1 //===-- LegalizeTypes.cpp - Common code for DAG type legalizer ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SelectionDAG::LegalizeTypes method.  It transforms
10 // an arbitrary well-formed SelectionDAG to only consist of legal types.  This
11 // is common code shared among the LegalizeTypes*.cpp files.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "LegalizeTypes.h"
16 #include "SDNodeDbgValue.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/IR/CallingConv.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/Support/CommandLine.h"
22 #include "llvm/Support/ErrorHandling.h"
23 #include "llvm/Support/raw_ostream.h"
24 using namespace llvm;
25 
26 #define DEBUG_TYPE "legalize-types"
27 
28 static cl::opt<bool>
29 EnableExpensiveChecks("enable-legalize-types-checking", cl::Hidden);
30 
31 /// Do extensive, expensive, sanity checking.
32 void DAGTypeLegalizer::PerformExpensiveChecks() {
33   // If a node is not processed, then none of its values should be mapped by any
34   // of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
35 
36   // If a node is processed, then each value with an illegal type must be mapped
37   // by exactly one of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
38   // Values with a legal type may be mapped by ReplacedValues, but not by any of
39   // the other maps.
40 
41   // Note that these invariants may not hold momentarily when processing a node:
42   // the node being processed may be put in a map before being marked Processed.
43 
44   // Note that it is possible to have nodes marked NewNode in the DAG.  This can
45   // occur in two ways.  Firstly, a node may be created during legalization but
46   // never passed to the legalization core.  This is usually due to the implicit
47   // folding that occurs when using the DAG.getNode operators.  Secondly, a new
48   // node may be passed to the legalization core, but when analyzed may morph
49   // into a different node, leaving the original node as a NewNode in the DAG.
50   // A node may morph if one of its operands changes during analysis.  Whether
51   // it actually morphs or not depends on whether, after updating its operands,
52   // it is equivalent to an existing node: if so, it morphs into that existing
53   // node (CSE).  An operand can change during analysis if the operand is a new
54   // node that morphs, or it is a processed value that was mapped to some other
55   // value (as recorded in ReplacedValues) in which case the operand is turned
56   // into that other value.  If a node morphs then the node it morphed into will
57   // be used instead of it for legalization, however the original node continues
58   // to live on in the DAG.
59   // The conclusion is that though there may be nodes marked NewNode in the DAG,
60   // all uses of such nodes are also marked NewNode: the result is a fungus of
61   // NewNodes growing on top of the useful nodes, and perhaps using them, but
62   // not used by them.
63 
64   // If a value is mapped by ReplacedValues, then it must have no uses, except
65   // by nodes marked NewNode (see above).
66 
67   // The final node obtained by mapping by ReplacedValues is not marked NewNode.
68   // Note that ReplacedValues should be applied iteratively.
69 
70   // Note that the ReplacedValues map may also map deleted nodes (by iterating
71   // over the DAG we never dereference deleted nodes).  This means that it may
72   // also map nodes marked NewNode if the deallocated memory was reallocated as
73   // another node, and that new node was not seen by the LegalizeTypes machinery
74   // (for example because it was created but not used).  In general, we cannot
75   // distinguish between new nodes and deleted nodes.
76   SmallVector<SDNode*, 16> NewNodes;
77   for (SDNode &Node : DAG.allnodes()) {
78     // Remember nodes marked NewNode - they are subject to extra checking below.
79     if (Node.getNodeId() == NewNode)
80       NewNodes.push_back(&Node);
81 
82     for (unsigned i = 0, e = Node.getNumValues(); i != e; ++i) {
83       SDValue Res(&Node, i);
84       bool Failed = false;
85       // Don't create a value in map.
86       auto ResId = (ValueToIdMap.count(Res)) ? ValueToIdMap[Res] : 0;
87 
88       unsigned Mapped = 0;
89       if (ResId && (ReplacedValues.find(ResId) != ReplacedValues.end())) {
90         Mapped |= 1;
91         // Check that remapped values are only used by nodes marked NewNode.
92         for (SDNode::use_iterator UI = Node.use_begin(), UE = Node.use_end();
93              UI != UE; ++UI)
94           if (UI.getUse().getResNo() == i)
95             assert(UI->getNodeId() == NewNode &&
96                    "Remapped value has non-trivial use!");
97 
98         // Check that the final result of applying ReplacedValues is not
99         // marked NewNode.
100         auto NewValId = ReplacedValues[ResId];
101         auto I = ReplacedValues.find(NewValId);
102         while (I != ReplacedValues.end()) {
103           NewValId = I->second;
104           I = ReplacedValues.find(NewValId);
105         }
106         SDValue NewVal = getSDValue(NewValId);
107         (void)NewVal;
108         assert(NewVal.getNode()->getNodeId() != NewNode &&
109                "ReplacedValues maps to a new node!");
110       }
111       if (ResId && PromotedIntegers.find(ResId) != PromotedIntegers.end())
112         Mapped |= 2;
113       if (ResId && SoftenedFloats.find(ResId) != SoftenedFloats.end())
114         Mapped |= 4;
115       if (ResId && ScalarizedVectors.find(ResId) != ScalarizedVectors.end())
116         Mapped |= 8;
117       if (ResId && ExpandedIntegers.find(ResId) != ExpandedIntegers.end())
118         Mapped |= 16;
119       if (ResId && ExpandedFloats.find(ResId) != ExpandedFloats.end())
120         Mapped |= 32;
121       if (ResId && SplitVectors.find(ResId) != SplitVectors.end())
122         Mapped |= 64;
123       if (ResId && WidenedVectors.find(ResId) != WidenedVectors.end())
124         Mapped |= 128;
125       if (ResId && PromotedFloats.find(ResId) != PromotedFloats.end())
126         Mapped |= 256;
127       if (ResId && SoftPromotedHalfs.find(ResId) != SoftPromotedHalfs.end())
128         Mapped |= 512;
129 
130       if (Node.getNodeId() != Processed) {
131         // Since we allow ReplacedValues to map deleted nodes, it may map nodes
132         // marked NewNode too, since a deleted node may have been reallocated as
133         // another node that has not been seen by the LegalizeTypes machinery.
