1 //===-- LegalizeTypes.cpp - Common code for DAG type legalizer ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SelectionDAG::LegalizeTypes method.  It transforms
10 // an arbitrary well-formed SelectionDAG to only consist of legal types.  This
11 // is common code shared among the LegalizeTypes*.cpp files.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "LegalizeTypes.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/IR/DataLayout.h"
18 #include "llvm/Support/CommandLine.h"
19 #include "llvm/Support/ErrorHandling.h"
20 #include "llvm/Support/raw_ostream.h"
21 using namespace llvm;
22 
23 #define DEBUG_TYPE "legalize-types"
24 
25 static cl::opt<bool>
26 EnableExpensiveChecks("enable-legalize-types-checking", cl::Hidden);
27 
28 /// Do extensive, expensive, basic correctness checking.
29 void DAGTypeLegalizer::PerformExpensiveChecks() {
30   // If a node is not processed, then none of its values should be mapped by any
31   // of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
32 
33   // If a node is processed, then each value with an illegal type must be mapped
34   // by exactly one of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
35   // Values with a legal type may be mapped by ReplacedValues, but not by any of
36   // the other maps.
37 
38   // Note that these invariants may not hold momentarily when processing a node:
39   // the node being processed may be put in a map before being marked Processed.
40 
41   // Note that it is possible to have nodes marked NewNode in the DAG.  This can
42   // occur in two ways.  Firstly, a node may be created during legalization but
43   // never passed to the legalization core.  This is usually due to the implicit
44   // folding that occurs when using the DAG.getNode operators.  Secondly, a new
45   // node may be passed to the legalization core, but when analyzed may morph
46   // into a different node, leaving the original node as a NewNode in the DAG.
47   // A node may morph if one of its operands changes during analysis.  Whether
48   // it actually morphs or not depends on whether, after updating its operands,
49   // it is equivalent to an existing node: if so, it morphs into that existing
50   // node (CSE).  An operand can change during analysis if the operand is a new
51   // node that morphs, or it is a processed value that was mapped to some other
52   // value (as recorded in ReplacedValues) in which case the operand is turned
53   // into that other value.  If a node morphs then the node it morphed into will
54   // be used instead of it for legalization, however the original node continues
55   // to live on in the DAG.
56   // The conclusion is that though there may be nodes marked NewNode in the DAG,
57   // all uses of such nodes are also marked NewNode: the result is a fungus of
58   // NewNodes growing on top of the useful nodes, and perhaps using them, but
59   // not used by them.
60 
61   // If a value is mapped by ReplacedValues, then it must have no uses, except
62   // by nodes marked NewNode (see above).
63 
64   // The final node obtained by mapping by ReplacedValues is not marked NewNode.
65   // Note that ReplacedValues should be applied iteratively.
66 
67   // Note that the ReplacedValues map may also map deleted nodes (by iterating
68   // over the DAG we never dereference deleted nodes).  This means that it may
69   // also map nodes marked NewNode if the deallocated memory was reallocated as
70   // another node, and that new node was not seen by the LegalizeTypes machinery
71   // (for example because it was created but not used).  In general, we cannot
72   // distinguish between new nodes and deleted nodes.
73   SmallVector<SDNode*, 16> NewNodes;
74   for (SDNode &Node : DAG.allnodes()) {
75     // Remember nodes marked NewNode - they are subject to extra checking below.
76     if (Node.getNodeId() == NewNode)
77       NewNodes.push_back(&Node);
78 
79     for (unsigned i = 0, e = Node.getNumValues(); i != e; ++i) {
80       SDValue Res(&Node, i);
81       bool Failed = false;
82       // Don't create a value in map.
83       auto ResId = ValueToIdMap.lookup(Res);
84 
85       unsigned Mapped = 0;
86       if (ResId) {
87         auto I = ReplacedValues.find(ResId);
88         if (I != ReplacedValues.end()) {
89           Mapped |= 1;
90           // Check that remapped values are only used by nodes marked NewNode.
91           for (SDNode::use_iterator UI = Node.use_begin(), UE = Node.use_end();
92                UI != UE; ++UI)
93             if (UI.getUse().getResNo() == i)
94               assert(UI->getNodeId() == NewNode &&
95                      "Remapped value has non-trivial use!");
96 
97           // Check that the final result of applying ReplacedValues is not
98           // marked NewNode.
99           auto NewValId = I->second;
100           I = ReplacedValues.find(NewValId);
101           while (I != ReplacedValues.end()) {
102             NewValId = I->second;
103             I = ReplacedValues.find(NewValId);
104           }
105           SDValue NewVal = getSDValue(NewValId);
106           (void)NewVal;
107           assert(NewVal.getNode()->getNodeId() != NewNode &&
108                  "ReplacedValues maps to a new node!");
109         }
110         if (PromotedIntegers.count(ResId))
111           Mapped |= 2;
112         if (SoftenedFloats.count(ResId))
113           Mapped |= 4;
114         if (ScalarizedVectors.count(ResId))
115           Mapped |= 8;
116         if (ExpandedIntegers.count(ResId))
117           Mapped |= 16;
118         if (ExpandedFloats.count(ResId))
119           Mapped |= 32;
120         if (SplitVectors.count(ResId))
121           Mapped |= 64;
122         if (WidenedVectors.count(ResId))
123           Mapped |= 128;
124         if (PromotedFloats.count(ResId))
125           Mapped |= 256;
126         if (SoftPromotedHalfs.count(ResId))
127           Mapped |= 512;
128       }
129 
130       if (Node.getNodeId() != Processed) {
131         // Since we allow ReplacedValues to map deleted nodes, it may map nodes
132         // marked NewNode too, since a deleted node may have been reallocated as
133         // another node that has not been seen by the LegalizeTypes machinery.
