1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/DenseSet.h"
21 #include "llvm/ADT/FoldingSet.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/Analysis/VectorUtils.h"
30 #include "llvm/CodeGen/Analysis.h"
31 #include "llvm/CodeGen/FunctionLoweringInfo.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineConstantPool.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/MachineValueType.h"
39 #include "llvm/CodeGen/RuntimeLibcalls.h"
40 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
41 #include "llvm/CodeGen/SelectionDAGNodes.h"
42 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
43 #include "llvm/CodeGen/TargetFrameLowering.h"
44 #include "llvm/CodeGen/TargetLowering.h"
45 #include "llvm/CodeGen/TargetRegisterInfo.h"
46 #include "llvm/CodeGen/TargetSubtargetInfo.h"
47 #include "llvm/CodeGen/ValueTypes.h"
48 #include "llvm/IR/Constant.h"
49 #include "llvm/IR/ConstantRange.h"
50 #include "llvm/IR/Constants.h"
51 #include "llvm/IR/DataLayout.h"
52 #include "llvm/IR/DebugInfoMetadata.h"
53 #include "llvm/IR/DebugLoc.h"
54 #include "llvm/IR/DerivedTypes.h"
55 #include "llvm/IR/Function.h"
56 #include "llvm/IR/GlobalValue.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CodeGen.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/KnownBits.h"
65 #include "llvm/Support/MathExtras.h"
66 #include "llvm/Support/Mutex.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Target/TargetMachine.h"
69 #include "llvm/Target/TargetOptions.h"
70 #include "llvm/TargetParser/Triple.h"
71 #include "llvm/Transforms/Utils/SizeOpts.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <cstdlib>
76 #include <limits>
77 #include <set>
78 #include <string>
79 #include <utility>
80 #include <vector>
81 
82 using namespace llvm;
83 
84 /// makeVTList - Return an instance of the SDVTList struct initialized with the
85 /// specified members.
86 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
87   SDVTList Res = {VTs, NumVTs};
88   return Res;
89 }
90 
91 // Default null implementations of the callbacks.
92 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
93 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
94 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
95 
96 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
97 void SelectionDAG::DAGNodeInsertedListener::anchor() {}
98 
99 #define DEBUG_TYPE "selectiondag"
100 
101 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
102        cl::Hidden, cl::init(true),
103        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
104 
105 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
106        cl::desc("Number limit for gluing ld/st of memcpy."),
107        cl::Hidden, cl::init(0));
108 
109 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
110   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
111 }
112 
113 //===----------------------------------------------------------------------===//
114 //                              ConstantFPSDNode Class
115 //===----------------------------------------------------------------------===//
116 
117 /// isExactlyValue - We don't rely on operator== working on double values, as
118 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
119 /// As such, this method can be used to do an exact bit-for-bit comparison of
120 /// two floating point values.
121 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
122   return getValueAPF().bitwiseIsEqual(V);
123 }
124 
125 bool ConstantFPSDNode::isValueValidForType(EVT VT,
126                                            const APFloat& Val) {
127   assert(VT.isFloatingPoint() && "Can only convert between FP types");
128 
129   // convert modifies in place, so make a copy.
130   APFloat Val2 = APFloat(Val);
131   bool losesInfo;
132   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
133                       APFloat::rmNearestTiesToEven,
134                       &losesInfo);
135   return !losesInfo;
136 }
137 
138 //===----------------------------------------------------------------------===//
139 //                              ISD Namespace
140 //===----------------------------------------------------------------------===//
141 
142 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
143   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
144     unsigned EltSize =
145         N->getValueType(0).getVectorElementType().getSizeInBits();
146     if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
147       SplatVal = Op0->getAPIntValue().trunc(EltSize);
148       return true;
149     }
150     if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) {
151       SplatVal = Op0->getValueAPF().bitcastToAPInt().trunc(EltSize);
152       return true;
153     }
154   }
155 
156   auto *BV = dyn_cast<BuildVectorSDNode>(N);
157   if (!BV)
158     return false;
159 
160   APInt SplatUndef;
161   unsigned SplatBitSize;
162   bool HasUndefs;
163   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
164   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
165                              EltSize) &&
166          EltSize == SplatBitSize;
167 }
168 
169 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
170 // specializations of the more general isConstantSplatVector()?
171 
172 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) {
173   // Look through a bit convert.
174   while (N->getOpcode() == ISD::BITCAST)
175     N = N->getOperand(0).getNode();
176 
177   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
178     APInt SplatVal;
179     return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes();
180   }
181 
182   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
183 
184   unsigned i = 0, e = N->getNumOperands();
185 
186   // Skip over all of the undef values.
187   while (i != e && N->getOperand(i).isUndef())
188     ++i;
189 
190   // Do not accept an all-undef vector.
191   if (i == e) return false;
192 
193   // Do not accept build_vectors that aren't all constants or which have non-~0
194   // elements. We have to be a bit careful here, as the type of the constant
195   // may not be the same as the type of the vector elements due to type
196   // legalization (the elements are promoted to a legal type for the target and
197   // a vector of a type may be legal when the base element type is not).
198   // We only want to check enough bits to cover the vector elements, because
199   // we care if the resultant vector is all ones, not whether the individual
200   // constants are.
201   SDValue NotZero = N->getOperand(i);
202   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
203   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
204     if (CN->getAPIntValue().countr_one() < EltSize)
205       return false;
206   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
207     if (CFPN->getValueAPF().bitcastToAPInt().countr_one() < EltSize)
208       return false;
209   } else
210     return false;
211 
212   // Okay, we have at least one ~0 value, check to see if the rest match or are
213   // undefs. Even with the above element type twiddling, this should be OK, as
214   // the same type legalization should have applied to all the elements.
