1 //===-- LegalizeTypes.cpp - Common code for DAG type legalizer ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SelectionDAG::LegalizeTypes method.  It transforms
10 // an arbitrary well-formed SelectionDAG to only consist of legal types.  This
11 // is common code shared among the LegalizeTypes*.cpp files.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "LegalizeTypes.h"
16 #include "SDNodeDbgValue.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/IR/CallingConv.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/Support/CommandLine.h"
22 #include "llvm/Support/ErrorHandling.h"
23 #include "llvm/Support/raw_ostream.h"
24 using namespace llvm;
25 
26 #define DEBUG_TYPE "legalize-types"
27 
28 static cl::opt<bool>
29 EnableExpensiveChecks("enable-legalize-types-checking", cl::Hidden);
30 
31 /// Do extensive, expensive, sanity checking.
32 void DAGTypeLegalizer::PerformExpensiveChecks() {
33   // If a node is not processed, then none of its values should be mapped by any
34   // of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
35 
36   // If a node is processed, then each value with an illegal type must be mapped
37   // by exactly one of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
38   // Values with a legal type may be mapped by ReplacedValues, but not by any of
39   // the other maps.
40 
41   // Note that these invariants may not hold momentarily when processing a node:
42   // the node being processed may be put in a map before being marked Processed.
43 
44   // Note that it is possible to have nodes marked NewNode in the DAG.  This can
45   // occur in two ways.  Firstly, a node may be created during legalization but
46   // never passed to the legalization core.  This is usually due to the implicit
47   // folding that occurs when using the DAG.getNode operators.  Secondly, a new
48   // node may be passed to the legalization core, but when analyzed may morph
49   // into a different node, leaving the original node as a NewNode in the DAG.
50   // A node may morph if one of its operands changes during analysis.  Whether
51   // it actually morphs or not depends on whether, after updating its operands,
52   // it is equivalent to an existing node: if so, it morphs into that existing
53   // node (CSE).  An operand can change during analysis if the operand is a new
54   // node that morphs, or it is a processed value that was mapped to some other
55   // value (as recorded in ReplacedValues) in which case the operand is turned
56   // into that other value.  If a node morphs then the node it morphed into will
57   // be used instead of it for legalization, however the original node continues
58   // to live on in the DAG.
59   // The conclusion is that though there may be nodes marked NewNode in the DAG,
60   // all uses of such nodes are also marked NewNode: the result is a fungus of
61   // NewNodes growing on top of the useful nodes, and perhaps using them, but
62   // not used by them.
63 
64   // If a value is mapped by ReplacedValues, then it must have no uses, except
65   // by nodes marked NewNode (see above).
66 
67   // The final node obtained by mapping by ReplacedValues is not marked NewNode.
68   // Note that ReplacedValues should be applied iteratively.
69 
70   // Note that the ReplacedValues map may also map deleted nodes (by iterating
71   // over the DAG we never dereference deleted nodes).  This means that it may
72   // also map nodes marked NewNode if the deallocated memory was reallocated as
73   // another node, and that new node was not seen by the LegalizeTypes machinery
74   // (for example because it was created but not used).  In general, we cannot
75   // distinguish between new nodes and deleted nodes.
76   SmallVector<SDNode*, 16> NewNodes;
77   for (SDNode &Node : DAG.allnodes()) {
78     // Remember nodes marked NewNode - they are subject to extra checking below.
79     if (Node.getNodeId() == NewNode)
80       NewNodes.push_back(&Node);
81 
82     for (unsigned i = 0, e = Node.getNumValues(); i != e; ++i) {
83       SDValue Res(&Node, i);
84       bool Failed = false;
85       // Don't create a value in map.
86       auto ResId = (ValueToIdMap.count(Res)) ? ValueToIdMap[Res] : 0;
87 
88       unsigned Mapped = 0;
89       if (ResId && (ReplacedValues.find(ResId) != ReplacedValues.end())) {
90         Mapped |= 1;
91         // Check that remapped values are only used by nodes marked NewNode.
92         for (SDNode::use_iterator UI = Node.use_begin(), UE = Node.use_end();
93              UI != UE; ++UI)
94           if (UI.getUse().getResNo() == i)
95             assert(UI->getNodeId() == NewNode &&
96                    "Remapped value has non-trivial use!");
97 
98         // Check that the final result of applying ReplacedValues is not
99         // marked NewNode.
100         auto NewValId = ReplacedValues[ResId];
101         auto I = ReplacedValues.find(NewValId);
102         while (I != ReplacedValues.end()) {
103           NewValId = I->second;
104           I = ReplacedValues.find(NewValId);
105         }
106         SDValue NewVal = getSDValue(NewValId);
107         (void)NewVal;
108         assert(NewVal.getNode()->getNodeId() != NewNode &&
109                "ReplacedValues maps to a new node!");
110       }
111       if (ResId && PromotedIntegers.find(ResId) != PromotedIntegers.end())
112         Mapped |= 2;
113       if (ResId && SoftenedFloats.find(ResId) != SoftenedFloats.end())
114         Mapped |= 4;
115       if (ResId && ScalarizedVectors.find(ResId) != ScalarizedVectors.end())
116         Mapped |= 8;
117       if (ResId && ExpandedIntegers.find(ResId) != ExpandedIntegers.end())
118         Mapped |= 16;
119       if (ResId && ExpandedFloats.find(ResId) != ExpandedFloats.end())
120         Mapped |= 32;
121       if (ResId && SplitVectors.find(ResId) != SplitVectors.end())
122         Mapped |= 64;
123       if (ResId && WidenedVectors.find(ResId) != WidenedVectors.end())
124         Mapped |= 128;
125       if (ResId && PromotedFloats.find(ResId) != PromotedFloats.end())
126         Mapped |= 256;
127 
128       if (Node.getNodeId() != Processed) {
129         // Since we allow ReplacedValues to map deleted nodes, it may map nodes
130         // marked NewNode too, since a deleted node may have been reallocated as
131         // another node that has not been seen by the LegalizeTypes machinery.
