1 //===-- LegalizeTypes.h - DAG Type Legalizer class definition ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the DAGTypeLegalizer class.  This is a private interface
10 // shared between the code that implements the SelectionDAG::LegalizeTypes
11 // method.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H
16 #define LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H
17 
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/CodeGen/SelectionDAG.h"
20 #include "llvm/CodeGen/TargetLowering.h"
21 #include "llvm/Support/Compiler.h"
22 
23 namespace llvm {
24 
25 //===----------------------------------------------------------------------===//
26 /// This takes an arbitrary SelectionDAG as input and hacks on it until only
27 /// value types the target machine can handle are left. This involves promoting
28 /// small sizes to large sizes or splitting up large values into small values.
29 ///
30 class LLVM_LIBRARY_VISIBILITY DAGTypeLegalizer {
31   const TargetLowering &TLI;
32   SelectionDAG &DAG;
33 public:
34   /// This pass uses the NodeId on the SDNodes to hold information about the
35   /// state of the node. The enum has all the values.
36   enum NodeIdFlags {
37     /// All operands have been processed, so this node is ready to be handled.
38     ReadyToProcess = 0,
39 
40     /// This is a new node, not before seen, that was created in the process of
41     /// legalizing some other node.
42     NewNode = -1,
43 
44     /// This node's ID needs to be set to the number of its unprocessed
45     /// operands.
46     Unanalyzed = -2,
47 
48     /// This is a node that has already been processed.
49     Processed = -3
50 
51     // 1+ - This is a node which has this many unprocessed operands.
52   };
53 private:
54 
55   /// This is a bitvector that contains two bits for each simple value type,
56   /// where the two bits correspond to the LegalizeAction enum from
57   /// TargetLowering. This can be queried with "getTypeAction(VT)".
58   TargetLowering::ValueTypeActionImpl ValueTypeActions;
59 
60   /// Return how we should legalize values of this type.
61   TargetLowering::LegalizeTypeAction getTypeAction(EVT VT) const {
62     return TLI.getTypeAction(*DAG.getContext(), VT);
63   }
64 
65   /// Return true if this type is legal on this target.
66   bool isTypeLegal(EVT VT) const {
67     return TLI.getTypeAction(*DAG.getContext(), VT) == TargetLowering::TypeLegal;
68   }
69 
70   /// Return true if this is a simple legal type.
71   bool isSimpleLegalType(EVT VT) const {
72     return VT.isSimple() && TLI.isTypeLegal(VT);
73   }
74 
75   EVT getSetCCResultType(EVT VT) const {
76     return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
77   }
78 
79   /// Pretend all of this node's results are legal.
80   bool IgnoreNodeResults(SDNode *N) const {
81     return N->getOpcode() == ISD::TargetConstant ||
82            N->getOpcode() == ISD::Register;
83   }
84 
85   // Bijection from SDValue to unique id. As each created node gets a
86   // new id we do not need to worry about reuse expunging.  Should we
87   // run out of ids, we can do a one time expensive compactifcation.
88   typedef unsigned TableId;
89 
90   TableId NextValueId = 1;
91 
92   SmallDenseMap<SDValue, TableId, 8> ValueToIdMap;
93   SmallDenseMap<TableId, SDValue, 8> IdToValueMap;
94 
95   /// For integer nodes that are below legal width, this map indicates what
96   /// promoted value to use.
97   SmallDenseMap<TableId, TableId, 8> PromotedIntegers;
98 
99   /// For integer nodes that need to be expanded this map indicates which
100   /// operands are the expanded version of the input.
101   SmallDenseMap<TableId, std::pair<TableId, TableId>, 8> ExpandedIntegers;
102 
103   /// For floating-point nodes converted to integers of the same size, this map
104   /// indicates the converted value to use.
105   SmallDenseMap<TableId, TableId, 8> SoftenedFloats;
106 
107   /// For floating-point nodes that have a smaller precision than the smallest
108   /// supported precision, this map indicates what promoted value to use.
109   SmallDenseMap<TableId, TableId, 8> PromotedFloats;
110 
111   /// For floating-point nodes that have a smaller precision than the smallest
112   /// supported precision, this map indicates the converted value to use.
113   SmallDenseMap<TableId, TableId, 8> SoftPromotedHalfs;
114 
115   /// For float nodes that need to be expanded this map indicates which operands
116   /// are the expanded version of the input.
117   SmallDenseMap<TableId, std::pair<TableId, TableId>, 8> ExpandedFloats;
118 
119   /// For nodes that are <1 x ty>, this map indicates the scalar value of type
120   /// 'ty' to use.
121   SmallDenseMap<TableId, TableId, 8> ScalarizedVectors;
122 
123   /// For nodes that need to be split this map indicates which operands are the
124   /// expanded version of the input.
125   SmallDenseMap<TableId, std::pair<TableId, TableId>, 8> SplitVectors;
126 
127   /// For vector nodes that need to be widened, indicates the widened value to
128   /// use.
129   SmallDenseMap<TableId, TableId, 8> WidenedVectors;
130 
131   /// For values that have been replaced with another, indicates the replacement
132   /// value to use.
133   SmallDenseMap<TableId, TableId, 8> ReplacedValues;
134 
135   /// This defines a worklist of nodes to process. In order to be pushed onto
136   /// this worklist, all operands of a node must have already been processed.
137   SmallVector<SDNode*, 128> Worklist;
138 
139   TableId getTableId(SDValue V) {
140     assert(V.getNode() && "Getting TableId on SDValue()");
141 
142     auto I = ValueToIdMap.find(V);
143     if (I != ValueToIdMap.end()) {
144       // replace if there's been a shift.
145       RemapId(I->second);
146       assert(I->second && "All Ids should be nonzero");
147       return I->second;
148     }
149     // Add if it's not there.
150     ValueToIdMap.insert(std::make_pair(V, NextValueId));
151     IdToValueMap.insert(std::make_pair(NextValueId, V));
152     ++NextValueId;
153     assert(NextValueId != 0 &&
154            "Ran out of Ids. Increase id type size or add compactification");
155     return NextValueId - 1;
156   }
157 
158   const SDValue &getSDValue(TableId &Id) {
159     RemapId(Id);
160     assert(Id && "TableId should be non-zero");
161     auto I = IdToValueMap.find(Id);
162     assert(I != IdToValueMap.end() && "cannot find Id in map");
163     return I->second;
164   }
165 
166 public:
167   explicit DAGTypeLegalizer(SelectionDAG &dag)
168     : TLI(dag.getTargetLoweringInfo()), DAG(dag),
169     ValueTypeActions(TLI.getValueTypeActions()) {
170     static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE,
171                   "Too many value types for ValueTypeActions to hold!");
172   }
173 
174   /// This is the main entry point for the type legalizer.  This does a
175   /// top-down traversal of the dag, legalizing types as it goes.  Returns
176   /// "true" if it made any changes.
177   bool run();
178 
179   void NoteDeletion(SDNode *Old, SDNode *New) {
180     assert(Old != New && "node replaced with self");
181     for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) {
182       TableId NewId = getTableId(SDValue(New, i));
183       TableId OldId = getTableId(SDValue(Old, i));
184 
185       if (OldId != NewId) {
186         ReplacedValues[OldId] = NewId;
187 
188         // Delete Node from tables.  We cannot do this when OldId == NewId,
189         // because NewId can still have table references to it in
190         // ReplacedValues.
191         IdToValueMap.erase(OldId);
192         PromotedIntegers.erase(OldId);
193         ExpandedIntegers.erase(OldId);
194         SoftenedFloats.erase(OldId);
195         PromotedFloats.erase(OldId);
196         SoftPromotedHalfs.erase(OldId);
197         ExpandedFloats.erase(OldId);
198         ScalarizedVectors.erase(OldId);
199         SplitVectors.erase(OldId);
200         WidenedVectors.erase(OldId);
201       }
202 
203       ValueToIdMap.erase(SDValue(Old, i));
204     }
205   }
206 
207   SelectionDAG &getDAG() const { return DAG; }
208 
209 private:
210   SDNode *AnalyzeNewNode(SDNode *N);
211   void AnalyzeNewValue(SDValue &Val);
212   void PerformExpensiveChecks();
213   void RemapId(TableId &Id);
214   void RemapValue(SDValue &V);
215 
216   // Common routines.
217   SDValue BitConvertToInteger(SDValue Op);
218   SDValue BitConvertVectorToIntegerVector(SDValue Op);
219   SDValue CreateStackStoreLoad(SDValue Op, EVT DestVT);
220   bool CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult);
221   bool CustomWidenLowerNode(SDNode *N, EVT VT);
222 
223   /// Replace each result of the given MERGE_VALUES node with the corresponding
224   /// input operand, except for the result 'ResNo', for which the corresponding
225   /// input operand is returned.
