VRBase)
151       break;
152   }
153 
154   const TargetRegisterClass *SrcRC = nullptr, *DstRC = nullptr;
155   SrcRC = TRI->getMinimalPhysRegClass(SrcReg, VT);
156 
157   // Figure out the register class to create for the destreg.
158   if (VRBase) {
159     DstRC = MRI->getRegClass(VRBase);
160   } else if (UseRC) {
161     assert(TRI->isTypeLegalForClass(*UseRC, VT) &&
162            "Incompatible phys register def and uses!");
163     DstRC = UseRC;
164   } else
165     DstRC = SrcRC;
166 
167   // If all uses are reading from the src physical register and copying the
168   // register is either impossible or very expensive, then don't create a copy.
169   if (MatchReg && SrcRC->getCopyCost() < 0) {
170     VRBase = SrcReg;
171   } else {
172     // Create the reg, emit the copy.
173     VRBase = MRI->createVirtualRegister(DstRC);
174     BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
175             VRBase).addReg(SrcReg);
176   }
177 
178   SDValue Op(Node, ResNo);
179   if (IsClone)
180     VRBaseMap.erase(Op);
181   bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
182   (void)isNew; // Silence compiler warning.
183   assert(isNew && "Node emitted out of order - early");
184 }
185 
186 void InstrEmitter::CreateVirtualRegisters(SDNode *Node,
187                                        MachineInstrBuilder &MIB,
188                                        const MCInstrDesc &II,
189                                        bool IsClone, bool IsCloned,
190                                        DenseMap<SDValue, Register> &VRBaseMap) {
191   assert(Node->getMachineOpcode() != TargetOpcode::IMPLICIT_DEF &&
192          "IMPLICIT_DEF should have been handled as a special case elsewhere!");
193 
194   unsigned NumResults = CountResults(Node);
195   bool HasVRegVariadicDefs = !MF->getTarget().usesPhysRegsForValues() &&
196                              II.isVariadic() && II.variadicOpsAreDefs();
197   unsigned NumVRegs = HasVRegVariadicDefs ? NumResults : II.getNumDefs();
198   if (Node->getMachineOpcode() == TargetOpcode::STATEPOINT)
199     NumVRegs = NumResults;
200   for (unsigned i = 0; i < NumVRegs; ++i) {
201     // If the specific node value is only used by a CopyToReg and the dest reg
202     // is a vreg in the same register class, use the CopyToReg'd destination
203     // register instead of creating a new vreg.
204     Register VRBase;
205     const TargetRegisterClass *RC =
206       TRI->getAllocatableClass(TII->getRegClass(II, i, TRI, *MF));
207     // Always let the value type influence the used register class. The
208     // constraints on the instruction may be too lax to represent the value
209     // type correctly. For example, a 64-bit float (X86::FR64) can't live in
210     // the 32-bit float super-class (X86::FR32).
211     if (i < NumResults && TLI->isTypeLegal(Node->getSimpleValueType(i))) {
212       const TargetRegisterClass *VTRC = TLI->getRegClassFor(
213           Node->getSimpleValueType(i),
214           (Node->isDivergent() || (RC && TRI->isDivergentRegClass(RC))));
215       if (RC)
216         VTRC = TRI->getCommonSubClass(RC, VTRC);
217       if (VTRC)
218         RC = VTRC;
219     }
220 
221     if (!II.operands().empty() && II.operands()[i].isOptionalDef()) {
222       // Optional def must be a physical register.
223       VRBase = cast<RegisterSDNode>(Node->getOperand(i-NumResults))->getReg();
224       assert(VRBase.isPhysical());
225       MIB.addReg(VRBase, RegState::Define);
226     }
227 
228     if (!VRBase && !IsClone && !IsCloned)
229       for (SDNode *User : Node->uses()) {
230         if (User->getOpcode() == ISD::CopyToReg &&
231             User->getOperand(2).getNode() == Node &&
232             User->getOperand(2).getResNo() == i) {
233           Register Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
234           if (Reg.isVirtual()) {
235             const TargetRegisterClass *RegRC = MRI->getRegClass(Reg);
236             if (RegRC == RC) {
237               VRBase = Reg;
238               MIB.addReg(VRBase, RegState::Define);
239               break;
240             }
241           }
242         }
243       }
244 
245     // Create the result registers for this node and add the result regs to
246     // the machine instruction.
247     if (VRBase == 0) {
248       assert(RC && "Isn't a register operand!");
249       VRBase = MRI->createVirtualRegister(RC);
250       MIB.addReg(VRBase, RegState::Define);
251     }
252 
253     // If this def corresponds to a result of the SDNode insert the VRBase into
254     // the lookup map.
255     if (i < NumResults) {
256       SDValue Op(Node, i);
257       if (IsClone)
258         VRBaseMap.erase(Op);
259       bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
260       (void)isNew; // Silence compiler warning.
261       assert(isNew && "Node emitted out of order - early");
262     }
263   }
264 }
265 
266 /// getVR - Return the virtual register corresponding to the specified result
267 /// of the specified node.
268 Register InstrEmitter::getVR(SDValue Op,
269                              DenseMap<SDValue, Register> &VRBaseMap) {
270   if (Op.isMachineOpcode() &&
271       Op.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) {
272     // Add an IMPLICIT_DEF instruction before every use.
273     // IMPLICIT_DEF can produce any type of result so its MCInstrDesc
274     // does not include operand register class info.
275     const TargetRegisterClass *RC = TLI->getRegClassFor(
276         Op.getSimpleValueType(), Op.getNode()->isDivergent());
277     Register VReg = MRI->createVirtualRegister(RC);
278     BuildMI(*MBB, InsertPos, Op.getDebugLoc(),
279             TII->get(TargetOpcode::IMPLICIT_DEF), VReg);
280     return VReg;
281   }
282 
283   DenseMap<SDValue, Register>::iterator I = VRBaseMap.find(Op);
284   assert(I != VRBaseMap.end() && "Node emitted out of order - late");
285   return I->second;
286 }
287 
288 
289 /// AddRegisterOperand - Add the specified register as an operand to the
290 /// specified machine instr. Insert register copies if the register is
291 /// not in the required register class.
292 void
293 InstrEmitter::AddRegisterOperand(MachineInstrBuilder &MIB,
294                                  SDValue Op,
295                                  unsigned IIOpNum,
296                                  const MCInstrDesc *II,
297                                  DenseMap<SDValue, Register> &VRBaseMap,
298                                  bool IsDebug, bool IsClone, bool IsCloned) {
299   assert(Op.getValueType() != MVT::Other &&
300          Op.getValueType() != MVT::Glue &&
301          "Chain and glue operands should occur at end of operand list!");
302   // Get/emit the operand.
303   Register VReg = getVR(Op, VRBaseMap);
304 
305   const MCInstrDesc &MCID = MIB->getDesc();
306   bool isOptDef = IIOpNum < MCID.getNumOperands() &&
307                   MCID.operands()[IIOpNum].isOptionalDef();
308 
309   // If the instruction requires a register in a different class, create
310   // a new virtual register and copy the value into it, but first attempt to
311   // shrink VReg's register class within reason.  For example, if VReg == GR32
312   // and II requires a GR32_NOSP, just constrain VReg to GR32_NOSP.