132         if ((Node.getNodeId() == NewNode && Mapped > 1) ||
133             (Node.getNodeId() != NewNode && Mapped != 0)) {
134           dbgs() << "Unprocessed value in a map!";
135           Failed = true;
136         }
137       } else if (isTypeLegal(Res.getValueType()) || IgnoreNodeResults(&Node)) {
138         if (Mapped > 1) {
139           dbgs() << "Value with legal type was transformed!";
140           Failed = true;
141         }
142       } else {
143         if (Mapped == 0) {
144           dbgs() << "Processed value not in any map!";
145           Failed = true;
146         } else if (Mapped & (Mapped - 1)) {
147           dbgs() << "Value in multiple maps!";
148           Failed = true;
149         }
150       }
151 
152       if (Failed) {
153         if (Mapped & 1)
154           dbgs() << " ReplacedValues";
155         if (Mapped & 2)
156           dbgs() << " PromotedIntegers";
157         if (Mapped & 4)
158           dbgs() << " SoftenedFloats";
159         if (Mapped & 8)
160           dbgs() << " ScalarizedVectors";
161         if (Mapped & 16)
162           dbgs() << " ExpandedIntegers";
163         if (Mapped & 32)
164           dbgs() << " ExpandedFloats";
165         if (Mapped & 64)
166           dbgs() << " SplitVectors";
167         if (Mapped & 128)
168           dbgs() << " WidenedVectors";
169         if (Mapped & 256)
170           dbgs() << " PromotedFloats";
171         dbgs() << "\n";
172         llvm_unreachable(nullptr);
173       }
174     }
175   }
176 
177   // Checked that NewNodes are only used by other NewNodes.
178   for (unsigned i = 0, e = NewNodes.size(); i != e; ++i) {
179     SDNode *N = NewNodes[i];
180     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
181          UI != UE; ++UI)
182       assert(UI->getNodeId() == NewNode && "NewNode used by non-NewNode!");
183   }
184 }
185 
186 /// This is the main entry point for the type legalizer. This does a top-down
187 /// traversal of the dag, legalizing types as it goes. Returns "true" if it made
188 /// any changes.
189 bool DAGTypeLegalizer::run() {
190   bool Changed = false;
191 
192   // Create a dummy node (which is not added to allnodes), that adds a reference
193   // to the root node, preventing it from being deleted, and tracking any
194   // changes of the root.
195   HandleSDNode Dummy(DAG.getRoot());
196   Dummy.setNodeId(Unanalyzed);
197 
198   // The root of the dag may dangle to deleted nodes until the type legalizer is
199   // done.  Set it to null to avoid confusion.
200   DAG.setRoot(SDValue());
201 
202   // Walk all nodes in the graph, assigning them a NodeId of 'ReadyToProcess'
203   // (and remembering them) if they are leaves and assigning 'Unanalyzed' if
204   // non-leaves.
205   for (SDNode &Node : DAG.allnodes()) {
206     if (Node.getNumOperands() == 0) {
207       Node.setNodeId(ReadyToProcess);
208       Worklist.push_back(&Node);
209     } else {
210       Node.setNodeId(Unanalyzed);
211     }
212   }
213 
214   // Now that we have a set of nodes to process, handle them all.
215   while (!Worklist.empty()) {
216 #ifndef EXPENSIVE_CHECKS
217     if (EnableExpensiveChecks)
218 #endif
219       PerformExpensiveChecks();
220 
221     SDNode *N = Worklist.back();
222     Worklist.pop_back();
223     assert(N->getNodeId() == ReadyToProcess &&
224            "Node should be ready if on worklist!");
225 
226     LLVM_DEBUG(dbgs() << "Legalizing node: "; N->dump(&DAG));
227     if (IgnoreNodeResults(N)) {
228       LLVM_DEBUG(dbgs() << "Ignoring node results\n");
229       goto ScanOperands;
230     }
231 
232     // Scan the values produced by the node, checking to see if any result
233     // types are illegal.
234     for (unsigned i = 0, NumResults = N->getNumValues(); i < NumResults; ++i) {
235       EVT ResultVT = N->getValueType(i);
236       LLVM_DEBUG(dbgs() << "Analyzing result type: " << ResultVT.getEVTString()
237                         << "\n");
238       switch (getTypeAction(ResultVT)) {
239       case TargetLowering::TypeLegal:
240         LLVM_DEBUG(dbgs() << "Legal result type\n");
241         break;
242       // The following calls must take care of *all* of the node's results,
243       // not just the illegal result they were passed (this includes results
244       // with a legal type).  Results can be remapped using ReplaceValueWith,
245       // or their promoted/expanded/etc values registered in PromotedIntegers,
246       // ExpandedIntegers etc.
247       case TargetLowering::TypePromoteInteger:
248         PromoteIntegerResult(N, i);
249         Changed = true;
250         goto NodeDone;
251       case TargetLowering::TypeExpandInteger:
252         ExpandIntegerResult(N, i);
253         Changed = true;
254         goto NodeDone;
255       case TargetLowering::TypeSoftenFloat:
256         SoftenFloatResult(N, i);
257         Changed = true;
258         goto NodeDone;
259       case TargetLowering::TypeExpandFloat:
260         ExpandFloatResult(N, i);
261         Changed = true;
262         goto NodeDone;
263       case TargetLowering::TypeScalarizeVector:
264         ScalarizeVectorResult(N, i);
265         Changed = true;
266         goto NodeDone;
267       case TargetLowering::TypeSplitVector:
268         SplitVectorResult(N, i);
269         Changed = true;
270         goto NodeDone;
271       case TargetLowering::TypeWidenVector:
272         WidenVectorResult(N, i);
273         Changed = true;
274         goto NodeDone;
275       case TargetLowering::TypePromoteFloat:
276         PromoteFloatResult(N, i);
277         Changed = true;
278         goto NodeDone;
279       }
280     }
281 
282 ScanOperands:
283     // Scan the operand list for the node, handling any nodes with operands that
284     // are illegal.