134         if ((Node.getNodeId() == NewNode && Mapped > 1) ||
135             (Node.getNodeId() != NewNode && Mapped != 0)) {
136           dbgs() << "Unprocessed value in a map!";
137           Failed = true;
138         }
139       } else if (isTypeLegal(Res.getValueType()) || IgnoreNodeResults(&Node)) {
140         if (Mapped > 1) {
141           dbgs() << "Value with legal type was transformed!";
142           Failed = true;
143         }
144       } else {
145         if (Mapped == 0) {
146           dbgs() << "Processed value not in any map!";
147           Failed = true;
148         } else if (Mapped & (Mapped - 1)) {
149           dbgs() << "Value in multiple maps!";
150           Failed = true;
151         }
152       }
153 
154       if (Failed) {
155         if (Mapped & 1)
156           dbgs() << " ReplacedValues";
157         if (Mapped & 2)
158           dbgs() << " PromotedIntegers";
159         if (Mapped & 4)
160           dbgs() << " SoftenedFloats";
161         if (Mapped & 8)
162           dbgs() << " ScalarizedVectors";
163         if (Mapped & 16)
164           dbgs() << " ExpandedIntegers";
165         if (Mapped & 32)
166           dbgs() << " ExpandedFloats";
167         if (Mapped & 64)
168           dbgs() << " SplitVectors";
169         if (Mapped & 128)
170           dbgs() << " WidenedVectors";
171         if (Mapped & 256)
172           dbgs() << " PromotedFloats";
173         if (Mapped & 512)
174           dbgs() << " SoftPromoteHalfs";
175         dbgs() << "\n";
176         llvm_unreachable(nullptr);
177       }
178     }
179   }
180 
181 #ifndef NDEBUG
182   // Checked that NewNodes are only used by other NewNodes.
183   for (unsigned i = 0, e = NewNodes.size(); i != e; ++i) {
184     SDNode *N = NewNodes[i];
185     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
186          UI != UE; ++UI)
187       assert(UI->getNodeId() == NewNode && "NewNode used by non-NewNode!");
188   }
189 #endif
190 }
191 
192 /// This is the main entry point for the type legalizer. This does a top-down
193 /// traversal of the dag, legalizing types as it goes. Returns "true" if it made
194 /// any changes.
195 bool DAGTypeLegalizer::run() {
196   bool Changed = false;
197 
198   // Create a dummy node (which is not added to allnodes), that adds a reference
199   // to the root node, preventing it from being deleted, and tracking any
200   // changes of the root.
201   HandleSDNode Dummy(DAG.getRoot());
202   Dummy.setNodeId(Unanalyzed);
203 
204   // The root of the dag may dangle to deleted nodes until the type legalizer is
205   // done.  Set it to null to avoid confusion.
206   DAG.setRoot(SDValue());
207 
208   // Walk all nodes in the graph, assigning them a NodeId of 'ReadyToProcess'
209   // (and remembering them) if they are leaves and assigning 'Unanalyzed' if
210   // non-leaves.
211   for (SDNode &Node : DAG.allnodes()) {
212     if (Node.getNumOperands() == 0) {
213       Node.setNodeId(ReadyToProcess);
214       Worklist.push_back(&Node);
215     } else {
216       Node.setNodeId(Unanalyzed);
217     }
218   }
219 
220   // Now that we have a set of nodes to process, handle them all.
221   while (!Worklist.empty()) {
222 #ifndef EXPENSIVE_CHECKS
223     if (EnableExpensiveChecks)
224 #endif
225       PerformExpensiveChecks();
226 
227     SDNode *N = Worklist.back();
228     Worklist.pop_back();
229     assert(N->getNodeId() == ReadyToProcess &&
230            "Node should be ready if on worklist!");
231 
232     LLVM_DEBUG(dbgs() << "Legalizing node: "; N->dump(&DAG));
233     if (IgnoreNodeResults(N)) {
234       LLVM_DEBUG(dbgs() << "Ignoring node results\n");
235       goto ScanOperands;
236     }
237 
238     // Scan the values produced by the node, checking to see if any result
239     // types are illegal.
240     for (unsigned i = 0, NumResults = N->getNumValues(); i < NumResults; ++i) {
241       EVT ResultVT = N->getValueType(i);
242       LLVM_DEBUG(dbgs() << "Analyzing result type: " << ResultVT.getEVTString()
243                         << "\n");
244       switch (getTypeAction(ResultVT)) {
245       case TargetLowering::TypeLegal:
246         LLVM_DEBUG(dbgs() << "Legal result type\n");
247         break;
248       case TargetLowering::TypeScalarizeScalableVector:
249         report_fatal_error(
250             "Scalarization of scalable vectors is not supported.");
251       // The following calls must take care of *all* of the node's results,
252       // not just the illegal result they were passed (this includes results
253       // with a legal type).  Results can be remapped using ReplaceValueWith,
254       // or their promoted/expanded/etc values registered in PromotedIntegers,
255       // ExpandedIntegers etc.
