1 //===-- LegalizeTypes.cpp - Common code for DAG type legalizer ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SelectionDAG::LegalizeTypes method.  It transforms
10 // an arbitrary well-formed SelectionDAG to only consist of legal types.  This
11 // is common code shared among the LegalizeTypes*.cpp files.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "LegalizeTypes.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/IR/DataLayout.h"
18 #include "llvm/Support/CommandLine.h"
19 #include "llvm/Support/ErrorHandling.h"
20 #include "llvm/Support/raw_ostream.h"
21 using namespace llvm;
22 
23 #define DEBUG_TYPE "legalize-types"
24 
25 static cl::opt<bool>
26 EnableExpensiveChecks("enable-legalize-types-checking", cl::Hidden);
27 
28 /// Do extensive, expensive, basic correctness checking.
29 void DAGTypeLegalizer::PerformExpensiveChecks() {
30   // If a node is not processed, then none of its values should be mapped by any
31   // of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
32 
33   // If a node is processed, then each value with an illegal type must be mapped
34   // by exactly one of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
35   // Values with a legal type may be mapped by ReplacedValues, but not by any of
36   // the other maps.
37 
38   // Note that these invariants may not hold momentarily when processing a node:
39   // the node being processed may be put in a map before being marked Processed.
40 
41   // Note that it is possible to have nodes marked NewNode in the DAG.  This can
42   // occur in two ways.  Firstly, a node may be created during legalization but
43   // never passed to the legalization core.  This is usually due to the implicit
44   // folding that occurs when using the DAG.getNode operators.  Secondly, a new
45   // node may be passed to the legalization core, but when analyzed may morph
46   // into a different node, leaving the original node as a NewNode in the DAG.
47   // A node may morph if one of its operands changes during analysis.  Whether
48   // it actually morphs or not depends on whether, after updating its operands,
49   // it is equivalent to an existing node: if so, it morphs into that existing
50   // node (CSE).  An operand can change during analysis if the operand is a new
51   // node that morphs, or it is a processed value that was mapped to some other
52   // value (as recorded in ReplacedValues) in which case the operand is turned
53   // into that other value.  If a node morphs then the node it morphed into will
54   // be used instead of it for legalization, however the original node continues
55   // to live on in the DAG.
56   // The conclusion is that though there may be nodes marked NewNode in the DAG,
57   // all uses of such nodes are also marked NewNode: the result is a fungus of
58   // NewNodes growing on top of the useful nodes, and perhaps using them, but
59   // not used by them.
60 
61   // If a value is mapped by ReplacedValues, then it must have no uses, except
62   // by nodes marked NewNode (see above).
63 
64   // The final node obtained by mapping by ReplacedValues is not marked NewNode.
65   // Note that ReplacedValues should be applied iteratively.
66 
67   // Note that the ReplacedValues map may also map deleted nodes (by iterating
68   // over the DAG we never dereference deleted nodes).  This means that it may
69   // also map nodes marked NewNode if the deallocated memory was reallocated as
70   // another node, and that new node was not seen by the LegalizeTypes machinery
71   // (for example because it was created but not used).  In general, we cannot
72   // distinguish between new nodes and deleted nodes.
73   SmallVector<SDNode*, 16> NewNodes;
74   for (SDNode &Node : DAG.allnodes()) {
75     // Remember nodes marked NewNode - they are subject to extra checking below.
76     if (Node.getNodeId() == NewNode)
77       NewNodes.push_back(&Node);
78 
79     for (unsigned i = 0, e = Node.getNumValues(); i != e; ++i) {
80       SDValue Res(&Node, i);
81       bool Failed = false;
82       // Don't create a value in map.
83       auto ResId = ValueToIdMap.lookup(Res);
84 
85       unsigned Mapped = 0;
86       if (ResId) {
87         auto I = ReplacedValues.find(ResId);
88         if (I != ReplacedValues.end()) {
89           Mapped |= 1;
90           // Check that remapped values are only used by nodes marked NewNode.
91           for (SDNode::use_iterator UI = Node.use_begin(), UE = Node.use_end();
92                UI != UE; ++UI)
93             if (UI.getUse().getResNo() == i)
94               assert(UI->getNodeId() == NewNode &&
95                      "Remapped value has non-trivial use!");
96 
97           // Check that the final result of applying ReplacedValues is not
98           // marked NewNode.
99           auto NewValId = I->second;
100           I = ReplacedValues.find(NewValId);
101           while (I != ReplacedValues.end()) {
102             NewValId = I->second;
103             I = ReplacedValues.find(NewValId);
104           }
105           SDValue NewVal = getSDValue(NewValId);
106           (void)NewVal;
107           assert(NewVal.getNode()->getNodeId() != NewNode &&
108                  "ReplacedValues maps to a new node!");
109         }
110         if (PromotedIntegers.count(ResId))
111           Mapped |= 2;
112         if (SoftenedFloats.count(ResId))
113           Mapped |= 4;
114         if (ScalarizedVectors.count(ResId))
115           Mapped |= 8;
116         if (ExpandedIntegers.count(ResId))
117           Mapped |= 16;
118         if (ExpandedFloats.count(ResId))
119           Mapped |= 32;
120         if (SplitVectors.count(ResId))
121           Mapped |= 64;
122         if (WidenedVectors.count(ResId))
123           Mapped |= 128;
124         if (PromotedFloats.count(ResId))
125           Mapped |= 256;
126         if (SoftPromotedHalfs.count(ResId))
127           Mapped |= 512;
128       }
129 
130       if (Node.getNodeId() != Processed) {
131         // Since we allow ReplacedValues to map deleted nodes, it may map nodes
132         // marked NewNode too, since a deleted node may have been reallocated as
133         // another node that has not been seen by the LegalizeTypes machinery.
