1 //===-- LegalizeTypes.h - DAG Type Legalizer class definition ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the DAGTypeLegalizer class.  This is a private interface
10 // shared between the code that implements the SelectionDAG::LegalizeTypes
11 // method.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H
16 #define LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H
17 
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/CodeGen/SelectionDAG.h"
20 #include "llvm/CodeGen/TargetLowering.h"
21 #include "llvm/Support/Compiler.h"
22 #include "llvm/Support/Debug.h"
23 
24 namespace llvm {
25 
26 //===----------------------------------------------------------------------===//
27 /// This takes an arbitrary SelectionDAG as input and hacks on it until only
28 /// value types the target machine can handle are left. This involves promoting
29 /// small sizes to large sizes or splitting up large values into small values.
30 ///
31 class LLVM_LIBRARY_VISIBILITY DAGTypeLegalizer {
32   const TargetLowering &TLI;
33   SelectionDAG &DAG;
34 public:
35   /// This pass uses the NodeId on the SDNodes to hold information about the
36   /// state of the node. The enum has all the values.
37   enum NodeIdFlags {
38     /// All operands have been processed, so this node is ready to be handled.
39     ReadyToProcess = 0,
40 
41     /// This is a new node, not before seen, that was created in the process of
42     /// legalizing some other node.
43     NewNode = -1,
44 
45     /// This node's ID needs to be set to the number of its unprocessed
46     /// operands.
47     Unanalyzed = -2,
48 
49     /// This is a node that has already been processed.
50     Processed = -3
51 
52     // 1+ - This is a node which has this many unprocessed operands.
53   };
54 private:
55 
56   /// This is a bitvector that contains two bits for each simple value type,
57   /// where the two bits correspond to the LegalizeAction enum from
58   /// TargetLowering. This can be queried with "getTypeAction(VT)".
59   TargetLowering::ValueTypeActionImpl ValueTypeActions;
60 
61   /// Return how we should legalize values of this type.
62   TargetLowering::LegalizeTypeAction getTypeAction(EVT VT) const {
63     return TLI.getTypeAction(*DAG.getContext(), VT);
64   }
65 
66   /// Return true if this type is legal on this target.
67   bool isTypeLegal(EVT VT) const {
68     return TLI.getTypeAction(*DAG.getContext(), VT) == TargetLowering::TypeLegal;
69   }
70 
71   /// Return true if this is a simple legal type.
72   bool isSimpleLegalType(EVT VT) const {
73     return VT.isSimple() && TLI.isTypeLegal(VT);
74   }
75 
76   EVT getSetCCResultType(EVT VT) const {
77     return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
78   }
79 
80   /// Pretend all of this node's results are legal.
81   bool IgnoreNodeResults(SDNode *N) const {
82     return N->getOpcode() == ISD::TargetConstant ||
83            N->getOpcode() == ISD::Register;
84   }
85 
86   // Bijection from SDValue to unique id. As each created node gets a
87   // new id we do not need to worry about reuse expunging.  Should we
88   // run out of ids, we can do a one time expensive compactifcation.
89   typedef unsigned TableId;
90 
91   TableId NextValueId = 1;
92 
93   SmallDenseMap<SDValue, TableId, 8> ValueToIdMap;
94   SmallDenseMap<TableId, SDValue, 8> IdToValueMap;
95 
96   /// For integer nodes that are below legal width, this map indicates what
97   /// promoted value to use.
98   SmallDenseMap<TableId, TableId, 8> PromotedIntegers;
99 
100   /// For integer nodes that need to be expanded this map indicates which
101   /// operands are the expanded version of the input.
102   SmallDenseMap<TableId, std::pair<TableId, TableId>, 8> ExpandedIntegers;
103 
104   /// For floating-point nodes converted to integers of the same size, this map
105   /// indicates the converted value to use.
106   SmallDenseMap<TableId, TableId, 8> SoftenedFloats;
107 
108   /// For floating-point nodes that have a smaller precision than the smallest
109   /// supported precision, this map indicates what promoted value to use.
110   SmallDenseMap<TableId, TableId, 8> PromotedFloats;
111 
112   /// For float nodes that need to be expanded this map indicates which operands
113   /// are the expanded version of the input.
114   SmallDenseMap<TableId, std::pair<TableId, TableId>, 8> ExpandedFloats;
115 
116   /// For nodes that are <1 x ty>, this map indicates the scalar value of type
117   /// 'ty' to use.
118   SmallDenseMap<TableId, TableId, 8> ScalarizedVectors;
119 
120   /// For nodes that need to be split this map indicates which operands are the
121   /// expanded version of the input.
122   SmallDenseMap<TableId, std::pair<TableId, TableId>, 8> SplitVectors;
123 
124   /// For vector nodes that need to be widened, indicates the widened value to
125   /// use.
126   SmallDenseMap<TableId, TableId, 8> WidenedVectors;
127 
128   /// For values that have been replaced with another, indicates the replacement
129   /// value to use.
130   SmallDenseMap<TableId, TableId, 8> ReplacedValues;
131 
132   /// This defines a worklist of nodes to process. In order to be pushed onto
133   /// this worklist, all operands of a node must have already been processed.
134   SmallVector<SDNode*, 128> Worklist;
135 
136   TableId getTableId(SDValue V) {
137     assert(V.getNode() && "Getting TableId on SDValue()");
138 
139     auto I = ValueToIdMap.find(V);
140     if (I != ValueToIdMap.end()) {
141       // replace if there's been a shift.
142       RemapId(I->second);
143       assert(I->second && "All Ids should be nonzero");
144       return I->second;
145     }
146     // Add if it's not there.
147     ValueToIdMap.insert(std::make_pair(V, NextValueId));
148     IdToValueMap.insert(std::make_pair(NextValueId, V));
149     ++NextValueId;
150     assert(NextValueId != 0 &&
151            "Ran out of Ids. Increase id type size or add compactification");
152     return NextValueId - 1;
153   }
154 
155   const SDValue &getSDValue(TableId &Id) {
156     RemapId(Id);
157     assert(Id && "TableId should be non-zero");
158     return IdToValueMap[Id];
159   }
160 
161 public:
162   explicit DAGTypeLegalizer(SelectionDAG &dag)
163     : TLI(dag.getTargetLoweringInfo()), DAG(dag),
164     ValueTypeActions(TLI.getValueTypeActions()) {
165     static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE,
166                   "Too many value types for ValueTypeActions to hold!");
167   }
168 
169   /// This is the main entry point for the type legalizer.  This does a
170   /// top-down traversal of the dag, legalizing types as it goes.  Returns
171   /// "true" if it made any changes.
172   bool run();
173 
174   void NoteDeletion(SDNode *Old, SDNode *New) {
175     for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) {
176       TableId NewId = getTableId(SDValue(New, i));
177       TableId OldId = getTableId(SDValue(Old, i));
178 
179       if (OldId != NewId)
180         ReplacedValues[OldId] = NewId;
181 
182       // Delete Node from tables.