256       case TargetLowering::TypePromoteInteger:
257         PromoteIntegerResult(N, i);
258         Changed = true;
259         goto NodeDone;
260       case TargetLowering::TypeExpandInteger:
261         ExpandIntegerResult(N, i);
262         Changed = true;
263         goto NodeDone;
264       case TargetLowering::TypeSoftenFloat:
265         SoftenFloatResult(N, i);
266         Changed = true;
267         goto NodeDone;
268       case TargetLowering::TypeExpandFloat:
269         ExpandFloatResult(N, i);
270         Changed = true;
271         goto NodeDone;
272       case TargetLowering::TypeScalarizeVector:
273         ScalarizeVectorResult(N, i);
274         Changed = true;
275         goto NodeDone;
276       case TargetLowering::TypeSplitVector:
277         SplitVectorResult(N, i);
278         Changed = true;
279         goto NodeDone;
280       case TargetLowering::TypeWidenVector:
281         WidenVectorResult(N, i);
282         Changed = true;
283         goto NodeDone;
284       case TargetLowering::TypePromoteFloat:
285         PromoteFloatResult(N, i);
286         Changed = true;
287         goto NodeDone;
288       case TargetLowering::TypeSoftPromoteHalf:
289         SoftPromoteHalfResult(N, i);
290         Changed = true;
291         goto NodeDone;
292       }
293     }
294 
295 ScanOperands:
296     // Scan the operand list for the node, handling any nodes with operands that
297     // are illegal.
298     {
299     unsigned NumOperands = N->getNumOperands();
300     bool NeedsReanalyzing = false;
301     unsigned i;
302     for (i = 0; i != NumOperands; ++i) {
303       if (IgnoreNodeResults(N->getOperand(i).getNode()))
304         continue;
305 
306       const auto Op = N->getOperand(i);
307       LLVM_DEBUG(dbgs() << "Analyzing operand: "; Op.dump(&DAG));
308       EVT OpVT = Op.getValueType();
309       switch (getTypeAction(OpVT)) {
310       case TargetLowering::TypeLegal:
311         LLVM_DEBUG(dbgs() << "Legal operand\n");
312         continue;
313       case TargetLowering::TypeScalarizeScalableVector:
314         report_fatal_error(
315             "Scalarization of scalable vectors is not supported.");
316       // The following calls must either replace all of the node's results
317       // using ReplaceValueWith, and return "false"; or update the node's
318       // operands in place, and return "true".
319       case TargetLowering::TypePromoteInteger:
320         NeedsReanalyzing = PromoteIntegerOperand(N, i);
321         Changed = true;
322         break;
323       case TargetLowering::TypeExpandInteger:
324         NeedsReanalyzing = ExpandIntegerOperand(N, i);
325         Changed = true;
326         break;
327       case TargetLowering::TypeSoftenFloat:
328         NeedsReanalyzing = SoftenFloatOperand(N, i);
329         Changed = true;
330         break;
331       case TargetLowering::TypeExpandFloat:
332         NeedsReanalyzing = ExpandFloatOperand(N, i);
333         Changed = true;
334         break;
335       case TargetLowering::TypeScalarizeVector:
336         NeedsReanalyzing = ScalarizeVectorOperand(N, i);
337         Changed = true;
338         break;
339       case TargetLowering::TypeSplitVector:
340         NeedsReanalyzing = SplitVectorOperand(N, i);
341         Changed = true;
342         break;
343       case TargetLowering::TypeWidenVector:
344         NeedsReanalyzing = WidenVectorOperand(N, i);
345         Changed = true;
346         break;
347       case TargetLowering::TypePromoteFloat:
348         NeedsReanalyzing = PromoteFloatOperand(N, i);
349         Changed = true;
350         break;
351       case TargetLowering::TypeSoftPromoteHalf:
352         NeedsReanalyzing = SoftPromoteHalfOperand(N, i);
353         Changed = true;
354         break;
355       }
356       break;
357     }
358 
359     // The sub-method updated N in place.  Check to see if any operands are new,
360     // and if so, mark them.  If the node needs revisiting, don't add all users
361     // to the worklist etc.
362     if (NeedsReanalyzing) {
363       assert(N->getNodeId() == ReadyToProcess && "Node ID recalculated?");
364 
365       N->setNodeId(NewNode);
366       // Recompute the NodeId and correct processed operands, adding the node to
367       // the worklist if ready.
368       SDNode *M = AnalyzeNewNode(N);
369       if (M == N)
370         // The node didn't morph - nothing special to do, it will be revisited.
371         continue;
372 
373       // The node morphed - this is equivalent to legalizing by replacing every
374       // value of N with the corresponding value of M.  So do that now.
375       assert(N->getNumValues() == M->getNumValues() &&
376              "Node morphing changed the number of results!");
377       for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
378         // Replacing the value takes care of remapping the new value.
379         ReplaceValueWith(SDValue(N, i), SDValue(M, i));
380       assert(N->getNodeId() == NewNode && "Unexpected node state!");
381       // The node continues to live on as part of the NewNode fungus that
382       // grows on top of the useful nodes.  Nothing more needs to be done
383       // with it - move on to the next node.
384       continue;
385     }
386 
387     if (i == NumOperands) {
388       LLVM_DEBUG(dbgs() << "Legally typed node: "; N->dump(&DAG);
389                  dbgs() << "\n");
390     }
391     }
392 NodeDone:
393 
394     // If we reach here, the node was processed, potentially creating new nodes.
395     // Mark it as processed and add its users to the worklist as appropriate.
396     assert(N->getNodeId() == ReadyToProcess && "Node ID recalculated?");
397     N->setNodeId(Processed);
398 
399     for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
400          UI != E; ++UI) {
401       SDNode *User = *UI;
402       int NodeId = User->getNodeId();
403 
404       // This node has two options: it can either be a new node or its Node ID
405       // may be a count of the number of operands it has that are not ready.
406       if (NodeId > 0) {
407         User->setNodeId(NodeId-1);
408 
409         // If this was the last use it was waiting on, add it to the ready list.
410         if (NodeId-1 == ReadyToProcess)
411           Worklist.push_back(User);
412         continue;
413       }
414 
415       // If this is an unreachable new node, then ignore it.  If it ever becomes
416       // reachable by being used by a newly created node then it will be handled
417       // by AnalyzeNewNode.
418       if (NodeId == NewNode)
419         continue;
420 
421       // Otherwise, this node is new: this is the first operand of it that
422       // became ready.  Its new NodeId is the number of operands it has minus 1
423       // (as this node is now processed).