134         if ((Node.getNodeId() == NewNode && Mapped > 1) ||
135             (Node.getNodeId() != NewNode && Mapped != 0)) {
136           dbgs() << "Unprocessed value in a map!";
137           Failed = true;
138         }
139       } else if (isTypeLegal(Res.getValueType()) || IgnoreNodeResults(&Node)) {
140         if (Mapped > 1) {
141           dbgs() << "Value with legal type was transformed!";
142           Failed = true;
143         }
144       } else {
145         if (Mapped == 0) {
146           SDValue NodeById = IdToValueMap.lookup(ResId);
147           // It is possible the node has been remapped to another node and had
148           // its Id updated in the Value to Id table. The node it remapped to
149           // may not have been processed yet. Look up the Id in the Id to Value
150           // table and re-check the Processed state. If the node hasn't been
151           // remapped we'll get the same state as we got earlier.
152           if (NodeById->getNodeId() == Processed) {
153             dbgs() << "Processed value not in any map!";
154             Failed = true;
155           }
156         } else if (Mapped & (Mapped - 1)) {
157           dbgs() << "Value in multiple maps!";
158           Failed = true;
159         }
160       }
161 
162       if (Failed) {
163         if (Mapped & 1)
164           dbgs() << " ReplacedValues";
165         if (Mapped & 2)
166           dbgs() << " PromotedIntegers";
167         if (Mapped & 4)
168           dbgs() << " SoftenedFloats";
169         if (Mapped & 8)
170           dbgs() << " ScalarizedVectors";
171         if (Mapped & 16)
172           dbgs() << " ExpandedIntegers";
173         if (Mapped & 32)
174           dbgs() << " ExpandedFloats";
175         if (Mapped & 64)
176           dbgs() << " SplitVectors";
177         if (Mapped & 128)
178           dbgs() << " WidenedVectors";
179         if (Mapped & 256)
180           dbgs() << " PromotedFloats";
181         if (Mapped & 512)
182           dbgs() << " SoftPromoteHalfs";
183         dbgs() << "\n";
184         llvm_unreachable(nullptr);
185       }
186     }
187   }
188 
189 #ifndef NDEBUG
190   // Checked that NewNodes are only used by other NewNodes.
191   for (unsigned i = 0, e = NewNodes.size(); i != e; ++i) {
192     SDNode *N = NewNodes[i];
193     for (SDNode *U : N->uses())
194       assert(U->getNodeId() == NewNode && "NewNode used by non-NewNode!");
195   }
196 #endif
197 }
198 
199 /// This is the main entry point for the type legalizer. This does a top-down
200 /// traversal of the dag, legalizing types as it goes. Returns "true" if it made
201 /// any changes.
202 bool DAGTypeLegalizer::run() {
203   bool Changed = false;
204 
205   // Create a dummy node (which is not added to allnodes), that adds a reference
206   // to the root node, preventing it from being deleted, and tracking any
207   // changes of the root.
208   HandleSDNode Dummy(DAG.getRoot());
209   Dummy.setNodeId(Unanalyzed);
210 
211   // The root of the dag may dangle to deleted nodes until the type legalizer is
212   // done.  Set it to null to avoid confusion.
213   DAG.setRoot(SDValue());
214 
215   // Walk all nodes in the graph, assigning them a NodeId of 'ReadyToProcess'
216   // (and remembering them) if they are leaves and assigning 'Unanalyzed' if
217   // non-leaves.
218   for (SDNode &Node : DAG.allnodes()) {
219     if (Node.getNumOperands() == 0) {
220       Node.setNodeId(ReadyToProcess);
221       Worklist.push_back(&Node);
222     } else {
223       Node.setNodeId(Unanalyzed);
224     }
225   }
226 
227   // Now that we have a set of nodes to process, handle them all.
228   while (!Worklist.empty()) {
229 #ifndef EXPENSIVE_CHECKS
230     if (EnableExpensiveChecks)
231 #endif
232       PerformExpensiveChecks();
233 
234     SDNode *N = Worklist.pop_back_val();
235     assert(N->getNodeId() == ReadyToProcess &&
236            "Node should be ready if on worklist!");
237 
238     LLVM_DEBUG(dbgs() << "Legalizing node: "; N->dump(&DAG));
239     if (IgnoreNodeResults(N)) {
240       LLVM_DEBUG(dbgs() << "Ignoring node results\n");
241       goto ScanOperands;
242     }
243 
244     // Scan the values produced by the node, checking to see if any result
245     // types are illegal.
246     for (unsigned i = 0, NumResults = N->getNumValues(); i < NumResults; ++i) {
247       EVT ResultVT = N->getValueType(i);
248       LLVM_DEBUG(dbgs() << "Analyzing result type: " << ResultVT.getEVTString()
249                         << "\n");
250       switch (getTypeAction(ResultVT)) {
251       case TargetLowering::TypeLegal:
252         LLVM_DEBUG(dbgs() << "Legal result type\n");
253         break;
254       case TargetLowering::TypeScalarizeScalableVector:
255         report_fatal_error(
256             "Scalarization of scalable vectors is not supported.");
257       // The following calls must take care of *all* of the node's results,
258       // not just the illegal result they were passed (this includes results
259       // with a legal type).  Results can be remapped using ReplaceValueWith,
260       // or their promoted/expanded/etc values registered in PromotedIntegers,
261       // ExpandedIntegers etc.