183       ValueToIdMap.erase(SDValue(Old, i));
184       IdToValueMap.erase(OldId);
185       PromotedIntegers.erase(OldId);
186       ExpandedIntegers.erase(OldId);
187       SoftenedFloats.erase(OldId);
188       PromotedFloats.erase(OldId);
189       ExpandedFloats.erase(OldId);
190       ScalarizedVectors.erase(OldId);
191       SplitVectors.erase(OldId);
192       WidenedVectors.erase(OldId);
193     }
194   }
195 
196   SelectionDAG &getDAG() const { return DAG; }
197 
198 private:
199   SDNode *AnalyzeNewNode(SDNode *N);
200   void AnalyzeNewValue(SDValue &Val);
201   void PerformExpensiveChecks();
202   void RemapId(TableId &Id);
203   void RemapValue(SDValue &V);
204 
205   // Common routines.
206   SDValue BitConvertToInteger(SDValue Op);
207   SDValue BitConvertVectorToIntegerVector(SDValue Op);
208   SDValue CreateStackStoreLoad(SDValue Op, EVT DestVT);
209   bool CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult);
210   bool CustomWidenLowerNode(SDNode *N, EVT VT);
211 
212   /// Replace each result of the given MERGE_VALUES node with the corresponding
213   /// input operand, except for the result 'ResNo', for which the corresponding
214   /// input operand is returned.
215   SDValue DisintegrateMERGE_VALUES(SDNode *N, unsigned ResNo);
216 
217   SDValue JoinIntegers(SDValue Lo, SDValue Hi);
218 
219   std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
220 
221   SDValue PromoteTargetBoolean(SDValue Bool, EVT ValVT);
222 
223   void ReplaceValueWith(SDValue From, SDValue To);
224   void SplitInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
225   void SplitInteger(SDValue Op, EVT LoVT, EVT HiVT,
226                     SDValue &Lo, SDValue &Hi);
227 
228   //===--------------------------------------------------------------------===//
229   // Integer Promotion Support: LegalizeIntegerTypes.cpp
230   //===--------------------------------------------------------------------===//
231 
232   /// Given a processed operand Op which was promoted to a larger integer type,
233   /// this returns the promoted value. The low bits of the promoted value
234   /// corresponding to the original type are exactly equal to Op.
235   /// The extra bits contain rubbish, so the promoted value may need to be zero-
236   /// or sign-extended from the original type before it is usable (the helpers
237   /// SExtPromotedInteger and ZExtPromotedInteger can do this for you).
238   /// For example, if Op is an i16 and was promoted to an i32, then this method
239   /// returns an i32, the lower 16 bits of which coincide with Op, and the upper
240   /// 16 bits of which contain rubbish.
241   SDValue GetPromotedInteger(SDValue Op) {
242     TableId &PromotedId = PromotedIntegers[getTableId(Op)];
243     SDValue PromotedOp = getSDValue(PromotedId);
244     assert(PromotedOp.getNode() && "Operand wasn't promoted?");
245     return PromotedOp;
246   }
247   void SetPromotedInteger(SDValue Op, SDValue Result);
248 
249   /// Get a promoted operand and sign extend it to the final size.
250   SDValue SExtPromotedInteger(SDValue Op) {
251     EVT OldVT = Op.getValueType();
252     SDLoc dl(Op);
253     Op = GetPromotedInteger(Op);
254     return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Op.getValueType(), Op,
255                        DAG.getValueType(OldVT));
256   }
257 
258   /// Get a promoted operand and zero extend it to the final size.
259   SDValue ZExtPromotedInteger(SDValue Op) {
260     EVT OldVT = Op.getValueType();
261     SDLoc dl(Op);
262     Op = GetPromotedInteger(Op);
263     return DAG.getZeroExtendInReg(Op, dl, OldVT.getScalarType());
264   }
265 
266   // Get a promoted operand and sign or zero extend it to the final size
267   // (depending on TargetLoweringInfo::isSExtCheaperThanZExt). For a given
268   // subtarget and type, the choice of sign or zero-extension will be
269   // consistent.
270   SDValue SExtOrZExtPromotedInteger(SDValue Op) {
271     EVT OldVT = Op.getValueType();
272     SDLoc DL(Op);
273     Op = GetPromotedInteger(Op);
274     if (TLI.isSExtCheaperThanZExt(OldVT, Op.getValueType()))
275       return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), Op,
276                          DAG.getValueType(OldVT));
277     return DAG.getZeroExtendInReg(Op, DL, OldVT.getScalarType());
278   }
279 
280   // Integer Result Promotion.
281   void PromoteIntegerResult(SDNode *N, unsigned ResNo);
282   SDValue PromoteIntRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
283   SDValue PromoteIntRes_AssertSext(SDNode *N);
284   SDValue PromoteIntRes_AssertZext(SDNode *N);
285   SDValue PromoteIntRes_Atomic0(AtomicSDNode *N);
286   SDValue PromoteIntRes_Atomic1(AtomicSDNode *N);
287   SDValue PromoteIntRes_AtomicCmpSwap(AtomicSDNode *N, unsigned ResNo);
288   SDValue PromoteIntRes_EXTRACT_SUBVECTOR(SDNode *N);
289   SDValue PromoteIntRes_VECTOR_SHUFFLE(SDNode *N);
290   SDValue PromoteIntRes_BUILD_VECTOR(SDNode *N);
291   SDValue PromoteIntRes_SCALAR_TO_VECTOR(SDNode *N);
292   SDValue PromoteIntRes_SPLAT_VECTOR(SDNode *N);
293   SDValue PromoteIntRes_EXTEND_VECTOR_INREG(SDNode *N);
294   SDValue PromoteIntRes_INSERT_VECTOR_ELT(SDNode *N);
295   SDValue PromoteIntRes_CONCAT_VECTORS(SDNode *N);
296   SDValue PromoteIntRes_BITCAST(SDNode *N);
297   SDValue PromoteIntRes_BSWAP(SDNode *N);
298   SDValue PromoteIntRes_BITREVERSE(SDNode *N);
299   SDValue PromoteIntRes_BUILD_PAIR(SDNode *N);
300   SDValue PromoteIntRes_Constant(SDNode *N);
301   SDValue PromoteIntRes_CTLZ(SDNode *N);
302   SDValue PromoteIntRes_CTPOP(SDNode *N);
303   SDValue PromoteIntRes_CTTZ(SDNode *N);
304   SDValue PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N);
305   SDValue PromoteIntRes_FP_TO_XINT(SDNode *N);
306   SDValue PromoteIntRes_FP_TO_FP16(SDNode *N);
307   SDValue PromoteIntRes_INT_EXTEND(SDNode *N);
308   SDValue PromoteIntRes_LOAD(LoadSDNode *N);
309   SDValue PromoteIntRes_MLOAD(MaskedLoadSDNode *N);
310   SDValue PromoteIntRes_MGATHER(MaskedGatherSDNode *N);
311   SDValue PromoteIntRes_Overflow(SDNode *N);
312   SDValue PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo);
313   SDValue PromoteIntRes_SELECT(SDNode *N);
314   SDValue PromoteIntRes_VSELECT(SDNode *N);
315   SDValue PromoteIntRes_SELECT_CC(SDNode *N);
316   SDValue PromoteIntRes_SETCC(SDNode *N);
317   SDValue PromoteIntRes_SHL(SDNode *N);
318   SDValue PromoteIntRes_SimpleIntBinOp(SDNode *N);
319   SDValue PromoteIntRes_ZExtIntBinOp(SDNode *N);
320   SDValue PromoteIntRes_SExtIntBinOp(SDNode *N);
321   SDValue PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N);
322   SDValue PromoteIntRes_SRA(SDNode *N);
323   SDValue PromoteIntRes_SRL(SDNode *N);
324   SDValue PromoteIntRes_TRUNCATE(SDNode *N);
325   SDValue PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo);
326   SDValue PromoteIntRes_ADDSUBCARRY(SDNode *N, unsigned ResNo);
327   SDValue PromoteIntRes_UNDEF(SDNode *N);
328   SDValue PromoteIntRes_VAARG(SDNode *N);
329   SDValue PromoteIntRes_XMULO(SDNode *N, unsigned ResNo);
330   SDValue PromoteIntRes_ADDSUBSAT(SDNode *N);
331   SDValue PromoteIntRes_MULFIX(SDNode *N);
332   SDValue PromoteIntRes_DIVFIX(SDNode *N);
333   SDValue PromoteIntRes_FLT_ROUNDS(SDNode *N);
334   SDValue PromoteIntRes_VECREDUCE(SDNode *N);
335   SDValue PromoteIntRes_ABS(SDNode *N);
336 
337   // Integer Operand Promotion.