226   SDValue DisintegrateMERGE_VALUES(SDNode *N, unsigned ResNo);
227 
228   SDValue JoinIntegers(SDValue Lo, SDValue Hi);
229 
230   std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
231 
232   SDValue PromoteTargetBoolean(SDValue Bool, EVT ValVT);
233 
234   void ReplaceValueWith(SDValue From, SDValue To);
235   void SplitInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
236   void SplitInteger(SDValue Op, EVT LoVT, EVT HiVT,
237                     SDValue &Lo, SDValue &Hi);
238 
239   //===--------------------------------------------------------------------===//
240   // Integer Promotion Support: LegalizeIntegerTypes.cpp
241   //===--------------------------------------------------------------------===//
242 
243   /// Given a processed operand Op which was promoted to a larger integer type,
244   /// this returns the promoted value. The low bits of the promoted value
245   /// corresponding to the original type are exactly equal to Op.
246   /// The extra bits contain rubbish, so the promoted value may need to be zero-
247   /// or sign-extended from the original type before it is usable (the helpers
248   /// SExtPromotedInteger and ZExtPromotedInteger can do this for you).
249   /// For example, if Op is an i16 and was promoted to an i32, then this method
250   /// returns an i32, the lower 16 bits of which coincide with Op, and the upper
251   /// 16 bits of which contain rubbish.
252   SDValue GetPromotedInteger(SDValue Op) {
253     TableId &PromotedId = PromotedIntegers[getTableId(Op)];
254     SDValue PromotedOp = getSDValue(PromotedId);
255     assert(PromotedOp.getNode() && "Operand wasn't promoted?");
256     return PromotedOp;
257   }
258   void SetPromotedInteger(SDValue Op, SDValue Result);
259 
260   /// Get a promoted operand and sign extend it to the final size.
261   SDValue SExtPromotedInteger(SDValue Op) {
262     EVT OldVT = Op.getValueType();
263     SDLoc dl(Op);
264     Op = GetPromotedInteger(Op);
265     return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Op.getValueType(), Op,
266                        DAG.getValueType(OldVT));
267   }
268 
269   /// Get a promoted operand and zero extend it to the final size.
270   SDValue ZExtPromotedInteger(SDValue Op) {
271     EVT OldVT = Op.getValueType();
272     SDLoc dl(Op);
273     Op = GetPromotedInteger(Op);
274     return DAG.getZeroExtendInReg(Op, dl, OldVT);
275   }
276 
277   // Get a promoted operand and sign or zero extend it to the final size
278   // (depending on TargetLoweringInfo::isSExtCheaperThanZExt). For a given
279   // subtarget and type, the choice of sign or zero-extension will be
280   // consistent.
281   SDValue SExtOrZExtPromotedInteger(SDValue Op) {
282     EVT OldVT = Op.getValueType();
283     SDLoc DL(Op);
284     Op = GetPromotedInteger(Op);
285     if (TLI.isSExtCheaperThanZExt(OldVT, Op.getValueType()))
286       return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), Op,
287                          DAG.getValueType(OldVT));
288     return DAG.getZeroExtendInReg(Op, DL, OldVT);
289   }
290 
291   // Promote the given operand V (vector or scalar) according to N's specific
292   // reduction kind. N must be an integer VECREDUCE_* or VP_REDUCE_*. Returns
293   // the nominal extension opcode (ISD::(ANY|ZERO|SIGN)_EXTEND) and the
294   // promoted value.
295   SDValue PromoteIntOpVectorReduction(SDNode *N, SDValue V);
296 
297   // Integer Result Promotion.
298   void PromoteIntegerResult(SDNode *N, unsigned ResNo);
299   SDValue PromoteIntRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
300   SDValue PromoteIntRes_AssertSext(SDNode *N);
301   SDValue PromoteIntRes_AssertZext(SDNode *N);
302   SDValue PromoteIntRes_Atomic0(AtomicSDNode *N);
303   SDValue PromoteIntRes_Atomic1(AtomicSDNode *N);
304   SDValue PromoteIntRes_AtomicCmpSwap(AtomicSDNode *N, unsigned ResNo);
305   SDValue PromoteIntRes_EXTRACT_SUBVECTOR(SDNode *N);
306   SDValue PromoteIntRes_INSERT_SUBVECTOR(SDNode *N);
307   SDValue PromoteIntRes_VECTOR_REVERSE(SDNode *N);
308   SDValue PromoteIntRes_VECTOR_SHUFFLE(SDNode *N);
309   SDValue PromoteIntRes_VECTOR_SPLICE(SDNode *N);
310   SDValue PromoteIntRes_BUILD_VECTOR(SDNode *N);
311   SDValue PromoteIntRes_ScalarOp(SDNode *N);
312   SDValue PromoteIntRes_STEP_VECTOR(SDNode *N);
313   SDValue PromoteIntRes_EXTEND_VECTOR_INREG(SDNode *N);
314   SDValue PromoteIntRes_INSERT_VECTOR_ELT(SDNode *N);
315   SDValue PromoteIntRes_CONCAT_VECTORS(SDNode *N);
316   SDValue PromoteIntRes_BITCAST(SDNode *N);
317   SDValue PromoteIntRes_BSWAP(SDNode *N);
318   SDValue PromoteIntRes_BITREVERSE(SDNode *N);
319   SDValue PromoteIntRes_BUILD_PAIR(SDNode *N);
320   SDValue PromoteIntRes_Constant(SDNode *N);
321   SDValue PromoteIntRes_CTLZ(SDNode *N);
322   SDValue PromoteIntRes_CTPOP_PARITY(SDNode *N);
323   SDValue PromoteIntRes_CTTZ(SDNode *N);
324   SDValue PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N);
325   SDValue PromoteIntRes_FP_TO_XINT(SDNode *N);
326   SDValue PromoteIntRes_FP_TO_XINT_SAT(SDNode *N);
327   SDValue PromoteIntRes_FP_TO_FP16(SDNode *N);
328   SDValue PromoteIntRes_FREEZE(SDNode *N);
329   SDValue PromoteIntRes_INT_EXTEND(SDNode *N);
330   SDValue PromoteIntRes_LOAD(LoadSDNode *N);
331   SDValue PromoteIntRes_MLOAD(MaskedLoadSDNode *N);
332   SDValue PromoteIntRes_MGATHER(MaskedGatherSDNode *N);
333   SDValue PromoteIntRes_Overflow(SDNode *N);
334   SDValue PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo);
335   SDValue PromoteIntRes_Select(SDNode *N);
336   SDValue PromoteIntRes_SELECT_CC(SDNode *N);
337   SDValue PromoteIntRes_SETCC(SDNode *N);
338   SDValue PromoteIntRes_SHL(SDNode *N);
339   SDValue PromoteIntRes_SimpleIntBinOp(SDNode *N);
340   SDValue PromoteIntRes_ZExtIntBinOp(SDNode *N);
341   SDValue PromoteIntRes_SExtIntBinOp(SDNode *N);
342   SDValue PromoteIntRes_UMINUMAX(SDNode *N);
343   SDValue PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N);
344   SDValue PromoteIntRes_SRA(SDNode *N);
345   SDValue PromoteIntRes_SRL(SDNode *N);
346   SDValue PromoteIntRes_TRUNCATE(SDNode *N);
347   SDValue PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo);
348   SDValue PromoteIntRes_ADDSUBCARRY(SDNode *N, unsigned ResNo);
349   SDValue PromoteIntRes_SADDSUBO_CARRY(SDNode *N, unsigned ResNo);
350   SDValue PromoteIntRes_UNDEF(SDNode *N);
351   SDValue PromoteIntRes_VAARG(SDNode *N);
352   SDValue PromoteIntRes_VSCALE(SDNode *N);
353   SDValue PromoteIntRes_XMULO(SDNode *N, unsigned ResNo);
354   SDValue PromoteIntRes_ADDSUBSHLSAT(SDNode *N);
355   SDValue PromoteIntRes_MULFIX(SDNode *N);
356   SDValue PromoteIntRes_DIVFIX(SDNode *N);
357   SDValue PromoteIntRes_FLT_ROUNDS(SDNode *N);
358   SDValue PromoteIntRes_VECREDUCE(SDNode *N);
359   SDValue PromoteIntRes_VP_REDUCE(SDNode *N);
360   SDValue PromoteIntRes_ABS(SDNode *N);
361   SDValue PromoteIntRes_Rotate(SDNode *N);
362   SDValue PromoteIntRes_FunnelShift(SDNode *N);
363   SDValue PromoteIntRes_IS_FPCLASS(SDNode *N);
364 
365   // Integer Operand Promotion.
