1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/CodeGen/FunctionLoweringInfo.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineConstantPool.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/RuntimeLibcalls.h"
39 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
40 #include "llvm/CodeGen/SelectionDAGNodes.h"
41 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
42 #include "llvm/CodeGen/TargetFrameLowering.h"
43 #include "llvm/CodeGen/TargetLowering.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/CodeGen/ValueTypes.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DebugInfoMetadata.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/DerivedTypes.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GlobalValue.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CodeGen.h"
60 #include "llvm/Support/Compiler.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/KnownBits.h"
64 #include "llvm/Support/MachineValueType.h"
65 #include "llvm/Support/ManagedStatic.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/Mutex.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Target/TargetMachine.h"
70 #include "llvm/Target/TargetOptions.h"
71 #include "llvm/Transforms/Utils/SizeOpts.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <cstdlib>
76 #include <limits>
77 #include <set>
78 #include <string>
79 #include <utility>
80 #include <vector>
81 
82 using namespace llvm;
83 
84 /// makeVTList - Return an instance of the SDVTList struct initialized with the
85 /// specified members.
86 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
87   SDVTList Res = {VTs, NumVTs};
88   return Res;
89 }
90 
91 // Default null implementations of the callbacks.
92 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
93 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
94 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
95 
96 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
97 
98 #define DEBUG_TYPE "selectiondag"
99 
100 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
101        cl::Hidden, cl::init(true),
102        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
103 
104 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
105        cl::desc("Number limit for gluing ld/st of memcpy."),
106        cl::Hidden, cl::init(0));
107 
108 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
109   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
110 }
111 
112 //===----------------------------------------------------------------------===//
113 //                              ConstantFPSDNode Class
114 //===----------------------------------------------------------------------===//
115 
116 /// isExactlyValue - We don't rely on operator== working on double values, as
117 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
118 /// As such, this method can be used to do an exact bit-for-bit comparison of
119 /// two floating point values.
120 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
121   return getValueAPF().bitwiseIsEqual(V);
122 }
123 
124 bool ConstantFPSDNode::isValueValidForType(EVT VT,
125                                            const APFloat& Val) {
126   assert(VT.isFloatingPoint() && "Can only convert between FP types");
127 
128   // convert modifies in place, so make a copy.
129   APFloat Val2 = APFloat(Val);
130   bool losesInfo;
131   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
132                       APFloat::rmNearestTiesToEven,
133                       &losesInfo);
134   return !losesInfo;
135 }
136 
137 //===----------------------------------------------------------------------===//
138 //                              ISD Namespace
139 //===----------------------------------------------------------------------===//
140 
141 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
142   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
143     unsigned EltSize =
144         N->getValueType(0).getVectorElementType().getSizeInBits();
145     if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
146       SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize);
147       return true;
148     }
149   }
150 
151   auto *BV = dyn_cast<BuildVectorSDNode>(N);
152   if (!BV)
153     return false;
154 
155   APInt SplatUndef;
156   unsigned SplatBitSize;
157   bool HasUndefs;
158   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
159   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
160                              EltSize) &&
161          EltSize == SplatBitSize;
162 }
163 
164 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
165 // specializations of the more general isConstantSplatVector()?
166 
167 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) {
168   // Look through a bit convert.
169   while (N->getOpcode() == ISD::BITCAST)
170     N = N->getOperand(0).getNode();
171 
172   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
173     APInt SplatVal;
174     return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnesValue();
175   }
176 
177   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
178 
179   unsigned i = 0, e = N->getNumOperands();
180 
181   // Skip over all of the undef values.
182   while (i != e && N->getOperand(i).isUndef())
183     ++i;
184 
185   // Do not accept an all-undef vector.
186   if (i == e) return false;
187 
188   // Do not accept build_vectors that aren't all constants or which have non-~0
189   // elements. We have to be a bit careful here, as the type of the constant
190   // may not be the same as the type of the vector elements due to type
191   // legalization (the elements are promoted to a legal type for the target and
192   // a vector of a type may be legal when the base element type is not).
193   // We only want to check enough bits to cover the vector elements, because
194   // we care if the resultant vector is all ones, not whether the individual
195   // constants are.
196   SDValue NotZero = N->getOperand(i);
197   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
198   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
199     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
200       return false;
201   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
202     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
203       return false;
204   } else
205     return false;
206 
207   // Okay, we have at least one ~0 value, check to see if the rest match or are
208   // undefs. Even with the above element type twiddling, this should be OK, as
209   // the same type legalization should have applied to all the elements.
210   for (++i; i != e; ++i)
211     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
212       return false;
213   return true;
214 }
215 
216 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) {
217   // Look through a bit convert.
218   while (N->getOpcode() == ISD::BITCAST)
219     N = N->getOperand(0).getNode();
220 
221   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
222     APInt SplatVal;
223     return isConstantSplatVector(N, SplatVal) && SplatVal.isNullValue();
224   }
225 
226   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
227 
228   bool IsAllUndef = true;
229   for (const SDValue &Op : N->op_values()) {
230     if (Op.isUndef())
231       continue;
232     IsAllUndef = false;
233     // Do not accept build_vectors that aren't all constants or which have non-0
234     // elements. We have to be a bit careful here, as the type of the constant
235     // may not be the same as the type of the vector elements due to type
236     // legalization (the elements are promoted to a legal type for the target
237     // and a vector of a type may be legal when the base element type is not).
238     // We only want to check enough bits to cover the vector elements, because
239     // we care if the resultant vector is all zeros, not whether the individual
240     // constants are.
241     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
242     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
243       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
244         return false;
245     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
246       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
247         return false;
248     } else
249       return false;
250   }
251 
252   // Do not accept an all-undef vector.
253   if (IsAllUndef)
254     return false;
255   return true;
256 }
257 
258 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
259   return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true);
260 }
261 
262 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
263   return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true);
264 }
265 
266 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
267   if (N->getOpcode() != ISD::BUILD_VECTOR)
268     return false;
269 
270   for (const SDValue &Op : N->op_values()) {
271     if (Op.isUndef())
272       continue;
273     if (!isa<ConstantSDNode>(Op))
274       return false;
275   }
276   return true;
277 }
278 
279 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
280   if (N->getOpcode() != ISD::BUILD_VECTOR)
281     return false;
282 
283   for (const SDValue &Op : N->op_values()) {
284     if (Op.isUndef())
285       continue;
286     if (!isa<ConstantFPSDNode>(Op))
287       return false;
288   }
289   return true;
290 }
291 
292 bool ISD::allOperandsUndef(const SDNode *N) {
293   // Return false if the node has no operands.
294   // This is "logically inconsistent" with the definition of "all" but
295   // is probably the desired behavior.
296   if (N->getNumOperands() == 0)
297     return false;
298   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
299 }
300 
301 bool ISD::matchUnaryPredicate(SDValue Op,
302                               std::function<bool(ConstantSDNode *)> Match,
303                               bool AllowUndefs) {
304   // FIXME: Add support for scalar UNDEF cases?
305   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
306     return Match(Cst);
307 
308   // FIXME: Add support for vector UNDEF cases?
309   if (ISD::BUILD_VECTOR != Op.getOpcode() &&
310       ISD::SPLAT_VECTOR != Op.getOpcode())
311     return false;
312 
313   EVT SVT = Op.getValueType().getScalarType();
314   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
315     if (AllowUndefs && Op.getOperand(i).isUndef()) {
316       if (!Match(nullptr))
317         return false;
318       continue;
319     }
320 
321     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
322     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
323       return false;
324   }
325   return true;
326 }
327 
328 bool ISD::matchBinaryPredicate(
329     SDValue LHS, SDValue RHS,
330     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
331     bool AllowUndefs, bool AllowTypeMismatch) {
332   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
333     return false;
334 
335   // TODO: Add support for scalar UNDEF cases?
336   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
337     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
338       return Match(LHSCst, RHSCst);
339 
340   // TODO: Add support for vector UNDEF cases?
341   if (ISD::BUILD_VECTOR != LHS.getOpcode() ||
342       ISD::BUILD_VECTOR != RHS.getOpcode())
343     return false;
344 
345   EVT SVT = LHS.getValueType().getScalarType();
346   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
347     SDValue LHSOp = LHS.getOperand(i);
348     SDValue RHSOp = RHS.getOperand(i);
349     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
350     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
351     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
352     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
353     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
354       return false;
355     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
356                                LHSOp.getValueType() != RHSOp.getValueType()))
357       return false;
358     if (!Match(LHSCst, RHSCst))
359       return false;
360   }
361   return true;
362 }
363 
364 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) {
365   switch (VecReduceOpcode) {
366   default:
367     llvm_unreachable("Expected VECREDUCE opcode");
368   case ISD::VECREDUCE_FADD:
369   case ISD::VECREDUCE_SEQ_FADD:
370     return ISD::FADD;
371   case ISD::VECREDUCE_FMUL:
372   case ISD::VECREDUCE_SEQ_FMUL:
373     return ISD::FMUL;
374   case ISD::VECREDUCE_ADD:
375     return ISD::ADD;
376   case ISD::VECREDUCE_MUL:
377     return ISD::MUL;
378   case ISD::VECREDUCE_AND:
379     return ISD::AND;
380   case ISD::VECREDUCE_OR:
381     return ISD::OR;
382   case ISD::VECREDUCE_XOR:
383     return ISD::XOR;
384   case ISD::VECREDUCE_SMAX:
385     return ISD::SMAX;
386   case ISD::VECREDUCE_SMIN:
387     return ISD::SMIN;
388   case ISD::VECREDUCE_UMAX:
389     return ISD::UMAX;
390   case ISD::VECREDUCE_UMIN:
391     return ISD::UMIN;
392   case ISD::VECREDUCE_FMAX:
393     return ISD::FMAXNUM;
394   case ISD::VECREDUCE_FMIN:
395     return ISD::FMINNUM;
396   }
397 }
398 
399 bool ISD::isVPOpcode(unsigned Opcode) {
400   switch (Opcode) {
401   default:
402     return false;
403 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...)                                   \
404   case ISD::SDOPC:                                                             \
405     return true;
406 #include "llvm/IR/VPIntrinsics.def"
407   }
408 }
409 
410 /// The operand position of the vector mask.
411 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) {
412   switch (Opcode) {
413   default:
414     return None;
415 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, ...)        \
416   case ISD::SDOPC:                                                             \
417     return MASKPOS;
418 #include "llvm/IR/VPIntrinsics.def"
419   }
420 }
421 
422 /// The operand position of the explicit vector length parameter.
423 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) {
424   switch (Opcode) {
425   default:
426     return None;
427 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, EVLPOS)     \
428   case ISD::SDOPC:                                                             \
429     return EVLPOS;
430 #include "llvm/IR/VPIntrinsics.def"
431   }
432 }
433 
434 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
435   switch (ExtType) {
436   case ISD::EXTLOAD:
437     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
438   case ISD::SEXTLOAD:
439     return ISD::SIGN_EXTEND;
440   case ISD::ZEXTLOAD:
441     return ISD::ZERO_EXTEND;
442   default:
443     break;
444   }
445 
446   llvm_unreachable("Invalid LoadExtType");
447 }
448 
449 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
450   // To perform this operation, we just need to swap the L and G bits of the
451   // operation.
452   unsigned OldL = (Operation >> 2) & 1;
453   unsigned OldG = (Operation >> 1) & 1;
454   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
455                        (OldL << 1) |       // New G bit
456                        (OldG << 2));       // New L bit.
457 }
458 
459 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
460   unsigned Operation = Op;
461   if (isIntegerLike)
462     Operation ^= 7;   // Flip L, G, E bits, but not U.
463   else
464     Operation ^= 15;  // Flip all of the condition bits.
465 
466   if (Operation > ISD::SETTRUE2)
467     Operation &= ~8;  // Don't let N and U bits get set.
468 
469   return ISD::CondCode(Operation);
470 }
471 
472 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
473   return getSetCCInverseImpl(Op, Type.isInteger());
474 }
475 
476 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
477                                                bool isIntegerLike) {
478   return getSetCCInverseImpl(Op, isIntegerLike);
479 }
480 
481 /// For an integer comparison, return 1 if the comparison is a signed operation
482 /// and 2 if the result is an unsigned comparison. Return zero if the operation
483 /// does not depend on the sign of the input (setne and seteq).
484 static int isSignedOp(ISD::CondCode Opcode) {
485   switch (Opcode) {
486   default: llvm_unreachable("Illegal integer setcc operation!");
487   case ISD::SETEQ:
488   case ISD::SETNE: return 0;
489   case ISD::SETLT:
490   case ISD::SETLE:
491   case ISD::SETGT:
492   case ISD::SETGE: return 1;
493   case ISD::SETULT:
494   case ISD::SETULE:
495   case ISD::SETUGT:
496   case ISD::SETUGE: return 2;
497   }
498 }
499 
500 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
501                                        EVT Type) {
502   bool IsInteger = Type.isInteger();
503   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
504     // Cannot fold a signed integer setcc with an unsigned integer setcc.
505     return ISD::SETCC_INVALID;
506 
507   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
508 
509   // If the N and U bits get set, then the resultant comparison DOES suddenly
510   // care about orderedness, and it is true when ordered.
511   if (Op > ISD::SETTRUE2)
512     Op &= ~16;     // Clear the U bit if the N bit is set.
513 
514   // Canonicalize illegal integer setcc's.
515   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
516     Op = ISD::SETNE;
517 
518   return ISD::CondCode(Op);
519 }
520 
521 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
522                                         EVT Type) {
523   bool IsInteger = Type.isInteger();
524   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
525     // Cannot fold a signed setcc with an unsigned setcc.
526     return ISD::SETCC_INVALID;
527 
528   // Combine all of the condition bits.
529   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
530 
531   // Canonicalize illegal integer setcc's.
532   if (IsInteger) {
533     switch (Result) {
534     default: break;
535     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
536     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
537     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
538     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
539     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
540     }
541   }
542 
543   return Result;
544 }
545 
546 //===----------------------------------------------------------------------===//
547 //                           SDNode Profile Support
548 //===----------------------------------------------------------------------===//
549 
550 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
551 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
552   ID.AddInteger(OpC);
553 }
554 
555 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
556 /// solely with their pointer.
557 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
558   ID.AddPointer(VTList.VTs);
559 }
560 
561 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
562 static void AddNodeIDOperands(FoldingSetNodeID &ID,
563                               ArrayRef<SDValue> Ops) {
564   for (auto& Op : Ops) {
565     ID.AddPointer(Op.getNode());
566     ID.AddInteger(Op.getResNo());
567   }
568 }
569 
570 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
571 static void AddNodeIDOperands(FoldingSetNodeID &ID,
572                               ArrayRef<SDUse> Ops) {
573   for (auto& Op : Ops) {
574     ID.AddPointer(Op.getNode());
575     ID.AddInteger(Op.getResNo());
576   }
577 }
578 
579 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
580                           SDVTList VTList, ArrayRef<SDValue> OpList) {
581   AddNodeIDOpcode(ID, OpC);
582   AddNodeIDValueTypes(ID, VTList);
583   AddNodeIDOperands(ID, OpList);
584 }
585 
586 /// If this is an SDNode with special info, add this info to the NodeID data.
587 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
588   switch (N->getOpcode()) {
589   case ISD::TargetExternalSymbol:
590   case ISD::ExternalSymbol:
591   case ISD::MCSymbol:
592     llvm_unreachable("Should only be used on nodes with operands");
593   default: break;  // Normal nodes don't need extra info.
594   case ISD::TargetConstant:
595   case ISD::Constant: {
596     const ConstantSDNode *C = cast<ConstantSDNode>(N);
597     ID.AddPointer(C->getConstantIntValue());
598     ID.AddBoolean(C->isOpaque());
599     break;
600   }
601   case ISD::TargetConstantFP:
602   case ISD::ConstantFP:
603     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
604     break;
605   case ISD::TargetGlobalAddress:
606   case ISD::GlobalAddress:
607   case ISD::TargetGlobalTLSAddress:
608   case ISD::GlobalTLSAddress: {
609     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
610     ID.AddPointer(GA->getGlobal());
611     ID.AddInteger(GA->getOffset());
612     ID.AddInteger(GA->getTargetFlags());
613     break;
614   }
615   case ISD::BasicBlock:
616     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
617     break;
618   case ISD::Register:
619     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
620     break;
621   case ISD::RegisterMask:
622     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
623     break;
624   case ISD::SRCVALUE:
625     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
626     break;
627   case ISD::FrameIndex:
628   case ISD::TargetFrameIndex:
629     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
630     break;
631   case ISD::LIFETIME_START:
632   case ISD::LIFETIME_END:
633     if (cast<LifetimeSDNode>(N)->hasOffset()) {
634       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
635       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
636     }
637     break;
638   case ISD::PSEUDO_PROBE:
639     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid());
640     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex());
641     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes());
642     break;
643   case ISD::JumpTable:
644   case ISD::TargetJumpTable:
645     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
646     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
647     break;
648   case ISD::ConstantPool:
649   case ISD::TargetConstantPool: {
650     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
651     ID.AddInteger(CP->getAlign().value());
652     ID.AddInteger(CP->getOffset());
653     if (CP->isMachineConstantPoolEntry())
654       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
655     else
656       ID.AddPointer(CP->getConstVal());
657     ID.AddInteger(CP->getTargetFlags());
658     break;
659   }
660   case ISD::TargetIndex: {
661     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
662     ID.AddInteger(TI->getIndex());
663     ID.AddInteger(TI->getOffset());
664     ID.AddInteger(TI->getTargetFlags());
665     break;
666   }
667   case ISD::LOAD: {
668     const LoadSDNode *LD = cast<LoadSDNode>(N);
669     ID.AddInteger(LD->getMemoryVT().getRawBits());
670     ID.AddInteger(LD->getRawSubclassData());
671     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
672     break;
673   }
674   case ISD::STORE: {
675     const StoreSDNode *ST = cast<StoreSDNode>(N);
676     ID.AddInteger(ST->getMemoryVT().getRawBits());
677     ID.AddInteger(ST->getRawSubclassData());
678     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
679     break;
680   }
681   case ISD::MLOAD: {
682     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
683     ID.AddInteger(MLD->getMemoryVT().getRawBits());
684     ID.AddInteger(MLD->getRawSubclassData());
685     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
686     break;
687   }
688   case ISD::MSTORE: {
689     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
690     ID.AddInteger(MST->getMemoryVT().getRawBits());
691     ID.AddInteger(MST->getRawSubclassData());
692     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
693     break;
694   }
695   case ISD::MGATHER: {
696     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
697     ID.AddInteger(MG->getMemoryVT().getRawBits());
698     ID.AddInteger(MG->getRawSubclassData());
699     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
700     break;
701   }
702   case ISD::MSCATTER: {
703     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
704     ID.AddInteger(MS->getMemoryVT().getRawBits());
705     ID.AddInteger(MS->getRawSubclassData());
706     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
707     break;
708   }
709   case ISD::ATOMIC_CMP_SWAP:
710   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
711   case ISD::ATOMIC_SWAP:
712   case ISD::ATOMIC_LOAD_ADD:
713   case ISD::ATOMIC_LOAD_SUB:
714   case ISD::ATOMIC_LOAD_AND:
715   case ISD::ATOMIC_LOAD_CLR:
716   case ISD::ATOMIC_LOAD_OR:
717   case ISD::ATOMIC_LOAD_XOR:
718   case ISD::ATOMIC_LOAD_NAND:
719   case ISD::ATOMIC_LOAD_MIN:
720   case ISD::ATOMIC_LOAD_MAX:
721   case ISD::ATOMIC_LOAD_UMIN:
722   case ISD::ATOMIC_LOAD_UMAX:
723   case ISD::ATOMIC_LOAD:
724   case ISD::ATOMIC_STORE: {
725     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
726     ID.AddInteger(AT->getMemoryVT().getRawBits());
727     ID.AddInteger(AT->getRawSubclassData());
728     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
729     break;
730   }
731   case ISD::PREFETCH: {
732     const MemSDNode *PF = cast<MemSDNode>(N);
733     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
734     break;
735   }
736   case ISD::VECTOR_SHUFFLE: {
737     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
738     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
739          i != e; ++i)
740       ID.AddInteger(SVN->getMaskElt(i));
741     break;
742   }
743   case ISD::TargetBlockAddress:
744   case ISD::BlockAddress: {
745     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
746     ID.AddPointer(BA->getBlockAddress());
747     ID.AddInteger(BA->getOffset());
748     ID.AddInteger(BA->getTargetFlags());
749     break;
750   }
751   } // end switch (N->getOpcode())
752 
753   // Target specific memory nodes could also have address spaces to check.
754   if (N->isTargetMemoryOpcode())
755     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
756 }
757 
758 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
759 /// data.
760 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
761   AddNodeIDOpcode(ID, N->getOpcode());
762   // Add the return value info.
763   AddNodeIDValueTypes(ID, N->getVTList());
764   // Add the operand info.
765   AddNodeIDOperands(ID, N->ops());
766 
767   // Handle SDNode leafs with special info.
768   AddNodeIDCustom(ID, N);
769 }
770 
771 //===----------------------------------------------------------------------===//
772 //                              SelectionDAG Class
773 //===----------------------------------------------------------------------===//
774 
775 /// doNotCSE - Return true if CSE should not be performed for this node.
776 static bool doNotCSE(SDNode *N) {
777   if (N->getValueType(0) == MVT::Glue)
778     return true; // Never CSE anything that produces a flag.
779 
780   switch (N->getOpcode()) {
781   default: break;
782   case ISD::HANDLENODE:
783   case ISD::EH_LABEL:
784     return true;   // Never CSE these nodes.
785   }
786 
787   // Check that remaining values produced are not flags.
788   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
789     if (N->getValueType(i) == MVT::Glue)
790       return true; // Never CSE anything that produces a flag.
791 
792   return false;
793 }
794 
795 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
796 /// SelectionDAG.
797 void SelectionDAG::RemoveDeadNodes() {
798   // Create a dummy node (which is not added to allnodes), that adds a reference
799   // to the root node, preventing it from being deleted.
800   HandleSDNode Dummy(getRoot());
801 
802   SmallVector<SDNode*, 128> DeadNodes;
803 
804   // Add all obviously-dead nodes to the DeadNodes worklist.
805   for (SDNode &Node : allnodes())
806     if (Node.use_empty())
807       DeadNodes.push_back(&Node);
808 
809   RemoveDeadNodes(DeadNodes);
810 
811   // If the root changed (e.g. it was a dead load, update the root).
812   setRoot(Dummy.getValue());
813 }
814 
815 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
816 /// given list, and any nodes that become unreachable as a result.
817 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
818 
819   // Process the worklist, deleting the nodes and adding their uses to the
820   // worklist.
821   while (!DeadNodes.empty()) {
822     SDNode *N = DeadNodes.pop_back_val();
823     // Skip to next node if we've already managed to delete the node. This could
824     // happen if replacing a node causes a node previously added to the node to
825     // be deleted.
826     if (N->getOpcode() == ISD::DELETED_NODE)
827       continue;
828 
829     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
830       DUL->NodeDeleted(N, nullptr);
831 
832     // Take the node out of the appropriate CSE map.
833     RemoveNodeFromCSEMaps(N);
834 
835     // Next, brutally remove the operand list.  This is safe to do, as there are
836     // no cycles in the graph.
837     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
838       SDUse &Use = *I++;
839       SDNode *Operand = Use.getNode();
840       Use.set(SDValue());
841 
842       // Now that we removed this operand, see if there are no uses of it left.
843       if (Operand->use_empty())
844         DeadNodes.push_back(Operand);
845     }
846 
847     DeallocateNode(N);
848   }
849 }
850 
851 void SelectionDAG::RemoveDeadNode(SDNode *N){
852   SmallVector<SDNode*, 16> DeadNodes(1, N);
853 
854   // Create a dummy node that adds a reference to the root node, preventing
855   // it from being deleted.  (This matters if the root is an operand of the
856   // dead node.)
857   HandleSDNode Dummy(getRoot());
858 
859   RemoveDeadNodes(DeadNodes);
860 }
861 
862 void SelectionDAG::DeleteNode(SDNode *N) {
863   // First take this out of the appropriate CSE map.
864   RemoveNodeFromCSEMaps(N);
865 
866   // Finally, remove uses due to operands of this node, remove from the
867   // AllNodes list, and delete the node.
868   DeleteNodeNotInCSEMaps(N);
869 }
870 
871 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
872   assert(N->getIterator() != AllNodes.begin() &&
873          "Cannot delete the entry node!");
874   assert(N->use_empty() && "Cannot delete a node that is not dead!");
875 
876   // Drop all of the operands and decrement used node's use counts.
877   N->DropOperands();
878 
879   DeallocateNode(N);
880 }
881 
882 void SDDbgInfo::erase(const SDNode *Node) {
883   DbgValMapType::iterator I = DbgValMap.find(Node);
884   if (I == DbgValMap.end())
885     return;
886   for (auto &Val: I->second)
887     Val->setIsInvalidated();
888   DbgValMap.erase(I);
889 }
890 
891 void SelectionDAG::DeallocateNode(SDNode *N) {
892   // If we have operands, deallocate them.
893   removeOperands(N);
894 
895   NodeAllocator.Deallocate(AllNodes.remove(N));
896 
897   // Set the opcode to DELETED_NODE to help catch bugs when node
898   // memory is reallocated.
899   // FIXME: There are places in SDag that have grown a dependency on the opcode
900   // value in the released node.
901   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
902   N->NodeType = ISD::DELETED_NODE;
903 
904   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
905   // them and forget about that node.
906   DbgInfo->erase(N);
907 }
908 
909 #ifndef NDEBUG
910 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
911 static void VerifySDNode(SDNode *N) {
912   switch (N->getOpcode()) {
913   default:
914     break;
915   case ISD::BUILD_PAIR: {
916     EVT VT = N->getValueType(0);
917     assert(N->getNumValues() == 1 && "Too many results!");
918     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
919            "Wrong return type!");
920     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
921     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
922            "Mismatched operand types!");
923     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
924            "Wrong operand type!");
925     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
926            "Wrong return type size");
927     break;
928   }
929   case ISD::BUILD_VECTOR: {
930     assert(N->getNumValues() == 1 && "Too many results!");
931     assert(N->getValueType(0).isVector() && "Wrong return type!");
932     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
933            "Wrong number of operands!");
934     EVT EltVT = N->getValueType(0).getVectorElementType();
935     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
936       assert((I->getValueType() == EltVT ||
937              (EltVT.isInteger() && I->getValueType().isInteger() &&
938               EltVT.bitsLE(I->getValueType()))) &&
939             "Wrong operand type!");
940       assert(I->getValueType() == N->getOperand(0).getValueType() &&
941              "Operands must all have the same type");
942     }
943     break;
944   }
945   }
946 }
947 #endif // NDEBUG
948 
949 /// Insert a newly allocated node into the DAG.
950 ///
951 /// Handles insertion into the all nodes list and CSE map, as well as
952 /// verification and other common operations when a new node is allocated.
953 void SelectionDAG::InsertNode(SDNode *N) {
954   AllNodes.push_back(N);
955 #ifndef NDEBUG
956   N->PersistentId = NextPersistentId++;
957   VerifySDNode(N);
958 #endif
959   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
960     DUL->NodeInserted(N);
961 }
962 
963 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
964 /// correspond to it.  This is useful when we're about to delete or repurpose
965 /// the node.  We don't want future request for structurally identical nodes
966 /// to return N anymore.
967 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
968   bool Erased = false;
969   switch (N->getOpcode()) {
970   case ISD::HANDLENODE: return false;  // noop.
971   case ISD::CONDCODE:
972     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
973            "Cond code doesn't exist!");
974     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
975     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
976     break;
977   case ISD::ExternalSymbol:
978     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
979     break;
980   case ISD::TargetExternalSymbol: {
981     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
982     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
983         ESN->getSymbol(), ESN->getTargetFlags()));
984     break;
985   }
986   case ISD::MCSymbol: {
987     auto *MCSN = cast<MCSymbolSDNode>(N);
988     Erased = MCSymbols.erase(MCSN->getMCSymbol());
989     break;
990   }
991   case ISD::VALUETYPE: {
992     EVT VT = cast<VTSDNode>(N)->getVT();
993     if (VT.isExtended()) {
994       Erased = ExtendedValueTypeNodes.erase(VT);
995     } else {
996       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
997       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
998     }
999     break;
1000   }
1001   default:
1002     // Remove it from the CSE Map.
1003     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
1004     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
1005     Erased = CSEMap.RemoveNode(N);
1006     break;
1007   }
1008 #ifndef NDEBUG
1009   // Verify that the node was actually in one of the CSE maps, unless it has a
1010   // flag result (which cannot be CSE'd) or is one of the special cases that are
1011   // not subject to CSE.
1012   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
1013       !N->isMachineOpcode() && !doNotCSE(N)) {
1014     N->dump(this);
1015     dbgs() << "\n";
1016     llvm_unreachable("Node is not in map!");
1017   }
1018 #endif
1019   return Erased;
1020 }
1021 
1022 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
1023 /// maps and modified in place. Add it back to the CSE maps, unless an identical
1024 /// node already exists, in which case transfer all its users to the existing
1025 /// node. This transfer can potentially trigger recursive merging.
1026 void
1027 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
1028   // For node types that aren't CSE'd, just act as if no identical node
1029   // already exists.
1030   if (!doNotCSE(N)) {
1031     SDNode *Existing = CSEMap.GetOrInsertNode(N);
1032     if (Existing != N) {
1033       // If there was already an existing matching node, use ReplaceAllUsesWith
1034       // to replace the dead one with the existing one.  This can cause
1035       // recursive merging of other unrelated nodes down the line.
1036       ReplaceAllUsesWith(N, Existing);
1037 
1038       // N is now dead. Inform the listeners and delete it.
1039       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1040         DUL->NodeDeleted(N, Existing);
1041       DeleteNodeNotInCSEMaps(N);
1042       return;
1043     }
1044   }
1045 
1046   // If the node doesn't already exist, we updated it.  Inform listeners.
1047   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1048     DUL->NodeUpdated(N);
1049 }
1050 
1051 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1052 /// were replaced with those specified.  If this node is never memoized,
1053 /// return null, otherwise return a pointer to the slot it would take.  If a
1054 /// node already exists with these operands, the slot will be non-null.
1055 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
1056                                            void *&InsertPos) {
1057   if (doNotCSE(N))
1058     return nullptr;
1059 
1060   SDValue Ops[] = { Op };
1061   FoldingSetNodeID ID;
1062   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1063   AddNodeIDCustom(ID, N);
1064   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1065   if (Node)
1066     Node->intersectFlagsWith(N->getFlags());
1067   return Node;
1068 }
1069 
1070 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1071 /// were replaced with those specified.  If this node is never memoized,
1072 /// return null, otherwise return a pointer to the slot it would take.  If a
1073 /// node already exists with these operands, the slot will be non-null.
1074 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
1075                                            SDValue Op1, SDValue Op2,
1076                                            void *&InsertPos) {
1077   if (doNotCSE(N))
1078     return nullptr;
1079 
1080   SDValue Ops[] = { Op1, Op2 };
1081   FoldingSetNodeID ID;
1082   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1083   AddNodeIDCustom(ID, N);
1084   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1085   if (Node)
1086     Node->intersectFlagsWith(N->getFlags());
1087   return Node;
1088 }
1089 
1090 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1091 /// were replaced with those specified.  If this node is never memoized,
1092 /// return null, otherwise return a pointer to the slot it would take.  If a
1093 /// node already exists with these operands, the slot will be non-null.
1094 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1095                                            void *&InsertPos) {
1096   if (doNotCSE(N))
1097     return nullptr;
1098 
1099   FoldingSetNodeID ID;
1100   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1101   AddNodeIDCustom(ID, N);
1102   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1103   if (Node)
1104     Node->intersectFlagsWith(N->getFlags());
1105   return Node;
1106 }
1107 
1108 Align SelectionDAG::getEVTAlign(EVT VT) const {
1109   Type *Ty = VT == MVT::iPTR ?
1110                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1111                    VT.getTypeForEVT(*getContext());
1112 
1113   return getDataLayout().getABITypeAlign(Ty);
1114 }
1115 
1116 // EntryNode could meaningfully have debug info if we can find it...
1117 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1118     : TM(tm), OptLevel(OL),
1119       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1120       Root(getEntryNode()) {
1121   InsertNode(&EntryNode);
1122   DbgInfo = new SDDbgInfo();
1123 }
1124 
1125 void SelectionDAG::init(MachineFunction &NewMF,
1126                         OptimizationRemarkEmitter &NewORE,
1127                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1128                         LegacyDivergenceAnalysis * Divergence,
1129                         ProfileSummaryInfo *PSIin,
1130                         BlockFrequencyInfo *BFIin) {
1131   MF = &NewMF;
1132   SDAGISelPass = PassPtr;
1133   ORE = &NewORE;
1134   TLI = getSubtarget().getTargetLowering();
1135   TSI = getSubtarget().getSelectionDAGInfo();
1136   LibInfo = LibraryInfo;
1137   Context = &MF->getFunction().getContext();
1138   DA = Divergence;
1139   PSI = PSIin;
1140   BFI = BFIin;
1141 }
1142 
1143 SelectionDAG::~SelectionDAG() {
1144   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1145   allnodes_clear();
1146   OperandRecycler.clear(OperandAllocator);
1147   delete DbgInfo;
1148 }
1149 
1150 bool SelectionDAG::shouldOptForSize() const {
1151   return MF->getFunction().hasOptSize() ||
1152       llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1153 }
1154 
1155 void SelectionDAG::allnodes_clear() {
1156   assert(&*AllNodes.begin() == &EntryNode);
1157   AllNodes.remove(AllNodes.begin());
1158   while (!AllNodes.empty())
1159     DeallocateNode(&AllNodes.front());
1160 #ifndef NDEBUG
1161   NextPersistentId = 0;
1162 #endif
1163 }
1164 
1165 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1166                                           void *&InsertPos) {
1167   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1168   if (N) {
1169     switch (N->getOpcode()) {
1170     default: break;
1171     case ISD::Constant:
1172     case ISD::ConstantFP:
1173       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1174                        "debug location.  Use another overload.");
1175     }
1176   }
1177   return N;
1178 }
1179 
1180 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1181                                           const SDLoc &DL, void *&InsertPos) {
1182   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1183   if (N) {
1184     switch (N->getOpcode()) {
1185     case ISD::Constant:
1186     case ISD::ConstantFP:
1187       // Erase debug location from the node if the node is used at several
1188       // different places. Do not propagate one location to all uses as it
1189       // will cause a worse single stepping debugging experience.
1190       if (N->getDebugLoc() != DL.getDebugLoc())
1191         N->setDebugLoc(DebugLoc());
1192       break;
1193     default:
1194       // When the node's point of use is located earlier in the instruction
1195       // sequence than its prior point of use, update its debug info to the
1196       // earlier location.
1197       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1198         N->setDebugLoc(DL.getDebugLoc());
1199       break;
1200     }
1201   }
1202   return N;
1203 }
1204 
1205 void SelectionDAG::clear() {
1206   allnodes_clear();
1207   OperandRecycler.clear(OperandAllocator);
1208   OperandAllocator.Reset();
1209   CSEMap.clear();
1210 
1211   ExtendedValueTypeNodes.clear();
1212   ExternalSymbols.clear();
1213   TargetExternalSymbols.clear();
1214   MCSymbols.clear();
1215   SDCallSiteDbgInfo.clear();
1216   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1217             static_cast<CondCodeSDNode*>(nullptr));
1218   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1219             static_cast<SDNode*>(nullptr));
1220 
1221   EntryNode.UseList = nullptr;
1222   InsertNode(&EntryNode);
1223   Root = getEntryNode();
1224   DbgInfo->clear();
1225 }
1226 
1227 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1228   return VT.bitsGT(Op.getValueType())
1229              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1230              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1231 }
1232 
1233 std::pair<SDValue, SDValue>
1234 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1235                                        const SDLoc &DL, EVT VT) {
1236   assert(!VT.bitsEq(Op.getValueType()) &&
1237          "Strict no-op FP extend/round not allowed.");
1238   SDValue Res =
1239       VT.bitsGT(Op.getValueType())
1240           ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1241           : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1242                     {Chain, Op, getIntPtrConstant(0, DL)});
1243 
1244   return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1245 }
1246 
1247 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1248   return VT.bitsGT(Op.getValueType()) ?
1249     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1250     getNode(ISD::TRUNCATE, DL, VT, Op);
1251 }
1252 
1253 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1254   return VT.bitsGT(Op.getValueType()) ?
1255     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1256     getNode(ISD::TRUNCATE, DL, VT, Op);
1257 }
1258 
1259 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1260   return VT.bitsGT(Op.getValueType()) ?
1261     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1262     getNode(ISD::TRUNCATE, DL, VT, Op);
1263 }
1264 
1265 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1266                                         EVT OpVT) {
1267   if (VT.bitsLE(Op.getValueType()))
1268     return getNode(ISD::TRUNCATE, SL, VT, Op);
1269 
1270   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1271   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1272 }
1273 
1274 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1275   EVT OpVT = Op.getValueType();
1276   assert(VT.isInteger() && OpVT.isInteger() &&
1277          "Cannot getZeroExtendInReg FP types");
1278   assert(VT.isVector() == OpVT.isVector() &&
1279          "getZeroExtendInReg type should be vector iff the operand "
1280          "type is vector!");
1281   assert((!VT.isVector() ||
1282           VT.getVectorElementCount() == OpVT.getVectorElementCount()) &&
1283          "Vector element counts must match in getZeroExtendInReg");
1284   assert(VT.bitsLE(OpVT) && "Not extending!");
1285   if (OpVT == VT)
1286     return Op;
1287   APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(),
1288                                    VT.getScalarSizeInBits());
1289   return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1290 }
1291 
1292 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1293   // Only unsigned pointer semantics are supported right now. In the future this
1294   // might delegate to TLI to check pointer signedness.
1295   return getZExtOrTrunc(Op, DL, VT);
1296 }
1297 
1298 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1299   // Only unsigned pointer semantics are supported right now. In the future this
1300   // might delegate to TLI to check pointer signedness.
1301   return getZeroExtendInReg(Op, DL, VT);
1302 }
1303 
1304 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1305 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1306   EVT EltVT = VT.getScalarType();
1307   SDValue NegOne =
1308     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1309   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1310 }
1311 
1312 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1313   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1314   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1315 }
1316 
1317 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1318                                       EVT OpVT) {
1319   if (!V)
1320     return getConstant(0, DL, VT);
1321 
1322   switch (TLI->getBooleanContents(OpVT)) {
1323   case TargetLowering::ZeroOrOneBooleanContent:
1324   case TargetLowering::UndefinedBooleanContent:
1325     return getConstant(1, DL, VT);
1326   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1327     return getAllOnesConstant(DL, VT);
1328   }
1329   llvm_unreachable("Unexpected boolean content enum!");
1330 }
1331 
1332 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1333                                   bool isT, bool isO) {
1334   EVT EltVT = VT.getScalarType();
1335   assert((EltVT.getSizeInBits() >= 64 ||
1336           (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1337          "getConstant with a uint64_t value that doesn't fit in the type!");
1338   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1339 }
1340 
1341 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1342                                   bool isT, bool isO) {
1343   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1344 }
1345 
1346 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1347                                   EVT VT, bool isT, bool isO) {
1348   assert(VT.isInteger() && "Cannot create FP integer constant!");
1349 
1350   EVT EltVT = VT.getScalarType();
1351   const ConstantInt *Elt = &Val;
1352 
1353   // In some cases the vector type is legal but the element type is illegal and
1354   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1355   // inserted value (the type does not need to match the vector element type).
1356   // Any extra bits introduced will be truncated away.
1357   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1358                            TargetLowering::TypePromoteInteger) {
1359     EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1360     APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1361     Elt = ConstantInt::get(*getContext(), NewVal);
1362   }
1363   // In other cases the element type is illegal and needs to be expanded, for
1364   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1365   // the value into n parts and use a vector type with n-times the elements.
1366   // Then bitcast to the type requested.
1367   // Legalizing constants too early makes the DAGCombiner's job harder so we
1368   // only legalize if the DAG tells us we must produce legal types.
1369   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1370            TLI->getTypeAction(*getContext(), EltVT) ==
1371                TargetLowering::TypeExpandInteger) {
1372     const APInt &NewVal = Elt->getValue();
1373     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1374     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1375     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1376     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1377 
1378     // Check the temporary vector is the correct size. If this fails then
1379     // getTypeToTransformTo() probably returned a type whose size (in bits)
1380     // isn't a power-of-2 factor of the requested type size.
1381     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1382 
1383     SmallVector<SDValue, 2> EltParts;
1384     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1385       EltParts.push_back(getConstant(
1386           NewVal.lshr(i * ViaEltSizeInBits).zextOrTrunc(ViaEltSizeInBits), DL,
1387           ViaEltVT, isT, isO));
1388     }
1389 
1390     // EltParts is currently in little endian order. If we actually want
1391     // big-endian order then reverse it now.
1392     if (getDataLayout().isBigEndian())
1393       std::reverse(EltParts.begin(), EltParts.end());
1394 
1395     // The elements must be reversed when the element order is different
1396     // to the endianness of the elements (because the BITCAST is itself a
1397     // vector shuffle in this situation). However, we do not need any code to
1398     // perform this reversal because getConstant() is producing a vector
1399     // splat.
1400     // This situation occurs in MIPS MSA.