215   for (++i; i != e; ++i)
216     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
217       return false;
218   return true;
219 }
220 
221 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) {
222   // Look through a bit convert.
223   while (N->getOpcode() == ISD::BITCAST)
224     N = N->getOperand(0).getNode();
225 
226   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
227     APInt SplatVal;
228     return isConstantSplatVector(N, SplatVal) && SplatVal.isZero();
229   }
230 
231   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
232 
233   bool IsAllUndef = true;
234   for (const SDValue &Op : N->op_values()) {
235     if (Op.isUndef())
236       continue;
237     IsAllUndef = false;
238     // Do not accept build_vectors that aren't all constants or which have non-0
239     // elements. We have to be a bit careful here, as the type of the constant
240     // may not be the same as the type of the vector elements due to type
241     // legalization (the elements are promoted to a legal type for the target
242     // and a vector of a type may be legal when the base element type is not).
243     // We only want to check enough bits to cover the vector elements, because
244     // we care if the resultant vector is all zeros, not whether the individual
245     // constants are.
246     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
247     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
248       if (CN->getAPIntValue().countr_zero() < EltSize)
249         return false;
250     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
251       if (CFPN->getValueAPF().bitcastToAPInt().countr_zero() < EltSize)
252         return false;
253     } else
254       return false;
255   }
256 
257   // Do not accept an all-undef vector.
258   if (IsAllUndef)
259     return false;
260   return true;
261 }
262 
263 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
264   return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true);
265 }
266 
267 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
268   return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true);
269 }
270 
271 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
272   if (N->getOpcode() != ISD::BUILD_VECTOR)
273     return false;
274 
275   for (const SDValue &Op : N->op_values()) {
276     if (Op.isUndef())
277       continue;
278     if (!isa<ConstantSDNode>(Op))
279       return false;
280   }
281   return true;
282 }
283 
284 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
285   if (N->getOpcode() != ISD::BUILD_VECTOR)
286     return false;
287 
288   for (const SDValue &Op : N->op_values()) {
289     if (Op.isUndef())
290       continue;
291     if (!isa<ConstantFPSDNode>(Op))
292       return false;
293   }
294   return true;
295 }
296 
297 bool ISD::isVectorShrinkable(const SDNode *N, unsigned NewEltSize,
298                              bool Signed) {
299   assert(N->getValueType(0).isVector() && "Expected a vector!");
300 
301   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
302   if (EltSize <= NewEltSize)
303     return false;
304 
305   if (N->getOpcode() == ISD::ZERO_EXTEND) {
306     return (N->getOperand(0).getValueType().getScalarSizeInBits() <=
307             NewEltSize) &&
308            !Signed;
309   }
310   if (N->getOpcode() == ISD::SIGN_EXTEND) {
311     return (N->getOperand(0).getValueType().getScalarSizeInBits() <=
312             NewEltSize) &&
313            Signed;
314   }
315   if (N->getOpcode() != ISD::BUILD_VECTOR)
316     return false;
317 
318   for (const SDValue &Op : N->op_values()) {
319     if (Op.isUndef())
320       continue;
321     if (!isa<ConstantSDNode>(Op))
322       return false;
323 
324     APInt C = cast<ConstantSDNode>(Op)->getAPIntValue().trunc(EltSize);
325     if (Signed && C.trunc(NewEltSize).sext(EltSize) != C)
326       return false;
327     if (!Signed && C.trunc(NewEltSize).zext(EltSize) != C)
328       return false;
329   }
330 
331   return true;
332 }
333 
334 bool ISD::allOperandsUndef(const SDNode *N) {
335   // Return false if the node has no operands.
336   // This is "logically inconsistent" with the definition of "all" but
337   // is probably the desired behavior.
338   if (N->getNumOperands() == 0)
339     return false;
340   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
341 }
342 
343 bool ISD::isFreezeUndef(const SDNode *N) {
344   return N->getOpcode() == ISD::FREEZE && N->getOperand(0).isUndef();
345 }
346 
347 bool ISD::matchUnaryPredicate(SDValue Op,
348                               std::function<bool(ConstantSDNode *)> Match,
349                               bool AllowUndefs) {
350   // FIXME: Add support for scalar UNDEF cases?
351   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
352     return Match(Cst);
353 
354   // FIXME: Add support for vector UNDEF cases?
355   if (ISD::BUILD_VECTOR != Op.getOpcode() &&
356       ISD::SPLAT_VECTOR != Op.getOpcode())
357     return false;
358 
359   EVT SVT = Op.getValueType().getScalarType();
360   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
361     if (AllowUndefs && Op.getOperand(i).isUndef()) {
362       if (!Match(nullptr))
363         return false;
364       continue;
365     }
366 
367     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
368     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
369       return false;
370   }
371   return true;
372 }
373 
374 bool ISD::matchBinaryPredicate(
375     SDValue LHS, SDValue RHS,
376     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
377     bool AllowUndefs, bool AllowTypeMismatch) {
378   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
379     return false;
380 
381   // TODO: Add support for scalar UNDEF cases?
382   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
383     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
384       return Match(LHSCst, RHSCst);
385 
386   // TODO: Add support for vector UNDEF cases?