313   if (II) {
314     const TargetRegisterClass *OpRC = nullptr;
315     if (IIOpNum < II->getNumOperands())
316       OpRC = TII->getRegClass(*II, IIOpNum, TRI, *MF);
317 
318     if (OpRC) {
319       unsigned MinNumRegs = MinRCSize;
320       // Don't apply any RC size limit for IMPLICIT_DEF. Each use has a unique
321       // virtual register.
322       if (Op.isMachineOpcode() &&
323           Op.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF)
324         MinNumRegs = 0;
325 
326       const TargetRegisterClass *ConstrainedRC
327         = MRI->constrainRegClass(VReg, OpRC, MinNumRegs);
328       if (!ConstrainedRC) {
329         OpRC = TRI->getAllocatableClass(OpRC);
330         assert(OpRC && "Constraints cannot be fulfilled for allocation");
331         Register NewVReg = MRI->createVirtualRegister(OpRC);
332         BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(),
333                 TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg);
334         VReg = NewVReg;
335       } else {
336         assert(ConstrainedRC->isAllocatable() &&
337            "Constraining an allocatable VReg produced an unallocatable class?");
338       }
339     }
340   }
341 
342   // If this value has only one use, that use is a kill. This is a
343   // conservative approximation. InstrEmitter does trivial coalescing
344   // with CopyFromReg nodes, so don't emit kill flags for them.
345   // Avoid kill flags on Schedule cloned nodes, since there will be
346   // multiple uses.
347   // Tied operands are never killed, so we need to check that. And that
348   // means we need to determine the index of the operand.
349   bool isKill = Op.hasOneUse() &&
350                 Op.getNode()->getOpcode() != ISD::CopyFromReg &&
351                 !IsDebug &&
352                 !(IsClone || IsCloned);
353   if (isKill) {
354     unsigned Idx = MIB->getNumOperands();
355     while (Idx > 0 &&
356            MIB->getOperand(Idx-1).isReg() &&
357            MIB->getOperand(Idx-1).isImplicit())
358       --Idx;
359     bool isTied = MCID.getOperandConstraint(Idx, MCOI::TIED_TO) != -1;
360     if (isTied)
361       isKill = false;
362   }
363 
364   MIB.addReg(VReg, getDefRegState(isOptDef) | getKillRegState(isKill) |
365              getDebugRegState(IsDebug));
366 }
367 
368 /// AddOperand - Add the specified operand to the specified machine instr.  II
369 /// specifies the instruction information for the node, and IIOpNum is the
370 /// operand number (in the II) that we are adding.
371 void InstrEmitter::AddOperand(MachineInstrBuilder &MIB,
372                               SDValue Op,
373                               unsigned IIOpNum,
374                               const MCInstrDesc *II,
375                               DenseMap<SDValue, Register> &VRBaseMap,
376                               bool IsDebug, bool IsClone, bool IsCloned) {
377   if (Op.isMachineOpcode()) {
378     AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap,
379                        IsDebug, IsClone, IsCloned);
380   } else if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
381     MIB.addImm(C->getSExtValue());
382   } else if (ConstantFPSDNode *F = dyn_cast<ConstantFPSDNode>(Op)) {
383     MIB.addFPImm(F->getConstantFPValue());
384   } else if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(Op)) {
385     Register VReg = R->getReg();
386     MVT OpVT = Op.getSimpleValueType();
387     const TargetRegisterClass *IIRC =
388         II ? TRI->getAllocatableClass(TII->getRegClass(*II, IIOpNum, TRI, *MF))
389            : nullptr;
390     const TargetRegisterClass *OpRC =
391         TLI->isTypeLegal(OpVT)
392             ? TLI->getRegClassFor(OpVT,
393                                   Op.getNode()->isDivergent() ||
394                                       (IIRC && TRI->isDivergentRegClass(IIRC)))
395             : nullptr;
396 
397     if (OpRC && IIRC && OpRC != IIRC && VReg.isVirtual()) {
398       Register NewVReg = MRI->createVirtualRegister(IIRC);
399       BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(),
400                TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg);
401       VReg = NewVReg;
402     }
403     // Turn additional physreg operands into implicit uses on non-variadic
404     // instructions. This is used by call and return instructions passing
405     // arguments in registers.
406     bool Imp = II && (IIOpNum >= II->getNumOperands() && !II->isVariadic());
407     MIB.addReg(VReg, getImplRegState(Imp));
408   } else if (RegisterMaskSDNode *RM = dyn_cast<RegisterMaskSDNode>(Op)) {
409     MIB.addRegMask(RM->getRegMask());
410   } else if (GlobalAddressSDNode *TGA = dyn_cast<GlobalAddressSDNode>(Op)) {
411     MIB.addGlobalAddress(TGA->getGlobal(), TGA->getOffset(),
412                          TGA->getTargetFlags());
413   } else if (BasicBlockSDNode *BBNode = dyn_cast<BasicBlockSDNode>(Op)) {
414     MIB.addMBB(BBNode->getBasicBlock());
415   } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
416     MIB.addFrameIndex(FI->getIndex());
417   } else if (JumpTableSDNode *JT = dyn_cast<JumpTableSDNode>(Op)) {
418     MIB.addJumpTableIndex(JT->getIndex(), JT->getTargetFlags());
419   } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) {
420     int Offset = CP->getOffset();
421     Align Alignment = CP->getAlign();
422 
423     unsigned Idx;
424     MachineConstantPool *MCP = MF->getConstantPool();
425     if (CP->isMachineConstantPoolEntry())
426       Idx = MCP->getConstantPoolIndex(CP->getMachineCPVal(), Alignment);
427     else
428       Idx = MCP->getConstantPoolIndex(CP->getConstVal(), Alignment);
429     MIB.addConstantPoolIndex(Idx, Offset, CP->getTargetFlags());
430   } else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) {
431     MIB.addExternalSymbol(ES->getSymbol(), ES->getTargetFlags());
432   } else if (auto *SymNode = dyn_cast<MCSymbolSDNode>(Op)) {
433     MIB.addSym(SymNode->getMCSymbol());
434   } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) {
435     MIB.addBlockAddress(BA->getBlockAddress(),
436                         BA->getOffset(),
437                         BA->getTargetFlags());
438   } else if (TargetIndexSDNode *TI = dyn_cast<TargetIndexSDNode>(Op)) {
439     MIB.addTargetIndex(TI->getIndex(), TI->getOffset(), TI->getTargetFlags());
440   } else {
441     assert(Op.getValueType() != MVT::Other &&
442            Op.getValueType() != MVT::Glue &&
443            "Chain and glue operands should occur at end of operand list!");
444     AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap,
445                        IsDebug, IsClone, IsCloned);
446   }
447 }
448 
449 Register InstrEmitter::ConstrainForSubReg(Register VReg, unsigned SubIdx,
450                                           MVT VT, bool isDivergent, const DebugLoc &DL) {
451   const TargetRegisterClass *VRC = MRI->getRegClass(VReg);
452   const TargetRegisterClass *RC = TRI->getSubClassWithSubReg(VRC, SubIdx);
453 
454   // RC is a sub-class of VRC that supports SubIdx.  Try to constrain VReg
455   // within reason.
456   if (RC && RC != VRC)
457     RC = MRI->constrainRegClass(VReg, RC, MinRCSize);
458 
459   // VReg has been adjusted.  It can be used with SubIdx operands now.
460   if (RC)
461     return VReg;
462 
463   // VReg couldn't be reasonably constrained.  Emit a COPY to a new virtual
464   // register instead.