262       case TargetLowering::TypePromoteInteger:
263         PromoteIntegerResult(N, i);
264         Changed = true;
265         goto NodeDone;
266       case TargetLowering::TypeExpandInteger:
267         ExpandIntegerResult(N, i);
268         Changed = true;
269         goto NodeDone;
270       case TargetLowering::TypeSoftenFloat:
271         SoftenFloatResult(N, i);
272         Changed = true;
273         goto NodeDone;
274       case TargetLowering::TypeExpandFloat:
275         ExpandFloatResult(N, i);
276         Changed = true;
277         goto NodeDone;
278       case TargetLowering::TypeScalarizeVector:
279         ScalarizeVectorResult(N, i);
280         Changed = true;
281         goto NodeDone;
282       case TargetLowering::TypeSplitVector:
283         SplitVectorResult(N, i);
284         Changed = true;
285         goto NodeDone;
286       case TargetLowering::TypeWidenVector:
287         WidenVectorResult(N, i);
288         Changed = true;
289         goto NodeDone;
290       case TargetLowering::TypePromoteFloat:
291         PromoteFloatResult(N, i);
292         Changed = true;
293         goto NodeDone;
294       case TargetLowering::TypeSoftPromoteHalf:
295         SoftPromoteHalfResult(N, i);
296         Changed = true;
297         goto NodeDone;
298       }
299     }
300 
301 ScanOperands:
302     // Scan the operand list for the node, handling any nodes with operands that
303     // are illegal.
304     {
305     unsigned NumOperands = N->getNumOperands();
306     bool NeedsReanalyzing = false;
307     unsigned i;
308     for (i = 0; i != NumOperands; ++i) {
309       if (IgnoreNodeResults(N->getOperand(i).getNode()))
310         continue;
311 
312       const auto &Op = N->getOperand(i);
313       LLVM_DEBUG(dbgs() << "Analyzing operand: "; Op.dump(&DAG));
314       EVT OpVT = Op.getValueType();
315       switch (getTypeAction(OpVT)) {
316       case TargetLowering::TypeLegal:
317         LLVM_DEBUG(dbgs() << "Legal operand\n");
318         continue;
319       case TargetLowering::TypeScalarizeScalableVector:
320         report_fatal_error(
321             "Scalarization of scalable vectors is not supported.");
322       // The following calls must either replace all of the node's results
323       // using ReplaceValueWith, and return "false"; or update the node's
324       // operands in place, and return "true".
325       case TargetLowering::TypePromoteInteger:
326         NeedsReanalyzing = PromoteIntegerOperand(N, i);
327         Changed = true;
328         break;
329       case TargetLowering::TypeExpandInteger:
330         NeedsReanalyzing = ExpandIntegerOperand(N, i);
331         Changed = true;
332         break;
333       case TargetLowering::TypeSoftenFloat:
334         NeedsReanalyzing = SoftenFloatOperand(N, i);
335         Changed = true;
336         break;
337       case TargetLowering::TypeExpandFloat:
338         NeedsReanalyzing = ExpandFloatOperand(N, i);
339         Changed = true;
340         break;
341       case TargetLowering::TypeScalarizeVector:
342         NeedsReanalyzing = ScalarizeVectorOperand(N, i);
343         Changed = true;
344         break;
345       case TargetLowering::TypeSplitVector:
346         NeedsReanalyzing = SplitVectorOperand(N, i);
347         Changed = true;
348         break;
349       case TargetLowering::TypeWidenVector:
350         NeedsReanalyzing = WidenVectorOperand(N, i);
351         Changed = true;
352         break;
353       case TargetLowering::TypePromoteFloat:
354         NeedsReanalyzing = PromoteFloatOperand(N, i);
355         Changed = true;
356         break;
357       case TargetLowering::TypeSoftPromoteHalf:
358         NeedsReanalyzing = SoftPromoteHalfOperand(N, i);
359         Changed = true;
360         break;
361       }
362       break;
363     }
364 
365     // The sub-method updated N in place.  Check to see if any operands are new,
366     // and if so, mark them.  If the node needs revisiting, don't add all users
367     // to the worklist etc.
368     if (NeedsReanalyzing) {
369       assert(N->getNodeId() == ReadyToProcess && "Node ID recalculated?");
370 
371       N->setNodeId(NewNode);
372       // Recompute the NodeId and correct processed operands, adding the node to
373       // the worklist if ready.
374       SDNode *M = AnalyzeNewNode(N);
375       if (M == N)
376         // The node didn't morph - nothing special to do, it will be revisited.
377         continue;
378 
379       // The node morphed - this is equivalent to legalizing by replacing every
380       // value of N with the corresponding value of M.  So do that now.
381       assert(N->getNumValues() == M->getNumValues() &&
382              "Node morphing changed the number of results!");
383       for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
384         // Replacing the value takes care of remapping the new value.
385         ReplaceValueWith(SDValue(N, i), SDValue(M, i));
386       assert(N->getNodeId() == NewNode && "Unexpected node state!");
387       // The node continues to live on as part of the NewNode fungus that
388       // grows on top of the useful nodes.  Nothing more needs to be done
389       // with it - move on to the next node.
390       continue;
391     }
392 
393     if (i == NumOperands) {
394       LLVM_DEBUG(dbgs() << "Legally typed node: "; N->dump(&DAG);
395                  dbgs() << "\n");
396     }
397     }
398 NodeDone:
399 
400     // If we reach here, the node was processed, potentially creating new nodes.
401     // Mark it as processed and add its users to the worklist as appropriate.
402     assert(N->getNodeId() == ReadyToProcess && "Node ID recalculated?");
403     N->setNodeId(Processed);
404 
405     for (SDNode *User : N->uses()) {
406       int NodeId = User->getNodeId();
407 
408       // This node has two options: it can either be a new node or its Node ID
409       // may be a count of the number of operands it has that are not ready.
410       if (NodeId > 0) {
411         User->setNodeId(NodeId-1);
412 
413         // If this was the last use it was waiting on, add it to the ready list.
414         if (NodeId-1 == ReadyToProcess)
415           Worklist.push_back(User);
416         continue;
417       }
418 
419       // If this is an unreachable new node, then ignore it.  If it ever becomes
420       // reachable by being used by a newly created node then it will be handled
421       // by AnalyzeNewNode.
422       if (NodeId == NewNode)
423         continue;
424 
425       // Otherwise, this node is new: this is the first operand of it that
426       // became ready.  Its new NodeId is the number of operands it has minus 1
427       // (as this node is now processed).