387   if (LHS.getOpcode() != RHS.getOpcode() ||
388       (LHS.getOpcode() != ISD::BUILD_VECTOR &&
389        LHS.getOpcode() != ISD::SPLAT_VECTOR))
390     return false;
391 
392   EVT SVT = LHS.getValueType().getScalarType();
393   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
394     SDValue LHSOp = LHS.getOperand(i);
395     SDValue RHSOp = RHS.getOperand(i);
396     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
397     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
398     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
399     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
400     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
401       return false;
402     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
403                                LHSOp.getValueType() != RHSOp.getValueType()))
404       return false;
405     if (!Match(LHSCst, RHSCst))
406       return false;
407   }
408   return true;
409 }
410 
411 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) {
412   switch (VecReduceOpcode) {
413   default:
414     llvm_unreachable("Expected VECREDUCE opcode");
415   case ISD::VECREDUCE_FADD:
416   case ISD::VECREDUCE_SEQ_FADD:
417   case ISD::VP_REDUCE_FADD:
418   case ISD::VP_REDUCE_SEQ_FADD:
419     return ISD::FADD;
420   case ISD::VECREDUCE_FMUL:
421   case ISD::VECREDUCE_SEQ_FMUL:
422   case ISD::VP_REDUCE_FMUL:
423   case ISD::VP_REDUCE_SEQ_FMUL:
424     return ISD::FMUL;
425   case ISD::VECREDUCE_ADD:
426   case ISD::VP_REDUCE_ADD:
427     return ISD::ADD;
428   case ISD::VECREDUCE_MUL:
429   case ISD::VP_REDUCE_MUL:
430     return ISD::MUL;
431   case ISD::VECREDUCE_AND:
432   case ISD::VP_REDUCE_AND:
433     return ISD::AND;
434   case ISD::VECREDUCE_OR:
435   case ISD::VP_REDUCE_OR:
436     return ISD::OR;
437   case ISD::VECREDUCE_XOR:
438   case ISD::VP_REDUCE_XOR:
439     return ISD::XOR;
440   case ISD::VECREDUCE_SMAX:
441   case ISD::VP_REDUCE_SMAX:
442     return ISD::SMAX;
443   case ISD::VECREDUCE_SMIN:
444   case ISD::VP_REDUCE_SMIN:
445     return ISD::SMIN;
446   case ISD::VECREDUCE_UMAX:
447   case ISD::VP_REDUCE_UMAX:
448     return ISD::UMAX;
449   case ISD::VECREDUCE_UMIN:
450   case ISD::VP_REDUCE_UMIN:
451     return ISD::UMIN;
452   case ISD::VECREDUCE_FMAX:
453   case ISD::VP_REDUCE_FMAX:
454     return ISD::FMAXNUM;
455   case ISD::VECREDUCE_FMIN:
456   case ISD::VP_REDUCE_FMIN:
457     return ISD::FMINNUM;
458   case ISD::VECREDUCE_FMAXIMUM:
459     return ISD::FMAXIMUM;
460   case ISD::VECREDUCE_FMINIMUM:
461     return ISD::FMINIMUM;
462   }
463 }
464 
465 bool ISD::isVPOpcode(unsigned Opcode) {
466   switch (Opcode) {
467   default:
468     return false;
469 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...)                                    \
470   case ISD::VPSD:                                                              \
471     return true;
472 #include "llvm/IR/VPIntrinsics.def"
473   }
474 }
475 
476 bool ISD::isVPBinaryOp(unsigned Opcode) {
477   switch (Opcode) {
478   default:
479     break;
480 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
481 #define VP_PROPERTY_BINARYOP return true;
482 #define END_REGISTER_VP_SDNODE(VPSD) break;
483 #include "llvm/IR/VPIntrinsics.def"
484   }
485   return false;
486 }
487 
488 bool ISD::isVPReduction(unsigned Opcode) {
489   switch (Opcode) {
490   default:
491     break;
492 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
493 #define VP_PROPERTY_REDUCTION(STARTPOS, ...) return true;
494 #define END_REGISTER_VP_SDNODE(VPSD) break;
495 #include "llvm/IR/VPIntrinsics.def"
496   }
497   return false;
498 }
499 
500 /// The operand position of the vector mask.
501 std::optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) {
502   switch (Opcode) {
503   default:
504     return std::nullopt;
505 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...)         \
506   case ISD::VPSD:                                                              \
507     return MASKPOS;
508 #include "llvm/IR/VPIntrinsics.def"
509   }
510 }
511 
512 /// The operand position of the explicit vector length parameter.
513 std::optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) {
514   switch (Opcode) {
515   default:
516     return std::nullopt;
517 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS)      \
518   case ISD::VPSD:                                                              \
519     return EVLPOS;
520 #include "llvm/IR/VPIntrinsics.def"
521   }
522 }
523 
524 std::optional<unsigned> ISD::getBaseOpcodeForVP(unsigned VPOpcode,
525                                                 bool hasFPExcept) {
526   // FIXME: Return strict opcodes in case of fp exceptions.
527   switch (VPOpcode) {
528   default:
529     return std::nullopt;
530 #define BEGIN_REGISTER_VP_SDNODE(VPOPC, ...) case ISD::VPOPC:
531 #define VP_PROPERTY_FUNCTIONAL_SDOPC(SDOPC) return ISD::SDOPC;
532 #define END_REGISTER_VP_SDNODE(VPOPC) break;
533 #include "llvm/IR/VPIntrinsics.def"
534   }
535   return std::nullopt;
536 }
537 
538 unsigned ISD::getVPForBaseOpcode(unsigned Opcode) {
539   switch (Opcode) {
540   default:
541     llvm_unreachable("can not translate this Opcode to VP.");
542 #define BEGIN_REGISTER_VP_SDNODE(VPOPC, ...) break;
543 #define VP_PROPERTY_FUNCTIONAL_SDOPC(SDOPC) case ISD::SDOPC:
544 #define END_REGISTER_VP_SDNODE(VPOPC) return ISD::VPOPC;
545 #include "llvm/IR/VPIntrinsics.def"
546   }
547 }
548 
549 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
550   switch (ExtType) {
551   case ISD::EXTLOAD:
552     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
553   case ISD::SEXTLOAD:
554     return ISD::SIGN_EXTEND;
555   case ISD::ZEXTLOAD:
556     return ISD::ZERO_EXTEND;
557   default:
558     break;
559   }
560 
561   llvm_unreachable("Invalid LoadExtType");
562 }
563 
564 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
565   // To perform this operation, we just need to swap the L and G bits of the
566   // operation.