134         if ((Node.getNodeId() == NewNode && Mapped > 1) ||
135             (Node.getNodeId() != NewNode && Mapped != 0)) {
136           dbgs() << "Unprocessed value in a map!";
137           Failed = true;
138         }
139       } else if (isTypeLegal(Res.getValueType()) || IgnoreNodeResults(&Node)) {
140         if (Mapped > 1) {
141           dbgs() << "Value with legal type was transformed!";
142           Failed = true;
143         }
144       } else {
145         if (Mapped == 0) {
146           SDValue NodeById = IdToValueMap.lookup(ResId);
147           // It is possible the node has been remapped to another node and had
148           // its Id updated in the Value to Id table. The node it remapped to
149           // may not have been processed yet. Look up the Id in the Id to Value
150           // table and re-check the Processed state. If the node hasn't been
151           // remapped we'll get the same state as we got earlier.
152           if (NodeById->getNodeId() == Processed) {
153             dbgs() << "Processed value not in any map!";
154             Failed = true;
155           }
156         } else if (Mapped & (Mapped - 1)) {
157           dbgs() << "Value in multiple maps!";
158           Failed = true;
159         }
160       }
161 
162       if (Failed) {
163         if (Mapped & 1)
164           dbgs() << " ReplacedValues";
165         if (Mapped & 2)
166           dbgs() << " PromotedIntegers";
167         if (Mapped & 4)
168           dbgs() << " SoftenedFloats";
169         if (Mapped & 8)
170           dbgs() << " ScalarizedVectors";
171         if (Mapped & 16)
172           dbgs() << " ExpandedIntegers";
173         if (Mapped & 32)
174           dbgs() << " ExpandedFloats";
175         if (Mapped & 64)
176           dbgs() << " SplitVectors";
177         if (Mapped & 128)
178           dbgs() << " WidenedVectors";
179         if (Mapped & 256)
180           dbgs() << " PromotedFloats";
181         if (Mapped & 512)
182           dbgs() << " SoftPromoteHalfs";
183         dbgs() << "\n";
184         llvm_unreachable(nullptr);
185       }
186     }
187   }
188 
189 #ifndef NDEBUG
190   // Checked that NewNodes are only used by other NewNodes.
191   for (unsigned i = 0, e = NewNodes.size(); i != e; ++i) {
192     SDNode *N = NewNodes[i];
193     for (SDNode *U : N->uses())
194       assert(U->getNodeId() == NewNode && "NewNode used by non-NewNode!");
195   }
196 #endif
197 }
198 
199 /// This is the main entry point for the type legalizer. This does a top-down
200 /// traversal of the dag, legalizing types as it goes. Returns "true" if it made
201 /// any changes.
202 bool DAGTypeLegalizer::run() {
203   bool Changed = false;
204 
205   // Create a dummy node (which is not added to allnodes), that adds a reference
206   // to the root node, preventing it from being deleted, and tracking any
207   // changes of the root.
208   HandleSDNode Dummy(DAG.getRoot());
209   Dummy.setNodeId(Unanalyzed);
210 
211   // The root of the dag may dangle to deleted nodes until the type legalizer is
212   // done.  Set it to null to avoid confusion.
213   DAG.setRoot(SDValue());
214 
215   // Walk all nodes in the graph, assigning them a NodeId of 'ReadyToProcess'
216   // (and remembering them) if they are leaves and assigning 'Unanalyzed' if
217   // non-leaves.
218   for (SDNode &Node : DAG.allnodes()) {
219     if (Node.getNumOperands() == 0) {
220       Node.setNodeId(ReadyToProcess);
221       Worklist.push_back(&Node);
222     } else {
223       Node.setNodeId(Unanalyzed);
224     }
225   }
226 
227   // Now that we have a set of nodes to process, handle them all.
228   while (!Worklist.empty()) {
229 #ifndef EXPENSIVE_CHECKS
230     if (EnableExpensiveChecks)
231 #endif
232       PerformExpensiveChecks();
233 
234     SDNode *N = Worklist.pop_back_val();
235     assert(N->getNodeId() == ReadyToProcess &&
236            "Node should be ready if on worklist!");
237 
238     LLVM_DEBUG(dbgs() << "Legalizing node: "; N->dump(&DAG));
239     if (IgnoreNodeResults(N)) {
240       LLVM_DEBUG(dbgs() << "Ignoring node results\n");
241       goto ScanOperands;
242     }
243 
244     // Scan the values produced by the node, checking to see if any result
245     // types are illegal.
246     for (unsigned i = 0, NumResults = N->getNumValues(); i < NumResults; ++i) {
247       EVT ResultVT = N->getValueType(i);
248       LLVM_DEBUG(dbgs() << "Analyzing result type: " << ResultVT << "\n");
249       switch (getTypeAction(ResultVT)) {
250       case TargetLowering::TypeLegal:
251         LLVM_DEBUG(dbgs() << "Legal result type\n");
252         break;
253       case TargetLowering::TypeScalarizeScalableVector:
254         report_fatal_error(
255             "Scalarization of scalable vectors is not supported.");
256       // The following calls must take care of *all* of the node's results,
257       // not just the illegal result they were passed (this includes results
258       // with a legal type).  Results can be remapped using ReplaceValueWith,
259       // or their promoted/expanded/etc values registered in PromotedIntegers,
260       // ExpandedIntegers etc.