428       assert(NodeId == Unanalyzed && "Unknown node ID!");
429       User->setNodeId(User->getNumOperands() - 1);
430 
431       // If the node only has a single operand, it is now ready.
432       if (User->getNumOperands() == 1)
433         Worklist.push_back(User);
434     }
435   }
436 
437 #ifndef EXPENSIVE_CHECKS
438   if (EnableExpensiveChecks)
439 #endif
440     PerformExpensiveChecks();
441 
442   // If the root changed (e.g. it was a dead load) update the root.
443   DAG.setRoot(Dummy.getValue());
444 
445   // Remove dead nodes.  This is important to do for cleanliness but also before
446   // the checking loop below.  Implicit folding by the DAG.getNode operators and
447   // node morphing can cause unreachable nodes to be around with their flags set
448   // to new.
449   DAG.RemoveDeadNodes();
450 
451   // In a debug build, scan all the nodes to make sure we found them all.  This
452   // ensures that there are no cycles and that everything got processed.
453 #ifndef NDEBUG
454   for (SDNode &Node : DAG.allnodes()) {
455     bool Failed = false;
456 
457     // Check that all result types are legal.
458     if (!IgnoreNodeResults(&Node))
459       for (unsigned i = 0, NumVals = Node.getNumValues(); i < NumVals; ++i)
460         if (!isTypeLegal(Node.getValueType(i))) {
461           dbgs() << "Result type " << i << " illegal: ";
462           Node.dump(&DAG);
463           Failed = true;
464         }
465 
466     // Check that all operand types are legal.
467     for (unsigned i = 0, NumOps = Node.getNumOperands(); i < NumOps; ++i)
468       if (!IgnoreNodeResults(Node.getOperand(i).getNode()) &&
469           !isTypeLegal(Node.getOperand(i).getValueType())) {
470         dbgs() << "Operand type " << i << " illegal: ";
471         Node.getOperand(i).dump(&DAG);
472         Failed = true;
473       }
474 
475     if (Node.getNodeId() != Processed) {
476        if (Node.getNodeId() == NewNode)
477          dbgs() << "New node not analyzed?\n";
478        else if (Node.getNodeId() == Unanalyzed)
479          dbgs() << "Unanalyzed node not noticed?\n";
480        else if (Node.getNodeId() > 0)
481          dbgs() << "Operand not processed?\n";
482        else if (Node.getNodeId() == ReadyToProcess)
483          dbgs() << "Not added to worklist?\n";
484        Failed = true;
485     }
486 
487     if (Failed) {
488       Node.dump(&DAG); dbgs() << "\n";
489       llvm_unreachable(nullptr);
490     }
491   }
492 #endif
493 
494   return Changed;
495 }
496 
497 /// The specified node is the root of a subtree of potentially new nodes.
498 /// Correct any processed operands (this may change the node) and calculate the
499 /// NodeId. If the node itself changes to a processed node, it is not remapped -
500 /// the caller needs to take care of this. Returns the potentially changed node.
501 SDNode *DAGTypeLegalizer::AnalyzeNewNode(SDNode *N) {
502   // If this was an existing node that is already done, we're done.
503   if (N->getNodeId() != NewNode && N->getNodeId() != Unanalyzed)
504     return N;
505 
506   // Okay, we know that this node is new.  Recursively walk all of its operands
507   // to see if they are new also.  The depth of this walk is bounded by the size
508   // of the new tree that was constructed (usually 2-3 nodes), so we don't worry
509   // about revisiting of nodes.
510   //
511   // As we walk the operands, keep track of the number of nodes that are
512   // processed.  If non-zero, this will become the new nodeid of this node.
513   // Operands may morph when they are analyzed.  If so, the node will be
514   // updated after all operands have been analyzed.  Since this is rare,
515   // the code tries to minimize overhead in the non-morphing case.
516 
517   std::vector<SDValue> NewOps;
518   unsigned NumProcessed = 0;
519   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
520     SDValue OrigOp = N->getOperand(i);
521     SDValue Op = OrigOp;
522 
523     AnalyzeNewValue(Op); // Op may morph.
524 
525     if (Op.getNode()->getNodeId() == Processed)
526       ++NumProcessed;
527 
528     if (!NewOps.empty()) {
529       // Some previous operand changed.  Add this one to the list.
530       NewOps.push_back(Op);
531     } else if (Op != OrigOp) {
532       // This is the first operand to change - add all operands so far.
533       NewOps.insert(NewOps.end(), N->op_begin(), N->op_begin() + i);
534       NewOps.push_back(Op);
535     }
536   }
537 
538   // Some operands changed - update the node.
539   if (!NewOps.empty()) {
540     SDNode *M = DAG.UpdateNodeOperands(N, NewOps);
541     if (M != N) {
542       // The node morphed into a different node.  Normally for this to happen
543       // the original node would have to be marked NewNode.  However this can
544       // in theory momentarily not be the case while ReplaceValueWith is doing
545       // its stuff.  Mark the original node NewNode to help basic correctness
546       // checking.
547       N->setNodeId(NewNode);
548       if (M->getNodeId() != NewNode && M->getNodeId() != Unanalyzed)
549         // It morphed into a previously analyzed node - nothing more to do.
550         return M;
551 
552       // It morphed into a different new node.  Do the equivalent of passing
553       // it to AnalyzeNewNode: expunge it and calculate the NodeId.  No need
554       // to remap the operands, since they are the same as the operands we
555       // remapped above.
556       N = M;
557     }
558   }
559 
560   // Calculate the NodeId.
561   N->setNodeId(N->getNumOperands() - NumProcessed);
562   if (N->getNodeId() == ReadyToProcess)
563     Worklist.push_back(N);
564 
565   return N;
566 }
567 
568 /// Call AnalyzeNewNode, updating the node in Val if needed.