338   bool PromoteIntegerOperand(SDNode *N, unsigned OpNo);
339   SDValue PromoteIntOp_ANY_EXTEND(SDNode *N);
340   SDValue PromoteIntOp_ATOMIC_STORE(AtomicSDNode *N);
341   SDValue PromoteIntOp_BITCAST(SDNode *N);
342   SDValue PromoteIntOp_BUILD_PAIR(SDNode *N);
343   SDValue PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo);
344   SDValue PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo);
345   SDValue PromoteIntOp_BUILD_VECTOR(SDNode *N);
346   SDValue PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N, unsigned OpNo);
347   SDValue PromoteIntOp_EXTRACT_VECTOR_ELT(SDNode *N);
348   SDValue PromoteIntOp_EXTRACT_SUBVECTOR(SDNode *N);
349   SDValue PromoteIntOp_CONCAT_VECTORS(SDNode *N);
350   SDValue PromoteIntOp_SCALAR_TO_VECTOR(SDNode *N);
351   SDValue PromoteIntOp_SPLAT_VECTOR(SDNode *N);
352   SDValue PromoteIntOp_SELECT(SDNode *N, unsigned OpNo);
353   SDValue PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo);
354   SDValue PromoteIntOp_SETCC(SDNode *N, unsigned OpNo);
355   SDValue PromoteIntOp_Shift(SDNode *N);
356   SDValue PromoteIntOp_SIGN_EXTEND(SDNode *N);
357   SDValue PromoteIntOp_SINT_TO_FP(SDNode *N);
358   SDValue PromoteIntOp_STRICT_SINT_TO_FP(SDNode *N);
359   SDValue PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo);
360   SDValue PromoteIntOp_TRUNCATE(SDNode *N);
361   SDValue PromoteIntOp_UINT_TO_FP(SDNode *N);
362   SDValue PromoteIntOp_STRICT_UINT_TO_FP(SDNode *N);
363   SDValue PromoteIntOp_ZERO_EXTEND(SDNode *N);
364   SDValue PromoteIntOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo);
365   SDValue PromoteIntOp_MLOAD(MaskedLoadSDNode *N, unsigned OpNo);
366   SDValue PromoteIntOp_MSCATTER(MaskedScatterSDNode *N, unsigned OpNo);
367   SDValue PromoteIntOp_MGATHER(MaskedGatherSDNode *N, unsigned OpNo);
368   SDValue PromoteIntOp_ADDSUBCARRY(SDNode *N, unsigned OpNo);
369   SDValue PromoteIntOp_FRAMERETURNADDR(SDNode *N);
370   SDValue PromoteIntOp_PREFETCH(SDNode *N, unsigned OpNo);
371   SDValue PromoteIntOp_FIX(SDNode *N);
372   SDValue PromoteIntOp_FPOWI(SDNode *N);
373   SDValue PromoteIntOp_VECREDUCE(SDNode *N);
374 
375   void PromoteSetCCOperands(SDValue &LHS,SDValue &RHS, ISD::CondCode Code);
376 
377   //===--------------------------------------------------------------------===//
378   // Integer Expansion Support: LegalizeIntegerTypes.cpp
379   //===--------------------------------------------------------------------===//
380 
381   /// Given a processed operand Op which was expanded into two integers of half
382   /// the size, this returns the two halves. The low bits of Op are exactly
383   /// equal to the bits of Lo; the high bits exactly equal Hi.
384   /// For example, if Op is an i64 which was expanded into two i32's, then this
385   /// method returns the two i32's, with Lo being equal to the lower 32 bits of
386   /// Op, and Hi being equal to the upper 32 bits.
387   void GetExpandedInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
388   void SetExpandedInteger(SDValue Op, SDValue Lo, SDValue Hi);
389 
390   // Integer Result Expansion.
391   void ExpandIntegerResult(SDNode *N, unsigned ResNo);
392   void ExpandIntRes_ANY_EXTEND        (SDNode *N, SDValue &Lo, SDValue &Hi);
393   void ExpandIntRes_AssertSext        (SDNode *N, SDValue &Lo, SDValue &Hi);
394   void ExpandIntRes_AssertZext        (SDNode *N, SDValue &Lo, SDValue &Hi);
395   void ExpandIntRes_Constant          (SDNode *N, SDValue &Lo, SDValue &Hi);
396   void ExpandIntRes_ABS               (SDNode *N, SDValue &Lo, SDValue &Hi);
397   void ExpandIntRes_CTLZ              (SDNode *N, SDValue &Lo, SDValue &Hi);
398   void ExpandIntRes_CTPOP             (SDNode *N, SDValue &Lo, SDValue &Hi);
399   void ExpandIntRes_CTTZ              (SDNode *N, SDValue &Lo, SDValue &Hi);
400   void ExpandIntRes_LOAD          (LoadSDNode *N, SDValue &Lo, SDValue &Hi);
401   void ExpandIntRes_READCYCLECOUNTER  (SDNode *N, SDValue &Lo, SDValue &Hi);
402   void ExpandIntRes_SIGN_EXTEND       (SDNode *N, SDValue &Lo, SDValue &Hi);
403   void ExpandIntRes_SIGN_EXTEND_INREG (SDNode *N, SDValue &Lo, SDValue &Hi);
404   void ExpandIntRes_TRUNCATE          (SDNode *N, SDValue &Lo, SDValue &Hi);
405   void ExpandIntRes_ZERO_EXTEND       (SDNode *N, SDValue &Lo, SDValue &Hi);
406   void ExpandIntRes_FLT_ROUNDS        (SDNode *N, SDValue &Lo, SDValue &Hi);
407   void ExpandIntRes_FP_TO_SINT        (SDNode *N, SDValue &Lo, SDValue &Hi);
408   void ExpandIntRes_FP_TO_UINT        (SDNode *N, SDValue &Lo, SDValue &Hi);
409   void ExpandIntRes_LLROUND_LLRINT    (SDNode *N, SDValue &Lo, SDValue &Hi);
410 
411   void ExpandIntRes_Logical           (SDNode *N, SDValue &Lo, SDValue &Hi);
412   void ExpandIntRes_ADDSUB            (SDNode *N, SDValue &Lo, SDValue &Hi);
413   void ExpandIntRes_ADDSUBC           (SDNode *N, SDValue &Lo, SDValue &Hi);
414   void ExpandIntRes_ADDSUBE           (SDNode *N, SDValue &Lo, SDValue &Hi);
415   void ExpandIntRes_ADDSUBCARRY       (SDNode *N, SDValue &Lo, SDValue &Hi);
416   void ExpandIntRes_BITREVERSE        (SDNode *N, SDValue &Lo, SDValue &Hi);
417   void ExpandIntRes_BSWAP             (SDNode *N, SDValue &Lo, SDValue &Hi);
418   void ExpandIntRes_MUL               (SDNode *N, SDValue &Lo, SDValue &Hi);
419   void ExpandIntRes_SDIV              (SDNode *N, SDValue &Lo, SDValue &Hi);
420   void ExpandIntRes_SREM              (SDNode *N, SDValue &Lo, SDValue &Hi);
421   void ExpandIntRes_UDIV              (SDNode *N, SDValue &Lo, SDValue &Hi);