424       assert(NodeId == Unanalyzed && "Unknown node ID!");
425       User->setNodeId(User->getNumOperands() - 1);
426 
427       // If the node only has a single operand, it is now ready.
428       if (User->getNumOperands() == 1)
429         Worklist.push_back(User);
430     }
431   }
432 
433 #ifndef EXPENSIVE_CHECKS
434   if (EnableExpensiveChecks)
435 #endif
436     PerformExpensiveChecks();
437 
438   // If the root changed (e.g. it was a dead load) update the root.
439   DAG.setRoot(Dummy.getValue());
440 
441   // Remove dead nodes.  This is important to do for cleanliness but also before
442   // the checking loop below.  Implicit folding by the DAG.getNode operators and
443   // node morphing can cause unreachable nodes to be around with their flags set
444   // to new.
445   DAG.RemoveDeadNodes();
446 
447   // In a debug build, scan all the nodes to make sure we found them all.  This
448   // ensures that there are no cycles and that everything got processed.
449 #ifndef NDEBUG
450   for (SDNode &Node : DAG.allnodes()) {
451     bool Failed = false;
452 
453     // Check that all result types are legal.
454     if (!IgnoreNodeResults(&Node))
455       for (unsigned i = 0, NumVals = Node.getNumValues(); i < NumVals; ++i)
456         if (!isTypeLegal(Node.getValueType(i))) {
457           dbgs() << "Result type " << i << " illegal: ";
458           Node.dump(&DAG);
459           Failed = true;
460         }
461 
462     // Check that all operand types are legal.
463     for (unsigned i = 0, NumOps = Node.getNumOperands(); i < NumOps; ++i)
464       if (!IgnoreNodeResults(Node.getOperand(i).getNode()) &&
465           !isTypeLegal(Node.getOperand(i).getValueType())) {
466         dbgs() << "Operand type " << i << " illegal: ";
467         Node.getOperand(i).dump(&DAG);
468         Failed = true;
469       }
470 
471     if (Node.getNodeId() != Processed) {
472        if (Node.getNodeId() == NewNode)
473          dbgs() << "New node not analyzed?\n";
474        else if (Node.getNodeId() == Unanalyzed)
475          dbgs() << "Unanalyzed node not noticed?\n";
476        else if (Node.getNodeId() > 0)
477          dbgs() << "Operand not processed?\n";
478        else if (Node.getNodeId() == ReadyToProcess)
479          dbgs() << "Not added to worklist?\n";
480        Failed = true;
481     }
482 
483     if (Failed) {
484       Node.dump(&DAG); dbgs() << "\n";
485       llvm_unreachable(nullptr);
486     }
487   }
488 #endif
489 
490   return Changed;
491 }
492 
493 /// The specified node is the root of a subtree of potentially new nodes.
494 /// Correct any processed operands (this may change the node) and calculate the
495 /// NodeId. If the node itself changes to a processed node, it is not remapped -
496 /// the caller needs to take care of this. Returns the potentially changed node.
497 SDNode *DAGTypeLegalizer::AnalyzeNewNode(SDNode *N) {
498   // If this was an existing node that is already done, we're done.
499   if (N->getNodeId() != NewNode && N->getNodeId() != Unanalyzed)
500     return N;
501 
502   // Okay, we know that this node is new.  Recursively walk all of its operands
503   // to see if they are new also.  The depth of this walk is bounded by the size
504   // of the new tree that was constructed (usually 2-3 nodes), so we don't worry
505   // about revisiting of nodes.
506   //
507   // As we walk the operands, keep track of the number of nodes that are
508   // processed.  If non-zero, this will become the new nodeid of this node.
509   // Operands may morph when they are analyzed.  If so, the node will be
510   // updated after all operands have been analyzed.  Since this is rare,
511   // the code tries to minimize overhead in the non-morphing case.
512 
513   std::vector<SDValue> NewOps;
514   unsigned NumProcessed = 0;
515   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
516     SDValue OrigOp = N->getOperand(i);
517     SDValue Op = OrigOp;
518 
519     AnalyzeNewValue(Op); // Op may morph.
520 
521     if (Op.getNode()->getNodeId() == Processed)
522       ++NumProcessed;
523 
524     if (!NewOps.empty()) {
525       // Some previous operand changed.  Add this one to the list.
526       NewOps.push_back(Op);
527     } else if (Op != OrigOp) {
528       // This is the first operand to change - add all operands so far.
529       NewOps.insert(NewOps.end(), N->op_begin(), N->op_begin() + i);
530       NewOps.push_back(Op);
531     }
532   }
533 
534   // Some operands changed - update the node.
535   if (!NewOps.empty()) {
536     SDNode *M = DAG.UpdateNodeOperands(N, NewOps);
537     if (M != N) {
538       // The node morphed into a different node.  Normally for this to happen
539       // the original node would have to be marked NewNode.  However this can
540       // in theory momentarily not be the case while ReplaceValueWith is doing
541       // its stuff.  Mark the original node NewNode to help sanity checking.
542       N->setNodeId(NewNode);
543       if (M->getNodeId() != NewNode && M->getNodeId() != Unanalyzed)
544         // It morphed into a previously analyzed node - nothing more to do.
545         return M;
546 
547       // It morphed into a different new node.  Do the equivalent of passing
548       // it to AnalyzeNewNode: expunge it and calculate the NodeId.  No need
549       // to remap the operands, since they are the same as the operands we
550       // remapped above.
551       N = M;
552     }
553   }
554 
555   // Calculate the NodeId.
556   N->setNodeId(N->getNumOperands() - NumProcessed);
557   if (N->getNodeId() == ReadyToProcess)
558     Worklist.push_back(N);
559 
560   return N;
561 }
562 
563 /// Call AnalyzeNewNode, updating the node in Val if needed.
564 /// If the node changes to a processed node, then remap it.