261       case TargetLowering::TypePromoteInteger:
262         PromoteIntegerResult(N, i);
263         Changed = true;
264         goto NodeDone;
265       case TargetLowering::TypeExpandInteger:
266         ExpandIntegerResult(N, i);
267         Changed = true;
268         goto NodeDone;
269       case TargetLowering::TypeSoftenFloat:
270         SoftenFloatResult(N, i);
271         Changed = true;
272         goto NodeDone;
273       case TargetLowering::TypeExpandFloat:
274         ExpandFloatResult(N, i);
275         Changed = true;
276         goto NodeDone;
277       case TargetLowering::TypeScalarizeVector:
278         ScalarizeVectorResult(N, i);
279         Changed = true;
280         goto NodeDone;
281       case TargetLowering::TypeSplitVector:
282         SplitVectorResult(N, i);
283         Changed = true;
284         goto NodeDone;
285       case TargetLowering::TypeWidenVector:
286         WidenVectorResult(N, i);
287         Changed = true;
288         goto NodeDone;
289       case TargetLowering::TypePromoteFloat:
290         PromoteFloatResult(N, i);
291         Changed = true;
292         goto NodeDone;
293       case TargetLowering::TypeSoftPromoteHalf:
294         SoftPromoteHalfResult(N, i);
295         Changed = true;
296         goto NodeDone;
297       }
298     }
299 
300 ScanOperands:
301     // Scan the operand list for the node, handling any nodes with operands that
302     // are illegal.
303     {
304     unsigned NumOperands = N->getNumOperands();
305     bool NeedsReanalyzing = false;
306     unsigned i;
307     for (i = 0; i != NumOperands; ++i) {
308       if (IgnoreNodeResults(N->getOperand(i).getNode()))
309         continue;
310 
311       const auto &Op = N->getOperand(i);
312       LLVM_DEBUG(dbgs() << "Analyzing operand: "; Op.dump(&DAG));
313       EVT OpVT = Op.getValueType();
314       switch (getTypeAction(OpVT)) {
315       case TargetLowering::TypeLegal:
316         LLVM_DEBUG(dbgs() << "Legal operand\n");
317         continue;
318       case TargetLowering::TypeScalarizeScalableVector:
319         report_fatal_error(
320             "Scalarization of scalable vectors is not supported.");
321       // The following calls must either replace all of the node's results
322       // using ReplaceValueWith, and return "false"; or update the node's
323       // operands in place, and return "true".
324       case TargetLowering::TypePromoteInteger:
325         NeedsReanalyzing = PromoteIntegerOperand(N, i);
326         Changed = true;
327         break;
328       case TargetLowering::TypeExpandInteger:
329         NeedsReanalyzing = ExpandIntegerOperand(N, i);
330         Changed = true;
331         break;
332       case TargetLowering::TypeSoftenFloat:
333         NeedsReanalyzing = SoftenFloatOperand(N, i);
334         Changed = true;
335         break;
336       case TargetLowering::TypeExpandFloat:
337         NeedsReanalyzing = ExpandFloatOperand(N, i);
338         Changed = true;
339         break;
340       case TargetLowering::TypeScalarizeVector:
341         NeedsReanalyzing = ScalarizeVectorOperand(N, i);
342         Changed = true;
343         break;
344       case TargetLowering::TypeSplitVector:
345         NeedsReanalyzing = SplitVectorOperand(N, i);
346         Changed = true;
347         break;
348       case TargetLowering::TypeWidenVector:
349         NeedsReanalyzing = WidenVectorOperand(N, i);
350         Changed = true;
351         break;
352       case TargetLowering::TypePromoteFloat:
353         NeedsReanalyzing = PromoteFloatOperand(N, i);
354         Changed = true;
355         break;
356       case TargetLowering::TypeSoftPromoteHalf:
357         NeedsReanalyzing = SoftPromoteHalfOperand(N, i);
358         Changed = true;
359         break;
360       }
361       break;
362     }
363 
364     // The sub-method updated N in place.  Check to see if any operands are new,
365     // and if so, mark them.  If the node needs revisiting, don't add all users
366     // to the worklist etc.
367     if (NeedsReanalyzing) {
368       assert(N->getNodeId() == ReadyToProcess && "Node ID recalculated?");
369 
370       N->setNodeId(NewNode);
371       // Recompute the NodeId and correct processed operands, adding the node to
372       // the worklist if ready.
373       SDNode *M = AnalyzeNewNode(N);
374       if (M == N)
375         // The node didn't morph - nothing special to do, it will be revisited.
376         continue;
377 
378       // The node morphed - this is equivalent to legalizing by replacing every
379       // value of N with the corresponding value of M.  So do that now.
380       assert(N->getNumValues() == M->getNumValues() &&
381              "Node morphing changed the number of results!");
382       for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
383         // Replacing the value takes care of remapping the new value.
384         ReplaceValueWith(SDValue(N, i), SDValue(M, i));
385       assert(N->getNodeId() == NewNode && "Unexpected node state!");
386       // The node continues to live on as part of the NewNode fungus that
387       // grows on top of the useful nodes.  Nothing more needs to be done
388       // with it - move on to the next node.
389       continue;
390     }
391 
392     if (i == NumOperands) {
393       LLVM_DEBUG(dbgs() << "Legally typed node: "; N->dump(&DAG);
394                  dbgs() << "\n");
395     }
396     }
397 NodeDone:
398 
399     // If we reach here, the node was processed, potentially creating new nodes.
400     // Mark it as processed and add its users to the worklist as appropriate.
401     assert(N->getNodeId() == ReadyToProcess && "Node ID recalculated?");
402     N->setNodeId(Processed);
403 
404     for (SDNode *User : N->uses()) {
405       int NodeId = User->getNodeId();
406 
407       // This node has two options: it can either be a new node or its Node ID
408       // may be a count of the number of operands it has that are not ready.
409       if (NodeId > 0) {
410         User->setNodeId(NodeId-1);
411 
412         // If this was the last use it was waiting on, add it to the ready list.
413         if (NodeId-1 == ReadyToProcess)
414           Worklist.push_back(User);
415         continue;
416       }
417 
418       // If this is an unreachable new node, then ignore it.  If it ever becomes
419       // reachable by being used by a newly created node then it will be handled
420       // by AnalyzeNewNode.
421       if (NodeId == NewNode)
422         continue;
423 
424       // Otherwise, this node is new: this is the first operand of it that
425       // became ready.  Its new NodeId is the number of operands it has minus 1
426       // (as this node is now processed).