1401 
1402     SmallVector<SDValue, 8> Ops;
1403     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1404       llvm::append_range(Ops, EltParts);
1405 
1406     SDValue V =
1407         getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1408     return V;
1409   }
1410 
1411   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1412          "APInt size does not match type size!");
1413   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1414   FoldingSetNodeID ID;
1415   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1416   ID.AddPointer(Elt);
1417   ID.AddBoolean(isO);
1418   void *IP = nullptr;
1419   SDNode *N = nullptr;
1420   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1421     if (!VT.isVector())
1422       return SDValue(N, 0);
1423 
1424   if (!N) {
1425     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1426     CSEMap.InsertNode(N, IP);
1427     InsertNode(N);
1428     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1429   }
1430 
1431   SDValue Result(N, 0);
1432   if (VT.isScalableVector())
1433     Result = getSplatVector(VT, DL, Result);
1434   else if (VT.isVector())
1435     Result = getSplatBuildVector(VT, DL, Result);
1436 
1437   return Result;
1438 }
1439 
1440 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1441                                         bool isTarget) {
1442   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1443 }
1444 
1445 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1446                                              const SDLoc &DL, bool LegalTypes) {
1447   assert(VT.isInteger() && "Shift amount is not an integer type!");
1448   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1449   return getConstant(Val, DL, ShiftVT);
1450 }
1451 
1452 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
1453                                            bool isTarget) {
1454   return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1455 }
1456 
1457 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1458                                     bool isTarget) {
1459   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1460 }
1461 
1462 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1463                                     EVT VT, bool isTarget) {
1464   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1465 
1466   EVT EltVT = VT.getScalarType();
1467 
1468   // Do the map lookup using the actual bit pattern for the floating point
1469   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1470   // we don't have issues with SNANs.
1471   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1472   FoldingSetNodeID ID;
1473   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1474   ID.AddPointer(&V);
1475   void *IP = nullptr;
1476   SDNode *N = nullptr;
1477   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1478     if (!VT.isVector())
1479       return SDValue(N, 0);
1480 
1481   if (!N) {
1482     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1483     CSEMap.InsertNode(N, IP);
1484     InsertNode(N);
1485   }
1486 
1487   SDValue Result(N, 0);
1488   if (VT.isScalableVector())
1489     Result = getSplatVector(VT, DL, Result);
1490   else if (VT.isVector())
1491     Result = getSplatBuildVector(VT, DL, Result);
1492   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1493   return Result;
1494 }
1495 
1496 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1497                                     bool isTarget) {
1498   EVT EltVT = VT.getScalarType();
1499   if (EltVT == MVT::f32)
1500     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1501   else if (EltVT == MVT::f64)
1502     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1503   else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1504            EltVT == MVT::f16 || EltVT == MVT::bf16) {
1505     bool Ignored;
1506     APFloat APF = APFloat(Val);
1507     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1508                 &Ignored);
1509     return getConstantFP(APF, DL, VT, isTarget);
1510   } else
1511     llvm_unreachable("Unsupported type in getConstantFP");
1512 }
1513 
1514 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1515                                        EVT VT, int64_t Offset, bool isTargetGA,
1516                                        unsigned TargetFlags) {
1517   assert((TargetFlags == 0 || isTargetGA) &&
1518          "Cannot set target flags on target-independent globals");
1519 
1520   // Truncate (with sign-extension) the offset value to the pointer size.
1521   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1522   if (BitWidth < 64)
1523     Offset = SignExtend64(Offset, BitWidth);
1524 
1525   unsigned Opc;
1526   if (GV->isThreadLocal())
1527     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1528   else
1529     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1530 
1531   FoldingSetNodeID ID;
1532   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1533   ID.AddPointer(GV);
1534   ID.AddInteger(Offset);
1535   ID.AddInteger(TargetFlags);
1536   void *IP = nullptr;
1537   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1538     return SDValue(E, 0);
1539 
1540   auto *N = newSDNode<GlobalAddressSDNode>(
1541       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1542   CSEMap.InsertNode(N, IP);
1543     InsertNode(N);
1544   return SDValue(N, 0);
1545 }
1546 
1547 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1548   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1549   FoldingSetNodeID ID;
1550   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1551   ID.AddInteger(FI);
1552   void *IP = nullptr;
1553   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1554     return SDValue(E, 0);
1555 
1556   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1557   CSEMap.InsertNode(N, IP);
1558   InsertNode(N);
1559   return SDValue(N, 0);
1560 }
1561 
1562 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1563                                    unsigned TargetFlags) {
1564   assert((TargetFlags == 0 || isTarget) &&
1565          "Cannot set target flags on target-independent jump tables");
1566   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1567   FoldingSetNodeID ID;
1568   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1569   ID.AddInteger(JTI);
1570   ID.AddInteger(TargetFlags);
1571   void *IP = nullptr;
1572   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1573     return SDValue(E, 0);
1574 
1575   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1576   CSEMap.InsertNode(N, IP);
1577   InsertNode(N);
1578   return SDValue(N, 0);
1579 }
1580 
1581 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1582                                       MaybeAlign Alignment, int Offset,
1583                                       bool isTarget, unsigned TargetFlags) {
1584   assert((TargetFlags == 0 || isTarget) &&
1585          "Cannot set target flags on target-independent globals");
1586   if (!Alignment)
1587     Alignment = shouldOptForSize()
1588                     ? getDataLayout().getABITypeAlign(C->getType())
1589                     : getDataLayout().getPrefTypeAlign(C->getType());
1590   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1591   FoldingSetNodeID ID;
1592   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1593   ID.AddInteger(Alignment->value());
1594   ID.AddInteger(Offset);
1595   ID.AddPointer(C);
1596   ID.AddInteger(TargetFlags);
1597   void *IP = nullptr;
1598   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1599     return SDValue(E, 0);
1600 
1601   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1602                                           TargetFlags);
1603   CSEMap.InsertNode(N, IP);
1604   InsertNode(N);
1605   SDValue V = SDValue(N, 0);
1606   NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1607   return V;
1608 }
1609 
1610 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1611                                       MaybeAlign Alignment, int Offset,
1612                                       bool isTarget, unsigned TargetFlags) {
1613   assert((TargetFlags == 0 || isTarget) &&
1614          "Cannot set target flags on target-independent globals");
1615   if (!Alignment)
1616     Alignment = getDataLayout().getPrefTypeAlign(C->getType());
1617   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1618   FoldingSetNodeID ID;
1619   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1620   ID.AddInteger(Alignment->value());
1621   ID.AddInteger(Offset);
1622   C->addSelectionDAGCSEId(ID);
1623   ID.AddInteger(TargetFlags);
1624   void *IP = nullptr;
1625   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1626     return SDValue(E, 0);
1627 
1628   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1629                                           TargetFlags);
1630   CSEMap.InsertNode(N, IP);
1631   InsertNode(N);
1632   return SDValue(N, 0);
1633 }
1634 
1635 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1636                                      unsigned TargetFlags) {
1637   FoldingSetNodeID ID;
1638   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1639   ID.AddInteger(Index);
1640   ID.AddInteger(Offset);
1641   ID.AddInteger(TargetFlags);
1642   void *IP = nullptr;
1643   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1644     return SDValue(E, 0);
1645 
1646   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1647   CSEMap.InsertNode(N, IP);
1648   InsertNode(N);
1649   return SDValue(N, 0);
1650 }
1651 
1652 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1653   FoldingSetNodeID ID;
1654   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1655   ID.AddPointer(MBB);
1656   void *IP = nullptr;
1657   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1658     return SDValue(E, 0);
1659 
1660   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1661   CSEMap.InsertNode(N, IP);
1662   InsertNode(N);
1663   return SDValue(N, 0);
1664 }
1665 
1666 SDValue SelectionDAG::getValueType(EVT VT) {
1667   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1668       ValueTypeNodes.size())
1669     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1670 
1671   SDNode *&N = VT.isExtended() ?
1672     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1673 
1674   if (N) return SDValue(N, 0);
1675   N = newSDNode<VTSDNode>(VT);
1676   InsertNode(N);
1677   return SDValue(N, 0);
1678 }
1679 
1680 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1681   SDNode *&N = ExternalSymbols[Sym];
1682   if (N) return SDValue(N, 0);
1683   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1684   InsertNode(N);
1685   return SDValue(N, 0);
1686 }
1687 
1688 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1689   SDNode *&N = MCSymbols[Sym];
1690   if (N)
1691     return SDValue(N, 0);
1692   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1693   InsertNode(N);
1694   return SDValue(N, 0);
1695 }
1696 
1697 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1698                                               unsigned TargetFlags) {
1699   SDNode *&N =
1700       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1701   if (N) return SDValue(N, 0);
1702   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1703   InsertNode(N);
1704   return SDValue(N, 0);
1705 }
1706 
1707 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1708   if ((unsigned)Cond >= CondCodeNodes.size())
1709     CondCodeNodes.resize(Cond+1);
1710 
1711   if (!CondCodeNodes[Cond]) {
1712     auto *N = newSDNode<CondCodeSDNode>(Cond);
1713     CondCodeNodes[Cond] = N;
1714     InsertNode(N);
1715   }
1716 
1717   return SDValue(CondCodeNodes[Cond], 0);
1718 }
1719 
1720 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1721 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1722 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1723   std::swap(N1, N2);
1724   ShuffleVectorSDNode::commuteMask(M);
1725 }
1726 
1727 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1728                                        SDValue N2, ArrayRef<int> Mask) {
1729   assert(VT.getVectorNumElements() == Mask.size() &&
1730            "Must have the same number of vector elements as mask elements!");
1731   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1732          "Invalid VECTOR_SHUFFLE");
1733 
1734   // Canonicalize shuffle undef, undef -> undef
1735   if (N1.isUndef() && N2.isUndef())
1736     return getUNDEF(VT);
1737 
1738   // Validate that all indices in Mask are within the range of the elements
1739   // input to the shuffle.
1740   int NElts = Mask.size();
1741   assert(llvm::all_of(Mask,
1742                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1743          "Index out of range");
1744 
1745   // Copy the mask so we can do any needed cleanup.
1746   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1747 
1748   // Canonicalize shuffle v, v -> v, undef
1749   if (N1 == N2) {
1750     N2 = getUNDEF(VT);
1751     for (int i = 0; i != NElts; ++i)
1752       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1753   }
1754 
1755   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1756   if (N1.isUndef())
1757     commuteShuffle(N1, N2, MaskVec);
1758 
1759   if (TLI->hasVectorBlend()) {
1760     // If shuffling a splat, try to blend the splat instead. We do this here so
1761     // that even when this arises during lowering we don't have to re-handle it.
1762     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1763       BitVector UndefElements;
1764       SDValue Splat = BV->getSplatValue(&UndefElements);
1765       if (!Splat)
1766         return;
1767 
1768       for (int i = 0; i < NElts; ++i) {
1769         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1770           continue;
1771 
1772         // If this input comes from undef, mark it as such.
1773         if (UndefElements[MaskVec[i] - Offset]) {
1774           MaskVec[i] = -1;
1775           continue;
1776         }
1777 
1778         // If we can blend a non-undef lane, use that instead.
1779         if (!UndefElements[i])
1780           MaskVec[i] = i + Offset;
1781       }
1782     };
1783     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1784       BlendSplat(N1BV, 0);
1785     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1786       BlendSplat(N2BV, NElts);
1787   }
1788 
1789   // Canonicalize all index into lhs, -> shuffle lhs, undef
1790   // Canonicalize all index into rhs, -> shuffle rhs, undef
1791   bool AllLHS = true, AllRHS = true;
1792   bool N2Undef = N2.isUndef();
1793   for (int i = 0; i != NElts; ++i) {
1794     if (MaskVec[i] >= NElts) {
1795       if (N2Undef)
1796         MaskVec[i] = -1;
1797       else
1798         AllLHS = false;
1799     } else if (MaskVec[i] >= 0) {
1800       AllRHS = false;
1801     }
1802   }
1803   if (AllLHS && AllRHS)
1804     return getUNDEF(VT);
1805   if (AllLHS && !N2Undef)
1806     N2 = getUNDEF(VT);
1807   if (AllRHS) {
1808     N1 = getUNDEF(VT);
1809     commuteShuffle(N1, N2, MaskVec);
1810   }
1811   // Reset our undef status after accounting for the mask.
1812   N2Undef = N2.isUndef();
1813   // Re-check whether both sides ended up undef.
1814   if (N1.isUndef() && N2Undef)
1815     return getUNDEF(VT);
1816 
1817   // If Identity shuffle return that node.
1818   bool Identity = true, AllSame = true;
1819   for (int i = 0; i != NElts; ++i) {
1820     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1821     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1822   }
1823   if (Identity && NElts)
1824     return N1;
1825 
1826   // Shuffling a constant splat doesn't change the result.
1827   if (N2Undef) {
1828     SDValue V = N1;
1829 
1830     // Look through any bitcasts. We check that these don't change the number
1831     // (and size) of elements and just changes their types.
1832     while (V.getOpcode() == ISD::BITCAST)
1833       V = V->getOperand(0);
1834 
1835     // A splat should always show up as a build vector node.
1836     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1837       BitVector UndefElements;
1838       SDValue Splat = BV->getSplatValue(&UndefElements);
1839       // If this is a splat of an undef, shuffling it is also undef.
1840       if (Splat && Splat.isUndef())
1841         return getUNDEF(VT);
1842 
1843       bool SameNumElts =
1844           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1845 
1846       // We only have a splat which can skip shuffles if there is a splatted
1847       // value and no undef lanes rearranged by the shuffle.
1848       if (Splat && UndefElements.none()) {
1849         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1850         // number of elements match or the value splatted is a zero constant.
1851         if (SameNumElts)
1852           return N1;
1853         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1854           if (C->isNullValue())
1855             return N1;
1856       }
1857 
1858       // If the shuffle itself creates a splat, build the vector directly.
1859       if (AllSame && SameNumElts) {
1860         EVT BuildVT = BV->getValueType(0);
1861         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1862         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1863 
1864         // We may have jumped through bitcasts, so the type of the
1865         // BUILD_VECTOR may not match the type of the shuffle.
1866         if (BuildVT != VT)
1867           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1868         return NewBV;
1869       }
1870     }
1871   }
1872 
1873   FoldingSetNodeID ID;
1874   SDValue Ops[2] = { N1, N2 };
1875   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1876   for (int i = 0; i != NElts; ++i)
1877     ID.AddInteger(MaskVec[i]);
1878 
1879   void* IP = nullptr;
1880   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1881     return SDValue(E, 0);
1882 
1883   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1884   // SDNode doesn't have access to it.  This memory will be "leaked" when
1885   // the node is deallocated, but recovered when the NodeAllocator is released.
1886   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1887   llvm::copy(MaskVec, MaskAlloc);
1888 
1889   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1890                                            dl.getDebugLoc(), MaskAlloc);
1891   createOperands(N, Ops);
1892 
1893   CSEMap.InsertNode(N, IP);
1894   InsertNode(N);
1895   SDValue V = SDValue(N, 0);
1896   NewSDValueDbgMsg(V, "Creating new node: ", this);
1897   return V;
1898 }
1899 
1900 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1901   EVT VT = SV.getValueType(0);
1902   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1903   ShuffleVectorSDNode::commuteMask(MaskVec);
1904 
1905   SDValue Op0 = SV.getOperand(0);
1906   SDValue Op1 = SV.getOperand(1);
1907   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1908 }
1909 
1910 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1911   FoldingSetNodeID ID;
1912   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1913   ID.AddInteger(RegNo);
1914   void *IP = nullptr;
1915   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1916     return SDValue(E, 0);
1917 
1918   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1919   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
1920   CSEMap.InsertNode(N, IP);
1921   InsertNode(N);
1922   return SDValue(N, 0);
1923 }
1924 
1925 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1926   FoldingSetNodeID ID;
1927   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1928   ID.AddPointer(RegMask);
1929   void *IP = nullptr;
1930   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1931     return SDValue(E, 0);
1932 
1933   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1934   CSEMap.InsertNode(N, IP);
1935   InsertNode(N);
1936   return SDValue(N, 0);
1937 }
1938 
1939 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1940                                  MCSymbol *Label) {
1941   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
1942 }
1943 
1944 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
1945                                    SDValue Root, MCSymbol *Label) {
1946   FoldingSetNodeID ID;
1947   SDValue Ops[] = { Root };
1948   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
1949   ID.AddPointer(Label);
1950   void *IP = nullptr;
1951   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1952     return SDValue(E, 0);
1953 
1954   auto *N =
1955       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
1956   createOperands(N, Ops);
1957 
1958   CSEMap.InsertNode(N, IP);
1959   InsertNode(N);
1960   return SDValue(N, 0);
1961 }
1962 
1963 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1964                                       int64_t Offset, bool isTarget,
1965                                       unsigned TargetFlags) {
1966   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1967 
1968   FoldingSetNodeID ID;
1969   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1970   ID.AddPointer(BA);
1971   ID.AddInteger(Offset);
1972   ID.AddInteger(TargetFlags);
1973   void *IP = nullptr;
1974   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1975     return SDValue(E, 0);
1976 
1977   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
1978   CSEMap.InsertNode(N, IP);
1979   InsertNode(N);
1980   return SDValue(N, 0);
1981 }
1982 
1983 SDValue SelectionDAG::getSrcValue(const Value *V) {
1984   FoldingSetNodeID ID;
1985   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
1986   ID.AddPointer(V);
1987 
1988   void *IP = nullptr;
1989   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1990     return SDValue(E, 0);
1991 
1992   auto *N = newSDNode<SrcValueSDNode>(V);
1993   CSEMap.InsertNode(N, IP);
1994   InsertNode(N);
1995   return SDValue(N, 0);
1996 }
1997 
1998 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1999   FoldingSetNodeID ID;
2000   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
2001   ID.AddPointer(MD);
2002 
2003   void *IP = nullptr;
2004   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2005     return SDValue(E, 0);
2006 
2007   auto *N = newSDNode<MDNodeSDNode>(MD);
2008   CSEMap.InsertNode(N, IP);
2009   InsertNode(N);
2010   return SDValue(N, 0);
2011 }
2012 
2013 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
2014   if (VT == V.getValueType())
2015     return V;
2016 
2017   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
2018 }
2019 
2020 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
2021                                        unsigned SrcAS, unsigned DestAS) {
2022   SDValue Ops[] = {Ptr};
2023   FoldingSetNodeID ID;
2024   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
2025   ID.AddInteger(SrcAS);
2026   ID.AddInteger(DestAS);
2027 
2028   void *IP = nullptr;
2029   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2030     return SDValue(E, 0);
2031 
2032   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
2033                                            VT, SrcAS, DestAS);
2034   createOperands(N, Ops);
2035 
2036   CSEMap.InsertNode(N, IP);
2037   InsertNode(N);
2038   return SDValue(N, 0);
2039 }
2040 
2041 SDValue SelectionDAG::getFreeze(SDValue V) {
2042   return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
2043 }
2044 
2045 /// getShiftAmountOperand - Return the specified value casted to
2046 /// the target's desired shift amount type.
2047 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
2048   EVT OpTy = Op.getValueType();
2049   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
2050   if (OpTy == ShTy || OpTy.isVector()) return Op;
2051 
2052   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
2053 }
2054 
2055 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
2056   SDLoc dl(Node);
2057   const TargetLowering &TLI = getTargetLoweringInfo();
2058   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2059   EVT VT = Node->getValueType(0);
2060   SDValue Tmp1 = Node->getOperand(0);
2061   SDValue Tmp2 = Node->getOperand(1);
2062   const MaybeAlign MA(Node->getConstantOperandVal(3));
2063 
2064   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
2065                                Tmp2, MachinePointerInfo(V));
2066   SDValue VAList = VAListLoad;
2067 
2068   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2069     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2070                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
2071 
2072     VAList =
2073         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
2074                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
2075   }
2076 
2077   // Increment the pointer, VAList, to the next vaarg
2078   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2079                  getConstant(getDataLayout().getTypeAllocSize(
2080                                                VT.getTypeForEVT(*getContext())),
2081                              dl, VAList.getValueType()));
2082   // Store the incremented VAList to the legalized pointer
2083   Tmp1 =
2084       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
2085   // Load the actual argument out of the pointer VAList
2086   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
2087 }
2088 
2089 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
2090   SDLoc dl(Node);
2091   const TargetLowering &TLI = getTargetLoweringInfo();
2092   // This defaults to loading a pointer from the input and storing it to the
2093   // output, returning the chain.
2094   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2095   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2096   SDValue Tmp1 =
2097       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
2098               Node->getOperand(2), MachinePointerInfo(VS));
2099   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2100                   MachinePointerInfo(VD));
2101 }
2102 
2103 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) {
2104   const DataLayout &DL = getDataLayout();
2105   Type *Ty = VT.getTypeForEVT(*getContext());
2106   Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2107 
2108   if (TLI->isTypeLegal(VT) || !VT.isVector())
2109     return RedAlign;
2110 
2111   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2112   const Align StackAlign = TFI->getStackAlign();
2113 
2114   // See if we can choose a smaller ABI alignment in cases where it's an
2115   // illegal vector type that will get broken down.
2116   if (RedAlign > StackAlign) {
2117     EVT IntermediateVT;
2118     MVT RegisterVT;
2119     unsigned NumIntermediates;
2120     TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2121                                 NumIntermediates, RegisterVT);
2122     Ty = IntermediateVT.getTypeForEVT(*getContext());
2123     Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2124     if (RedAlign2 < RedAlign)
2125       RedAlign = RedAlign2;
2126   }
2127 
2128   return RedAlign;
2129 }
2130 
2131 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) {
2132   MachineFrameInfo &MFI = MF->getFrameInfo();
2133   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2134   int StackID = 0;
2135   if (Bytes.isScalable())
2136     StackID = TFI->getStackIDForScalableVectors();
2137   // The stack id gives an indication of whether the object is scalable or
2138   // not, so it's safe to pass in the minimum size here.
2139   int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment,
2140                                        false, nullptr, StackID);
2141   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2142 }
2143 
2144 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
2145   Type *Ty = VT.getTypeForEVT(*getContext());
2146   Align StackAlign =
2147       std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2148   return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2149 }
2150 
2151 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
2152   TypeSize VT1Size = VT1.getStoreSize();
2153   TypeSize VT2Size = VT2.getStoreSize();
2154   assert(VT1Size.isScalable() == VT2Size.isScalable() &&
2155          "Don't know how to choose the maximum size when creating a stack "
2156          "temporary");
2157   TypeSize Bytes =
2158       VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size;
2159 
2160   Type *Ty1 = VT1.getTypeForEVT(*getContext());
2161   Type *Ty2 = VT2.getTypeForEVT(*getContext());
2162   const DataLayout &DL = getDataLayout();
2163   Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2164   return CreateStackTemporary(Bytes, Align);
2165 }
2166 
2167 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2168                                 ISD::CondCode Cond, const SDLoc &dl) {
2169   EVT OpVT = N1.getValueType();
2170 
2171   // These setcc operations always fold.
2172   switch (Cond) {
2173   default: break;
2174   case ISD::SETFALSE:
2175   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2176   case ISD::SETTRUE:
2177   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2178 
2179   case ISD::SETOEQ:
2180   case ISD::SETOGT:
2181   case ISD::SETOGE:
2182   case ISD::SETOLT:
2183   case ISD::SETOLE:
2184   case ISD::SETONE:
2185   case ISD::SETO:
2186   case ISD::SETUO:
2187   case ISD::SETUEQ:
2188   case ISD::SETUNE:
2189     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2190     break;
2191   }
2192 
2193   if (OpVT.isInteger()) {
2194     // For EQ and NE, we can always pick a value for the undef to make the
2195     // predicate pass or fail, so we can return undef.
2196     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2197     // icmp eq/ne X, undef -> undef.
2198     if ((N1.isUndef() || N2.isUndef()) &&
2199         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2200       return getUNDEF(VT);
2201 
2202     // If both operands are undef, we can return undef for int comparison.
2203     // icmp undef, undef -> undef.
2204     if (N1.isUndef() && N2.isUndef())
2205       return getUNDEF(VT);
2206 
2207     // icmp X, X -> true/false
2208     // icmp X, undef -> true/false because undef could be X.
2209     if (N1 == N2)
2210       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2211   }
2212 
2213   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2214     const APInt &C2 = N2C->getAPIntValue();
2215     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2216       const APInt &C1 = N1C->getAPIntValue();
2217 
2218       switch (Cond) {
2219       default: llvm_unreachable("Unknown integer setcc!");
2220       case ISD::SETEQ:  return getBoolConstant(C1 == C2, dl, VT, OpVT);
2221       case ISD::SETNE:  return getBoolConstant(C1 != C2, dl, VT, OpVT);
2222       case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
2223       case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
2224       case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
2225       case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
2226       case ISD::SETLT:  return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
2227       case ISD::SETGT:  return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
2228       case ISD::SETLE:  return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
2229       case ISD::SETGE:  return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
2230       }
2231     }
2232   }
2233 
2234   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2235   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2236 
2237   if (N1CFP && N2CFP) {
2238     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2239     switch (Cond) {
2240     default: break;
2241     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2242                         return getUNDEF(VT);
2243                       LLVM_FALLTHROUGH;
2244     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2245                                              OpVT);
2246     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2247                         return getUNDEF(VT);
2248                       LLVM_FALLTHROUGH;
2249     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2250                                              R==APFloat::cmpLessThan, dl, VT,
2251                                              OpVT);
2252     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2253                         return getUNDEF(VT);
2254                       LLVM_FALLTHROUGH;
2255     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2256                                              OpVT);
2257     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2258                         return getUNDEF(VT);
2259                       LLVM_FALLTHROUGH;
2260     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2261                                              VT, OpVT);
2262     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2263                         return getUNDEF(VT);
2264                       LLVM_FALLTHROUGH;
2265     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2266                                              R==APFloat::cmpEqual, dl, VT,
2267                                              OpVT);
2268     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2269                         return getUNDEF(VT);
2270                       LLVM_FALLTHROUGH;
2271     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2272                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2273     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2274                                              OpVT);
2275     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2276                                              OpVT);
2277     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2278                                              R==APFloat::cmpEqual, dl, VT,
2279                                              OpVT);
2280     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2281                                              OpVT);
2282     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2283                                              R==APFloat::cmpLessThan, dl, VT,
2284                                              OpVT);
2285     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2286                                              R==APFloat::cmpUnordered, dl, VT,
2287                                              OpVT);
2288     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2289                                              VT, OpVT);
2290     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2291                                              OpVT);
2292     }
2293   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2294     // Ensure that the constant occurs on the RHS.
2295     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2296     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2297       return SDValue();
2298     return getSetCC(dl, VT, N2, N1, SwappedCond);
2299   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2300              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2301     // If an operand is known to be a nan (or undef that could be a nan), we can
2302     // fold it.
2303     // Choosing NaN for the undef will always make unordered comparison succeed
2304     // and ordered comparison fails.
2305     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2306     switch (ISD::getUnorderedFlavor(Cond)) {
2307     default:
2308       llvm_unreachable("Unknown flavor!");
2309     case 0: // Known false.
2310       return getBoolConstant(false, dl, VT, OpVT);
2311     case 1: // Known true.
2312       return getBoolConstant(true, dl, VT, OpVT);
2313     case 2: // Undefined.
2314       return getUNDEF(VT);
2315     }
2316   }
2317 
2318   // Could not fold it.
2319   return SDValue();
2320 }
2321 
2322 /// See if the specified operand can be simplified with the knowledge that only
2323 /// the bits specified by DemandedBits are used.
2324 /// TODO: really we should be making this into the DAG equivalent of
2325 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2326 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2327   EVT VT = V.getValueType();
2328 
2329   if (VT.isScalableVector())
2330     return SDValue();
2331 
2332   APInt DemandedElts = VT.isVector()
2333                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2334                            : APInt(1, 1);
2335   return GetDemandedBits(V, DemandedBits, DemandedElts);
2336 }
2337 
2338 /// See if the specified operand can be simplified with the knowledge that only
2339 /// the bits specified by DemandedBits are used in the elements specified by
2340 /// DemandedElts.
2341 /// TODO: really we should be making this into the DAG equivalent of
2342 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2343 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2344                                       const APInt &DemandedElts) {
2345   switch (V.getOpcode()) {
2346   default:
2347     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2348                                                 *this, 0);
2349   case ISD::Constant: {
2350     const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue();
2351     APInt NewVal = CVal & DemandedBits;
2352     if (NewVal != CVal)
2353       return getConstant(NewVal, SDLoc(V), V.getValueType());
2354     break;
2355   }
2356   case ISD::SRL:
2357     // Only look at single-use SRLs.
2358     if (!V.getNode()->hasOneUse())
2359       break;
2360     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2361       // See if we can recursively simplify the LHS.
2362       unsigned Amt = RHSC->getZExtValue();
2363 
2364       // Watch out for shift count overflow though.
2365       if (Amt >= DemandedBits.getBitWidth())
2366         break;
2367       APInt SrcDemandedBits = DemandedBits << Amt;
2368       if (SDValue SimplifyLHS =
2369               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2370         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2371                        V.getOperand(1));
2372     }
2373     break;
2374   }
2375   return SDValue();
2376 }
2377 
2378 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2379 /// use this predicate to simplify operations downstream.
2380 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2381   unsigned BitWidth = Op.getScalarValueSizeInBits();
2382   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2383 }
2384 
2385 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2386 /// this predicate to simplify operations downstream.  Mask is known to be zero
2387 /// for bits that V cannot have.
2388 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2389                                      unsigned Depth) const {
2390   return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2391 }
2392 
2393 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2394 /// DemandedElts.  We use this predicate to simplify operations downstream.
2395 /// Mask is known to be zero for bits that V cannot have.
2396 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2397                                      const APInt &DemandedElts,
2398                                      unsigned Depth) const {
2399   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2400 }
2401 
2402 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2403 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2404                                         unsigned Depth) const {
2405   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2406 }
2407 
2408 /// isSplatValue - Return true if the vector V has the same value
2409 /// across all DemandedElts. For scalable vectors it does not make
2410 /// sense to specify which elements are demanded or undefined, therefore
2411 /// they are simply ignored.
2412 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2413                                 APInt &UndefElts, unsigned Depth) {
2414   EVT VT = V.getValueType();
2415   assert(VT.isVector() && "Vector type expected");
2416 
2417   if (!VT.isScalableVector() && !DemandedElts)
2418     return false; // No demanded elts, better to assume we don't know anything.
2419 
2420   if (Depth >= MaxRecursionDepth)
2421     return false; // Limit search depth.
2422 
2423   // Deal with some common cases here that work for both fixed and scalable
2424   // vector types.
2425   switch (V.getOpcode()) {
2426   case ISD::SPLAT_VECTOR:
2427     UndefElts = V.getOperand(0).isUndef()
2428                     ? APInt::getAllOnesValue(DemandedElts.getBitWidth())
2429                     : APInt(DemandedElts.getBitWidth(), 0);
2430     return true;
2431   case ISD::ADD:
2432   case ISD::SUB:
2433   case ISD::AND: {
2434     APInt UndefLHS, UndefRHS;
2435     SDValue LHS = V.getOperand(0);
2436     SDValue RHS = V.getOperand(1);
2437     if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) &&
2438         isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) {
2439       UndefElts = UndefLHS | UndefRHS;
2440       return true;
2441     }
2442     break;
2443   }
2444   case ISD::TRUNCATE:
2445   case ISD::SIGN_EXTEND:
2446   case ISD::ZERO_EXTEND:
2447     return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1);
2448   }
2449 
2450   // We don't support other cases than those above for scalable vectors at
2451   // the moment.
2452   if (VT.isScalableVector())
2453     return false;
2454 
2455   unsigned NumElts = VT.getVectorNumElements();
2456   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2457   UndefElts = APInt::getNullValue(NumElts);
2458 
2459   switch (V.getOpcode()) {
2460   case ISD::BUILD_VECTOR: {
2461     SDValue Scl;
2462     for (unsigned i = 0; i != NumElts; ++i) {
2463       SDValue Op = V.getOperand(i);
2464       if (Op.isUndef()) {
2465         UndefElts.setBit(i);
2466         continue;
2467       }
2468       if (!DemandedElts[i])
2469         continue;
2470       if (Scl && Scl != Op)
2471         return false;
2472       Scl = Op;
2473     }
2474     return true;
2475   }
2476   case ISD::VECTOR_SHUFFLE: {
2477     // Check if this is a shuffle node doing a splat.
2478     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2479     int SplatIndex = -1;
2480     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2481     for (int i = 0; i != (int)NumElts; ++i) {
2482       int M = Mask[i];
2483       if (M < 0) {
2484         UndefElts.setBit(i);
2485         continue;
2486       }
2487       if (!DemandedElts[i])
2488         continue;
2489       if (0 <= SplatIndex && SplatIndex != M)
2490         return false;
2491       SplatIndex = M;
2492     }
2493     return true;
2494   }
2495   case ISD::EXTRACT_SUBVECTOR: {
2496     // Offset the demanded elts by the subvector index.
2497     SDValue Src = V.getOperand(0);
2498     uint64_t Idx = V.getConstantOperandVal(1);
2499     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2500     APInt UndefSrcElts;
2501     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2502     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
2503       UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2504       return true;
2505     }
2506     break;
2507   }
2508   }
2509 
2510   return false;
2511 }
2512 
2513 /// Helper wrapper to main isSplatValue function.
2514 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) {
2515   EVT VT = V.getValueType();
2516   assert(VT.isVector() && "Vector type expected");
2517 
2518   APInt UndefElts;
2519   APInt DemandedElts;
2520 
2521   // For now we don't support this with scalable vectors.
2522   if (!VT.isScalableVector())
2523     DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2524   return isSplatValue(V, DemandedElts, UndefElts) &&
2525          (AllowUndefs || !UndefElts);
2526 }
2527 
2528 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2529   V = peekThroughExtractSubvectors(V);
2530 
2531   EVT VT = V.getValueType();
2532   unsigned Opcode = V.getOpcode();
2533   switch (Opcode) {
2534   default: {
2535     APInt UndefElts;
2536     APInt DemandedElts;
2537 
2538     if (!VT.isScalableVector())
2539       DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2540 
2541     if (isSplatValue(V, DemandedElts, UndefElts)) {
2542       if (VT.isScalableVector()) {
2543         // DemandedElts and UndefElts are ignored for scalable vectors, since
2544         // the only supported cases are SPLAT_VECTOR nodes.
2545         SplatIdx = 0;
2546       } else {
2547         // Handle case where all demanded elements are UNDEF.
2548         if (DemandedElts.isSubsetOf(UndefElts)) {
2549           SplatIdx = 0;
2550           return getUNDEF(VT);
2551         }
2552         SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2553       }
2554       return V;
2555     }
2556     break;
2557   }
2558   case ISD::SPLAT_VECTOR:
2559     SplatIdx = 0;
2560     return V;
2561   case ISD::VECTOR_SHUFFLE: {
2562     if (VT.isScalableVector())
2563       return SDValue();
2564 
2565     // Check if this is a shuffle node doing a splat.
2566     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2567     // getTargetVShiftNode currently struggles without the splat source.
2568     auto *SVN = cast<ShuffleVectorSDNode>(V);
2569     if (!SVN->isSplat())
2570       break;
2571     int Idx = SVN->getSplatIndex();
2572     int NumElts = V.getValueType().getVectorNumElements();
2573     SplatIdx = Idx % NumElts;
2574     return V.getOperand(Idx / NumElts);
2575   }
2576   }
2577 
2578   return SDValue();
2579 }
2580 
2581 SDValue SelectionDAG::getSplatValue(SDValue V) {
2582   int SplatIdx;
2583   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx))
2584     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V),
2585                    SrcVector.getValueType().getScalarType(), SrcVector,
2586                    getVectorIdxConstant(SplatIdx, SDLoc(V)));
2587   return SDValue();
2588 }
2589 
2590 const APInt *
2591 SelectionDAG::getValidShiftAmountConstant(SDValue V,
2592                                           const APInt &DemandedElts) const {
2593   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2594           V.getOpcode() == ISD::SRA) &&
2595          "Unknown shift node");
2596   unsigned BitWidth = V.getScalarValueSizeInBits();
2597   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2598     // Shifting more than the bitwidth is not valid.
2599     const APInt &ShAmt = SA->getAPIntValue();
2600     if (ShAmt.ult(BitWidth))
2601       return &ShAmt;
2602   }
2603   return nullptr;
2604 }
2605 
2606 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant(
2607     SDValue V, const APInt &DemandedElts) const {
2608   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2609           V.getOpcode() == ISD::SRA) &&
2610          "Unknown shift node");
2611   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2612     return ValidAmt;
2613   unsigned BitWidth = V.getScalarValueSizeInBits();
2614   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2615   if (!BV)
2616     return nullptr;
2617   const APInt *MinShAmt = nullptr;
2618   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2619     if (!DemandedElts[i])
2620       continue;
2621     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2622     if (!SA)
2623       return nullptr;
2624     // Shifting more than the bitwidth is not valid.
2625     const APInt &ShAmt = SA->getAPIntValue();
2626     if (ShAmt.uge(BitWidth))
2627       return nullptr;
2628     if (MinShAmt && MinShAmt->ule(ShAmt))
2629       continue;
2630     MinShAmt = &ShAmt;
2631   }
2632   return MinShAmt;
2633 }
2634 
2635 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant(
2636     SDValue V, const APInt &DemandedElts) const {
2637   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2638           V.getOpcode() == ISD::SRA) &&
2639          "Unknown shift node");
2640   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2641     return ValidAmt;
2642   unsigned BitWidth = V.getScalarValueSizeInBits();
2643   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2644   if (!BV)
2645     return nullptr;
2646   const APInt *MaxShAmt = nullptr;
2647   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2648     if (!DemandedElts[i])
2649       continue;
2650     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2651     if (!SA)
2652       return nullptr;
2653     // Shifting more than the bitwidth is not valid.
2654     const APInt &ShAmt = SA->getAPIntValue();
2655     if (ShAmt.uge(BitWidth))
2656       return nullptr;
2657     if (MaxShAmt && MaxShAmt->uge(ShAmt))
2658       continue;
2659     MaxShAmt = &ShAmt;
2660   }
2661   return MaxShAmt;
2662 }
2663 
2664 /// Determine which bits of Op are known to be either zero or one and return
2665 /// them in Known. For vectors, the known bits are those that are shared by
2666 /// every vector element.
2667 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2668   EVT VT = Op.getValueType();
2669 
2670   // TOOD: Until we have a plan for how to represent demanded elements for
2671   // scalable vectors, we can just bail out for now.
2672   if (Op.getValueType().isScalableVector()) {
2673     unsigned BitWidth = Op.getScalarValueSizeInBits();
2674     return KnownBits(BitWidth);
2675   }
2676 
2677   APInt DemandedElts = VT.isVector()
2678                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2679                            : APInt(1, 1);
2680   return computeKnownBits(Op, DemandedElts, Depth);
2681 }
2682 
2683 /// Determine which bits of Op are known to be either zero or one and return
2684 /// them in Known. The DemandedElts argument allows us to only collect the known
2685 /// bits that are shared by the requested vector elements.
2686 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2687                                          unsigned Depth) const {
2688   unsigned BitWidth = Op.getScalarValueSizeInBits();
2689 
2690   KnownBits Known(BitWidth);   // Don't know anything.
2691 
2692   // TOOD: Until we have a plan for how to represent demanded elements for
2693   // scalable vectors, we can just bail out for now.
2694   if (Op.getValueType().isScalableVector())
2695     return Known;
2696 
2697   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2698     // We know all of the bits for a constant!
2699     return KnownBits::makeConstant(C->getAPIntValue());
2700   }
2701   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2702     // We know all of the bits for a constant fp!
2703     return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt());
2704   }
2705 
2706   if (Depth >= MaxRecursionDepth)
2707     return Known;  // Limit search depth.
2708 
2709   KnownBits Known2;
2710   unsigned NumElts = DemandedElts.getBitWidth();
2711   assert((!Op.getValueType().isVector() ||
2712           NumElts == Op.getValueType().getVectorNumElements()) &&
2713          "Unexpected vector size");
2714 
2715   if (!DemandedElts)
2716     return Known;  // No demanded elts, better to assume we don't know anything.
2717 
2718   unsigned Opcode = Op.getOpcode();
2719   switch (Opcode) {
2720   case ISD::BUILD_VECTOR:
2721     // Collect the known bits that are shared by every demanded vector element.
2722     Known.Zero.setAllBits(); Known.One.setAllBits();
2723     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2724       if (!DemandedElts[i])
2725         continue;
2726 
2727       SDValue SrcOp = Op.getOperand(i);
2728       Known2 = computeKnownBits(SrcOp, Depth + 1);
2729 
2730       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2731       if (SrcOp.getValueSizeInBits() != BitWidth) {
2732         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2733                "Expected BUILD_VECTOR implicit truncation");
2734         Known2 = Known2.trunc(BitWidth);
2735       }
2736 
2737       // Known bits are the values that are shared by every demanded element.
2738       Known = KnownBits::commonBits(Known, Known2);
2739 
2740       // If we don't know any bits, early out.
2741       if (Known.isUnknown())
2742         break;
2743     }
2744     break;
2745   case ISD::VECTOR_SHUFFLE: {
2746     // Collect the known bits that are shared by every vector element referenced
2747     // by the shuffle.
2748     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2749     Known.Zero.setAllBits(); Known.One.setAllBits();
2750     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2751     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2752     for (unsigned i = 0; i != NumElts; ++i) {
2753       if (!DemandedElts[i])
2754         continue;
2755 
2756       int M = SVN->getMaskElt(i);
2757       if (M < 0) {
2758         // For UNDEF elements, we don't know anything about the common state of
2759         // the shuffle result.