465   RC = TRI->getSubClassWithSubReg(TLI->getRegClassFor(VT, isDivergent), SubIdx);
466   assert(RC && "No legal register class for VT supports that SubIdx");
467   Register NewReg = MRI->createVirtualRegister(RC);
468   BuildMI(*MBB, InsertPos, DL, TII->get(TargetOpcode::COPY), NewReg)
469     .addReg(VReg);
470   return NewReg;
471 }
472 
473 /// EmitSubregNode - Generate machine code for subreg nodes.
474 ///
475 void InstrEmitter::EmitSubregNode(SDNode *Node,
476                                   DenseMap<SDValue, Register> &VRBaseMap,
477                                   bool IsClone, bool IsCloned) {
478   Register VRBase;
479   unsigned Opc = Node->getMachineOpcode();
480 
481   // If the node is only used by a CopyToReg and the dest reg is a vreg, use
482   // the CopyToReg'd destination register instead of creating a new vreg.
483   for (SDNode *User : Node->uses()) {
484     if (User->getOpcode() == ISD::CopyToReg &&
485         User->getOperand(2).getNode() == Node) {
486       Register DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
487       if (DestReg.isVirtual()) {
488         VRBase = DestReg;
489         break;
490       }
491     }
492   }
493 
494   if (Opc == TargetOpcode::EXTRACT_SUBREG) {
495     // EXTRACT_SUBREG is lowered as %dst = COPY %src:sub.  There are no
496     // constraints on the %dst register, COPY can target all legal register
497     // classes.
498     unsigned SubIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
499     const TargetRegisterClass *TRC =
500       TLI->getRegClassFor(Node->getSimpleValueType(0), Node->isDivergent());
501 
502     Register Reg;
503     MachineInstr *DefMI;
504     RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(0));
505     if (R && R->getReg().isPhysical()) {
506       Reg = R->getReg();
507       DefMI = nullptr;
508     } else {
509       Reg = R ? R->getReg() : getVR(Node->getOperand(0), VRBaseMap);
510       DefMI = MRI->getVRegDef(Reg);
511     }
512 
513     Register SrcReg, DstReg;
514     unsigned DefSubIdx;
515     if (DefMI &&
516         TII->isCoalescableExtInstr(*DefMI, SrcReg, DstReg, DefSubIdx) &&
517         SubIdx == DefSubIdx &&
518         TRC == MRI->getRegClass(SrcReg)) {
519       // Optimize these:
520       // r1025 = s/zext r1024, 4
521       // r1026 = extract_subreg r1025, 4
522       // to a copy
523       // r1026 = copy r1024
524       VRBase = MRI->createVirtualRegister(TRC);
525       BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
526               TII->get(TargetOpcode::COPY), VRBase).addReg(SrcReg);
527       MRI->clearKillFlags(SrcReg);
528     } else {
529       // Reg may not support a SubIdx sub-register, and we may need to
530       // constrain its register class or issue a COPY to a compatible register
531       // class.
532       if (Reg.isVirtual())
533         Reg = ConstrainForSubReg(Reg, SubIdx,
534                                  Node->getOperand(0).getSimpleValueType(),
535                                  Node->isDivergent(), Node->getDebugLoc());
536       // Create the destreg if it is missing.
537       if (!VRBase)
538         VRBase = MRI->createVirtualRegister(TRC);
539 
540       // Create the extract_subreg machine instruction.
541       MachineInstrBuilder CopyMI =
542           BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
543                   TII->get(TargetOpcode::COPY), VRBase);
544       if (Reg.isVirtual())
545         CopyMI.addReg(Reg, 0, SubIdx);
546       else
547         CopyMI.addReg(TRI->getSubReg(Reg, SubIdx));
548     }
549   } else if (Opc == TargetOpcode::INSERT_SUBREG ||
550              Opc == TargetOpcode::SUBREG_TO_REG) {
551     SDValue N0 = Node->getOperand(0);
552     SDValue N1 = Node->getOperand(1);
553     SDValue N2 = Node->getOperand(2);
554     unsigned SubIdx = cast<ConstantSDNode>(N2)->getZExtValue();
555 
556     // Figure out the register class to create for the destreg.  It should be
557     // the largest legal register class supporting SubIdx sub-registers.
558     // RegisterCoalescer will constrain it further if it decides to eliminate
559     // the INSERT_SUBREG instruction.
560     //
561     //   %dst = INSERT_SUBREG %src, %sub, SubIdx
562     //
563     // is lowered by TwoAddressInstructionPass to:
564     //
565     //   %dst = COPY %src
566     //   %dst:SubIdx = COPY %sub
567     //
568     // There is no constraint on the %src register class.
569     //
570     const TargetRegisterClass *SRC =
571         TLI->getRegClassFor(Node->getSimpleValueType(0), Node->isDivergent());
572     SRC = TRI->getSubClassWithSubReg(SRC, SubIdx);
573     assert(SRC && "No register class supports VT and SubIdx for INSERT_SUBREG");
574 
575     if (VRBase == 0 || !SRC->hasSubClassEq(MRI->getRegClass(VRBase)))
576       VRBase = MRI->createVirtualRegister(SRC);
577 
578     // Create the insert_subreg or subreg_to_reg machine instruction.
579     MachineInstrBuilder MIB =
580       BuildMI(*MF, Node->getDebugLoc(), TII->get(Opc), VRBase);
581 
582     // If creating a subreg_to_reg, then the first input operand
583     // is an implicit value immediate, otherwise it's a register
584     if (Opc == TargetOpcode::SUBREG_TO_REG) {
585       const ConstantSDNode *SD = cast<ConstantSDNode>(N0);
586       MIB.addImm(SD->getZExtValue());
587     } else
588       AddOperand(MIB, N0, 0, nullptr, VRBaseMap, /*IsDebug=*/false,
589                  IsClone, IsCloned);
590     // Add the subregister being inserted
591     AddOperand(MIB, N1, 0, nullptr, VRBaseMap, /*IsDebug=*/false,
592                IsClone, IsCloned);
593     MIB.addImm(SubIdx);
594     MBB->insert(InsertPos, MIB);
595   } else
596     llvm_unreachable("Node is not insert_subreg, extract_subreg, or subreg_to_reg");
597 
598   SDValue Op(Node, 0);
599   bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
600   (void)isNew; // Silence compiler warning.
601   assert(isNew && "Node emitted out of order - early");
602 }
603 
604 /// EmitCopyToRegClassNode - Generate machine code for COPY_TO_REGCLASS nodes.
605 /// COPY_TO_REGCLASS is just a normal copy, except that the destination
606 /// register is constrained to be in a particular register class.
607 ///
608 void
609 InstrEmitter::EmitCopyToRegClassNode(SDNode *Node,
610                                      DenseMap<SDValue, Register> &VRBaseMap) {
611   unsigned VReg = getVR(Node->getOperand(0), VRBaseMap);
612 
613   // Create the new VReg in the destination class and emit a copy.
614   unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
615   const TargetRegisterClass *DstRC =
616     TRI->getAllocatableClass(TRI->getRegClass(DstRCIdx));
617   Register NewVReg = MRI->createVirtualRegister(DstRC);
618   BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
619     NewVReg).addReg(VReg);
620 
621   SDValue Op(Node, 0);
622   bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
623   (void)isNew; // Silence compiler warning.