565 void DAGTypeLegalizer::AnalyzeNewValue(SDValue &Val) {
566   Val.setNode(AnalyzeNewNode(Val.getNode()));
567   if (Val.getNode()->getNodeId() == Processed)
568     // We were passed a processed node, or it morphed into one - remap it.
569     RemapValue(Val);
570 }
571 
572 /// If the specified value was already legalized to another value,
573 /// replace it by that value.
574 void DAGTypeLegalizer::RemapValue(SDValue &V) {
575   auto Id = getTableId(V);
576   V = getSDValue(Id);
577 }
578 
579 void DAGTypeLegalizer::RemapId(TableId &Id) {
580   auto I = ReplacedValues.find(Id);
581   if (I != ReplacedValues.end()) {
582     assert(Id != I->second && "Id is mapped to itself.");
583     // Use path compression to speed up future lookups if values get multiply
584     // replaced with other values.
585     RemapId(I->second);
586     Id = I->second;
587 
588     // Note that N = IdToValueMap[Id] it is possible to have
589     // N.getNode()->getNodeId() == NewNode at this point because it is possible
590     // for a node to be put in the map before being processed.
591   }
592 }
593 
594 namespace {
595   /// This class is a DAGUpdateListener that listens for updates to nodes and
596   /// recomputes their ready state.
597   class NodeUpdateListener : public SelectionDAG::DAGUpdateListener {
598     DAGTypeLegalizer &DTL;
599     SmallSetVector<SDNode*, 16> &NodesToAnalyze;
600   public:
601     explicit NodeUpdateListener(DAGTypeLegalizer &dtl,
602                                 SmallSetVector<SDNode*, 16> &nta)
603       : SelectionDAG::DAGUpdateListener(dtl.getDAG()),
604         DTL(dtl), NodesToAnalyze(nta) {}
605 
606     void NodeDeleted(SDNode *N, SDNode *E) override {
607       assert(N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
608              N->getNodeId() != DAGTypeLegalizer::Processed &&
609              "Invalid node ID for RAUW deletion!");
610       // It is possible, though rare, for the deleted node N to occur as a
611       // target in a map, so note the replacement N -> E in ReplacedValues.
612       assert(E && "Node not replaced?");
613       DTL.NoteDeletion(N, E);
614 
615       // In theory the deleted node could also have been scheduled for analysis.
616       // So remove it from the set of nodes which will be analyzed.
617       NodesToAnalyze.remove(N);
618 
619       // In general nothing needs to be done for E, since it didn't change but
620       // only gained new uses.  However N -> E was just added to ReplacedValues,
621       // and the result of a ReplacedValues mapping is not allowed to be marked
622       // NewNode.  So if E is marked NewNode, then it needs to be analyzed.
623       if (E->getNodeId() == DAGTypeLegalizer::NewNode)
624         NodesToAnalyze.insert(E);
625     }
626 
627     void NodeUpdated(SDNode *N) override {
628       // Node updates can mean pretty much anything.  It is possible that an
629       // operand was set to something already processed (f.e.) in which case
630       // this node could become ready.  Recompute its flags.
631       assert(N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
632              N->getNodeId() != DAGTypeLegalizer::Processed &&
633              "Invalid node ID for RAUW deletion!");
634       N->setNodeId(DAGTypeLegalizer::NewNode);
635       NodesToAnalyze.insert(N);
636     }
637   };
638 }
639 
640 
641 /// The specified value was legalized to the specified other value.
642 /// Update the DAG and NodeIds replacing any uses of From to use To instead.
643 void DAGTypeLegalizer::ReplaceValueWith(SDValue From, SDValue To) {
644   assert(From.getNode() != To.getNode() && "Potential legalization loop!");
645 
646   // If expansion produced new nodes, make sure they are properly marked.
647   AnalyzeNewValue(To);
648 
649   // Anything that used the old node should now use the new one.  Note that this
650   // can potentially cause recursive merging.
651   SmallSetVector<SDNode*, 16> NodesToAnalyze;
652   NodeUpdateListener NUL(*this, NodesToAnalyze);
653   do {
654 
655     // The old node may be present in a map like ExpandedIntegers or
656     // PromotedIntegers. Inform maps about the replacement.
657     auto FromId = getTableId(From);
658     auto ToId = getTableId(To);
659 
660     if (FromId != ToId)
661       ReplacedValues[FromId] = ToId;
662     DAG.ReplaceAllUsesOfValueWith(From, To);
663 
664     // Process the list of nodes that need to be reanalyzed.
665     while (!NodesToAnalyze.empty()) {
666       SDNode *N = NodesToAnalyze.pop_back_val();
667       if (N->getNodeId() != DAGTypeLegalizer::NewNode)
668         // The node was analyzed while reanalyzing an earlier node - it is safe
669         // to skip.  Note that this is not a morphing node - otherwise it would
670         // still be marked NewNode.
671         continue;
672 
673       // Analyze the node's operands and recalculate the node ID.
674       SDNode *M = AnalyzeNewNode(N);
675       if (M != N) {
676         // The node morphed into a different node.  Make everyone use the new
677         // node instead.
678         assert(M->getNodeId() != NewNode && "Analysis resulted in NewNode!");
679         assert(N->getNumValues() == M->getNumValues() &&
680                "Node morphing changed the number of results!");
681         for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
682           SDValue OldVal(N, i);
683           SDValue NewVal(M, i);
684           if (M->getNodeId() == Processed)
685             RemapValue(NewVal);
686           // OldVal may be a target of the ReplacedValues map which was marked
687           // NewNode to force reanalysis because it was updated.  Ensure that
688           // anything that ReplacedValues mapped to OldVal will now be mapped
689           // all the way to NewVal.
690           auto OldValId = getTableId(OldVal);
691           auto NewValId = getTableId(NewVal);
692           DAG.ReplaceAllUsesOfValueWith(OldVal, NewVal);
693           if (OldValId != NewValId)
694             ReplacedValues[OldValId] = NewValId;
695         }
696         // The original node continues to exist in the DAG, marked NewNode.