422   void ExpandIntRes_UREM              (SDNode *N, SDValue &Lo, SDValue &Hi);
423   void ExpandIntRes_Shift             (SDNode *N, SDValue &Lo, SDValue &Hi);
424 
425   void ExpandIntRes_MINMAX            (SDNode *N, SDValue &Lo, SDValue &Hi);
426 
427   void ExpandIntRes_SADDSUBO          (SDNode *N, SDValue &Lo, SDValue &Hi);
428   void ExpandIntRes_UADDSUBO          (SDNode *N, SDValue &Lo, SDValue &Hi);
429   void ExpandIntRes_XMULO             (SDNode *N, SDValue &Lo, SDValue &Hi);
430   void ExpandIntRes_ADDSUBSAT         (SDNode *N, SDValue &Lo, SDValue &Hi);
431   void ExpandIntRes_MULFIX            (SDNode *N, SDValue &Lo, SDValue &Hi);
432   void ExpandIntRes_DIVFIX            (SDNode *N, SDValue &Lo, SDValue &Hi);
433 
434   void ExpandIntRes_ATOMIC_LOAD       (SDNode *N, SDValue &Lo, SDValue &Hi);
435   void ExpandIntRes_VECREDUCE         (SDNode *N, SDValue &Lo, SDValue &Hi);
436 
437   void ExpandShiftByConstant(SDNode *N, const APInt &Amt,
438                              SDValue &Lo, SDValue &Hi);
439   bool ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
440   bool ExpandShiftWithUnknownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
441 
442   // Integer Operand Expansion.
443   bool ExpandIntegerOperand(SDNode *N, unsigned OpNo);
444   SDValue ExpandIntOp_BR_CC(SDNode *N);
445   SDValue ExpandIntOp_SELECT_CC(SDNode *N);
446   SDValue ExpandIntOp_SETCC(SDNode *N);
447   SDValue ExpandIntOp_SETCCCARRY(SDNode *N);
448   SDValue ExpandIntOp_Shift(SDNode *N);
449   SDValue ExpandIntOp_SINT_TO_FP(SDNode *N);
450   SDValue ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo);
451   SDValue ExpandIntOp_TRUNCATE(SDNode *N);
452   SDValue ExpandIntOp_UINT_TO_FP(SDNode *N);
453   SDValue ExpandIntOp_RETURNADDR(SDNode *N);
454   SDValue ExpandIntOp_ATOMIC_STORE(SDNode *N);
455 
456   void IntegerExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
457                                   ISD::CondCode &CCCode, const SDLoc &dl);
458 
459   //===--------------------------------------------------------------------===//
460   // Float to Integer Conversion Support: LegalizeFloatTypes.cpp
461   //===--------------------------------------------------------------------===//
462 
463   /// GetSoftenedFloat - Given a processed operand Op which was converted to an
464   /// integer of the same size, this returns the integer.  The integer contains
465   /// exactly the same bits as Op - only the type changed.  For example, if Op
466   /// is an f32 which was softened to an i32, then this method returns an i32,
467   /// the bits of which coincide with those of Op
468   SDValue GetSoftenedFloat(SDValue Op) {
469     TableId Id = getTableId(Op);
470     auto Iter = SoftenedFloats.find(Id);
471     if (Iter == SoftenedFloats.end()) {
472       assert(isSimpleLegalType(Op.getValueType()) &&
473              "Operand wasn't converted to integer?");
474       return Op;
475     }
476     SDValue SoftenedOp = getSDValue(Iter->second);
477     assert(SoftenedOp.getNode() && "Unconverted op in SoftenedFloats?");
478     return SoftenedOp;
479   }
480   void SetSoftenedFloat(SDValue Op, SDValue Result);
481 
482   // Convert Float Results to Integer.
483   void SoftenFloatResult(SDNode *N, unsigned ResNo);
484   SDValue SoftenFloatRes_Unary(SDNode *N, RTLIB::Libcall LC);
485   SDValue SoftenFloatRes_Binary(SDNode *N, RTLIB::Libcall LC);
486   SDValue SoftenFloatRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
487   SDValue SoftenFloatRes_BITCAST(SDNode *N);
488   SDValue SoftenFloatRes_BUILD_PAIR(SDNode *N);
489   SDValue SoftenFloatRes_ConstantFP(SDNode *N);
490   SDValue SoftenFloatRes_EXTRACT_VECTOR_ELT(SDNode *N, unsigned ResNo);
491   SDValue SoftenFloatRes_FABS(SDNode *N);
492   SDValue SoftenFloatRes_FMINNUM(SDNode *N);
493   SDValue SoftenFloatRes_FMAXNUM(SDNode *N);
494   SDValue SoftenFloatRes_FADD(SDNode *N);
495   SDValue SoftenFloatRes_FCBRT(SDNode *N);
496   SDValue SoftenFloatRes_FCEIL(SDNode *N);
497   SDValue SoftenFloatRes_FCOPYSIGN(SDNode *N);
498   SDValue SoftenFloatRes_FCOS(SDNode *N);
499   SDValue SoftenFloatRes_FDIV(SDNode *N);
500   SDValue SoftenFloatRes_FEXP(SDNode *N);
501   SDValue SoftenFloatRes_FEXP2(SDNode *N);
502   SDValue SoftenFloatRes_FFLOOR(SDNode *N);
503   SDValue SoftenFloatRes_FLOG(SDNode *N);
504   SDValue SoftenFloatRes_FLOG2(SDNode *N);
505   SDValue SoftenFloatRes_FLOG10(SDNode *N);
506   SDValue SoftenFloatRes_FMA(SDNode *N);
507   SDValue SoftenFloatRes_FMUL(SDNode *N);
508   SDValue SoftenFloatRes_FNEARBYINT(SDNode *N);
509   SDValue SoftenFloatRes_FNEG(SDNode *N);
510   SDValue SoftenFloatRes_FP_EXTEND(SDNode *N);
511   SDValue SoftenFloatRes_FP16_TO_FP(SDNode *N);
512   SDValue SoftenFloatRes_FP_ROUND(SDNode *N);
513   SDValue SoftenFloatRes_FPOW(SDNode *N);
514   SDValue SoftenFloatRes_FPOWI(SDNode *N);
515   SDValue SoftenFloatRes_FREM(SDNode *N);
516   SDValue SoftenFloatRes_FRINT(SDNode *N);
517   SDValue SoftenFloatRes_FROUND(SDNode *N);
518   SDValue SoftenFloatRes_FSIN(SDNode *N);
519   SDValue SoftenFloatRes_FSQRT(SDNode *N);
520   SDValue SoftenFloatRes_FSUB(SDNode *N);
521   SDValue SoftenFloatRes_FTRUNC(SDNode *N);
522   SDValue SoftenFloatRes_LOAD(SDNode *N);
523   SDValue SoftenFloatRes_SELECT(SDNode *N);
524   SDValue SoftenFloatRes_SELECT_CC(SDNode *N);
525   SDValue SoftenFloatRes_UNDEF(SDNode *N);
526   SDValue SoftenFloatRes_VAARG(SDNode *N);
527   SDValue SoftenFloatRes_XINT_TO_FP(SDNode *N);
528 
529   // Convert Float Operand to Integer.