366   bool PromoteIntegerOperand(SDNode *N, unsigned OpNo);
367   SDValue PromoteIntOp_ANY_EXTEND(SDNode *N);
368   SDValue PromoteIntOp_ATOMIC_STORE(AtomicSDNode *N);
369   SDValue PromoteIntOp_BITCAST(SDNode *N);
370   SDValue PromoteIntOp_BUILD_PAIR(SDNode *N);
371   SDValue PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo);
372   SDValue PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo);
373   SDValue PromoteIntOp_BUILD_VECTOR(SDNode *N);
374   SDValue PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N, unsigned OpNo);
375   SDValue PromoteIntOp_EXTRACT_VECTOR_ELT(SDNode *N);
376   SDValue PromoteIntOp_EXTRACT_SUBVECTOR(SDNode *N);
377   SDValue PromoteIntOp_INSERT_SUBVECTOR(SDNode *N);
378   SDValue PromoteIntOp_CONCAT_VECTORS(SDNode *N);
379   SDValue PromoteIntOp_ScalarOp(SDNode *N);
380   SDValue PromoteIntOp_SELECT(SDNode *N, unsigned OpNo);
381   SDValue PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo);
382   SDValue PromoteIntOp_SETCC(SDNode *N, unsigned OpNo);
383   SDValue PromoteIntOp_Shift(SDNode *N);
384   SDValue PromoteIntOp_FunnelShift(SDNode *N);
385   SDValue PromoteIntOp_SIGN_EXTEND(SDNode *N);
386   SDValue PromoteIntOp_SINT_TO_FP(SDNode *N);
387   SDValue PromoteIntOp_STRICT_SINT_TO_FP(SDNode *N);
388   SDValue PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo);
389   SDValue PromoteIntOp_TRUNCATE(SDNode *N);
390   SDValue PromoteIntOp_UINT_TO_FP(SDNode *N);
391   SDValue PromoteIntOp_STRICT_UINT_TO_FP(SDNode *N);
392   SDValue PromoteIntOp_ZERO_EXTEND(SDNode *N);
393   SDValue PromoteIntOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo);
394   SDValue PromoteIntOp_MLOAD(MaskedLoadSDNode *N, unsigned OpNo);
395   SDValue PromoteIntOp_MSCATTER(MaskedScatterSDNode *N, unsigned OpNo);
396   SDValue PromoteIntOp_MGATHER(MaskedGatherSDNode *N, unsigned OpNo);
397   SDValue PromoteIntOp_ADDSUBCARRY(SDNode *N, unsigned OpNo);
398   SDValue PromoteIntOp_FRAMERETURNADDR(SDNode *N);
399   SDValue PromoteIntOp_PREFETCH(SDNode *N, unsigned OpNo);
400   SDValue PromoteIntOp_FIX(SDNode *N);
401   SDValue PromoteIntOp_FPOWI(SDNode *N);
402   SDValue PromoteIntOp_VECREDUCE(SDNode *N);
403   SDValue PromoteIntOp_VP_REDUCE(SDNode *N, unsigned OpNo);
404   SDValue PromoteIntOp_SET_ROUNDING(SDNode *N);
405   SDValue PromoteIntOp_STACKMAP(SDNode *N, unsigned OpNo);
406   SDValue PromoteIntOp_PATCHPOINT(SDNode *N, unsigned OpNo);
407   SDValue PromoteIntOp_VP_STRIDED(SDNode *N, unsigned OpNo);
408 
409   void PromoteSetCCOperands(SDValue &LHS,SDValue &RHS, ISD::CondCode Code);
410 
411   //===--------------------------------------------------------------------===//
412   // Integer Expansion Support: LegalizeIntegerTypes.cpp
413   //===--------------------------------------------------------------------===//
414 
415   /// Given a processed operand Op which was expanded into two integers of half
416   /// the size, this returns the two halves. The low bits of Op are exactly
417   /// equal to the bits of Lo; the high bits exactly equal Hi.
418   /// For example, if Op is an i64 which was expanded into two i32's, then this
419   /// method returns the two i32's, with Lo being equal to the lower 32 bits of
420   /// Op, and Hi being equal to the upper 32 bits.
421   void GetExpandedInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
422   void SetExpandedInteger(SDValue Op, SDValue Lo, SDValue Hi);
423 
424   // Integer Result Expansion.
425   void ExpandIntegerResult(SDNode *N, unsigned ResNo);
426   void ExpandIntRes_ANY_EXTEND        (SDNode *N, SDValue &Lo, SDValue &Hi);
427   void ExpandIntRes_AssertSext        (SDNode *N, SDValue &Lo, SDValue &Hi);
428   void ExpandIntRes_AssertZext        (SDNode *N, SDValue &Lo, SDValue &Hi);
429   void ExpandIntRes_Constant          (SDNode *N, SDValue &Lo, SDValue &Hi);
430   void ExpandIntRes_ABS               (SDNode *N, SDValue &Lo, SDValue &Hi);
431   void ExpandIntRes_CTLZ              (SDNode *N, SDValue &Lo, SDValue &Hi);
432   void ExpandIntRes_CTPOP             (SDNode *N, SDValue &Lo, SDValue &Hi);
433   void ExpandIntRes_CTTZ              (SDNode *N, SDValue &Lo, SDValue &Hi);
434   void ExpandIntRes_LOAD          (LoadSDNode *N, SDValue &Lo, SDValue &Hi);
435   void ExpandIntRes_READCYCLECOUNTER  (SDNode *N, SDValue &Lo, SDValue &Hi);
436   void ExpandIntRes_SIGN_EXTEND       (SDNode *N, SDValue &Lo, SDValue &Hi);
437   void ExpandIntRes_SIGN_EXTEND_INREG (SDNode *N, SDValue &Lo, SDValue &Hi);
438   void ExpandIntRes_TRUNCATE          (SDNode *N, SDValue &Lo, SDValue &Hi);
439   void ExpandIntRes_ZERO_EXTEND       (SDNode *N, SDValue &Lo, SDValue &Hi);
440   void ExpandIntRes_FLT_ROUNDS        (SDNode *N, SDValue &Lo, SDValue &Hi);
441   void ExpandIntRes_FP_TO_SINT        (SDNode *N, SDValue &Lo, SDValue &Hi);
442   void ExpandIntRes_FP_TO_UINT        (SDNode *N, SDValue &Lo, SDValue &Hi);
443   void ExpandIntRes_FP_TO_XINT_SAT    (SDNode *N, SDValue &Lo, SDValue &Hi);
444   void ExpandIntRes_LLROUND_LLRINT    (SDNode *N, SDValue &Lo, SDValue &Hi);
445 
446   void ExpandIntRes_Logical           (SDNode *N, SDValue &Lo, SDValue &Hi);
447   void ExpandIntRes_ADDSUB            (SDNode *N, SDValue &Lo, SDValue &Hi);
448   void ExpandIntRes_ADDSUBC           (SDNode *N, SDValue &Lo, SDValue &Hi);
449   void ExpandIntRes_ADDSUBE           (SDNode *N, SDValue &Lo, SDValue &Hi);
450   void ExpandIntRes_ADDSUBCARRY       (SDNode *N, SDValue &Lo, SDValue &Hi);
451   void ExpandIntRes_SADDSUBO_CARRY    (SDNode *N, SDValue &Lo, SDValue &Hi);
452   void ExpandIntRes_BITREVERSE        (SDNode *N, SDValue &Lo, SDValue &Hi);
453   void ExpandIntRes_BSWAP             (SDNode *N, SDValue &Lo, SDValue &Hi);
454   void ExpandIntRes_PARITY            (SDNode *N, SDValue &Lo, SDValue &Hi);
455   void ExpandIntRes_MUL               (SDNode *N, SDValue &Lo, SDValue &Hi);
456   void ExpandIntRes_SDIV              (SDNode *N, SDValue &Lo, SDValue &Hi);
457   void ExpandIntRes_SREM              (SDNode *N, SDValue &Lo, SDValue &Hi);
458   void ExpandIntRes_UDIV              (SDNode *N, SDValue &Lo, SDValue &Hi);
459   void ExpandIntRes_UREM              (SDNode *N, SDValue &Lo, SDValue &Hi);
460   void ExpandIntRes_Shift             (SDNode *N, SDValue &Lo, SDValue &Hi);
461 
462   void ExpandIntRes_MINMAX            (SDNode *N, SDValue &Lo, SDValue &Hi);
463 
464   void ExpandIntRes_SADDSUBO          (SDNode *N, SDValue &Lo, SDValue &Hi);
465   void ExpandIntRes_UADDSUBO          (SDNode *N, SDValue &Lo, SDValue &Hi);
466   void ExpandIntRes_XMULO             (SDNode *N, SDValue &Lo, SDValue &Hi);
467   void ExpandIntRes_ADDSUBSAT         (SDNode *N, SDValue &Lo, SDValue &Hi);
468   void ExpandIntRes_SHLSAT            (SDNode *N, SDValue &Lo, SDValue &Hi);
469   void ExpandIntRes_MULFIX            (SDNode *N, SDValue &Lo, SDValue &Hi);
470   void ExpandIntRes_DIVFIX            (SDNode *N, SDValue &Lo, SDValue &Hi);
471 
472   void ExpandIntRes_ATOMIC_LOAD       (SDNode *N, SDValue &Lo, SDValue &Hi);
473   void ExpandIntRes_VECREDUCE         (SDNode *N, SDValue &Lo, SDValue &Hi);
474 
475   void ExpandIntRes_Rotate            (SDNode *N, SDValue &Lo, SDValue &Hi);
476   void ExpandIntRes_FunnelShift       (SDNode *N, SDValue &Lo, SDValue &Hi);
477 
478   void ExpandIntRes_VSCALE            (SDNode *N, SDValue &Lo, SDValue &Hi);
479 
480   void ExpandShiftByConstant(SDNode *N, const APInt &Amt,
481                              SDValue &Lo, SDValue &Hi);
482   bool ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
483   bool ExpandShiftWithUnknownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
484 
485   // Integer Operand Expansion.