697       }
698     }
699     // When recursively update nodes with new nodes, it is possible to have
700     // new uses of From due to CSE. If this happens, replace the new uses of
701     // From with To.
702   } while (!From.use_empty());
703 }
704 
705 void DAGTypeLegalizer::SetPromotedInteger(SDValue Op, SDValue Result) {
706   assert(Result.getValueType() ==
707          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
708          "Invalid type for promoted integer");
709   AnalyzeNewValue(Result);
710 
711   auto &OpIdEntry = PromotedIntegers[getTableId(Op)];
712   assert((OpIdEntry == 0) && "Node is already promoted!");
713   OpIdEntry = getTableId(Result);
714   Result->setFlags(Op->getFlags());
715 
716   DAG.transferDbgValues(Op, Result);
717 }
718 
719 void DAGTypeLegalizer::SetSoftenedFloat(SDValue Op, SDValue Result) {
720   assert(Result.getValueType() ==
721          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
722          "Invalid type for softened float");
723   AnalyzeNewValue(Result);
724 
725   auto &OpIdEntry = SoftenedFloats[getTableId(Op)];
726   assert((OpIdEntry == 0) && "Node is already converted to integer!");
727   OpIdEntry = getTableId(Result);
728 }
729 
730 void DAGTypeLegalizer::SetPromotedFloat(SDValue Op, SDValue Result) {
731   assert(Result.getValueType() ==
732          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
733          "Invalid type for promoted float");
734   AnalyzeNewValue(Result);
735 
736   auto &OpIdEntry = PromotedFloats[getTableId(Op)];
737   assert((OpIdEntry == 0) && "Node is already promoted!");
738   OpIdEntry = getTableId(Result);
739 }
740 
741 void DAGTypeLegalizer::SetSoftPromotedHalf(SDValue Op, SDValue Result) {
742   assert(Result.getValueType() == MVT::i16 &&
743          "Invalid type for soft-promoted half");
744   AnalyzeNewValue(Result);
745 
746   auto &OpIdEntry = SoftPromotedHalfs[getTableId(Op)];
747   assert((OpIdEntry == 0) && "Node is already promoted!");
748   OpIdEntry = getTableId(Result);
749 }
750 
751 void DAGTypeLegalizer::SetScalarizedVector(SDValue Op, SDValue Result) {
752   // Note that in some cases vector operation operands may be greater than
753   // the vector element type. For example BUILD_VECTOR of type <1 x i1> with
754   // a constant i8 operand.
755 
756   // We don't currently support the scalarization of scalable vector types.
757   assert(Result.getValueSizeInBits().getFixedSize() >=
758              Op.getScalarValueSizeInBits() &&
759          "Invalid type for scalarized vector");
760   AnalyzeNewValue(Result);
761 
762   auto &OpIdEntry = ScalarizedVectors[getTableId(Op)];
763   assert((OpIdEntry == 0) && "Node is already scalarized!");
764   OpIdEntry = getTableId(Result);
765 }
766 
767 void DAGTypeLegalizer::GetExpandedInteger(SDValue Op, SDValue &Lo,
768                                           SDValue &Hi) {
769   std::pair<TableId, TableId> &Entry = ExpandedIntegers[getTableId(Op)];
770   assert((Entry.first != 0) && "Operand isn't expanded");
771   Lo = getSDValue(Entry.first);
772   Hi = getSDValue(Entry.second);
773 }
774 
775 void DAGTypeLegalizer::SetExpandedInteger(SDValue Op, SDValue Lo,
776                                           SDValue Hi) {
777   assert(Lo.getValueType() ==
778          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
779          Hi.getValueType() == Lo.getValueType() &&
780          "Invalid type for expanded integer");
781   // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
782   AnalyzeNewValue(Lo);
783   AnalyzeNewValue(Hi);
784 
785   // Transfer debug values. Don't invalidate the source debug value until it's
786   // been transferred to the high and low bits.
787   if (DAG.getDataLayout().isBigEndian()) {
788     DAG.transferDbgValues(Op, Hi, 0, Hi.getValueSizeInBits(), false);
789     DAG.transferDbgValues(Op, Lo, Hi.getValueSizeInBits(),
790                           Lo.getValueSizeInBits());
791   } else {
792     DAG.transferDbgValues(Op, Lo, 0, Lo.getValueSizeInBits(), false);
793     DAG.transferDbgValues(Op, Hi, Lo.getValueSizeInBits(),
794                           Hi.getValueSizeInBits());
795   }
796 
797   // Remember that this is the result of the node.
798   std::pair<TableId, TableId> &Entry = ExpandedIntegers[getTableId(Op)];
799   assert((Entry.first == 0) && "Node already expanded");
800   Entry.first = getTableId(Lo);
801   Entry.second = getTableId(Hi);
802 }
803 
804 void DAGTypeLegalizer::GetExpandedFloat(SDValue Op, SDValue &Lo,
805                                         SDValue &Hi) {
806   std::pair<TableId, TableId> &Entry = ExpandedFloats[getTableId(Op)];
807   assert((Entry.first != 0) && "Operand isn't expanded");
808   Lo = getSDValue(Entry.first);
809   Hi = getSDValue(Entry.second);
810 }
811 
812 void DAGTypeLegalizer::SetExpandedFloat(SDValue Op, SDValue Lo,
813                                         SDValue Hi) {
814   assert(Lo.getValueType() ==
815          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
816          Hi.getValueType() == Lo.getValueType() &&
817          "Invalid type for expanded float");
818   // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
819   AnalyzeNewValue(Lo);
820   AnalyzeNewValue(Hi);
821 
822   std::pair<TableId, TableId> &Entry = ExpandedFloats[getTableId(Op)];
823   assert((Entry.first == 0) && "Node already expanded");
824   Entry.first = getTableId(Lo);
825   Entry.second = getTableId(Hi);
826 }
827 
828 void DAGTypeLegalizer::GetSplitVector(SDValue Op, SDValue &Lo,
829                                       SDValue &Hi) {
830   std::pair<TableId, TableId> &Entry = SplitVectors[getTableId(Op)];
831   Lo = getSDValue(Entry.first);
832   Hi = getSDValue(Entry.second);
833   assert(Lo.getNode() && "Operand isn't split");
834   ;
835 }
836 
837 void DAGTypeLegalizer::SetSplitVector(SDValue Op, SDValue Lo,
838                                       SDValue Hi) {
839   assert(Lo.getValueType().getVectorElementType() ==
840              Op.getValueType().getVectorElementType() &&
841          Lo.getValueType().getVectorElementCount() * 2 ==
842              Op.getValueType().getVectorElementCount() &&
843          Hi.getValueType() == Lo.getValueType() &&
844          "Invalid type for split vector");
845   // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
846   AnalyzeNewValue(Lo);
847   AnalyzeNewValue(Hi);
848 
849   // Remember that this is the result of the node.