624   assert(isNew && "Node emitted out of order - early");
625 }
626 
627 /// EmitRegSequence - Generate machine code for REG_SEQUENCE nodes.
628 ///
629 void InstrEmitter::EmitRegSequence(SDNode *Node,
630                                   DenseMap<SDValue, Register> &VRBaseMap,
631                                   bool IsClone, bool IsCloned) {
632   unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
633   const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx);
634   Register NewVReg = MRI->createVirtualRegister(TRI->getAllocatableClass(RC));
635   const MCInstrDesc &II = TII->get(TargetOpcode::REG_SEQUENCE);
636   MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II, NewVReg);
637   unsigned NumOps = Node->getNumOperands();
638   // If the input pattern has a chain, then the root of the corresponding
639   // output pattern will get a chain as well. This can happen to be a
640   // REG_SEQUENCE (which is not "guarded" by countOperands/CountResults).
641   if (NumOps && Node->getOperand(NumOps-1).getValueType() == MVT::Other)
642     --NumOps; // Ignore chain if it exists.
643 
644   assert((NumOps & 1) == 1 &&
645          "REG_SEQUENCE must have an odd number of operands!");
646   for (unsigned i = 1; i != NumOps; ++i) {
647     SDValue Op = Node->getOperand(i);
648     if ((i & 1) == 0) {
649       RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(i-1));
650       // Skip physical registers as they don't have a vreg to get and we'll
651       // insert copies for them in TwoAddressInstructionPass anyway.
652       if (!R || !R->getReg().isPhysical()) {
653         unsigned SubIdx = cast<ConstantSDNode>(Op)->getZExtValue();
654         unsigned SubReg = getVR(Node->getOperand(i-1), VRBaseMap);
655         const TargetRegisterClass *TRC = MRI->getRegClass(SubReg);
656         const TargetRegisterClass *SRC =
657         TRI->getMatchingSuperRegClass(RC, TRC, SubIdx);
658         if (SRC && SRC != RC) {
659           MRI->setRegClass(NewVReg, SRC);
660           RC = SRC;
661         }
662       }
663     }
664     AddOperand(MIB, Op, i+1, &II, VRBaseMap, /*IsDebug=*/false,
665                IsClone, IsCloned);
666   }
667 
668   MBB->insert(InsertPos, MIB);
669   SDValue Op(Node, 0);
670   bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
671   (void)isNew; // Silence compiler warning.
672   assert(isNew && "Node emitted out of order - early");
673 }
674 
675 /// EmitDbgValue - Generate machine instruction for a dbg_value node.
676 ///
677 MachineInstr *
678 InstrEmitter::EmitDbgValue(SDDbgValue *SD,
679                            DenseMap<SDValue, Register> &VRBaseMap) {
680   DebugLoc DL = SD->getDebugLoc();
681   assert(cast<DILocalVariable>(SD->getVariable())
682              ->isValidLocationForIntrinsic(DL) &&
683          "Expected inlined-at fields to agree");
684 
685   SD->setIsEmitted();
686 
687   assert(!SD->getLocationOps().empty() &&
688          "dbg_value with no location operands?");
689 
690   if (SD->isInvalidated())
691     return EmitDbgNoLocation(SD);
692 
693   // Attempt to produce a DBG_INSTR_REF if we've been asked to.
694   if (EmitDebugInstrRefs)
695     if (auto *InstrRef = EmitDbgInstrRef(SD, VRBaseMap))
696       return InstrRef;
697 
698   // Emit variadic dbg_value nodes as DBG_VALUE_LIST if they have not been
699   // emitted as instruction references.
700   if (SD->isVariadic())
701     return EmitDbgValueList(SD, VRBaseMap);
702 
703   // Emit single-location dbg_value nodes as DBG_VALUE if they have not been
704   // emitted as instruction references.
705   return EmitDbgValueFromSingleOp(SD, VRBaseMap);
706 }
707 
708 MachineOperand GetMOForConstDbgOp(const SDDbgOperand &Op) {
709   const Value *V = Op.getConst();
710   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
711     if (CI->getBitWidth() > 64)
712       return MachineOperand::CreateCImm(CI);
713     return MachineOperand::CreateImm(CI->getSExtValue());
714   }
715   if (const ConstantFP *CF = dyn_cast<ConstantFP>(V))
716     return MachineOperand::CreateFPImm(CF);
717   // Note: This assumes that all nullptr constants are zero-valued.
718   if (isa<ConstantPointerNull>(V))
719     return MachineOperand::CreateImm(0);
720   // Undef or unhandled value type, so return an undef operand.
721   return MachineOperand::CreateReg(
722       /* Reg */ 0U, /* isDef */ false, /* isImp */ false,
723       /* isKill */ false, /* isDead */ false,
724       /* isUndef */ false, /* isEarlyClobber */ false,
725       /* SubReg */ 0, /* isDebug */ true);
726 }
727 
728 void InstrEmitter::AddDbgValueLocationOps(
729     MachineInstrBuilder &MIB, const MCInstrDesc &DbgValDesc,
730     ArrayRef<SDDbgOperand> LocationOps,
731     DenseMap<SDValue, Register> &VRBaseMap) {
732   for (const SDDbgOperand &Op : LocationOps) {
733     switch (Op.getKind()) {
734     case SDDbgOperand::FRAMEIX:
735       MIB.addFrameIndex(Op.getFrameIx());
736       break;
737     case SDDbgOperand::VREG:
738       MIB.addReg(Op.getVReg());
739       break;
740     case SDDbgOperand::SDNODE: {
741       SDValue V = SDValue(Op.getSDNode(), Op.getResNo());
742       // It's possible we replaced this SDNode with other(s) and therefore
743       // didn't generate code for it. It's better to catch these cases where
744       // they happen and transfer the debug info, but trying to guarantee that
745       // in all cases would be very fragile; this is a safeguard for any
746       // that were missed.
747       if (VRBaseMap.count(V) == 0)
748         MIB.addReg(0U); // undef
749       else
750         AddOperand(MIB, V, (*MIB).getNumOperands(), &DbgValDesc, VRBaseMap,
751                    /*IsDebug=*/true, /*IsClone=*/false, /*IsCloned=*/false);
752     } break;
753     case SDDbgOperand::CONST:
754       MIB.add(GetMOForConstDbgOp(Op));
755       break;
756     }
757   }
758 }
759 
760 MachineInstr *
761 InstrEmitter::EmitDbgInstrRef(SDDbgValue *SD,
762                               DenseMap<SDValue, Register> &VRBaseMap) {
763   MDNode *Var = SD->getVariable();
764   const DIExpression *Expr = (DIExpression *)SD->getExpression();
765   DebugLoc DL = SD->getDebugLoc();
766   const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_INSTR_REF);
767 
768   // Returns true if the given operand is not a legal debug operand for a
769   // DBG_INSTR_REF.
770   auto IsInvalidOp = [](SDDbgOperand DbgOp) {
771     return DbgOp.getKind() == SDDbgOperand::FRAMEIX;
772   };
773   // Returns true if the given operand is not itself an instruction reference
774   // but is a legal debug operand for a DBG_INSTR_REF.
775   auto IsNonInstrRefOp = [](SDDbgOperand DbgOp) {
776     return DbgOp.getKind() == SDDbgOperand::CONST;
777   };
778 
779   // If this variable location does not depend on any instructions or contains
780   // any stack locations, produce it as a standard debug value instead.