285     {
286     unsigned NumOperands = N->getNumOperands();
287     bool NeedsReanalyzing = false;
288     unsigned i;
289     for (i = 0; i != NumOperands; ++i) {
290       if (IgnoreNodeResults(N->getOperand(i).getNode()))
291         continue;
292 
293       const auto Op = N->getOperand(i);
294       LLVM_DEBUG(dbgs() << "Analyzing operand: "; Op.dump(&DAG));
295       EVT OpVT = Op.getValueType();
296       switch (getTypeAction(OpVT)) {
297       case TargetLowering::TypeLegal:
298         LLVM_DEBUG(dbgs() << "Legal operand\n");
299         continue;
300       // The following calls must either replace all of the node's results
301       // using ReplaceValueWith, and return "false"; or update the node's
302       // operands in place, and return "true".
303       case TargetLowering::TypePromoteInteger:
304         NeedsReanalyzing = PromoteIntegerOperand(N, i);
305         Changed = true;
306         break;
307       case TargetLowering::TypeExpandInteger:
308         NeedsReanalyzing = ExpandIntegerOperand(N, i);
309         Changed = true;
310         break;
311       case TargetLowering::TypeSoftenFloat:
312         NeedsReanalyzing = SoftenFloatOperand(N, i);
313         Changed = true;
314         break;
315       case TargetLowering::TypeExpandFloat:
316         NeedsReanalyzing = ExpandFloatOperand(N, i);
317         Changed = true;
318         break;
319       case TargetLowering::TypeScalarizeVector:
320         NeedsReanalyzing = ScalarizeVectorOperand(N, i);
321         Changed = true;
322         break;
323       case TargetLowering::TypeSplitVector:
324         NeedsReanalyzing = SplitVectorOperand(N, i);
325         Changed = true;
326         break;
327       case TargetLowering::TypeWidenVector:
328         NeedsReanalyzing = WidenVectorOperand(N, i);
329         Changed = true;
330         break;
331       case TargetLowering::TypePromoteFloat:
332         NeedsReanalyzing = PromoteFloatOperand(N, i);
333         Changed = true;
334         break;
335       }
336       break;
337     }
338 
339     // The sub-method updated N in place.  Check to see if any operands are new,
340     // and if so, mark them.  If the node needs revisiting, don't add all users
341     // to the worklist etc.
342     if (NeedsReanalyzing) {
343       assert(N->getNodeId() == ReadyToProcess && "Node ID recalculated?");
344 
345       N->setNodeId(NewNode);
346       // Recompute the NodeId and correct processed operands, adding the node to
347       // the worklist if ready.
348       SDNode *M = AnalyzeNewNode(N);
349       if (M == N)
350         // The node didn't morph - nothing special to do, it will be revisited.
351         continue;
352 
353       // The node morphed - this is equivalent to legalizing by replacing every
354       // value of N with the corresponding value of M.  So do that now.
355       assert(N->getNumValues() == M->getNumValues() &&
356              "Node morphing changed the number of results!");
357       for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
358         // Replacing the value takes care of remapping the new value.
359         ReplaceValueWith(SDValue(N, i), SDValue(M, i));
360       assert(N->getNodeId() == NewNode && "Unexpected node state!");
361       // The node continues to live on as part of the NewNode fungus that
362       // grows on top of the useful nodes.  Nothing more needs to be done
363       // with it - move on to the next node.
364       continue;
365     }
366 
367     if (i == NumOperands) {
368       LLVM_DEBUG(dbgs() << "Legally typed node: "; N->dump(&DAG);
369                  dbgs() << "\n");
370     }
371     }
372 NodeDone:
373 
374     // If we reach here, the node was processed, potentially creating new nodes.
375     // Mark it as processed and add its users to the worklist as appropriate.
376     assert(N->getNodeId() == ReadyToProcess && "Node ID recalculated?");
377     N->setNodeId(Processed);
378 
379     for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
380          UI != E; ++UI) {
381       SDNode *User = *UI;
382       int NodeId = User->getNodeId();
383 
384       // This node has two options: it can either be a new node or its Node ID
385       // may be a count of the number of operands it has that are not ready.
386       if (NodeId > 0) {
387         User->setNodeId(NodeId-1);
388 
389         // If this was the last use it was waiting on, add it to the ready list.
390         if (NodeId-1 == ReadyToProcess)
391           Worklist.push_back(User);
392         continue;
393       }
394 
395       // If this is an unreachable new node, then ignore it.  If it ever becomes
396       // reachable by being used by a newly created node then it will be handled
397       // by AnalyzeNewNode.
398       if (NodeId == NewNode)
399         continue;
400 
401       // Otherwise, this node is new: this is the first operand of it that
402       // became ready.  Its new NodeId is the number of operands it has minus 1
403       // (as this node is now processed).
404       assert(NodeId == Unanalyzed && "Unknown node ID!");
405       User->setNodeId(User->getNumOperands() - 1);
406 
407       // If the node only has a single operand, it is now ready.