567   unsigned OldL = (Operation >> 2) & 1;
568   unsigned OldG = (Operation >> 1) & 1;
569   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
570                        (OldL << 1) |       // New G bit
571                        (OldG << 2));       // New L bit.
572 }
573 
574 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
575   unsigned Operation = Op;
576   if (isIntegerLike)
577     Operation ^= 7;   // Flip L, G, E bits, but not U.
578   else
579     Operation ^= 15;  // Flip all of the condition bits.
580 
581   if (Operation > ISD::SETTRUE2)
582     Operation &= ~8;  // Don't let N and U bits get set.
583 
584   return ISD::CondCode(Operation);
585 }
586 
587 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
588   return getSetCCInverseImpl(Op, Type.isInteger());
589 }
590 
591 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
592                                                bool isIntegerLike) {
593   return getSetCCInverseImpl(Op, isIntegerLike);
594 }
595 
596 /// For an integer comparison, return 1 if the comparison is a signed operation
597 /// and 2 if the result is an unsigned comparison. Return zero if the operation
598 /// does not depend on the sign of the input (setne and seteq).
599 static int isSignedOp(ISD::CondCode Opcode) {
600   switch (Opcode) {
601   default: llvm_unreachable("Illegal integer setcc operation!");
602   case ISD::SETEQ:
603   case ISD::SETNE: return 0;
604   case ISD::SETLT:
605   case ISD::SETLE:
606   case ISD::SETGT:
607   case ISD::SETGE: return 1;
608   case ISD::SETULT:
609   case ISD::SETULE:
610   case ISD::SETUGT:
611   case ISD::SETUGE: return 2;
612   }
613 }
614 
615 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
616                                        EVT Type) {
617   bool IsInteger = Type.isInteger();
618   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
619     // Cannot fold a signed integer setcc with an unsigned integer setcc.
620     return ISD::SETCC_INVALID;
621 
622   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
623 
624   // If the N and U bits get set, then the resultant comparison DOES suddenly
625   // care about orderedness, and it is true when ordered.
626   if (Op > ISD::SETTRUE2)
627     Op &= ~16;     // Clear the U bit if the N bit is set.
628 
629   // Canonicalize illegal integer setcc's.
630   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
631     Op = ISD::SETNE;
632 
633   return ISD::CondCode(Op);
634 }
635 
636 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
637                                         EVT Type) {
638   bool IsInteger = Type.isInteger();
639   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
640     // Cannot fold a signed setcc with an unsigned setcc.
641     return ISD::SETCC_INVALID;
642 
643   // Combine all of the condition bits.
644   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
645 
646   // Canonicalize illegal integer setcc's.
647   if (IsInteger) {
648     switch (Result) {
649     default: break;
650     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
651     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
652     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
653     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
654     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
655     }
656   }
657 
658   return Result;
659 }
660 
661 //===----------------------------------------------------------------------===//
662 //                           SDNode Profile Support
663 //===----------------------------------------------------------------------===//
664 
665 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
666 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
667   ID.AddInteger(OpC);
668 }
669 
670 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
671 /// solely with their pointer.
672 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
673   ID.AddPointer(VTList.VTs);
674 }
675 
676 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
677 static void AddNodeIDOperands(FoldingSetNodeID &ID,
678                               ArrayRef<SDValue> Ops) {
679   for (const auto &Op : Ops) {
680     ID.AddPointer(Op.getNode());
681     ID.AddInteger(Op.getResNo());
682   }
683 }
684 
685 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
686 static void AddNodeIDOperands(FoldingSetNodeID &ID,
687                               ArrayRef<SDUse> Ops) {
688   for (const auto &Op : Ops) {
689     ID.AddPointer(Op.getNode());
690     ID.AddInteger(Op.getResNo());
691   }
692 }
693 
694 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned OpC,
695                           SDVTList VTList, ArrayRef<SDValue> OpList) {
696   AddNodeIDOpcode(ID, OpC);
697   AddNodeIDValueTypes(ID, VTList);
698   AddNodeIDOperands(ID, OpList);
699 }
700 
701 /// If this is an SDNode with special info, add this info to the NodeID data.
702 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
703   switch (N->getOpcode()) {
704   case ISD::TargetExternalSymbol:
705   case ISD::ExternalSymbol:
706   case ISD::MCSymbol:
707     llvm_unreachable("Should only be used on nodes with operands");
708   default: break;  // Normal nodes don't need extra info.