569 /// If the node changes to a processed node, then remap it.
570 void DAGTypeLegalizer::AnalyzeNewValue(SDValue &Val) {
571   Val.setNode(AnalyzeNewNode(Val.getNode()));
572   if (Val.getNode()->getNodeId() == Processed)
573     // We were passed a processed node, or it morphed into one - remap it.
574     RemapValue(Val);
575 }
576 
577 /// If the specified value was already legalized to another value,
578 /// replace it by that value.
579 void DAGTypeLegalizer::RemapValue(SDValue &V) {
580   auto Id = getTableId(V);
581   V = getSDValue(Id);
582 }
583 
584 void DAGTypeLegalizer::RemapId(TableId &Id) {
585   auto I = ReplacedValues.find(Id);
586   if (I != ReplacedValues.end()) {
587     assert(Id != I->second && "Id is mapped to itself.");
588     // Use path compression to speed up future lookups if values get multiply
589     // replaced with other values.
590     RemapId(I->second);
591     Id = I->second;
592 
593     // Note that N = IdToValueMap[Id] it is possible to have
594     // N.getNode()->getNodeId() == NewNode at this point because it is possible
595     // for a node to be put in the map before being processed.
596   }
597 }
598 
599 namespace {
600   /// This class is a DAGUpdateListener that listens for updates to nodes and
601   /// recomputes their ready state.
602   class NodeUpdateListener : public SelectionDAG::DAGUpdateListener {
603     DAGTypeLegalizer &DTL;
604     SmallSetVector<SDNode*, 16> &NodesToAnalyze;
605   public:
606     explicit NodeUpdateListener(DAGTypeLegalizer &dtl,
607                                 SmallSetVector<SDNode*, 16> &nta)
608       : SelectionDAG::DAGUpdateListener(dtl.getDAG()),
609         DTL(dtl), NodesToAnalyze(nta) {}
610 
611     void NodeDeleted(SDNode *N, SDNode *E) override {
612       assert(N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
613              N->getNodeId() != DAGTypeLegalizer::Processed &&
614              "Invalid node ID for RAUW deletion!");
615       // It is possible, though rare, for the deleted node N to occur as a
616       // target in a map, so note the replacement N -> E in ReplacedValues.
617       assert(E && "Node not replaced?");
618       DTL.NoteDeletion(N, E);
619 
620       // In theory the deleted node could also have been scheduled for analysis.
621       // So remove it from the set of nodes which will be analyzed.
622       NodesToAnalyze.remove(N);
623 
624       // In general nothing needs to be done for E, since it didn't change but
625       // only gained new uses.  However N -> E was just added to ReplacedValues,
626       // and the result of a ReplacedValues mapping is not allowed to be marked
627       // NewNode.  So if E is marked NewNode, then it needs to be analyzed.
628       if (E->getNodeId() == DAGTypeLegalizer::NewNode)
629         NodesToAnalyze.insert(E);
630     }
631 
632     void NodeUpdated(SDNode *N) override {
633       // Node updates can mean pretty much anything.  It is possible that an
634       // operand was set to something already processed (f.e.) in which case
635       // this node could become ready.  Recompute its flags.
636       assert(N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
637              N->getNodeId() != DAGTypeLegalizer::Processed &&
638              "Invalid node ID for RAUW deletion!");
639       N->setNodeId(DAGTypeLegalizer::NewNode);
640       NodesToAnalyze.insert(N);
641     }
642   };
643 }
644 
645 
646 /// The specified value was legalized to the specified other value.
647 /// Update the DAG and NodeIds replacing any uses of From to use To instead.
648 void DAGTypeLegalizer::ReplaceValueWith(SDValue From, SDValue To) {
649   assert(From.getNode() != To.getNode() && "Potential legalization loop!");
650 
651   // If expansion produced new nodes, make sure they are properly marked.
652   AnalyzeNewValue(To);
653 
654   // Anything that used the old node should now use the new one.  Note that this
655   // can potentially cause recursive merging.
656   SmallSetVector<SDNode*, 16> NodesToAnalyze;
657   NodeUpdateListener NUL(*this, NodesToAnalyze);
658   do {
659 
660     // The old node may be present in a map like ExpandedIntegers or
661     // PromotedIntegers. Inform maps about the replacement.
662     auto FromId = getTableId(From);
663     auto ToId = getTableId(To);
664 
665     if (FromId != ToId)
666       ReplacedValues[FromId] = ToId;
667     DAG.ReplaceAllUsesOfValueWith(From, To);
668 
669     // Process the list of nodes that need to be reanalyzed.
670     while (!NodesToAnalyze.empty()) {
671       SDNode *N = NodesToAnalyze.pop_back_val();
672       if (N->getNodeId() != DAGTypeLegalizer::NewNode)
673         // The node was analyzed while reanalyzing an earlier node - it is safe
674         // to skip.  Note that this is not a morphing node - otherwise it would
675         // still be marked NewNode.
676         continue;
677 
678       // Analyze the node's operands and recalculate the node ID.
679       SDNode *M = AnalyzeNewNode(N);
680       if (M != N) {
681         // The node morphed into a different node.  Make everyone use the new
682         // node instead.
683         assert(M->getNodeId() != NewNode && "Analysis resulted in NewNode!");
684         assert(N->getNumValues() == M->getNumValues() &&
685                "Node morphing changed the number of results!");
686         for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
687           SDValue OldVal(N, i);
688           SDValue NewVal(M, i);
689           if (M->getNodeId() == Processed)
690             RemapValue(NewVal);
691           // OldVal may be a target of the ReplacedValues map which was marked
692           // NewNode to force reanalysis because it was updated.  Ensure that
693           // anything that ReplacedValues mapped to OldVal will now be mapped
694           // all the way to NewVal.