427       assert(NodeId == Unanalyzed && "Unknown node ID!");
428       User->setNodeId(User->getNumOperands() - 1);
429 
430       // If the node only has a single operand, it is now ready.
431       if (User->getNumOperands() == 1)
432         Worklist.push_back(User);
433     }
434   }
435 
436 #ifndef EXPENSIVE_CHECKS
437   if (EnableExpensiveChecks)
438 #endif
439     PerformExpensiveChecks();
440 
441   // If the root changed (e.g. it was a dead load) update the root.
442   DAG.setRoot(Dummy.getValue());
443 
444   // Remove dead nodes.  This is important to do for cleanliness but also before
445   // the checking loop below.  Implicit folding by the DAG.getNode operators and
446   // node morphing can cause unreachable nodes to be around with their flags set
447   // to new.
448   DAG.RemoveDeadNodes();
449 
450   // In a debug build, scan all the nodes to make sure we found them all.  This
451   // ensures that there are no cycles and that everything got processed.
452 #ifndef NDEBUG
453   for (SDNode &Node : DAG.allnodes()) {
454     bool Failed = false;
455 
456     // Check that all result types are legal.
457     if (!IgnoreNodeResults(&Node))
458       for (unsigned i = 0, NumVals = Node.getNumValues(); i < NumVals; ++i)
459         if (!isTypeLegal(Node.getValueType(i))) {
460           dbgs() << "Result type " << i << " illegal: ";
461           Node.dump(&DAG);
462           Failed = true;
463         }
464 
465     // Check that all operand types are legal.
466     for (unsigned i = 0, NumOps = Node.getNumOperands(); i < NumOps; ++i)
467       if (!IgnoreNodeResults(Node.getOperand(i).getNode()) &&
468           !isTypeLegal(Node.getOperand(i).getValueType())) {
469         dbgs() << "Operand type " << i << " illegal: ";
470         Node.getOperand(i).dump(&DAG);
471         Failed = true;
472       }
473 
474     if (Node.getNodeId() != Processed) {
475        if (Node.getNodeId() == NewNode)
476          dbgs() << "New node not analyzed?\n";
477        else if (Node.getNodeId() == Unanalyzed)
478          dbgs() << "Unanalyzed node not noticed?\n";
479        else if (Node.getNodeId() > 0)
480          dbgs() << "Operand not processed?\n";
481        else if (Node.getNodeId() == ReadyToProcess)
482          dbgs() << "Not added to worklist?\n";
483        Failed = true;
484     }
485 
486     if (Failed) {
487       Node.dump(&DAG); dbgs() << "\n";
488       llvm_unreachable(nullptr);
489     }
490   }
491 #endif
492 
493   return Changed;
494 }
495 
496 /// The specified node is the root of a subtree of potentially new nodes.
497 /// Correct any processed operands (this may change the node) and calculate the
498 /// NodeId. If the node itself changes to a processed node, it is not remapped -
499 /// the caller needs to take care of this. Returns the potentially changed node.
500 SDNode *DAGTypeLegalizer::AnalyzeNewNode(SDNode *N) {
501   // If this was an existing node that is already done, we're done.
502   if (N->getNodeId() != NewNode && N->getNodeId() != Unanalyzed)
503     return N;
504 
505   // Okay, we know that this node is new.  Recursively walk all of its operands
506   // to see if they are new also.  The depth of this walk is bounded by the size
507   // of the new tree that was constructed (usually 2-3 nodes), so we don't worry
508   // about revisiting of nodes.
509   //
510   // As we walk the operands, keep track of the number of nodes that are
511   // processed.  If non-zero, this will become the new nodeid of this node.
512   // Operands may morph when they are analyzed.  If so, the node will be
513   // updated after all operands have been analyzed.  Since this is rare,
514   // the code tries to minimize overhead in the non-morphing case.
515 
516   std::vector<SDValue> NewOps;
517   unsigned NumProcessed = 0;
518   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
519     SDValue OrigOp = N->getOperand(i);
520     SDValue Op = OrigOp;
521 
522     AnalyzeNewValue(Op); // Op may morph.
523 
524     if (Op.getNode()->getNodeId() == Processed)
525       ++NumProcessed;
526 
527     if (!NewOps.empty()) {
528       // Some previous operand changed.  Add this one to the list.
529       NewOps.push_back(Op);
530     } else if (Op != OrigOp) {
531       // This is the first operand to change - add all operands so far.
532       NewOps.insert(NewOps.end(), N->op_begin(), N->op_begin() + i);
533       NewOps.push_back(Op);
534     }
535   }
536 
537   // Some operands changed - update the node.
538   if (!NewOps.empty()) {
539     SDNode *M = DAG.UpdateNodeOperands(N, NewOps);
540     if (M != N) {
541       // The node morphed into a different node.  Normally for this to happen
542       // the original node would have to be marked NewNode.  However this can
543       // in theory momentarily not be the case while ReplaceValueWith is doing
544       // its stuff.  Mark the original node NewNode to help basic correctness
545       // checking.
546       N->setNodeId(NewNode);
547       if (M->getNodeId() != NewNode && M->getNodeId() != Unanalyzed)
548         // It morphed into a previously analyzed node - nothing more to do.
549         return M;
550 
551       // It morphed into a different new node.  Do the equivalent of passing
552       // it to AnalyzeNewNode: expunge it and calculate the NodeId.  No need
553       // to remap the operands, since they are the same as the operands we
554       // remapped above.
555       N = M;
556     }
557   }
558 
559   // Calculate the NodeId.
560   N->setNodeId(N->getNumOperands() - NumProcessed);
561   if (N->getNodeId() == ReadyToProcess)
562     Worklist.push_back(N);
563 
564   return N;
565 }
566 
567 /// Call AnalyzeNewNode, updating the node in Val if needed.
568 /// If the node changes to a processed node, then remap it.