709   case ISD::TargetConstant:
710   case ISD::Constant: {
711     const ConstantSDNode *C = cast<ConstantSDNode>(N);
712     ID.AddPointer(C->getConstantIntValue());
713     ID.AddBoolean(C->isOpaque());
714     break;
715   }
716   case ISD::TargetConstantFP:
717   case ISD::ConstantFP:
718     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
719     break;
720   case ISD::TargetGlobalAddress:
721   case ISD::GlobalAddress:
722   case ISD::TargetGlobalTLSAddress:
723   case ISD::GlobalTLSAddress: {
724     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
725     ID.AddPointer(GA->getGlobal());
726     ID.AddInteger(GA->getOffset());
727     ID.AddInteger(GA->getTargetFlags());
728     break;
729   }
730   case ISD::BasicBlock:
731     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
732     break;
733   case ISD::Register:
734     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
735     break;
736   case ISD::RegisterMask:
737     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
738     break;
739   case ISD::SRCVALUE:
740     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
741     break;
742   case ISD::FrameIndex:
743   case ISD::TargetFrameIndex:
744     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
745     break;
746   case ISD::LIFETIME_START:
747   case ISD::LIFETIME_END:
748     if (cast<LifetimeSDNode>(N)->hasOffset()) {
749       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
750       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
751     }
752     break;
753   case ISD::PSEUDO_PROBE:
754     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid());
755     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex());
756     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes());
757     break;
758   case ISD::JumpTable:
759   case ISD::TargetJumpTable:
760     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
761     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
762     break;
763   case ISD::ConstantPool:
764   case ISD::TargetConstantPool: {
765     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
766     ID.AddInteger(CP->getAlign().value());
767     ID.AddInteger(CP->getOffset());
768     if (CP->isMachineConstantPoolEntry())
769       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
770     else
771       ID.AddPointer(CP->getConstVal());
772     ID.AddInteger(CP->getTargetFlags());
773     break;
774   }
775   case ISD::TargetIndex: {
776     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
777     ID.AddInteger(TI->getIndex());
778     ID.AddInteger(TI->getOffset());
779     ID.AddInteger(TI->getTargetFlags());
780     break;
781   }
782   case ISD::LOAD: {
783     const LoadSDNode *LD = cast<LoadSDNode>(N);
784     ID.AddInteger(LD->getMemoryVT().getRawBits());
785     ID.AddInteger(LD->getRawSubclassData());
786     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
787     ID.AddInteger(LD->getMemOperand()->getFlags());
788     break;
789   }
790   case ISD::STORE: {
791     const StoreSDNode *ST = cast<StoreSDNode>(N);
792     ID.AddInteger(ST->getMemoryVT().getRawBits());
793     ID.AddInteger(ST->getRawSubclassData());
794     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
795     ID.AddInteger(ST->getMemOperand()->getFlags());
796     break;
797   }
798   case ISD::VP_LOAD: {
799     const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N);
800     ID.AddInteger(ELD->getMemoryVT().getRawBits());
801     ID.AddInteger(ELD->getRawSubclassData());
802     ID.AddInteger(ELD->getPointerInfo().getAddrSpace());
803     ID.AddInteger(ELD->getMemOperand()->getFlags());
804     break;
805   }
806   case ISD::VP_STORE: {
807     const VPStoreSDNode *EST = cast<VPStoreSDNode>(N);
808     ID.AddInteger(EST->getMemoryVT().getRawBits());
809     ID.AddInteger(EST->getRawSubclassData());
810     ID.AddInteger(EST->getPointerInfo().getAddrSpace());
811     ID.AddInteger(EST->getMemOperand()->getFlags());
812     break;
813   }
814   case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: {
815     const VPStridedLoadSDNode *SLD = cast<VPStridedLoadSDNode>(N);
816     ID.AddInteger(SLD->getMemoryVT().getRawBits());
817     ID.AddInteger(SLD->getRawSubclassData());
818     ID.AddInteger(SLD->getPointerInfo().getAddrSpace());
819     break;
820   }
821   case ISD::EXPERIMENTAL_VP_STRIDED_STORE: {
822     const VPStridedStoreSDNode *SST = cast<VPStridedStoreSDNode>(N);
823     ID.AddInteger(SST->getMemoryVT().getRawBits());
824     ID.AddInteger(SST->getRawSubclassData());
825     ID.AddInteger(SST->getPointerInfo().getAddrSpace());
826     break;
827   }
828   case ISD::VP_GATHER: {
829     const VPGatherSDNode *EG = cast<VPGatherSDNode>(N);
830     ID.AddInteger(EG->getMemoryVT().getRawBits());
831     ID.AddInteger(EG->getRawSubclassData());
832     ID.AddInteger(EG->getPointerInfo().getAddrSpace());
833     ID.AddInteger(EG->getMemOperand()->getFlags());
834     break;
835   }
836   case ISD::VP_SCATTER: {
837     const VPScatterSDNode *ES = cast<VPScatterSDNode>(N);
838     ID.AddInteger(ES->getMemoryVT().getRawBits());
839     ID.AddInteger(ES->getRawSubclassData());
840     ID.AddInteger(ES->getPointerInfo().getAddrSpace());
841     ID.AddInteger(ES->getMemOperand()->getFlags());
842     break;
843   }
844   case ISD::MLOAD: {
845     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
846     ID.AddInteger(MLD->getMemoryVT().getRawBits());
847     ID.AddInteger(MLD->getRawSubclassData());
848     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
849     ID.AddInteger(MLD->getMemOperand()->getFlags());
850     break;
851   }
852   case ISD::MSTORE: {
853     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
854     ID.AddInteger(MST->getMemoryVT().getRawBits());
855     ID.AddInteger(MST->getRawSubclassData());
856     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