781   if (any_of(SD->getLocationOps(), IsInvalidOp) ||
782       all_of(SD->getLocationOps(), IsNonInstrRefOp)) {
783     if (SD->isVariadic())
784       return EmitDbgValueList(SD, VRBaseMap);
785     return EmitDbgValueFromSingleOp(SD, VRBaseMap);
786   }
787 
788   // Immediately fold any indirectness from the LLVM-IR intrinsic into the
789   // expression:
790   if (SD->isIndirect())
791     Expr = DIExpression::append(Expr, dwarf::DW_OP_deref);
792   // If this is not already a variadic expression, it must be modified to become
793   // one.
794   if (!SD->isVariadic())
795     Expr = DIExpression::convertToVariadicExpression(Expr);
796 
797   SmallVector<MachineOperand> MOs;
798 
799   // It may not be immediately possible to identify the MachineInstr that
800   // defines a VReg, it can depend for example on the order blocks are
801   // emitted in. When this happens, or when further analysis is needed later,
802   // produce an instruction like this:
803   //
804   //    DBG_INSTR_REF !123, !456, %0:gr64
805   //
806   // i.e., point the instruction at the vreg, and patch it up later in
807   // MachineFunction::finalizeDebugInstrRefs.
808   auto AddVRegOp = [&](unsigned VReg) {
809     MOs.push_back(MachineOperand::CreateReg(
810         /* Reg */ VReg, /* isDef */ false, /* isImp */ false,
811         /* isKill */ false, /* isDead */ false,
812         /* isUndef */ false, /* isEarlyClobber */ false,
813         /* SubReg */ 0, /* isDebug */ true));
814   };
815   unsigned OpCount = SD->getLocationOps().size();
816   for (unsigned OpIdx = 0; OpIdx < OpCount; ++OpIdx) {
817     SDDbgOperand DbgOperand = SD->getLocationOps()[OpIdx];
818 
819     // Try to find both the defined register and the instruction defining it.
820     MachineInstr *DefMI = nullptr;
821     unsigned VReg;
822 
823     if (DbgOperand.getKind() == SDDbgOperand::VREG) {
824       VReg = DbgOperand.getVReg();
825 
826       // No definition means that block hasn't been emitted yet. Leave a vreg
827       // reference to be fixed later.
828       if (!MRI->hasOneDef(VReg)) {
829         AddVRegOp(VReg);
830         continue;
831       }
832 
833       DefMI = &*MRI->def_instr_begin(VReg);
834     } else if (DbgOperand.getKind() == SDDbgOperand::SDNODE) {
835       // Look up the corresponding VReg for the given SDNode, if any.
836       SDNode *Node = DbgOperand.getSDNode();
837       SDValue Op = SDValue(Node, DbgOperand.getResNo());
838       DenseMap<SDValue, Register>::iterator I = VRBaseMap.find(Op);
839       // No VReg -> produce a DBG_VALUE $noreg instead.
840       if (I == VRBaseMap.end())
841         break;
842 
843       // Try to pick out a defining instruction at this point.
844       VReg = getVR(Op, VRBaseMap);
845 
846       // Again, if there's no instruction defining the VReg right now, fix it up
847       // later.
848       if (!MRI->hasOneDef(VReg)) {
849         AddVRegOp(VReg);
850         continue;
851       }
852 
853       DefMI = &*MRI->def_instr_begin(VReg);
854     } else {
855       assert(DbgOperand.getKind() == SDDbgOperand::CONST);
856       MOs.push_back(GetMOForConstDbgOp(DbgOperand));
857       continue;
858     }
859 
860     // Avoid copy like instructions: they don't define values, only move them.
861     // Leave a virtual-register reference until it can be fixed up later, to
862     // find the underlying value definition.
863     if (DefMI->isCopyLike() || TII->isCopyInstr(*DefMI)) {
864       AddVRegOp(VReg);
865       continue;
866     }
867 
868     // Find the operand number which defines the specified VReg.
869     unsigned OperandIdx = 0;
870     for (const auto &MO : DefMI->operands()) {
871       if (MO.isReg() && MO.isDef() && MO.getReg() == VReg)
872         break;
873       ++OperandIdx;
874     }
875     assert(OperandIdx < DefMI->getNumOperands());
876 
877     // Make the DBG_INSTR_REF refer to that instruction, and that operand.
878     unsigned InstrNum = DefMI->getDebugInstrNum();
879     MOs.push_back(MachineOperand::CreateDbgInstrRef(InstrNum, OperandIdx));
880   }
881 
882   // If we haven't created a valid MachineOperand for every DbgOp, abort and
883   // produce an undef DBG_VALUE.
884   if (MOs.size() != OpCount)
885     return EmitDbgNoLocation(SD);
886 
887   return BuildMI(*MF, DL, RefII, false, MOs, Var, Expr);
888 }
889 
890 MachineInstr *InstrEmitter::EmitDbgNoLocation(SDDbgValue *SD) {
891   // An invalidated SDNode must generate an undef DBG_VALUE: although the
892   // original value is no longer computed, earlier DBG_VALUEs live ranges
893   // must not leak into later code.
894   DIVariable *Var = SD->getVariable();
895   const DIExpression *Expr =
896       DIExpression::convertToUndefExpression(SD->getExpression());
897   DebugLoc DL = SD->getDebugLoc();
898   const MCInstrDesc &Desc = TII->get(TargetOpcode::DBG_VALUE);
899   return BuildMI(*MF, DL, Desc, false, 0U, Var, Expr);
900 }
901 
902 MachineInstr *
903 InstrEmitter::EmitDbgValueList(SDDbgValue *SD,
904                                DenseMap<SDValue, Register> &VRBaseMap) {
905   MDNode *Var = SD->getVariable();
906   DIExpression *Expr = SD->getExpression();
907   DebugLoc DL = SD->getDebugLoc();
908   // DBG_VALUE_LIST := "DBG_VALUE_LIST" var, expression, loc (, loc)*
909   const MCInstrDesc &DbgValDesc = TII->get(TargetOpcode::DBG_VALUE_LIST);
910   // Build the DBG_VALUE_LIST instruction base.
911   auto MIB = BuildMI(*MF, DL, DbgValDesc);
912   MIB.addMetadata(Var);
913   MIB.addMetadata(Expr);
914   AddDbgValueLocationOps(MIB, DbgValDesc, SD->getLocationOps(), VRBaseMap);
915   return &*MIB;
916 }
917 
918 MachineInstr *
919 InstrEmitter::EmitDbgValueFromSingleOp(SDDbgValue *SD,
920                                        DenseMap<SDValue, Register> &VRBaseMap) {
921   MDNode *Var = SD->getVariable();
922   DIExpression *Expr = SD->getExpression();
923   DebugLoc DL = SD->getDebugLoc();
924   const MCInstrDesc &II = TII->get(TargetOpcode::DBG_VALUE);
925 
926   assert(SD->getLocationOps().size() == 1 &&
927          "Non variadic dbg_value should have only one location op");
928 
929   // See about constant-folding the expression.
930   // Copy the location operand in case we replace it.