695           auto OldValId = getTableId(OldVal);
696           auto NewValId = getTableId(NewVal);
697           DAG.ReplaceAllUsesOfValueWith(OldVal, NewVal);
698           if (OldValId != NewValId)
699             ReplacedValues[OldValId] = NewValId;
700         }
701         // The original node continues to exist in the DAG, marked NewNode.
702       }
703     }
704     // When recursively update nodes with new nodes, it is possible to have
705     // new uses of From due to CSE. If this happens, replace the new uses of
706     // From with To.
707   } while (!From.use_empty());
708 }
709 
710 void DAGTypeLegalizer::SetPromotedInteger(SDValue Op, SDValue Result) {
711   assert(Result.getValueType() ==
712          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
713          "Invalid type for promoted integer");
714   AnalyzeNewValue(Result);
715 
716   auto &OpIdEntry = PromotedIntegers[getTableId(Op)];
717   assert((OpIdEntry == 0) && "Node is already promoted!");
718   OpIdEntry = getTableId(Result);
719   Result->setFlags(Op->getFlags());
720 
721   DAG.transferDbgValues(Op, Result);
722 }
723 
724 void DAGTypeLegalizer::SetSoftenedFloat(SDValue Op, SDValue Result) {
725   assert(Result.getValueType() ==
726          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
727          "Invalid type for softened float");
728   AnalyzeNewValue(Result);
729 
730   auto &OpIdEntry = SoftenedFloats[getTableId(Op)];
731   assert((OpIdEntry == 0) && "Node is already converted to integer!");
732   OpIdEntry = getTableId(Result);
733 }
734 
735 void DAGTypeLegalizer::SetPromotedFloat(SDValue Op, SDValue Result) {
736   assert(Result.getValueType() ==
737          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
738          "Invalid type for promoted float");
739   AnalyzeNewValue(Result);
740 
741   auto &OpIdEntry = PromotedFloats[getTableId(Op)];
742   assert((OpIdEntry == 0) && "Node is already promoted!");
743   OpIdEntry = getTableId(Result);
744 }
745 
746 void DAGTypeLegalizer::SetSoftPromotedHalf(SDValue Op, SDValue Result) {
747   assert(Result.getValueType() == MVT::i16 &&
748          "Invalid type for soft-promoted half");
749   AnalyzeNewValue(Result);
750 
751   auto &OpIdEntry = SoftPromotedHalfs[getTableId(Op)];
752   assert((OpIdEntry == 0) && "Node is already promoted!");
753   OpIdEntry = getTableId(Result);
754 }
755 
756 void DAGTypeLegalizer::SetScalarizedVector(SDValue Op, SDValue Result) {
757   // Note that in some cases vector operation operands may be greater than
758   // the vector element type. For example BUILD_VECTOR of type <1 x i1> with
759   // a constant i8 operand.
760 
761   // We don't currently support the scalarization of scalable vector types.
762   assert(Result.getValueSizeInBits().getFixedSize() >=
763              Op.getScalarValueSizeInBits() &&
764          "Invalid type for scalarized vector");
765   AnalyzeNewValue(Result);
766 
767   auto &OpIdEntry = ScalarizedVectors[getTableId(Op)];
768   assert((OpIdEntry == 0) && "Node is already scalarized!");
769   OpIdEntry = getTableId(Result);
770 }
771 
772 void DAGTypeLegalizer::GetExpandedInteger(SDValue Op, SDValue &Lo,
773                                           SDValue &Hi) {
774   std::pair<TableId, TableId> &Entry = ExpandedIntegers[getTableId(Op)];
775   assert((Entry.first != 0) && "Operand isn't expanded");
776   Lo = getSDValue(Entry.first);
777   Hi = getSDValue(Entry.second);
778 }
779 
780 void DAGTypeLegalizer::SetExpandedInteger(SDValue Op, SDValue Lo,
781                                           SDValue Hi) {
782   assert(Lo.getValueType() ==
783          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
784          Hi.getValueType() == Lo.getValueType() &&
785          "Invalid type for expanded integer");
786   // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
787   AnalyzeNewValue(Lo);
788   AnalyzeNewValue(Hi);
789 
790   // Transfer debug values. Don't invalidate the source debug value until it's
791   // been transferred to the high and low bits.
792   if (DAG.getDataLayout().isBigEndian()) {
793     DAG.transferDbgValues(Op, Hi, 0, Hi.getValueSizeInBits(), false);
794     DAG.transferDbgValues(Op, Lo, Hi.getValueSizeInBits(),
795                           Lo.getValueSizeInBits());
796   } else {
797     DAG.transferDbgValues(Op, Lo, 0, Lo.getValueSizeInBits(), false);
798     DAG.transferDbgValues(Op, Hi, Lo.getValueSizeInBits(),
799                           Hi.getValueSizeInBits());
800   }
801 
802   // Remember that this is the result of the node.