857     ID.AddInteger(MST->getMemOperand()->getFlags());
858     break;
859   }
860   case ISD::MGATHER: {
861     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
862     ID.AddInteger(MG->getMemoryVT().getRawBits());
863     ID.AddInteger(MG->getRawSubclassData());
864     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
865     ID.AddInteger(MG->getMemOperand()->getFlags());
866     break;
867   }
868   case ISD::MSCATTER: {
869     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
870     ID.AddInteger(MS->getMemoryVT().getRawBits());
871     ID.AddInteger(MS->getRawSubclassData());
872     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
873     ID.AddInteger(MS->getMemOperand()->getFlags());
874     break;
875   }
876   case ISD::ATOMIC_CMP_SWAP:
877   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
878   case ISD::ATOMIC_SWAP:
879   case ISD::ATOMIC_LOAD_ADD:
880   case ISD::ATOMIC_LOAD_SUB:
881   case ISD::ATOMIC_LOAD_AND:
882   case ISD::ATOMIC_LOAD_CLR:
883   case ISD::ATOMIC_LOAD_OR:
884   case ISD::ATOMIC_LOAD_XOR:
885   case ISD::ATOMIC_LOAD_NAND:
886   case ISD::ATOMIC_LOAD_MIN:
887   case ISD::ATOMIC_LOAD_MAX:
888   case ISD::ATOMIC_LOAD_UMIN:
889   case ISD::ATOMIC_LOAD_UMAX:
890   case ISD::ATOMIC_LOAD:
891   case ISD::ATOMIC_STORE: {
892     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
893     ID.AddInteger(AT->getMemoryVT().getRawBits());
894     ID.AddInteger(AT->getRawSubclassData());
895     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
896     ID.AddInteger(AT->getMemOperand()->getFlags());
897     break;
898   }
899   case ISD::VECTOR_SHUFFLE: {
900     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
901     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
902          i != e; ++i)
903       ID.AddInteger(SVN->getMaskElt(i));
904     break;
905   }
906   case ISD::TargetBlockAddress:
907   case ISD::BlockAddress: {
908     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
909     ID.AddPointer(BA->getBlockAddress());
910     ID.AddInteger(BA->getOffset());
911     ID.AddInteger(BA->getTargetFlags());
912     break;
913   }
914   case ISD::AssertAlign:
915     ID.AddInteger(cast<AssertAlignSDNode>(N)->getAlign().value());
916     break;
917   case ISD::PREFETCH:
918   case ISD::INTRINSIC_VOID:
919   case ISD::INTRINSIC_W_CHAIN:
920     // Handled by MemIntrinsicSDNode check after the switch.
921     break;
922   } // end switch (N->getOpcode())
923 
924   // MemIntrinsic nodes could also have subclass data, address spaces, and flags
925   // to check.
926   if (auto *MN = dyn_cast<MemIntrinsicSDNode>(N)) {
927     ID.AddInteger(MN->getRawSubclassData());
928     ID.AddInteger(MN->getPointerInfo().getAddrSpace());
929     ID.AddInteger(MN->getMemOperand()->getFlags());
930     ID.AddInteger(MN->getMemoryVT().getRawBits());
931   }
932 }
933 
934 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
935 /// data.
936 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
937   AddNodeIDOpcode(ID, N->getOpcode());
938   // Add the return value info.
939   AddNodeIDValueTypes(ID, N->getVTList());
940   // Add the operand info.
941   AddNodeIDOperands(ID, N->ops());
942 
943   // Handle SDNode leafs with special info.
944   AddNodeIDCustom(ID, N);
945 }
946 
947 //===----------------------------------------------------------------------===//
948 //                              SelectionDAG Class
949 //===----------------------------------------------------------------------===//
950 
951 /// doNotCSE - Return true if CSE should not be performed for this node.
952 static bool doNotCSE(SDNode *N) {
953   if (N->getValueType(0) == MVT::Glue)
954     return true; // Never CSE anything that produces a flag.
955 
956   switch (N->getOpcode()) {
957   default: break;
958   case ISD::HANDLENODE:
959   case ISD::EH_LABEL:
960     return true;   // Never CSE these nodes.
961   }
962 
963   // Check that remaining values produced are not flags.
964   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
965     if (N->getValueType(i) == MVT::Glue)
966       return true; // Never CSE anything that produces a flag.
967 
968   return false;
969 }
970 
971 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
972 /// SelectionDAG.
973 void SelectionDAG::RemoveDeadNodes() {
974   // Create a dummy node (which is not added to allnodes), that adds a reference
975   // to the root node, preventing it from being deleted.
976   HandleSDNode Dummy(getRoot());
977 
978   SmallVector<SDNode*, 128> DeadNodes;
979 
980   // Add all obviously-dead nodes to the DeadNodes worklist.
981   for (SDNode &Node : allnodes())
982     if (Node.use_empty())
983       DeadNodes.push_back(&Node);
984 
985   RemoveDeadNodes(DeadNodes);
986 
987   // If the root changed (e.g. it was a dead load, update the root).
988   setRoot(Dummy.getValue());
989 }
990 
991 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
992 /// given list, and any nodes that become unreachable as a result.
993 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
994 
995   // Process the worklist, deleting the nodes and adding their uses to the
996   // worklist.
997   while (!DeadNodes.empty()) {
998     SDNode *N = DeadNodes.pop_back_val();
999     // Skip to next node if we've already managed to delete the node. This could
1000     // happen if replacing a node causes a node previously added to the node to
1001     // be deleted.
1002     if (N->getOpcode() == ISD::DELETED_NODE)
1003       continue;
1004 
1005     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1006       DUL->NodeDeleted(N, nullptr);
1007 
1008     // Take the node out of the appropriate CSE map.
1009     RemoveNodeFromCSEMaps(N);
1010 
1011     // Next, brutally remove the operand list.  This is safe to do, as there are
1012     // no cycles in the graph.