486   bool ExpandIntegerOperand(SDNode *N, unsigned OpNo);
487   SDValue ExpandIntOp_BR_CC(SDNode *N);
488   SDValue ExpandIntOp_SELECT_CC(SDNode *N);
489   SDValue ExpandIntOp_SETCC(SDNode *N);
490   SDValue ExpandIntOp_SETCCCARRY(SDNode *N);
491   SDValue ExpandIntOp_Shift(SDNode *N);
492   SDValue ExpandIntOp_SINT_TO_FP(SDNode *N);
493   SDValue ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo);
494   SDValue ExpandIntOp_TRUNCATE(SDNode *N);
495   SDValue ExpandIntOp_UINT_TO_FP(SDNode *N);
496   SDValue ExpandIntOp_RETURNADDR(SDNode *N);
497   SDValue ExpandIntOp_ATOMIC_STORE(SDNode *N);
498   SDValue ExpandIntOp_SPLAT_VECTOR(SDNode *N);
499   SDValue ExpandIntOp_STACKMAP(SDNode *N, unsigned OpNo);
500   SDValue ExpandIntOp_PATCHPOINT(SDNode *N, unsigned OpNo);
501   SDValue ExpandIntOp_VP_STRIDED(SDNode *N, unsigned OpNo);
502 
503   void IntegerExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
504                                   ISD::CondCode &CCCode, const SDLoc &dl);
505 
506   //===--------------------------------------------------------------------===//
507   // Float to Integer Conversion Support: LegalizeFloatTypes.cpp
508   //===--------------------------------------------------------------------===//
509 
510   /// GetSoftenedFloat - Given a processed operand Op which was converted to an
511   /// integer of the same size, this returns the integer.  The integer contains
512   /// exactly the same bits as Op - only the type changed.  For example, if Op
513   /// is an f32 which was softened to an i32, then this method returns an i32,
514   /// the bits of which coincide with those of Op
515   SDValue GetSoftenedFloat(SDValue Op) {
516     TableId Id = getTableId(Op);
517     auto Iter = SoftenedFloats.find(Id);
518     if (Iter == SoftenedFloats.end()) {
519       assert(isSimpleLegalType(Op.getValueType()) &&
520              "Operand wasn't converted to integer?");
521       return Op;
522     }
523     SDValue SoftenedOp = getSDValue(Iter->second);
524     assert(SoftenedOp.getNode() && "Unconverted op in SoftenedFloats?");
525     return SoftenedOp;
526   }
527   void SetSoftenedFloat(SDValue Op, SDValue Result);
528 
529   // Convert Float Results to Integer.
530   void SoftenFloatResult(SDNode *N, unsigned ResNo);
531   SDValue SoftenFloatRes_Unary(SDNode *N, RTLIB::Libcall LC);
532   SDValue SoftenFloatRes_Binary(SDNode *N, RTLIB::Libcall LC);
533   SDValue SoftenFloatRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
534   SDValue SoftenFloatRes_ARITH_FENCE(SDNode *N);
535   SDValue SoftenFloatRes_BITCAST(SDNode *N);
536   SDValue SoftenFloatRes_BUILD_PAIR(SDNode *N);
537   SDValue SoftenFloatRes_ConstantFP(SDNode *N);
538   SDValue SoftenFloatRes_EXTRACT_VECTOR_ELT(SDNode *N, unsigned ResNo);
539   SDValue SoftenFloatRes_FABS(SDNode *N);
540   SDValue SoftenFloatRes_FMINNUM(SDNode *N);
541   SDValue SoftenFloatRes_FMAXNUM(SDNode *N);
542   SDValue SoftenFloatRes_FADD(SDNode *N);
543   SDValue SoftenFloatRes_FCBRT(SDNode *N);
544   SDValue SoftenFloatRes_FCEIL(SDNode *N);
545   SDValue SoftenFloatRes_FCOPYSIGN(SDNode *N);
546   SDValue SoftenFloatRes_FCOS(SDNode *N);
547   SDValue SoftenFloatRes_FDIV(SDNode *N);
548   SDValue SoftenFloatRes_FEXP(SDNode *N);
549   SDValue SoftenFloatRes_FEXP2(SDNode *N);
550   SDValue SoftenFloatRes_FFLOOR(SDNode *N);
551   SDValue SoftenFloatRes_FLOG(SDNode *N);
552   SDValue SoftenFloatRes_FLOG2(SDNode *N);
553   SDValue SoftenFloatRes_FLOG10(SDNode *N);
554   SDValue SoftenFloatRes_FMA(SDNode *N);
555   SDValue SoftenFloatRes_FMUL(SDNode *N);
556   SDValue SoftenFloatRes_FNEARBYINT(SDNode *N);
557   SDValue SoftenFloatRes_FNEG(SDNode *N);
558   SDValue SoftenFloatRes_FP_EXTEND(SDNode *N);
559   SDValue SoftenFloatRes_FP16_TO_FP(SDNode *N);
560   SDValue SoftenFloatRes_FP_ROUND(SDNode *N);
561   SDValue SoftenFloatRes_FPOW(SDNode *N);
562   SDValue SoftenFloatRes_FPOWI(SDNode *N);
563   SDValue SoftenFloatRes_FREEZE(SDNode *N);
564   SDValue SoftenFloatRes_FREM(SDNode *N);
565   SDValue SoftenFloatRes_FRINT(SDNode *N);
566   SDValue SoftenFloatRes_FROUND(SDNode *N);
567   SDValue SoftenFloatRes_FROUNDEVEN(SDNode *N);
568   SDValue SoftenFloatRes_FSIN(SDNode *N);
569   SDValue SoftenFloatRes_FSQRT(SDNode *N);
570   SDValue SoftenFloatRes_FSUB(SDNode *N);
571   SDValue SoftenFloatRes_FTRUNC(SDNode *N);
572   SDValue SoftenFloatRes_LOAD(SDNode *N);
573   SDValue SoftenFloatRes_SELECT(SDNode *N);
574   SDValue SoftenFloatRes_SELECT_CC(SDNode *N);
575   SDValue SoftenFloatRes_UNDEF(SDNode *N);
576   SDValue SoftenFloatRes_VAARG(SDNode *N);
577   SDValue SoftenFloatRes_XINT_TO_FP(SDNode *N);
578   SDValue SoftenFloatRes_VECREDUCE(SDNode *N);
579   SDValue SoftenFloatRes_VECREDUCE_SEQ(SDNode *N);
580 
581   // Convert Float Operand to Integer.
582   bool SoftenFloatOperand(SDNode *N, unsigned OpNo);
583   SDValue SoftenFloatOp_Unary(SDNode *N, RTLIB::Libcall LC);
584   SDValue SoftenFloatOp_BITCAST(SDNode *N);
585   SDValue SoftenFloatOp_BR_CC(SDNode *N);
586   SDValue SoftenFloatOp_FP_ROUND(SDNode *N);
587   SDValue SoftenFloatOp_FP_TO_XINT(SDNode *N);
588   SDValue SoftenFloatOp_FP_TO_XINT_SAT(SDNode *N);
589   SDValue SoftenFloatOp_LROUND(SDNode *N);
590   SDValue SoftenFloatOp_LLROUND(SDNode *N);
591   SDValue SoftenFloatOp_LRINT(SDNode *N);
592   SDValue SoftenFloatOp_LLRINT(SDNode *N);
593   SDValue SoftenFloatOp_SELECT_CC(SDNode *N);
594   SDValue SoftenFloatOp_SETCC(SDNode *N);
595   SDValue SoftenFloatOp_STORE(SDNode *N, unsigned OpNo);
596   SDValue SoftenFloatOp_FCOPYSIGN(SDNode *N);
597 
598   //===--------------------------------------------------------------------===//
599   // Float Expansion Support: LegalizeFloatTypes.cpp
600   //===--------------------------------------------------------------------===//
601 
602   /// Given a processed operand Op which was expanded into two floating-point
603   /// values of half the size, this returns the two halves.