2760         Known.resetAll();
2761         DemandedLHS.clearAllBits();
2762         DemandedRHS.clearAllBits();
2763         break;
2764       }
2765 
2766       if ((unsigned)M < NumElts)
2767         DemandedLHS.setBit((unsigned)M % NumElts);
2768       else
2769         DemandedRHS.setBit((unsigned)M % NumElts);
2770     }
2771     // Known bits are the values that are shared by every demanded element.
2772     if (!!DemandedLHS) {
2773       SDValue LHS = Op.getOperand(0);
2774       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2775       Known = KnownBits::commonBits(Known, Known2);
2776     }
2777     // If we don't know any bits, early out.
2778     if (Known.isUnknown())
2779       break;
2780     if (!!DemandedRHS) {
2781       SDValue RHS = Op.getOperand(1);
2782       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2783       Known = KnownBits::commonBits(Known, Known2);
2784     }
2785     break;
2786   }
2787   case ISD::CONCAT_VECTORS: {
2788     // Split DemandedElts and test each of the demanded subvectors.
2789     Known.Zero.setAllBits(); Known.One.setAllBits();
2790     EVT SubVectorVT = Op.getOperand(0).getValueType();
2791     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2792     unsigned NumSubVectors = Op.getNumOperands();
2793     for (unsigned i = 0; i != NumSubVectors; ++i) {
2794       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2795       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2796       if (!!DemandedSub) {
2797         SDValue Sub = Op.getOperand(i);
2798         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2799         Known = KnownBits::commonBits(Known, Known2);
2800       }
2801       // If we don't know any bits, early out.
2802       if (Known.isUnknown())
2803         break;
2804     }
2805     break;
2806   }
2807   case ISD::INSERT_SUBVECTOR: {
2808     // Demand any elements from the subvector and the remainder from the src its
2809     // inserted into.
2810     SDValue Src = Op.getOperand(0);
2811     SDValue Sub = Op.getOperand(1);
2812     uint64_t Idx = Op.getConstantOperandVal(2);
2813     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2814     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2815     APInt DemandedSrcElts = DemandedElts;
2816     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
2817 
2818     Known.One.setAllBits();
2819     Known.Zero.setAllBits();
2820     if (!!DemandedSubElts) {
2821       Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2822       if (Known.isUnknown())
2823         break; // early-out.
2824     }
2825     if (!!DemandedSrcElts) {
2826       Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2827       Known = KnownBits::commonBits(Known, Known2);
2828     }
2829     break;
2830   }
2831   case ISD::EXTRACT_SUBVECTOR: {
2832     // Offset the demanded elts by the subvector index.
2833     SDValue Src = Op.getOperand(0);
2834     // Bail until we can represent demanded elements for scalable vectors.
2835     if (Src.getValueType().isScalableVector())
2836       break;
2837     uint64_t Idx = Op.getConstantOperandVal(1);
2838     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2839     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2840     Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2841     break;
2842   }
2843   case ISD::SCALAR_TO_VECTOR: {
2844     // We know about scalar_to_vector as much as we know about it source,
2845     // which becomes the first element of otherwise unknown vector.
2846     if (DemandedElts != 1)
2847       break;
2848 
2849     SDValue N0 = Op.getOperand(0);
2850     Known = computeKnownBits(N0, Depth + 1);
2851     if (N0.getValueSizeInBits() != BitWidth)
2852       Known = Known.trunc(BitWidth);
2853 
2854     break;
2855   }
2856   case ISD::BITCAST: {
2857     SDValue N0 = Op.getOperand(0);
2858     EVT SubVT = N0.getValueType();
2859     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2860 
2861     // Ignore bitcasts from unsupported types.
2862     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2863       break;
2864 
2865     // Fast handling of 'identity' bitcasts.
2866     if (BitWidth == SubBitWidth) {
2867       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
2868       break;
2869     }
2870 
2871     bool IsLE = getDataLayout().isLittleEndian();
2872 
2873     // Bitcast 'small element' vector to 'large element' scalar/vector.
2874     if ((BitWidth % SubBitWidth) == 0) {
2875       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2876 
2877       // Collect known bits for the (larger) output by collecting the known
2878       // bits from each set of sub elements and shift these into place.
2879       // We need to separately call computeKnownBits for each set of
2880       // sub elements as the knownbits for each is likely to be different.
2881       unsigned SubScale = BitWidth / SubBitWidth;
2882       APInt SubDemandedElts(NumElts * SubScale, 0);
2883       for (unsigned i = 0; i != NumElts; ++i)
2884         if (DemandedElts[i])
2885           SubDemandedElts.setBit(i * SubScale);
2886 
2887       for (unsigned i = 0; i != SubScale; ++i) {
2888         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
2889                          Depth + 1);
2890         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
2891         Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts);
2892         Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts);
2893       }
2894     }
2895 
2896     // Bitcast 'large element' scalar/vector to 'small element' vector.
2897     if ((SubBitWidth % BitWidth) == 0) {
2898       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2899 
2900       // Collect known bits for the (smaller) output by collecting the known
2901       // bits from the overlapping larger input elements and extracting the
2902       // sub sections we actually care about.
2903       unsigned SubScale = SubBitWidth / BitWidth;
2904       APInt SubDemandedElts(NumElts / SubScale, 0);
2905       for (unsigned i = 0; i != NumElts; ++i)
2906         if (DemandedElts[i])
2907           SubDemandedElts.setBit(i / SubScale);
2908 
2909       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
2910 
2911       Known.Zero.setAllBits(); Known.One.setAllBits();
2912       for (unsigned i = 0; i != NumElts; ++i)
2913         if (DemandedElts[i]) {
2914           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
2915           unsigned Offset = (Shifts % SubScale) * BitWidth;
2916           Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
2917           Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
2918           // If we don't know any bits, early out.
2919           if (Known.isUnknown())
2920             break;
2921         }
2922     }
2923     break;
2924   }
2925   case ISD::AND:
2926     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2927     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2928 
2929     Known &= Known2;
2930     break;
2931   case ISD::OR:
2932     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2933     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2934 
2935     Known |= Known2;
2936     break;
2937   case ISD::XOR:
2938     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2939     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2940 
2941     Known ^= Known2;
2942     break;
2943   case ISD::MUL: {
2944     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2945     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2946     Known = KnownBits::computeForMul(Known, Known2);
2947     break;
2948   }
2949   case ISD::UDIV: {
2950     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2951     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2952     Known = KnownBits::udiv(Known, Known2);
2953     break;
2954   }
2955   case ISD::SELECT:
2956   case ISD::VSELECT:
2957     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2958     // If we don't know any bits, early out.
2959     if (Known.isUnknown())
2960       break;
2961     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
2962 
2963     // Only known if known in both the LHS and RHS.
2964     Known = KnownBits::commonBits(Known, Known2);
2965     break;
2966   case ISD::SELECT_CC:
2967     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
2968     // If we don't know any bits, early out.
2969     if (Known.isUnknown())
2970       break;
2971     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2972 
2973     // Only known if known in both the LHS and RHS.
2974     Known = KnownBits::commonBits(Known, Known2);
2975     break;
2976   case ISD::SMULO:
2977   case ISD::UMULO:
2978   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
2979     if (Op.getResNo() != 1)
2980       break;
2981     // The boolean result conforms to getBooleanContents.
2982     // If we know the result of a setcc has the top bits zero, use this info.
2983     // We know that we have an integer-based boolean since these operations
2984     // are only available for integer.
2985     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2986             TargetLowering::ZeroOrOneBooleanContent &&
2987         BitWidth > 1)
2988       Known.Zero.setBitsFrom(1);
2989     break;
2990   case ISD::SETCC:
2991   case ISD::STRICT_FSETCC:
2992   case ISD::STRICT_FSETCCS: {
2993     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
2994     // If we know the result of a setcc has the top bits zero, use this info.
2995     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
2996             TargetLowering::ZeroOrOneBooleanContent &&
2997         BitWidth > 1)
2998       Known.Zero.setBitsFrom(1);
2999     break;
3000   }
3001   case ISD::SHL:
3002     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3003     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3004     Known = KnownBits::shl(Known, Known2);
3005 
3006     // Minimum shift low bits are known zero.
3007     if (const APInt *ShMinAmt =
3008             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3009       Known.Zero.setLowBits(ShMinAmt->getZExtValue());
3010     break;
3011   case ISD::SRL:
3012     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3013     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3014     Known = KnownBits::lshr(Known, Known2);
3015 
3016     // Minimum shift high bits are known zero.
3017     if (const APInt *ShMinAmt =
3018             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3019       Known.Zero.setHighBits(ShMinAmt->getZExtValue());
3020     break;
3021   case ISD::SRA:
3022     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3023     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3024     Known = KnownBits::ashr(Known, Known2);
3025     // TODO: Add minimum shift high known sign bits.
3026     break;
3027   case ISD::FSHL:
3028   case ISD::FSHR:
3029     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
3030       unsigned Amt = C->getAPIntValue().urem(BitWidth);
3031 
3032       // For fshl, 0-shift returns the 1st arg.
3033       // For fshr, 0-shift returns the 2nd arg.
3034       if (Amt == 0) {
3035         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
3036                                  DemandedElts, Depth + 1);
3037         break;
3038       }
3039 
3040       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3041       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3042       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3043       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3044       if (Opcode == ISD::FSHL) {
3045         Known.One <<= Amt;
3046         Known.Zero <<= Amt;
3047         Known2.One.lshrInPlace(BitWidth - Amt);
3048         Known2.Zero.lshrInPlace(BitWidth - Amt);
3049       } else {
3050         Known.One <<= BitWidth - Amt;
3051         Known.Zero <<= BitWidth - Amt;
3052         Known2.One.lshrInPlace(Amt);
3053         Known2.Zero.lshrInPlace(Amt);
3054       }
3055       Known.One |= Known2.One;
3056       Known.Zero |= Known2.Zero;
3057     }
3058     break;
3059   case ISD::SIGN_EXTEND_INREG: {
3060     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3061     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3062     Known = Known.sextInReg(EVT.getScalarSizeInBits());
3063     break;
3064   }
3065   case ISD::CTTZ:
3066   case ISD::CTTZ_ZERO_UNDEF: {
3067     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3068     // If we have a known 1, its position is our upper bound.
3069     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3070     unsigned LowBits = Log2_32(PossibleTZ) + 1;
3071     Known.Zero.setBitsFrom(LowBits);
3072     break;
3073   }
3074   case ISD::CTLZ:
3075   case ISD::CTLZ_ZERO_UNDEF: {
3076     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3077     // If we have a known 1, its position is our upper bound.
3078     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3079     unsigned LowBits = Log2_32(PossibleLZ) + 1;
3080     Known.Zero.setBitsFrom(LowBits);
3081     break;
3082   }
3083   case ISD::CTPOP: {
3084     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3085     // If we know some of the bits are zero, they can't be one.
3086     unsigned PossibleOnes = Known2.countMaxPopulation();
3087     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
3088     break;
3089   }
3090   case ISD::PARITY: {
3091     // Parity returns 0 everywhere but the LSB.
3092     Known.Zero.setBitsFrom(1);
3093     break;
3094   }
3095   case ISD::LOAD: {
3096     LoadSDNode *LD = cast<LoadSDNode>(Op);
3097     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3098     if (ISD::isNON_EXTLoad(LD) && Cst) {
3099       // Determine any common known bits from the loaded constant pool value.
3100       Type *CstTy = Cst->getType();
3101       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
3102         // If its a vector splat, then we can (quickly) reuse the scalar path.
3103         // NOTE: We assume all elements match and none are UNDEF.
3104         if (CstTy->isVectorTy()) {
3105           if (const Constant *Splat = Cst->getSplatValue()) {
3106             Cst = Splat;
3107             CstTy = Cst->getType();
3108           }
3109         }
3110         // TODO - do we need to handle different bitwidths?
3111         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3112           // Iterate across all vector elements finding common known bits.
3113           Known.One.setAllBits();
3114           Known.Zero.setAllBits();
3115           for (unsigned i = 0; i != NumElts; ++i) {
3116             if (!DemandedElts[i])
3117               continue;
3118             if (Constant *Elt = Cst->getAggregateElement(i)) {
3119               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3120                 const APInt &Value = CInt->getValue();
3121                 Known.One &= Value;
3122                 Known.Zero &= ~Value;
3123                 continue;
3124               }
3125               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3126                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3127                 Known.One &= Value;
3128                 Known.Zero &= ~Value;
3129                 continue;
3130               }
3131             }
3132             Known.One.clearAllBits();
3133             Known.Zero.clearAllBits();
3134             break;
3135           }
3136         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3137           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3138             Known = KnownBits::makeConstant(CInt->getValue());
3139           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3140             Known =
3141                 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt());
3142           }
3143         }
3144       }
3145     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3146       // If this is a ZEXTLoad and we are looking at the loaded value.
3147       EVT VT = LD->getMemoryVT();
3148       unsigned MemBits = VT.getScalarSizeInBits();
3149       Known.Zero.setBitsFrom(MemBits);
3150     } else if (const MDNode *Ranges = LD->getRanges()) {
3151       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
3152         computeKnownBitsFromRangeMetadata(*Ranges, Known);
3153     }
3154     break;
3155   }
3156   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3157     EVT InVT = Op.getOperand(0).getValueType();
3158     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3159     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3160     Known = Known.zext(BitWidth);
3161     break;
3162   }
3163   case ISD::ZERO_EXTEND: {
3164     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3165     Known = Known.zext(BitWidth);
3166     break;
3167   }
3168   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3169     EVT InVT = Op.getOperand(0).getValueType();
3170     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3171     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3172     // If the sign bit is known to be zero or one, then sext will extend
3173     // it to the top bits, else it will just zext.
3174     Known = Known.sext(BitWidth);
3175     break;
3176   }
3177   case ISD::SIGN_EXTEND: {
3178     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3179     // If the sign bit is known to be zero or one, then sext will extend
3180     // it to the top bits, else it will just zext.
3181     Known = Known.sext(BitWidth);
3182     break;
3183   }
3184   case ISD::ANY_EXTEND_VECTOR_INREG: {
3185     EVT InVT = Op.getOperand(0).getValueType();
3186     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3187     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3188     Known = Known.anyext(BitWidth);
3189     break;
3190   }
3191   case ISD::ANY_EXTEND: {
3192     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3193     Known = Known.anyext(BitWidth);
3194     break;
3195   }
3196   case ISD::TRUNCATE: {
3197     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3198     Known = Known.trunc(BitWidth);
3199     break;
3200   }
3201   case ISD::AssertZext: {
3202     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3203     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3204     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3205     Known.Zero |= (~InMask);
3206     Known.One  &= (~Known.Zero);
3207     break;
3208   }
3209   case ISD::AssertAlign: {
3210     unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
3211     assert(LogOfAlign != 0);
3212     // If a node is guaranteed to be aligned, set low zero bits accordingly as
3213     // well as clearing one bits.
3214     Known.Zero.setLowBits(LogOfAlign);
3215     Known.One.clearLowBits(LogOfAlign);
3216     break;
3217   }
3218   case ISD::FGETSIGN:
3219     // All bits are zero except the low bit.
3220     Known.Zero.setBitsFrom(1);
3221     break;
3222   case ISD::USUBO:
3223   case ISD::SSUBO:
3224     if (Op.getResNo() == 1) {
3225       // If we know the result of a setcc has the top bits zero, use this info.
3226       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3227               TargetLowering::ZeroOrOneBooleanContent &&
3228           BitWidth > 1)
3229         Known.Zero.setBitsFrom(1);
3230       break;
3231     }
3232     LLVM_FALLTHROUGH;
3233   case ISD::SUB:
3234   case ISD::SUBC: {
3235     assert(Op.getResNo() == 0 &&
3236            "We only compute knownbits for the difference here.");
3237 
3238     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3239     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3240     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3241                                         Known, Known2);
3242     break;
3243   }
3244   case ISD::UADDO:
3245   case ISD::SADDO:
3246   case ISD::ADDCARRY:
3247     if (Op.getResNo() == 1) {
3248       // If we know the result of a setcc has the top bits zero, use this info.
3249       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3250               TargetLowering::ZeroOrOneBooleanContent &&
3251           BitWidth > 1)
3252         Known.Zero.setBitsFrom(1);
3253       break;
3254     }
3255     LLVM_FALLTHROUGH;
3256   case ISD::ADD:
3257   case ISD::ADDC:
3258   case ISD::ADDE: {
3259     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3260 
3261     // With ADDE and ADDCARRY, a carry bit may be added in.
3262     KnownBits Carry(1);
3263     if (Opcode == ISD::ADDE)
3264       // Can't track carry from glue, set carry to unknown.
3265       Carry.resetAll();
3266     else if (Opcode == ISD::ADDCARRY)
3267       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3268       // the trouble (how often will we find a known carry bit). And I haven't
3269       // tested this very much yet, but something like this might work:
3270       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3271       //   Carry = Carry.zextOrTrunc(1, false);
3272       Carry.resetAll();
3273     else
3274       Carry.setAllZero();
3275 
3276     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3277     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3278     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3279     break;
3280   }
3281   case ISD::SREM: {
3282     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3283     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3284     Known = KnownBits::srem(Known, Known2);
3285     break;
3286   }
3287   case ISD::UREM: {
3288     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3289     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3290     Known = KnownBits::urem(Known, Known2);
3291     break;
3292   }
3293   case ISD::EXTRACT_ELEMENT: {
3294     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3295     const unsigned Index = Op.getConstantOperandVal(1);
3296     const unsigned EltBitWidth = Op.getValueSizeInBits();
3297 
3298     // Remove low part of known bits mask
3299     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3300     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3301 
3302     // Remove high part of known bit mask
3303     Known = Known.trunc(EltBitWidth);
3304     break;
3305   }
3306   case ISD::EXTRACT_VECTOR_ELT: {
3307     SDValue InVec = Op.getOperand(0);
3308     SDValue EltNo = Op.getOperand(1);
3309     EVT VecVT = InVec.getValueType();
3310     // computeKnownBits not yet implemented for scalable vectors.
3311     if (VecVT.isScalableVector())
3312       break;
3313     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3314     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3315 
3316     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3317     // anything about the extended bits.
3318     if (BitWidth > EltBitWidth)
3319       Known = Known.trunc(EltBitWidth);
3320 
3321     // If we know the element index, just demand that vector element, else for
3322     // an unknown element index, ignore DemandedElts and demand them all.
3323     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3324     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3325     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3326       DemandedSrcElts =
3327           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3328 
3329     Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
3330     if (BitWidth > EltBitWidth)
3331       Known = Known.anyext(BitWidth);
3332     break;
3333   }
3334   case ISD::INSERT_VECTOR_ELT: {
3335     // If we know the element index, split the demand between the
3336     // source vector and the inserted element, otherwise assume we need
3337     // the original demanded vector elements and the value.
3338     SDValue InVec = Op.getOperand(0);
3339     SDValue InVal = Op.getOperand(1);
3340     SDValue EltNo = Op.getOperand(2);
3341     bool DemandedVal = true;
3342     APInt DemandedVecElts = DemandedElts;
3343     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3344     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3345       unsigned EltIdx = CEltNo->getZExtValue();
3346       DemandedVal = !!DemandedElts[EltIdx];
3347       DemandedVecElts.clearBit(EltIdx);
3348     }
3349     Known.One.setAllBits();
3350     Known.Zero.setAllBits();
3351     if (DemandedVal) {
3352       Known2 = computeKnownBits(InVal, Depth + 1);
3353       Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth));
3354     }
3355     if (!!DemandedVecElts) {
3356       Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
3357       Known = KnownBits::commonBits(Known, Known2);
3358     }
3359     break;
3360   }
3361   case ISD::BITREVERSE: {
3362     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3363     Known = Known2.reverseBits();
3364     break;
3365   }
3366   case ISD::BSWAP: {
3367     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3368     Known = Known2.byteSwap();
3369     break;
3370   }
3371   case ISD::ABS: {
3372     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3373     Known = Known2.abs();
3374     break;
3375   }
3376   case ISD::UMIN: {
3377     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3378     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3379     Known = KnownBits::umin(Known, Known2);
3380     break;
3381   }
3382   case ISD::UMAX: {
3383     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3384     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3385     Known = KnownBits::umax(Known, Known2);
3386     break;
3387   }
3388   case ISD::SMIN:
3389   case ISD::SMAX: {
3390     // If we have a clamp pattern, we know that the number of sign bits will be
3391     // the minimum of the clamp min/max range.
3392     bool IsMax = (Opcode == ISD::SMAX);
3393     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3394     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3395       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3396         CstHigh =
3397             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3398     if (CstLow && CstHigh) {
3399       if (!IsMax)
3400         std::swap(CstLow, CstHigh);
3401 
3402       const APInt &ValueLow = CstLow->getAPIntValue();
3403       const APInt &ValueHigh = CstHigh->getAPIntValue();
3404       if (ValueLow.sle(ValueHigh)) {
3405         unsigned LowSignBits = ValueLow.getNumSignBits();
3406         unsigned HighSignBits = ValueHigh.getNumSignBits();
3407         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3408         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3409           Known.One.setHighBits(MinSignBits);
3410           break;
3411         }
3412         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3413           Known.Zero.setHighBits(MinSignBits);
3414           break;
3415         }
3416       }
3417     }
3418 
3419     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3420     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3421     if (IsMax)
3422       Known = KnownBits::smax(Known, Known2);
3423     else
3424       Known = KnownBits::smin(Known, Known2);
3425     break;
3426   }
3427   case ISD::FrameIndex:
3428   case ISD::TargetFrameIndex:
3429     TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
3430                                        Known, getMachineFunction());
3431     break;
3432 
3433   default:
3434     if (Opcode < ISD::BUILTIN_OP_END)
3435       break;
3436     LLVM_FALLTHROUGH;
3437   case ISD::INTRINSIC_WO_CHAIN:
3438   case ISD::INTRINSIC_W_CHAIN:
3439   case ISD::INTRINSIC_VOID:
3440     // Allow the target to implement this method for its nodes.
3441     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3442     break;
3443   }
3444 
3445   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3446   return Known;
3447 }
3448 
3449 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3450                                                              SDValue N1) const {
3451   // X + 0 never overflow
3452   if (isNullConstant(N1))
3453     return OFK_Never;
3454 
3455   KnownBits N1Known = computeKnownBits(N1);
3456   if (N1Known.Zero.getBoolValue()) {
3457     KnownBits N0Known = computeKnownBits(N0);
3458 
3459     bool overflow;
3460     (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
3461     if (!overflow)
3462       return OFK_Never;
3463   }
3464 
3465   // mulhi + 1 never overflow
3466   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3467       (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
3468     return OFK_Never;
3469 
3470   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3471     KnownBits N0Known = computeKnownBits(N0);
3472 
3473     if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
3474       return OFK_Never;
3475   }
3476 
3477   return OFK_Sometime;
3478 }
3479 
3480 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3481   EVT OpVT = Val.getValueType();
3482   unsigned BitWidth = OpVT.getScalarSizeInBits();
3483 
3484   // Is the constant a known power of 2?
3485   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3486     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3487 
3488   // A left-shift of a constant one will have exactly one bit set because
3489   // shifting the bit off the end is undefined.
3490   if (Val.getOpcode() == ISD::SHL) {
3491     auto *C = isConstOrConstSplat(Val.getOperand(0));
3492     if (C && C->getAPIntValue() == 1)
3493       return true;
3494   }
3495 
3496   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3497   // one bit set.
3498   if (Val.getOpcode() == ISD::SRL) {
3499     auto *C = isConstOrConstSplat(Val.getOperand(0));
3500     if (C && C->getAPIntValue().isSignMask())
3501       return true;
3502   }
3503 
3504   // Are all operands of a build vector constant powers of two?
3505   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3506     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3507           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3508             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3509           return false;
3510         }))
3511       return true;
3512 
3513   // More could be done here, though the above checks are enough
3514   // to handle some common cases.
3515 
3516   // Fall back to computeKnownBits to catch other known cases.
3517   KnownBits Known = computeKnownBits(Val);
3518   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3519 }
3520 
3521 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3522   EVT VT = Op.getValueType();
3523 
3524   // TODO: Assume we don't know anything for now.
3525   if (VT.isScalableVector())
3526     return 1;
3527 
3528   APInt DemandedElts = VT.isVector()
3529                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
3530                            : APInt(1, 1);
3531   return ComputeNumSignBits(Op, DemandedElts, Depth);
3532 }
3533 
3534 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3535                                           unsigned Depth) const {
3536   EVT VT = Op.getValueType();
3537   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3538   unsigned VTBits = VT.getScalarSizeInBits();
3539   unsigned NumElts = DemandedElts.getBitWidth();
3540   unsigned Tmp, Tmp2;
3541   unsigned FirstAnswer = 1;
3542 
3543   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3544     const APInt &Val = C->getAPIntValue();
3545     return Val.getNumSignBits();
3546   }
3547 
3548   if (Depth >= MaxRecursionDepth)
3549     return 1;  // Limit search depth.
3550 
3551   if (!DemandedElts || VT.isScalableVector())
3552     return 1;  // No demanded elts, better to assume we don't know anything.
3553 
3554   unsigned Opcode = Op.getOpcode();
3555   switch (Opcode) {
3556   default: break;
3557   case ISD::AssertSext:
3558     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3559     return VTBits-Tmp+1;
3560   case ISD::AssertZext:
3561     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3562     return VTBits-Tmp;
3563 
3564   case ISD::BUILD_VECTOR:
3565     Tmp = VTBits;
3566     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3567       if (!DemandedElts[i])
3568         continue;
3569 
3570       SDValue SrcOp = Op.getOperand(i);
3571       Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
3572 
3573       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3574       if (SrcOp.getValueSizeInBits() != VTBits) {
3575         assert(SrcOp.getValueSizeInBits() > VTBits &&
3576                "Expected BUILD_VECTOR implicit truncation");
3577         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3578         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3579       }
3580       Tmp = std::min(Tmp, Tmp2);
3581     }
3582     return Tmp;
3583 
3584   case ISD::VECTOR_SHUFFLE: {
3585     // Collect the minimum number of sign bits that are shared by every vector
3586     // element referenced by the shuffle.
3587     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3588     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3589     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3590     for (unsigned i = 0; i != NumElts; ++i) {
3591       int M = SVN->getMaskElt(i);
3592       if (!DemandedElts[i])
3593         continue;
3594       // For UNDEF elements, we don't know anything about the common state of
3595       // the shuffle result.
3596       if (M < 0)
3597         return 1;
3598       if ((unsigned)M < NumElts)
3599         DemandedLHS.setBit((unsigned)M % NumElts);
3600       else
3601         DemandedRHS.setBit((unsigned)M % NumElts);
3602     }
3603     Tmp = std::numeric_limits<unsigned>::max();
3604     if (!!DemandedLHS)
3605       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3606     if (!!DemandedRHS) {
3607       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3608       Tmp = std::min(Tmp, Tmp2);
3609     }
3610     // If we don't know anything, early out and try computeKnownBits fall-back.
3611     if (Tmp == 1)
3612       break;
3613     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3614     return Tmp;
3615   }
3616 
3617   case ISD::BITCAST: {
3618     SDValue N0 = Op.getOperand(0);
3619     EVT SrcVT = N0.getValueType();
3620     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3621 
3622     // Ignore bitcasts from unsupported types..
3623     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3624       break;
3625 
3626     // Fast handling of 'identity' bitcasts.
3627     if (VTBits == SrcBits)
3628       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3629 
3630     bool IsLE = getDataLayout().isLittleEndian();
3631 
3632     // Bitcast 'large element' scalar/vector to 'small element' vector.
3633     if ((SrcBits % VTBits) == 0) {
3634       assert(VT.isVector() && "Expected bitcast to vector");
3635 
3636       unsigned Scale = SrcBits / VTBits;
3637       APInt SrcDemandedElts(NumElts / Scale, 0);
3638       for (unsigned i = 0; i != NumElts; ++i)
3639         if (DemandedElts[i])
3640           SrcDemandedElts.setBit(i / Scale);
3641 
3642       // Fast case - sign splat can be simply split across the small elements.
3643       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3644       if (Tmp == SrcBits)
3645         return VTBits;
3646 
3647       // Slow case - determine how far the sign extends into each sub-element.
3648       Tmp2 = VTBits;
3649       for (unsigned i = 0; i != NumElts; ++i)
3650         if (DemandedElts[i]) {
3651           unsigned SubOffset = i % Scale;
3652           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3653           SubOffset = SubOffset * VTBits;
3654           if (Tmp <= SubOffset)
3655             return 1;
3656           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3657         }
3658       return Tmp2;
3659     }
3660     break;
3661   }
3662 
3663   case ISD::SIGN_EXTEND:
3664     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3665     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3666   case ISD::SIGN_EXTEND_INREG:
3667     // Max of the input and what this extends.
3668     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3669     Tmp = VTBits-Tmp+1;
3670     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3671     return std::max(Tmp, Tmp2);
3672   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3673     SDValue Src = Op.getOperand(0);
3674     EVT SrcVT = Src.getValueType();
3675     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3676     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3677     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3678   }
3679   case ISD::SRA:
3680     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3681     // SRA X, C -> adds C sign bits.
3682     if (const APInt *ShAmt =
3683             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3684       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3685     return Tmp;
3686   case ISD::SHL:
3687     if (const APInt *ShAmt =
3688             getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
3689       // shl destroys sign bits, ensure it doesn't shift out all sign bits.
3690       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3691       if (ShAmt->ult(Tmp))
3692         return Tmp - ShAmt->getZExtValue();
3693     }
3694     break;
3695   case ISD::AND:
3696   case ISD::OR:
3697   case ISD::XOR:    // NOT is handled here.
3698     // Logical binary ops preserve the number of sign bits at the worst.
3699     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3700     if (Tmp != 1) {
3701       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3702       FirstAnswer = std::min(Tmp, Tmp2);
3703       // We computed what we know about the sign bits as our first
3704       // answer. Now proceed to the generic code that uses
3705       // computeKnownBits, and pick whichever answer is better.
3706     }
3707     break;
3708 
3709   case ISD::SELECT:
3710   case ISD::VSELECT:
3711     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3712     if (Tmp == 1) return 1;  // Early out.
3713     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3714     return std::min(Tmp, Tmp2);
3715   case ISD::SELECT_CC:
3716     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3717     if (Tmp == 1) return 1;  // Early out.
3718     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3719     return std::min(Tmp, Tmp2);
3720 
3721   case ISD::SMIN:
3722   case ISD::SMAX: {
3723     // If we have a clamp pattern, we know that the number of sign bits will be
3724     // the minimum of the clamp min/max range.
3725     bool IsMax = (Opcode == ISD::SMAX);
3726     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3727     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3728       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3729         CstHigh =
3730             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3731     if (CstLow && CstHigh) {
3732       if (!IsMax)
3733         std::swap(CstLow, CstHigh);
3734       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3735         Tmp = CstLow->getAPIntValue().getNumSignBits();
3736         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3737         return std::min(Tmp, Tmp2);
3738       }
3739     }
3740 
3741     // Fallback - just get the minimum number of sign bits of the operands.
3742     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3743     if (Tmp == 1)
3744       return 1;  // Early out.
3745     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3746     return std::min(Tmp, Tmp2);
3747   }
3748   case ISD::UMIN:
3749   case ISD::UMAX:
3750     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3751     if (Tmp == 1)
3752       return 1;  // Early out.
3753     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3754     return std::min(Tmp, Tmp2);
3755   case ISD::SADDO:
3756   case ISD::UADDO:
3757   case ISD::SSUBO:
3758   case ISD::USUBO:
3759   case ISD::SMULO:
3760   case ISD::UMULO:
3761     if (Op.getResNo() != 1)
3762       break;
3763     // The boolean result conforms to getBooleanContents.  Fall through.
3764     // If setcc returns 0/-1, all bits are sign bits.
3765     // We know that we have an integer-based boolean since these operations
3766     // are only available for integer.
3767     if (TLI->getBooleanContents(VT.isVector(), false) ==
3768         TargetLowering::ZeroOrNegativeOneBooleanContent)
3769       return VTBits;
3770     break;
3771   case ISD::SETCC:
3772   case ISD::STRICT_FSETCC:
3773   case ISD::STRICT_FSETCCS: {
3774     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3775     // If setcc returns 0/-1, all bits are sign bits.
3776     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3777         TargetLowering::ZeroOrNegativeOneBooleanContent)
3778       return VTBits;
3779     break;
3780   }
3781   case ISD::ROTL:
3782   case ISD::ROTR:
3783     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3784 
3785     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
3786     if (Tmp == VTBits)
3787       return VTBits;
3788 
3789     if (ConstantSDNode *C =
3790             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3791       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3792 
3793       // Handle rotate right by N like a rotate left by 32-N.
3794       if (Opcode == ISD::ROTR)
3795         RotAmt = (VTBits - RotAmt) % VTBits;
3796 
3797       // If we aren't rotating out all of the known-in sign bits, return the
3798       // number that are left.  This handles rotl(sext(x), 1) for example.
3799       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3800     }
3801     break;
3802   case ISD::ADD:
3803   case ISD::ADDC:
3804     // Add can have at most one carry bit.  Thus we know that the output
3805     // is, at worst, one more bit than the inputs.
3806     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3807     if (Tmp == 1) return 1; // Early out.
3808 
3809     // Special case decrementing a value (ADD X, -1):
3810     if (ConstantSDNode *CRHS =
3811             isConstOrConstSplat(Op.getOperand(1), DemandedElts))
3812       if (CRHS->isAllOnesValue()) {
3813         KnownBits Known =
3814             computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3815 
3816         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3817         // sign bits set.
3818         if ((Known.Zero | 1).isAllOnesValue())
3819           return VTBits;
3820 
3821         // If we are subtracting one from a positive number, there is no carry
3822         // out of the result.
3823         if (Known.isNonNegative())
3824           return Tmp;
3825       }
3826 
3827     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3828     if (Tmp2 == 1) return 1; // Early out.
3829     return std::min(Tmp, Tmp2) - 1;
3830   case ISD::SUB:
3831     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3832     if (Tmp2 == 1) return 1; // Early out.
3833 
3834     // Handle NEG.
3835     if (ConstantSDNode *CLHS =
3836             isConstOrConstSplat(Op.getOperand(0), DemandedElts))
3837       if (CLHS->isNullValue()) {
3838         KnownBits Known =
3839             computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3840         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3841         // sign bits set.
3842         if ((Known.Zero | 1).isAllOnesValue())
3843           return VTBits;
3844 
3845         // If the input is known to be positive (the sign bit is known clear),
3846         // the output of the NEG has the same number of sign bits as the input.
3847         if (Known.isNonNegative())
3848           return Tmp2;
3849 
3850         // Otherwise, we treat this like a SUB.
3851       }
3852 
3853     // Sub can have at most one carry bit.  Thus we know that the output
3854     // is, at worst, one more bit than the inputs.
3855     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3856     if (Tmp == 1) return 1; // Early out.
3857     return std::min(Tmp, Tmp2) - 1;
3858   case ISD::MUL: {
3859     // The output of the Mul can be at most twice the valid bits in the inputs.
3860     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3861     if (SignBitsOp0 == 1)
3862       break;
3863     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3864     if (SignBitsOp1 == 1)
3865       break;
3866     unsigned OutValidBits =
3867         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
3868     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
3869   }
3870   case ISD::TRUNCATE: {
3871     // Check if the sign bits of source go down as far as the truncated value.
3872     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
3873     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3874     if (NumSrcSignBits > (NumSrcBits - VTBits))
3875       return NumSrcSignBits - (NumSrcBits - VTBits);
3876     break;
3877   }
3878   case ISD::EXTRACT_ELEMENT: {
3879     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3880     const int BitWidth = Op.getValueSizeInBits();
3881     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
3882 
3883     // Get reverse index (starting from 1), Op1 value indexes elements from
3884     // little end. Sign starts at big end.
3885     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
3886 
3887     // If the sign portion ends in our element the subtraction gives correct
3888     // result. Otherwise it gives either negative or > bitwidth result
3889     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
3890   }
3891   case ISD::INSERT_VECTOR_ELT: {
3892     // If we know the element index, split the demand between the
3893     // source vector and the inserted element, otherwise assume we need
3894     // the original demanded vector elements and the value.
3895     SDValue InVec = Op.getOperand(0);
3896     SDValue InVal = Op.getOperand(1);
3897     SDValue EltNo = Op.getOperand(2);
3898     bool DemandedVal = true;
3899     APInt DemandedVecElts = DemandedElts;
3900     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3901     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3902       unsigned EltIdx = CEltNo->getZExtValue();
3903       DemandedVal = !!DemandedElts[EltIdx];
3904       DemandedVecElts.clearBit(EltIdx);
3905     }
3906     Tmp = std::numeric_limits<unsigned>::max();
3907     if (DemandedVal) {
3908       // TODO - handle implicit truncation of inserted elements.
3909       if (InVal.getScalarValueSizeInBits() != VTBits)
3910         break;
3911       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
3912       Tmp = std::min(Tmp, Tmp2);
3913     }
3914     if (!!DemandedVecElts) {
3915       Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
3916       Tmp = std::min(Tmp, Tmp2);
3917     }
3918     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3919     return Tmp;
3920   }
3921   case ISD::EXTRACT_VECTOR_ELT: {
3922     SDValue InVec = Op.getOperand(0);
3923     SDValue EltNo = Op.getOperand(1);
3924     EVT VecVT = InVec.getValueType();
3925     const unsigned BitWidth = Op.getValueSizeInBits();
3926     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
3927     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3928 
3929     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
3930     // anything about sign bits. But if the sizes match we can derive knowledge
3931     // about sign bits from the vector operand.
3932     if (BitWidth != EltBitWidth)
3933       break;
3934 
3935     // If we know the element index, just demand that vector element, else for
3936     // an unknown element index, ignore DemandedElts and demand them all.
3937     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3938     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3939     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3940       DemandedSrcElts =
3941           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3942 
3943     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
3944   }
3945   case ISD::EXTRACT_SUBVECTOR: {
3946     // Offset the demanded elts by the subvector index.
3947     SDValue Src = Op.getOperand(0);
3948     // Bail until we can represent demanded elements for scalable vectors.
3949     if (Src.getValueType().isScalableVector())
3950       break;
3951     uint64_t Idx = Op.getConstantOperandVal(1);
3952     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3953     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
3954     return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
3955   }
3956   case ISD::CONCAT_VECTORS: {
3957     // Determine the minimum number of sign bits across all demanded
3958     // elts of the input vectors. Early out if the result is already 1.
3959     Tmp = std::numeric_limits<unsigned>::max();
3960     EVT SubVectorVT = Op.getOperand(0).getValueType();
3961     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3962     unsigned NumSubVectors = Op.getNumOperands();
3963     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
3964       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
3965       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
3966       if (!DemandedSub)
3967         continue;
3968       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
3969       Tmp = std::min(Tmp, Tmp2);
3970     }
3971     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3972     return Tmp;
3973   }
3974   case ISD::INSERT_SUBVECTOR: {
3975     // Demand any elements from the subvector and the remainder from the src its
3976     // inserted into.
3977     SDValue Src = Op.getOperand(0);
3978     SDValue Sub = Op.getOperand(1);
3979     uint64_t Idx = Op.getConstantOperandVal(2);
3980     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3981     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3982     APInt DemandedSrcElts = DemandedElts;
3983     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
3984 
3985     Tmp = std::numeric_limits<unsigned>::max();
3986     if (!!DemandedSubElts) {
3987       Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
3988       if (Tmp == 1)
3989         return 1; // early-out
3990     }
3991     if (!!DemandedSrcElts) {
3992       Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
3993       Tmp = std::min(Tmp, Tmp2);
3994     }
3995     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3996     return Tmp;
3997   }
3998   }
3999 
4000   // If we are looking at the loaded value of the SDNode.
4001   if (Op.getResNo() == 0) {
4002     // Handle LOADX separately here. EXTLOAD case will fallthrough.
4003     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
4004       unsigned ExtType = LD->getExtensionType();
4005       switch (ExtType) {
4006       default: break;
4007       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
4008         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4009         return VTBits - Tmp + 1;
4010       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
4011         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4012         return VTBits - Tmp;
4013       case ISD::NON_EXTLOAD:
4014         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
4015           // We only need to handle vectors - computeKnownBits should handle
4016           // scalar cases.
4017           Type *CstTy = Cst->getType();
4018           if (CstTy->isVectorTy() &&
4019               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) {
4020             Tmp = VTBits;
4021             for (unsigned i = 0; i != NumElts; ++i) {
4022               if (!DemandedElts[i])
4023                 continue;
4024               if (Constant *Elt = Cst->getAggregateElement(i)) {
4025                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4026                   const APInt &Value = CInt->getValue();
4027                   Tmp = std::min(Tmp, Value.getNumSignBits());
4028                   continue;
4029                 }
4030                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4031                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
4032                   Tmp = std::min(Tmp, Value.getNumSignBits());
4033                   continue;
4034                 }
4035               }
4036               // Unknown type. Conservatively assume no bits match sign bit.
4037               return 1;
4038             }
4039             return Tmp;
4040           }
4041         }
4042         break;
4043       }
4044     }
4045   }
4046 
4047   // Allow the target to implement this method for its nodes.
4048   if (Opcode >= ISD::BUILTIN_OP_END ||
4049       Opcode == ISD::INTRINSIC_WO_CHAIN ||
4050       Opcode == ISD::INTRINSIC_W_CHAIN ||
4051       Opcode == ISD::INTRINSIC_VOID) {
4052     unsigned NumBits =
4053         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4054     if (NumBits > 1)
4055       FirstAnswer = std::max(FirstAnswer, NumBits);
4056   }
4057 
4058   // Finally, if we can prove that the top bits of the result are 0's or 1's,
4059   // use this information.