530   bool SoftenFloatOperand(SDNode *N, unsigned OpNo);
531   SDValue SoftenFloatOp_Unary(SDNode *N, RTLIB::Libcall LC);
532   SDValue SoftenFloatOp_BITCAST(SDNode *N);
533   SDValue SoftenFloatOp_BR_CC(SDNode *N);
534   SDValue SoftenFloatOp_FP_ROUND(SDNode *N);
535   SDValue SoftenFloatOp_FP_TO_XINT(SDNode *N);
536   SDValue SoftenFloatOp_LROUND(SDNode *N);
537   SDValue SoftenFloatOp_LLROUND(SDNode *N);
538   SDValue SoftenFloatOp_LRINT(SDNode *N);
539   SDValue SoftenFloatOp_LLRINT(SDNode *N);
540   SDValue SoftenFloatOp_SELECT_CC(SDNode *N);
541   SDValue SoftenFloatOp_SETCC(SDNode *N);
542   SDValue SoftenFloatOp_STORE(SDNode *N, unsigned OpNo);
543   SDValue SoftenFloatOp_FCOPYSIGN(SDNode *N);
544 
545   //===--------------------------------------------------------------------===//
546   // Float Expansion Support: LegalizeFloatTypes.cpp
547   //===--------------------------------------------------------------------===//
548 
549   /// Given a processed operand Op which was expanded into two floating-point
550   /// values of half the size, this returns the two halves.
551   /// The low bits of Op are exactly equal to the bits of Lo; the high bits
552   /// exactly equal Hi.  For example, if Op is a ppcf128 which was expanded
553   /// into two f64's, then this method returns the two f64's, with Lo being
554   /// equal to the lower 64 bits of Op, and Hi to the upper 64 bits.
555   void GetExpandedFloat(SDValue Op, SDValue &Lo, SDValue &Hi);
556   void SetExpandedFloat(SDValue Op, SDValue Lo, SDValue Hi);
557 
558   // Float Result Expansion.
559   void ExpandFloatResult(SDNode *N, unsigned ResNo);
560   void ExpandFloatRes_ConstantFP(SDNode *N, SDValue &Lo, SDValue &Hi);
561   void ExpandFloatRes_Unary(SDNode *N, RTLIB::Libcall LC,
562                             SDValue &Lo, SDValue &Hi);
563   void ExpandFloatRes_Binary(SDNode *N, RTLIB::Libcall LC,
564                              SDValue &Lo, SDValue &Hi);
565   void ExpandFloatRes_FABS      (SDNode *N, SDValue &Lo, SDValue &Hi);
566   void ExpandFloatRes_FMINNUM   (SDNode *N, SDValue &Lo, SDValue &Hi);
567   void ExpandFloatRes_FMAXNUM   (SDNode *N, SDValue &Lo, SDValue &Hi);
568   void ExpandFloatRes_FADD      (SDNode *N, SDValue &Lo, SDValue &Hi);
569   void ExpandFloatRes_FCBRT     (SDNode *N, SDValue &Lo, SDValue &Hi);
570   void ExpandFloatRes_FCEIL     (SDNode *N, SDValue &Lo, SDValue &Hi);
571   void ExpandFloatRes_FCOPYSIGN (SDNode *N, SDValue &Lo, SDValue &Hi);
572   void ExpandFloatRes_FCOS      (SDNode *N, SDValue &Lo, SDValue &Hi);
573   void ExpandFloatRes_FDIV      (SDNode *N, SDValue &Lo, SDValue &Hi);
574   void ExpandFloatRes_FEXP      (SDNode *N, SDValue &Lo, SDValue &Hi);
575   void ExpandFloatRes_FEXP2     (SDNode *N, SDValue &Lo, SDValue &Hi);
576   void ExpandFloatRes_FFLOOR    (SDNode *N, SDValue &Lo, SDValue &Hi);
577   void ExpandFloatRes_FLOG      (SDNode *N, SDValue &Lo, SDValue &Hi);
578   void ExpandFloatRes_FLOG2     (SDNode *N, SDValue &Lo, SDValue &Hi);
579   void ExpandFloatRes_FLOG10    (SDNode *N, SDValue &Lo, SDValue &Hi);
580   void ExpandFloatRes_FMA       (SDNode *N, SDValue &Lo, SDValue &Hi);
581   void ExpandFloatRes_FMUL      (SDNode *N, SDValue &Lo, SDValue &Hi);
582   void ExpandFloatRes_FNEARBYINT(SDNode *N, SDValue &Lo, SDValue &Hi);
583   void ExpandFloatRes_FNEG      (SDNode *N, SDValue &Lo, SDValue &Hi);
584   void ExpandFloatRes_FP_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
585   void ExpandFloatRes_FPOW      (SDNode *N, SDValue &Lo, SDValue &Hi);
586   void ExpandFloatRes_FPOWI     (SDNode *N, SDValue &Lo, SDValue &Hi);
587   void ExpandFloatRes_FREM      (SDNode *N, SDValue &Lo, SDValue &Hi);
588   void ExpandFloatRes_FRINT     (SDNode *N, SDValue &Lo, SDValue &Hi);
589   void ExpandFloatRes_FROUND    (SDNode *N, SDValue &Lo, SDValue &Hi);
590   void ExpandFloatRes_FSIN      (SDNode *N, SDValue &Lo, SDValue &Hi);
591   void ExpandFloatRes_FSQRT     (SDNode *N, SDValue &Lo, SDValue &Hi);
592   void ExpandFloatRes_FSUB      (SDNode *N, SDValue &Lo, SDValue &Hi);
593   void ExpandFloatRes_FTRUNC    (SDNode *N, SDValue &Lo, SDValue &Hi);
594   void ExpandFloatRes_LOAD      (SDNode *N, SDValue &Lo, SDValue &Hi);
595   void ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo, SDValue &Hi);
596 
597   // Float Operand Expansion.