569 void DAGTypeLegalizer::AnalyzeNewValue(SDValue &Val) {
570   Val.setNode(AnalyzeNewNode(Val.getNode()));
571   if (Val.getNode()->getNodeId() == Processed)
572     // We were passed a processed node, or it morphed into one - remap it.
573     RemapValue(Val);
574 }
575 
576 /// If the specified value was already legalized to another value,
577 /// replace it by that value.
578 void DAGTypeLegalizer::RemapValue(SDValue &V) {
579   auto Id = getTableId(V);
580   V = getSDValue(Id);
581 }
582 
583 void DAGTypeLegalizer::RemapId(TableId &Id) {
584   auto I = ReplacedValues.find(Id);
585   if (I != ReplacedValues.end()) {
586     assert(Id != I->second && "Id is mapped to itself.");
587     // Use path compression to speed up future lookups if values get multiply
588     // replaced with other values.
589     RemapId(I->second);
590     Id = I->second;
591 
592     // Note that N = IdToValueMap[Id] it is possible to have
593     // N.getNode()->getNodeId() == NewNode at this point because it is possible
594     // for a node to be put in the map before being processed.
595   }
596 }
597 
598 namespace {
599   /// This class is a DAGUpdateListener that listens for updates to nodes and
600   /// recomputes their ready state.
601   class NodeUpdateListener : public SelectionDAG::DAGUpdateListener {
602     DAGTypeLegalizer &DTL;
603     SmallSetVector<SDNode*, 16> &NodesToAnalyze;
604   public:
605     explicit NodeUpdateListener(DAGTypeLegalizer &dtl,
606                                 SmallSetVector<SDNode*, 16> &nta)
607       : SelectionDAG::DAGUpdateListener(dtl.getDAG()),
608         DTL(dtl), NodesToAnalyze(nta) {}
609 
610     void NodeDeleted(SDNode *N, SDNode *E) override {
611       assert(N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
612              N->getNodeId() != DAGTypeLegalizer::Processed &&
613              "Invalid node ID for RAUW deletion!");
614       // It is possible, though rare, for the deleted node N to occur as a
615       // target in a map, so note the replacement N -> E in ReplacedValues.
616       assert(E && "Node not replaced?");
617       DTL.NoteDeletion(N, E);
618 
619       // In theory the deleted node could also have been scheduled for analysis.
620       // So remove it from the set of nodes which will be analyzed.
621       NodesToAnalyze.remove(N);
622 
623       // In general nothing needs to be done for E, since it didn't change but
624       // only gained new uses.  However N -> E was just added to ReplacedValues,
625       // and the result of a ReplacedValues mapping is not allowed to be marked
626       // NewNode.  So if E is marked NewNode, then it needs to be analyzed.
627       if (E->getNodeId() == DAGTypeLegalizer::NewNode)
628         NodesToAnalyze.insert(E);
629     }
630 
631     void NodeUpdated(SDNode *N) override {
632       // Node updates can mean pretty much anything.  It is possible that an
633       // operand was set to something already processed (f.e.) in which case
634       // this node could become ready.  Recompute its flags.
635       assert(N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
636              N->getNodeId() != DAGTypeLegalizer::Processed &&
637              "Invalid node ID for RAUW deletion!");
638       N->setNodeId(DAGTypeLegalizer::NewNode);
639       NodesToAnalyze.insert(N);
640     }
641   };
642 }
643 
644 
645 /// The specified value was legalized to the specified other value.
646 /// Update the DAG and NodeIds replacing any uses of From to use To instead.
647 void DAGTypeLegalizer::ReplaceValueWith(SDValue From, SDValue To) {
648   assert(From.getNode() != To.getNode() && "Potential legalization loop!");
649 
650   // If expansion produced new nodes, make sure they are properly marked.
651   AnalyzeNewValue(To);
652 
653   // Anything that used the old node should now use the new one.  Note that this
654   // can potentially cause recursive merging.
655   SmallSetVector<SDNode*, 16> NodesToAnalyze;
656   NodeUpdateListener NUL(*this, NodesToAnalyze);
657   do {
658 
659     // The old node may be present in a map like ExpandedIntegers or
660     // PromotedIntegers. Inform maps about the replacement.
661     auto FromId = getTableId(From);
662     auto ToId = getTableId(To);
663 
664     if (FromId != ToId)
665       ReplacedValues[FromId] = ToId;
666     DAG.ReplaceAllUsesOfValueWith(From, To);
667 
668     // Process the list of nodes that need to be reanalyzed.
669     while (!NodesToAnalyze.empty()) {
670       SDNode *N = NodesToAnalyze.pop_back_val();
671       if (N->getNodeId() != DAGTypeLegalizer::NewNode)
672         // The node was analyzed while reanalyzing an earlier node - it is safe
673         // to skip.  Note that this is not a morphing node - otherwise it would
674         // still be marked NewNode.
675         continue;
676 
677       // Analyze the node's operands and recalculate the node ID.
678       SDNode *M = AnalyzeNewNode(N);
679       if (M != N) {
680         // The node morphed into a different node.  Make everyone use the new
681         // node instead.
682         assert(M->getNodeId() != NewNode && "Analysis resulted in NewNode!");
683         assert(N->getNumValues() == M->getNumValues() &&
684                "Node morphing changed the number of results!");
685         for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
686           SDValue OldVal(N, i);
687           SDValue NewVal(M, i);
688           if (M->getNodeId() == Processed)
689             RemapValue(NewVal);
690           // OldVal may be a target of the ReplacedValues map which was marked
691           // NewNode to force reanalysis because it was updated.  Ensure that
692           // anything that ReplacedValues mapped to OldVal will now be mapped
693           // all the way to NewVal.