4060   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4061 
4062   APInt Mask;
4063   if (Known.isNonNegative()) {        // sign bit is 0
4064     Mask = Known.Zero;
4065   } else if (Known.isNegative()) {  // sign bit is 1;
4066     Mask = Known.One;
4067   } else {
4068     // Nothing known.
4069     return FirstAnswer;
4070   }
4071 
4072   // Okay, we know that the sign bit in Mask is set.  Use CLO to determine
4073   // the number of identical bits in the top of the input value.
4074   Mask <<= Mask.getBitWidth()-VTBits;
4075   return std::max(FirstAnswer, Mask.countLeadingOnes());
4076 }
4077 
4078 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
4079   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
4080       !isa<ConstantSDNode>(Op.getOperand(1)))
4081     return false;
4082 
4083   if (Op.getOpcode() == ISD::OR &&
4084       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
4085     return false;
4086 
4087   return true;
4088 }
4089 
4090 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
4091   // If we're told that NaNs won't happen, assume they won't.
4092   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
4093     return true;
4094 
4095   if (Depth >= MaxRecursionDepth)
4096     return false; // Limit search depth.
4097 
4098   // TODO: Handle vectors.
4099   // If the value is a constant, we can obviously see if it is a NaN or not.
4100   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
4101     return !C->getValueAPF().isNaN() ||
4102            (SNaN && !C->getValueAPF().isSignaling());
4103   }
4104 
4105   unsigned Opcode = Op.getOpcode();
4106   switch (Opcode) {
4107   case ISD::FADD:
4108   case ISD::FSUB:
4109   case ISD::FMUL:
4110   case ISD::FDIV:
4111   case ISD::FREM:
4112   case ISD::FSIN:
4113   case ISD::FCOS: {
4114     if (SNaN)
4115       return true;
4116     // TODO: Need isKnownNeverInfinity
4117     return false;
4118   }
4119   case ISD::FCANONICALIZE:
4120   case ISD::FEXP:
4121   case ISD::FEXP2:
4122   case ISD::FTRUNC:
4123   case ISD::FFLOOR:
4124   case ISD::FCEIL:
4125   case ISD::FROUND:
4126   case ISD::FROUNDEVEN:
4127   case ISD::FRINT:
4128   case ISD::FNEARBYINT: {
4129     if (SNaN)
4130       return true;
4131     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4132   }
4133   case ISD::FABS:
4134   case ISD::FNEG:
4135   case ISD::FCOPYSIGN: {
4136     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4137   }
4138   case ISD::SELECT:
4139     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4140            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4141   case ISD::FP_EXTEND:
4142   case ISD::FP_ROUND: {
4143     if (SNaN)
4144       return true;
4145     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4146   }
4147   case ISD::SINT_TO_FP:
4148   case ISD::UINT_TO_FP:
4149     return true;
4150   case ISD::FMA:
4151   case ISD::FMAD: {
4152     if (SNaN)
4153       return true;
4154     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4155            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4156            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4157   }
4158   case ISD::FSQRT: // Need is known positive
4159   case ISD::FLOG:
4160   case ISD::FLOG2:
4161   case ISD::FLOG10:
4162   case ISD::FPOWI:
4163   case ISD::FPOW: {
4164     if (SNaN)
4165       return true;
4166     // TODO: Refine on operand
4167     return false;
4168   }
4169   case ISD::FMINNUM:
4170   case ISD::FMAXNUM: {
4171     // Only one needs to be known not-nan, since it will be returned if the
4172     // other ends up being one.
4173     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4174            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4175   }
4176   case ISD::FMINNUM_IEEE:
4177   case ISD::FMAXNUM_IEEE: {
4178     if (SNaN)
4179       return true;
4180     // This can return a NaN if either operand is an sNaN, or if both operands
4181     // are NaN.
4182     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4183             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4184            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4185             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4186   }
4187   case ISD::FMINIMUM:
4188   case ISD::FMAXIMUM: {
4189     // TODO: Does this quiet or return the origina NaN as-is?
4190     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4191            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4192   }
4193   case ISD::EXTRACT_VECTOR_ELT: {
4194     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4195   }
4196   default:
4197     if (Opcode >= ISD::BUILTIN_OP_END ||
4198         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4199         Opcode == ISD::INTRINSIC_W_CHAIN ||
4200         Opcode == ISD::INTRINSIC_VOID) {
4201       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4202     }
4203 
4204     return false;
4205   }
4206 }
4207 
4208 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4209   assert(Op.getValueType().isFloatingPoint() &&
4210          "Floating point type expected");
4211 
4212   // If the value is a constant, we can obviously see if it is a zero or not.
4213   // TODO: Add BuildVector support.
4214   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4215     return !C->isZero();
4216   return false;
4217 }
4218 
4219 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4220   assert(!Op.getValueType().isFloatingPoint() &&
4221          "Floating point types unsupported - use isKnownNeverZeroFloat");
4222 
4223   // If the value is a constant, we can obviously see if it is a zero or not.
4224   if (ISD::matchUnaryPredicate(
4225           Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
4226     return true;
4227 
4228   // TODO: Recognize more cases here.
4229   switch (Op.getOpcode()) {
4230   default: break;
4231   case ISD::OR:
4232     if (isKnownNeverZero(Op.getOperand(1)) ||
4233         isKnownNeverZero(Op.getOperand(0)))
4234       return true;
4235     break;
4236   }
4237 
4238   return false;
4239 }
4240 
4241 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4242   // Check the obvious case.
4243   if (A == B) return true;
4244 
4245   // For for negative and positive zero.
4246   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4247     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4248       if (CA->isZero() && CB->isZero()) return true;
4249 
4250   // Otherwise they may not be equal.
4251   return false;
4252 }
4253 
4254 // FIXME: unify with llvm::haveNoCommonBitsSet.
4255 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
4256 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4257   assert(A.getValueType() == B.getValueType() &&
4258          "Values must have the same type");
4259   return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue();
4260 }
4261 
4262 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4263                                 ArrayRef<SDValue> Ops,
4264                                 SelectionDAG &DAG) {
4265   int NumOps = Ops.size();
4266   assert(NumOps != 0 && "Can't build an empty vector!");
4267   assert(!VT.isScalableVector() &&
4268          "BUILD_VECTOR cannot be used with scalable types");
4269   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4270          "Incorrect element count in BUILD_VECTOR!");
4271 
4272   // BUILD_VECTOR of UNDEFs is UNDEF.
4273   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4274     return DAG.getUNDEF(VT);
4275 
4276   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4277   SDValue IdentitySrc;
4278   bool IsIdentity = true;
4279   for (int i = 0; i != NumOps; ++i) {
4280     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4281         Ops[i].getOperand(0).getValueType() != VT ||
4282         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4283         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4284         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4285       IsIdentity = false;
4286       break;
4287     }
4288     IdentitySrc = Ops[i].getOperand(0);
4289   }
4290   if (IsIdentity)
4291     return IdentitySrc;
4292 
4293   return SDValue();
4294 }
4295 
4296 /// Try to simplify vector concatenation to an input value, undef, or build
4297 /// vector.
4298 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4299                                   ArrayRef<SDValue> Ops,
4300                                   SelectionDAG &DAG) {
4301   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4302   assert(llvm::all_of(Ops,
4303                       [Ops](SDValue Op) {
4304                         return Ops[0].getValueType() == Op.getValueType();
4305                       }) &&
4306          "Concatenation of vectors with inconsistent value types!");
4307   assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
4308              VT.getVectorElementCount() &&
4309          "Incorrect element count in vector concatenation!");
4310 
4311   if (Ops.size() == 1)
4312     return Ops[0];
4313 
4314   // Concat of UNDEFs is UNDEF.
4315   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4316     return DAG.getUNDEF(VT);
4317 
4318   // Scan the operands and look for extract operations from a single source
4319   // that correspond to insertion at the same location via this concatenation:
4320   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4321   SDValue IdentitySrc;
4322   bool IsIdentity = true;
4323   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4324     SDValue Op = Ops[i];
4325     unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
4326     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4327         Op.getOperand(0).getValueType() != VT ||
4328         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4329         Op.getConstantOperandVal(1) != IdentityIndex) {
4330       IsIdentity = false;
4331       break;
4332     }
4333     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4334            "Unexpected identity source vector for concat of extracts");
4335     IdentitySrc = Op.getOperand(0);
4336   }
4337   if (IsIdentity) {
4338     assert(IdentitySrc && "Failed to set source vector of extracts");
4339     return IdentitySrc;
4340   }
4341 
4342   // The code below this point is only designed to work for fixed width
4343   // vectors, so we bail out for now.
4344   if (VT.isScalableVector())
4345     return SDValue();
4346 
4347   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4348   // simplified to one big BUILD_VECTOR.
4349   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4350   EVT SVT = VT.getScalarType();
4351   SmallVector<SDValue, 16> Elts;
4352   for (SDValue Op : Ops) {
4353     EVT OpVT = Op.getValueType();
4354     if (Op.isUndef())
4355       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4356     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4357       Elts.append(Op->op_begin(), Op->op_end());
4358     else
4359       return SDValue();
4360   }
4361 
4362   // BUILD_VECTOR requires all inputs to be of the same type, find the
4363   // maximum type and extend them all.
4364   for (SDValue Op : Elts)
4365     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4366 
4367   if (SVT.bitsGT(VT.getScalarType())) {
4368     for (SDValue &Op : Elts) {
4369       if (Op.isUndef())
4370         Op = DAG.getUNDEF(SVT);
4371       else
4372         Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4373                  ? DAG.getZExtOrTrunc(Op, DL, SVT)
4374                  : DAG.getSExtOrTrunc(Op, DL, SVT);
4375     }
4376   }
4377 
4378   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4379   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4380   return V;
4381 }
4382 
4383 /// Gets or creates the specified node.
4384 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4385   FoldingSetNodeID ID;
4386   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4387   void *IP = nullptr;
4388   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4389     return SDValue(E, 0);
4390 
4391   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4392                               getVTList(VT));
4393   CSEMap.InsertNode(N, IP);
4394 
4395   InsertNode(N);
4396   SDValue V = SDValue(N, 0);
4397   NewSDValueDbgMsg(V, "Creating new node: ", this);
4398   return V;
4399 }
4400 
4401 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4402                               SDValue Operand) {
4403   SDNodeFlags Flags;
4404   if (Inserter)
4405     Flags = Inserter->getFlags();
4406   return getNode(Opcode, DL, VT, Operand, Flags);
4407 }
4408 
4409 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4410                               SDValue Operand, const SDNodeFlags Flags) {
4411   // Constant fold unary operations with an integer constant operand. Even
4412   // opaque constant will be folded, because the folding of unary operations
4413   // doesn't create new constants with different values. Nevertheless, the
4414   // opaque flag is preserved during folding to prevent future folding with
4415   // other constants.
4416   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4417     const APInt &Val = C->getAPIntValue();
4418     switch (Opcode) {
4419     default: break;
4420     case ISD::SIGN_EXTEND:
4421       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4422                          C->isTargetOpcode(), C->isOpaque());
4423     case ISD::TRUNCATE:
4424       if (C->isOpaque())
4425         break;
4426       LLVM_FALLTHROUGH;
4427     case ISD::ANY_EXTEND:
4428     case ISD::ZERO_EXTEND:
4429       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4430                          C->isTargetOpcode(), C->isOpaque());
4431     case ISD::UINT_TO_FP:
4432     case ISD::SINT_TO_FP: {
4433       APFloat apf(EVTToAPFloatSemantics(VT),
4434                   APInt::getNullValue(VT.getSizeInBits()));
4435       (void)apf.convertFromAPInt(Val,
4436                                  Opcode==ISD::SINT_TO_FP,
4437                                  APFloat::rmNearestTiesToEven);
4438       return getConstantFP(apf, DL, VT);
4439     }
4440     case ISD::BITCAST:
4441       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4442         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4443       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4444         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4445       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4446         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4447       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4448         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4449       break;
4450     case ISD::ABS:
4451       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4452                          C->isOpaque());
4453     case ISD::BITREVERSE:
4454       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4455                          C->isOpaque());
4456     case ISD::BSWAP:
4457       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4458                          C->isOpaque());
4459     case ISD::CTPOP:
4460       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4461                          C->isOpaque());
4462     case ISD::CTLZ:
4463     case ISD::CTLZ_ZERO_UNDEF:
4464       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4465                          C->isOpaque());
4466     case ISD::CTTZ:
4467     case ISD::CTTZ_ZERO_UNDEF:
4468       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4469                          C->isOpaque());
4470     case ISD::FP16_TO_FP: {
4471       bool Ignored;
4472       APFloat FPV(APFloat::IEEEhalf(),
4473                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4474 
4475       // This can return overflow, underflow, or inexact; we don't care.
4476       // FIXME need to be more flexible about rounding mode.
4477       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4478                         APFloat::rmNearestTiesToEven, &Ignored);
4479       return getConstantFP(FPV, DL, VT);
4480     }
4481     }
4482   }
4483 
4484   // Constant fold unary operations with a floating point constant operand.
4485   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4486     APFloat V = C->getValueAPF();    // make copy
4487     switch (Opcode) {
4488     case ISD::FNEG:
4489       V.changeSign();
4490       return getConstantFP(V, DL, VT);
4491     case ISD::FABS:
4492       V.clearSign();
4493       return getConstantFP(V, DL, VT);
4494     case ISD::FCEIL: {
4495       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4496       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4497         return getConstantFP(V, DL, VT);
4498       break;
4499     }
4500     case ISD::FTRUNC: {
4501       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4502       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4503         return getConstantFP(V, DL, VT);
4504       break;
4505     }
4506     case ISD::FFLOOR: {
4507       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4508       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4509         return getConstantFP(V, DL, VT);
4510       break;
4511     }
4512     case ISD::FP_EXTEND: {
4513       bool ignored;
4514       // This can return overflow, underflow, or inexact; we don't care.
4515       // FIXME need to be more flexible about rounding mode.
4516       (void)V.convert(EVTToAPFloatSemantics(VT),
4517                       APFloat::rmNearestTiesToEven, &ignored);
4518       return getConstantFP(V, DL, VT);
4519     }
4520     case ISD::FP_TO_SINT:
4521     case ISD::FP_TO_UINT: {
4522       bool ignored;
4523       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4524       // FIXME need to be more flexible about rounding mode.
4525       APFloat::opStatus s =
4526           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4527       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4528         break;
4529       return getConstant(IntVal, DL, VT);
4530     }
4531     case ISD::BITCAST:
4532       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4533         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4534       else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4535         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4536       else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4537         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4538       break;
4539     case ISD::FP_TO_FP16: {
4540       bool Ignored;
4541       // This can return overflow, underflow, or inexact; we don't care.
4542       // FIXME need to be more flexible about rounding mode.
4543       (void)V.convert(APFloat::IEEEhalf(),
4544                       APFloat::rmNearestTiesToEven, &Ignored);
4545       return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4546     }
4547     }
4548   }
4549 
4550   // Constant fold unary operations with a vector integer or float operand.
4551   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
4552     if (BV->isConstant()) {
4553       switch (Opcode) {
4554       default:
4555         // FIXME: Entirely reasonable to perform folding of other unary
4556         // operations here as the need arises.
4557         break;
4558       case ISD::FNEG:
4559       case ISD::FABS:
4560       case ISD::FCEIL:
4561       case ISD::FTRUNC:
4562       case ISD::FFLOOR:
4563       case ISD::FP_EXTEND:
4564       case ISD::FP_TO_SINT:
4565       case ISD::FP_TO_UINT:
4566       case ISD::TRUNCATE:
4567       case ISD::ANY_EXTEND:
4568       case ISD::ZERO_EXTEND:
4569       case ISD::SIGN_EXTEND:
4570       case ISD::UINT_TO_FP:
4571       case ISD::SINT_TO_FP:
4572       case ISD::ABS:
4573       case ISD::BITREVERSE:
4574       case ISD::BSWAP:
4575       case ISD::CTLZ:
4576       case ISD::CTLZ_ZERO_UNDEF:
4577       case ISD::CTTZ:
4578       case ISD::CTTZ_ZERO_UNDEF:
4579       case ISD::CTPOP: {
4580         SDValue Ops = { Operand };
4581         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4582           return Fold;
4583       }
4584       }
4585     }
4586   }
4587 
4588   unsigned OpOpcode = Operand.getNode()->getOpcode();
4589   switch (Opcode) {
4590   case ISD::FREEZE:
4591     assert(VT == Operand.getValueType() && "Unexpected VT!");
4592     break;
4593   case ISD::TokenFactor:
4594   case ISD::MERGE_VALUES:
4595   case ISD::CONCAT_VECTORS:
4596     return Operand;         // Factor, merge or concat of one node?  No need.
4597   case ISD::BUILD_VECTOR: {
4598     // Attempt to simplify BUILD_VECTOR.
4599     SDValue Ops[] = {Operand};
4600     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4601       return V;
4602     break;
4603   }
4604   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4605   case ISD::FP_EXTEND:
4606     assert(VT.isFloatingPoint() &&
4607            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4608     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4609     assert((!VT.isVector() ||
4610             VT.getVectorElementCount() ==
4611             Operand.getValueType().getVectorElementCount()) &&
4612            "Vector element count mismatch!");
4613     assert(Operand.getValueType().bitsLT(VT) &&
4614            "Invalid fpext node, dst < src!");
4615     if (Operand.isUndef())
4616       return getUNDEF(VT);
4617     break;
4618   case ISD::FP_TO_SINT:
4619   case ISD::FP_TO_UINT:
4620     if (Operand.isUndef())
4621       return getUNDEF(VT);
4622     break;
4623   case ISD::SINT_TO_FP:
4624   case ISD::UINT_TO_FP:
4625     // [us]itofp(undef) = 0, because the result value is bounded.
4626     if (Operand.isUndef())
4627       return getConstantFP(0.0, DL, VT);
4628     break;
4629   case ISD::SIGN_EXTEND:
4630     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4631            "Invalid SIGN_EXTEND!");
4632     assert(VT.isVector() == Operand.getValueType().isVector() &&
4633            "SIGN_EXTEND result type type should be vector iff the operand "
4634            "type is vector!");
4635     if (Operand.getValueType() == VT) return Operand;   // noop extension
4636     assert((!VT.isVector() ||
4637             VT.getVectorElementCount() ==
4638                 Operand.getValueType().getVectorElementCount()) &&
4639            "Vector element count mismatch!");
4640     assert(Operand.getValueType().bitsLT(VT) &&
4641            "Invalid sext node, dst < src!");
4642     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
4643       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4644     else if (OpOpcode == ISD::UNDEF)
4645       // sext(undef) = 0, because the top bits will all be the same.
4646       return getConstant(0, DL, VT);
4647     break;
4648   case ISD::ZERO_EXTEND:
4649     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4650            "Invalid ZERO_EXTEND!");
4651     assert(VT.isVector() == Operand.getValueType().isVector() &&
4652            "ZERO_EXTEND result type type should be vector iff the operand "
4653            "type is vector!");
4654     if (Operand.getValueType() == VT) return Operand;   // noop extension
4655     assert((!VT.isVector() ||
4656             VT.getVectorElementCount() ==
4657                 Operand.getValueType().getVectorElementCount()) &&
4658            "Vector element count mismatch!");
4659     assert(Operand.getValueType().bitsLT(VT) &&
4660            "Invalid zext node, dst < src!");
4661     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
4662       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
4663     else if (OpOpcode == ISD::UNDEF)
4664       // zext(undef) = 0, because the top bits will be zero.
4665       return getConstant(0, DL, VT);
4666     break;
4667   case ISD::ANY_EXTEND:
4668     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4669            "Invalid ANY_EXTEND!");
4670     assert(VT.isVector() == Operand.getValueType().isVector() &&
4671            "ANY_EXTEND result type type should be vector iff the operand "
4672            "type is vector!");
4673     if (Operand.getValueType() == VT) return Operand;   // noop extension
4674     assert((!VT.isVector() ||
4675             VT.getVectorElementCount() ==
4676                 Operand.getValueType().getVectorElementCount()) &&
4677            "Vector element count mismatch!");
4678     assert(Operand.getValueType().bitsLT(VT) &&
4679            "Invalid anyext node, dst < src!");
4680 
4681     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4682         OpOpcode == ISD::ANY_EXTEND)
4683       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
4684       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4685     else if (OpOpcode == ISD::UNDEF)
4686       return getUNDEF(VT);
4687 
4688     // (ext (trunc x)) -> x
4689     if (OpOpcode == ISD::TRUNCATE) {
4690       SDValue OpOp = Operand.getOperand(0);
4691       if (OpOp.getValueType() == VT) {
4692         transferDbgValues(Operand, OpOp);
4693         return OpOp;
4694       }
4695     }
4696     break;
4697   case ISD::TRUNCATE:
4698     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4699            "Invalid TRUNCATE!");
4700     assert(VT.isVector() == Operand.getValueType().isVector() &&
4701            "TRUNCATE result type type should be vector iff the operand "
4702            "type is vector!");
4703     if (Operand.getValueType() == VT) return Operand;   // noop truncate
4704     assert((!VT.isVector() ||
4705             VT.getVectorElementCount() ==
4706                 Operand.getValueType().getVectorElementCount()) &&
4707            "Vector element count mismatch!");
4708     assert(Operand.getValueType().bitsGT(VT) &&
4709            "Invalid truncate node, src < dst!");
4710     if (OpOpcode == ISD::TRUNCATE)
4711       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4712     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4713         OpOpcode == ISD::ANY_EXTEND) {
4714       // If the source is smaller than the dest, we still need an extend.
4715       if (Operand.getOperand(0).getValueType().getScalarType()
4716             .bitsLT(VT.getScalarType()))
4717         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4718       if (Operand.getOperand(0).getValueType().bitsGT(VT))
4719         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4720       return Operand.getOperand(0);
4721     }
4722     if (OpOpcode == ISD::UNDEF)
4723       return getUNDEF(VT);
4724     break;
4725   case ISD::ANY_EXTEND_VECTOR_INREG:
4726   case ISD::ZERO_EXTEND_VECTOR_INREG:
4727   case ISD::SIGN_EXTEND_VECTOR_INREG:
4728     assert(VT.isVector() && "This DAG node is restricted to vector types.");
4729     assert(Operand.getValueType().bitsLE(VT) &&
4730            "The input must be the same size or smaller than the result.");
4731     assert(VT.getVectorNumElements() <
4732              Operand.getValueType().getVectorNumElements() &&
4733            "The destination vector type must have fewer lanes than the input.");
4734     break;
4735   case ISD::ABS:
4736     assert(VT.isInteger() && VT == Operand.getValueType() &&
4737            "Invalid ABS!");
4738     if (OpOpcode == ISD::UNDEF)
4739       return getUNDEF(VT);
4740     break;
4741   case ISD::BSWAP:
4742     assert(VT.isInteger() && VT == Operand.getValueType() &&
4743            "Invalid BSWAP!");
4744     assert((VT.getScalarSizeInBits() % 16 == 0) &&
4745            "BSWAP types must be a multiple of 16 bits!");
4746     if (OpOpcode == ISD::UNDEF)
4747       return getUNDEF(VT);
4748     break;
4749   case ISD::BITREVERSE:
4750     assert(VT.isInteger() && VT == Operand.getValueType() &&
4751            "Invalid BITREVERSE!");
4752     if (OpOpcode == ISD::UNDEF)
4753       return getUNDEF(VT);
4754     break;
4755   case ISD::BITCAST:
4756     // Basic sanity checking.
4757     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
4758            "Cannot BITCAST between types of different sizes!");
4759     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
4760     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
4761       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
4762     if (OpOpcode == ISD::UNDEF)
4763       return getUNDEF(VT);
4764     break;
4765   case ISD::SCALAR_TO_VECTOR:
4766     assert(VT.isVector() && !Operand.getValueType().isVector() &&
4767            (VT.getVectorElementType() == Operand.getValueType() ||
4768             (VT.getVectorElementType().isInteger() &&
4769              Operand.getValueType().isInteger() &&
4770              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
4771            "Illegal SCALAR_TO_VECTOR node!");
4772     if (OpOpcode == ISD::UNDEF)
4773       return getUNDEF(VT);
4774     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
4775     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
4776         isa<ConstantSDNode>(Operand.getOperand(1)) &&
4777         Operand.getConstantOperandVal(1) == 0 &&
4778         Operand.getOperand(0).getValueType() == VT)
4779       return Operand.getOperand(0);
4780     break;
4781   case ISD::FNEG:
4782     // Negation of an unknown bag of bits is still completely undefined.
4783     if (OpOpcode == ISD::UNDEF)
4784       return getUNDEF(VT);
4785 
4786     if (OpOpcode == ISD::FNEG)  // --X -> X
4787       return Operand.getOperand(0);
4788     break;
4789   case ISD::FABS:
4790     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
4791       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
4792     break;
4793   case ISD::VSCALE:
4794     assert(VT == Operand.getValueType() && "Unexpected VT!");
4795     break;
4796   case ISD::CTPOP:
4797     if (Operand.getValueType().getScalarType() == MVT::i1)
4798       return Operand;
4799     break;
4800   case ISD::CTLZ:
4801   case ISD::CTTZ:
4802     if (Operand.getValueType().getScalarType() == MVT::i1)
4803       return getNOT(DL, Operand, Operand.getValueType());
4804     break;
4805   case ISD::VECREDUCE_SMIN:
4806   case ISD::VECREDUCE_UMAX:
4807     if (Operand.getValueType().getScalarType() == MVT::i1)
4808       return getNode(ISD::VECREDUCE_OR, DL, VT, Operand);
4809     break;
4810   case ISD::VECREDUCE_SMAX:
4811   case ISD::VECREDUCE_UMIN:
4812     if (Operand.getValueType().getScalarType() == MVT::i1)
4813       return getNode(ISD::VECREDUCE_AND, DL, VT, Operand);
4814     break;
4815   }
4816 
4817   SDNode *N;
4818   SDVTList VTs = getVTList(VT);
4819   SDValue Ops[] = {Operand};
4820   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
4821     FoldingSetNodeID ID;
4822     AddNodeIDNode(ID, Opcode, VTs, Ops);
4823     void *IP = nullptr;
4824     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4825       E->intersectFlagsWith(Flags);
4826       return SDValue(E, 0);
4827     }
4828 
4829     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4830     N->setFlags(Flags);
4831     createOperands(N, Ops);
4832     CSEMap.InsertNode(N, IP);
4833   } else {
4834     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4835     createOperands(N, Ops);
4836   }
4837 
4838   InsertNode(N);
4839   SDValue V = SDValue(N, 0);
4840   NewSDValueDbgMsg(V, "Creating new node: ", this);
4841   return V;
4842 }
4843 
4844 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
4845                                        const APInt &C2) {
4846   switch (Opcode) {
4847   case ISD::ADD:  return C1 + C2;
4848   case ISD::SUB:  return C1 - C2;
4849   case ISD::MUL:  return C1 * C2;
4850   case ISD::AND:  return C1 & C2;
4851   case ISD::OR:   return C1 | C2;
4852   case ISD::XOR:  return C1 ^ C2;
4853   case ISD::SHL:  return C1 << C2;
4854   case ISD::SRL:  return C1.lshr(C2);
4855   case ISD::SRA:  return C1.ashr(C2);
4856   case ISD::ROTL: return C1.rotl(C2);
4857   case ISD::ROTR: return C1.rotr(C2);
4858   case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
4859   case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
4860   case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
4861   case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
4862   case ISD::SADDSAT: return C1.sadd_sat(C2);
4863   case ISD::UADDSAT: return C1.uadd_sat(C2);
4864   case ISD::SSUBSAT: return C1.ssub_sat(C2);
4865   case ISD::USUBSAT: return C1.usub_sat(C2);
4866   case ISD::UDIV:
4867     if (!C2.getBoolValue())
4868       break;
4869     return C1.udiv(C2);
4870   case ISD::UREM:
4871     if (!C2.getBoolValue())
4872       break;
4873     return C1.urem(C2);
4874   case ISD::SDIV:
4875     if (!C2.getBoolValue())
4876       break;
4877     return C1.sdiv(C2);
4878   case ISD::SREM:
4879     if (!C2.getBoolValue())
4880       break;
4881     return C1.srem(C2);
4882   }
4883   return llvm::None;
4884 }
4885 
4886 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
4887                                        const GlobalAddressSDNode *GA,
4888                                        const SDNode *N2) {
4889   if (GA->getOpcode() != ISD::GlobalAddress)
4890     return SDValue();
4891   if (!TLI->isOffsetFoldingLegal(GA))
4892     return SDValue();
4893   auto *C2 = dyn_cast<ConstantSDNode>(N2);
4894   if (!C2)
4895     return SDValue();
4896   int64_t Offset = C2->getSExtValue();
4897   switch (Opcode) {
4898   case ISD::ADD: break;
4899   case ISD::SUB: Offset = -uint64_t(Offset); break;
4900   default: return SDValue();
4901   }
4902   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
4903                           GA->getOffset() + uint64_t(Offset));
4904 }
4905 
4906 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
4907   switch (Opcode) {
4908   case ISD::SDIV:
4909   case ISD::UDIV:
4910   case ISD::SREM:
4911   case ISD::UREM: {
4912     // If a divisor is zero/undef or any element of a divisor vector is
4913     // zero/undef, the whole op is undef.
4914     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
4915     SDValue Divisor = Ops[1];
4916     if (Divisor.isUndef() || isNullConstant(Divisor))
4917       return true;
4918 
4919     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
4920            llvm::any_of(Divisor->op_values(),
4921                         [](SDValue V) { return V.isUndef() ||
4922                                         isNullConstant(V); });
4923     // TODO: Handle signed overflow.
4924   }
4925   // TODO: Handle oversized shifts.
4926   default:
4927     return false;
4928   }
4929 }
4930 
4931 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4932                                              EVT VT, ArrayRef<SDValue> Ops) {
4933   // If the opcode is a target-specific ISD node, there's nothing we can
4934   // do here and the operand rules may not line up with the below, so
4935   // bail early.
4936   if (Opcode >= ISD::BUILTIN_OP_END)
4937     return SDValue();
4938 
4939   // For now, the array Ops should only contain two values.
4940   // This enforcement will be removed once this function is merged with
4941   // FoldConstantVectorArithmetic
4942   if (Ops.size() != 2)
4943     return SDValue();
4944 
4945   if (isUndef(Opcode, Ops))
4946     return getUNDEF(VT);
4947 
4948   SDNode *N1 = Ops[0].getNode();
4949   SDNode *N2 = Ops[1].getNode();
4950 
4951   // Handle the case of two scalars.
4952   if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) {
4953     if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) {
4954       if (C1->isOpaque() || C2->isOpaque())
4955         return SDValue();
4956 
4957       Optional<APInt> FoldAttempt =
4958           FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
4959       if (!FoldAttempt)
4960         return SDValue();
4961 
4962       SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT);
4963       assert((!Folded || !VT.isVector()) &&
4964              "Can't fold vectors ops with scalar operands");
4965       return Folded;
4966     }
4967   }
4968 
4969   // fold (add Sym, c) -> Sym+c
4970   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1))
4971     return FoldSymbolOffset(Opcode, VT, GA, N2);
4972   if (TLI->isCommutativeBinOp(Opcode))
4973     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2))
4974       return FoldSymbolOffset(Opcode, VT, GA, N1);
4975 
4976   // TODO: All the folds below are performed lane-by-lane and assume a fixed
4977   // vector width, however we should be able to do constant folds involving
4978   // splat vector nodes too.
4979   if (VT.isScalableVector())
4980     return SDValue();
4981 
4982   // For fixed width vectors, extract each constant element and fold them
4983   // individually. Either input may be an undef value.
4984   auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
4985   if (!BV1 && !N1->isUndef())
4986     return SDValue();
4987   auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
4988   if (!BV2 && !N2->isUndef())
4989     return SDValue();
4990   // If both operands are undef, that's handled the same way as scalars.
4991   if (!BV1 && !BV2)
4992     return SDValue();
4993 
4994   assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) &&
4995          "Vector binop with different number of elements in operands?");
4996 
4997   EVT SVT = VT.getScalarType();
4998   EVT LegalSVT = SVT;
4999   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5000     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5001     if (LegalSVT.bitsLT(SVT))
5002       return SDValue();
5003   }
5004   SmallVector<SDValue, 4> Outputs;
5005   unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands();
5006   for (unsigned I = 0; I != NumOps; ++I) {
5007     SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT);
5008     SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT);
5009     if (SVT.isInteger()) {
5010       if (V1->getValueType(0).bitsGT(SVT))
5011         V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
5012       if (V2->getValueType(0).bitsGT(SVT))
5013         V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
5014     }
5015 
5016     if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
5017       return SDValue();
5018 
5019     // Fold one vector element.
5020     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
5021     if (LegalSVT != SVT)
5022       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5023 
5024     // Scalar folding only succeeded if the result is a constant or UNDEF.
5025     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5026         ScalarResult.getOpcode() != ISD::ConstantFP)
5027       return SDValue();
5028     Outputs.push_back(ScalarResult);
5029   }
5030 
5031   assert(VT.getVectorNumElements() == Outputs.size() &&
5032          "Vector size mismatch!");
5033 
5034   // We may have a vector type but a scalar result. Create a splat.
5035   Outputs.resize(VT.getVectorNumElements(), Outputs.back());
5036 
5037   // Build a big vector out of the scalar elements we generated.
5038   return getBuildVector(VT, SDLoc(), Outputs);
5039 }
5040 
5041 // TODO: Merge with FoldConstantArithmetic
5042 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
5043                                                    const SDLoc &DL, EVT VT,
5044                                                    ArrayRef<SDValue> Ops,
5045                                                    const SDNodeFlags Flags) {
5046   // If the opcode is a target-specific ISD node, there's nothing we can
5047   // do here and the operand rules may not line up with the below, so
5048   // bail early.
5049   if (Opcode >= ISD::BUILTIN_OP_END)
5050     return SDValue();
5051 
5052   if (isUndef(Opcode, Ops))
5053     return getUNDEF(VT);
5054 
5055   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
5056   if (!VT.isVector())
5057     return SDValue();
5058 
5059   // TODO: All the folds below are performed lane-by-lane and assume a fixed
5060   // vector width, however we should be able to do constant folds involving
5061   // splat vector nodes too.
5062   if (VT.isScalableVector())
5063     return SDValue();
5064 
5065   // From this point onwards all vectors are assumed to be fixed width.
5066   unsigned NumElts = VT.getVectorNumElements();
5067 
5068   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
5069     return !Op.getValueType().isVector() ||
5070            Op.getValueType().getVectorNumElements() == NumElts;
5071   };
5072 
5073   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
5074     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
5075     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
5076            (BV && BV->isConstant());
5077   };
5078 
5079   // All operands must be vector types with the same number of elements as
5080   // the result type and must be either UNDEF or a build vector of constant
5081   // or UNDEF scalars.
5082   if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
5083       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
5084     return SDValue();
5085 
5086   // If we are comparing vectors, then the result needs to be a i1 boolean
5087   // that is then sign-extended back to the legal result type.
5088   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
5089 
5090   // Find legal integer scalar type for constant promotion and
5091   // ensure that its scalar size is at least as large as source.
5092   EVT LegalSVT = VT.getScalarType();
5093   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5094     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5095     if (LegalSVT.bitsLT(VT.getScalarType()))
5096       return SDValue();
5097   }
5098 
5099   // Constant fold each scalar lane separately.
5100   SmallVector<SDValue, 4> ScalarResults;
5101   for (unsigned i = 0; i != NumElts; i++) {
5102     SmallVector<SDValue, 4> ScalarOps;
5103     for (SDValue Op : Ops) {
5104       EVT InSVT = Op.getValueType().getScalarType();
5105       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
5106       if (!InBV) {
5107         // We've checked that this is UNDEF or a constant of some kind.
5108         if (Op.isUndef())
5109           ScalarOps.push_back(getUNDEF(InSVT));
5110         else
5111           ScalarOps.push_back(Op);
5112         continue;
5113       }
5114 
5115       SDValue ScalarOp = InBV->getOperand(i);
5116       EVT ScalarVT = ScalarOp.getValueType();
5117 
5118       // Build vector (integer) scalar operands may need implicit
5119       // truncation - do this before constant folding.
5120       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
5121         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
5122 
5123       ScalarOps.push_back(ScalarOp);
5124     }
5125 
5126     // Constant fold the scalar operands.
5127     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
5128 
5129     // Legalize the (integer) scalar constant if necessary.
5130     if (LegalSVT != SVT)
5131       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5132 
5133     // Scalar folding only succeeded if the result is a constant or UNDEF.
5134     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5135         ScalarResult.getOpcode() != ISD::ConstantFP)
5136       return SDValue();
5137     ScalarResults.push_back(ScalarResult);
5138   }
5139 
5140   SDValue V = getBuildVector(VT, DL, ScalarResults);
5141   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
5142   return V;
5143 }
5144 
5145 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
5146                                          EVT VT, SDValue N1, SDValue N2) {
5147   // TODO: We don't do any constant folding for strict FP opcodes here, but we
5148   //       should. That will require dealing with a potentially non-default
5149   //       rounding mode, checking the "opStatus" return value from the APFloat
5150   //       math calculations, and possibly other variations.
5151   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
5152   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
5153   if (N1CFP && N2CFP) {
5154     APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF();
5155     switch (Opcode) {
5156     case ISD::FADD:
5157       C1.add(C2, APFloat::rmNearestTiesToEven);
5158       return getConstantFP(C1, DL, VT);
5159     case ISD::FSUB:
5160       C1.subtract(C2, APFloat::rmNearestTiesToEven);
5161       return getConstantFP(C1, DL, VT);
5162     case ISD::FMUL:
5163       C1.multiply(C2, APFloat::rmNearestTiesToEven);
5164       return getConstantFP(C1, DL, VT);
5165     case ISD::FDIV:
5166       C1.divide(C2, APFloat::rmNearestTiesToEven);
5167       return getConstantFP(C1, DL, VT);
5168     case ISD::FREM:
5169       C1.mod(C2);
5170       return getConstantFP(C1, DL, VT);
5171     case ISD::FCOPYSIGN:
5172       C1.copySign(C2);
5173       return getConstantFP(C1, DL, VT);
5174     default: break;
5175     }
5176   }
5177   if (N1CFP && Opcode == ISD::FP_ROUND) {
5178     APFloat C1 = N1CFP->getValueAPF();    // make copy
5179     bool Unused;
5180     // This can return overflow, underflow, or inexact; we don't care.
5181     // FIXME need to be more flexible about rounding mode.
5182     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5183                       &Unused);
5184     return getConstantFP(C1, DL, VT);
5185   }
5186 
5187   switch (Opcode) {
5188   case ISD::FSUB:
5189     // -0.0 - undef --> undef (consistent with "fneg undef")
5190     if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef())
5191       return getUNDEF(VT);
5192     LLVM_FALLTHROUGH;
5193 
5194   case ISD::FADD:
5195   case ISD::FMUL:
5196   case ISD::FDIV:
5197   case ISD::FREM:
5198     // If both operands are undef, the result is undef. If 1 operand is undef,
5199     // the result is NaN. This should match the behavior of the IR optimizer.
5200     if (N1.isUndef() && N2.isUndef())
5201       return getUNDEF(VT);
5202     if (N1.isUndef() || N2.isUndef())
5203       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5204   }
5205   return SDValue();
5206 }
5207 
5208 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) {
5209   assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
5210 
5211   // There's no need to assert on a byte-aligned pointer. All pointers are at
5212   // least byte aligned.
5213   if (A == Align(1))
5214     return Val;
5215 
5216   FoldingSetNodeID ID;
5217   AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val});
5218   ID.AddInteger(A.value());
5219 
5220   void *IP = nullptr;
5221   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5222     return SDValue(E, 0);
5223 
5224   auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(),
5225                                          Val.getValueType(), A);
5226   createOperands(N, {Val});
5227 
5228   CSEMap.InsertNode(N, IP);
5229   InsertNode(N);
5230 
5231   SDValue V(N, 0);
5232   NewSDValueDbgMsg(V, "Creating new node: ", this);
5233   return V;
5234 }
5235 
5236 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5237                               SDValue N1, SDValue N2) {
5238   SDNodeFlags Flags;
5239   if (Inserter)
5240     Flags = Inserter->getFlags();
5241   return getNode(Opcode, DL, VT, N1, N2, Flags);
5242 }
5243 
5244 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5245                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5246   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5247   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
5248   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5249   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5250 
5251   // Canonicalize constant to RHS if commutative.
5252   if (TLI->isCommutativeBinOp(Opcode)) {
5253     if (N1C && !N2C) {
5254       std::swap(N1C, N2C);
5255       std::swap(N1, N2);
5256     } else if (N1CFP && !N2CFP) {
5257       std::swap(N1CFP, N2CFP);
5258       std::swap(N1, N2);
5259     }
5260   }
5261 
5262   switch (Opcode) {
5263   default: break;
5264   case ISD::TokenFactor:
5265     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5266            N2.getValueType() == MVT::Other && "Invalid token factor!");
5267     // Fold trivial token factors.
5268     if (N1.getOpcode() == ISD::EntryToken) return N2;
5269     if (N2.getOpcode() == ISD::EntryToken) return N1;
5270     if (N1 == N2) return N1;
5271     break;
5272   case ISD::BUILD_VECTOR: {
5273     // Attempt to simplify BUILD_VECTOR.