803   std::pair<TableId, TableId> &Entry = ExpandedIntegers[getTableId(Op)];
804   assert((Entry.first == 0) && "Node already expanded");
805   Entry.first = getTableId(Lo);
806   Entry.second = getTableId(Hi);
807 }
808 
809 void DAGTypeLegalizer::GetExpandedFloat(SDValue Op, SDValue &Lo,
810                                         SDValue &Hi) {
811   std::pair<TableId, TableId> &Entry = ExpandedFloats[getTableId(Op)];
812   assert((Entry.first != 0) && "Operand isn't expanded");
813   Lo = getSDValue(Entry.first);
814   Hi = getSDValue(Entry.second);
815 }
816 
817 void DAGTypeLegalizer::SetExpandedFloat(SDValue Op, SDValue Lo,
818                                         SDValue Hi) {
819   assert(Lo.getValueType() ==
820          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
821          Hi.getValueType() == Lo.getValueType() &&
822          "Invalid type for expanded float");
823   // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
824   AnalyzeNewValue(Lo);
825   AnalyzeNewValue(Hi);
826 
827   std::pair<TableId, TableId> &Entry = ExpandedFloats[getTableId(Op)];
828   assert((Entry.first == 0) && "Node already expanded");
829   Entry.first = getTableId(Lo);
830   Entry.second = getTableId(Hi);
831 }
832 
833 void DAGTypeLegalizer::GetSplitVector(SDValue Op, SDValue &Lo,
834                                       SDValue &Hi) {
835   std::pair<TableId, TableId> &Entry = SplitVectors[getTableId(Op)];
836   Lo = getSDValue(Entry.first);
837   Hi = getSDValue(Entry.second);
838   assert(Lo.getNode() && "Operand isn't split");
839   ;
840 }
841 
842 void DAGTypeLegalizer::SetSplitVector(SDValue Op, SDValue Lo,
843                                       SDValue Hi) {
844   assert(Lo.getValueType().getVectorElementType() ==
845              Op.getValueType().getVectorElementType() &&
846          Lo.getValueType().getVectorElementCount() * 2 ==
847              Op.getValueType().getVectorElementCount() &&
848          Hi.getValueType() == Lo.getValueType() &&
849          "Invalid type for split vector");
850   // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
851   AnalyzeNewValue(Lo);
852   AnalyzeNewValue(Hi);
853 
854   // Remember that this is the result of the node.
855   std::pair<TableId, TableId> &Entry = SplitVectors[getTableId(Op)];
856   assert((Entry.first == 0) && "Node already split");
857   Entry.first = getTableId(Lo);
858   Entry.second = getTableId(Hi);
859 }
860 
861 void DAGTypeLegalizer::SetWidenedVector(SDValue Op, SDValue Result) {
862   assert(Result.getValueType() ==
863          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
864          "Invalid type for widened vector");
865   AnalyzeNewValue(Result);
866 
867   auto &OpIdEntry = WidenedVectors[getTableId(Op)];
868   assert((OpIdEntry == 0) && "Node already widened!");
869   OpIdEntry = getTableId(Result);
870 }
871 
872 
873 //===----------------------------------------------------------------------===//
874 // Utilities.
875 //===----------------------------------------------------------------------===//
876 
877 /// Convert to an integer of the same size.
878 SDValue DAGTypeLegalizer::BitConvertToInteger(SDValue Op) {
879   unsigned BitWidth = Op.getValueSizeInBits();
880   return DAG.getNode(ISD::BITCAST, SDLoc(Op),
881                      EVT::getIntegerVT(*DAG.getContext(), BitWidth), Op);
882 }
883 
884 /// Convert to a vector of integers of the same size.
885 SDValue DAGTypeLegalizer::BitConvertVectorToIntegerVector(SDValue Op) {
886   assert(Op.getValueType().isVector() && "Only applies to vectors!");
887   unsigned EltWidth = Op.getScalarValueSizeInBits();
888   EVT EltNVT = EVT::getIntegerVT(*DAG.getContext(), EltWidth);
889   auto EltCnt = Op.getValueType().getVectorElementCount();
890   return DAG.getNode(ISD::BITCAST, SDLoc(Op),
891                      EVT::getVectorVT(*DAG.getContext(), EltNVT, EltCnt), Op);
892 }
893 
894 SDValue DAGTypeLegalizer::CreateStackStoreLoad(SDValue Op,
895                                                EVT DestVT) {
896   SDLoc dl(Op);
897   // Create the stack frame object.  Make sure it is aligned for both
898   // the source and destination types.
899 
900   // In cases where the vector is illegal it will be broken down into parts
901   // and stored in parts - we should use the alignment for the smallest part.
902   Align DestAlign = DAG.getReducedAlign(DestVT, /*UseABI=*/false);
903   Align OpAlign = DAG.getReducedAlign(Op.getValueType(), /*UseABI=*/false);
904   Align Align = std::max(DestAlign, OpAlign);
905   SDValue StackPtr =
906       DAG.CreateStackTemporary(Op.getValueType().getStoreSize(), Align);
907   // Emit a store to the stack slot.
908   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op, StackPtr,
909                                MachinePointerInfo(), Align);
910   // Result is a load from the stack slot.
911   return DAG.getLoad(DestVT, dl, Store, StackPtr, MachinePointerInfo(), Align);
912 }
913 
914 /// Replace the node's results with custom code provided by the target and
915 /// return "true", or do nothing and return "false".
916 /// The last parameter is FALSE if we are dealing with a node with legal
917 /// result types and illegal operand. The second parameter denotes the type of
918 /// illegal OperandNo in that case.
919 /// The last parameter being TRUE means we are dealing with a
920 /// node with illegal result types. The second parameter denotes the type of
921 /// illegal ResNo in that case.
922 bool DAGTypeLegalizer::CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult) {
923   // See if the target wants to custom lower this node.
924   if (TLI.getOperationAction(N->getOpcode(), VT) != TargetLowering::Custom)
925     return false;
926 
927   SmallVector<SDValue, 8> Results;
928   if (LegalizeResult)
929     TLI.ReplaceNodeResults(N, Results, DAG);
930   else
931     TLI.LowerOperationWrapper(N, Results, DAG);
932 
933   if (Results.empty())
934     // The target didn't want to custom lower it after all.
935     return false;
936 
937   // Make everything that once used N's values now use those in Results instead.
938   assert(Results.size() == N->getNumValues() &&
939          "Custom lowering returned the wrong number of results!");
940   for (unsigned i = 0, e = Results.size(); i != e; ++i) {
941     ReplaceValueWith(SDValue(N, i), Results[i]);
942   }
943   return true;
944 }
945 
946 
947 /// Widen the node's results with custom code provided by the target and return
948 /// "true", or do nothing and return "false".
949 bool DAGTypeLegalizer::CustomWidenLowerNode(SDNode *N, EVT VT) {
950   // See if the target wants to custom lower this node.