598   bool ExpandFloatOperand(SDNode *N, unsigned OpNo);
599   SDValue ExpandFloatOp_BR_CC(SDNode *N);
600   SDValue ExpandFloatOp_FCOPYSIGN(SDNode *N);
601   SDValue ExpandFloatOp_FP_ROUND(SDNode *N);
602   SDValue ExpandFloatOp_FP_TO_SINT(SDNode *N);
603   SDValue ExpandFloatOp_FP_TO_UINT(SDNode *N);
604   SDValue ExpandFloatOp_LROUND(SDNode *N);
605   SDValue ExpandFloatOp_LLROUND(SDNode *N);
606   SDValue ExpandFloatOp_LRINT(SDNode *N);
607   SDValue ExpandFloatOp_LLRINT(SDNode *N);
608   SDValue ExpandFloatOp_SELECT_CC(SDNode *N);
609   SDValue ExpandFloatOp_SETCC(SDNode *N);
610   SDValue ExpandFloatOp_STORE(SDNode *N, unsigned OpNo);
611 
612   void FloatExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
613                                 ISD::CondCode &CCCode, const SDLoc &dl);
614 
615   //===--------------------------------------------------------------------===//
616   // Float promotion support: LegalizeFloatTypes.cpp
617   //===--------------------------------------------------------------------===//
618 
619   SDValue GetPromotedFloat(SDValue Op) {
620     TableId &PromotedId = PromotedFloats[getTableId(Op)];
621     SDValue PromotedOp = getSDValue(PromotedId);
622     assert(PromotedOp.getNode() && "Operand wasn't promoted?");
623     return PromotedOp;
624   }
625   void SetPromotedFloat(SDValue Op, SDValue Result);
626 
627   void PromoteFloatResult(SDNode *N, unsigned ResNo);
628   SDValue PromoteFloatRes_BITCAST(SDNode *N);
629   SDValue PromoteFloatRes_BinOp(SDNode *N);
630   SDValue PromoteFloatRes_ConstantFP(SDNode *N);
631   SDValue PromoteFloatRes_EXTRACT_VECTOR_ELT(SDNode *N);
632   SDValue PromoteFloatRes_FCOPYSIGN(SDNode *N);
633   SDValue PromoteFloatRes_FMAD(SDNode *N);
634   SDValue PromoteFloatRes_FPOWI(SDNode *N);
635   SDValue PromoteFloatRes_FP_ROUND(SDNode *N);
636   SDValue PromoteFloatRes_LOAD(SDNode *N);
637   SDValue PromoteFloatRes_SELECT(SDNode *N);
638   SDValue PromoteFloatRes_SELECT_CC(SDNode *N);
639   SDValue PromoteFloatRes_UnaryOp(SDNode *N);
640   SDValue PromoteFloatRes_UNDEF(SDNode *N);
641   SDValue BitcastToInt_ATOMIC_SWAP(SDNode *N);
642   SDValue PromoteFloatRes_XINT_TO_FP(SDNode *N);
643 
644   bool PromoteFloatOperand(SDNode *N, unsigned OpNo);
645   SDValue PromoteFloatOp_BITCAST(SDNode *N, unsigned OpNo);
646   SDValue PromoteFloatOp_FCOPYSIGN(SDNode *N, unsigned OpNo);
647   SDValue PromoteFloatOp_FP_EXTEND(SDNode *N, unsigned OpNo);
648   SDValue PromoteFloatOp_FP_TO_XINT(SDNode *N, unsigned OpNo);
649   SDValue PromoteFloatOp_STORE(SDNode *N, unsigned OpNo);
650   SDValue PromoteFloatOp_SELECT_CC(SDNode *N, unsigned OpNo);
651   SDValue PromoteFloatOp_SETCC(SDNode *N, unsigned OpNo);
652 
653   //===--------------------------------------------------------------------===//
654   // Scalarization Support: LegalizeVectorTypes.cpp
655   //===--------------------------------------------------------------------===//
656 
657   /// Given a processed one-element vector Op which was scalarized to its
658   /// element type, this returns the element. For example, if Op is a v1i32,
659   /// Op = < i32 val >, this method returns val, an i32.
660   SDValue GetScalarizedVector(SDValue Op) {
661     TableId &ScalarizedId = ScalarizedVectors[getTableId(Op)];
662     SDValue ScalarizedOp = getSDValue(ScalarizedId);
663     assert(ScalarizedOp.getNode() && "Operand wasn't scalarized?");
664     return ScalarizedOp;
665   }
666   void SetScalarizedVector(SDValue Op, SDValue Result);
667 
668   // Vector Result Scalarization: <1 x ty> -> ty.
669   void ScalarizeVectorResult(SDNode *N, unsigned ResNo);
670   SDValue ScalarizeVecRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
671   SDValue ScalarizeVecRes_BinOp(SDNode *N);
672   SDValue ScalarizeVecRes_TernaryOp(SDNode *N);
673   SDValue ScalarizeVecRes_UnaryOp(SDNode *N);
674   SDValue ScalarizeVecRes_StrictFPOp(SDNode *N);
675   SDValue ScalarizeVecRes_OverflowOp(SDNode *N, unsigned ResNo);
676   SDValue ScalarizeVecRes_InregOp(SDNode *N);
677   SDValue ScalarizeVecRes_VecInregOp(SDNode *N);
678 
679   SDValue ScalarizeVecRes_BITCAST(SDNode *N);
680   SDValue ScalarizeVecRes_BUILD_VECTOR(SDNode *N);
681   SDValue ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N);
682   SDValue ScalarizeVecRes_FP_ROUND(SDNode *N);
683   SDValue ScalarizeVecRes_FPOWI(SDNode *N);
684   SDValue ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N);
685   SDValue ScalarizeVecRes_LOAD(LoadSDNode *N);
686   SDValue ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N);
687   SDValue ScalarizeVecRes_VSELECT(SDNode *N);
688   SDValue ScalarizeVecRes_SELECT(SDNode *N);
689   SDValue ScalarizeVecRes_SELECT_CC(SDNode *N);
690   SDValue ScalarizeVecRes_SETCC(SDNode *N);
691   SDValue ScalarizeVecRes_UNDEF(SDNode *N);
692   SDValue ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N);
693 
694   SDValue ScalarizeVecRes_FIX(SDNode *N);
695 
696   // Vector Operand Scalarization: <1 x ty> -> ty.
697   bool ScalarizeVectorOperand(SDNode *N, unsigned OpNo);
698   SDValue ScalarizeVecOp_BITCAST(SDNode *N);
699   SDValue ScalarizeVecOp_UnaryOp(SDNode *N);
700   SDValue ScalarizeVecOp_UnaryOp_StrictFP(SDNode *N);
701   SDValue ScalarizeVecOp_CONCAT_VECTORS(SDNode *N);
702   SDValue ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
703   SDValue ScalarizeVecOp_VSELECT(SDNode *N);
704   SDValue ScalarizeVecOp_VSETCC(SDNode *N);
705   SDValue ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo);
706   SDValue ScalarizeVecOp_FP_ROUND(SDNode *N, unsigned OpNo);
707   SDValue ScalarizeVecOp_STRICT_FP_ROUND(SDNode *N, unsigned OpNo);
708   SDValue ScalarizeVecOp_VECREDUCE(SDNode *N);
709 
710   //===--------------------------------------------------------------------===//
711   // Vector Splitting Support: LegalizeVectorTypes.cpp
712   //===--------------------------------------------------------------------===//
713 
714   /// Given a processed vector Op which was split into vectors of half the size,
715   /// this method returns the halves. The first elements of Op coincide with the
716   /// elements of Lo; the remaining elements of Op coincide with the elements of
717   /// Hi: Op is what you would get by concatenating Lo and Hi.