5274     SDValue Ops[] = {N1, N2};
5275     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5276       return V;
5277     break;
5278   }
5279   case ISD::CONCAT_VECTORS: {
5280     SDValue Ops[] = {N1, N2};
5281     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5282       return V;
5283     break;
5284   }
5285   case ISD::AND:
5286     assert(VT.isInteger() && "This operator does not apply to FP types!");
5287     assert(N1.getValueType() == N2.getValueType() &&
5288            N1.getValueType() == VT && "Binary operator types must match!");
5289     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5290     // worth handling here.
5291     if (N2C && N2C->isNullValue())
5292       return N2;
5293     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
5294       return N1;
5295     break;
5296   case ISD::OR:
5297   case ISD::XOR:
5298   case ISD::ADD:
5299   case ISD::SUB:
5300     assert(VT.isInteger() && "This operator does not apply to FP types!");
5301     assert(N1.getValueType() == N2.getValueType() &&
5302            N1.getValueType() == VT && "Binary operator types must match!");
5303     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5304     // it's worth handling here.
5305     if (N2C && N2C->isNullValue())
5306       return N1;
5307     break;
5308   case ISD::MUL:
5309     assert(VT.isInteger() && "This operator does not apply to FP types!");
5310     assert(N1.getValueType() == N2.getValueType() &&
5311            N1.getValueType() == VT && "Binary operator types must match!");
5312     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5313       APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue();
5314       APInt N2CImm = N2C->getAPIntValue();
5315       return getVScale(DL, VT, MulImm * N2CImm);
5316     }
5317     break;
5318   case ISD::UDIV:
5319   case ISD::UREM:
5320   case ISD::MULHU:
5321   case ISD::MULHS:
5322   case ISD::SDIV:
5323   case ISD::SREM:
5324   case ISD::SADDSAT:
5325   case ISD::SSUBSAT:
5326   case ISD::UADDSAT:
5327   case ISD::USUBSAT:
5328     assert(VT.isInteger() && "This operator does not apply to FP types!");
5329     assert(N1.getValueType() == N2.getValueType() &&
5330            N1.getValueType() == VT && "Binary operator types must match!");
5331     break;
5332   case ISD::SMIN:
5333   case ISD::UMAX:
5334     assert(VT.isInteger() && "This operator does not apply to FP types!");
5335     assert(N1.getValueType() == N2.getValueType() &&
5336            N1.getValueType() == VT && "Binary operator types must match!");
5337     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5338       return getNode(ISD::OR, DL, VT, N1, N2);
5339     break;
5340   case ISD::SMAX:
5341   case ISD::UMIN:
5342     assert(VT.isInteger() && "This operator does not apply to FP types!");
5343     assert(N1.getValueType() == N2.getValueType() &&
5344            N1.getValueType() == VT && "Binary operator types must match!");
5345     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5346       return getNode(ISD::AND, DL, VT, N1, N2);
5347     break;
5348   case ISD::FADD:
5349   case ISD::FSUB:
5350   case ISD::FMUL:
5351   case ISD::FDIV:
5352   case ISD::FREM:
5353     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5354     assert(N1.getValueType() == N2.getValueType() &&
5355            N1.getValueType() == VT && "Binary operator types must match!");
5356     if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
5357       return V;
5358     break;
5359   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5360     assert(N1.getValueType() == VT &&
5361            N1.getValueType().isFloatingPoint() &&
5362            N2.getValueType().isFloatingPoint() &&
5363            "Invalid FCOPYSIGN!");
5364     break;
5365   case ISD::SHL:
5366     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5367       APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue();
5368       APInt ShiftImm = N2C->getAPIntValue();
5369       return getVScale(DL, VT, MulImm << ShiftImm);
5370     }
5371     LLVM_FALLTHROUGH;
5372   case ISD::SRA:
5373   case ISD::SRL:
5374     if (SDValue V = simplifyShift(N1, N2))
5375       return V;
5376     LLVM_FALLTHROUGH;
5377   case ISD::ROTL:
5378   case ISD::ROTR:
5379     assert(VT == N1.getValueType() &&
5380            "Shift operators return type must be the same as their first arg");
5381     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5382            "Shifts only work on integers");
5383     assert((!VT.isVector() || VT == N2.getValueType()) &&
5384            "Vector shift amounts must be in the same as their first arg");
5385     // Verify that the shift amount VT is big enough to hold valid shift
5386     // amounts.  This catches things like trying to shift an i1024 value by an
5387     // i8, which is easy to fall into in generic code that uses
5388     // TLI.getShiftAmount().
5389     assert(N2.getValueType().getScalarSizeInBits() >=
5390                Log2_32_Ceil(VT.getScalarSizeInBits()) &&
5391            "Invalid use of small shift amount with oversized value!");
5392 
5393     // Always fold shifts of i1 values so the code generator doesn't need to
5394     // handle them.  Since we know the size of the shift has to be less than the
5395     // size of the value, the shift/rotate count is guaranteed to be zero.
5396     if (VT == MVT::i1)
5397       return N1;
5398     if (N2C && N2C->isNullValue())
5399       return N1;
5400     break;
5401   case ISD::FP_ROUND:
5402     assert(VT.isFloatingPoint() &&
5403            N1.getValueType().isFloatingPoint() &&
5404            VT.bitsLE(N1.getValueType()) &&
5405            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5406            "Invalid FP_ROUND!");
5407     if (N1.getValueType() == VT) return N1;  // noop conversion.
5408     break;
5409   case ISD::AssertSext:
5410   case ISD::AssertZext: {
5411     EVT EVT = cast<VTSDNode>(N2)->getVT();
5412     assert(VT == N1.getValueType() && "Not an inreg extend!");
5413     assert(VT.isInteger() && EVT.isInteger() &&
5414            "Cannot *_EXTEND_INREG FP types");
5415     assert(!EVT.isVector() &&
5416            "AssertSExt/AssertZExt type should be the vector element type "
5417            "rather than the vector type!");
5418     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5419     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5420     break;
5421   }
5422   case ISD::SIGN_EXTEND_INREG: {
5423     EVT EVT = cast<VTSDNode>(N2)->getVT();
5424     assert(VT == N1.getValueType() && "Not an inreg extend!");
5425     assert(VT.isInteger() && EVT.isInteger() &&
5426            "Cannot *_EXTEND_INREG FP types");
5427     assert(EVT.isVector() == VT.isVector() &&
5428            "SIGN_EXTEND_INREG type should be vector iff the operand "
5429            "type is vector!");
5430     assert((!EVT.isVector() ||
5431             EVT.getVectorElementCount() == VT.getVectorElementCount()) &&
5432            "Vector element counts must match in SIGN_EXTEND_INREG");
5433     assert(EVT.bitsLE(VT) && "Not extending!");
5434     if (EVT == VT) return N1;  // Not actually extending
5435 
5436     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5437       unsigned FromBits = EVT.getScalarSizeInBits();
5438       Val <<= Val.getBitWidth() - FromBits;
5439       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5440       return getConstant(Val, DL, ConstantVT);
5441     };
5442 
5443     if (N1C) {
5444       const APInt &Val = N1C->getAPIntValue();
5445       return SignExtendInReg(Val, VT);
5446     }
5447     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5448       SmallVector<SDValue, 8> Ops;
5449       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5450       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5451         SDValue Op = N1.getOperand(i);
5452         if (Op.isUndef()) {
5453           Ops.push_back(getUNDEF(OpVT));
5454           continue;
5455         }
5456         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5457         APInt Val = C->getAPIntValue();
5458         Ops.push_back(SignExtendInReg(Val, OpVT));
5459       }
5460       return getBuildVector(VT, DL, Ops);
5461     }
5462     break;
5463   }
5464   case ISD::EXTRACT_VECTOR_ELT:
5465     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5466            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5467              element type of the vector.");
5468 
5469     // Extract from an undefined value or using an undefined index is undefined.
5470     if (N1.isUndef() || N2.isUndef())
5471       return getUNDEF(VT);
5472 
5473     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
5474     // vectors. For scalable vectors we will provide appropriate support for
5475     // dealing with arbitrary indices.
5476     if (N2C && N1.getValueType().isFixedLengthVector() &&
5477         N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5478       return getUNDEF(VT);
5479 
5480     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5481     // expanding copies of large vectors from registers. This only works for
5482     // fixed length vectors, since we need to know the exact number of
5483     // elements.
5484     if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() &&
5485         N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) {
5486       unsigned Factor =
5487         N1.getOperand(0).getValueType().getVectorNumElements();
5488       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5489                      N1.getOperand(N2C->getZExtValue() / Factor),
5490                      getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
5491     }
5492 
5493     // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
5494     // lowering is expanding large vector constants.
5495     if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
5496                 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
5497       assert((N1.getOpcode() != ISD::BUILD_VECTOR ||
5498               N1.getValueType().isFixedLengthVector()) &&
5499              "BUILD_VECTOR used for scalable vectors");
5500       unsigned Index =
5501           N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
5502       SDValue Elt = N1.getOperand(Index);
5503 
5504       if (VT != Elt.getValueType())
5505         // If the vector element type is not legal, the BUILD_VECTOR operands
5506         // are promoted and implicitly truncated, and the result implicitly
5507         // extended. Make that explicit here.
5508         Elt = getAnyExtOrTrunc(Elt, DL, VT);
5509 
5510       return Elt;
5511     }
5512 
5513     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5514     // operations are lowered to scalars.
5515     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5516       // If the indices are the same, return the inserted element else
5517       // if the indices are known different, extract the element from
5518       // the original vector.
5519       SDValue N1Op2 = N1.getOperand(2);
5520       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5521 
5522       if (N1Op2C && N2C) {
5523         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5524           if (VT == N1.getOperand(1).getValueType())
5525             return N1.getOperand(1);
5526           else
5527             return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5528         }
5529 
5530         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5531       }
5532     }
5533 
5534     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5535     // when vector types are scalarized and v1iX is legal.
5536     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
5537     // Here we are completely ignoring the extract element index (N2),
5538     // which is fine for fixed width vectors, since any index other than 0
5539     // is undefined anyway. However, this cannot be ignored for scalable
5540     // vectors - in theory we could support this, but we don't want to do this
5541     // without a profitability check.
5542     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5543         N1.getValueType().isFixedLengthVector() &&
5544         N1.getValueType().getVectorNumElements() == 1) {
5545       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5546                      N1.getOperand(1));
5547     }
5548     break;
5549   case ISD::EXTRACT_ELEMENT:
5550     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5551     assert(!N1.getValueType().isVector() && !VT.isVector() &&
5552            (N1.getValueType().isInteger() == VT.isInteger()) &&
5553            N1.getValueType() != VT &&
5554            "Wrong types for EXTRACT_ELEMENT!");
5555 
5556     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5557     // 64-bit integers into 32-bit parts.  Instead of building the extract of
5558     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5559     if (N1.getOpcode() == ISD::BUILD_PAIR)
5560       return N1.getOperand(N2C->getZExtValue());
5561 
5562     // EXTRACT_ELEMENT of a constant int is also very common.
5563     if (N1C) {
5564       unsigned ElementSize = VT.getSizeInBits();
5565       unsigned Shift = ElementSize * N2C->getZExtValue();
5566       APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift);
5567       return getConstant(ShiftedVal.trunc(ElementSize), DL, VT);
5568     }
5569     break;
5570   case ISD::EXTRACT_SUBVECTOR:
5571     EVT N1VT = N1.getValueType();
5572     assert(VT.isVector() && N1VT.isVector() &&
5573            "Extract subvector VTs must be vectors!");
5574     assert(VT.getVectorElementType() == N1VT.getVectorElementType() &&
5575            "Extract subvector VTs must have the same element type!");
5576     assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
5577            "Cannot extract a scalable vector from a fixed length vector!");
5578     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5579             VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) &&
5580            "Extract subvector must be from larger vector to smaller vector!");
5581     assert(N2C && "Extract subvector index must be a constant");
5582     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5583             (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
5584                 N1VT.getVectorMinNumElements()) &&
5585            "Extract subvector overflow!");
5586     assert(N2C->getAPIntValue().getBitWidth() ==
5587                TLI->getVectorIdxTy(getDataLayout())
5588                    .getSizeInBits()
5589                    .getFixedSize() &&
5590            "Constant index for EXTRACT_SUBVECTOR has an invalid size");
5591 
5592     // Trivial extraction.
5593     if (VT == N1VT)
5594       return N1;
5595 
5596     // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5597     if (N1.isUndef())
5598       return getUNDEF(VT);
5599 
5600     // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5601     // the concat have the same type as the extract.
5602     if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 &&
5603         VT == N1.getOperand(0).getValueType()) {
5604       unsigned Factor = VT.getVectorMinNumElements();
5605       return N1.getOperand(N2C->getZExtValue() / Factor);
5606     }
5607 
5608     // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5609     // during shuffle legalization.
5610     if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
5611         VT == N1.getOperand(1).getValueType())
5612       return N1.getOperand(1);
5613     break;
5614   }
5615 
5616   // Perform trivial constant folding.
5617   if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}))
5618     return SV;
5619 
5620   if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2))
5621     return V;
5622 
5623   // Canonicalize an UNDEF to the RHS, even over a constant.
5624   if (N1.isUndef()) {
5625     if (TLI->isCommutativeBinOp(Opcode)) {
5626       std::swap(N1, N2);
5627     } else {
5628       switch (Opcode) {
5629       case ISD::SIGN_EXTEND_INREG:
5630       case ISD::SUB:
5631         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
5632       case ISD::UDIV:
5633       case ISD::SDIV:
5634       case ISD::UREM:
5635       case ISD::SREM:
5636       case ISD::SSUBSAT:
5637       case ISD::USUBSAT:
5638         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
5639       }
5640     }
5641   }
5642 
5643   // Fold a bunch of operators when the RHS is undef.
5644   if (N2.isUndef()) {
5645     switch (Opcode) {
5646     case ISD::XOR:
5647       if (N1.isUndef())
5648         // Handle undef ^ undef -> 0 special case. This is a common
5649         // idiom (misuse).
5650         return getConstant(0, DL, VT);
5651       LLVM_FALLTHROUGH;
5652     case ISD::ADD:
5653     case ISD::SUB:
5654     case ISD::UDIV:
5655     case ISD::SDIV:
5656     case ISD::UREM:
5657     case ISD::SREM:
5658       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
5659     case ISD::MUL:
5660     case ISD::AND:
5661     case ISD::SSUBSAT:
5662     case ISD::USUBSAT:
5663       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
5664     case ISD::OR:
5665     case ISD::SADDSAT:
5666     case ISD::UADDSAT:
5667       return getAllOnesConstant(DL, VT);
5668     }
5669   }
5670 
5671   // Memoize this node if possible.
5672   SDNode *N;
5673   SDVTList VTs = getVTList(VT);
5674   SDValue Ops[] = {N1, N2};
5675   if (VT != MVT::Glue) {
5676     FoldingSetNodeID ID;
5677     AddNodeIDNode(ID, Opcode, VTs, Ops);
5678     void *IP = nullptr;
5679     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5680       E->intersectFlagsWith(Flags);
5681       return SDValue(E, 0);
5682     }
5683 
5684     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5685     N->setFlags(Flags);
5686     createOperands(N, Ops);
5687     CSEMap.InsertNode(N, IP);
5688   } else {
5689     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5690     createOperands(N, Ops);
5691   }
5692 
5693   InsertNode(N);
5694   SDValue V = SDValue(N, 0);
5695   NewSDValueDbgMsg(V, "Creating new node: ", this);
5696   return V;
5697 }
5698 
5699 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5700                               SDValue N1, SDValue N2, SDValue N3) {
5701   SDNodeFlags Flags;
5702   if (Inserter)
5703     Flags = Inserter->getFlags();
5704   return getNode(Opcode, DL, VT, N1, N2, N3, Flags);
5705 }
5706 
5707 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5708                               SDValue N1, SDValue N2, SDValue N3,
5709                               const SDNodeFlags Flags) {
5710   // Perform various simplifications.
5711   switch (Opcode) {
5712   case ISD::FMA: {
5713     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5714     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
5715            N3.getValueType() == VT && "FMA types must match!");
5716     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5717     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5718     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
5719     if (N1CFP && N2CFP && N3CFP) {
5720       APFloat  V1 = N1CFP->getValueAPF();
5721       const APFloat &V2 = N2CFP->getValueAPF();
5722       const APFloat &V3 = N3CFP->getValueAPF();
5723       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
5724       return getConstantFP(V1, DL, VT);
5725     }
5726     break;
5727   }
5728   case ISD::BUILD_VECTOR: {
5729     // Attempt to simplify BUILD_VECTOR.
5730     SDValue Ops[] = {N1, N2, N3};
5731     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5732       return V;
5733     break;
5734   }
5735   case ISD::CONCAT_VECTORS: {
5736     SDValue Ops[] = {N1, N2, N3};
5737     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5738       return V;
5739     break;
5740   }
5741   case ISD::SETCC: {
5742     assert(VT.isInteger() && "SETCC result type must be an integer!");
5743     assert(N1.getValueType() == N2.getValueType() &&
5744            "SETCC operands must have the same type!");
5745     assert(VT.isVector() == N1.getValueType().isVector() &&
5746            "SETCC type should be vector iff the operand type is vector!");
5747     assert((!VT.isVector() || VT.getVectorElementCount() ==
5748                                   N1.getValueType().getVectorElementCount()) &&
5749            "SETCC vector element counts must match!");
5750     // Use FoldSetCC to simplify SETCC's.
5751     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
5752       return V;
5753     // Vector constant folding.
5754     SDValue Ops[] = {N1, N2, N3};
5755     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
5756       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
5757       return V;
5758     }
5759     break;
5760   }
5761   case ISD::SELECT:
5762   case ISD::VSELECT:
5763     if (SDValue V = simplifySelect(N1, N2, N3))
5764       return V;
5765     break;
5766   case ISD::VECTOR_SHUFFLE:
5767     llvm_unreachable("should use getVectorShuffle constructor!");
5768   case ISD::INSERT_VECTOR_ELT: {
5769     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
5770     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
5771     // for scalable vectors where we will generate appropriate code to
5772     // deal with out-of-bounds cases correctly.
5773     if (N3C && N1.getValueType().isFixedLengthVector() &&
5774         N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
5775       return getUNDEF(VT);
5776 
5777     // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
5778     if (N3.isUndef())
5779       return getUNDEF(VT);
5780 
5781     // If the inserted element is an UNDEF, just use the input vector.
5782     if (N2.isUndef())
5783       return N1;
5784 
5785     break;
5786   }
5787   case ISD::INSERT_SUBVECTOR: {
5788     // Inserting undef into undef is still undef.
5789     if (N1.isUndef() && N2.isUndef())
5790       return getUNDEF(VT);
5791 
5792     EVT N2VT = N2.getValueType();
5793     assert(VT == N1.getValueType() &&
5794            "Dest and insert subvector source types must match!");
5795     assert(VT.isVector() && N2VT.isVector() &&
5796            "Insert subvector VTs must be vectors!");
5797     assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
5798            "Cannot insert a scalable vector into a fixed length vector!");
5799     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
5800             VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) &&
5801            "Insert subvector must be from smaller vector to larger vector!");
5802     assert(isa<ConstantSDNode>(N3) &&
5803            "Insert subvector index must be constant");
5804     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
5805             (N2VT.getVectorMinNumElements() +
5806              cast<ConstantSDNode>(N3)->getZExtValue()) <=
5807                 VT.getVectorMinNumElements()) &&
5808            "Insert subvector overflow!");
5809 
5810     // Trivial insertion.
5811     if (VT == N2VT)
5812       return N2;
5813 
5814     // If this is an insert of an extracted vector into an undef vector, we
5815     // can just use the input to the extract.
5816     if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5817         N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
5818       return N2.getOperand(0);
5819     break;
5820   }
5821   case ISD::BITCAST:
5822     // Fold bit_convert nodes from a type to themselves.
5823     if (N1.getValueType() == VT)
5824       return N1;
5825     break;
5826   }
5827 
5828   // Memoize node if it doesn't produce a flag.
5829   SDNode *N;
5830   SDVTList VTs = getVTList(VT);
5831   SDValue Ops[] = {N1, N2, N3};
5832   if (VT != MVT::Glue) {
5833     FoldingSetNodeID ID;
5834     AddNodeIDNode(ID, Opcode, VTs, Ops);
5835     void *IP = nullptr;
5836     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5837       E->intersectFlagsWith(Flags);
5838       return SDValue(E, 0);
5839     }
5840 
5841     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5842     N->setFlags(Flags);
5843     createOperands(N, Ops);
5844     CSEMap.InsertNode(N, IP);
5845   } else {
5846     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5847     createOperands(N, Ops);
5848   }
5849 
5850   InsertNode(N);
5851   SDValue V = SDValue(N, 0);
5852   NewSDValueDbgMsg(V, "Creating new node: ", this);
5853   return V;
5854 }
5855 
5856 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5857                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
5858   SDValue Ops[] = { N1, N2, N3, N4 };
5859   return getNode(Opcode, DL, VT, Ops);
5860 }
5861 
5862 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5863                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
5864                               SDValue N5) {
5865   SDValue Ops[] = { N1, N2, N3, N4, N5 };
5866   return getNode(Opcode, DL, VT, Ops);
5867 }
5868 
5869 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
5870 /// the incoming stack arguments to be loaded from the stack.
5871 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
5872   SmallVector<SDValue, 8> ArgChains;
5873 
5874   // Include the original chain at the beginning of the list. When this is
5875   // used by target LowerCall hooks, this helps legalize find the
5876   // CALLSEQ_BEGIN node.
5877   ArgChains.push_back(Chain);
5878 
5879   // Add a chain value for each stack argument.
5880   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
5881        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
5882     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
5883       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
5884         if (FI->getIndex() < 0)
5885           ArgChains.push_back(SDValue(L, 1));
5886 
5887   // Build a tokenfactor for all the chains.
5888   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
5889 }
5890 
5891 /// getMemsetValue - Vectorized representation of the memset value
5892 /// operand.
5893 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
5894                               const SDLoc &dl) {
5895   assert(!Value.isUndef());
5896 
5897   unsigned NumBits = VT.getScalarSizeInBits();
5898   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
5899     assert(C->getAPIntValue().getBitWidth() == 8);
5900     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
5901     if (VT.isInteger()) {
5902       bool IsOpaque = VT.getSizeInBits() > 64 ||
5903           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
5904       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
5905     }
5906     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
5907                              VT);
5908   }
5909 
5910   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
5911   EVT IntVT = VT.getScalarType();
5912   if (!IntVT.isInteger())
5913     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
5914 
5915   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
5916   if (NumBits > 8) {
5917     // Use a multiplication with 0x010101... to extend the input to the
5918     // required length.
5919     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
5920     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
5921                         DAG.getConstant(Magic, dl, IntVT));
5922   }
5923 
5924   if (VT != Value.getValueType() && !VT.isInteger())
5925     Value = DAG.getBitcast(VT.getScalarType(), Value);
5926   if (VT != Value.getValueType())
5927     Value = DAG.getSplatBuildVector(VT, dl, Value);
5928 
5929   return Value;
5930 }
5931 
5932 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
5933 /// used when a memcpy is turned into a memset when the source is a constant
5934 /// string ptr.
5935 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
5936                                   const TargetLowering &TLI,
5937                                   const ConstantDataArraySlice &Slice) {
5938   // Handle vector with all elements zero.
5939   if (Slice.Array == nullptr) {
5940     if (VT.isInteger())
5941       return DAG.getConstant(0, dl, VT);
5942     else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
5943       return DAG.getConstantFP(0.0, dl, VT);
5944     else if (VT.isVector()) {
5945       unsigned NumElts = VT.getVectorNumElements();
5946       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
5947       return DAG.getNode(ISD::BITCAST, dl, VT,
5948                          DAG.getConstant(0, dl,
5949                                          EVT::getVectorVT(*DAG.getContext(),
5950                                                           EltVT, NumElts)));
5951     } else
5952       llvm_unreachable("Expected type!");
5953   }
5954 
5955   assert(!VT.isVector() && "Can't handle vector type here!");
5956   unsigned NumVTBits = VT.getSizeInBits();
5957   unsigned NumVTBytes = NumVTBits / 8;
5958   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
5959 
5960   APInt Val(NumVTBits, 0);
5961   if (DAG.getDataLayout().isLittleEndian()) {
5962     for (unsigned i = 0; i != NumBytes; ++i)
5963       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
5964   } else {
5965     for (unsigned i = 0; i != NumBytes; ++i)
5966       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
5967   }
5968 
5969   // If the "cost" of materializing the integer immediate is less than the cost
5970   // of a load, then it is cost effective to turn the load into the immediate.
5971   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
5972   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
5973     return DAG.getConstant(Val, dl, VT);
5974   return SDValue(nullptr, 0);
5975 }
5976 
5977 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset,
5978                                            const SDLoc &DL,
5979                                            const SDNodeFlags Flags) {
5980   EVT VT = Base.getValueType();
5981   SDValue Index;
5982 
5983   if (Offset.isScalable())
5984     Index = getVScale(DL, Base.getValueType(),
5985                       APInt(Base.getValueSizeInBits().getFixedSize(),
5986                             Offset.getKnownMinSize()));
5987   else
5988     Index = getConstant(Offset.getFixedSize(), DL, VT);
5989 
5990   return getMemBasePlusOffset(Base, Index, DL, Flags);
5991 }
5992 
5993 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
5994                                            const SDLoc &DL,
5995                                            const SDNodeFlags Flags) {
5996   assert(Offset.getValueType().isInteger());
5997   EVT BasePtrVT = Ptr.getValueType();
5998   return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
5999 }
6000 
6001 /// Returns true if memcpy source is constant data.
6002 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
6003   uint64_t SrcDelta = 0;
6004   GlobalAddressSDNode *G = nullptr;
6005   if (Src.getOpcode() == ISD::GlobalAddress)
6006     G = cast<GlobalAddressSDNode>(Src);
6007   else if (Src.getOpcode() == ISD::ADD &&
6008            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
6009            Src.getOperand(1).getOpcode() == ISD::Constant) {
6010     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
6011     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
6012   }
6013   if (!G)
6014     return false;
6015 
6016   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
6017                                   SrcDelta + G->getOffset());
6018 }
6019 
6020 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
6021                                       SelectionDAG &DAG) {
6022   // On Darwin, -Os means optimize for size without hurting performance, so
6023   // only really optimize for size when -Oz (MinSize) is used.
6024   if (MF.getTarget().getTargetTriple().isOSDarwin())
6025     return MF.getFunction().hasMinSize();
6026   return DAG.shouldOptForSize();
6027 }
6028 
6029 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
6030                           SmallVector<SDValue, 32> &OutChains, unsigned From,
6031                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
6032                           SmallVector<SDValue, 16> &OutStoreChains) {
6033   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
6034   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
6035   SmallVector<SDValue, 16> GluedLoadChains;
6036   for (unsigned i = From; i < To; ++i) {
6037     OutChains.push_back(OutLoadChains[i]);
6038     GluedLoadChains.push_back(OutLoadChains[i]);
6039   }
6040 
6041   // Chain for all loads.
6042   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6043                                   GluedLoadChains);
6044 
6045   for (unsigned i = From; i < To; ++i) {
6046     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
6047     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
6048                                   ST->getBasePtr(), ST->getMemoryVT(),
6049                                   ST->getMemOperand());
6050     OutChains.push_back(NewStore);
6051   }
6052 }
6053 
6054 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6055                                        SDValue Chain, SDValue Dst, SDValue Src,
6056                                        uint64_t Size, Align Alignment,
6057                                        bool isVol, bool AlwaysInline,
6058                                        MachinePointerInfo DstPtrInfo,
6059                                        MachinePointerInfo SrcPtrInfo) {
6060   // Turn a memcpy of undef to nop.
6061   // FIXME: We need to honor volatile even is Src is undef.
6062   if (Src.isUndef())
6063     return Chain;
6064 
6065   // Expand memcpy to a series of load and store ops if the size operand falls
6066   // below a certain threshold.
6067   // TODO: In the AlwaysInline case, if the size is big then generate a loop
6068   // rather than maybe a humongous number of loads and stores.
6069   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6070   const DataLayout &DL = DAG.getDataLayout();
6071   LLVMContext &C = *DAG.getContext();
6072   std::vector<EVT> MemOps;
6073   bool DstAlignCanChange = false;
6074   MachineFunction &MF = DAG.getMachineFunction();
6075   MachineFrameInfo &MFI = MF.getFrameInfo();
6076   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6077   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6078   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6079     DstAlignCanChange = true;
6080   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6081   if (!SrcAlign || Alignment > *SrcAlign)
6082     SrcAlign = Alignment;
6083   assert(SrcAlign && "SrcAlign must be set");
6084   ConstantDataArraySlice Slice;
6085   // If marked as volatile, perform a copy even when marked as constant.
6086   bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice);
6087   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
6088   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
6089   const MemOp Op = isZeroConstant
6090                        ? MemOp::Set(Size, DstAlignCanChange, Alignment,
6091                                     /*IsZeroMemset*/ true, isVol)
6092                        : MemOp::Copy(Size, DstAlignCanChange, Alignment,
6093                                      *SrcAlign, isVol, CopyFromConstant);
6094   if (!TLI.findOptimalMemOpLowering(
6095           MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
6096           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
6097     return SDValue();
6098 
6099   if (DstAlignCanChange) {
6100     Type *Ty = MemOps[0].getTypeForEVT(C);
6101     Align NewAlign = DL.getABITypeAlign(Ty);
6102 
6103     // Don't promote to an alignment that would require dynamic stack
6104     // realignment.
6105     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
6106     if (!TRI->needsStackRealignment(MF))
6107       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
6108         NewAlign = NewAlign / 2;
6109 
6110     if (NewAlign > Alignment) {
6111       // Give the stack frame object a larger alignment if needed.
6112       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6113         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6114       Alignment = NewAlign;
6115     }
6116   }
6117 
6118   MachineMemOperand::Flags MMOFlags =
6119       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6120   SmallVector<SDValue, 16> OutLoadChains;
6121   SmallVector<SDValue, 16> OutStoreChains;
6122   SmallVector<SDValue, 32> OutChains;
6123   unsigned NumMemOps = MemOps.size();
6124   uint64_t SrcOff = 0, DstOff = 0;
6125   for (unsigned i = 0; i != NumMemOps; ++i) {
6126     EVT VT = MemOps[i];
6127     unsigned VTSize = VT.getSizeInBits() / 8;
6128     SDValue Value, Store;
6129 
6130     if (VTSize > Size) {
6131       // Issuing an unaligned load / store pair  that overlaps with the previous
6132       // pair. Adjust the offset accordingly.
6133       assert(i == NumMemOps-1 && i != 0);
6134       SrcOff -= VTSize - Size;
6135       DstOff -= VTSize - Size;
6136     }
6137 
6138     if (CopyFromConstant &&
6139         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
6140       // It's unlikely a store of a vector immediate can be done in a single
6141       // instruction. It would require a load from a constantpool first.
6142       // We only handle zero vectors here.
6143       // FIXME: Handle other cases where store of vector immediate is done in
6144       // a single instruction.
6145       ConstantDataArraySlice SubSlice;
6146       if (SrcOff < Slice.Length) {
6147         SubSlice = Slice;
6148         SubSlice.move(SrcOff);
6149       } else {
6150         // This is an out-of-bounds access and hence UB. Pretend we read zero.
6151         SubSlice.Array = nullptr;
6152         SubSlice.Offset = 0;
6153         SubSlice.Length = VTSize;
6154       }
6155       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
6156       if (Value.getNode()) {
6157         Store = DAG.getStore(
6158             Chain, dl, Value,
6159             DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6160             DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags);
6161         OutChains.push_back(Store);
6162       }
6163     }
6164 
6165     if (!Store.getNode()) {
6166       // The type might not be legal for the target.  This should only happen
6167       // if the type is smaller than a legal type, as on PPC, so the right
6168       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
6169       // to Load/Store if NVT==VT.
6170       // FIXME does the case above also need this?
6171       EVT NVT = TLI.getTypeToTransformTo(C, VT);
6172       assert(NVT.bitsGE(VT));
6173 
6174       bool isDereferenceable =
6175         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6176       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6177       if (isDereferenceable)
6178         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6179 
6180       Value = DAG.getExtLoad(
6181           ISD::EXTLOAD, dl, NVT, Chain,
6182           DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6183           SrcPtrInfo.getWithOffset(SrcOff), VT,
6184           commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags);
6185       OutLoadChains.push_back(Value.getValue(1));
6186 
6187       Store = DAG.getTruncStore(
6188           Chain, dl, Value,
6189           DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6190           DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags);
6191       OutStoreChains.push_back(Store);
6192     }
6193     SrcOff += VTSize;
6194     DstOff += VTSize;
6195     Size -= VTSize;
6196   }
6197 
6198   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
6199                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
6200   unsigned NumLdStInMemcpy = OutStoreChains.size();
6201 
6202   if (NumLdStInMemcpy) {
6203     // It may be that memcpy might be converted to memset if it's memcpy
6204     // of constants. In such a case, we won't have loads and stores, but
6205     // just stores. In the absence of loads, there is nothing to gang up.
6206     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
6207       // If target does not care, just leave as it.
6208       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
6209         OutChains.push_back(OutLoadChains[i]);
6210         OutChains.push_back(OutStoreChains[i]);
6211       }
6212     } else {
6213       // Ld/St less than/equal limit set by target.
6214       if (NumLdStInMemcpy <= GluedLdStLimit) {
6215           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6216                                         NumLdStInMemcpy, OutLoadChains,
6217                                         OutStoreChains);
6218       } else {
6219         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
6220         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
6221         unsigned GlueIter = 0;
6222 
6223         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
6224           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
6225           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
6226 
6227           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
6228                                        OutLoadChains, OutStoreChains);
6229           GlueIter += GluedLdStLimit;
6230         }
6231 
6232         // Residual ld/st.
6233         if (RemainingLdStInMemcpy) {
6234           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6235                                         RemainingLdStInMemcpy, OutLoadChains,
6236                                         OutStoreChains);
6237         }
6238       }
6239     }
6240   }
6241   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6242 }
6243 
6244 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6245                                         SDValue Chain, SDValue Dst, SDValue Src,
6246                                         uint64_t Size, Align Alignment,
6247                                         bool isVol, bool AlwaysInline,
6248                                         MachinePointerInfo DstPtrInfo,
6249                                         MachinePointerInfo SrcPtrInfo) {
6250   // Turn a memmove of undef to nop.
6251   // FIXME: We need to honor volatile even is Src is undef.
6252   if (Src.isUndef())
6253     return Chain;
6254 
6255   // Expand memmove to a series of load and store ops if the size operand falls
6256   // below a certain threshold.
6257   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6258   const DataLayout &DL = DAG.getDataLayout();
6259   LLVMContext &C = *DAG.getContext();
6260   std::vector<EVT> MemOps;
6261   bool DstAlignCanChange = false;
6262   MachineFunction &MF = DAG.getMachineFunction();
6263   MachineFrameInfo &MFI = MF.getFrameInfo();
6264   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6265   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6266   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6267     DstAlignCanChange = true;
6268   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6269   if (!SrcAlign || Alignment > *SrcAlign)
6270     SrcAlign = Alignment;
6271   assert(SrcAlign && "SrcAlign must be set");
6272   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
6273   if (!TLI.findOptimalMemOpLowering(
6274           MemOps, Limit,
6275           MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
6276                       /*IsVolatile*/ true),
6277           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
6278           MF.getFunction().getAttributes()))
6279     return SDValue();
6280 
6281   if (DstAlignCanChange) {
6282     Type *Ty = MemOps[0].getTypeForEVT(C);
6283     Align NewAlign = DL.getABITypeAlign(Ty);
6284     if (NewAlign > Alignment) {
6285       // Give the stack frame object a larger alignment if needed.
6286       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6287         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6288       Alignment = NewAlign;
6289     }
6290   }
6291 
6292   MachineMemOperand::Flags MMOFlags =
6293       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6294   uint64_t SrcOff = 0, DstOff = 0;
6295   SmallVector<SDValue, 8> LoadValues;
6296   SmallVector<SDValue, 8> LoadChains;
6297   SmallVector<SDValue, 8> OutChains;
6298   unsigned NumMemOps = MemOps.size();
6299   for (unsigned i = 0; i < NumMemOps; i++) {
6300     EVT VT = MemOps[i];
6301     unsigned VTSize = VT.getSizeInBits() / 8;
6302     SDValue Value;
6303 
6304     bool isDereferenceable =
6305       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6306     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6307     if (isDereferenceable)
6308       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6309 
6310     Value =
6311         DAG.getLoad(VT, dl, Chain,
6312                     DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6313                     SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags);
6314     LoadValues.push_back(Value);
6315     LoadChains.push_back(Value.getValue(1));
6316     SrcOff += VTSize;
6317   }
6318   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6319   OutChains.clear();
6320   for (unsigned i = 0; i < NumMemOps; i++) {
6321     EVT VT = MemOps[i];
6322     unsigned VTSize = VT.getSizeInBits() / 8;
6323     SDValue Store;
6324 
6325     Store =
6326         DAG.getStore(Chain, dl, LoadValues[i],
6327                      DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6328                      DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags);
6329     OutChains.push_back(Store);
6330     DstOff += VTSize;
6331   }
6332 
6333   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6334 }
6335 
6336 /// Lower the call to 'memset' intrinsic function into a series of store
6337 /// operations.
6338 ///
6339 /// \param DAG Selection DAG where lowered code is placed.
6340 /// \param dl Link to corresponding IR location.
6341 /// \param Chain Control flow dependency.
6342 /// \param Dst Pointer to destination memory location.
6343 /// \param Src Value of byte to write into the memory.
6344 /// \param Size Number of bytes to write.
6345 /// \param Alignment Alignment of the destination in bytes.
6346 /// \param isVol True if destination is volatile.
6347 /// \param DstPtrInfo IR information on the memory pointer.
6348 /// \returns New head in the control flow, if lowering was successful, empty
6349 /// SDValue otherwise.
6350 ///
6351 /// The function tries to replace 'llvm.memset' intrinsic with several store
6352 /// operations and value calculation code. This is usually profitable for small
6353 /// memory size.
6354 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6355                                SDValue Chain, SDValue Dst, SDValue Src,
6356                                uint64_t Size, Align Alignment, bool isVol,
6357                                MachinePointerInfo DstPtrInfo) {
6358   // Turn a memset of undef to nop.
6359   // FIXME: We need to honor volatile even is Src is undef.
6360   if (Src.isUndef())
6361     return Chain;
6362 
6363   // Expand memset to a series of load/store ops if the size operand
6364   // falls below a certain threshold.
6365   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6366   std::vector<EVT> MemOps;
6367   bool DstAlignCanChange = false;
6368   MachineFunction &MF = DAG.getMachineFunction();
6369   MachineFrameInfo &MFI = MF.getFrameInfo();
6370   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6371   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6372   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6373     DstAlignCanChange = true;
6374   bool IsZeroVal =
6375     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
6376   if (!TLI.findOptimalMemOpLowering(
6377           MemOps, TLI.getMaxStoresPerMemset(OptSize),
6378           MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
6379           DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
6380     return SDValue();
6381 
6382   if (DstAlignCanChange) {
6383     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6384     Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty);
6385     if (NewAlign > Alignment) {
6386       // Give the stack frame object a larger alignment if needed.
6387       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6388         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6389       Alignment = NewAlign;
6390     }
6391   }
6392 
6393   SmallVector<SDValue, 8> OutChains;
6394   uint64_t DstOff = 0;
6395   unsigned NumMemOps = MemOps.size();
6396 
6397   // Find the largest store and generate the bit pattern for it.
6398   EVT LargestVT = MemOps[0];
6399   for (unsigned i = 1; i < NumMemOps; i++)
6400     if (MemOps[i].bitsGT(LargestVT))
6401       LargestVT = MemOps[i];
6402   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6403 
6404   for (unsigned i = 0; i < NumMemOps; i++) {
6405     EVT VT = MemOps[i];
6406     unsigned VTSize = VT.getSizeInBits() / 8;
6407     if (VTSize > Size) {
6408       // Issuing an unaligned load / store pair  that overlaps with the previous
6409       // pair. Adjust the offset accordingly.
6410       assert(i == NumMemOps-1 && i != 0);
6411       DstOff -= VTSize - Size;
6412     }
6413 
6414     // If this store is smaller than the largest store see whether we can get
6415     // the smaller value for free with a truncate.
6416     SDValue Value = MemSetValue;
6417     if (VT.bitsLT(LargestVT)) {
6418       if (!LargestVT.isVector() && !VT.isVector() &&
6419           TLI.isTruncateFree(LargestVT, VT))
6420         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6421       else
6422         Value = getMemsetValue(Src, VT, DAG, dl);
6423     }
6424     assert(Value.getValueType() == VT && "Value with wrong type.");
6425     SDValue Store = DAG.getStore(
6426         Chain, dl, Value,
6427         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6428         DstPtrInfo.getWithOffset(DstOff), Alignment,
6429         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
6430     OutChains.push_back(Store);
6431     DstOff += VT.getSizeInBits() / 8;
6432     Size -= VTSize;
6433   }
6434 
6435   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6436 }
6437 
6438 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6439                                             unsigned AS) {
6440   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6441   // pointer operands can be losslessly bitcasted to pointers of address space 0
6442   if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) {
6443     report_fatal_error("cannot lower memory intrinsic in address space " +
6444                        Twine(AS));
6445   }
6446 }
6447 
6448 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6449                                 SDValue Src, SDValue Size, Align Alignment,
6450                                 bool isVol, bool AlwaysInline, bool isTailCall,
6451                                 MachinePointerInfo DstPtrInfo,
6452                                 MachinePointerInfo SrcPtrInfo) {
6453   // Check to see if we should lower the memcpy to loads and stores first.