604   /// The low bits of Op are exactly equal to the bits of Lo; the high bits
605   /// exactly equal Hi.  For example, if Op is a ppcf128 which was expanded
606   /// into two f64's, then this method returns the two f64's, with Lo being
607   /// equal to the lower 64 bits of Op, and Hi to the upper 64 bits.
608   void GetExpandedFloat(SDValue Op, SDValue &Lo, SDValue &Hi);
609   void SetExpandedFloat(SDValue Op, SDValue Lo, SDValue Hi);
610 
611   // Float Result Expansion.
612   void ExpandFloatResult(SDNode *N, unsigned ResNo);
613   void ExpandFloatRes_ConstantFP(SDNode *N, SDValue &Lo, SDValue &Hi);
614   void ExpandFloatRes_Unary(SDNode *N, RTLIB::Libcall LC,
615                             SDValue &Lo, SDValue &Hi);
616   void ExpandFloatRes_Binary(SDNode *N, RTLIB::Libcall LC,
617                              SDValue &Lo, SDValue &Hi);
618   void ExpandFloatRes_FABS      (SDNode *N, SDValue &Lo, SDValue &Hi);
619   void ExpandFloatRes_FMINNUM   (SDNode *N, SDValue &Lo, SDValue &Hi);
620   void ExpandFloatRes_FMAXNUM   (SDNode *N, SDValue &Lo, SDValue &Hi);
621   void ExpandFloatRes_FADD      (SDNode *N, SDValue &Lo, SDValue &Hi);
622   void ExpandFloatRes_FCBRT     (SDNode *N, SDValue &Lo, SDValue &Hi);
623   void ExpandFloatRes_FCEIL     (SDNode *N, SDValue &Lo, SDValue &Hi);
624   void ExpandFloatRes_FCOPYSIGN (SDNode *N, SDValue &Lo, SDValue &Hi);
625   void ExpandFloatRes_FCOS      (SDNode *N, SDValue &Lo, SDValue &Hi);
626   void ExpandFloatRes_FDIV      (SDNode *N, SDValue &Lo, SDValue &Hi);
627   void ExpandFloatRes_FEXP      (SDNode *N, SDValue &Lo, SDValue &Hi);
628   void ExpandFloatRes_FEXP2     (SDNode *N, SDValue &Lo, SDValue &Hi);
629   void ExpandFloatRes_FFLOOR    (SDNode *N, SDValue &Lo, SDValue &Hi);
630   void ExpandFloatRes_FLOG      (SDNode *N, SDValue &Lo, SDValue &Hi);
631   void ExpandFloatRes_FLOG2     (SDNode *N, SDValue &Lo, SDValue &Hi);
632   void ExpandFloatRes_FLOG10    (SDNode *N, SDValue &Lo, SDValue &Hi);
633   void ExpandFloatRes_FMA       (SDNode *N, SDValue &Lo, SDValue &Hi);
634   void ExpandFloatRes_FMUL      (SDNode *N, SDValue &Lo, SDValue &Hi);
635   void ExpandFloatRes_FNEARBYINT(SDNode *N, SDValue &Lo, SDValue &Hi);
636   void ExpandFloatRes_FNEG      (SDNode *N, SDValue &Lo, SDValue &Hi);
637   void ExpandFloatRes_FP_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
638   void ExpandFloatRes_FPOW      (SDNode *N, SDValue &Lo, SDValue &Hi);
639   void ExpandFloatRes_FPOWI     (SDNode *N, SDValue &Lo, SDValue &Hi);
640   void ExpandFloatRes_FREEZE    (SDNode *N, SDValue &Lo, SDValue &Hi);
641   void ExpandFloatRes_FREM      (SDNode *N, SDValue &Lo, SDValue &Hi);
642   void ExpandFloatRes_FRINT     (SDNode *N, SDValue &Lo, SDValue &Hi);
643   void ExpandFloatRes_FROUND    (SDNode *N, SDValue &Lo, SDValue &Hi);
644   void ExpandFloatRes_FROUNDEVEN(SDNode *N, SDValue &Lo, SDValue &Hi);
645   void ExpandFloatRes_FSIN      (SDNode *N, SDValue &Lo, SDValue &Hi);
646   void ExpandFloatRes_FSQRT     (SDNode *N, SDValue &Lo, SDValue &Hi);
647   void ExpandFloatRes_FSUB      (SDNode *N, SDValue &Lo, SDValue &Hi);
648   void ExpandFloatRes_FTRUNC    (SDNode *N, SDValue &Lo, SDValue &Hi);
649   void ExpandFloatRes_LOAD      (SDNode *N, SDValue &Lo, SDValue &Hi);
650   void ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo, SDValue &Hi);
651 
652   // Float Operand Expansion.
653   bool ExpandFloatOperand(SDNode *N, unsigned OpNo);
654   SDValue ExpandFloatOp_BR_CC(SDNode *N);
655   SDValue ExpandFloatOp_FCOPYSIGN(SDNode *N);
656   SDValue ExpandFloatOp_FP_ROUND(SDNode *N);
657   SDValue ExpandFloatOp_FP_TO_XINT(SDNode *N);
658   SDValue ExpandFloatOp_LROUND(SDNode *N);
659   SDValue ExpandFloatOp_LLROUND(SDNode *N);
660   SDValue ExpandFloatOp_LRINT(SDNode *N);
661   SDValue ExpandFloatOp_LLRINT(SDNode *N);
662   SDValue ExpandFloatOp_SELECT_CC(SDNode *N);
663   SDValue ExpandFloatOp_SETCC(SDNode *N);
664   SDValue ExpandFloatOp_STORE(SDNode *N, unsigned OpNo);
665 
666   void FloatExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
667                                 ISD::CondCode &CCCode, const SDLoc &dl,
668                                 SDValue &Chain, bool IsSignaling = false);
669 
670   //===--------------------------------------------------------------------===//
671   // Float promotion support: LegalizeFloatTypes.cpp
672   //===--------------------------------------------------------------------===//
673 
674   SDValue GetPromotedFloat(SDValue Op) {
675     TableId &PromotedId = PromotedFloats[getTableId(Op)];
676     SDValue PromotedOp = getSDValue(PromotedId);
677     assert(PromotedOp.getNode() && "Operand wasn't promoted?");
678     return PromotedOp;
679   }
680   void SetPromotedFloat(SDValue Op, SDValue Result);
681 
682   void PromoteFloatResult(SDNode *N, unsigned ResNo);
683   SDValue PromoteFloatRes_BITCAST(SDNode *N);
684   SDValue PromoteFloatRes_BinOp(SDNode *N);
685   SDValue PromoteFloatRes_ConstantFP(SDNode *N);
686   SDValue PromoteFloatRes_EXTRACT_VECTOR_ELT(SDNode *N);
687   SDValue PromoteFloatRes_FCOPYSIGN(SDNode *N);
688   SDValue PromoteFloatRes_FMAD(SDNode *N);
689   SDValue PromoteFloatRes_FPOWI(SDNode *N);
690   SDValue PromoteFloatRes_FP_ROUND(SDNode *N);
691   SDValue PromoteFloatRes_LOAD(SDNode *N);
692   SDValue PromoteFloatRes_SELECT(SDNode *N);
693   SDValue PromoteFloatRes_SELECT_CC(SDNode *N);
694   SDValue PromoteFloatRes_UnaryOp(SDNode *N);
695   SDValue PromoteFloatRes_UNDEF(SDNode *N);
696   SDValue BitcastToInt_ATOMIC_SWAP(SDNode *N);
697   SDValue PromoteFloatRes_XINT_TO_FP(SDNode *N);
698   SDValue PromoteFloatRes_VECREDUCE(SDNode *N);
699   SDValue PromoteFloatRes_VECREDUCE_SEQ(SDNode *N);
700 
701   bool PromoteFloatOperand(SDNode *N, unsigned OpNo);
702   SDValue PromoteFloatOp_BITCAST(SDNode *N, unsigned OpNo);
703   SDValue PromoteFloatOp_FCOPYSIGN(SDNode *N, unsigned OpNo);
704   SDValue PromoteFloatOp_FP_EXTEND(SDNode *N, unsigned OpNo);
705   SDValue PromoteFloatOp_FP_TO_XINT(SDNode *N, unsigned OpNo);
706   SDValue PromoteFloatOp_FP_TO_XINT_SAT(SDNode *N, unsigned OpNo);
707   SDValue PromoteFloatOp_STORE(SDNode *N, unsigned OpNo);
708   SDValue PromoteFloatOp_SELECT_CC(SDNode *N, unsigned OpNo);
709   SDValue PromoteFloatOp_SETCC(SDNode *N, unsigned OpNo);
710 
711   //===--------------------------------------------------------------------===//
712   // Half soft promotion support: LegalizeFloatTypes.cpp
713   //===--------------------------------------------------------------------===//
714 
715   SDValue GetSoftPromotedHalf(SDValue Op) {