718   /// For example, if Op is a v8i32 that was split into two v4i32's, then this
719   /// method returns the two v4i32's, with Lo corresponding to the first 4
720   /// elements of Op, and Hi to the last 4 elements.
721   void GetSplitVector(SDValue Op, SDValue &Lo, SDValue &Hi);
722   void SetSplitVector(SDValue Op, SDValue Lo, SDValue Hi);
723 
724   // Vector Result Splitting: <128 x ty> -> 2 x <64 x ty>.
725   void SplitVectorResult(SDNode *N, unsigned ResNo);
726   void SplitVecRes_BinOp(SDNode *N, SDValue &Lo, SDValue &Hi);
727   void SplitVecRes_TernaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
728   void SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
729   void SplitVecRes_ExtendOp(SDNode *N, SDValue &Lo, SDValue &Hi);
730   void SplitVecRes_InregOp(SDNode *N, SDValue &Lo, SDValue &Hi);
731   void SplitVecRes_ExtVecInRegOp(SDNode *N, SDValue &Lo, SDValue &Hi);
732   void SplitVecRes_StrictFPOp(SDNode *N, SDValue &Lo, SDValue &Hi);
733   void SplitVecRes_OverflowOp(SDNode *N, unsigned ResNo,
734                               SDValue &Lo, SDValue &Hi);
735 
736   void SplitVecRes_FIX(SDNode *N, SDValue &Lo, SDValue &Hi);
737 
738   void SplitVecRes_BITCAST(SDNode *N, SDValue &Lo, SDValue &Hi);
739   void SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
740   void SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo, SDValue &Hi);
741   void SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
742   void SplitVecRes_INSERT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
743   void SplitVecRes_FPOWI(SDNode *N, SDValue &Lo, SDValue &Hi);
744   void SplitVecRes_FCOPYSIGN(SDNode *N, SDValue &Lo, SDValue &Hi);
745   void SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
746   void SplitVecRes_LOAD(LoadSDNode *LD, SDValue &Lo, SDValue &Hi);
747   void SplitVecRes_MLOAD(MaskedLoadSDNode *MLD, SDValue &Lo, SDValue &Hi);
748   void SplitVecRes_MGATHER(MaskedGatherSDNode *MGT, SDValue &Lo, SDValue &Hi);
749   void SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
750   void SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi);
751   void SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N, SDValue &Lo,
752                                   SDValue &Hi);
753   void SplitVecRes_VAARG(SDNode *N, SDValue &Lo, SDValue &Hi);
754 
755   // Vector Operand Splitting: <128 x ty> -> 2 x <64 x ty>.
756   bool SplitVectorOperand(SDNode *N, unsigned OpNo);
757   SDValue SplitVecOp_VSELECT(SDNode *N, unsigned OpNo);
758   SDValue SplitVecOp_VECREDUCE(SDNode *N, unsigned OpNo);
759   SDValue SplitVecOp_UnaryOp(SDNode *N);
760   SDValue SplitVecOp_TruncateHelper(SDNode *N);
761 
762   SDValue SplitVecOp_BITCAST(SDNode *N);
763   SDValue SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N);
764   SDValue SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
765   SDValue SplitVecOp_ExtVecInRegOp(SDNode *N);
766   SDValue SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo);
767   SDValue SplitVecOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo);
768   SDValue SplitVecOp_MSCATTER(MaskedScatterSDNode *N, unsigned OpNo);
769   SDValue SplitVecOp_MGATHER(MaskedGatherSDNode *MGT, unsigned OpNo);
770   SDValue SplitVecOp_CONCAT_VECTORS(SDNode *N);
771   SDValue SplitVecOp_VSETCC(SDNode *N);
772   SDValue SplitVecOp_FP_ROUND(SDNode *N);
773   SDValue SplitVecOp_FCOPYSIGN(SDNode *N);
774 
775   //===--------------------------------------------------------------------===//
776   // Vector Widening Support: LegalizeVectorTypes.cpp
777   //===--------------------------------------------------------------------===//
778 
779   /// Given a processed vector Op which was widened into a larger vector, this
780   /// method returns the larger vector. The elements of the returned vector
781   /// consist of the elements of Op followed by elements containing rubbish.
782   /// For example, if Op is a v2i32 that was widened to a v4i32, then this
783   /// method returns a v4i32 for which the first two elements are the same as
784   /// those of Op, while the last two elements contain rubbish.
785   SDValue GetWidenedVector(SDValue Op) {
786     TableId &WidenedId = WidenedVectors[getTableId(Op)];
787     SDValue WidenedOp = getSDValue(WidenedId);
788     assert(WidenedOp.getNode() && "Operand wasn't widened?");
789     return WidenedOp;
790   }
791   void SetWidenedVector(SDValue Op, SDValue Result);
792 
793   // Widen Vector Result Promotion.
794   void WidenVectorResult(SDNode *N, unsigned ResNo);
795   SDValue WidenVecRes_MERGE_VALUES(SDNode* N, unsigned ResNo);
796   SDValue WidenVecRes_BITCAST(SDNode* N);
797   SDValue WidenVecRes_BUILD_VECTOR(SDNode* N);
798   SDValue WidenVecRes_CONCAT_VECTORS(SDNode* N);
799   SDValue WidenVecRes_EXTEND_VECTOR_INREG(SDNode* N);
800   SDValue WidenVecRes_EXTRACT_SUBVECTOR(SDNode* N);
801   SDValue WidenVecRes_INSERT_VECTOR_ELT(SDNode* N);
802   SDValue WidenVecRes_LOAD(SDNode* N);
803   SDValue WidenVecRes_MLOAD(MaskedLoadSDNode* N);
804   SDValue WidenVecRes_MGATHER(MaskedGatherSDNode* N);
805   SDValue WidenVecRes_SCALAR_TO_VECTOR(SDNode* N);
806   SDValue WidenVecRes_SELECT(SDNode* N);
807   SDValue WidenVSELECTAndMask(SDNode *N);
808   SDValue WidenVecRes_SELECT_CC(SDNode* N);
809   SDValue WidenVecRes_SETCC(SDNode* N);
810   SDValue WidenVecRes_STRICT_FSETCC(SDNode* N);
811   SDValue WidenVecRes_UNDEF(SDNode *N);
812   SDValue WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N);
813 
814   SDValue WidenVecRes_Ternary(SDNode *N);
815   SDValue WidenVecRes_Binary(SDNode *N);
816   SDValue WidenVecRes_BinaryCanTrap(SDNode *N);
817   SDValue WidenVecRes_BinaryWithExtraScalarOp(SDNode *N);
818   SDValue WidenVecRes_StrictFP(SDNode *N);
819   SDValue WidenVecRes_OverflowOp(SDNode *N, unsigned ResNo);
820   SDValue WidenVecRes_Convert(SDNode *N);
821   SDValue WidenVecRes_Convert_StrictFP(SDNode *N);
822   SDValue WidenVecRes_FCOPYSIGN(SDNode *N);
823   SDValue WidenVecRes_POWI(SDNode *N);
824   SDValue WidenVecRes_Shift(SDNode *N);
825   SDValue WidenVecRes_Unary(SDNode *N);
826   SDValue WidenVecRes_InregOp(SDNode *N);
827 
828   // Widen Vector Operand.