408       if (User->getNumOperands() == 1)
409         Worklist.push_back(User);
410     }
411   }
412 
413 #ifndef EXPENSIVE_CHECKS
414   if (EnableExpensiveChecks)
415 #endif
416     PerformExpensiveChecks();
417 
418   // If the root changed (e.g. it was a dead load) update the root.
419   DAG.setRoot(Dummy.getValue());
420 
421   // Remove dead nodes.  This is important to do for cleanliness but also before
422   // the checking loop below.  Implicit folding by the DAG.getNode operators and
423   // node morphing can cause unreachable nodes to be around with their flags set
424   // to new.
425   DAG.RemoveDeadNodes();
426 
427   // In a debug build, scan all the nodes to make sure we found them all.  This
428   // ensures that there are no cycles and that everything got processed.
429 #ifndef NDEBUG
430   for (SDNode &Node : DAG.allnodes()) {
431     bool Failed = false;
432 
433     // Check that all result types are legal.
434     if (!IgnoreNodeResults(&Node))
435       for (unsigned i = 0, NumVals = Node.getNumValues(); i < NumVals; ++i)
436         if (!isTypeLegal(Node.getValueType(i))) {
437           dbgs() << "Result type " << i << " illegal: ";
438           Node.dump(&DAG);
439           Failed = true;
440         }
441 
442     // Check that all operand types are legal.
443     for (unsigned i = 0, NumOps = Node.getNumOperands(); i < NumOps; ++i)
444       if (!IgnoreNodeResults(Node.getOperand(i).getNode()) &&
445           !isTypeLegal(Node.getOperand(i).getValueType())) {
446         dbgs() << "Operand type " << i << " illegal: ";
447         Node.getOperand(i).dump(&DAG);
448         Failed = true;
449       }
450 
451     if (Node.getNodeId() != Processed) {
452        if (Node.getNodeId() == NewNode)
453          dbgs() << "New node not analyzed?\n";
454        else if (Node.getNodeId() == Unanalyzed)
455          dbgs() << "Unanalyzed node not noticed?\n";
456        else if (Node.getNodeId() > 0)
457          dbgs() << "Operand not processed?\n";
458        else if (Node.getNodeId() == ReadyToProcess)
459          dbgs() << "Not added to worklist?\n";
460        Failed = true;
461     }
462 
463     if (Failed) {
464       Node.dump(&DAG); dbgs() << "\n";
465       llvm_unreachable(nullptr);
466     }
467   }
468 #endif
469 
470   return Changed;
471 }
472 
473 /// The specified node is the root of a subtree of potentially new nodes.
474 /// Correct any processed operands (this may change the node) and calculate the
475 /// NodeId. If the node itself changes to a processed node, it is not remapped -
476 /// the caller needs to take care of this. Returns the potentially changed node.
477 SDNode *DAGTypeLegalizer::AnalyzeNewNode(SDNode *N) {
478   // If this was an existing node that is already done, we're done.
479   if (N->getNodeId() != NewNode && N->getNodeId() != Unanalyzed)
480     return N;
481 
482   // Okay, we know that this node is new.  Recursively walk all of its operands
483   // to see if they are new also.  The depth of this walk is bounded by the size
484   // of the new tree that was constructed (usually 2-3 nodes), so we don't worry
485   // about revisiting of nodes.
486   //
487   // As we walk the operands, keep track of the number of nodes that are
488   // processed.  If non-zero, this will become the new nodeid of this node.
489   // Operands may morph when they are analyzed.  If so, the node will be
490   // updated after all operands have been analyzed.  Since this is rare,
491   // the code tries to minimize overhead in the non-morphing case.
492 
493   std::vector<SDValue> NewOps;
494   unsigned NumProcessed = 0;
495   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
496     SDValue OrigOp = N->getOperand(i);
497     SDValue Op = OrigOp;
498 
499     AnalyzeNewValue(Op); // Op may morph.
500 
501     if (Op.getNode()->getNodeId() == Processed)
502       ++NumProcessed;
503 
504     if (!NewOps.empty()) {
505       // Some previous operand changed.  Add this one to the list.
506       NewOps.push_back(Op);
507     } else if (Op != OrigOp) {
508       // This is the first operand to change - add all operands so far.
509       NewOps.insert(NewOps.end(), N->op_begin(), N->op_begin() + i);
510       NewOps.push_back(Op);
511     }
512   }
513 
514   // Some operands changed - update the node.
515   if (!NewOps.empty()) {
516     SDNode *M = DAG.UpdateNodeOperands(N, NewOps);
517     if (M != N) {
518       // The node morphed into a different node.  Normally for this to happen
519       // the original node would have to be marked NewNode.  However this can
520       // in theory momentarily not be the case while ReplaceValueWith is doing
521       // its stuff.  Mark the original node NewNode to help sanity checking.
522       N->setNodeId(NewNode);
523       if (M->getNodeId() != NewNode && M->getNodeId() != Unanalyzed)
524         // It morphed into a previously analyzed node - nothing more to do.
525         return M;
526 
527       // It morphed into a different new node.  Do the equivalent of passing
528       // it to AnalyzeNewNode: expunge it and calculate the NodeId.  No need
529       // to remap the operands, since they are the same as the operands we
530       // remapped above.
531       N = M;
532     }
533   }
534 
535   // Calculate the NodeId.
536   N->setNodeId(N->getNumOperands() - NumProcessed);
537   if (N->getNodeId() == ReadyToProcess)
538     Worklist.push_back(N);
539 
540   return N;
541 }
542 
543 /// Call AnalyzeNewNode, updating the node in Val if needed.
544 /// If the node changes to a processed node, then remap it.
545 void DAGTypeLegalizer::AnalyzeNewValue(SDValue &Val) {
546   Val.setNode(AnalyzeNewNode(Val.getNode()));
547   if (Val.getNode()->getNodeId() == Processed)
548     // We were passed a processed node, or it morphed into one - remap it.