850   std::pair<TableId, TableId> &Entry = SplitVectors[getTableId(Op)];
851   assert((Entry.first == 0) && "Node already split");
852   Entry.first = getTableId(Lo);
853   Entry.second = getTableId(Hi);
854 }
855 
856 void DAGTypeLegalizer::SetWidenedVector(SDValue Op, SDValue Result) {
857   assert(Result.getValueType() ==
858          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
859          "Invalid type for widened vector");
860   AnalyzeNewValue(Result);
861 
862   auto &OpIdEntry = WidenedVectors[getTableId(Op)];
863   assert((OpIdEntry == 0) && "Node already widened!");
864   OpIdEntry = getTableId(Result);
865 }
866 
867 
868 //===----------------------------------------------------------------------===//
869 // Utilities.
870 //===----------------------------------------------------------------------===//
871 
872 /// Convert to an integer of the same size.
873 SDValue DAGTypeLegalizer::BitConvertToInteger(SDValue Op) {
874   unsigned BitWidth = Op.getValueSizeInBits();
875   return DAG.getNode(ISD::BITCAST, SDLoc(Op),
876                      EVT::getIntegerVT(*DAG.getContext(), BitWidth), Op);
877 }
878 
879 /// Convert to a vector of integers of the same size.
880 SDValue DAGTypeLegalizer::BitConvertVectorToIntegerVector(SDValue Op) {
881   assert(Op.getValueType().isVector() && "Only applies to vectors!");
882   unsigned EltWidth = Op.getScalarValueSizeInBits();
883   EVT EltNVT = EVT::getIntegerVT(*DAG.getContext(), EltWidth);
884   auto EltCnt = Op.getValueType().getVectorElementCount();
885   return DAG.getNode(ISD::BITCAST, SDLoc(Op),
886                      EVT::getVectorVT(*DAG.getContext(), EltNVT, EltCnt), Op);
887 }
888 
889 SDValue DAGTypeLegalizer::CreateStackStoreLoad(SDValue Op,
890                                                EVT DestVT) {
891   SDLoc dl(Op);
892   // Create the stack frame object.  Make sure it is aligned for both
893   // the source and destination types.
894 
895   // In cases where the vector is illegal it will be broken down into parts
896   // and stored in parts - we should use the alignment for the smallest part.
897   Align DestAlign = DAG.getReducedAlign(DestVT, /*UseABI=*/false);
898   Align OpAlign = DAG.getReducedAlign(Op.getValueType(), /*UseABI=*/false);
899   Align Align = std::max(DestAlign, OpAlign);
900   SDValue StackPtr =
901       DAG.CreateStackTemporary(Op.getValueType().getStoreSize(), Align);
902   // Emit a store to the stack slot.
903   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op, StackPtr,
904                                MachinePointerInfo(), Align);
905   // Result is a load from the stack slot.
906   return DAG.getLoad(DestVT, dl, Store, StackPtr, MachinePointerInfo(), Align);
907 }
908 
909 /// Replace the node's results with custom code provided by the target and
910 /// return "true", or do nothing and return "false".
911 /// The last parameter is FALSE if we are dealing with a node with legal
912 /// result types and illegal operand. The second parameter denotes the type of
913 /// illegal OperandNo in that case.
914 /// The last parameter being TRUE means we are dealing with a
915 /// node with illegal result types. The second parameter denotes the type of
916 /// illegal ResNo in that case.
917 bool DAGTypeLegalizer::CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult) {
918   // See if the target wants to custom lower this node.
919   if (TLI.getOperationAction(N->getOpcode(), VT) != TargetLowering::Custom)
920     return false;
921 
922   SmallVector<SDValue, 8> Results;
923   if (LegalizeResult)
924     TLI.ReplaceNodeResults(N, Results, DAG);
925   else
926     TLI.LowerOperationWrapper(N, Results, DAG);
927 
928   if (Results.empty())
929     // The target didn't want to custom lower it after all.
930     return false;
931 
932   // Make everything that once used N's values now use those in Results instead.
933   assert(Results.size() == N->getNumValues() &&
934          "Custom lowering returned the wrong number of results!");
935   for (unsigned i = 0, e = Results.size(); i != e; ++i) {
936     ReplaceValueWith(SDValue(N, i), Results[i]);
937   }
938   return true;
939 }
940 
941 
942 /// Widen the node's results with custom code provided by the target and return
943 /// "true", or do nothing and return "false".
944 bool DAGTypeLegalizer::CustomWidenLowerNode(SDNode *N, EVT VT) {
945   // See if the target wants to custom lower this node.
946   if (TLI.getOperationAction(N->getOpcode(), VT) != TargetLowering::Custom)
947     return false;
948 
949   SmallVector<SDValue, 8> Results;
950   TLI.ReplaceNodeResults(N, Results, DAG);
951 
952   if (Results.empty())
953     // The target didn't want to custom widen lower its result after all.