716     TableId &PromotedId = SoftPromotedHalfs[getTableId(Op)];
717     SDValue PromotedOp = getSDValue(PromotedId);
718     assert(PromotedOp.getNode() && "Operand wasn't promoted?");
719     return PromotedOp;
720   }
721   void SetSoftPromotedHalf(SDValue Op, SDValue Result);
722 
723   void SoftPromoteHalfResult(SDNode *N, unsigned ResNo);
724   SDValue SoftPromoteHalfRes_BinOp(SDNode *N);
725   SDValue SoftPromoteHalfRes_BITCAST(SDNode *N);
726   SDValue SoftPromoteHalfRes_ConstantFP(SDNode *N);
727   SDValue SoftPromoteHalfRes_EXTRACT_VECTOR_ELT(SDNode *N);
728   SDValue SoftPromoteHalfRes_FCOPYSIGN(SDNode *N);
729   SDValue SoftPromoteHalfRes_FMAD(SDNode *N);
730   SDValue SoftPromoteHalfRes_FPOWI(SDNode *N);
731   SDValue SoftPromoteHalfRes_FP_ROUND(SDNode *N);
732   SDValue SoftPromoteHalfRes_LOAD(SDNode *N);
733   SDValue SoftPromoteHalfRes_SELECT(SDNode *N);
734   SDValue SoftPromoteHalfRes_SELECT_CC(SDNode *N);
735   SDValue SoftPromoteHalfRes_UnaryOp(SDNode *N);
736   SDValue SoftPromoteHalfRes_XINT_TO_FP(SDNode *N);
737   SDValue SoftPromoteHalfRes_UNDEF(SDNode *N);
738   SDValue SoftPromoteHalfRes_VECREDUCE(SDNode *N);
739   SDValue SoftPromoteHalfRes_VECREDUCE_SEQ(SDNode *N);
740 
741   bool SoftPromoteHalfOperand(SDNode *N, unsigned OpNo);
742   SDValue SoftPromoteHalfOp_BITCAST(SDNode *N);
743   SDValue SoftPromoteHalfOp_FCOPYSIGN(SDNode *N, unsigned OpNo);
744   SDValue SoftPromoteHalfOp_FP_EXTEND(SDNode *N);
745   SDValue SoftPromoteHalfOp_FP_TO_XINT(SDNode *N);
746   SDValue SoftPromoteHalfOp_FP_TO_XINT_SAT(SDNode *N);
747   SDValue SoftPromoteHalfOp_SETCC(SDNode *N);
748   SDValue SoftPromoteHalfOp_SELECT_CC(SDNode *N, unsigned OpNo);
749   SDValue SoftPromoteHalfOp_STORE(SDNode *N, unsigned OpNo);
750   SDValue SoftPromoteHalfOp_STACKMAP(SDNode *N, unsigned OpNo);
751   SDValue SoftPromoteHalfOp_PATCHPOINT(SDNode *N, unsigned OpNo);
752 
753   //===--------------------------------------------------------------------===//
754   // Scalarization Support: LegalizeVectorTypes.cpp
755   //===--------------------------------------------------------------------===//
756 
757   /// Given a processed one-element vector Op which was scalarized to its
758   /// element type, this returns the element. For example, if Op is a v1i32,
759   /// Op = < i32 val >, this method returns val, an i32.
760   SDValue GetScalarizedVector(SDValue Op) {
761     TableId &ScalarizedId = ScalarizedVectors[getTableId(Op)];
762     SDValue ScalarizedOp = getSDValue(ScalarizedId);
763     assert(ScalarizedOp.getNode() && "Operand wasn't scalarized?");
764     return ScalarizedOp;
765   }
766   void SetScalarizedVector(SDValue Op, SDValue Result);
767 
768   // Vector Result Scalarization: <1 x ty> -> ty.
769   void ScalarizeVectorResult(SDNode *N, unsigned ResNo);
770   SDValue ScalarizeVecRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
771   SDValue ScalarizeVecRes_BinOp(SDNode *N);
772   SDValue ScalarizeVecRes_TernaryOp(SDNode *N);
773   SDValue ScalarizeVecRes_UnaryOp(SDNode *N);
774   SDValue ScalarizeVecRes_StrictFPOp(SDNode *N);
775   SDValue ScalarizeVecRes_OverflowOp(SDNode *N, unsigned ResNo);
776   SDValue ScalarizeVecRes_InregOp(SDNode *N);
777   SDValue ScalarizeVecRes_VecInregOp(SDNode *N);
778 
779   SDValue ScalarizeVecRes_BITCAST(SDNode *N);
780   SDValue ScalarizeVecRes_BUILD_VECTOR(SDNode *N);
781   SDValue ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N);
782   SDValue ScalarizeVecRes_FP_ROUND(SDNode *N);
783   SDValue ScalarizeVecRes_FPOWI(SDNode *N);
784   SDValue ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N);
785   SDValue ScalarizeVecRes_LOAD(LoadSDNode *N);
786   SDValue ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N);
787   SDValue ScalarizeVecRes_VSELECT(SDNode *N);
788   SDValue ScalarizeVecRes_SELECT(SDNode *N);
789   SDValue ScalarizeVecRes_SELECT_CC(SDNode *N);
790   SDValue ScalarizeVecRes_SETCC(SDNode *N);
791   SDValue ScalarizeVecRes_UNDEF(SDNode *N);
792   SDValue ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N);
793   SDValue ScalarizeVecRes_FP_TO_XINT_SAT(SDNode *N);
794   SDValue ScalarizeVecRes_IS_FPCLASS(SDNode *N);
795 
796   SDValue ScalarizeVecRes_FIX(SDNode *N);
797 
798   // Vector Operand Scalarization: <1 x ty> -> ty.
799   bool ScalarizeVectorOperand(SDNode *N, unsigned OpNo);
800   SDValue ScalarizeVecOp_BITCAST(SDNode *N);
801   SDValue ScalarizeVecOp_UnaryOp(SDNode *N);
802   SDValue ScalarizeVecOp_UnaryOp_StrictFP(SDNode *N);
803   SDValue ScalarizeVecOp_CONCAT_VECTORS(SDNode *N);
804   SDValue ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
805   SDValue ScalarizeVecOp_VSELECT(SDNode *N);
806   SDValue ScalarizeVecOp_VSETCC(SDNode *N);
807   SDValue ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo);
808   SDValue ScalarizeVecOp_FP_ROUND(SDNode *N, unsigned OpNo);
809   SDValue ScalarizeVecOp_STRICT_FP_ROUND(SDNode *N, unsigned OpNo);
810   SDValue ScalarizeVecOp_FP_EXTEND(SDNode *N);
811   SDValue ScalarizeVecOp_STRICT_FP_EXTEND(SDNode *N);
812   SDValue ScalarizeVecOp_VECREDUCE(SDNode *N);
813   SDValue ScalarizeVecOp_VECREDUCE_SEQ(SDNode *N);
814 
815   //===--------------------------------------------------------------------===//
816   // Vector Splitting Support: LegalizeVectorTypes.cpp
817   //===--------------------------------------------------------------------===//
818 
819   /// Given a processed vector Op which was split into vectors of half the size,
820   /// this method returns the halves. The first elements of Op coincide with the
821   /// elements of Lo; the remaining elements of Op coincide with the elements of
822   /// Hi: Op is what you would get by concatenating Lo and Hi.
823   /// For example, if Op is a v8i32 that was split into two v4i32's, then this
824   /// method returns the two v4i32's, with Lo corresponding to the first 4
825   /// elements of Op, and Hi to the last 4 elements.
826   void GetSplitVector(SDValue Op, SDValue &Lo, SDValue &Hi);
827   void SetSplitVector(SDValue Op, SDValue Lo, SDValue Hi);
828 
829   /// Split mask operator of a VP intrinsic.
830   std::pair<SDValue, SDValue> SplitMask(SDValue Mask);
831 
832   /// Split mask operator of a VP intrinsic in a given location.
833   std::pair<SDValue, SDValue> SplitMask(SDValue Mask, const SDLoc &DL);
834 
835   // Helper function for incrementing the pointer when splitting
836   // memory operations
837   void IncrementPointer(MemSDNode *N, EVT MemVT, MachinePointerInfo &MPI,
838                         SDValue &Ptr, uint64_t *ScaledOffset = nullptr);
839 
840   // Vector Result Splitting: <128 x ty> -> 2 x <64 x ty>.