549     RemapValue(Val);
550 }
551 
552 /// If the specified value was already legalized to another value,
553 /// replace it by that value.
554 void DAGTypeLegalizer::RemapValue(SDValue &V) {
555   auto Id = getTableId(V);
556   V = getSDValue(Id);
557 }
558 
559 void DAGTypeLegalizer::RemapId(TableId &Id) {
560   auto I = ReplacedValues.find(Id);
561   if (I != ReplacedValues.end()) {
562     assert(Id != I->second && "Id is mapped to itself.");
563     // Use path compression to speed up future lookups if values get multiply
564     // replaced with other values.
565     RemapId(I->second);
566     Id = I->second;
567 
568     // Note that N = IdToValueMap[Id] it is possible to have
569     // N.getNode()->getNodeId() == NewNode at this point because it is possible
570     // for a node to be put in the map before being processed.
571   }
572 }
573 
574 namespace {
575   /// This class is a DAGUpdateListener that listens for updates to nodes and
576   /// recomputes their ready state.
577   class NodeUpdateListener : public SelectionDAG::DAGUpdateListener {
578     DAGTypeLegalizer &DTL;
579     SmallSetVector<SDNode*, 16> &NodesToAnalyze;
580   public:
581     explicit NodeUpdateListener(DAGTypeLegalizer &dtl,
582                                 SmallSetVector<SDNode*, 16> &nta)
583       : SelectionDAG::DAGUpdateListener(dtl.getDAG()),
584         DTL(dtl), NodesToAnalyze(nta) {}
585 
586     void NodeDeleted(SDNode *N, SDNode *E) override {
587       assert(N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
588              N->getNodeId() != DAGTypeLegalizer::Processed &&
589              "Invalid node ID for RAUW deletion!");
590       // It is possible, though rare, for the deleted node N to occur as a
591       // target in a map, so note the replacement N -> E in ReplacedValues.
592       assert(E && "Node not replaced?");
593       DTL.NoteDeletion(N, E);
594 
595       // In theory the deleted node could also have been scheduled for analysis.
596       // So remove it from the set of nodes which will be analyzed.
597       NodesToAnalyze.remove(N);
598 
599       // In general nothing needs to be done for E, since it didn't change but
600       // only gained new uses.  However N -> E was just added to ReplacedValues,
601       // and the result of a ReplacedValues mapping is not allowed to be marked
602       // NewNode.  So if E is marked NewNode, then it needs to be analyzed.
603       if (E->getNodeId() == DAGTypeLegalizer::NewNode)
604         NodesToAnalyze.insert(E);
605     }
606 
607     void NodeUpdated(SDNode *N) override {
608       // Node updates can mean pretty much anything.  It is possible that an
609       // operand was set to something already processed (f.e.) in which case
610       // this node could become ready.  Recompute its flags.
611       assert(N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
612              N->getNodeId() != DAGTypeLegalizer::Processed &&
613              "Invalid node ID for RAUW deletion!");
614       N->setNodeId(DAGTypeLegalizer::NewNode);
615       NodesToAnalyze.insert(N);
616     }
617   };
618 }
619 
620 
621 /// The specified value was legalized to the specified other value.
622 /// Update the DAG and NodeIds replacing any uses of From to use To instead.
623 void DAGTypeLegalizer::ReplaceValueWith(SDValue From, SDValue To) {
624   assert(From.getNode() != To.getNode() && "Potential legalization loop!");
625 
626   // If expansion produced new nodes, make sure they are properly marked.
627   AnalyzeNewValue(To);
628 
629   // Anything that used the old node should now use the new one.  Note that this
630   // can potentially cause recursive merging.
631   SmallSetVector<SDNode*, 16> NodesToAnalyze;
632   NodeUpdateListener NUL(*this, NodesToAnalyze);
633   do {
634 
635     // The old node may be present in a map like ExpandedIntegers or
636     // PromotedIntegers. Inform maps about the replacement.
637     auto FromId = getTableId(From);
638     auto ToId = getTableId(To);
639 
640     if (FromId != ToId)
641       ReplacedValues[FromId] = ToId;
642     DAG.ReplaceAllUsesOfValueWith(From, To);
643 
644     // Process the list of nodes that need to be reanalyzed.
645     while (!NodesToAnalyze.empty()) {
646       SDNode *N = NodesToAnalyze.back();
647       NodesToAnalyze.pop_back();
648       if (N->getNodeId() != DAGTypeLegalizer::NewNode)
649         // The node was analyzed while reanalyzing an earlier node - it is safe
650         // to skip.  Note that this is not a morphing node - otherwise it would
651         // still be marked NewNode.
652         continue;
653 
654       // Analyze the node's operands and recalculate the node ID.
655       SDNode *M = AnalyzeNewNode(N);
656       if (M != N) {
657         // The node morphed into a different node.  Make everyone use the new
658         // node instead.
659         assert(M->getNodeId() != NewNode && "Analysis resulted in NewNode!");
660         assert(N->getNumValues() == M->getNumValues() &&
661                "Node morphing changed the number of results!");
662         for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
663           SDValue OldVal(N, i);
664           SDValue NewVal(M, i);
665           if (M->getNodeId() == Processed)
666             RemapValue(NewVal);
667           // OldVal may be a target of the ReplacedValues map which was marked
668           // NewNode to force reanalysis because it was updated.  Ensure that
669           // anything that ReplacedValues mapped to OldVal will now be mapped
670           // all the way to NewVal.
671           auto OldValId = getTableId(OldVal);
672           auto NewValId = getTableId(NewVal);
673           DAG.ReplaceAllUsesOfValueWith(OldVal, NewVal);
674           if (OldValId != NewValId)
675             ReplacedValues[OldValId] = NewValId;
676         }
677         // The original node continues to exist in the DAG, marked NewNode.