1013     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
1014       SDUse &Use = *I++;
1015       SDNode *Operand = Use.getNode();
1016       Use.set(SDValue());
1017 
1018       // Now that we removed this operand, see if there are no uses of it left.
1019       if (Operand->use_empty())
1020         DeadNodes.push_back(Operand);
1021     }
1022 
1023     DeallocateNode(N);
1024   }
1025 }
1026 
1027 void SelectionDAG::RemoveDeadNode(SDNode *N){
1028   SmallVector<SDNode*, 16> DeadNodes(1, N);
1029 
1030   // Create a dummy node that adds a reference to the root node, preventing
1031   // it from being deleted.  (This matters if the root is an operand of the
1032   // dead node.)
1033   HandleSDNode Dummy(getRoot());
1034 
1035   RemoveDeadNodes(DeadNodes);
1036 }
1037 
1038 void SelectionDAG::DeleteNode(SDNode *N) {
1039   // First take this out of the appropriate CSE map.
1040   RemoveNodeFromCSEMaps(N);
1041 
1042   // Finally, remove uses due to operands of this node, remove from the
1043   // AllNodes list, and delete the node.
1044   DeleteNodeNotInCSEMaps(N);
1045 }
1046 
1047 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
1048   assert(N->getIterator() != AllNodes.begin() &&
1049          "Cannot delete the entry node!");
1050   assert(N->use_empty() && "Cannot delete a node that is not dead!");
1051 
1052   // Drop all of the operands and decrement used node's use counts.
1053   N->DropOperands();
1054 
1055   DeallocateNode(N);
1056 }
1057 
1058 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) {
1059   assert(!(V->isVariadic() && isParameter));
1060   if (isParameter)
1061     ByvalParmDbgValues.push_back(V);
1062   else
1063     DbgValues.push_back(V);
1064   for (const SDNode *Node : V->getSDNodes())
1065     if (Node)
1066       DbgValMap[Node].push_back(V);
1067 }
1068 
1069 void SDDbgInfo::erase(const SDNode *Node) {
1070   DbgValMapType::iterator I = DbgValMap.find(Node);
1071   if (I == DbgValMap.end())
1072     return;
1073   for (auto &Val: I->second)
1074     Val->setIsInvalidated();
1075   DbgValMap.erase(I);
1076 }
1077 
1078 void SelectionDAG::DeallocateNode(SDNode *N) {
1079   // If we have operands, deallocate them.
1080   removeOperands(N);
1081 
1082   NodeAllocator.Deallocate(AllNodes.remove(N));
1083 
1084   // Set the opcode to DELETED_NODE to help catch bugs when node
1085   // memory is reallocated.
1086   // FIXME: There are places in SDag that have grown a dependency on the opcode
1087   // value in the released node.
1088   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
1089   N->NodeType = ISD::DELETED_NODE;
1090 
1091   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
1092   // them and forget about that node.
1093   DbgInfo->erase(N);
1094 
1095   // Invalidate extra info.
1096   SDEI.erase(N);
1097 }
1098 
1099 #ifndef NDEBUG
1100 /// VerifySDNode - Check the given SDNode.  Aborts if it is invalid.
1101 static void VerifySDNode(SDNode *N) {
1102   switch (N->getOpcode()) {
1103   default:
1104     break;
1105   case ISD::BUILD_PAIR: {
1106     EVT VT = N->getValueType(0);
1107     assert(N->getNumValues() == 1 && "Too many results!");
1108     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
1109            "Wrong return type!");
1110     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
1111     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
1112            "Mismatched operand types!");
1113     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
1114            "Wrong operand type!");
1115     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
1116            "Wrong return type size");
1117     break;
1118   }
1119   case ISD::BUILD_VECTOR: {
1120     assert(N->getNumValues() == 1 && "Too many results!");
1121     assert(N->getValueType(0).isVector() && "Wrong return type!");
1122     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
1123            "Wrong number of operands!");
1124     EVT EltVT = N->getValueType(0).getVectorElementType();
1125     for (const SDUse &Op : N->ops()) {
1126       assert((Op.getValueType() == EltVT ||
1127               (EltVT.isInteger() && Op.getValueType().isInteger() &&
1128                EltVT.bitsLE(Op.getValueType()))) &&
1129              "Wrong operand type!");
1130       assert(Op.getValueType() == N->getOperand(0).getValueType() &&
1131              "Operands must all have the same type");
1132     }
1133     break;
1134   }
1135   }
1136 }
1137 #endif // NDEBUG
1138 
1139 /// Insert a newly allocated node into the DAG.
1140 ///
1141 /// Handles insertion into the all nodes list and CSE map, as well as
1142 /// verification and other common operations when a new node is allocated.
1143 void SelectionDAG::InsertNode(SDNode *N) {
1144   AllNodes.push_back(N);
1145 #ifndef NDEBUG
1146   N->PersistentId = NextPersistentId++;
1147   VerifySDNode(N);
1148 #endif
1149   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1150     DUL->NodeInserted(N);
1151 }
1152 
1153 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
1154 /// correspond to it.  This is useful when we're about to delete or repurpose
1155 /// the node.  We don't want future request for structurally identical nodes
1156 /// to return N anymore.
1157 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
1158   bool Erased = false;
1159   switch (N->getOpcode()) {
1160   case ISD::HANDLENODE: return false;  // noop.