841   void SplitVectorResult(SDNode *N, unsigned ResNo);
842   void SplitVecRes_BinOp(SDNode *N, SDValue &Lo, SDValue &Hi);
843   void SplitVecRes_TernaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
844   void SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
845   void SplitVecRes_ExtendOp(SDNode *N, SDValue &Lo, SDValue &Hi);
846   void SplitVecRes_InregOp(SDNode *N, SDValue &Lo, SDValue &Hi);
847   void SplitVecRes_ExtVecInRegOp(SDNode *N, SDValue &Lo, SDValue &Hi);
848   void SplitVecRes_StrictFPOp(SDNode *N, SDValue &Lo, SDValue &Hi);
849   void SplitVecRes_OverflowOp(SDNode *N, unsigned ResNo,
850                               SDValue &Lo, SDValue &Hi);
851 
852   void SplitVecRes_FIX(SDNode *N, SDValue &Lo, SDValue &Hi);
853 
854   void SplitVecRes_BITCAST(SDNode *N, SDValue &Lo, SDValue &Hi);
855   void SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
856   void SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo, SDValue &Hi);
857   void SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
858   void SplitVecRes_INSERT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
859   void SplitVecRes_FPOWI(SDNode *N, SDValue &Lo, SDValue &Hi);
860   void SplitVecRes_FCOPYSIGN(SDNode *N, SDValue &Lo, SDValue &Hi);
861   void SplitVecRes_IS_FPCLASS(SDNode *N, SDValue &Lo, SDValue &Hi);
862   void SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
863   void SplitVecRes_LOAD(LoadSDNode *LD, SDValue &Lo, SDValue &Hi);
864   void SplitVecRes_VP_LOAD(VPLoadSDNode *LD, SDValue &Lo, SDValue &Hi);
865   void SplitVecRes_MLOAD(MaskedLoadSDNode *MLD, SDValue &Lo, SDValue &Hi);
866   void SplitVecRes_Gather(MemSDNode *VPGT, SDValue &Lo, SDValue &Hi,
867                           bool SplitSETCC = false);
868   void SplitVecRes_ScalarOp(SDNode *N, SDValue &Lo, SDValue &Hi);
869   void SplitVecRes_STEP_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
870   void SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi);
871   void SplitVecRes_VECTOR_REVERSE(SDNode *N, SDValue &Lo, SDValue &Hi);
872   void SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N, SDValue &Lo,
873                                   SDValue &Hi);
874   void SplitVecRes_VECTOR_SPLICE(SDNode *N, SDValue &Lo, SDValue &Hi);
875   void SplitVecRes_VAARG(SDNode *N, SDValue &Lo, SDValue &Hi);
876   void SplitVecRes_FP_TO_XINT_SAT(SDNode *N, SDValue &Lo, SDValue &Hi);
877 
878   // Vector Operand Splitting: <128 x ty> -> 2 x <64 x ty>.
879   bool SplitVectorOperand(SDNode *N, unsigned OpNo);
880   SDValue SplitVecOp_VSELECT(SDNode *N, unsigned OpNo);
881   SDValue SplitVecOp_VECREDUCE(SDNode *N, unsigned OpNo);
882   SDValue SplitVecOp_VECREDUCE_SEQ(SDNode *N);
883   SDValue SplitVecOp_VP_REDUCE(SDNode *N, unsigned OpNo);
884   SDValue SplitVecOp_UnaryOp(SDNode *N);
885   SDValue SplitVecOp_TruncateHelper(SDNode *N);
886 
887   SDValue SplitVecOp_BITCAST(SDNode *N);
888   SDValue SplitVecOp_INSERT_SUBVECTOR(SDNode *N, unsigned OpNo);
889   SDValue SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N);
890   SDValue SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
891   SDValue SplitVecOp_ExtVecInRegOp(SDNode *N);
892   SDValue SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo);
893   SDValue SplitVecOp_VP_STORE(VPStoreSDNode *N, unsigned OpNo);
894   SDValue SplitVecOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo);
895   SDValue SplitVecOp_Scatter(MemSDNode *N, unsigned OpNo);
896   SDValue SplitVecOp_Gather(MemSDNode *MGT, unsigned OpNo);
897   SDValue SplitVecOp_CONCAT_VECTORS(SDNode *N);
898   SDValue SplitVecOp_VSETCC(SDNode *N);
899   SDValue SplitVecOp_FP_ROUND(SDNode *N);
900   SDValue SplitVecOp_FCOPYSIGN(SDNode *N);
901   SDValue SplitVecOp_FP_TO_XINT_SAT(SDNode *N);
902 
903   //===--------------------------------------------------------------------===//
904   // Vector Widening Support: LegalizeVectorTypes.cpp
905   //===--------------------------------------------------------------------===//
906 
907   /// Given a processed vector Op which was widened into a larger vector, this
908   /// method returns the larger vector. The elements of the returned vector
909   /// consist of the elements of Op followed by elements containing rubbish.
910   /// For example, if Op is a v2i32 that was widened to a v4i32, then this
911   /// method returns a v4i32 for which the first two elements are the same as
912   /// those of Op, while the last two elements contain rubbish.
913   SDValue GetWidenedVector(SDValue Op) {
914     TableId &WidenedId = WidenedVectors[getTableId(Op)];
915     SDValue WidenedOp = getSDValue(WidenedId);
916     assert(WidenedOp.getNode() && "Operand wasn't widened?");
917     return WidenedOp;
918   }
919   void SetWidenedVector(SDValue Op, SDValue Result);
920 
921   /// Given a mask Mask, returns the larger vector into which Mask was widened.
922   SDValue GetWidenedMask(SDValue Mask, ElementCount EC) {
923     // For VP operations, we must also widen the mask. Note that the mask type
924     // may not actually need widening, leading it be split along with the VP
925     // operation.
926     // FIXME: This could lead to an infinite split/widen loop. We only handle
927     // the case where the mask needs widening to an identically-sized type as
928     // the vector inputs.
929     assert(getTypeAction(Mask.getValueType()) ==
930                TargetLowering::TypeWidenVector &&
931            "Unable to widen binary VP op");
932     Mask = GetWidenedVector(Mask);
933     assert(Mask.getValueType().getVectorElementCount() == EC &&
934            "Unable to widen binary VP op");
935     return Mask;
936   }
937 
938   // Widen Vector Result Promotion.
939   void WidenVectorResult(SDNode *N, unsigned ResNo);
940   SDValue WidenVecRes_MERGE_VALUES(SDNode* N, unsigned ResNo);
941   SDValue WidenVecRes_BITCAST(SDNode* N);
942   SDValue WidenVecRes_BUILD_VECTOR(SDNode* N);
943   SDValue WidenVecRes_CONCAT_VECTORS(SDNode* N);
944   SDValue WidenVecRes_EXTEND_VECTOR_INREG(SDNode* N);
945   SDValue WidenVecRes_EXTRACT_SUBVECTOR(SDNode* N);
946   SDValue WidenVecRes_INSERT_SUBVECTOR(SDNode *N);
947   SDValue WidenVecRes_INSERT_VECTOR_ELT(SDNode* N);
948   SDValue WidenVecRes_LOAD(SDNode* N);
949   SDValue WidenVecRes_VP_LOAD(VPLoadSDNode *N);
950   SDValue WidenVecRes_MLOAD(MaskedLoadSDNode* N);
951   SDValue WidenVecRes_MGATHER(MaskedGatherSDNode* N);
952   SDValue WidenVecRes_VP_GATHER(VPGatherSDNode* N);
953   SDValue WidenVecRes_ScalarOp(SDNode* N);
954   SDValue WidenVecRes_Select(SDNode *N);
955   SDValue WidenVSELECTMask(SDNode *N);
956   SDValue WidenVecRes_SELECT_CC(SDNode* N);
957   SDValue WidenVecRes_SETCC(SDNode* N);
958   SDValue WidenVecRes_STRICT_FSETCC(SDNode* N);
959   SDValue WidenVecRes_UNDEF(SDNode *N);
960   SDValue WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N);
961 
962   SDValue WidenVecRes_Ternary(SDNode *N);
963   SDValue WidenVecRes_Binary(SDNode *N);
964   SDValue WidenVecRes_BinaryCanTrap(SDNode *N);
965   SDValue WidenVecRes_BinaryWithExtraScalarOp(SDNode *N);
966   SDValue WidenVecRes_StrictFP(SDNode *N);
967   SDValue WidenVecRes_OverflowOp(SDNode *N, unsigned ResNo);
968   SDValue WidenVecRes_Convert(SDNode *N);
969   SDValue WidenVecRes_Convert_StrictFP(SDNode *N);
970   SDValue WidenVecRes_FP_TO_XINT_SAT(SDNode *N);
971   SDValue WidenVecRes_FCOPYSIGN(SDNode *N);
972   SDValue WidenVecRes_IS_FPCLASS(SDNode *N);
973   SDValue WidenVecRes_POWI(SDNode *N);
974   SDValue WidenVecRes_Unary(SDNode *N);
975   SDValue WidenVecRes_InregOp(SDNode *N);
976 
977   // Widen Vector Operand.