678       }
679     }
680     // When recursively update nodes with new nodes, it is possible to have
681     // new uses of From due to CSE. If this happens, replace the new uses of
682     // From with To.
683   } while (!From.use_empty());
684 }
685 
686 void DAGTypeLegalizer::SetPromotedInteger(SDValue Op, SDValue Result) {
687   assert(Result.getValueType() ==
688          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
689          "Invalid type for promoted integer");
690   AnalyzeNewValue(Result);
691 
692   auto &OpIdEntry = PromotedIntegers[getTableId(Op)];
693   assert((OpIdEntry == 0) && "Node is already promoted!");
694   OpIdEntry = getTableId(Result);
695   Result->setFlags(Op->getFlags());
696 
697   DAG.transferDbgValues(Op, Result);
698 }
699 
700 void DAGTypeLegalizer::SetSoftenedFloat(SDValue Op, SDValue Result) {
701   assert(Result.getValueType() ==
702          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
703          "Invalid type for softened float");
704   AnalyzeNewValue(Result);
705 
706   auto &OpIdEntry = SoftenedFloats[getTableId(Op)];
707   assert((OpIdEntry == 0) && "Node is already converted to integer!");
708   OpIdEntry = getTableId(Result);
709 }
710 
711 void DAGTypeLegalizer::SetPromotedFloat(SDValue Op, SDValue Result) {
712   assert(Result.getValueType() ==
713          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
714          "Invalid type for promoted float");
715   AnalyzeNewValue(Result);
716 
717   auto &OpIdEntry = PromotedFloats[getTableId(Op)];
718   assert((OpIdEntry == 0) && "Node is already promoted!");
719   OpIdEntry = getTableId(Result);
720 }
721 
722 void DAGTypeLegalizer::SetScalarizedVector(SDValue Op, SDValue Result) {
723   // Note that in some cases vector operation operands may be greater than
724   // the vector element type. For example BUILD_VECTOR of type <1 x i1> with
725   // a constant i8 operand.
726   assert(Result.getValueSizeInBits() >= Op.getScalarValueSizeInBits() &&
727          "Invalid type for scalarized vector");
728   AnalyzeNewValue(Result);
729 
730   auto &OpIdEntry = ScalarizedVectors[getTableId(Op)];
731   assert((OpIdEntry == 0) && "Node is already scalarized!");
732   OpIdEntry = getTableId(Result);
733 }
734 
735 void DAGTypeLegalizer::GetExpandedInteger(SDValue Op, SDValue &Lo,
736                                           SDValue &Hi) {
737   std::pair<TableId, TableId> &Entry = ExpandedIntegers[getTableId(Op)];
738   assert((Entry.first != 0) && "Operand isn't expanded");
739   Lo = getSDValue(Entry.first);
740   Hi = getSDValue(Entry.second);
741 }
742 
743 void DAGTypeLegalizer::SetExpandedInteger(SDValue Op, SDValue Lo,
744                                           SDValue Hi) {
745   assert(Lo.getValueType() ==
746          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
747          Hi.getValueType() == Lo.getValueType() &&
748          "Invalid type for expanded integer");
749   // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
750   AnalyzeNewValue(Lo);
751   AnalyzeNewValue(Hi);
752 
753   // Transfer debug values. Don't invalidate the source debug value until it's
754   // been transferred to the high and low bits.
755   if (DAG.getDataLayout().isBigEndian()) {
756     DAG.transferDbgValues(Op, Hi, 0, Hi.getValueSizeInBits(), false);
757     DAG.transferDbgValues(Op, Lo, Hi.getValueSizeInBits(),
758                           Lo.getValueSizeInBits());
759   } else {
760     DAG.transferDbgValues(Op, Lo, 0, Lo.getValueSizeInBits(), false);
761     DAG.transferDbgValues(Op, Hi, Lo.getValueSizeInBits(),
762                           Hi.getValueSizeInBits());
763   }
764 
765   // Remember that this is the result of the node.
766   std::pair<TableId, TableId> &Entry = ExpandedIntegers[getTableId(Op)];
767   assert((Entry.first == 0) && "Node already expanded");
768   Entry.first = getTableId(Lo);
769   Entry.second = getTableId(Hi);
770 }
771 
772 void DAGTypeLegalizer::GetExpandedFloat(SDValue Op, SDValue &Lo,
773                                         SDValue &Hi) {
774   std::pair<TableId, TableId> &Entry = ExpandedFloats[getTableId(Op)];
775   assert((Entry.first != 0) && "Operand isn't expanded");
776   Lo = getSDValue(Entry.first);
777   Hi = getSDValue(Entry.second);
778 }
779 
780 void DAGTypeLegalizer::SetExpandedFloat(SDValue Op, SDValue Lo,
781                                         SDValue Hi) {
782   assert(Lo.getValueType() ==
783          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
784          Hi.getValueType() == Lo.getValueType() &&
785          "Invalid type for expanded float");
786   // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
787   AnalyzeNewValue(Lo);
788   AnalyzeNewValue(Hi);
789 
790   std::pair<TableId, TableId> &Entry = ExpandedFloats[getTableId(Op)];
791   assert((Entry.first == 0) && "Node already expanded");
792   Entry.first = getTableId(Lo);
793   Entry.second = getTableId(Hi);
794 }
795 
796 void DAGTypeLegalizer::GetSplitVector(SDValue Op, SDValue &Lo,
797                                       SDValue &Hi) {
798   std::pair<TableId, TableId> &Entry = SplitVectors[getTableId(Op)];
799   Lo = getSDValue(Entry.first);
800   Hi = getSDValue(Entry.second);
801   assert(Lo.getNode() && "Operand isn't split");
802   ;
803 }
804 
805 void DAGTypeLegalizer::SetSplitVector(SDValue Op, SDValue Lo,
806                                       SDValue Hi) {
807   assert(Lo.getValueType().getVectorElementType() ==
808          Op.getValueType().getVectorElementType() &&
809          2*Lo.getValueType().getVectorNumElements() ==
810          Op.getValueType().getVectorNumElements() &&
811          Hi.getValueType() == Lo.getValueType() &&
812          "Invalid type for split vector");
813   // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
814   AnalyzeNewValue(Lo);
815   AnalyzeNewValue(Hi);
816 
817   // Remember that this is the result of the node.