6454   // For cases within the target-specified limits, this is the best choice.
6455   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6456   if (ConstantSize) {
6457     // Memcpy with size zero? Just return the original chain.
6458     if (ConstantSize->isNullValue())
6459       return Chain;
6460 
6461     SDValue Result = getMemcpyLoadsAndStores(
6462         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6463         isVol, false, DstPtrInfo, SrcPtrInfo);
6464     if (Result.getNode())
6465       return Result;
6466   }
6467 
6468   // Then check to see if we should lower the memcpy with target-specific
6469   // code. If the target chooses to do this, this is the next best.
6470   if (TSI) {
6471     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6472         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline,
6473         DstPtrInfo, SrcPtrInfo);
6474     if (Result.getNode())
6475       return Result;
6476   }
6477 
6478   // If we really need inline code and the target declined to provide it,
6479   // use a (potentially long) sequence of loads and stores.
6480   if (AlwaysInline) {
6481     assert(ConstantSize && "AlwaysInline requires a constant size!");
6482     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6483                                    ConstantSize->getZExtValue(), Alignment,
6484                                    isVol, true, DstPtrInfo, SrcPtrInfo);
6485   }
6486 
6487   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6488   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6489 
6490   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6491   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6492   // respect volatile, so they may do things like read or write memory
6493   // beyond the given memory regions. But fixing this isn't easy, and most
6494   // people don't care.
6495 
6496   // Emit a library call.
6497   TargetLowering::ArgListTy Args;
6498   TargetLowering::ArgListEntry Entry;
6499   Entry.Ty = Type::getInt8PtrTy(*getContext());
6500   Entry.Node = Dst; Args.push_back(Entry);
6501   Entry.Node = Src; Args.push_back(Entry);
6502 
6503   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6504   Entry.Node = Size; Args.push_back(Entry);
6505   // FIXME: pass in SDLoc
6506   TargetLowering::CallLoweringInfo CLI(*this);
6507   CLI.setDebugLoc(dl)
6508       .setChain(Chain)
6509       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6510                     Dst.getValueType().getTypeForEVT(*getContext()),
6511                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6512                                       TLI->getPointerTy(getDataLayout())),
6513                     std::move(Args))
6514       .setDiscardResult()
6515       .setTailCall(isTailCall);
6516 
6517   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6518   return CallResult.second;
6519 }
6520 
6521 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6522                                       SDValue Dst, unsigned DstAlign,
6523                                       SDValue Src, unsigned SrcAlign,
6524                                       SDValue Size, Type *SizeTy,
6525                                       unsigned ElemSz, bool isTailCall,
6526                                       MachinePointerInfo DstPtrInfo,
6527                                       MachinePointerInfo SrcPtrInfo) {
6528   // Emit a library call.
6529   TargetLowering::ArgListTy Args;
6530   TargetLowering::ArgListEntry Entry;
6531   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6532   Entry.Node = Dst;
6533   Args.push_back(Entry);
6534 
6535   Entry.Node = Src;
6536   Args.push_back(Entry);
6537 
6538   Entry.Ty = SizeTy;
6539   Entry.Node = Size;
6540   Args.push_back(Entry);
6541 
6542   RTLIB::Libcall LibraryCall =
6543       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6544   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6545     report_fatal_error("Unsupported element size");
6546 
6547   TargetLowering::CallLoweringInfo CLI(*this);
6548   CLI.setDebugLoc(dl)
6549       .setChain(Chain)
6550       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6551                     Type::getVoidTy(*getContext()),
6552                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6553                                       TLI->getPointerTy(getDataLayout())),
6554                     std::move(Args))
6555       .setDiscardResult()
6556       .setTailCall(isTailCall);
6557 
6558   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6559   return CallResult.second;
6560 }
6561 
6562 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
6563                                  SDValue Src, SDValue Size, Align Alignment,
6564                                  bool isVol, bool isTailCall,
6565                                  MachinePointerInfo DstPtrInfo,
6566                                  MachinePointerInfo SrcPtrInfo) {
6567   // Check to see if we should lower the memmove to loads and stores first.
6568   // For cases within the target-specified limits, this is the best choice.
6569   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6570   if (ConstantSize) {
6571     // Memmove with size zero? Just return the original chain.
6572     if (ConstantSize->isNullValue())
6573       return Chain;
6574 
6575     SDValue Result = getMemmoveLoadsAndStores(
6576         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6577         isVol, false, DstPtrInfo, SrcPtrInfo);
6578     if (Result.getNode())
6579       return Result;
6580   }
6581 
6582   // Then check to see if we should lower the memmove with target-specific
6583   // code. If the target chooses to do this, this is the next best.
6584   if (TSI) {
6585     SDValue Result =
6586         TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size,
6587                                       Alignment, isVol, DstPtrInfo, SrcPtrInfo);
6588     if (Result.getNode())
6589       return Result;
6590   }
6591 
6592   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6593   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6594 
6595   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
6596   // not be safe.  See memcpy above for more details.
6597 
6598   // Emit a library call.
6599   TargetLowering::ArgListTy Args;
6600   TargetLowering::ArgListEntry Entry;
6601   Entry.Ty = Type::getInt8PtrTy(*getContext());
6602   Entry.Node = Dst; Args.push_back(Entry);
6603   Entry.Node = Src; Args.push_back(Entry);
6604 
6605   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6606   Entry.Node = Size; Args.push_back(Entry);
6607   // FIXME:  pass in SDLoc
6608   TargetLowering::CallLoweringInfo CLI(*this);
6609   CLI.setDebugLoc(dl)
6610       .setChain(Chain)
6611       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
6612                     Dst.getValueType().getTypeForEVT(*getContext()),
6613                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
6614                                       TLI->getPointerTy(getDataLayout())),
6615                     std::move(Args))
6616       .setDiscardResult()
6617       .setTailCall(isTailCall);
6618 
6619   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6620   return CallResult.second;
6621 }
6622 
6623 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
6624                                        SDValue Dst, unsigned DstAlign,
6625                                        SDValue Src, unsigned SrcAlign,
6626                                        SDValue Size, Type *SizeTy,
6627                                        unsigned ElemSz, bool isTailCall,
6628                                        MachinePointerInfo DstPtrInfo,
6629                                        MachinePointerInfo SrcPtrInfo) {
6630   // Emit a library call.
6631   TargetLowering::ArgListTy Args;
6632   TargetLowering::ArgListEntry Entry;
6633   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6634   Entry.Node = Dst;
6635   Args.push_back(Entry);
6636 
6637   Entry.Node = Src;
6638   Args.push_back(Entry);
6639 
6640   Entry.Ty = SizeTy;
6641   Entry.Node = Size;
6642   Args.push_back(Entry);
6643 
6644   RTLIB::Libcall LibraryCall =
6645       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6646   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6647     report_fatal_error("Unsupported element size");
6648 
6649   TargetLowering::CallLoweringInfo CLI(*this);
6650   CLI.setDebugLoc(dl)
6651       .setChain(Chain)
6652       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6653                     Type::getVoidTy(*getContext()),
6654                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6655                                       TLI->getPointerTy(getDataLayout())),
6656                     std::move(Args))
6657       .setDiscardResult()
6658       .setTailCall(isTailCall);
6659 
6660   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6661   return CallResult.second;
6662 }
6663 
6664 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
6665                                 SDValue Src, SDValue Size, Align Alignment,
6666                                 bool isVol, bool isTailCall,
6667                                 MachinePointerInfo DstPtrInfo) {
6668   // Check to see if we should lower the memset to stores first.
6669   // For cases within the target-specified limits, this is the best choice.
6670   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6671   if (ConstantSize) {
6672     // Memset with size zero? Just return the original chain.
6673     if (ConstantSize->isNullValue())
6674       return Chain;
6675 
6676     SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
6677                                      ConstantSize->getZExtValue(), Alignment,
6678                                      isVol, DstPtrInfo);
6679 
6680     if (Result.getNode())
6681       return Result;
6682   }
6683 
6684   // Then check to see if we should lower the memset with target-specific
6685   // code. If the target chooses to do this, this is the next best.
6686   if (TSI) {
6687     SDValue Result = TSI->EmitTargetCodeForMemset(
6688         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo);
6689     if (Result.getNode())
6690       return Result;
6691   }
6692 
6693   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6694 
6695   // Emit a library call.
6696   TargetLowering::ArgListTy Args;
6697   TargetLowering::ArgListEntry Entry;
6698   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
6699   Args.push_back(Entry);
6700   Entry.Node = Src;
6701   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
6702   Args.push_back(Entry);
6703   Entry.Node = Size;
6704   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6705   Args.push_back(Entry);
6706 
6707   // FIXME: pass in SDLoc
6708   TargetLowering::CallLoweringInfo CLI(*this);
6709   CLI.setDebugLoc(dl)
6710       .setChain(Chain)
6711       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
6712                     Dst.getValueType().getTypeForEVT(*getContext()),
6713                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
6714                                       TLI->getPointerTy(getDataLayout())),
6715                     std::move(Args))
6716       .setDiscardResult()
6717       .setTailCall(isTailCall);
6718 
6719   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6720   return CallResult.second;
6721 }
6722 
6723 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
6724                                       SDValue Dst, unsigned DstAlign,
6725                                       SDValue Value, SDValue Size, Type *SizeTy,
6726                                       unsigned ElemSz, bool isTailCall,
6727                                       MachinePointerInfo DstPtrInfo) {
6728   // Emit a library call.
6729   TargetLowering::ArgListTy Args;
6730   TargetLowering::ArgListEntry Entry;
6731   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6732   Entry.Node = Dst;
6733   Args.push_back(Entry);
6734 
6735   Entry.Ty = Type::getInt8Ty(*getContext());
6736   Entry.Node = Value;
6737   Args.push_back(Entry);
6738 
6739   Entry.Ty = SizeTy;
6740   Entry.Node = Size;
6741   Args.push_back(Entry);
6742 
6743   RTLIB::Libcall LibraryCall =
6744       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6745   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6746     report_fatal_error("Unsupported element size");
6747 
6748   TargetLowering::CallLoweringInfo CLI(*this);
6749   CLI.setDebugLoc(dl)
6750       .setChain(Chain)
6751       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6752                     Type::getVoidTy(*getContext()),
6753                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6754                                       TLI->getPointerTy(getDataLayout())),
6755                     std::move(Args))
6756       .setDiscardResult()
6757       .setTailCall(isTailCall);
6758 
6759   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6760   return CallResult.second;
6761 }
6762 
6763 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6764                                 SDVTList VTList, ArrayRef<SDValue> Ops,
6765                                 MachineMemOperand *MMO) {
6766   FoldingSetNodeID ID;
6767   ID.AddInteger(MemVT.getRawBits());
6768   AddNodeIDNode(ID, Opcode, VTList, Ops);
6769   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6770   void* IP = nullptr;
6771   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6772     cast<AtomicSDNode>(E)->refineAlignment(MMO);
6773     return SDValue(E, 0);
6774   }
6775 
6776   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6777                                     VTList, MemVT, MMO);
6778   createOperands(N, Ops);
6779 
6780   CSEMap.InsertNode(N, IP);
6781   InsertNode(N);
6782   return SDValue(N, 0);
6783 }
6784 
6785 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
6786                                        EVT MemVT, SDVTList VTs, SDValue Chain,
6787                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
6788                                        MachineMemOperand *MMO) {
6789   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
6790          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
6791   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
6792 
6793   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
6794   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6795 }
6796 
6797 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6798                                 SDValue Chain, SDValue Ptr, SDValue Val,
6799                                 MachineMemOperand *MMO) {
6800   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
6801           Opcode == ISD::ATOMIC_LOAD_SUB ||
6802           Opcode == ISD::ATOMIC_LOAD_AND ||
6803           Opcode == ISD::ATOMIC_LOAD_CLR ||
6804           Opcode == ISD::ATOMIC_LOAD_OR ||
6805           Opcode == ISD::ATOMIC_LOAD_XOR ||
6806           Opcode == ISD::ATOMIC_LOAD_NAND ||
6807           Opcode == ISD::ATOMIC_LOAD_MIN ||
6808           Opcode == ISD::ATOMIC_LOAD_MAX ||
6809           Opcode == ISD::ATOMIC_LOAD_UMIN ||
6810           Opcode == ISD::ATOMIC_LOAD_UMAX ||
6811           Opcode == ISD::ATOMIC_LOAD_FADD ||
6812           Opcode == ISD::ATOMIC_LOAD_FSUB ||
6813           Opcode == ISD::ATOMIC_SWAP ||
6814           Opcode == ISD::ATOMIC_STORE) &&
6815          "Invalid Atomic Op");
6816 
6817   EVT VT = Val.getValueType();
6818 
6819   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
6820                                                getVTList(VT, MVT::Other);
6821   SDValue Ops[] = {Chain, Ptr, Val};
6822   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6823 }
6824 
6825 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6826                                 EVT VT, SDValue Chain, SDValue Ptr,
6827                                 MachineMemOperand *MMO) {
6828   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
6829 
6830   SDVTList VTs = getVTList(VT, MVT::Other);
6831   SDValue Ops[] = {Chain, Ptr};
6832   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6833 }
6834 
6835 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
6836 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
6837   if (Ops.size() == 1)
6838     return Ops[0];
6839 
6840   SmallVector<EVT, 4> VTs;
6841   VTs.reserve(Ops.size());
6842   for (unsigned i = 0; i < Ops.size(); ++i)
6843     VTs.push_back(Ops[i].getValueType());
6844   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
6845 }
6846 
6847 SDValue SelectionDAG::getMemIntrinsicNode(
6848     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
6849     EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
6850     MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
6851   if (!Size && MemVT.isScalableVector())
6852     Size = MemoryLocation::UnknownSize;
6853   else if (!Size)
6854     Size = MemVT.getStoreSize();
6855 
6856   MachineFunction &MF = getMachineFunction();
6857   MachineMemOperand *MMO =
6858       MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
6859 
6860   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
6861 }
6862 
6863 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
6864                                           SDVTList VTList,
6865                                           ArrayRef<SDValue> Ops, EVT MemVT,
6866                                           MachineMemOperand *MMO) {
6867   assert((Opcode == ISD::INTRINSIC_VOID ||
6868           Opcode == ISD::INTRINSIC_W_CHAIN ||
6869           Opcode == ISD::PREFETCH ||
6870           ((int)Opcode <= std::numeric_limits<int>::max() &&
6871            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
6872          "Opcode is not a memory-accessing opcode!");
6873 
6874   // Memoize the node unless it returns a flag.
6875   MemIntrinsicSDNode *N;
6876   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
6877     FoldingSetNodeID ID;
6878     AddNodeIDNode(ID, Opcode, VTList, Ops);
6879     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
6880         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
6881     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6882     void *IP = nullptr;
6883     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6884       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
6885       return SDValue(E, 0);
6886     }
6887 
6888     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6889                                       VTList, MemVT, MMO);
6890     createOperands(N, Ops);
6891 
6892   CSEMap.InsertNode(N, IP);
6893   } else {
6894     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6895                                       VTList, MemVT, MMO);
6896     createOperands(N, Ops);
6897   }
6898   InsertNode(N);
6899   SDValue V(N, 0);
6900   NewSDValueDbgMsg(V, "Creating new node: ", this);
6901   return V;
6902 }
6903 
6904 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
6905                                       SDValue Chain, int FrameIndex,
6906                                       int64_t Size, int64_t Offset) {
6907   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
6908   const auto VTs = getVTList(MVT::Other);
6909   SDValue Ops[2] = {
6910       Chain,
6911       getFrameIndex(FrameIndex,
6912                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
6913                     true)};
6914 
6915   FoldingSetNodeID ID;
6916   AddNodeIDNode(ID, Opcode, VTs, Ops);
6917   ID.AddInteger(FrameIndex);
6918   ID.AddInteger(Size);
6919   ID.AddInteger(Offset);
6920   void *IP = nullptr;
6921   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6922     return SDValue(E, 0);
6923 
6924   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
6925       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
6926   createOperands(N, Ops);
6927   CSEMap.InsertNode(N, IP);
6928   InsertNode(N);
6929   SDValue V(N, 0);
6930   NewSDValueDbgMsg(V, "Creating new node: ", this);
6931   return V;
6932 }
6933 
6934 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain,
6935                                          uint64_t Guid, uint64_t Index,
6936                                          uint32_t Attr) {
6937   const unsigned Opcode = ISD::PSEUDO_PROBE;
6938   const auto VTs = getVTList(MVT::Other);
6939   SDValue Ops[] = {Chain};
6940   FoldingSetNodeID ID;
6941   AddNodeIDNode(ID, Opcode, VTs, Ops);
6942   ID.AddInteger(Guid);
6943   ID.AddInteger(Index);
6944   void *IP = nullptr;
6945   if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP))
6946     return SDValue(E, 0);
6947 
6948   auto *N = newSDNode<PseudoProbeSDNode>(
6949       Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr);
6950   createOperands(N, Ops);
6951   CSEMap.InsertNode(N, IP);
6952   InsertNode(N);
6953   SDValue V(N, 0);
6954   NewSDValueDbgMsg(V, "Creating new node: ", this);
6955   return V;
6956 }
6957 
6958 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6959 /// MachinePointerInfo record from it.  This is particularly useful because the
6960 /// code generator has many cases where it doesn't bother passing in a
6961 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6962 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6963                                            SelectionDAG &DAG, SDValue Ptr,
6964                                            int64_t Offset = 0) {
6965   // If this is FI+Offset, we can model it.
6966   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
6967     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
6968                                              FI->getIndex(), Offset);
6969 
6970   // If this is (FI+Offset1)+Offset2, we can model it.
6971   if (Ptr.getOpcode() != ISD::ADD ||
6972       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
6973       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
6974     return Info;
6975 
6976   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6977   return MachinePointerInfo::getFixedStack(
6978       DAG.getMachineFunction(), FI,
6979       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
6980 }
6981 
6982 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6983 /// MachinePointerInfo record from it.  This is particularly useful because the
6984 /// code generator has many cases where it doesn't bother passing in a
6985 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6986 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6987                                            SelectionDAG &DAG, SDValue Ptr,
6988                                            SDValue OffsetOp) {
6989   // If the 'Offset' value isn't a constant, we can't handle this.
6990   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
6991     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
6992   if (OffsetOp.isUndef())
6993     return InferPointerInfo(Info, DAG, Ptr);
6994   return Info;
6995 }
6996 
6997 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6998                               EVT VT, const SDLoc &dl, SDValue Chain,
6999                               SDValue Ptr, SDValue Offset,
7000                               MachinePointerInfo PtrInfo, EVT MemVT,
7001                               Align Alignment,
7002                               MachineMemOperand::Flags MMOFlags,
7003                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7004   assert(Chain.getValueType() == MVT::Other &&
7005         "Invalid chain type");
7006 
7007   MMOFlags |= MachineMemOperand::MOLoad;
7008   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
7009   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
7010   // clients.
7011   if (PtrInfo.V.isNull())
7012     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
7013 
7014   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
7015   MachineFunction &MF = getMachineFunction();
7016   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
7017                                                    Alignment, AAInfo, Ranges);
7018   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
7019 }
7020 
7021 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7022                               EVT VT, const SDLoc &dl, SDValue Chain,
7023                               SDValue Ptr, SDValue Offset, EVT MemVT,
7024                               MachineMemOperand *MMO) {
7025   if (VT == MemVT) {
7026     ExtType = ISD::NON_EXTLOAD;
7027   } else if (ExtType == ISD::NON_EXTLOAD) {
7028     assert(VT == MemVT && "Non-extending load from different memory type!");
7029   } else {
7030     // Extending load.
7031     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
7032            "Should only be an extending load, not truncating!");
7033     assert(VT.isInteger() == MemVT.isInteger() &&
7034            "Cannot convert from FP to Int or Int -> FP!");
7035     assert(VT.isVector() == MemVT.isVector() &&
7036            "Cannot use an ext load to convert to or from a vector!");
7037     assert((!VT.isVector() ||
7038             VT.getVectorElementCount() == MemVT.getVectorElementCount()) &&
7039            "Cannot use an ext load to change the number of vector elements!");
7040   }
7041 
7042   bool Indexed = AM != ISD::UNINDEXED;
7043   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
7044 
7045   SDVTList VTs = Indexed ?
7046     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
7047   SDValue Ops[] = { Chain, Ptr, Offset };
7048   FoldingSetNodeID ID;
7049   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
7050   ID.AddInteger(MemVT.getRawBits());
7051   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
7052       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
7053   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7054   void *IP = nullptr;
7055   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7056     cast<LoadSDNode>(E)->refineAlignment(MMO);
7057     return SDValue(E, 0);
7058   }
7059   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7060                                   ExtType, MemVT, MMO);
7061   createOperands(N, Ops);
7062 
7063   CSEMap.InsertNode(N, IP);
7064   InsertNode(N);
7065   SDValue V(N, 0);
7066   NewSDValueDbgMsg(V, "Creating new node: ", this);
7067   return V;
7068 }
7069 
7070 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7071                               SDValue Ptr, MachinePointerInfo PtrInfo,
7072                               MaybeAlign Alignment,
7073                               MachineMemOperand::Flags MMOFlags,
7074                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7075   SDValue Undef = getUNDEF(Ptr.getValueType());
7076   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7077                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
7078 }
7079 
7080 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7081                               SDValue Ptr, MachineMemOperand *MMO) {
7082   SDValue Undef = getUNDEF(Ptr.getValueType());
7083   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7084                  VT, MMO);
7085 }
7086 
7087 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7088                                  EVT VT, SDValue Chain, SDValue Ptr,
7089                                  MachinePointerInfo PtrInfo, EVT MemVT,
7090                                  MaybeAlign Alignment,
7091                                  MachineMemOperand::Flags MMOFlags,
7092                                  const AAMDNodes &AAInfo) {
7093   SDValue Undef = getUNDEF(Ptr.getValueType());
7094   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
7095                  MemVT, Alignment, MMOFlags, AAInfo);
7096 }
7097 
7098 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7099                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
7100                                  MachineMemOperand *MMO) {
7101   SDValue Undef = getUNDEF(Ptr.getValueType());
7102   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
7103                  MemVT, MMO);
7104 }
7105 
7106 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
7107                                      SDValue Base, SDValue Offset,
7108                                      ISD::MemIndexedMode AM) {
7109   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
7110   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7111   // Don't propagate the invariant or dereferenceable flags.
7112   auto MMOFlags =
7113       LD->getMemOperand()->getFlags() &
7114       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7115   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7116                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
7117                  LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
7118 }
7119 
7120 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7121                                SDValue Ptr, MachinePointerInfo PtrInfo,
7122                                Align Alignment,
7123                                MachineMemOperand::Flags MMOFlags,
7124                                const AAMDNodes &AAInfo) {
7125   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7126 
7127   MMOFlags |= MachineMemOperand::MOStore;
7128   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7129 
7130   if (PtrInfo.V.isNull())
7131     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7132 
7133   MachineFunction &MF = getMachineFunction();
7134   uint64_t Size =
7135       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
7136   MachineMemOperand *MMO =
7137       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
7138   return getStore(Chain, dl, Val, Ptr, MMO);
7139 }
7140 
7141 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7142                                SDValue Ptr, MachineMemOperand *MMO) {
7143   assert(Chain.getValueType() == MVT::Other &&
7144         "Invalid chain type");
7145   EVT VT = Val.getValueType();
7146   SDVTList VTs = getVTList(MVT::Other);
7147   SDValue Undef = getUNDEF(Ptr.getValueType());
7148   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7149   FoldingSetNodeID ID;
7150   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7151   ID.AddInteger(VT.getRawBits());
7152   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7153       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
7154   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7155   void *IP = nullptr;
7156   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7157     cast<StoreSDNode>(E)->refineAlignment(MMO);
7158     return SDValue(E, 0);
7159   }
7160   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7161                                    ISD::UNINDEXED, false, VT, MMO);
7162   createOperands(N, Ops);
7163 
7164   CSEMap.InsertNode(N, IP);
7165   InsertNode(N);
7166   SDValue V(N, 0);
7167   NewSDValueDbgMsg(V, "Creating new node: ", this);
7168   return V;
7169 }
7170 
7171 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7172                                     SDValue Ptr, MachinePointerInfo PtrInfo,
7173                                     EVT SVT, Align Alignment,
7174                                     MachineMemOperand::Flags MMOFlags,
7175                                     const AAMDNodes &AAInfo) {
7176   assert(Chain.getValueType() == MVT::Other &&
7177         "Invalid chain type");
7178 
7179   MMOFlags |= MachineMemOperand::MOStore;
7180   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7181 
7182   if (PtrInfo.V.isNull())
7183     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7184 
7185   MachineFunction &MF = getMachineFunction();
7186   MachineMemOperand *MMO = MF.getMachineMemOperand(
7187       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
7188       Alignment, AAInfo);
7189   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
7190 }
7191 
7192 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7193                                     SDValue Ptr, EVT SVT,
7194                                     MachineMemOperand *MMO) {
7195   EVT VT = Val.getValueType();
7196 
7197   assert(Chain.getValueType() == MVT::Other &&
7198         "Invalid chain type");
7199   if (VT == SVT)
7200     return getStore(Chain, dl, Val, Ptr, MMO);
7201 
7202   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7203          "Should only be a truncating store, not extending!");
7204   assert(VT.isInteger() == SVT.isInteger() &&
7205          "Can't do FP-INT conversion!");
7206   assert(VT.isVector() == SVT.isVector() &&
7207          "Cannot use trunc store to convert to or from a vector!");
7208   assert((!VT.isVector() ||
7209           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
7210          "Cannot use trunc store to change the number of vector elements!");
7211 
7212   SDVTList VTs = getVTList(MVT::Other);
7213   SDValue Undef = getUNDEF(Ptr.getValueType());
7214   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7215   FoldingSetNodeID ID;
7216   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7217   ID.AddInteger(SVT.getRawBits());
7218   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7219       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
7220   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7221   void *IP = nullptr;
7222   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7223     cast<StoreSDNode>(E)->refineAlignment(MMO);
7224     return SDValue(E, 0);
7225   }
7226   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7227                                    ISD::UNINDEXED, true, SVT, MMO);
7228   createOperands(N, Ops);
7229 
7230   CSEMap.InsertNode(N, IP);
7231   InsertNode(N);
7232   SDValue V(N, 0);
7233   NewSDValueDbgMsg(V, "Creating new node: ", this);
7234   return V;
7235 }
7236 
7237 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
7238                                       SDValue Base, SDValue Offset,
7239                                       ISD::MemIndexedMode AM) {
7240   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
7241   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
7242   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7243   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
7244   FoldingSetNodeID ID;
7245   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7246   ID.AddInteger(ST->getMemoryVT().getRawBits());
7247   ID.AddInteger(ST->getRawSubclassData());
7248   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7249   void *IP = nullptr;
7250   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7251     return SDValue(E, 0);
7252 
7253   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7254                                    ST->isTruncatingStore(), ST->getMemoryVT(),
7255                                    ST->getMemOperand());
7256   createOperands(N, Ops);
7257 
7258   CSEMap.InsertNode(N, IP);
7259   InsertNode(N);
7260   SDValue V(N, 0);
7261   NewSDValueDbgMsg(V, "Creating new node: ", this);
7262   return V;
7263 }
7264 
7265 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7266                                     SDValue Base, SDValue Offset, SDValue Mask,
7267                                     SDValue PassThru, EVT MemVT,
7268                                     MachineMemOperand *MMO,
7269                                     ISD::MemIndexedMode AM,
7270                                     ISD::LoadExtType ExtTy, bool isExpanding) {
7271   bool Indexed = AM != ISD::UNINDEXED;
7272   assert((Indexed || Offset.isUndef()) &&
7273          "Unindexed masked load with an offset!");
7274   SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
7275                          : getVTList(VT, MVT::Other);
7276   SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
7277   FoldingSetNodeID ID;
7278   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
7279   ID.AddInteger(MemVT.getRawBits());
7280   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
7281       dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
7282   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7283   void *IP = nullptr;
7284   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7285     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
7286     return SDValue(E, 0);
7287   }
7288   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7289                                         AM, ExtTy, isExpanding, MemVT, MMO);
7290   createOperands(N, Ops);
7291 
7292   CSEMap.InsertNode(N, IP);
7293   InsertNode(N);
7294   SDValue V(N, 0);
7295   NewSDValueDbgMsg(V, "Creating new node: ", this);
7296   return V;
7297 }
7298 
7299 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
7300                                            SDValue Base, SDValue Offset,
7301                                            ISD::MemIndexedMode AM) {
7302   MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
7303   assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
7304   return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
7305                        Offset, LD->getMask(), LD->getPassThru(),
7306                        LD->getMemoryVT(), LD->getMemOperand(), AM,
7307                        LD->getExtensionType(), LD->isExpandingLoad());
7308 }
7309 
7310 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
7311                                      SDValue Val, SDValue Base, SDValue Offset,
7312                                      SDValue Mask, EVT MemVT,
7313                                      MachineMemOperand *MMO,
7314                                      ISD::MemIndexedMode AM, bool IsTruncating,
7315                                      bool IsCompressing) {
7316   assert(Chain.getValueType() == MVT::Other &&
7317         "Invalid chain type");
7318   bool Indexed = AM != ISD::UNINDEXED;
7319   assert((Indexed || Offset.isUndef()) &&
7320          "Unindexed masked store with an offset!");
7321   SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
7322                          : getVTList(MVT::Other);
7323   SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
7324   FoldingSetNodeID ID;
7325   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
7326   ID.AddInteger(MemVT.getRawBits());
7327   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
7328       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
7329   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7330   void *IP = nullptr;
7331   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7332     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
7333     return SDValue(E, 0);
7334   }
7335   auto *N =
7336       newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7337                                    IsTruncating, IsCompressing, MemVT, MMO);
7338   createOperands(N, Ops);
7339 
7340   CSEMap.InsertNode(N, IP);
7341   InsertNode(N);
7342   SDValue V(N, 0);
7343   NewSDValueDbgMsg(V, "Creating new node: ", this);
7344   return V;
7345 }
7346 
7347 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
7348                                             SDValue Base, SDValue Offset,
7349                                             ISD::MemIndexedMode AM) {
7350   MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
7351   assert(ST->getOffset().isUndef() &&
7352          "Masked store is already a indexed store!");
7353   return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
7354                         ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
7355                         AM, ST->isTruncatingStore(), ST->isCompressingStore());
7356 }
7357 
7358 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
7359                                       ArrayRef<SDValue> Ops,
7360                                       MachineMemOperand *MMO,
7361                                       ISD::MemIndexType IndexType,
7362                                       ISD::LoadExtType ExtTy) {
7363   assert(Ops.size() == 6 && "Incompatible number of operands");
7364 
7365   FoldingSetNodeID ID;
7366   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
7367   ID.AddInteger(VT.getRawBits());
7368   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
7369       dl.getIROrder(), VTs, VT, MMO, IndexType, ExtTy));
7370   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7371   void *IP = nullptr;
7372   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7373     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
7374     return SDValue(E, 0);
7375   }
7376 
7377   IndexType = TLI->getCanonicalIndexType(IndexType, VT, Ops[4]);
7378   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7379                                           VTs, VT, MMO, IndexType, ExtTy);
7380   createOperands(N, Ops);
7381 
7382   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
7383          "Incompatible type of the PassThru value in MaskedGatherSDNode");
7384   assert(N->getMask().getValueType().getVectorElementCount() ==
7385              N->getValueType(0).getVectorElementCount() &&
7386          "Vector width mismatch between mask and data");
7387   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
7388              N->getValueType(0).getVectorElementCount().isScalable() &&
7389          "Scalable flags of index and data do not match");
7390   assert(ElementCount::isKnownGE(
7391              N->getIndex().getValueType().getVectorElementCount(),
7392              N->getValueType(0).getVectorElementCount()) &&
7393          "Vector width mismatch between index and data");
7394   assert(isa<ConstantSDNode>(N->getScale()) &&
7395          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7396          "Scale should be a constant power of 2");
7397 
7398   CSEMap.InsertNode(N, IP);
7399   InsertNode(N);
7400   SDValue V(N, 0);
7401   NewSDValueDbgMsg(V, "Creating new node: ", this);
7402   return V;
7403 }
7404 
7405 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
7406                                        ArrayRef<SDValue> Ops,
7407                                        MachineMemOperand *MMO,
7408                                        ISD::MemIndexType IndexType,
7409                                        bool IsTrunc) {
7410   assert(Ops.size() == 6 && "Incompatible number of operands");
7411 
7412   FoldingSetNodeID ID;
7413   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
7414   ID.AddInteger(VT.getRawBits());
7415   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
7416       dl.getIROrder(), VTs, VT, MMO, IndexType, IsTrunc));
7417   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7418   void *IP = nullptr;
7419   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7420     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
7421     return SDValue(E, 0);
7422   }
7423 
7424   IndexType = TLI->getCanonicalIndexType(IndexType, VT, Ops[4]);
7425   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7426                                            VTs, VT, MMO, IndexType, IsTrunc);
7427   createOperands(N, Ops);
7428 
7429   assert(N->getMask().getValueType().getVectorElementCount() ==
7430              N->getValue().getValueType().getVectorElementCount() &&
7431          "Vector width mismatch between mask and data");
7432   assert(
7433       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
7434           N->getValue().getValueType().getVectorElementCount().isScalable() &&
7435       "Scalable flags of index and data do not match");
7436   assert(ElementCount::isKnownGE(
7437              N->getIndex().getValueType().getVectorElementCount(),
7438              N->getValue().getValueType().getVectorElementCount()) &&
7439          "Vector width mismatch between index and data");
7440   assert(isa<ConstantSDNode>(N->getScale()) &&
7441          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7442          "Scale should be a constant power of 2");
7443 
7444   CSEMap.InsertNode(N, IP);
7445   InsertNode(N);
7446   SDValue V(N, 0);
7447   NewSDValueDbgMsg(V, "Creating new node: ", this);
7448   return V;
7449 }
7450 
7451 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
7452   // select undef, T, F --> T (if T is a constant), otherwise F
7453   // select, ?, undef, F --> F
7454   // select, ?, T, undef --> T
7455   if (Cond.isUndef())
7456     return isConstantValueOfAnyType(T) ? T : F;
7457   if (T.isUndef())
7458     return F;
7459   if (F.isUndef())
7460     return T;
7461 
7462   // select true, T, F --> T
7463   // select false, T, F --> F
7464   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
7465     return CondC->isNullValue() ? F : T;
7466 
7467   // TODO: This should simplify VSELECT with constant condition using something
7468   // like this (but check boolean contents to be complete?):
7469   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
7470   //    return T;
7471   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
7472   //    return F;
7473 
7474   // select ?, T, T --> T
7475   if (T == F)
7476     return T;
7477 
7478   return SDValue();
7479 }
7480 
7481 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
7482   // shift undef, Y --> 0 (can always assume that the undef value is 0)
7483   if (X.isUndef())
7484     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
7485   // shift X, undef --> undef (because it may shift by the bitwidth)
7486   if (Y.isUndef())
7487     return getUNDEF(X.getValueType());
7488 
7489   // shift 0, Y --> 0
7490   // shift X, 0 --> X
7491   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
7492     return X;
7493 
7494   // shift X, C >= bitwidth(X) --> undef
7495   // All vector elements must be too big (or undef) to avoid partial undefs.
7496   auto isShiftTooBig = [X](ConstantSDNode *Val) {
7497     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
7498   };
7499   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
7500     return getUNDEF(X.getValueType());
7501 
7502   return SDValue();
7503 }
7504 
7505 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
7506                                       SDNodeFlags Flags) {
7507   // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
7508   // (an undef operand can be chosen to be Nan/Inf), then the result of this
7509   // operation is poison. That result can be relaxed to undef.
7510   ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
7511   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
7512   bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
7513                 (YC && YC->getValueAPF().isNaN());
7514   bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
7515                 (YC && YC->getValueAPF().isInfinity());
7516 
7517   if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
7518     return getUNDEF(X.getValueType());
7519 
7520   if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
7521     return getUNDEF(X.getValueType());
7522 
7523   if (!YC)
7524     return SDValue();
7525 
7526   // X + -0.0 --> X
7527   if (Opcode == ISD::FADD)
7528     if (YC->getValueAPF().isNegZero())
7529       return X;
7530 
7531   // X - +0.0 --> X
7532   if (Opcode == ISD::FSUB)
7533     if (YC->getValueAPF().isPosZero())
7534       return X;
7535 
7536   // X * 1.0 --> X
7537   // X / 1.0 --> X
7538   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
7539     if (YC->getValueAPF().isExactlyValue(1.0))
7540       return X;
7541 
7542   // X * 0.0 --> 0.0
7543   if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
7544     if (YC->getValueAPF().isZero())
7545       return getConstantFP(0.0, SDLoc(Y), Y.getValueType());
7546 
7547   return SDValue();
7548 }
7549 
7550 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
7551                                SDValue Ptr, SDValue SV, unsigned Align) {
7552   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
7553   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
7554 }
7555 
7556 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7557                               ArrayRef<SDUse> Ops) {
7558   switch (Ops.size()) {
7559   case 0: return getNode(Opcode, DL, VT);
7560   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
7561   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
7562   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
7563   default: break;
7564   }
7565 
7566   // Copy from an SDUse array into an SDValue array for use with
7567   // the regular getNode logic.
7568   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
7569   return getNode(Opcode, DL, VT, NewOps);
7570 }
7571 
7572 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7573                               ArrayRef<SDValue> Ops) {
7574   SDNodeFlags Flags;
7575   if (Inserter)
7576     Flags = Inserter->getFlags();
7577   return getNode(Opcode, DL, VT, Ops, Flags);
7578 }
7579 
7580 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7581                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7582   unsigned NumOps = Ops.size();
7583   switch (NumOps) {
7584   case 0: return getNode(Opcode, DL, VT);
7585   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
7586   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
7587   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
7588   default: break;
7589   }
7590 
7591   switch (Opcode) {
7592   default: break;
7593   case ISD::BUILD_VECTOR:
7594     // Attempt to simplify BUILD_VECTOR.
7595     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7596       return V;
7597     break;
7598   case ISD::CONCAT_VECTORS:
7599     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
7600       return V;
7601     break;
7602   case ISD::SELECT_CC:
7603     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
7604     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
7605            "LHS and RHS of condition must have same type!");
7606     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7607            "True and False arms of SelectCC must have same type!");
7608     assert(Ops[2].getValueType() == VT &&
7609            "select_cc node must be of same type as true and false value!");
7610     break;
7611   case ISD::BR_CC:
7612     assert(NumOps == 5 && "BR_CC takes 5 operands!");
7613     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7614            "LHS/RHS of comparison should match types!");
7615     break;
7616   }
7617 
7618   // Memoize nodes.
7619   SDNode *N;
7620   SDVTList VTs = getVTList(VT);
7621 
7622   if (VT != MVT::Glue) {
7623     FoldingSetNodeID ID;
7624     AddNodeIDNode(ID, Opcode, VTs, Ops);
7625     void *IP = nullptr;
7626 
7627     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7628       return SDValue(E, 0);
7629 
7630     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7631     createOperands(N, Ops);
7632 
7633     CSEMap.InsertNode(N, IP);
7634   } else {
7635     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7636     createOperands(N, Ops);
7637   }
7638 
7639   N->setFlags(Flags);
7640   InsertNode(N);
7641   SDValue V(N, 0);
7642   NewSDValueDbgMsg(V, "Creating new node: ", this);
7643   return V;
7644 }
7645 
7646 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7647                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
7648   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
7649 }
7650 
7651 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7652                               ArrayRef<SDValue> Ops) {
7653   SDNodeFlags Flags;
7654   if (Inserter)
7655     Flags = Inserter->getFlags();
7656   return getNode(Opcode, DL, VTList, Ops, Flags);
7657 }
7658 
7659 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7660                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7661   if (VTList.NumVTs == 1)
7662     return getNode(Opcode, DL, VTList.VTs[0], Ops);
7663 
7664   switch (Opcode) {
7665   case ISD::STRICT_FP_EXTEND:
7666     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
7667            "Invalid STRICT_FP_EXTEND!");
7668     assert(VTList.VTs[0].isFloatingPoint() &&
7669            Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
7670     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7671            "STRICT_FP_EXTEND result type should be vector iff the operand "
7672            "type is vector!");
7673     assert((!VTList.VTs[0].isVector() ||
7674             VTList.VTs[0].getVectorNumElements() ==
7675             Ops[1].getValueType().getVectorNumElements()) &&
7676            "Vector element count mismatch!");
7677     assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
7678            "Invalid fpext node, dst <= src!");
7679     break;
7680   case ISD::STRICT_FP_ROUND:
7681     assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
7682     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7683            "STRICT_FP_ROUND result type should be vector iff the operand "
7684            "type is vector!");
7685     assert((!VTList.VTs[0].isVector() ||
7686             VTList.VTs[0].getVectorNumElements() ==
7687             Ops[1].getValueType().getVectorNumElements()) &&
7688            "Vector element count mismatch!");
7689     assert(VTList.VTs[0].isFloatingPoint() &&
7690            Ops[1].getValueType().isFloatingPoint() &&
7691            VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
7692            isa<ConstantSDNode>(Ops[2]) &&
7693            (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
7694             cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
7695            "Invalid STRICT_FP_ROUND!");
7696     break;
7697 #if 0
7698   // FIXME: figure out how to safely handle things like
7699   // int foo(int x) { return 1 << (x & 255); }
7700   // int bar() { return foo(256); }
7701   case ISD::SRA_PARTS:
7702   case ISD::SRL_PARTS:
7703   case ISD::SHL_PARTS:
7704     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
7705         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
7706       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7707     else if (N3.getOpcode() == ISD::AND)
7708       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
7709         // If the and is only masking out bits that cannot effect the shift,
7710         // eliminate the and.