978   bool WidenVectorOperand(SDNode *N, unsigned OpNo);
979   SDValue WidenVecOp_BITCAST(SDNode *N);
980   SDValue WidenVecOp_CONCAT_VECTORS(SDNode *N);
981   SDValue WidenVecOp_EXTEND(SDNode *N);
982   SDValue WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
983   SDValue WidenVecOp_INSERT_SUBVECTOR(SDNode *N);
984   SDValue WidenVecOp_EXTRACT_SUBVECTOR(SDNode *N);
985   SDValue WidenVecOp_STORE(SDNode* N);
986   SDValue WidenVecOp_VP_STORE(SDNode *N, unsigned OpNo);
987   SDValue WidenVecOp_MSTORE(SDNode* N, unsigned OpNo);
988   SDValue WidenVecOp_MGATHER(SDNode* N, unsigned OpNo);
989   SDValue WidenVecOp_MSCATTER(SDNode* N, unsigned OpNo);
990   SDValue WidenVecOp_VP_SCATTER(SDNode* N, unsigned OpNo);
991   SDValue WidenVecOp_SETCC(SDNode* N);
992   SDValue WidenVecOp_STRICT_FSETCC(SDNode* N);
993   SDValue WidenVecOp_VSELECT(SDNode *N);
994 
995   SDValue WidenVecOp_Convert(SDNode *N);
996   SDValue WidenVecOp_FP_TO_XINT_SAT(SDNode *N);
997   SDValue WidenVecOp_FCOPYSIGN(SDNode *N);
998   SDValue WidenVecOp_IS_FPCLASS(SDNode *N);
999   SDValue WidenVecOp_VECREDUCE(SDNode *N);
1000   SDValue WidenVecOp_VECREDUCE_SEQ(SDNode *N);
1001   SDValue WidenVecOp_VP_REDUCE(SDNode *N);
1002 
1003   /// Helper function to generate a set of operations to perform
1004   /// a vector operation for a wider type.
1005   ///
1006   SDValue UnrollVectorOp_StrictFP(SDNode *N, unsigned ResNE);
1007 
1008   //===--------------------------------------------------------------------===//
1009   // Vector Widening Utilities Support: LegalizeVectorTypes.cpp
1010   //===--------------------------------------------------------------------===//
1011 
1012   /// Helper function to generate a set of loads to load a vector with a
1013   /// resulting wider type. It takes:
1014   ///   LdChain: list of chains for the load to be generated.
1015   ///   Ld:      load to widen
1016   SDValue GenWidenVectorLoads(SmallVectorImpl<SDValue> &LdChain,
1017                               LoadSDNode *LD);
1018 
1019   /// Helper function to generate a set of extension loads to load a vector with
1020   /// a resulting wider type. It takes:
1021   ///   LdChain: list of chains for the load to be generated.
1022   ///   Ld:      load to widen
1023   ///   ExtType: extension element type
1024   SDValue GenWidenVectorExtLoads(SmallVectorImpl<SDValue> &LdChain,
1025                                  LoadSDNode *LD, ISD::LoadExtType ExtType);
1026 
1027   /// Helper function to generate a set of stores to store a widen vector into
1028   /// non-widen memory. Returns true if successful, false otherwise.
1029   ///   StChain: list of chains for the stores we have generated
1030   ///   ST:      store of a widen value
1031   bool GenWidenVectorStores(SmallVectorImpl<SDValue> &StChain, StoreSDNode *ST);
1032 
1033   /// Modifies a vector input (widen or narrows) to a vector of NVT.  The
1034   /// input vector must have the same element type as NVT.
1035   /// When FillWithZeroes is "on" the vector will be widened with zeroes.
1036   /// By default, the vector will be widened with undefined values.
1037   SDValue ModifyToType(SDValue InOp, EVT NVT, bool FillWithZeroes = false);
1038 
1039   /// Return a mask of vector type MaskVT to replace InMask. Also adjust
1040   /// MaskVT to ToMaskVT if needed with vector extension or truncation.
1041   SDValue convertMask(SDValue InMask, EVT MaskVT, EVT ToMaskVT);
1042 
1043   //===--------------------------------------------------------------------===//
1044   // Generic Splitting: LegalizeTypesGeneric.cpp
1045   //===--------------------------------------------------------------------===//
1046 
1047   // Legalization methods which only use that the illegal type is split into two
1048   // not necessarily identical types.  As such they can be used for splitting
1049   // vectors and expanding integers and floats.
1050 
1051   void GetSplitOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
1052     if (Op.getValueType().isVector())
1053       GetSplitVector(Op, Lo, Hi);
1054     else if (Op.getValueType().isInteger())
1055       GetExpandedInteger(Op, Lo, Hi);
1056     else
1057       GetExpandedFloat(Op, Lo, Hi);
1058   }
1059 
1060   /// Use ISD::EXTRACT_ELEMENT nodes to extract the low and high parts of the
1061   /// given value.
1062   void GetPairElements(SDValue Pair, SDValue &Lo, SDValue &Hi);
1063 
1064   // Generic Result Splitting.
1065   void SplitRes_MERGE_VALUES(SDNode *N, unsigned ResNo,
1066                              SDValue &Lo, SDValue &Hi);
1067   void SplitRes_ARITH_FENCE (SDNode *N, SDValue &Lo, SDValue &Hi);
1068   void SplitRes_Select      (SDNode *N, SDValue &Lo, SDValue &Hi);
1069   void SplitRes_SELECT_CC   (SDNode *N, SDValue &Lo, SDValue &Hi);
1070   void SplitRes_UNDEF       (SDNode *N, SDValue &Lo, SDValue &Hi);
1071   void SplitRes_FREEZE      (SDNode *N, SDValue &Lo, SDValue &Hi);
1072 
1073   //===--------------------------------------------------------------------===//
1074   // Generic Expansion: LegalizeTypesGeneric.cpp
1075   //===--------------------------------------------------------------------===//
1076 
1077   // Legalization methods which only use that the illegal type is split into two
1078   // identical types of half the size, and that the Lo/Hi part is stored first
1079   // in memory on little/big-endian machines, followed by the Hi/Lo part.  As
1080   // such they can be used for expanding integers and floats.
1081 
1082   void GetExpandedOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
1083     if (Op.getValueType().isInteger())
1084       GetExpandedInteger(Op, Lo, Hi);
1085     else
1086       GetExpandedFloat(Op, Lo, Hi);
1087   }
1088 
1089 
1090   /// This function will split the integer \p Op into \p NumElements
1091   /// operations of type \p EltVT and store them in \p Ops.
1092   void IntegerToVector(SDValue Op, unsigned NumElements,
1093                        SmallVectorImpl<SDValue> &Ops, EVT EltVT);
1094 
1095   // Generic Result Expansion.
1096   void ExpandRes_MERGE_VALUES      (SDNode *N, unsigned ResNo,
1097                                     SDValue &Lo, SDValue &Hi);
1098   void ExpandRes_BITCAST           (SDNode *N, SDValue &Lo, SDValue &Hi);
1099   void ExpandRes_BUILD_PAIR        (SDNode *N, SDValue &Lo, SDValue &Hi);
1100   void ExpandRes_EXTRACT_ELEMENT   (SDNode *N, SDValue &Lo, SDValue &Hi);
1101   void ExpandRes_EXTRACT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
1102   void ExpandRes_NormalLoad        (SDNode *N, SDValue &Lo, SDValue &Hi);
1103   void ExpandRes_VAARG             (SDNode *N, SDValue &Lo, SDValue &Hi);
1104 
1105   // Generic Operand Expansion.
1106   SDValue ExpandOp_BITCAST          (SDNode *N);
1107   SDValue ExpandOp_BUILD_VECTOR     (SDNode *N);
1108   SDValue ExpandOp_EXTRACT_ELEMENT  (SDNode *N);
1109   SDValue ExpandOp_INSERT_VECTOR_ELT(SDNode *N);
1110   SDValue ExpandOp_SCALAR_TO_VECTOR (SDNode *N);
1111   SDValue ExpandOp_NormalStore      (SDNode *N, unsigned OpNo);
1112 };
1113 
1114 } // end namespace llvm.
1115 
1116 #endif
1117