818   std::pair<TableId, TableId> &Entry = SplitVectors[getTableId(Op)];
819   assert((Entry.first == 0) && "Node already split");
820   Entry.first = getTableId(Lo);
821   Entry.second = getTableId(Hi);
822 }
823 
824 void DAGTypeLegalizer::SetWidenedVector(SDValue Op, SDValue Result) {
825   assert(Result.getValueType() ==
826          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
827          "Invalid type for widened vector");
828   AnalyzeNewValue(Result);
829 
830   auto &OpIdEntry = WidenedVectors[getTableId(Op)];
831   assert((OpIdEntry == 0) && "Node already widened!");
832   OpIdEntry = getTableId(Result);
833 }
834 
835 
836 //===----------------------------------------------------------------------===//
837 // Utilities.
838 //===----------------------------------------------------------------------===//
839 
840 /// Convert to an integer of the same size.
841 SDValue DAGTypeLegalizer::BitConvertToInteger(SDValue Op) {
842   unsigned BitWidth = Op.getValueSizeInBits();
843   return DAG.getNode(ISD::BITCAST, SDLoc(Op),
844                      EVT::getIntegerVT(*DAG.getContext(), BitWidth), Op);
845 }
846 
847 /// Convert to a vector of integers of the same size.
848 SDValue DAGTypeLegalizer::BitConvertVectorToIntegerVector(SDValue Op) {
849   assert(Op.getValueType().isVector() && "Only applies to vectors!");
850   unsigned EltWidth = Op.getScalarValueSizeInBits();
851   EVT EltNVT = EVT::getIntegerVT(*DAG.getContext(), EltWidth);
852   auto EltCnt = Op.getValueType().getVectorElementCount();
853   return DAG.getNode(ISD::BITCAST, SDLoc(Op),
854                      EVT::getVectorVT(*DAG.getContext(), EltNVT, EltCnt), Op);
855 }
856 
857 SDValue DAGTypeLegalizer::CreateStackStoreLoad(SDValue Op,
858                                                EVT DestVT) {
859   SDLoc dl(Op);
860   // Create the stack frame object.  Make sure it is aligned for both
861   // the source and destination types.
862   SDValue StackPtr = DAG.CreateStackTemporary(Op.getValueType(), DestVT);
863   // Emit a store to the stack slot.
864   SDValue Store =
865       DAG.getStore(DAG.getEntryNode(), dl, Op, StackPtr, MachinePointerInfo());
866   // Result is a load from the stack slot.
867   return DAG.getLoad(DestVT, dl, Store, StackPtr, MachinePointerInfo());
868 }
869 
870 /// Replace the node's results with custom code provided by the target and
871 /// return "true", or do nothing and return "false".
872 /// The last parameter is FALSE if we are dealing with a node with legal
873 /// result types and illegal operand. The second parameter denotes the type of
874 /// illegal OperandNo in that case.
875 /// The last parameter being TRUE means we are dealing with a
876 /// node with illegal result types. The second parameter denotes the type of
877 /// illegal ResNo in that case.
878 bool DAGTypeLegalizer::CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult) {
879   // See if the target wants to custom lower this node.
880   if (TLI.getOperationAction(N->getOpcode(), VT) != TargetLowering::Custom)
881     return false;
882 
883   SmallVector<SDValue, 8> Results;
884   if (LegalizeResult)
885     TLI.ReplaceNodeResults(N, Results, DAG);
886   else
887     TLI.LowerOperationWrapper(N, Results, DAG);
888 
889   if (Results.empty())
890     // The target didn't want to custom lower it after all.
891     return false;
892 
893   // When called from DAGTypeLegalizer::ExpandIntegerResult, we might need to
894   // provide the same kind of custom splitting behavior.
895   if (Results.size() == N->getNumValues() + 1 && LegalizeResult) {
896     // We've legalized a return type by splitting it. If there is a chain,
897     // replace that too.
898     SetExpandedInteger(SDValue(N, 0), Results[0], Results[1]);
899     if (N->getNumValues() > 1)
900       ReplaceValueWith(SDValue(N, 1), Results[2]);
901     return true;
902   }
903 
904   // Make everything that once used N's values now use those in Results instead.
905   assert(Results.size() == N->getNumValues() &&
906          "Custom lowering returned the wrong number of results!");
907   for (unsigned i = 0, e = Results.size(); i != e; ++i) {
908     ReplaceValueWith(SDValue(N, i), Results[i]);
909   }
910   return true;
911 }
912 
913 
914 /// Widen the node's results with custom code provided by the target and return
915 /// "true", or do nothing and return "false".
916 bool DAGTypeLegalizer::CustomWidenLowerNode(SDNode *N, EVT VT) {
917   // See if the target wants to custom lower this node.
918   if (TLI.getOperationAction(N->getOpcode(), VT) != TargetLowering::Custom)
919     return false;
920 
921   SmallVector<SDValue, 8> Results;
922   TLI.ReplaceNodeResults(N, Results, DAG);
923 
924   if (Results.empty())
925     // The target didn't want to custom widen lower its result after all.