694           auto OldValId = getTableId(OldVal);
695           auto NewValId = getTableId(NewVal);
696           DAG.ReplaceAllUsesOfValueWith(OldVal, NewVal);
697           if (OldValId != NewValId)
698             ReplacedValues[OldValId] = NewValId;
699         }
700         // The original node continues to exist in the DAG, marked NewNode.
701       }
702     }
703     // When recursively update nodes with new nodes, it is possible to have
704     // new uses of From due to CSE. If this happens, replace the new uses of
705     // From with To.
706   } while (!From.use_empty());
707 }
708 
709 void DAGTypeLegalizer::SetPromotedInteger(SDValue Op, SDValue Result) {
710   assert(Result.getValueType() ==
711          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
712          "Invalid type for promoted integer");
713   AnalyzeNewValue(Result);
714 
715   auto &OpIdEntry = PromotedIntegers[getTableId(Op)];
716   assert((OpIdEntry == 0) && "Node is already promoted!");
717   OpIdEntry = getTableId(Result);
718 
719   DAG.transferDbgValues(Op, Result);
720 }
721 
722 void DAGTypeLegalizer::SetSoftenedFloat(SDValue Op, SDValue Result) {
723 #ifndef NDEBUG
724   EVT VT = Result.getValueType();
725   LLVMContext &Ctx = *DAG.getContext();
726   assert((VT == EVT::getIntegerVT(Ctx, 80) ||
727           VT == TLI.getTypeToTransformTo(Ctx, Op.getValueType())) &&
728          "Invalid type for softened float");
729 #endif
730   AnalyzeNewValue(Result);
731 
732   auto &OpIdEntry = SoftenedFloats[getTableId(Op)];
733   assert((OpIdEntry == 0) && "Node is already converted to integer!");
734   OpIdEntry = getTableId(Result);
735 }
736 
737 void DAGTypeLegalizer::SetPromotedFloat(SDValue Op, SDValue Result) {
738   assert(Result.getValueType() ==
739          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
740          "Invalid type for promoted float");
741   AnalyzeNewValue(Result);
742 
743   auto &OpIdEntry = PromotedFloats[getTableId(Op)];
744   assert((OpIdEntry == 0) && "Node is already promoted!");
745   OpIdEntry = getTableId(Result);
746 }
747 
748 void DAGTypeLegalizer::SetSoftPromotedHalf(SDValue Op, SDValue Result) {
749   assert(Result.getValueType() == MVT::i16 &&
750          "Invalid type for soft-promoted half");
751   AnalyzeNewValue(Result);
752 
753   auto &OpIdEntry = SoftPromotedHalfs[getTableId(Op)];
754   assert((OpIdEntry == 0) && "Node is already promoted!");
755   OpIdEntry = getTableId(Result);
756 }
757 
758 void DAGTypeLegalizer::SetScalarizedVector(SDValue Op, SDValue Result) {
759   // Note that in some cases vector operation operands may be greater than
760   // the vector element type. For example BUILD_VECTOR of type <1 x i1> with
761   // a constant i8 operand.
762 
763   // We don't currently support the scalarization of scalable vector types.
764   assert(Result.getValueSizeInBits().getFixedValue() >=
765              Op.getScalarValueSizeInBits() &&
766          "Invalid type for scalarized vector");
767   AnalyzeNewValue(Result);
768 
769   auto &OpIdEntry = ScalarizedVectors[getTableId(Op)];
770   assert((OpIdEntry == 0) && "Node is already scalarized!");
771   OpIdEntry = getTableId(Result);
772 }
773 
774 void DAGTypeLegalizer::GetExpandedInteger(SDValue Op, SDValue &Lo,
775                                           SDValue &Hi) {
776   std::pair<TableId, TableId> &Entry = ExpandedIntegers[getTableId(Op)];
777   assert((Entry.first != 0) && "Operand isn't expanded");
778   Lo = getSDValue(Entry.first);
779   Hi = getSDValue(Entry.second);
780 }
781 
782 void DAGTypeLegalizer::SetExpandedInteger(SDValue Op, SDValue Lo,
783                                           SDValue Hi) {
784   assert(Lo.getValueType() ==
785          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
786          Hi.getValueType() == Lo.getValueType() &&
787          "Invalid type for expanded integer");
788   // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
789   AnalyzeNewValue(Lo);
790   AnalyzeNewValue(Hi);
791 
792   // Transfer debug values. Don't invalidate the source debug value until it's
793   // been transferred to the high and low bits.
794   if (DAG.getDataLayout().isBigEndian()) {
795     DAG.transferDbgValues(Op, Hi, 0, Hi.getValueSizeInBits(), false);
796     DAG.transferDbgValues(Op, Lo, Hi.getValueSizeInBits(),
797                           Lo.getValueSizeInBits());
798   } else {
799     DAG.transferDbgValues(Op, Lo, 0, Lo.getValueSizeInBits(), false);
800     DAG.transferDbgValues(Op, Hi, Lo.getValueSizeInBits(),
801                           Hi.getValueSizeInBits());
802   }
803 
804   // Remember that this is the result of the node.