954     return false;
955 
956   // Update the widening map.
957   assert(Results.size() == N->getNumValues() &&
958          "Custom lowering returned the wrong number of results!");
959   for (unsigned i = 0, e = Results.size(); i != e; ++i) {
960     // If this is a chain output or already widened just replace it.
961     bool WasWidened = SDValue(N, i).getValueType() != Results[i].getValueType();
962     if (WasWidened)
963       SetWidenedVector(SDValue(N, i), Results[i]);
964     else
965       ReplaceValueWith(SDValue(N, i), Results[i]);
966   }
967   return true;
968 }
969 
970 SDValue DAGTypeLegalizer::DisintegrateMERGE_VALUES(SDNode *N, unsigned ResNo) {
971   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
972     if (i != ResNo)
973       ReplaceValueWith(SDValue(N, i), SDValue(N->getOperand(i)));
974   return SDValue(N->getOperand(ResNo));
975 }
976 
977 /// Use ISD::EXTRACT_ELEMENT nodes to extract the low and high parts of the
978 /// given value.
979 void DAGTypeLegalizer::GetPairElements(SDValue Pair,
980                                        SDValue &Lo, SDValue &Hi) {
981   SDLoc dl(Pair);
982   EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), Pair.getValueType());
983   Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, NVT, Pair,
984                    DAG.getIntPtrConstant(0, dl));
985   Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, NVT, Pair,
986                    DAG.getIntPtrConstant(1, dl));
987 }
988 
989 /// Build an integer with low bits Lo and high bits Hi.
990 SDValue DAGTypeLegalizer::JoinIntegers(SDValue Lo, SDValue Hi) {
991   // Arbitrarily use dlHi for result SDLoc
992   SDLoc dlHi(Hi);
993   SDLoc dlLo(Lo);
994   EVT LVT = Lo.getValueType();
995   EVT HVT = Hi.getValueType();
996   EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
997                               LVT.getSizeInBits() + HVT.getSizeInBits());
998 
999   EVT ShiftAmtVT = TLI.getShiftAmountTy(NVT, DAG.getDataLayout(), false);
1000   Lo = DAG.getNode(ISD::ZERO_EXTEND, dlLo, NVT, Lo);
1001   Hi = DAG.getNode(ISD::ANY_EXTEND, dlHi, NVT, Hi);
1002   Hi = DAG.getNode(ISD::SHL, dlHi, NVT, Hi,
1003                    DAG.getConstant(LVT.getSizeInBits(), dlHi, ShiftAmtVT));
1004   return DAG.getNode(ISD::OR, dlHi, NVT, Lo, Hi);
1005 }
1006 
1007 /// Promote the given target boolean to a target boolean of the given type.
1008 /// A target boolean is an integer value, not necessarily of type i1, the bits
1009 /// of which conform to getBooleanContents.
1010 ///
1011 /// ValVT is the type of values that produced the boolean.
1012 SDValue DAGTypeLegalizer::PromoteTargetBoolean(SDValue Bool, EVT ValVT) {
1013   SDLoc dl(Bool);
1014   EVT BoolVT = getSetCCResultType(ValVT);
1015   ISD::NodeType ExtendCode =
1016       TargetLowering::getExtendForContent(TLI.getBooleanContents(ValVT));
1017   return DAG.getNode(ExtendCode, dl, BoolVT, Bool);
1018 }
1019 
1020 /// Return the lower LoVT bits of Op in Lo and the upper HiVT bits in Hi.
1021 void DAGTypeLegalizer::SplitInteger(SDValue Op,
1022                                     EVT LoVT, EVT HiVT,
1023                                     SDValue &Lo, SDValue &Hi) {
1024   SDLoc dl(Op);
1025   assert(LoVT.getSizeInBits() + HiVT.getSizeInBits() ==
1026          Op.getValueSizeInBits() && "Invalid integer splitting!");
1027   Lo = DAG.getNode(ISD::TRUNCATE, dl, LoVT, Op);
1028   unsigned ReqShiftAmountInBits =
1029       Log2_32_Ceil(Op.getValueType().getSizeInBits());
1030   MVT ShiftAmountTy =
1031       TLI.getScalarShiftAmountTy(DAG.getDataLayout(), Op.getValueType());
1032   if (ReqShiftAmountInBits > ShiftAmountTy.getSizeInBits())
1033     ShiftAmountTy = MVT::getIntegerVT(NextPowerOf2(ReqShiftAmountInBits));
1034   Hi = DAG.getNode(ISD::SRL, dl, Op.getValueType(), Op,
1035                    DAG.getConstant(LoVT.getSizeInBits(), dl, ShiftAmountTy));
1036   Hi = DAG.getNode(ISD::TRUNCATE, dl, HiVT, Hi);
1037 }
1038 
1039 /// Return the lower and upper halves of Op's bits in a value type half the
1040 /// size of Op's.
1041 void DAGTypeLegalizer::SplitInteger(SDValue Op,
1042                                     SDValue &Lo, SDValue &Hi) {
1043   EVT HalfVT =
1044       EVT::getIntegerVT(*DAG.getContext(), Op.getValueSizeInBits() / 2);
1045   SplitInteger(Op, HalfVT, HalfVT, Lo, Hi);
1046 }
1047 
1048 
1049 //===----------------------------------------------------------------------===//
1050 //  Entry Point
1051 //===----------------------------------------------------------------------===//
1052 
1053 /// This transforms the SelectionDAG into a SelectionDAG that only uses types
1054 /// natively supported by the target. Returns "true" if it made any changes.
1055 ///
1056 /// Note that this is an involved process that may invalidate pointers into
1057 /// the graph.
1058 bool SelectionDAG::LegalizeTypes() {
1059   return DAGTypeLegalizer(*this).run();
1060 }
1061