951   if (TLI.getOperationAction(N->getOpcode(), VT) != TargetLowering::Custom)
952     return false;
953 
954   SmallVector<SDValue, 8> Results;
955   TLI.ReplaceNodeResults(N, Results, DAG);
956 
957   if (Results.empty())
958     // The target didn't want to custom widen lower its result after all.
959     return false;
960 
961   // Update the widening map.
962   assert(Results.size() == N->getNumValues() &&
963          "Custom lowering returned the wrong number of results!");
964   for (unsigned i = 0, e = Results.size(); i != e; ++i) {
965     // If this is a chain output or already widened just replace it.
966     bool WasWidened = SDValue(N, i).getValueType() != Results[i].getValueType();
967     if (WasWidened)
968       SetWidenedVector(SDValue(N, i), Results[i]);
969     else
970       ReplaceValueWith(SDValue(N, i), Results[i]);
971   }
972   return true;
973 }
974 
975 SDValue DAGTypeLegalizer::DisintegrateMERGE_VALUES(SDNode *N, unsigned ResNo) {
976   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
977     if (i != ResNo)
978       ReplaceValueWith(SDValue(N, i), SDValue(N->getOperand(i)));
979   return SDValue(N->getOperand(ResNo));
980 }
981 
982 /// Use ISD::EXTRACT_ELEMENT nodes to extract the low and high parts of the
983 /// given value.
984 void DAGTypeLegalizer::GetPairElements(SDValue Pair,
985                                        SDValue &Lo, SDValue &Hi) {
986   SDLoc dl(Pair);
987   EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), Pair.getValueType());
988   Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, NVT, Pair,
989                    DAG.getIntPtrConstant(0, dl));
990   Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, NVT, Pair,
991                    DAG.getIntPtrConstant(1, dl));
992 }
993 
994 /// Build an integer with low bits Lo and high bits Hi.
995 SDValue DAGTypeLegalizer::JoinIntegers(SDValue Lo, SDValue Hi) {
996   // Arbitrarily use dlHi for result SDLoc
997   SDLoc dlHi(Hi);
998   SDLoc dlLo(Lo);
999   EVT LVT = Lo.getValueType();
1000   EVT HVT = Hi.getValueType();
1001   EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
1002                               LVT.getSizeInBits() + HVT.getSizeInBits());
1003 
1004   EVT ShiftAmtVT = TLI.getShiftAmountTy(NVT, DAG.getDataLayout(), false);
1005   Lo = DAG.getNode(ISD::ZERO_EXTEND, dlLo, NVT, Lo);
1006   Hi = DAG.getNode(ISD::ANY_EXTEND, dlHi, NVT, Hi);
1007   Hi = DAG.getNode(ISD::SHL, dlHi, NVT, Hi,
1008                    DAG.getConstant(LVT.getSizeInBits(), dlHi, ShiftAmtVT));
1009   return DAG.getNode(ISD::OR, dlHi, NVT, Lo, Hi);
1010 }
1011 
1012 /// Promote the given target boolean to a target boolean of the given type.
1013 /// A target boolean is an integer value, not necessarily of type i1, the bits
1014 /// of which conform to getBooleanContents.
1015 ///
1016 /// ValVT is the type of values that produced the boolean.
1017 SDValue DAGTypeLegalizer::PromoteTargetBoolean(SDValue Bool, EVT ValVT) {
1018   return TLI.promoteTargetBoolean(DAG, Bool, ValVT);
1019 }
1020 
1021 /// Return the lower LoVT bits of Op in Lo and the upper HiVT bits in Hi.
1022 void DAGTypeLegalizer::SplitInteger(SDValue Op,
1023                                     EVT LoVT, EVT HiVT,
1024                                     SDValue &Lo, SDValue &Hi) {
1025   SDLoc dl(Op);
1026   assert(LoVT.getSizeInBits() + HiVT.getSizeInBits() ==
1027          Op.getValueSizeInBits() && "Invalid integer splitting!");
1028   Lo = DAG.getNode(ISD::TRUNCATE, dl, LoVT, Op);
1029   unsigned ReqShiftAmountInBits =
1030       Log2_32_Ceil(Op.getValueType().getSizeInBits());
1031   MVT ShiftAmountTy =
1032       TLI.getScalarShiftAmountTy(DAG.getDataLayout(), Op.getValueType());
1033   if (ReqShiftAmountInBits > ShiftAmountTy.getSizeInBits())
1034     ShiftAmountTy = MVT::getIntegerVT(NextPowerOf2(ReqShiftAmountInBits));
1035   Hi = DAG.getNode(ISD::SRL, dl, Op.getValueType(), Op,
1036                    DAG.getConstant(LoVT.getSizeInBits(), dl, ShiftAmountTy));
1037   Hi = DAG.getNode(ISD::TRUNCATE, dl, HiVT, Hi);
1038 }
1039 
1040 /// Return the lower and upper halves of Op's bits in a value type half the
1041 /// size of Op's.
1042 void DAGTypeLegalizer::SplitInteger(SDValue Op,
1043                                     SDValue &Lo, SDValue &Hi) {
1044   EVT HalfVT =
1045       EVT::getIntegerVT(*DAG.getContext(), Op.getValueSizeInBits() / 2);
1046   SplitInteger(Op, HalfVT, HalfVT, Lo, Hi);
1047 }
1048 
1049 
1050 //===----------------------------------------------------------------------===//
1051 //  Entry Point
1052 //===----------------------------------------------------------------------===//
1053 
1054 /// This transforms the SelectionDAG into a SelectionDAG that only uses types
1055 /// natively supported by the target. Returns "true" if it made any changes.
1056 ///
1057 /// Note that this is an involved process that may invalidate pointers into
1058 /// the graph.
1059 bool SelectionDAG::LegalizeTypes() {
1060   return DAGTypeLegalizer(*this).run();
1061 }
1062