805   std::pair<TableId, TableId> &Entry = ExpandedIntegers[getTableId(Op)];
806   assert((Entry.first == 0) && "Node already expanded");
807   Entry.first = getTableId(Lo);
808   Entry.second = getTableId(Hi);
809 }
810 
811 void DAGTypeLegalizer::GetExpandedFloat(SDValue Op, SDValue &Lo,
812                                         SDValue &Hi) {
813   std::pair<TableId, TableId> &Entry = ExpandedFloats[getTableId(Op)];
814   assert((Entry.first != 0) && "Operand isn't expanded");
815   Lo = getSDValue(Entry.first);
816   Hi = getSDValue(Entry.second);
817 }
818 
819 void DAGTypeLegalizer::SetExpandedFloat(SDValue Op, SDValue Lo,
820                                         SDValue Hi) {
821   assert(Lo.getValueType() ==
822          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
823          Hi.getValueType() == Lo.getValueType() &&
824          "Invalid type for expanded float");
825   // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
826   AnalyzeNewValue(Lo);
827   AnalyzeNewValue(Hi);
828 
829   std::pair<TableId, TableId> &Entry = ExpandedFloats[getTableId(Op)];
830   assert((Entry.first == 0) && "Node already expanded");
831   Entry.first = getTableId(Lo);
832   Entry.second = getTableId(Hi);
833 }
834 
835 void DAGTypeLegalizer::GetSplitVector(SDValue Op, SDValue &Lo,
836                                       SDValue &Hi) {
837   std::pair<TableId, TableId> &Entry = SplitVectors[getTableId(Op)];
838   Lo = getSDValue(Entry.first);
839   Hi = getSDValue(Entry.second);
840   assert(Lo.getNode() && "Operand isn't split");
841   ;
842 }
843 
844 void DAGTypeLegalizer::SetSplitVector(SDValue Op, SDValue Lo,
845                                       SDValue Hi) {
846   assert(Lo.getValueType().getVectorElementType() ==
847              Op.getValueType().getVectorElementType() &&
848          Lo.getValueType().getVectorElementCount() * 2 ==
849              Op.getValueType().getVectorElementCount() &&
850          Hi.getValueType() == Lo.getValueType() &&
851          "Invalid type for split vector");
852   // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
853   AnalyzeNewValue(Lo);
854   AnalyzeNewValue(Hi);
855 
856   // Remember that this is the result of the node.
857   std::pair<TableId, TableId> &Entry = SplitVectors[getTableId(Op)];
858   assert((Entry.first == 0) && "Node already split");
859   Entry.first = getTableId(Lo);
860   Entry.second = getTableId(Hi);
861 }
862 
863 void DAGTypeLegalizer::SetWidenedVector(SDValue Op, SDValue Result) {
864   assert(Result.getValueType() ==
865          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
866          "Invalid type for widened vector");
867   AnalyzeNewValue(Result);
868 
869   auto &OpIdEntry = WidenedVectors[getTableId(Op)];
870   assert((OpIdEntry == 0) && "Node already widened!");
871   OpIdEntry = getTableId(Result);
872 }
873 
874 
875 //===----------------------------------------------------------------------===//
876 // Utilities.
877 //===----------------------------------------------------------------------===//
878 
879 /// Convert to an integer of the same size.
880 SDValue DAGTypeLegalizer::BitConvertToInteger(SDValue Op) {
881   unsigned BitWidth = Op.getValueSizeInBits();
882   return DAG.getNode(ISD::BITCAST, SDLoc(Op),
883                      EVT::getIntegerVT(*DAG.getContext(), BitWidth), Op);
884 }
885 
886 /// Convert to a vector of integers of the same size.
887 SDValue DAGTypeLegalizer::BitConvertVectorToIntegerVector(SDValue Op) {
888   assert(Op.getValueType().isVector() && "Only applies to vectors!");
889   unsigned EltWidth = Op.getScalarValueSizeInBits();
890   EVT EltNVT = EVT::getIntegerVT(*DAG.getContext(), EltWidth);
891   auto EltCnt = Op.getValueType().getVectorElementCount();
892   return DAG.getNode(ISD::BITCAST, SDLoc(Op),
893                      EVT::getVectorVT(*DAG.getContext(), EltNVT, EltCnt), Op);
894 }
895 
896 SDValue DAGTypeLegalizer::CreateStackStoreLoad(SDValue Op,
897                                                EVT DestVT) {
898   SDLoc dl(Op);
899   // Create the stack frame object.  Make sure it is aligned for both
900   // the source and destination types.
901 
902   // In cases where the vector is illegal it will be broken down into parts
903   // and stored in parts - we should use the alignment for the smallest part.
904   Align DestAlign = DAG.getReducedAlign(DestVT, /*UseABI=*/false);
905   Align OpAlign = DAG.getReducedAlign(Op.getValueType(), /*UseABI=*/false);
906   Align Align = std::max(DestAlign, OpAlign);
907   SDValue StackPtr =
908       DAG.CreateStackTemporary(Op.getValueType().getStoreSize(), Align);
909   // Emit a store to the stack slot.
910   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op, StackPtr,
911                                MachinePointerInfo(), Align);
912   // Result is a load from the stack slot.
913   return DAG.getLoad(DestVT, dl, Store, StackPtr, MachinePointerInfo(), Align);
914 }
915 
916 /// Replace the node's results with custom code provided by the target and
917 /// return "true", or do nothing and return "false".
918 /// The last parameter is FALSE if we are dealing with a node with legal
919 /// result types and illegal operand. The second parameter denotes the type of
920 /// illegal OperandNo in that case.
921 /// The last parameter being TRUE means we are dealing with a
922 /// node with illegal result types. The second parameter denotes the type of
923 /// illegal ResNo in that case.
924 bool DAGTypeLegalizer::CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult) {
925   // See if the target wants to custom lower this node.
926   if (TLI.getOperationAction(N->getOpcode(), VT) != TargetLowering::Custom)
927     return false;
928 
929   SmallVector<SDValue, 8> Results;
930   if (LegalizeResult)
931     TLI.ReplaceNodeResults(N, Results, DAG);
932   else
933     TLI.LowerOperationWrapper(N, Results, DAG);
934 
935   if (Results.empty())
936     // The target didn't want to custom lower it after all.
937     return false;
938 
939   // Make everything that once used N's values now use those in Results instead.
940   assert(Results.size() == N->getNumValues() &&
941          "Custom lowering returned the wrong number of results!");
942   for (unsigned i = 0, e = Results.size(); i != e; ++i) {
943     ReplaceValueWith(SDValue(N, i), Results[i]);
944   }
945   return true;
946 }
947 
948 
949 /// Widen the node's results with custom code provided by the target and return
950 /// "true", or do nothing and return "false".