926     return false;
927 
928   // Update the widening map.
929   assert(Results.size() == N->getNumValues() &&
930          "Custom lowering returned the wrong number of results!");
931   for (unsigned i = 0, e = Results.size(); i != e; ++i) {
932     // If this is a chain output just replace it.
933     if (Results[i].getValueType() == MVT::Other)
934       ReplaceValueWith(SDValue(N, i), Results[i]);
935     else
936       SetWidenedVector(SDValue(N, i), Results[i]);
937   }
938   return true;
939 }
940 
941 SDValue DAGTypeLegalizer::DisintegrateMERGE_VALUES(SDNode *N, unsigned ResNo) {
942   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
943     if (i != ResNo)
944       ReplaceValueWith(SDValue(N, i), SDValue(N->getOperand(i)));
945   return SDValue(N->getOperand(ResNo));
946 }
947 
948 /// Use ISD::EXTRACT_ELEMENT nodes to extract the low and high parts of the
949 /// given value.
950 void DAGTypeLegalizer::GetPairElements(SDValue Pair,
951                                        SDValue &Lo, SDValue &Hi) {
952   SDLoc dl(Pair);
953   EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), Pair.getValueType());
954   Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, NVT, Pair,
955                    DAG.getIntPtrConstant(0, dl));
956   Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, NVT, Pair,
957                    DAG.getIntPtrConstant(1, dl));
958 }
959 
960 /// Build an integer with low bits Lo and high bits Hi.
961 SDValue DAGTypeLegalizer::JoinIntegers(SDValue Lo, SDValue Hi) {
962   // Arbitrarily use dlHi for result SDLoc
963   SDLoc dlHi(Hi);
964   SDLoc dlLo(Lo);
965   EVT LVT = Lo.getValueType();
966   EVT HVT = Hi.getValueType();
967   EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
968                               LVT.getSizeInBits() + HVT.getSizeInBits());
969 
970   EVT ShiftAmtVT = TLI.getShiftAmountTy(NVT, DAG.getDataLayout(), false);
971   Lo = DAG.getNode(ISD::ZERO_EXTEND, dlLo, NVT, Lo);
972   Hi = DAG.getNode(ISD::ANY_EXTEND, dlHi, NVT, Hi);
973   Hi = DAG.getNode(ISD::SHL, dlHi, NVT, Hi,
974                    DAG.getConstant(LVT.getSizeInBits(), dlHi, ShiftAmtVT));
975   return DAG.getNode(ISD::OR, dlHi, NVT, Lo, Hi);
976 }
977 
978 /// Promote the given target boolean to a target boolean of the given type.
979 /// A target boolean is an integer value, not necessarily of type i1, the bits
980 /// of which conform to getBooleanContents.
981 ///
982 /// ValVT is the type of values that produced the boolean.
983 SDValue DAGTypeLegalizer::PromoteTargetBoolean(SDValue Bool, EVT ValVT) {
984   SDLoc dl(Bool);
985   EVT BoolVT = getSetCCResultType(ValVT);
986   ISD::NodeType ExtendCode =
987       TargetLowering::getExtendForContent(TLI.getBooleanContents(ValVT));
988   return DAG.getNode(ExtendCode, dl, BoolVT, Bool);
989 }
990 
991 /// Return the lower LoVT bits of Op in Lo and the upper HiVT bits in Hi.
992 void DAGTypeLegalizer::SplitInteger(SDValue Op,
993                                     EVT LoVT, EVT HiVT,
994                                     SDValue &Lo, SDValue &Hi) {
995   SDLoc dl(Op);
996   assert(LoVT.getSizeInBits() + HiVT.getSizeInBits() ==
997          Op.getValueSizeInBits() && "Invalid integer splitting!");
998   Lo = DAG.getNode(ISD::TRUNCATE, dl, LoVT, Op);
999   unsigned ReqShiftAmountInBits =
1000       Log2_32_Ceil(Op.getValueType().getSizeInBits());
1001   MVT ShiftAmountTy =
1002       TLI.getScalarShiftAmountTy(DAG.getDataLayout(), Op.getValueType());
1003   if (ReqShiftAmountInBits > ShiftAmountTy.getSizeInBits())
1004     ShiftAmountTy = MVT::getIntegerVT(NextPowerOf2(ReqShiftAmountInBits));
1005   Hi = DAG.getNode(ISD::SRL, dl, Op.getValueType(), Op,
1006                    DAG.getConstant(LoVT.getSizeInBits(), dl, ShiftAmountTy));
1007   Hi = DAG.getNode(ISD::TRUNCATE, dl, HiVT, Hi);
1008 }
1009 
1010 /// Return the lower and upper halves of Op's bits in a value type half the
1011 /// size of Op's.
1012 void DAGTypeLegalizer::SplitInteger(SDValue Op,
1013                                     SDValue &Lo, SDValue &Hi) {
1014   EVT HalfVT =
1015       EVT::getIntegerVT(*DAG.getContext(), Op.getValueSizeInBits() / 2);
1016   SplitInteger(Op, HalfVT, HalfVT, Lo, Hi);
1017 }
1018 
1019 
1020 //===----------------------------------------------------------------------===//
1021 //  Entry Point
1022 //===----------------------------------------------------------------------===//
1023 
1024 /// This transforms the SelectionDAG into a SelectionDAG that only uses types
1025 /// natively supported by the target. Returns "true" if it made any changes.
1026 ///
1027 /// Note that this is an involved process that may invalidate pointers into
1028 /// the graph.
1029 bool SelectionDAG::LegalizeTypes() {
1030   return DAGTypeLegalizer(*this).run();
1031 }
1032