7711         unsigned NumBits = VT.getScalarSizeInBits()*2;
7712         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
7713           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7714       }
7715     break;
7716 #endif
7717   }
7718 
7719   // Memoize the node unless it returns a flag.
7720   SDNode *N;
7721   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7722     FoldingSetNodeID ID;
7723     AddNodeIDNode(ID, Opcode, VTList, Ops);
7724     void *IP = nullptr;
7725     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7726       return SDValue(E, 0);
7727 
7728     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7729     createOperands(N, Ops);
7730     CSEMap.InsertNode(N, IP);
7731   } else {
7732     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7733     createOperands(N, Ops);
7734   }
7735 
7736   N->setFlags(Flags);
7737   InsertNode(N);
7738   SDValue V(N, 0);
7739   NewSDValueDbgMsg(V, "Creating new node: ", this);
7740   return V;
7741 }
7742 
7743 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7744                               SDVTList VTList) {
7745   return getNode(Opcode, DL, VTList, None);
7746 }
7747 
7748 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7749                               SDValue N1) {
7750   SDValue Ops[] = { N1 };
7751   return getNode(Opcode, DL, VTList, Ops);
7752 }
7753 
7754 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7755                               SDValue N1, SDValue N2) {
7756   SDValue Ops[] = { N1, N2 };
7757   return getNode(Opcode, DL, VTList, Ops);
7758 }
7759 
7760 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7761                               SDValue N1, SDValue N2, SDValue N3) {
7762   SDValue Ops[] = { N1, N2, N3 };
7763   return getNode(Opcode, DL, VTList, Ops);
7764 }
7765 
7766 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7767                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
7768   SDValue Ops[] = { N1, N2, N3, N4 };
7769   return getNode(Opcode, DL, VTList, Ops);
7770 }
7771 
7772 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7773                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
7774                               SDValue N5) {
7775   SDValue Ops[] = { N1, N2, N3, N4, N5 };
7776   return getNode(Opcode, DL, VTList, Ops);
7777 }
7778 
7779 SDVTList SelectionDAG::getVTList(EVT VT) {
7780   return makeVTList(SDNode::getValueTypeList(VT), 1);
7781 }
7782 
7783 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
7784   FoldingSetNodeID ID;
7785   ID.AddInteger(2U);
7786   ID.AddInteger(VT1.getRawBits());
7787   ID.AddInteger(VT2.getRawBits());
7788 
7789   void *IP = nullptr;
7790   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7791   if (!Result) {
7792     EVT *Array = Allocator.Allocate<EVT>(2);
7793     Array[0] = VT1;
7794     Array[1] = VT2;
7795     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
7796     VTListMap.InsertNode(Result, IP);
7797   }
7798   return Result->getSDVTList();
7799 }
7800 
7801 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
7802   FoldingSetNodeID ID;
7803   ID.AddInteger(3U);
7804   ID.AddInteger(VT1.getRawBits());
7805   ID.AddInteger(VT2.getRawBits());
7806   ID.AddInteger(VT3.getRawBits());
7807 
7808   void *IP = nullptr;
7809   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7810   if (!Result) {
7811     EVT *Array = Allocator.Allocate<EVT>(3);
7812     Array[0] = VT1;
7813     Array[1] = VT2;
7814     Array[2] = VT3;
7815     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
7816     VTListMap.InsertNode(Result, IP);
7817   }
7818   return Result->getSDVTList();
7819 }
7820 
7821 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
7822   FoldingSetNodeID ID;
7823   ID.AddInteger(4U);
7824   ID.AddInteger(VT1.getRawBits());
7825   ID.AddInteger(VT2.getRawBits());
7826   ID.AddInteger(VT3.getRawBits());
7827   ID.AddInteger(VT4.getRawBits());
7828 
7829   void *IP = nullptr;
7830   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7831   if (!Result) {
7832     EVT *Array = Allocator.Allocate<EVT>(4);
7833     Array[0] = VT1;
7834     Array[1] = VT2;
7835     Array[2] = VT3;
7836     Array[3] = VT4;
7837     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
7838     VTListMap.InsertNode(Result, IP);
7839   }
7840   return Result->getSDVTList();
7841 }
7842 
7843 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
7844   unsigned NumVTs = VTs.size();
7845   FoldingSetNodeID ID;
7846   ID.AddInteger(NumVTs);
7847   for (unsigned index = 0; index < NumVTs; index++) {
7848     ID.AddInteger(VTs[index].getRawBits());
7849   }
7850 
7851   void *IP = nullptr;
7852   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7853   if (!Result) {
7854     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
7855     llvm::copy(VTs, Array);
7856     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
7857     VTListMap.InsertNode(Result, IP);
7858   }
7859   return Result->getSDVTList();
7860 }
7861 
7862 
7863 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
7864 /// specified operands.  If the resultant node already exists in the DAG,
7865 /// this does not modify the specified node, instead it returns the node that
7866 /// already exists.  If the resultant node does not exist in the DAG, the
7867 /// input node is returned.  As a degenerate case, if you specify the same
7868 /// input operands as the node already has, the input node is returned.
7869 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
7870   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
7871 
7872   // Check to see if there is no change.
7873   if (Op == N->getOperand(0)) return N;
7874 
7875   // See if the modified node already exists.
7876   void *InsertPos = nullptr;
7877   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
7878     return Existing;
7879 
7880   // Nope it doesn't.  Remove the node from its current place in the maps.
7881   if (InsertPos)
7882     if (!RemoveNodeFromCSEMaps(N))
7883       InsertPos = nullptr;
7884 
7885   // Now we update the operands.
7886   N->OperandList[0].set(Op);
7887 
7888   updateDivergence(N);
7889   // If this gets put into a CSE map, add it.
7890   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7891   return N;
7892 }
7893 
7894 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
7895   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
7896 
7897   // Check to see if there is no change.
7898   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
7899     return N;   // No operands changed, just return the input node.
7900 
7901   // See if the modified node already exists.
7902   void *InsertPos = nullptr;
7903   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
7904     return Existing;
7905 
7906   // Nope it doesn't.  Remove the node from its current place in the maps.
7907   if (InsertPos)
7908     if (!RemoveNodeFromCSEMaps(N))
7909       InsertPos = nullptr;
7910 
7911   // Now we update the operands.
7912   if (N->OperandList[0] != Op1)
7913     N->OperandList[0].set(Op1);
7914   if (N->OperandList[1] != Op2)
7915     N->OperandList[1].set(Op2);
7916 
7917   updateDivergence(N);
7918   // If this gets put into a CSE map, add it.
7919   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7920   return N;
7921 }
7922 
7923 SDNode *SelectionDAG::
7924 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
7925   SDValue Ops[] = { Op1, Op2, Op3 };
7926   return UpdateNodeOperands(N, Ops);
7927 }
7928 
7929 SDNode *SelectionDAG::
7930 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7931                    SDValue Op3, SDValue Op4) {
7932   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
7933   return UpdateNodeOperands(N, Ops);
7934 }
7935 
7936 SDNode *SelectionDAG::
7937 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7938                    SDValue Op3, SDValue Op4, SDValue Op5) {
7939   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
7940   return UpdateNodeOperands(N, Ops);
7941 }
7942 
7943 SDNode *SelectionDAG::
7944 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
7945   unsigned NumOps = Ops.size();
7946   assert(N->getNumOperands() == NumOps &&
7947          "Update with wrong number of operands");
7948 
7949   // If no operands changed just return the input node.
7950   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
7951     return N;
7952 
7953   // See if the modified node already exists.
7954   void *InsertPos = nullptr;
7955   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
7956     return Existing;
7957 
7958   // Nope it doesn't.  Remove the node from its current place in the maps.
7959   if (InsertPos)
7960     if (!RemoveNodeFromCSEMaps(N))
7961       InsertPos = nullptr;
7962 
7963   // Now we update the operands.
7964   for (unsigned i = 0; i != NumOps; ++i)
7965     if (N->OperandList[i] != Ops[i])
7966       N->OperandList[i].set(Ops[i]);
7967 
7968   updateDivergence(N);
7969   // If this gets put into a CSE map, add it.
7970   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7971   return N;
7972 }
7973 
7974 /// DropOperands - Release the operands and set this node to have
7975 /// zero operands.
7976 void SDNode::DropOperands() {
7977   // Unlike the code in MorphNodeTo that does this, we don't need to
7978   // watch for dead nodes here.
7979   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
7980     SDUse &Use = *I++;
7981     Use.set(SDValue());
7982   }
7983 }
7984 
7985 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
7986                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
7987   if (NewMemRefs.empty()) {
7988     N->clearMemRefs();
7989     return;
7990   }
7991 
7992   // Check if we can avoid allocating by storing a single reference directly.
7993   if (NewMemRefs.size() == 1) {
7994     N->MemRefs = NewMemRefs[0];
7995     N->NumMemRefs = 1;
7996     return;
7997   }
7998 
7999   MachineMemOperand **MemRefsBuffer =
8000       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
8001   llvm::copy(NewMemRefs, MemRefsBuffer);
8002   N->MemRefs = MemRefsBuffer;
8003   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
8004 }
8005 
8006 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
8007 /// machine opcode.
8008 ///
8009 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8010                                    EVT VT) {
8011   SDVTList VTs = getVTList(VT);
8012   return SelectNodeTo(N, MachineOpc, VTs, None);
8013 }
8014 
8015 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8016                                    EVT VT, SDValue Op1) {
8017   SDVTList VTs = getVTList(VT);
8018   SDValue Ops[] = { Op1 };
8019   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8020 }
8021 
8022 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8023                                    EVT VT, SDValue Op1,
8024                                    SDValue Op2) {
8025   SDVTList VTs = getVTList(VT);
8026   SDValue Ops[] = { Op1, Op2 };
8027   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8028 }
8029 
8030 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8031                                    EVT VT, SDValue Op1,
8032                                    SDValue Op2, SDValue Op3) {
8033   SDVTList VTs = getVTList(VT);
8034   SDValue Ops[] = { Op1, Op2, Op3 };
8035   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8036 }
8037 
8038 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8039                                    EVT VT, ArrayRef<SDValue> Ops) {
8040   SDVTList VTs = getVTList(VT);
8041   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8042 }
8043 
8044 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8045                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
8046   SDVTList VTs = getVTList(VT1, VT2);
8047   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8048 }
8049 
8050 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8051                                    EVT VT1, EVT VT2) {
8052   SDVTList VTs = getVTList(VT1, VT2);
8053   return SelectNodeTo(N, MachineOpc, VTs, None);
8054 }
8055 
8056 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8057                                    EVT VT1, EVT VT2, EVT VT3,
8058                                    ArrayRef<SDValue> Ops) {
8059   SDVTList VTs = getVTList(VT1, VT2, VT3);
8060   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8061 }
8062 
8063 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8064                                    EVT VT1, EVT VT2,
8065                                    SDValue Op1, SDValue Op2) {
8066   SDVTList VTs = getVTList(VT1, VT2);
8067   SDValue Ops[] = { Op1, Op2 };
8068   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8069 }
8070 
8071 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8072                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
8073   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
8074   // Reset the NodeID to -1.
8075   New->setNodeId(-1);
8076   if (New != N) {
8077     ReplaceAllUsesWith(N, New);
8078     RemoveDeadNode(N);
8079   }
8080   return New;
8081 }
8082 
8083 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
8084 /// the line number information on the merged node since it is not possible to
8085 /// preserve the information that operation is associated with multiple lines.
8086 /// This will make the debugger working better at -O0, were there is a higher
8087 /// probability having other instructions associated with that line.
8088 ///
8089 /// For IROrder, we keep the smaller of the two
8090 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
8091   DebugLoc NLoc = N->getDebugLoc();
8092   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
8093     N->setDebugLoc(DebugLoc());
8094   }
8095   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
8096   N->setIROrder(Order);
8097   return N;
8098 }
8099 
8100 /// MorphNodeTo - This *mutates* the specified node to have the specified
8101 /// return type, opcode, and operands.
8102 ///
8103 /// Note that MorphNodeTo returns the resultant node.  If there is already a
8104 /// node of the specified opcode and operands, it returns that node instead of
8105 /// the current one.  Note that the SDLoc need not be the same.
8106 ///
8107 /// Using MorphNodeTo is faster than creating a new node and swapping it in
8108 /// with ReplaceAllUsesWith both because it often avoids allocating a new
8109 /// node, and because it doesn't require CSE recalculation for any of
8110 /// the node's users.
8111 ///
8112 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
8113 /// As a consequence it isn't appropriate to use from within the DAG combiner or
8114 /// the legalizer which maintain worklists that would need to be updated when
8115 /// deleting things.
8116 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
8117                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
8118   // If an identical node already exists, use it.
8119   void *IP = nullptr;
8120   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
8121     FoldingSetNodeID ID;
8122     AddNodeIDNode(ID, Opc, VTs, Ops);
8123     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
8124       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
8125   }
8126 
8127   if (!RemoveNodeFromCSEMaps(N))
8128     IP = nullptr;
8129 
8130   // Start the morphing.
8131   N->NodeType = Opc;
8132   N->ValueList = VTs.VTs;
8133   N->NumValues = VTs.NumVTs;
8134 
8135   // Clear the operands list, updating used nodes to remove this from their
8136   // use list.  Keep track of any operands that become dead as a result.
8137   SmallPtrSet<SDNode*, 16> DeadNodeSet;
8138   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
8139     SDUse &Use = *I++;
8140     SDNode *Used = Use.getNode();
8141     Use.set(SDValue());
8142     if (Used->use_empty())
8143       DeadNodeSet.insert(Used);
8144   }
8145 
8146   // For MachineNode, initialize the memory references information.
8147   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
8148     MN->clearMemRefs();
8149 
8150   // Swap for an appropriately sized array from the recycler.
8151   removeOperands(N);
8152   createOperands(N, Ops);
8153 
8154   // Delete any nodes that are still dead after adding the uses for the
8155   // new operands.
8156   if (!DeadNodeSet.empty()) {
8157     SmallVector<SDNode *, 16> DeadNodes;
8158     for (SDNode *N : DeadNodeSet)
8159       if (N->use_empty())
8160         DeadNodes.push_back(N);
8161     RemoveDeadNodes(DeadNodes);
8162   }
8163 
8164   if (IP)
8165     CSEMap.InsertNode(N, IP);   // Memoize the new node.
8166   return N;
8167 }
8168 
8169 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
8170   unsigned OrigOpc = Node->getOpcode();
8171   unsigned NewOpc;
8172   switch (OrigOpc) {
8173   default:
8174     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
8175 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8176   case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
8177 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8178   case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
8179 #include "llvm/IR/ConstrainedOps.def"
8180   }
8181 
8182   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
8183 
8184   // We're taking this node out of the chain, so we need to re-link things.
8185   SDValue InputChain = Node->getOperand(0);
8186   SDValue OutputChain = SDValue(Node, 1);
8187   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
8188 
8189   SmallVector<SDValue, 3> Ops;
8190   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
8191     Ops.push_back(Node->getOperand(i));
8192 
8193   SDVTList VTs = getVTList(Node->getValueType(0));
8194   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
8195 
8196   // MorphNodeTo can operate in two ways: if an existing node with the
8197   // specified operands exists, it can just return it.  Otherwise, it
8198   // updates the node in place to have the requested operands.
8199   if (Res == Node) {
8200     // If we updated the node in place, reset the node ID.  To the isel,
8201     // this should be just like a newly allocated machine node.
8202     Res->setNodeId(-1);
8203   } else {
8204     ReplaceAllUsesWith(Node, Res);
8205     RemoveDeadNode(Node);
8206   }
8207 
8208   return Res;
8209 }
8210 
8211 /// getMachineNode - These are used for target selectors to create a new node
8212 /// with specified return type(s), MachineInstr opcode, and operands.
8213 ///
8214 /// Note that getMachineNode returns the resultant node.  If there is already a
8215 /// node of the specified opcode and operands, it returns that node instead of
8216 /// the current one.
8217 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8218                                             EVT VT) {
8219   SDVTList VTs = getVTList(VT);
8220   return getMachineNode(Opcode, dl, VTs, None);
8221 }
8222 
8223 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8224                                             EVT VT, SDValue Op1) {
8225   SDVTList VTs = getVTList(VT);
8226   SDValue Ops[] = { Op1 };
8227   return getMachineNode(Opcode, dl, VTs, Ops);
8228 }
8229 
8230 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8231                                             EVT VT, SDValue Op1, SDValue Op2) {
8232   SDVTList VTs = getVTList(VT);
8233   SDValue Ops[] = { Op1, Op2 };
8234   return getMachineNode(Opcode, dl, VTs, Ops);
8235 }
8236 
8237 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8238                                             EVT VT, SDValue Op1, SDValue Op2,
8239                                             SDValue Op3) {
8240   SDVTList VTs = getVTList(VT);
8241   SDValue Ops[] = { Op1, Op2, Op3 };
8242   return getMachineNode(Opcode, dl, VTs, Ops);
8243 }
8244 
8245 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8246                                             EVT VT, ArrayRef<SDValue> Ops) {
8247   SDVTList VTs = getVTList(VT);
8248   return getMachineNode(Opcode, dl, VTs, Ops);
8249 }
8250 
8251 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8252                                             EVT VT1, EVT VT2, SDValue Op1,
8253                                             SDValue Op2) {
8254   SDVTList VTs = getVTList(VT1, VT2);
8255   SDValue Ops[] = { Op1, Op2 };
8256   return getMachineNode(Opcode, dl, VTs, Ops);
8257 }
8258 
8259 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8260                                             EVT VT1, EVT VT2, SDValue Op1,
8261                                             SDValue Op2, SDValue Op3) {
8262   SDVTList VTs = getVTList(VT1, VT2);
8263   SDValue Ops[] = { Op1, Op2, Op3 };
8264   return getMachineNode(Opcode, dl, VTs, Ops);
8265 }
8266 
8267 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8268                                             EVT VT1, EVT VT2,
8269                                             ArrayRef<SDValue> Ops) {
8270   SDVTList VTs = getVTList(VT1, VT2);
8271   return getMachineNode(Opcode, dl, VTs, Ops);
8272 }
8273 
8274 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8275                                             EVT VT1, EVT VT2, EVT VT3,
8276                                             SDValue Op1, SDValue Op2) {
8277   SDVTList VTs = getVTList(VT1, VT2, VT3);
8278   SDValue Ops[] = { Op1, Op2 };
8279   return getMachineNode(Opcode, dl, VTs, Ops);
8280 }
8281 
8282 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8283                                             EVT VT1, EVT VT2, EVT VT3,
8284                                             SDValue Op1, SDValue Op2,
8285                                             SDValue Op3) {
8286   SDVTList VTs = getVTList(VT1, VT2, VT3);
8287   SDValue Ops[] = { Op1, Op2, Op3 };
8288   return getMachineNode(Opcode, dl, VTs, Ops);
8289 }
8290 
8291 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8292                                             EVT VT1, EVT VT2, EVT VT3,
8293                                             ArrayRef<SDValue> Ops) {
8294   SDVTList VTs = getVTList(VT1, VT2, VT3);
8295   return getMachineNode(Opcode, dl, VTs, Ops);
8296 }
8297 
8298 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8299                                             ArrayRef<EVT> ResultTys,
8300                                             ArrayRef<SDValue> Ops) {
8301   SDVTList VTs = getVTList(ResultTys);
8302   return getMachineNode(Opcode, dl, VTs, Ops);
8303 }
8304 
8305 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
8306                                             SDVTList VTs,
8307                                             ArrayRef<SDValue> Ops) {
8308   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
8309   MachineSDNode *N;
8310   void *IP = nullptr;
8311 
8312   if (DoCSE) {
8313     FoldingSetNodeID ID;
8314     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
8315     IP = nullptr;
8316     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8317       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
8318     }
8319   }
8320 
8321   // Allocate a new MachineSDNode.
8322   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8323   createOperands(N, Ops);
8324 
8325   if (DoCSE)
8326     CSEMap.InsertNode(N, IP);
8327 
8328   InsertNode(N);
8329   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
8330   return N;
8331 }
8332 
8333 /// getTargetExtractSubreg - A convenience function for creating
8334 /// TargetOpcode::EXTRACT_SUBREG nodes.
8335 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8336                                              SDValue Operand) {
8337   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8338   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
8339                                   VT, Operand, SRIdxVal);
8340   return SDValue(Subreg, 0);
8341 }
8342 
8343 /// getTargetInsertSubreg - A convenience function for creating
8344 /// TargetOpcode::INSERT_SUBREG nodes.
8345 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8346                                             SDValue Operand, SDValue Subreg) {
8347   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8348   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
8349                                   VT, Operand, Subreg, SRIdxVal);
8350   return SDValue(Result, 0);
8351 }
8352 
8353 /// getNodeIfExists - Get the specified node if it's already available, or
8354 /// else return NULL.
8355 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
8356                                       ArrayRef<SDValue> Ops) {
8357   SDNodeFlags Flags;
8358   if (Inserter)
8359     Flags = Inserter->getFlags();
8360   return getNodeIfExists(Opcode, VTList, Ops, Flags);
8361 }
8362 
8363 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
8364                                       ArrayRef<SDValue> Ops,
8365                                       const SDNodeFlags Flags) {
8366   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
8367     FoldingSetNodeID ID;
8368     AddNodeIDNode(ID, Opcode, VTList, Ops);
8369     void *IP = nullptr;
8370     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
8371       E->intersectFlagsWith(Flags);
8372       return E;
8373     }
8374   }
8375   return nullptr;
8376 }
8377 
8378 /// doesNodeExist - Check if a node exists without modifying its flags.
8379 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList,
8380                                  ArrayRef<SDValue> Ops) {
8381   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
8382     FoldingSetNodeID ID;
8383     AddNodeIDNode(ID, Opcode, VTList, Ops);
8384     void *IP = nullptr;
8385     if (FindNodeOrInsertPos(ID, SDLoc(), IP))
8386       return true;
8387   }
8388   return false;
8389 }
8390 
8391 /// getDbgValue - Creates a SDDbgValue node.
8392 ///
8393 /// SDNode
8394 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
8395                                       SDNode *N, unsigned R, bool IsIndirect,
8396                                       const DebugLoc &DL, unsigned O) {
8397   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8398          "Expected inlined-at fields to agree");
8399   return new (DbgInfo->getAlloc())
8400       SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O);
8401 }
8402 
8403 /// Constant
8404 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
8405                                               DIExpression *Expr,
8406                                               const Value *C,
8407                                               const DebugLoc &DL, unsigned O) {
8408   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8409          "Expected inlined-at fields to agree");
8410   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O);
8411 }
8412 
8413 /// FrameIndex
8414 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
8415                                                 DIExpression *Expr, unsigned FI,
8416                                                 bool IsIndirect,
8417                                                 const DebugLoc &DL,
8418                                                 unsigned O) {
8419   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8420          "Expected inlined-at fields to agree");
8421   return new (DbgInfo->getAlloc())
8422       SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX);
8423 }
8424 
8425 /// VReg
8426 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var,
8427                                           DIExpression *Expr,
8428                                           unsigned VReg, bool IsIndirect,
8429                                           const DebugLoc &DL, unsigned O) {
8430   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8431          "Expected inlined-at fields to agree");
8432   return new (DbgInfo->getAlloc())
8433       SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG);
8434 }
8435 
8436 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
8437                                      unsigned OffsetInBits, unsigned SizeInBits,
8438                                      bool InvalidateDbg) {
8439   SDNode *FromNode = From.getNode();
8440   SDNode *ToNode = To.getNode();
8441   assert(FromNode && ToNode && "Can't modify dbg values");
8442 
8443   // PR35338
8444   // TODO: assert(From != To && "Redundant dbg value transfer");
8445   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
8446   if (From == To || FromNode == ToNode)
8447     return;
8448 
8449   if (!FromNode->getHasDebugValue())
8450     return;
8451 
8452   SmallVector<SDDbgValue *, 2> ClonedDVs;
8453   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
8454     if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated())
8455       continue;
8456 
8457     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
8458 
8459     // Just transfer the dbg value attached to From.
8460     if (Dbg->getResNo() != From.getResNo())
8461       continue;
8462 
8463     DIVariable *Var = Dbg->getVariable();
8464     auto *Expr = Dbg->getExpression();
8465     // If a fragment is requested, update the expression.
8466     if (SizeInBits) {
8467       // When splitting a larger (e.g., sign-extended) value whose
8468       // lower bits are described with an SDDbgValue, do not attempt
8469       // to transfer the SDDbgValue to the upper bits.
8470       if (auto FI = Expr->getFragmentInfo())
8471         if (OffsetInBits + SizeInBits > FI->SizeInBits)
8472           continue;
8473       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
8474                                                              SizeInBits);
8475       if (!Fragment)
8476         continue;
8477       Expr = *Fragment;
8478     }
8479     // Clone the SDDbgValue and move it to To.
8480     SDDbgValue *Clone = getDbgValue(
8481         Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), Dbg->getDebugLoc(),
8482         std::max(ToNode->getIROrder(), Dbg->getOrder()));
8483     ClonedDVs.push_back(Clone);
8484 
8485     if (InvalidateDbg) {
8486       // Invalidate value and indicate the SDDbgValue should not be emitted.
8487       Dbg->setIsInvalidated();
8488       Dbg->setIsEmitted();
8489     }
8490   }
8491 
8492   for (SDDbgValue *Dbg : ClonedDVs)
8493     AddDbgValue(Dbg, ToNode, false);
8494 }
8495 
8496 void SelectionDAG::salvageDebugInfo(SDNode &N) {
8497   if (!N.getHasDebugValue())
8498     return;
8499 
8500   SmallVector<SDDbgValue *, 2> ClonedDVs;
8501   for (auto DV : GetDbgValues(&N)) {
8502     if (DV->isInvalidated())
8503       continue;
8504     switch (N.getOpcode()) {
8505     default:
8506       break;
8507     case ISD::ADD:
8508       SDValue N0 = N.getOperand(0);
8509       SDValue N1 = N.getOperand(1);
8510       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
8511           isConstantIntBuildVectorOrConstantInt(N1)) {
8512         uint64_t Offset = N.getConstantOperandVal(1);
8513         // Rewrite an ADD constant node into a DIExpression. Since we are
8514         // performing arithmetic to compute the variable's *value* in the
8515         // DIExpression, we need to mark the expression with a
8516         // DW_OP_stack_value.
8517         auto *DIExpr = DV->getExpression();
8518         DIExpr =
8519             DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset);
8520         SDDbgValue *Clone =
8521             getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(),
8522                         DV->isIndirect(), DV->getDebugLoc(), DV->getOrder());
8523         ClonedDVs.push_back(Clone);
8524         DV->setIsInvalidated();
8525         DV->setIsEmitted();
8526         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
8527                    N0.getNode()->dumprFull(this);
8528                    dbgs() << " into " << *DIExpr << '\n');
8529       }
8530     }
8531   }
8532 
8533   for (SDDbgValue *Dbg : ClonedDVs)
8534     AddDbgValue(Dbg, Dbg->getSDNode(), false);
8535 }
8536 
8537 /// Creates a SDDbgLabel node.
8538 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
8539                                       const DebugLoc &DL, unsigned O) {
8540   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
8541          "Expected inlined-at fields to agree");
8542   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
8543 }
8544 
8545 namespace {
8546 
8547 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
8548 /// pointed to by a use iterator is deleted, increment the use iterator
8549 /// so that it doesn't dangle.
8550 ///
8551 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
8552   SDNode::use_iterator &UI;
8553   SDNode::use_iterator &UE;
8554 
8555   void NodeDeleted(SDNode *N, SDNode *E) override {
8556     // Increment the iterator as needed.
8557     while (UI != UE && N == *UI)
8558       ++UI;
8559   }
8560 
8561 public:
8562   RAUWUpdateListener(SelectionDAG &d,
8563                      SDNode::use_iterator &ui,
8564                      SDNode::use_iterator &ue)
8565     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
8566 };
8567 
8568 } // end anonymous namespace
8569 
8570 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8571 /// This can cause recursive merging of nodes in the DAG.
8572 ///
8573 /// This version assumes From has a single result value.
8574 ///
8575 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
8576   SDNode *From = FromN.getNode();
8577   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
8578          "Cannot replace with this method!");
8579   assert(From != To.getNode() && "Cannot replace uses of with self");
8580 
8581   // Preserve Debug Values
8582   transferDbgValues(FromN, To);
8583 
8584   // Iterate over all the existing uses of From. New uses will be added
8585   // to the beginning of the use list, which we avoid visiting.
8586   // This specifically avoids visiting uses of From that arise while the
8587   // replacement is happening, because any such uses would be the result
8588   // of CSE: If an existing node looks like From after one of its operands
8589   // is replaced by To, we don't want to replace of all its users with To
8590   // too. See PR3018 for more info.
8591   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8592   RAUWUpdateListener Listener(*this, UI, UE);
8593   while (UI != UE) {
8594     SDNode *User = *UI;
8595 
8596     // This node is about to morph, remove its old self from the CSE maps.
8597     RemoveNodeFromCSEMaps(User);
8598 
8599     // A user can appear in a use list multiple times, and when this
8600     // happens the uses are usually next to each other in the list.
8601     // To help reduce the number of CSE recomputations, process all
8602     // the uses of this user that we can find this way.
8603     do {
8604       SDUse &Use = UI.getUse();
8605       ++UI;
8606       Use.set(To);
8607       if (To->isDivergent() != From->isDivergent())
8608         updateDivergence(User);
8609     } while (UI != UE && *UI == User);
8610     // Now that we have modified User, add it back to the CSE maps.  If it
8611     // already exists there, recursively merge the results together.
8612     AddModifiedNodeToCSEMaps(User);
8613   }
8614 
8615   // If we just RAUW'd the root, take note.
8616   if (FromN == getRoot())
8617     setRoot(To);
8618 }
8619 
8620 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8621 /// This can cause recursive merging of nodes in the DAG.
8622 ///
8623 /// This version assumes that for each value of From, there is a
8624 /// corresponding value in To in the same position with the same type.
8625 ///
8626 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
8627 #ifndef NDEBUG
8628   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8629     assert((!From->hasAnyUseOfValue(i) ||
8630             From->getValueType(i) == To->getValueType(i)) &&
8631            "Cannot use this version of ReplaceAllUsesWith!");
8632 #endif
8633 
8634   // Handle the trivial case.
8635   if (From == To)
8636     return;
8637 
8638   // Preserve Debug Info. Only do this if there's a use.
8639   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8640     if (From->hasAnyUseOfValue(i)) {
8641       assert((i < To->getNumValues()) && "Invalid To location");
8642       transferDbgValues(SDValue(From, i), SDValue(To, i));
8643     }
8644 
8645   // Iterate over just the existing users of From. See the comments in
8646   // the ReplaceAllUsesWith above.
8647   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8648   RAUWUpdateListener Listener(*this, UI, UE);
8649   while (UI != UE) {
8650     SDNode *User = *UI;
8651 
8652     // This node is about to morph, remove its old self from the CSE maps.
8653     RemoveNodeFromCSEMaps(User);
8654 
8655     // A user can appear in a use list multiple times, and when this
8656     // happens the uses are usually next to each other in the list.
8657     // To help reduce the number of CSE recomputations, process all
8658     // the uses of this user that we can find this way.
8659     do {
8660       SDUse &Use = UI.getUse();
8661       ++UI;
8662       Use.setNode(To);
8663       if (To->isDivergent() != From->isDivergent())
8664         updateDivergence(User);
8665     } while (UI != UE && *UI == User);
8666 
8667     // Now that we have modified User, add it back to the CSE maps.  If it
8668     // already exists there, recursively merge the results together.
8669     AddModifiedNodeToCSEMaps(User);
8670   }
8671 
8672   // If we just RAUW'd the root, take note.
8673   if (From == getRoot().getNode())
8674     setRoot(SDValue(To, getRoot().getResNo()));
8675 }
8676 
8677 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8678 /// This can cause recursive merging of nodes in the DAG.
8679 ///
8680 /// This version can replace From with any result values.  To must match the
8681 /// number and types of values returned by From.
8682 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
8683   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
8684     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
8685 
8686   // Preserve Debug Info.
8687   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8688     transferDbgValues(SDValue(From, i), To[i]);
8689 
8690   // Iterate over just the existing users of From. See the comments in
8691   // the ReplaceAllUsesWith above.
8692   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8693   RAUWUpdateListener Listener(*this, UI, UE);
8694   while (UI != UE) {
8695     SDNode *User = *UI;
8696 
8697     // This node is about to morph, remove its old self from the CSE maps.
8698     RemoveNodeFromCSEMaps(User);
8699 
8700     // A user can appear in a use list multiple times, and when this happens the
8701     // uses are usually next to each other in the list.  To help reduce the
8702     // number of CSE and divergence recomputations, process all the uses of this
8703     // user that we can find this way.
8704     bool To_IsDivergent = false;
8705     do {
8706       SDUse &Use = UI.getUse();
8707       const SDValue &ToOp = To[Use.getResNo()];
8708       ++UI;
8709       Use.set(ToOp);
8710       To_IsDivergent |= ToOp->isDivergent();
8711     } while (UI != UE && *UI == User);
8712 
8713     if (To_IsDivergent != From->isDivergent())
8714       updateDivergence(User);
8715 
8716     // Now that we have modified User, add it back to the CSE maps.  If it
8717     // already exists there, recursively merge the results together.
8718     AddModifiedNodeToCSEMaps(User);
8719   }
8720 
8721   // If we just RAUW'd the root, take note.
8722   if (From == getRoot().getNode())
8723     setRoot(SDValue(To[getRoot().getResNo()]));
8724 }
8725 
8726 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
8727 /// uses of other values produced by From.getNode() alone.  The Deleted
8728 /// vector is handled the same way as for ReplaceAllUsesWith.
8729 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
8730   // Handle the really simple, really trivial case efficiently.
8731   if (From == To) return;
8732 
8733   // Handle the simple, trivial, case efficiently.
8734   if (From.getNode()->getNumValues() == 1) {
8735     ReplaceAllUsesWith(From, To);
8736     return;
8737   }
8738 
8739   // Preserve Debug Info.
8740   transferDbgValues(From, To);
8741 
8742   // Iterate over just the existing users of From. See the comments in
8743   // the ReplaceAllUsesWith above.
8744   SDNode::use_iterator UI = From.getNode()->use_begin(),
8745                        UE = From.getNode()->use_end();
8746   RAUWUpdateListener Listener(*this, UI, UE);
8747   while (UI != UE) {
8748     SDNode *User = *UI;
8749     bool UserRemovedFromCSEMaps = false;
8750 
8751     // A user can appear in a use list multiple times, and when this
8752     // happens the uses are usually next to each other in the list.
8753     // To help reduce the number of CSE recomputations, process all
8754     // the uses of this user that we can find this way.
8755     do {
8756       SDUse &Use = UI.getUse();
8757 
8758       // Skip uses of different values from the same node.
8759       if (Use.getResNo() != From.getResNo()) {
8760         ++UI;
8761         continue;
8762       }
8763 
8764       // If this node hasn't been modified yet, it's still in the CSE maps,
8765       // so remove its old self from the CSE maps.
8766       if (!UserRemovedFromCSEMaps) {
8767         RemoveNodeFromCSEMaps(User);
8768         UserRemovedFromCSEMaps = true;
8769       }
8770 
8771       ++UI;
8772       Use.set(To);
8773       if (To->isDivergent() != From->isDivergent())
8774         updateDivergence(User);
8775     } while (UI != UE && *UI == User);
8776     // We are iterating over all uses of the From node, so if a use
8777     // doesn't use the specific value, no changes are made.
8778     if (!UserRemovedFromCSEMaps)
8779       continue;
8780 
8781     // Now that we have modified User, add it back to the CSE maps.  If it
8782     // already exists there, recursively merge the results together.
8783     AddModifiedNodeToCSEMaps(User);
8784   }
8785 
8786   // If we just RAUW'd the root, take note.
8787   if (From == getRoot())
8788     setRoot(To);
8789 }
8790 
8791 namespace {
8792 
8793   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
8794   /// to record information about a use.
8795   struct UseMemo {
8796     SDNode *User;
8797     unsigned Index;
8798     SDUse *Use;
8799   };
8800 
8801   /// operator< - Sort Memos by User.
8802   bool operator<(const UseMemo &L, const UseMemo &R) {
8803     return (intptr_t)L.User < (intptr_t)R.User;
8804   }
8805 
8806 } // end anonymous namespace
8807 
8808 bool SelectionDAG::calculateDivergence(SDNode *N) {
8809   if (TLI->isSDNodeAlwaysUniform(N)) {
8810     assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) &&
8811            "Conflicting divergence information!");
8812     return false;
8813   }
8814   if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA))
8815     return true;
8816   for (auto &Op : N->ops()) {
8817     if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent())
8818       return true;
8819   }
8820   return false;
8821 }
8822 
8823 void SelectionDAG::updateDivergence(SDNode *N) {
8824   SmallVector<SDNode *, 16> Worklist(1, N);
8825   do {
8826     N = Worklist.pop_back_val();
8827     bool IsDivergent = calculateDivergence(N);
8828     if (N->SDNodeBits.IsDivergent != IsDivergent) {
8829       N->SDNodeBits.IsDivergent = IsDivergent;
8830       llvm::append_range(Worklist, N->uses());
8831     }
8832   } while (!Worklist.empty());
8833 }
8834 
8835 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
8836   DenseMap<SDNode *, unsigned> Degree;
8837   Order.reserve(AllNodes.size());
8838   for (auto &N : allnodes()) {
8839     unsigned NOps = N.getNumOperands();
8840     Degree[&N] = NOps;
8841     if (0 == NOps)
8842       Order.push_back(&N);
8843   }
8844   for (size_t I = 0; I != Order.size(); ++I) {
8845     SDNode *N = Order[I];
8846     for (auto U : N->uses()) {
8847       unsigned &UnsortedOps = Degree[U];
8848       if (0 == --UnsortedOps)
8849         Order.push_back(U);
8850     }
8851   }
8852 }
8853 
8854 #ifndef NDEBUG
8855 void SelectionDAG::VerifyDAGDiverence() {
8856   std::vector<SDNode *> TopoOrder;
8857   CreateTopologicalOrder(TopoOrder);
8858   for (auto *N : TopoOrder) {
8859     assert(calculateDivergence(N) == N->isDivergent() &&
8860            "Divergence bit inconsistency detected");
8861   }
8862 }
8863 #endif
8864 
8865 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
8866 /// uses of other values produced by From.getNode() alone.  The same value
8867 /// may appear in both the From and To list.  The Deleted vector is
8868 /// handled the same way as for ReplaceAllUsesWith.
8869 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
8870                                               const SDValue *To,
8871                                               unsigned Num){
8872   // Handle the simple, trivial case efficiently.
8873   if (Num == 1)
8874     return ReplaceAllUsesOfValueWith(*From, *To);
8875 
8876   transferDbgValues(*From, *To);
8877 
8878   // Read up all the uses and make records of them. This helps
8879   // processing new uses that are introduced during the
8880   // replacement process.
8881   SmallVector<UseMemo, 4> Uses;
8882   for (unsigned i = 0; i != Num; ++i) {
8883     unsigned FromResNo = From[i].getResNo();
8884     SDNode *FromNode = From[i].getNode();
8885     for (SDNode::use_iterator UI = FromNode->use_begin(),
8886          E = FromNode->use_end(); UI != E; ++UI) {
8887       SDUse &Use = UI.getUse();
8888       if (Use.getResNo() == FromResNo) {
8889         UseMemo Memo = { *UI, i, &Use };
8890         Uses.push_back(Memo);
8891       }
8892     }
8893   }
8894 
8895   // Sort the uses, so that all the uses from a given User are together.
8896   llvm::sort(Uses);
8897 
8898   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
8899        UseIndex != UseIndexEnd; ) {
8900     // We know that this user uses some value of From.  If it is the right
8901     // value, update it.
8902     SDNode *User = Uses[UseIndex].User;
8903 
8904     // This node is about to morph, remove its old self from the CSE maps.
8905     RemoveNodeFromCSEMaps(User);
8906 
8907     // The Uses array is sorted, so all the uses for a given User
8908     // are next to each other in the list.
8909     // To help reduce the number of CSE recomputations, process all
8910     // the uses of this user that we can find this way.
8911     do {
8912       unsigned i = Uses[UseIndex].Index;
8913       SDUse &Use = *Uses[UseIndex].Use;
8914       ++UseIndex;
8915 
8916       Use.set(To[i]);
8917     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
8918 
8919     // Now that we have modified User, add it back to the CSE maps.  If it
8920     // already exists there, recursively merge the results together.
8921     AddModifiedNodeToCSEMaps(User);
8922   }
8923 }
8924 
8925 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
8926 /// based on their topological order. It returns the maximum id and a vector
8927 /// of the SDNodes* in assigned order by reference.
8928 unsigned SelectionDAG::AssignTopologicalOrder() {
8929   unsigned DAGSize = 0;
8930 
8931   // SortedPos tracks the progress of the algorithm. Nodes before it are
8932   // sorted, nodes after it are unsorted. When the algorithm completes
8933   // it is at the end of the list.