951 bool DAGTypeLegalizer::CustomWidenLowerNode(SDNode *N, EVT VT) {
952   // See if the target wants to custom lower this node.
953   if (TLI.getOperationAction(N->getOpcode(), VT) != TargetLowering::Custom)
954     return false;
955 
956   SmallVector<SDValue, 8> Results;
957   TLI.ReplaceNodeResults(N, Results, DAG);
958 
959   if (Results.empty())
960     // The target didn't want to custom widen lower its result after all.
961     return false;
962 
963   // Update the widening map.
964   assert(Results.size() == N->getNumValues() &&
965          "Custom lowering returned the wrong number of results!");
966   for (unsigned i = 0, e = Results.size(); i != e; ++i) {
967     // If this is a chain output or already widened just replace it.
968     bool WasWidened = SDValue(N, i).getValueType() != Results[i].getValueType();
969     if (WasWidened)
970       SetWidenedVector(SDValue(N, i), Results[i]);
971     else
972       ReplaceValueWith(SDValue(N, i), Results[i]);
973   }
974   return true;
975 }
976 
977 SDValue DAGTypeLegalizer::DisintegrateMERGE_VALUES(SDNode *N, unsigned ResNo) {
978   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
979     if (i != ResNo)
980       ReplaceValueWith(SDValue(N, i), SDValue(N->getOperand(i)));
981   return SDValue(N->getOperand(ResNo));
982 }
983 
984 /// Use ISD::EXTRACT_ELEMENT nodes to extract the low and high parts of the
985 /// given value.
986 void DAGTypeLegalizer::GetPairElements(SDValue Pair,
987                                        SDValue &Lo, SDValue &Hi) {
988   SDLoc dl(Pair);
989   EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), Pair.getValueType());
990   std::tie(Lo, Hi) = DAG.SplitScalar(Pair, dl, NVT, NVT);
991 }
992 
993 /// Build an integer with low bits Lo and high bits Hi.
994 SDValue DAGTypeLegalizer::JoinIntegers(SDValue Lo, SDValue Hi) {
995   // Arbitrarily use dlHi for result SDLoc
996   SDLoc dlHi(Hi);
997   SDLoc dlLo(Lo);
998   EVT LVT = Lo.getValueType();
999   EVT HVT = Hi.getValueType();
1000   EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
1001                               LVT.getSizeInBits() + HVT.getSizeInBits());
1002 
1003   EVT ShiftAmtVT = TLI.getShiftAmountTy(NVT, DAG.getDataLayout());
1004   Lo = DAG.getNode(ISD::ZERO_EXTEND, dlLo, NVT, Lo);
1005   Hi = DAG.getNode(ISD::ANY_EXTEND, dlHi, NVT, Hi);
1006   Hi = DAG.getNode(ISD::SHL, dlHi, NVT, Hi,
1007                    DAG.getConstant(LVT.getSizeInBits(), dlHi, ShiftAmtVT));
1008   return DAG.getNode(ISD::OR, dlHi, NVT, Lo, Hi);
1009 }
1010 
1011 /// Promote the given target boolean to a target boolean of the given type.
1012 /// A target boolean is an integer value, not necessarily of type i1, the bits
1013 /// of which conform to getBooleanContents.
1014 ///
1015 /// ValVT is the type of values that produced the boolean.
1016 SDValue DAGTypeLegalizer::PromoteTargetBoolean(SDValue Bool, EVT ValVT) {
1017   return TLI.promoteTargetBoolean(DAG, Bool, ValVT);
1018 }
1019 
1020 /// Return the lower LoVT bits of Op in Lo and the upper HiVT bits in Hi.
1021 void DAGTypeLegalizer::SplitInteger(SDValue Op,
1022                                     EVT LoVT, EVT HiVT,
1023                                     SDValue &Lo, SDValue &Hi) {
1024   SDLoc dl(Op);
1025   assert(LoVT.getSizeInBits() + HiVT.getSizeInBits() ==
1026          Op.getValueSizeInBits() && "Invalid integer splitting!");
1027   Lo = DAG.getNode(ISD::TRUNCATE, dl, LoVT, Op);
1028   unsigned ReqShiftAmountInBits =
1029       Log2_32_Ceil(Op.getValueType().getSizeInBits());
1030   MVT ShiftAmountTy =
1031       TLI.getScalarShiftAmountTy(DAG.getDataLayout(), Op.getValueType());
1032   if (ReqShiftAmountInBits > ShiftAmountTy.getSizeInBits())
1033     ShiftAmountTy = MVT::getIntegerVT(NextPowerOf2(ReqShiftAmountInBits));
1034   Hi = DAG.getNode(ISD::SRL, dl, Op.getValueType(), Op,
1035                    DAG.getConstant(LoVT.getSizeInBits(), dl, ShiftAmountTy));
1036   Hi = DAG.getNode(ISD::TRUNCATE, dl, HiVT, Hi);
1037 }
1038 
1039 /// Return the lower and upper halves of Op's bits in a value type half the
1040 /// size of Op's.
1041 void DAGTypeLegalizer::SplitInteger(SDValue Op,
1042                                     SDValue &Lo, SDValue &Hi) {
1043   EVT HalfVT =
1044       EVT::getIntegerVT(*DAG.getContext(), Op.getValueSizeInBits() / 2);
1045   SplitInteger(Op, HalfVT, HalfVT, Lo, Hi);
1046 }
1047 
1048 
1049 //===----------------------------------------------------------------------===//
1050 //  Entry Point
1051 //===----------------------------------------------------------------------===//
1052 
1053 /// This transforms the SelectionDAG into a SelectionDAG that only uses types
1054 /// natively supported by the target. Returns "true" if it made any changes.
1055 ///
1056 /// Note that this is an involved process that may invalidate pointers into
1057 /// the graph.
1058 bool SelectionDAG::LegalizeTypes() {
1059   return DAGTypeLegalizer(*this).run();
1060 }
1061