931   SmallVector<SDDbgOperand, 1> LocationOps(1, SD->getLocationOps()[0]);
932   if (Expr && LocationOps[0].getKind() == SDDbgOperand::CONST) {
933     const Value *V = LocationOps[0].getConst();
934     if (auto *C = dyn_cast<ConstantInt>(V)) {
935       std::tie(Expr, C) = Expr->constantFold(C);
936       LocationOps[0] = SDDbgOperand::fromConst(C);
937     }
938   }
939 
940   // Emit non-variadic dbg_value nodes as DBG_VALUE.
941   // DBG_VALUE := "DBG_VALUE" loc, isIndirect, var, expr
942   auto MIB = BuildMI(*MF, DL, II);
943   AddDbgValueLocationOps(MIB, II, LocationOps, VRBaseMap);
944 
945   if (SD->isIndirect())
946     MIB.addImm(0U);
947   else
948     MIB.addReg(0U);
949 
950   return MIB.addMetadata(Var).addMetadata(Expr);
951 }
952 
953 MachineInstr *
954 InstrEmitter::EmitDbgLabel(SDDbgLabel *SD) {
955   MDNode *Label = SD->getLabel();
956   DebugLoc DL = SD->getDebugLoc();
957   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
958          "Expected inlined-at fields to agree");
959 
960   const MCInstrDesc &II = TII->get(TargetOpcode::DBG_LABEL);
961   MachineInstrBuilder MIB = BuildMI(*MF, DL, II);
962   MIB.addMetadata(Label);
963 
964   return &*MIB;
965 }
966 
967 /// EmitMachineNode - Generate machine code for a target-specific node and
968 /// needed dependencies.
969 ///
970 void InstrEmitter::
971 EmitMachineNode(SDNode *Node, bool IsClone, bool IsCloned,
972                 DenseMap<SDValue, Register> &VRBaseMap) {
973   unsigned Opc = Node->getMachineOpcode();
974 
975   // Handle subreg insert/extract specially
976   if (Opc == TargetOpcode::EXTRACT_SUBREG ||
977       Opc == TargetOpcode::INSERT_SUBREG ||
978       Opc == TargetOpcode::SUBREG_TO_REG) {
979     EmitSubregNode(Node, VRBaseMap, IsClone, IsCloned);
980     return;
981   }
982 
983   // Handle COPY_TO_REGCLASS specially.
984   if (Opc == TargetOpcode::COPY_TO_REGCLASS) {
985     EmitCopyToRegClassNode(Node, VRBaseMap);
986     return;
987   }
988 
989   // Handle REG_SEQUENCE specially.
990   if (Opc == TargetOpcode::REG_SEQUENCE) {
991     EmitRegSequence(Node, VRBaseMap, IsClone, IsCloned);
992     return;
993   }
994 
995   if (Opc == TargetOpcode::IMPLICIT_DEF)
996     // We want a unique VR for each IMPLICIT_DEF use.
997     return;
998 
999   const MCInstrDesc &II = TII->get(Opc);
1000   unsigned NumResults = CountResults(Node);
1001   unsigned NumDefs = II.getNumDefs();
1002   const MCPhysReg *ScratchRegs = nullptr;
1003 
1004   // Handle STACKMAP and PATCHPOINT specially and then use the generic code.
1005   if (Opc == TargetOpcode::STACKMAP || Opc == TargetOpcode::PATCHPOINT) {
1006     // Stackmaps do not have arguments and do not preserve their calling
1007     // convention. However, to simplify runtime support, they clobber the same
1008     // scratch registers as AnyRegCC.
1009     unsigned CC = CallingConv::AnyReg;
1010     if (Opc == TargetOpcode::PATCHPOINT) {
1011       CC = Node->getConstantOperandVal(PatchPointOpers::CCPos);
1012       NumDefs = NumResults;
1013     }
1014     ScratchRegs = TLI->getScratchRegisters((CallingConv::ID) CC);
1015   } else if (Opc == TargetOpcode::STATEPOINT) {
1016     NumDefs = NumResults;
1017   }
1018 
1019   unsigned NumImpUses = 0;
1020   unsigned NodeOperands =
1021     countOperands(Node, II.getNumOperands() - NumDefs, NumImpUses);
1022   bool HasVRegVariadicDefs = !MF->getTarget().usesPhysRegsForValues() &&
1023                              II.isVariadic() && II.variadicOpsAreDefs();
1024   bool HasPhysRegOuts = NumResults > NumDefs && !II.implicit_defs().empty() &&
1025                         !HasVRegVariadicDefs;
1026 #ifndef NDEBUG
1027   unsigned NumMIOperands = NodeOperands + NumResults;
1028   if (II.isVariadic())
1029     assert(NumMIOperands >= II.getNumOperands() &&
1030            "Too few operands for a variadic node!");
1031   else
1032     assert(NumMIOperands >= II.getNumOperands() &&
1033            NumMIOperands <=
1034                II.getNumOperands() + II.implicit_defs().size() + NumImpUses &&
1035            "#operands for dag node doesn't match .td file!");
1036 #endif
1037 
1038   // Create the new machine instruction.
1039   MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II);
1040 
1041   // Add result register values for things that are defined by this
1042   // instruction.
1043   if (NumResults) {
1044     CreateVirtualRegisters(Node, MIB, II, IsClone, IsCloned, VRBaseMap);
1045 
1046     // Transfer any IR flags from the SDNode to the MachineInstr
1047     MachineInstr *MI = MIB.getInstr();
1048     const SDNodeFlags Flags = Node->getFlags();
1049     if (Flags.hasNoSignedZeros())
1050       MI->setFlag(MachineInstr::MIFlag::FmNsz);
1051 
1052     if (Flags.hasAllowReciprocal())
1053       MI->setFlag(MachineInstr::MIFlag::FmArcp);
1054 
1055     if (Flags.hasNoNaNs())
1056       MI->setFlag(MachineInstr::MIFlag::FmNoNans);
1057 
1058     if (Flags.hasNoInfs())
1059       MI->setFlag(MachineInstr::MIFlag::FmNoInfs);
1060 
1061     if (Flags.hasAllowContract())
1062       MI->setFlag(MachineInstr::MIFlag::FmContract);
1063 
1064     if (Flags.hasApproximateFuncs())
1065       MI->setFlag(MachineInstr::MIFlag::FmAfn);
1066 
1067     if (Flags.hasAllowReassociation())
1068       MI->setFlag(MachineInstr::MIFlag::FmReassoc);
1069 
1070     if (Flags.hasNoUnsignedWrap())
1071       MI->setFlag(MachineInstr::MIFlag::NoUWrap);
1072 
1073     if (Flags.hasNoSignedWrap())
1074       MI->setFlag(MachineInstr::MIFlag::NoSWrap);
1075 
1076     if (Flags.hasExact())
1077       MI->setFlag(MachineInstr::MIFlag::IsExact);
1078 
1079     if (Flags.hasNoFPExcept())
1080       MI->setFlag(MachineInstr::MIFlag::NoFPExcept);
1081   }
1082 
1083   // Emit all of the actual operands of this instruction, adding them to the
1084   // instruction as appropriate.
1085   bool HasOptPRefs = NumDefs > NumResults;
1086   assert((!HasOptPRefs || !HasPhysRegOuts) &&
1087          "Unable to cope with optional defs and phys regs defs!");
1088   unsigned NumSkip = HasOptPRefs ? NumDefs - NumResults : 0;
1089   for (unsigned i = NumSkip; i != NodeOperands; ++i)
1090     AddOperand(MIB, Node->getOperand(i), i-NumSkip+NumDefs, &II,
1091                VRBaseMap, /*IsDebug=*/false, IsClone, IsCloned);
1092 
1093   // Add scratch registers as implicit def and early clobber
1094   if (ScratchRegs)
1095     for (unsigned i = 0; ScratchRegs[i]; ++i)
1096       MIB.addReg(ScratchRegs[i], RegState::ImplicitDefine |
1097                                  RegState::EarlyClobber);
1098 
1099   // Set the memory reference descriptions of this instruction now that it is
1100   // part of the function.