8934   allnodes_iterator SortedPos = allnodes_begin();
8935 
8936   // Visit all the nodes. Move nodes with no operands to the front of
8937   // the list immediately. Annotate nodes that do have operands with their
8938   // operand count. Before we do this, the Node Id fields of the nodes
8939   // may contain arbitrary values. After, the Node Id fields for nodes
8940   // before SortedPos will contain the topological sort index, and the
8941   // Node Id fields for nodes At SortedPos and after will contain the
8942   // count of outstanding operands.
8943   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
8944     SDNode *N = &*I++;
8945     checkForCycles(N, this);
8946     unsigned Degree = N->getNumOperands();
8947     if (Degree == 0) {
8948       // A node with no uses, add it to the result array immediately.
8949       N->setNodeId(DAGSize++);
8950       allnodes_iterator Q(N);
8951       if (Q != SortedPos)
8952         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
8953       assert(SortedPos != AllNodes.end() && "Overran node list");
8954       ++SortedPos;
8955     } else {
8956       // Temporarily use the Node Id as scratch space for the degree count.
8957       N->setNodeId(Degree);
8958     }
8959   }
8960 
8961   // Visit all the nodes. As we iterate, move nodes into sorted order,
8962   // such that by the time the end is reached all nodes will be sorted.
8963   for (SDNode &Node : allnodes()) {
8964     SDNode *N = &Node;
8965     checkForCycles(N, this);
8966     // N is in sorted position, so all its uses have one less operand
8967     // that needs to be sorted.
8968     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
8969          UI != UE; ++UI) {
8970       SDNode *P = *UI;
8971       unsigned Degree = P->getNodeId();
8972       assert(Degree != 0 && "Invalid node degree");
8973       --Degree;
8974       if (Degree == 0) {
8975         // All of P's operands are sorted, so P may sorted now.
8976         P->setNodeId(DAGSize++);
8977         if (P->getIterator() != SortedPos)
8978           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
8979         assert(SortedPos != AllNodes.end() && "Overran node list");
8980         ++SortedPos;
8981       } else {
8982         // Update P's outstanding operand count.
8983         P->setNodeId(Degree);
8984       }
8985     }
8986     if (Node.getIterator() == SortedPos) {
8987 #ifndef NDEBUG
8988       allnodes_iterator I(N);
8989       SDNode *S = &*++I;
8990       dbgs() << "Overran sorted position:\n";
8991       S->dumprFull(this); dbgs() << "\n";
8992       dbgs() << "Checking if this is due to cycles\n";
8993       checkForCycles(this, true);
8994 #endif
8995       llvm_unreachable(nullptr);
8996     }
8997   }
8998 
8999   assert(SortedPos == AllNodes.end() &&
9000          "Topological sort incomplete!");
9001   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
9002          "First node in topological sort is not the entry token!");
9003   assert(AllNodes.front().getNodeId() == 0 &&
9004          "First node in topological sort has non-zero id!");
9005   assert(AllNodes.front().getNumOperands() == 0 &&
9006          "First node in topological sort has operands!");
9007   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
9008          "Last node in topologic sort has unexpected id!");
9009   assert(AllNodes.back().use_empty() &&
9010          "Last node in topologic sort has users!");
9011   assert(DAGSize == allnodes_size() && "Node count mismatch!");
9012   return DAGSize;
9013 }
9014 
9015 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
9016 /// value is produced by SD.
9017 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
9018   if (SD) {
9019     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
9020     SD->setHasDebugValue(true);
9021   }
9022   DbgInfo->add(DB, SD, isParameter);
9023 }
9024 
9025 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) {
9026   DbgInfo->add(DB);
9027 }
9028 
9029 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain,
9030                                                    SDValue NewMemOpChain) {
9031   assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node");
9032   assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT");
9033   // The new memory operation must have the same position as the old load in
9034   // terms of memory dependency. Create a TokenFactor for the old load and new
9035   // memory operation and update uses of the old load's output chain to use that
9036   // TokenFactor.
9037   if (OldChain == NewMemOpChain || OldChain.use_empty())
9038     return NewMemOpChain;
9039 
9040   SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other,
9041                                 OldChain, NewMemOpChain);
9042   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
9043   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain);
9044   return TokenFactor;
9045 }
9046 
9047 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
9048                                                    SDValue NewMemOp) {
9049   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
9050   SDValue OldChain = SDValue(OldLoad, 1);
9051   SDValue NewMemOpChain = NewMemOp.getValue(1);
9052   return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain);
9053 }
9054 
9055 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
9056                                                      Function **OutFunction) {
9057   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
9058 
9059   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
9060   auto *Module = MF->getFunction().getParent();
9061   auto *Function = Module->getFunction(Symbol);
9062 
9063   if (OutFunction != nullptr)
9064       *OutFunction = Function;
9065 
9066   if (Function != nullptr) {
9067     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
9068     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
9069   }
9070 
9071   std::string ErrorStr;
9072   raw_string_ostream ErrorFormatter(ErrorStr);
9073 
9074   ErrorFormatter << "Undefined external symbol ";
9075   ErrorFormatter << '"' << Symbol << '"';
9076   ErrorFormatter.flush();
9077 
9078   report_fatal_error(ErrorStr);
9079 }
9080 
9081 //===----------------------------------------------------------------------===//
9082 //                              SDNode Class
9083 //===----------------------------------------------------------------------===//
9084 
9085 bool llvm::isNullConstant(SDValue V) {
9086   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9087   return Const != nullptr && Const->isNullValue();
9088 }
9089 
9090 bool llvm::isNullFPConstant(SDValue V) {
9091   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
9092   return Const != nullptr && Const->isZero() && !Const->isNegative();
9093 }
9094 
9095 bool llvm::isAllOnesConstant(SDValue V) {
9096   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9097   return Const != nullptr && Const->isAllOnesValue();
9098 }
9099 
9100 bool llvm::isOneConstant(SDValue V) {
9101   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9102   return Const != nullptr && Const->isOne();
9103 }
9104 
9105 SDValue llvm::peekThroughBitcasts(SDValue V) {
9106   while (V.getOpcode() == ISD::BITCAST)
9107     V = V.getOperand(0);
9108   return V;
9109 }
9110 
9111 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
9112   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
9113     V = V.getOperand(0);
9114   return V;
9115 }
9116 
9117 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
9118   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
9119     V = V.getOperand(0);
9120   return V;
9121 }
9122 
9123 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
9124   if (V.getOpcode() != ISD::XOR)
9125     return false;
9126   V = peekThroughBitcasts(V.getOperand(1));
9127   unsigned NumBits = V.getScalarValueSizeInBits();
9128   ConstantSDNode *C =
9129       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
9130   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
9131 }
9132 
9133 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
9134                                           bool AllowTruncation) {
9135   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
9136     return CN;
9137 
9138   // SplatVectors can truncate their operands. Ignore that case here unless
9139   // AllowTruncation is set.
9140   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
9141     EVT VecEltVT = N->getValueType(0).getVectorElementType();
9142     if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
9143       EVT CVT = CN->getValueType(0);
9144       assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension");
9145       if (AllowTruncation || CVT == VecEltVT)
9146         return CN;
9147     }
9148   }
9149 
9150   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9151     BitVector UndefElements;
9152     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
9153 
9154     // BuildVectors can truncate their operands. Ignore that case here unless
9155     // AllowTruncation is set.
9156     if (CN && (UndefElements.none() || AllowUndefs)) {
9157       EVT CVT = CN->getValueType(0);
9158       EVT NSVT = N.getValueType().getScalarType();
9159       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
9160       if (AllowTruncation || (CVT == NSVT))
9161         return CN;
9162     }
9163   }
9164 
9165   return nullptr;
9166 }
9167 
9168 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
9169                                           bool AllowUndefs,
9170                                           bool AllowTruncation) {
9171   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
9172     return CN;
9173 
9174   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9175     BitVector UndefElements;
9176     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
9177 
9178     // BuildVectors can truncate their operands. Ignore that case here unless
9179     // AllowTruncation is set.
9180     if (CN && (UndefElements.none() || AllowUndefs)) {
9181       EVT CVT = CN->getValueType(0);
9182       EVT NSVT = N.getValueType().getScalarType();
9183       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
9184       if (AllowTruncation || (CVT == NSVT))
9185         return CN;
9186     }
9187   }
9188 
9189   return nullptr;
9190 }
9191 
9192 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
9193   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
9194     return CN;
9195 
9196   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9197     BitVector UndefElements;
9198     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
9199     if (CN && (UndefElements.none() || AllowUndefs))
9200       return CN;
9201   }
9202 
9203   if (N.getOpcode() == ISD::SPLAT_VECTOR)
9204     if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0)))
9205       return CN;
9206 
9207   return nullptr;
9208 }
9209 
9210 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
9211                                               const APInt &DemandedElts,
9212                                               bool AllowUndefs) {
9213   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
9214     return CN;
9215 
9216   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9217     BitVector UndefElements;
9218     ConstantFPSDNode *CN =
9219         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
9220     if (CN && (UndefElements.none() || AllowUndefs))
9221       return CN;
9222   }
9223 
9224   return nullptr;
9225 }
9226 
9227 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
9228   // TODO: may want to use peekThroughBitcast() here.
9229   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
9230   return C && C->isNullValue();
9231 }
9232 
9233 bool llvm::isOneOrOneSplat(SDValue N) {
9234   // TODO: may want to use peekThroughBitcast() here.
9235   unsigned BitWidth = N.getScalarValueSizeInBits();
9236   ConstantSDNode *C = isConstOrConstSplat(N);
9237   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
9238 }
9239 
9240 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) {
9241   N = peekThroughBitcasts(N);
9242   unsigned BitWidth = N.getScalarValueSizeInBits();
9243   ConstantSDNode *C = isConstOrConstSplat(N);
9244   return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth;
9245 }
9246 
9247 HandleSDNode::~HandleSDNode() {
9248   DropOperands();
9249 }
9250 
9251 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
9252                                          const DebugLoc &DL,
9253                                          const GlobalValue *GA, EVT VT,
9254                                          int64_t o, unsigned TF)
9255     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
9256   TheGlobal = GA;
9257 }
9258 
9259 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
9260                                          EVT VT, unsigned SrcAS,
9261                                          unsigned DestAS)
9262     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
9263       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
9264 
9265 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
9266                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
9267     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
9268   MemSDNodeBits.IsVolatile = MMO->isVolatile();
9269   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
9270   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
9271   MemSDNodeBits.IsInvariant = MMO->isInvariant();
9272 
9273   // We check here that the size of the memory operand fits within the size of
9274   // the MMO. This is because the MMO might indicate only a possible address
9275   // range instead of specifying the affected memory addresses precisely.
9276   // TODO: Make MachineMemOperands aware of scalable vectors.
9277   assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
9278          "Size mismatch!");
9279 }
9280 
9281 /// Profile - Gather unique data for the node.
9282 ///
9283 void SDNode::Profile(FoldingSetNodeID &ID) const {
9284   AddNodeIDNode(ID, this);
9285 }
9286 
9287 namespace {
9288 
9289   struct EVTArray {
9290     std::vector<EVT> VTs;
9291 
9292     EVTArray() {
9293       VTs.reserve(MVT::LAST_VALUETYPE);
9294       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
9295         VTs.push_back(MVT((MVT::SimpleValueType)i));
9296     }
9297   };
9298 
9299 } // end anonymous namespace
9300 
9301 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
9302 static ManagedStatic<EVTArray> SimpleVTArray;
9303 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
9304 
9305 /// getValueTypeList - Return a pointer to the specified value type.
9306 ///
9307 const EVT *SDNode::getValueTypeList(EVT VT) {
9308   if (VT.isExtended()) {
9309     sys::SmartScopedLock<true> Lock(*VTMutex);
9310     return &(*EVTs->insert(VT).first);
9311   } else {
9312     assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
9313            "Value type out of range!");
9314     return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
9315   }
9316 }
9317 
9318 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
9319 /// indicated value.  This method ignores uses of other values defined by this
9320 /// operation.
9321 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
9322   assert(Value < getNumValues() && "Bad value!");
9323 
9324   // TODO: Only iterate over uses of a given value of the node
9325   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
9326     if (UI.getUse().getResNo() == Value) {
9327       if (NUses == 0)
9328         return false;
9329       --NUses;
9330     }
9331   }
9332 
9333   // Found exactly the right number of uses?
9334   return NUses == 0;
9335 }
9336 
9337 /// hasAnyUseOfValue - Return true if there are any use of the indicated
9338 /// value. This method ignores uses of other values defined by this operation.
9339 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
9340   assert(Value < getNumValues() && "Bad value!");
9341 
9342   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
9343     if (UI.getUse().getResNo() == Value)
9344       return true;
9345 
9346   return false;
9347 }
9348 
9349 /// isOnlyUserOf - Return true if this node is the only use of N.
9350 bool SDNode::isOnlyUserOf(const SDNode *N) const {
9351   bool Seen = false;
9352   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9353     SDNode *User = *I;
9354     if (User == this)
9355       Seen = true;
9356     else
9357       return false;
9358   }
9359 
9360   return Seen;
9361 }
9362 
9363 /// Return true if the only users of N are contained in Nodes.
9364 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
9365   bool Seen = false;
9366   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9367     SDNode *User = *I;
9368     if (llvm::is_contained(Nodes, User))
9369       Seen = true;
9370     else
9371       return false;
9372   }
9373 
9374   return Seen;
9375 }
9376 
9377 /// isOperand - Return true if this node is an operand of N.
9378 bool SDValue::isOperandOf(const SDNode *N) const {
9379   return is_contained(N->op_values(), *this);
9380 }
9381 
9382 bool SDNode::isOperandOf(const SDNode *N) const {
9383   return any_of(N->op_values(),
9384                 [this](SDValue Op) { return this == Op.getNode(); });
9385 }
9386 
9387 /// reachesChainWithoutSideEffects - Return true if this operand (which must
9388 /// be a chain) reaches the specified operand without crossing any
9389 /// side-effecting instructions on any chain path.  In practice, this looks
9390 /// through token factors and non-volatile loads.  In order to remain efficient,
9391 /// this only looks a couple of nodes in, it does not do an exhaustive search.
9392 ///
9393 /// Note that we only need to examine chains when we're searching for
9394 /// side-effects; SelectionDAG requires that all side-effects are represented
9395 /// by chains, even if another operand would force a specific ordering. This
9396 /// constraint is necessary to allow transformations like splitting loads.
9397 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
9398                                              unsigned Depth) const {
9399   if (*this == Dest) return true;
9400 
9401   // Don't search too deeply, we just want to be able to see through
9402   // TokenFactor's etc.
9403   if (Depth == 0) return false;
9404 
9405   // If this is a token factor, all inputs to the TF happen in parallel.
9406   if (getOpcode() == ISD::TokenFactor) {
9407     // First, try a shallow search.
9408     if (is_contained((*this)->ops(), Dest)) {
9409       // We found the chain we want as an operand of this TokenFactor.
9410       // Essentially, we reach the chain without side-effects if we could
9411       // serialize the TokenFactor into a simple chain of operations with
9412       // Dest as the last operation. This is automatically true if the
9413       // chain has one use: there are no other ordering constraints.
9414       // If the chain has more than one use, we give up: some other
9415       // use of Dest might force a side-effect between Dest and the current
9416       // node.
9417       if (Dest.hasOneUse())
9418         return true;
9419     }
9420     // Next, try a deep search: check whether every operand of the TokenFactor
9421     // reaches Dest.
9422     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
9423       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
9424     });
9425   }
9426 
9427   // Loads don't have side effects, look through them.
9428   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
9429     if (Ld->isUnordered())
9430       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
9431   }
9432   return false;
9433 }
9434 
9435 bool SDNode::hasPredecessor(const SDNode *N) const {
9436   SmallPtrSet<const SDNode *, 32> Visited;
9437   SmallVector<const SDNode *, 16> Worklist;
9438   Worklist.push_back(this);
9439   return hasPredecessorHelper(N, Visited, Worklist);
9440 }
9441 
9442 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
9443   this->Flags.intersectWith(Flags);
9444 }
9445 
9446 SDValue
9447 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
9448                                   ArrayRef<ISD::NodeType> CandidateBinOps,
9449                                   bool AllowPartials) {
9450   // The pattern must end in an extract from index 0.
9451   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9452       !isNullConstant(Extract->getOperand(1)))
9453     return SDValue();
9454 
9455   // Match against one of the candidate binary ops.
9456   SDValue Op = Extract->getOperand(0);
9457   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
9458         return Op.getOpcode() == unsigned(BinOp);
9459       }))
9460     return SDValue();
9461 
9462   // Floating-point reductions may require relaxed constraints on the final step
9463   // of the reduction because they may reorder intermediate operations.
9464   unsigned CandidateBinOp = Op.getOpcode();
9465   if (Op.getValueType().isFloatingPoint()) {
9466     SDNodeFlags Flags = Op->getFlags();
9467     switch (CandidateBinOp) {
9468     case ISD::FADD:
9469       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
9470         return SDValue();
9471       break;
9472     default:
9473       llvm_unreachable("Unhandled FP opcode for binop reduction");
9474     }
9475   }
9476 
9477   // Matching failed - attempt to see if we did enough stages that a partial
9478   // reduction from a subvector is possible.
9479   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
9480     if (!AllowPartials || !Op)
9481       return SDValue();
9482     EVT OpVT = Op.getValueType();
9483     EVT OpSVT = OpVT.getScalarType();
9484     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
9485     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
9486       return SDValue();
9487     BinOp = (ISD::NodeType)CandidateBinOp;
9488     return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
9489                    getVectorIdxConstant(0, SDLoc(Op)));
9490   };
9491 
9492   // At each stage, we're looking for something that looks like:
9493   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
9494   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
9495   //                               i32 undef, i32 undef, i32 undef, i32 undef>
9496   // %a = binop <8 x i32> %op, %s
9497   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
9498   // we expect something like:
9499   // <4,5,6,7,u,u,u,u>
9500   // <2,3,u,u,u,u,u,u>
9501   // <1,u,u,u,u,u,u,u>
9502   // While a partial reduction match would be:
9503   // <2,3,u,u,u,u,u,u>
9504   // <1,u,u,u,u,u,u,u>
9505   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
9506   SDValue PrevOp;
9507   for (unsigned i = 0; i < Stages; ++i) {
9508     unsigned MaskEnd = (1 << i);
9509 
9510     if (Op.getOpcode() != CandidateBinOp)
9511       return PartialReduction(PrevOp, MaskEnd);
9512 
9513     SDValue Op0 = Op.getOperand(0);
9514     SDValue Op1 = Op.getOperand(1);
9515 
9516     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
9517     if (Shuffle) {
9518       Op = Op1;
9519     } else {
9520       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
9521       Op = Op0;
9522     }
9523 
9524     // The first operand of the shuffle should be the same as the other operand
9525     // of the binop.
9526     if (!Shuffle || Shuffle->getOperand(0) != Op)
9527       return PartialReduction(PrevOp, MaskEnd);
9528 
9529     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
9530     for (int Index = 0; Index < (int)MaskEnd; ++Index)
9531       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
9532         return PartialReduction(PrevOp, MaskEnd);
9533 
9534     PrevOp = Op;
9535   }
9536 
9537   // Handle subvector reductions, which tend to appear after the shuffle
9538   // reduction stages.
9539   while (Op.getOpcode() == CandidateBinOp) {
9540     unsigned NumElts = Op.getValueType().getVectorNumElements();
9541     SDValue Op0 = Op.getOperand(0);
9542     SDValue Op1 = Op.getOperand(1);
9543     if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
9544         Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
9545         Op0.getOperand(0) != Op1.getOperand(0))
9546       break;
9547     SDValue Src = Op0.getOperand(0);
9548     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
9549     if (NumSrcElts != (2 * NumElts))
9550       break;
9551     if (!(Op0.getConstantOperandAPInt(1) == 0 &&
9552           Op1.getConstantOperandAPInt(1) == NumElts) &&
9553         !(Op1.getConstantOperandAPInt(1) == 0 &&
9554           Op0.getConstantOperandAPInt(1) == NumElts))
9555       break;
9556     Op = Src;
9557   }
9558 
9559   BinOp = (ISD::NodeType)CandidateBinOp;
9560   return Op;
9561 }
9562 
9563 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
9564   assert(N->getNumValues() == 1 &&
9565          "Can't unroll a vector with multiple results!");
9566 
9567   EVT VT = N->getValueType(0);
9568   unsigned NE = VT.getVectorNumElements();
9569   EVT EltVT = VT.getVectorElementType();
9570   SDLoc dl(N);
9571 
9572   SmallVector<SDValue, 8> Scalars;
9573   SmallVector<SDValue, 4> Operands(N->getNumOperands());
9574 
9575   // If ResNE is 0, fully unroll the vector op.
9576   if (ResNE == 0)
9577     ResNE = NE;
9578   else if (NE > ResNE)
9579     NE = ResNE;
9580 
9581   unsigned i;
9582   for (i= 0; i != NE; ++i) {
9583     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
9584       SDValue Operand = N->getOperand(j);
9585       EVT OperandVT = Operand.getValueType();
9586       if (OperandVT.isVector()) {
9587         // A vector operand; extract a single element.
9588         EVT OperandEltVT = OperandVT.getVectorElementType();
9589         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
9590                               Operand, getVectorIdxConstant(i, dl));
9591       } else {
9592         // A scalar operand; just use it as is.
9593         Operands[j] = Operand;
9594       }
9595     }
9596 
9597     switch (N->getOpcode()) {
9598     default: {
9599       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
9600                                 N->getFlags()));
9601       break;
9602     }
9603     case ISD::VSELECT:
9604       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
9605       break;
9606     case ISD::SHL:
9607     case ISD::SRA:
9608     case ISD::SRL:
9609     case ISD::ROTL:
9610     case ISD::ROTR:
9611       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
9612                                getShiftAmountOperand(Operands[0].getValueType(),
9613                                                      Operands[1])));
9614       break;
9615     case ISD::SIGN_EXTEND_INREG: {
9616       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
9617       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
9618                                 Operands[0],
9619                                 getValueType(ExtVT)));
9620     }
9621     }
9622   }
9623 
9624   for (; i < ResNE; ++i)
9625     Scalars.push_back(getUNDEF(EltVT));
9626 
9627   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
9628   return getBuildVector(VecVT, dl, Scalars);
9629 }
9630 
9631 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
9632     SDNode *N, unsigned ResNE) {
9633   unsigned Opcode = N->getOpcode();
9634   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
9635           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
9636           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
9637          "Expected an overflow opcode");
9638 
9639   EVT ResVT = N->getValueType(0);
9640   EVT OvVT = N->getValueType(1);
9641   EVT ResEltVT = ResVT.getVectorElementType();
9642   EVT OvEltVT = OvVT.getVectorElementType();
9643   SDLoc dl(N);
9644 
9645   // If ResNE is 0, fully unroll the vector op.
9646   unsigned NE = ResVT.getVectorNumElements();
9647   if (ResNE == 0)
9648     ResNE = NE;
9649   else if (NE > ResNE)
9650     NE = ResNE;
9651 
9652   SmallVector<SDValue, 8> LHSScalars;
9653   SmallVector<SDValue, 8> RHSScalars;
9654   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
9655   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
9656 
9657   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
9658   SDVTList VTs = getVTList(ResEltVT, SVT);
9659   SmallVector<SDValue, 8> ResScalars;
9660   SmallVector<SDValue, 8> OvScalars;
9661   for (unsigned i = 0; i < NE; ++i) {
9662     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
9663     SDValue Ov =
9664         getSelect(dl, OvEltVT, Res.getValue(1),
9665                   getBoolConstant(true, dl, OvEltVT, ResVT),
9666                   getConstant(0, dl, OvEltVT));
9667 
9668     ResScalars.push_back(Res);
9669     OvScalars.push_back(Ov);
9670   }
9671 
9672   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
9673   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
9674 
9675   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
9676   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
9677   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
9678                         getBuildVector(NewOvVT, dl, OvScalars));
9679 }
9680 
9681 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
9682                                                   LoadSDNode *Base,
9683                                                   unsigned Bytes,
9684                                                   int Dist) const {
9685   if (LD->isVolatile() || Base->isVolatile())
9686     return false;
9687   // TODO: probably too restrictive for atomics, revisit
9688   if (!LD->isSimple())
9689     return false;
9690   if (LD->isIndexed() || Base->isIndexed())
9691     return false;
9692   if (LD->getChain() != Base->getChain())
9693     return false;
9694   EVT VT = LD->getValueType(0);
9695   if (VT.getSizeInBits() / 8 != Bytes)
9696     return false;
9697 
9698   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
9699   auto LocDecomp = BaseIndexOffset::match(LD, *this);
9700 
9701   int64_t Offset = 0;
9702   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
9703     return (Dist * Bytes == Offset);
9704   return false;
9705 }
9706 
9707 /// InferPtrAlignment - Infer alignment of a load / store address. Return None
9708 /// if it cannot be inferred.
9709 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const {
9710   // If this is a GlobalAddress + cst, return the alignment.
9711   const GlobalValue *GV = nullptr;
9712   int64_t GVOffset = 0;
9713   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
9714     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
9715     KnownBits Known(PtrWidth);
9716     llvm::computeKnownBits(GV, Known, getDataLayout());
9717     unsigned AlignBits = Known.countMinTrailingZeros();
9718     if (AlignBits)
9719       return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
9720   }
9721 
9722   // If this is a direct reference to a stack slot, use information about the
9723   // stack slot's alignment.
9724   int FrameIdx = INT_MIN;
9725   int64_t FrameOffset = 0;
9726   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
9727     FrameIdx = FI->getIndex();
9728   } else if (isBaseWithConstantOffset(Ptr) &&
9729              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
9730     // Handle FI+Cst
9731     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
9732     FrameOffset = Ptr.getConstantOperandVal(1);
9733   }
9734 
9735   if (FrameIdx != INT_MIN) {
9736     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
9737     return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
9738   }
9739 
9740   return None;
9741 }
9742 
9743 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
9744 /// which is split (or expanded) into two not necessarily identical pieces.
9745 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
9746   // Currently all types are split in half.
9747   EVT LoVT, HiVT;
9748   if (!VT.isVector())
9749     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
9750   else
9751     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
9752 
9753   return std::make_pair(LoVT, HiVT);
9754 }
9755 
9756 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
9757 /// type, dependent on an enveloping VT that has been split into two identical
9758 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
9759 std::pair<EVT, EVT>
9760 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT,
9761                                        bool *HiIsEmpty) const {
9762   EVT EltTp = VT.getVectorElementType();
9763   // Examples:
9764   //   custom VL=8  with enveloping VL=8/8 yields 8/0 (hi empty)
9765   //   custom VL=9  with enveloping VL=8/8 yields 8/1
9766   //   custom VL=10 with enveloping VL=8/8 yields 8/2
9767   //   etc.
9768   ElementCount VTNumElts = VT.getVectorElementCount();
9769   ElementCount EnvNumElts = EnvVT.getVectorElementCount();
9770   assert(VTNumElts.isScalable() == EnvNumElts.isScalable() &&
9771          "Mixing fixed width and scalable vectors when enveloping a type");
9772   EVT LoVT, HiVT;
9773   if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) {
9774     LoVT = EnvVT;
9775     HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts);
9776     *HiIsEmpty = false;
9777   } else {
9778     // Flag that hi type has zero storage size, but return split envelop type
9779     // (this would be easier if vector types with zero elements were allowed).
9780     LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts);
9781     HiVT = EnvVT;
9782     *HiIsEmpty = true;
9783   }
9784   return std::make_pair(LoVT, HiVT);
9785 }
9786 
9787 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
9788 /// low/high part.
9789 std::pair<SDValue, SDValue>
9790 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
9791                           const EVT &HiVT) {
9792   assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
9793          LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
9794          "Splitting vector with an invalid mixture of fixed and scalable "
9795          "vector types");
9796   assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <=
9797              N.getValueType().getVectorMinNumElements() &&
9798          "More vector elements requested than available!");
9799   SDValue Lo, Hi;
9800   Lo =
9801       getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
9802   // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
9803   // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
9804   // IDX with the runtime scaling factor of the result vector type. For
9805   // fixed-width result vectors, that runtime scaling factor is 1.
9806   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
9807                getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL));
9808   return std::make_pair(Lo, Hi);
9809 }
9810 
9811 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
9812 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
9813   EVT VT = N.getValueType();
9814   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
9815                                 NextPowerOf2(VT.getVectorNumElements()));
9816   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
9817                  getVectorIdxConstant(0, DL));
9818 }
9819 
9820 void SelectionDAG::ExtractVectorElements(SDValue Op,
9821                                          SmallVectorImpl<SDValue> &Args,
9822                                          unsigned Start, unsigned Count,
9823                                          EVT EltVT) {
9824   EVT VT = Op.getValueType();
9825   if (Count == 0)
9826     Count = VT.getVectorNumElements();
9827   if (EltVT == EVT())
9828     EltVT = VT.getVectorElementType();
9829   SDLoc SL(Op);
9830   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
9831     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
9832                            getVectorIdxConstant(i, SL)));
9833   }
9834 }
9835 
9836 // getAddressSpace - Return the address space this GlobalAddress belongs to.
9837 unsigned GlobalAddressSDNode::getAddressSpace() const {
9838   return getGlobal()->getType()->getAddressSpace();
9839 }
9840 
9841 Type *ConstantPoolSDNode::getType() const {
9842   if (isMachineConstantPoolEntry())
9843     return Val.MachineCPVal->getType();
9844   return Val.ConstVal->getType();
9845 }
9846 
9847 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
9848                                         unsigned &SplatBitSize,
9849                                         bool &HasAnyUndefs,
9850                                         unsigned MinSplatBits,
9851                                         bool IsBigEndian) const {
9852   EVT VT = getValueType(0);
9853   assert(VT.isVector() && "Expected a vector type");
9854   unsigned VecWidth = VT.getSizeInBits();
9855   if (MinSplatBits > VecWidth)
9856     return false;
9857 
9858   // FIXME: The widths are based on this node's type, but build vectors can
9859   // truncate their operands.
9860   SplatValue = APInt(VecWidth, 0);
9861   SplatUndef = APInt(VecWidth, 0);
9862 
9863   // Get the bits. Bits with undefined values (when the corresponding element
9864   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
9865   // in SplatValue. If any of the values are not constant, give up and return
9866   // false.
9867   unsigned int NumOps = getNumOperands();
9868   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
9869   unsigned EltWidth = VT.getScalarSizeInBits();
9870 
9871   for (unsigned j = 0; j < NumOps; ++j) {
9872     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
9873     SDValue OpVal = getOperand(i);
9874     unsigned BitPos = j * EltWidth;
9875 
9876     if (OpVal.isUndef())
9877       SplatUndef.setBits(BitPos, BitPos + EltWidth);
9878     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
9879       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
9880     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
9881       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
9882     else
9883       return false;
9884   }
9885 
9886   // The build_vector is all constants or undefs. Find the smallest element
9887   // size that splats the vector.
9888   HasAnyUndefs = (SplatUndef != 0);
9889 
9890   // FIXME: This does not work for vectors with elements less than 8 bits.
9891   while (VecWidth > 8) {
9892     unsigned HalfSize = VecWidth / 2;
9893     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
9894     APInt LowValue = SplatValue.trunc(HalfSize);
9895     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
9896     APInt LowUndef = SplatUndef.trunc(HalfSize);
9897 
9898     // If the two halves do not match (ignoring undef bits), stop here.
9899     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
9900         MinSplatBits > HalfSize)
9901       break;
9902 
9903     SplatValue = HighValue | LowValue;
9904     SplatUndef = HighUndef & LowUndef;
9905 
9906     VecWidth = HalfSize;
9907   }
9908 
9909   SplatBitSize = VecWidth;
9910   return true;
9911 }
9912 
9913 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
9914                                          BitVector *UndefElements) const {
9915   unsigned NumOps = getNumOperands();
9916   if (UndefElements) {
9917     UndefElements->clear();
9918     UndefElements->resize(NumOps);
9919   }
9920   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
9921   if (!DemandedElts)
9922     return SDValue();
9923   SDValue Splatted;
9924   for (unsigned i = 0; i != NumOps; ++i) {
9925     if (!DemandedElts[i])
9926       continue;
9927     SDValue Op = getOperand(i);
9928     if (Op.isUndef()) {
9929       if (UndefElements)
9930         (*UndefElements)[i] = true;
9931     } else if (!Splatted) {
9932       Splatted = Op;
9933     } else if (Splatted != Op) {
9934       return SDValue();
9935     }
9936   }
9937 
9938   if (!Splatted) {
9939     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
9940     assert(getOperand(FirstDemandedIdx).isUndef() &&
9941            "Can only have a splat without a constant for all undefs.");
9942     return getOperand(FirstDemandedIdx);
9943   }
9944 
9945   return Splatted;
9946 }
9947 
9948 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
9949   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
9950   return getSplatValue(DemandedElts, UndefElements);
9951 }
9952 
9953 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts,
9954                                             SmallVectorImpl<SDValue> &Sequence,
9955                                             BitVector *UndefElements) const {
9956   unsigned NumOps = getNumOperands();
9957   Sequence.clear();
9958   if (UndefElements) {
9959     UndefElements->clear();
9960     UndefElements->resize(NumOps);
9961   }
9962   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
9963   if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps))
9964     return false;
9965 
9966   // Set the undefs even if we don't find a sequence (like getSplatValue).
9967   if (UndefElements)
9968     for (unsigned I = 0; I != NumOps; ++I)
9969       if (DemandedElts[I] && getOperand(I).isUndef())
9970         (*UndefElements)[I] = true;
9971 
9972   // Iteratively widen the sequence length looking for repetitions.
9973   for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) {
9974     Sequence.append(SeqLen, SDValue());
9975     for (unsigned I = 0; I != NumOps; ++I) {
9976       if (!DemandedElts[I])
9977         continue;
9978       SDValue &SeqOp = Sequence[I % SeqLen];
9979       SDValue Op = getOperand(I);
9980       if (Op.isUndef()) {
9981         if (!SeqOp)
9982           SeqOp = Op;
9983         continue;
9984       }
9985       if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) {
9986         Sequence.clear();
9987         break;
9988       }
9989       SeqOp = Op;
9990     }
9991     if (!Sequence.empty())
9992       return true;
9993   }
9994 
9995   assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern");
9996   return false;
9997 }
9998 
9999 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
10000                                             BitVector *UndefElements) const {
10001   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
10002   return getRepeatedSequence(DemandedElts, Sequence, UndefElements);
10003 }
10004 
10005 ConstantSDNode *
10006 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
10007                                         BitVector *UndefElements) const {
10008   return dyn_cast_or_null<ConstantSDNode>(
10009       getSplatValue(DemandedElts, UndefElements));
10010 }
10011 
10012 ConstantSDNode *
10013 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
10014   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
10015 }
10016 
10017 ConstantFPSDNode *
10018 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
10019                                           BitVector *UndefElements) const {
10020   return dyn_cast_or_null<ConstantFPSDNode>(
10021       getSplatValue(DemandedElts, UndefElements));
10022 }
10023 
10024 ConstantFPSDNode *
10025 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
10026   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
10027 }
10028 
10029 int32_t
10030 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
10031                                                    uint32_t BitWidth) const {
10032   if (ConstantFPSDNode *CN =
10033           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
10034     bool IsExact;
10035     APSInt IntVal(BitWidth);
10036     const APFloat &APF = CN->getValueAPF();
10037     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
10038             APFloat::opOK ||
10039         !IsExact)
10040       return -1;
10041 
10042     return IntVal.exactLogBase2();
10043   }
10044   return -1;
10045 }
10046 
10047 bool BuildVectorSDNode::isConstant() const {
10048   for (const SDValue &Op : op_values()) {
10049     unsigned Opc = Op.getOpcode();
10050     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
10051       return false;
10052   }
10053   return true;
10054 }
10055 
10056 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
10057   // Find the first non-undef value in the shuffle mask.
10058   unsigned i, e;
10059   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
10060     /* search */;
10061 
10062   // If all elements are undefined, this shuffle can be considered a splat
10063   // (although it should eventually get simplified away completely).
10064   if (i == e)
10065     return true;
10066 
10067   // Make sure all remaining elements are either undef or the same as the first
10068   // non-undef value.
10069   for (int Idx = Mask[i]; i != e; ++i)
10070     if (Mask[i] >= 0 && Mask[i] != Idx)
10071       return false;
10072   return true;
10073 }
10074 
10075 // Returns the SDNode if it is a constant integer BuildVector
10076 // or constant integer.
10077 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const {
10078   if (isa<ConstantSDNode>(N))
10079     return N.getNode();
10080   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
10081     return N.getNode();
10082   // Treat a GlobalAddress supporting constant offset folding as a
10083   // constant integer.
10084   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
10085     if (GA->getOpcode() == ISD::GlobalAddress &&
10086         TLI->isOffsetFoldingLegal(GA))
10087       return GA;
10088   if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
10089       isa<ConstantSDNode>(N.getOperand(0)))
10090     return N.getNode();
10091   return nullptr;
10092 }
10093 
10094 // Returns the SDNode if it is a constant float BuildVector
10095 // or constant float.
10096 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const {
10097   if (isa<ConstantFPSDNode>(N))
10098     return N.getNode();
10099 
10100   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
10101     return N.getNode();
10102 
10103   return nullptr;
10104 }
10105 
10106 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
10107   assert(!Node->OperandList && "Node already has operands");
10108   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
10109          "too many operands to fit into SDNode");
10110   SDUse *Ops = OperandRecycler.allocate(
10111       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
10112 
10113   bool IsDivergent = false;
10114   for (unsigned I = 0; I != Vals.size(); ++I) {
10115     Ops[I].setUser(Node);
10116     Ops[I].setInitial(Vals[I]);
10117     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
10118       IsDivergent |= Ops[I].getNode()->isDivergent();
10119   }
10120   Node->NumOperands = Vals.size();
10121   Node->OperandList = Ops;
10122   if (!TLI->isSDNodeAlwaysUniform(Node)) {
10123     IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
10124     Node->SDNodeBits.IsDivergent = IsDivergent;
10125   }
10126   checkForCycles(Node);
10127 }
10128 
10129 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
10130                                      SmallVectorImpl<SDValue> &Vals) {
10131   size_t Limit = SDNode::getMaxNumOperands();
10132   while (Vals.size() > Limit) {
10133     unsigned SliceIdx = Vals.size() - Limit;
10134     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
10135     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
10136     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
10137     Vals.emplace_back(NewTF);
10138   }
10139   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
10140 }
10141 
10142 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL,
10143                                         EVT VT, SDNodeFlags Flags) {
10144   switch (Opcode) {
10145   default:
10146     return SDValue();
10147   case ISD::ADD:
10148   case ISD::OR:
10149   case ISD::XOR:
10150   case ISD::UMAX:
10151     return getConstant(0, DL, VT);
10152   case ISD::MUL:
10153     return getConstant(1, DL, VT);
10154   case ISD::AND:
10155   case ISD::UMIN:
10156     return getAllOnesConstant(DL, VT);
10157   case ISD::SMAX:
10158     return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT);
10159   case ISD::SMIN:
10160     return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT);
10161   case ISD::FADD:
10162     return getConstantFP(-0.0, DL, VT);
10163   case ISD::FMUL:
10164     return getConstantFP(1.0, DL, VT);
10165   case ISD::FMINNUM:
10166   case ISD::FMAXNUM: {
10167     // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
10168     const fltSemantics &Semantics = EVTToAPFloatSemantics(VT);
10169     APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) :
10170                         !Flags.hasNoInfs() ? APFloat::getInf(Semantics) :
10171                         APFloat::getLargest(Semantics);
10172     if (Opcode == ISD::FMAXNUM)
10173       NeutralAF.changeSign();
10174 
10175     return getConstantFP(NeutralAF, DL, VT);
10176   }
10177   }
10178 }
10179 
10180 #ifndef NDEBUG
10181 static void checkForCyclesHelper(const SDNode *N,
10182                                  SmallPtrSetImpl<const SDNode*> &Visited,
10183                                  SmallPtrSetImpl<const SDNode*> &Checked,
10184                                  const llvm::SelectionDAG *DAG) {
10185   // If this node has already been checked, don't check it again.
10186   if (Checked.count(N))
10187     return;
10188 
10189   // If a node has already been visited on this depth-first walk, reject it as
10190   // a cycle.
10191   if (!Visited.insert(N).second) {
10192     errs() << "Detected cycle in SelectionDAG\n";
10193     dbgs() << "Offending node:\n";
10194     N->dumprFull(DAG); dbgs() << "\n";
10195     abort();
10196   }
10197 
10198   for (const SDValue &Op : N->op_values())
10199     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
10200 
10201   Checked.insert(N);
10202   Visited.erase(N);
10203 }
10204 #endif
10205 
10206 void llvm::checkForCycles(const llvm::SDNode *N,
10207                           const llvm::SelectionDAG *DAG,
10208                           bool force) {
10209 #ifndef NDEBUG
10210   bool check = force;
10211 #ifdef EXPENSIVE_CHECKS
10212   check = true;
10213 #endif  // EXPENSIVE_CHECKS
10214   if (check) {
10215     assert(N && "Checking nonexistent SDNode");
10216     SmallPtrSet<const SDNode*, 32> visited;
10217     SmallPtrSet<const SDNode*, 32> checked;
10218     checkForCyclesHelper(N, visited, checked, DAG);
10219   }
10220 #endif  // !NDEBUG
10221 }
10222 
10223 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
10224   checkForCycles(DAG->getRoot().getNode(), DAG, force);
10225 }
10226