829   bool WidenVectorOperand(SDNode *N, unsigned OpNo);
830   SDValue WidenVecOp_BITCAST(SDNode *N);
831   SDValue WidenVecOp_CONCAT_VECTORS(SDNode *N);
832   SDValue WidenVecOp_EXTEND(SDNode *N);
833   SDValue WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
834   SDValue WidenVecOp_EXTRACT_SUBVECTOR(SDNode *N);
835   SDValue WidenVecOp_STORE(SDNode* N);
836   SDValue WidenVecOp_MSTORE(SDNode* N, unsigned OpNo);
837   SDValue WidenVecOp_MGATHER(SDNode* N, unsigned OpNo);
838   SDValue WidenVecOp_MSCATTER(SDNode* N, unsigned OpNo);
839   SDValue WidenVecOp_SETCC(SDNode* N);
840   SDValue WidenVecOp_STRICT_FSETCC(SDNode* N);
841   SDValue WidenVecOp_VSELECT(SDNode *N);
842 
843   SDValue WidenVecOp_Convert(SDNode *N);
844   SDValue WidenVecOp_FCOPYSIGN(SDNode *N);
845   SDValue WidenVecOp_VECREDUCE(SDNode *N);
846 
847   /// Helper function to generate a set of operations to perform
848   /// a vector operation for a wider type.
849   ///
850   SDValue UnrollVectorOp_StrictFP(SDNode *N, unsigned ResNE);
851 
852   //===--------------------------------------------------------------------===//
853   // Vector Widening Utilities Support: LegalizeVectorTypes.cpp
854   //===--------------------------------------------------------------------===//
855 
856   /// Helper function to generate a set of loads to load a vector with a
857   /// resulting wider type. It takes:
858   ///   LdChain: list of chains for the load to be generated.
859   ///   Ld:      load to widen
860   SDValue GenWidenVectorLoads(SmallVectorImpl<SDValue> &LdChain,
861                               LoadSDNode *LD);
862 
863   /// Helper function to generate a set of extension loads to load a vector with
864   /// a resulting wider type. It takes:
865   ///   LdChain: list of chains for the load to be generated.
866   ///   Ld:      load to widen
867   ///   ExtType: extension element type
868   SDValue GenWidenVectorExtLoads(SmallVectorImpl<SDValue> &LdChain,
869                                  LoadSDNode *LD, ISD::LoadExtType ExtType);
870 
871   /// Helper function to generate a set of stores to store a widen vector into
872   /// non-widen memory.
873   ///   StChain: list of chains for the stores we have generated
874   ///   ST:      store of a widen value
875   void GenWidenVectorStores(SmallVectorImpl<SDValue> &StChain, StoreSDNode *ST);
876 
877   /// Helper function to generate a set of stores to store a truncate widen
878   /// vector into non-widen memory.
879   ///   StChain: list of chains for the stores we have generated
880   ///   ST:      store of a widen value
881   void GenWidenVectorTruncStores(SmallVectorImpl<SDValue> &StChain,
882                                  StoreSDNode *ST);
883 
884   /// Modifies a vector input (widen or narrows) to a vector of NVT.  The
885   /// input vector must have the same element type as NVT.
886   /// When FillWithZeroes is "on" the vector will be widened with zeroes.
887   /// By default, the vector will be widened with undefined values.
888   SDValue ModifyToType(SDValue InOp, EVT NVT, bool FillWithZeroes = false);
889 
890   /// Return a mask of vector type MaskVT to replace InMask. Also adjust
891   /// MaskVT to ToMaskVT if needed with vector extension or truncation.
892   SDValue convertMask(SDValue InMask, EVT MaskVT, EVT ToMaskVT);
893 
894   //===--------------------------------------------------------------------===//
895   // Generic Splitting: LegalizeTypesGeneric.cpp
896   //===--------------------------------------------------------------------===//
897 
898   // Legalization methods which only use that the illegal type is split into two
899   // not necessarily identical types.  As such they can be used for splitting
900   // vectors and expanding integers and floats.
901 
902   void GetSplitOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
903     if (Op.getValueType().isVector())
904       GetSplitVector(Op, Lo, Hi);
905     else if (Op.getValueType().isInteger())
906       GetExpandedInteger(Op, Lo, Hi);
907     else
908       GetExpandedFloat(Op, Lo, Hi);
909   }
910 
911   /// Use ISD::EXTRACT_ELEMENT nodes to extract the low and high parts of the
912   /// given value.
913   void GetPairElements(SDValue Pair, SDValue &Lo, SDValue &Hi);
914 
915   // Generic Result Splitting.
916   void SplitRes_MERGE_VALUES(SDNode *N, unsigned ResNo,
917                              SDValue &Lo, SDValue &Hi);
918   void SplitRes_SELECT      (SDNode *N, SDValue &Lo, SDValue &Hi);
919   void SplitRes_SELECT_CC   (SDNode *N, SDValue &Lo, SDValue &Hi);
920   void SplitRes_UNDEF       (SDNode *N, SDValue &Lo, SDValue &Hi);
921 
922   void SplitVSETCC(const SDNode *N);
923 
924   //===--------------------------------------------------------------------===//
925   // Generic Expansion: LegalizeTypesGeneric.cpp
926   //===--------------------------------------------------------------------===//
927 
928   // Legalization methods which only use that the illegal type is split into two
929   // identical types of half the size, and that the Lo/Hi part is stored first
930   // in memory on little/big-endian machines, followed by the Hi/Lo part.  As
931   // such they can be used for expanding integers and floats.
932 
933   void GetExpandedOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
934     if (Op.getValueType().isInteger())
935       GetExpandedInteger(Op, Lo, Hi);
936     else
937       GetExpandedFloat(Op, Lo, Hi);
938   }
939 
940 
941   /// This function will split the integer \p Op into \p NumElements
942   /// operations of type \p EltVT and store them in \p Ops.
943   void IntegerToVector(SDValue Op, unsigned NumElements,
944                        SmallVectorImpl<SDValue> &Ops, EVT EltVT);
945 
946   // Generic Result Expansion.
947   void ExpandRes_MERGE_VALUES      (SDNode *N, unsigned ResNo,
948                                     SDValue &Lo, SDValue &Hi);
949   void ExpandRes_BITCAST           (SDNode *N, SDValue &Lo, SDValue &Hi);
950   void ExpandRes_BUILD_PAIR        (SDNode *N, SDValue &Lo, SDValue &Hi);
951   void ExpandRes_EXTRACT_ELEMENT   (SDNode *N, SDValue &Lo, SDValue &Hi);
952   void ExpandRes_EXTRACT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
953   void ExpandRes_NormalLoad        (SDNode *N, SDValue &Lo, SDValue &Hi);
954   void ExpandRes_VAARG             (SDNode *N, SDValue &Lo, SDValue &Hi);
955 
956   // Generic Operand Expansion.
957   SDValue ExpandOp_BITCAST          (SDNode *N);
958   SDValue ExpandOp_BUILD_VECTOR     (SDNode *N);
959   SDValue ExpandOp_EXTRACT_ELEMENT  (SDNode *N);
960   SDValue ExpandOp_INSERT_VECTOR_ELT(SDNode *N);
961   SDValue ExpandOp_SCALAR_TO_VECTOR (SDNode *N);
962   SDValue ExpandOp_NormalStore      (SDNode *N, unsigned OpNo);
963 };
964 
965 } // end namespace llvm.
966 
967 #endif
968