1101   MIB.setMemRefs(cast<MachineSDNode>(Node)->memoperands());
1102 
1103   // Set the CFI type.
1104   MIB->setCFIType(*MF, Node->getCFIType());
1105 
1106   // Insert the instruction into position in the block. This needs to
1107   // happen before any custom inserter hook is called so that the
1108   // hook knows where in the block to insert the replacement code.
1109   MBB->insert(InsertPos, MIB);
1110 
1111   // The MachineInstr may also define physregs instead of virtregs.  These
1112   // physreg values can reach other instructions in different ways:
1113   //
1114   // 1. When there is a use of a Node value beyond the explicitly defined
1115   //    virtual registers, we emit a CopyFromReg for one of the implicitly
1116   //    defined physregs.  This only happens when HasPhysRegOuts is true.
1117   //
1118   // 2. A CopyFromReg reading a physreg may be glued to this instruction.
1119   //
1120   // 3. A glued instruction may implicitly use a physreg.
1121   //
1122   // 4. A glued instruction may use a RegisterSDNode operand.
1123   //
1124   // Collect all the used physreg defs, and make sure that any unused physreg
1125   // defs are marked as dead.
1126   SmallVector<Register, 8> UsedRegs;
1127 
1128   // Additional results must be physical register defs.
1129   if (HasPhysRegOuts) {
1130     for (unsigned i = NumDefs; i < NumResults; ++i) {
1131       Register Reg = II.implicit_defs()[i - NumDefs];
1132       if (!Node->hasAnyUseOfValue(i))
1133         continue;
1134       // This implicitly defined physreg has a use.
1135       UsedRegs.push_back(Reg);
1136       EmitCopyFromReg(Node, i, IsClone, Reg, VRBaseMap);
1137     }
1138   }
1139 
1140   // Scan the glue chain for any used physregs.
1141   if (Node->getValueType(Node->getNumValues()-1) == MVT::Glue) {
1142     for (SDNode *F = Node->getGluedUser(); F; F = F->getGluedUser()) {
1143       if (F->getOpcode() == ISD::CopyFromReg) {
1144         UsedRegs.push_back(cast<RegisterSDNode>(F->getOperand(1))->getReg());
1145         continue;
1146       } else if (F->getOpcode() == ISD::CopyToReg) {
1147         // Skip CopyToReg nodes that are internal to the glue chain.
1148         continue;
1149       }
1150       // Collect declared implicit uses.
1151       const MCInstrDesc &MCID = TII->get(F->getMachineOpcode());
1152       append_range(UsedRegs, MCID.implicit_uses());
1153       // In addition to declared implicit uses, we must also check for
1154       // direct RegisterSDNode operands.
1155       for (unsigned i = 0, e = F->getNumOperands(); i != e; ++i)
1156         if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(F->getOperand(i))) {
1157           Register Reg = R->getReg();
1158           if (Reg.isPhysical())
1159             UsedRegs.push_back(Reg);
1160         }
1161     }
1162   }
1163 
1164   // Finally mark unused registers as dead.
1165   if (!UsedRegs.empty() || !II.implicit_defs().empty() || II.hasOptionalDef())
1166     MIB->setPhysRegsDeadExcept(UsedRegs, *TRI);
1167 
1168   // STATEPOINT is too 'dynamic' to have meaningful machine description.
1169   // We have to manually tie operands.
1170   if (Opc == TargetOpcode::STATEPOINT && NumDefs > 0) {
1171     assert(!HasPhysRegOuts && "STATEPOINT mishandled");
1172     MachineInstr *MI = MIB;
1173     unsigned Def = 0;
1174     int First = StatepointOpers(MI).getFirstGCPtrIdx();
1175     assert(First > 0 && "Statepoint has Defs but no GC ptr list");
1176     unsigned Use = (unsigned)First;
1177     while (Def < NumDefs) {
1178       if (MI->getOperand(Use).isReg())
1179         MI->tieOperands(Def++, Use);
1180       Use = StackMaps::getNextMetaArgIdx(MI, Use);
1181     }
1182   }
1183 
1184   // Run post-isel target hook to adjust this instruction if needed.
1185   if (II.hasPostISelHook())
1186     TLI->AdjustInstrPostInstrSelection(*MIB, Node);
1187 }
1188 
1189 /// EmitSpecialNode - Generate machine code for a target-independent node and
1190 /// needed dependencies.
1191 void InstrEmitter::
1192 EmitSpecialNode(SDNode *Node, bool IsClone, bool IsCloned,
1193                 DenseMap<SDValue, Register> &VRBaseMap) {
1194   switch (Node->getOpcode()) {
1195   default:
1196 #ifndef NDEBUG
1197     Node->dump();
1198 #endif
1199     llvm_unreachable("This target-independent node should have been selected!");
1200   case ISD::EntryToken:
1201   case ISD::MERGE_VALUES:
1202   case ISD::TokenFactor: // fall thru
1203     break;
1204   case ISD::CopyToReg: {
1205     Register DestReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
1206     SDValue SrcVal = Node->getOperand(2);
1207     if (DestReg.isVirtual() && SrcVal.isMachineOpcode() &&
1208         SrcVal.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) {
1209       // Instead building a COPY to that vreg destination, build an
1210       // IMPLICIT_DEF instruction instead.
1211       BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
1212               TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
1213       break;
1214     }
1215     Register SrcReg;
1216     if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(SrcVal))
1217       SrcReg = R->getReg();
1218     else
1219       SrcReg = getVR(SrcVal, VRBaseMap);
1220 
1221     if (SrcReg == DestReg) // Coalesced away the copy? Ignore.
1222       break;
1223 
1224     BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
1225             DestReg).addReg(SrcReg);
1226     break;
1227   }
1228   case ISD::CopyFromReg: {
1229     unsigned SrcReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
1230     EmitCopyFromReg(Node, 0, IsClone, SrcReg, VRBaseMap);
1231     break;
1232   }
1233   case ISD::EH_LABEL:
1234   case ISD::ANNOTATION_LABEL: {
1235     unsigned Opc = (Node->getOpcode() == ISD::EH_LABEL)
1236                        ? TargetOpcode::EH_LABEL
1237                        : TargetOpcode::ANNOTATION_LABEL;
1238     MCSymbol *S = cast<LabelSDNode>(Node)->getLabel();
1239     BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
1240             TII->get(Opc)).addSym(S);
1241     break;
1242   }
1243 
1244   case ISD::LIFETIME_START:
1245   case ISD::LIFETIME_END: {
1246     unsigned TarOp = (Node->getOpcode() == ISD::LIFETIME_START)
1247                          ? TargetOpcode::LIFETIME_START
1248                          : TargetOpcode::LIFETIME_END;
1249     auto *FI = cast<FrameIndexSDNode>(Node->getOperand(1));
1250     BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TarOp))
1251     .addFrameIndex(FI->getIndex());
1252     break;
1253   }
1254 
1255   case ISD::PSEUDO_PROBE: {
1256     unsigned TarOp = TargetOpcode::PSEUDO_PROBE;
1257     auto Guid = cast<PseudoProbeSDNode>(Node)->getGuid();
1258     auto Index = cast<PseudoProbeSDNode>(Node)->getIndex();
1259     auto Attr = cast<PseudoProbeSDNode>(Node)->getAttributes();
1260 
1261     BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TarOp))
1262         .addImm(Guid)
1263         .addImm(Index)
1264         .addImm((uint8_t)PseudoProbeType::Block)
1265         .addImm(Attr);
1266     break;
1267   }
1268 
1269   case ISD::INLINEASM:
1270   case ISD::INLINEASM_BR: {
1271     unsigned NumOps = Node->getNumOperands();
1272     if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
1273       --NumOps;  // Ignore the glue operand.
1274 
1275     // Create the inline asm machine instruction.
1276     unsigned TgtOpc = Node->getOpcode() == ISD::INLINEASM_BR
1277                           ? TargetOpcode::INLINEASM_BR
1278                           : TargetOpcode::INLINEASM;
1279     MachineInstrBuilder MIB =
1280         BuildMI(*MF, Node->getDebugLoc(), TII->get(TgtOpc));
1281 
1282     // Add the asm string as an external symbol operand.
1283     SDValue AsmStrV = Node->getOperand(InlineAsm::Op_AsmString);
1284     const char *AsmStr = cast<ExternalSymbolSDNode>(AsmStrV)->getSymbol();
1285     MIB.addExternalSymbol(AsmStr);
1286 
1287     // Add the HasSideEffect, isAlignStack, AsmDialect, MayLoad and MayStore
1288     // bits.
1289     int64_t ExtraInfo =
1290       cast<ConstantSDNode>(Node->getOperand(InlineAsm::Op_ExtraInfo))->
1291                           getZExtValue();
1292     MIB.addImm(ExtraInfo);
1293 
1294     // Remember to operand index of the group flags.
1295     SmallVector<unsigned, 8> GroupIdx;
1296 
1297     // Remember registers that are part of early-clobber defs.
1298     SmallVector<unsigned, 8> ECRegs;
1299 
1300     // Add all of the operand registers to the instruction.
1301     for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
1302       unsigned Flags =
1303         cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
1304       const unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
1305 
1306       GroupIdx.push_back(MIB->getNumOperands());
1307       MIB.addImm(Flags);
1308       ++i;  // Skip the ID value.
1309 
1310       switch (InlineAsm::getKind(Flags)) {
1311       default: llvm_unreachable("Bad flags!");
1312         case InlineAsm::Kind_RegDef:
1313         for (unsigned j = 0; j != NumVals; ++j, ++i) {
1314           Register Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
1315           // FIXME: Add dead flags for physical and virtual registers defined.
1316           // For now, mark physical register defs as implicit to help fast
1317           // regalloc. This makes inline asm look a lot like calls.
1318           MIB.addReg(Reg, RegState::Define | getImplRegState(Reg.isPhysical()));
1319         }
1320         break;
1321       case InlineAsm::Kind_RegDefEarlyClobber:
1322       case InlineAsm::Kind_Clobber:
1323         for (unsigned j = 0; j != NumVals; ++j, ++i) {
1324           Register Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
1325           MIB.addReg(Reg, RegState::Define | RegState::EarlyClobber |
1326                               getImplRegState(Reg.isPhysical()));
1327           ECRegs.push_back(Reg);
1328         }
1329         break;
1330       case InlineAsm::Kind_RegUse:  // Use of register.
1331       case InlineAsm::Kind_Imm:  // Immediate.
1332       case InlineAsm::Kind_Mem:  // Non-function addressing mode.
1333         // The addressing mode has been selected, just add all of the
1334         // operands to the machine instruction.
1335         for (unsigned j = 0; j != NumVals; ++j, ++i)
1336           AddOperand(MIB, Node->getOperand(i), 0, nullptr, VRBaseMap,
1337                      /*IsDebug=*/false, IsClone, IsCloned);
1338 
1339         // Manually set isTied bits.
1340         if (InlineAsm::getKind(Flags) == InlineAsm::Kind_RegUse) {
1341           unsigned DefGroup = 0;
1342           if (InlineAsm::isUseOperandTiedToDef(Flags, DefGroup)) {
1343             unsigned DefIdx = GroupIdx[DefGroup] + 1;
1344             unsigned UseIdx = GroupIdx.back() + 1;
1345             for (unsigned j = 0; j != NumVals; ++j)
1346               MIB->tieOperands(DefIdx + j, UseIdx + j);
1347           }
1348         }
1349         break;
1350       case InlineAsm::Kind_Func: // Function addressing mode.
1351         for (unsigned j = 0; j != NumVals; ++j, ++i) {
1352           SDValue Op = Node->getOperand(i);
1353           AddOperand(MIB, Op, 0, nullptr, VRBaseMap,
1354                      /*IsDebug=*/false, IsClone, IsCloned);
1355 
1356           // Adjust Target Flags for function reference.
1357           if (auto *TGA = dyn_cast<GlobalAddressSDNode>(Op)) {
1358             unsigned NewFlags =
1359                 MF->getSubtarget().classifyGlobalFunctionReference(
1360                     TGA->getGlobal());
1361             unsigned LastIdx = MIB.getInstr()->getNumOperands() - 1;
1362             MIB.getInstr()->getOperand(LastIdx).setTargetFlags(NewFlags);
1363           }
1364         }
1365       }
1366     }
1367 
1368     // GCC inline assembly allows input operands to also be early-clobber
1369     // output operands (so long as the operand is written only after it's
1370     // used), but this does not match the semantics of our early-clobber flag.
1371     // If an early-clobber operand register is also an input operand register,
1372     // then remove the early-clobber flag.
1373     for (unsigned Reg : ECRegs) {
1374       if (MIB->readsRegister(Reg, TRI)) {
1375         MachineOperand *MO =
1376             MIB->findRegisterDefOperand(Reg, false, false, TRI);
1377         assert(MO && "No def operand for clobbered register?");
1378         MO->setIsEarlyClobber(false);
1379       }
1380     }
1381 
1382     // Get the mdnode from the asm if it exists and add it to the instruction.
1383     SDValue MDV = Node->getOperand(InlineAsm::Op_MDNode);
1384     const MDNode *MD = cast<MDNodeSDNode>(MDV)->getMD();
1385     if (MD)
1386       MIB.addMetadata(MD);
1387 
1388     MBB->insert(InsertPos, MIB);
1389     break;
1390   }
1391   }
1392 }
1393 
1394 /// InstrEmitter - Construct an InstrEmitter and set it to start inserting
1395 /// at the given position in the given block.
1396 InstrEmitter::InstrEmitter(const TargetMachine &TM, MachineBasicBlock *mbb,
1397                            MachineBasicBlock::iterator insertpos)
1398     : MF(mbb->getParent()), MRI(&MF->getRegInfo()),
1399       TII(MF->getSubtarget().getInstrInfo()),
1400       TRI(MF->getSubtarget().getRegisterInfo()),
1401       TLI(MF->getSubtarget().getTargetLowering()), MBB(mbb),
1402       InsertPos(insertpos) {
1403   EmitDebugInstrRefs = mbb->getParent()->useDebugInstrRef();
1404 }
1405