1161   case ISD::CONDCODE:
1162     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
1163            "Cond code doesn't exist!");
1164     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
1165     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
1166     break;
1167   case ISD::ExternalSymbol:
1168     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
1169     break;
1170   case ISD::TargetExternalSymbol: {
1171     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
1172     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
1173         ESN->getSymbol(), ESN->getTargetFlags()));
1174     break;
1175   }
1176   case ISD::MCSymbol: {
1177     auto *MCSN = cast<MCSymbolSDNode>(N);
1178     Erased = MCSymbols.erase(MCSN->getMCSymbol());
1179     break;
1180   }
1181   case ISD::VALUETYPE: {
1182     EVT VT = cast<VTSDNode>(N)->getVT();
1183     if (VT.isExtended()) {
1184       Erased = ExtendedValueTypeNodes.erase(VT);
1185     } else {
1186       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
1187       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
1188     }
1189     break;
1190   }
1191   default:
1192     // Remove it from the CSE Map.
1193     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
1194     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
1195     Erased = CSEMap.RemoveNode(N);
1196     break;
1197   }
1198 #ifndef NDEBUG
1199   // Verify that the node was actually in one of the CSE maps, unless it has a
1200   // flag result (which cannot be CSE'd) or is one of the special cases that are
1201   // not subject to CSE.
1202   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
1203       !N->isMachineOpcode() && !doNotCSE(N)) {
1204     N->dump(this);
1205     dbgs() << "\n";
1206     llvm_unreachable("Node is not in map!");
1207   }
1208 #endif
1209   return Erased;
1210 }
1211 
1212 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
1213 /// maps and modified in place. Add it back to the CSE maps, unless an identical
1214 /// node already exists, in which case transfer all its users to the existing
1215 /// node. This transfer can potentially trigger recursive merging.
1216 void
1217 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
1218   // For node types that aren't CSE'd, just act as if no identical node
1219   // already exists.
1220   if (!doNotCSE(N)) {
1221     SDNode *Existing = CSEMap.GetOrInsertNode(N);
1222     if (Existing != N) {
1223       // If there was already an existing matching node, use ReplaceAllUsesWith
1224       // to replace the dead one with the existing one.  This can cause
1225       // recursive merging of other unrelated nodes down the line.
1226       ReplaceAllUsesWith(N, Existing);
1227 
1228       // N is now dead. Inform the listeners and delete it.
1229       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1230         DUL->NodeDeleted(N, Existing);
1231       DeleteNodeNotInCSEMaps(N);
1232       return;
1233     }
1234   }
1235 
1236   // If the node doesn't already exist, we updated it.  Inform listeners.
1237   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1238     DUL->NodeUpdated(N);
1239 }
1240 
1241 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1242 /// were replaced with those specified.  If this node is never memoized,
1243 /// return null, otherwise return a pointer to the slot it would take.  If a
1244 /// node already exists with these operands, the slot will be non-null.
1245 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
1246                                            void *&InsertPos) {
1247   if (doNotCSE(N))
1248     return nullptr;
1249 
1250   SDValue Ops[] = { Op };
1251   FoldingSetNodeID ID;
1252   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1253   AddNodeIDCustom(ID, N);
1254   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1255   if (Node)
1256     Node->intersectFlagsWith(N->getFlags());
1257   return Node;
1258 }
1259 
1260 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1261 /// were replaced with those specified.  If this node is never memoized,
1262 /// return null, otherwise return a pointer to the slot it would take.  If a
1263 /// node already exists with these operands, the slot will be non-null.
1264 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
1265                                            SDValue Op1, SDValue Op2,
1266                                            void *&InsertPos) {
1267   if (doNotCSE(N))
1268     return nullptr;
1269 
1270   SDValue Ops[] = { Op1, Op2 };
1271   FoldingSetNodeID ID;
1272   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1273   AddNodeIDCustom(ID, N);
1274   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1275   if (Node)
1276     Node->intersectFlagsWith(N->getFlags());
1277   return Node;
1278 }
1279 
1280 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1281 /// were replaced with those specified.  If this node is never memoized,
1282 /// return null, otherwise return a pointer to the slot it would take.  If a
1283 /// node already exists with these operands, the slot will be non-null.
1284 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1285                                            void *&InsertPos) {
1286   if (doNotCSE(N))
1287     return nullptr;
1288 
1289   FoldingSetNodeID ID;
1290   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1291   AddNodeIDCustom(ID, N);
1292   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1293   if (Node)
1294     Node->intersectFlagsWith(N->getFlags());
1295   return Node;
1296 }
1297 
1298 Align SelectionDAG::getEVTAlign(EVT VT) const {
1299   Type *Ty = VT == MVT::iPTR ?
1300                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1301                    VT.getTypeForEVT(*getContext());
1302 
1303   return getDataLayout().getABITypeAlign(Ty);
1304 }
1305 
1306 // EntryNode could meaningfully have debug info if we can find it...
1307 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1308     : TM(tm), OptLevel(OL),
1309       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other, MVT::Glue)),
1310       Root(getEntryNode()) {
1311   InsertNode(&EntryNode);
1312   DbgInfo = new SDDbgInfo();
1313 }
1314 
1315 void SelectionDAG::init(MachineFunction &NewMF,
1316                         OptimizationRemarkEmitter &NewORE, Pass *PassPtr,
1317                         const TargetLibraryInfo *LibraryInfo,
1318                         UniformityInfo *NewUA, ProfileSummaryInfo *PSIin,
1319                         BlockFrequencyInfo *BFIin,
1320                         FunctionVarLocs const *VarLocs) {
1321   MF = &NewMF;
1322   SDAGISelPass = PassPtr;
1323   ORE = &NewORE;
1324   TLI = getSubtarget().getTargetLowering();
1325   TSI = getSubtarget().getSelectionDAGInfo();
1326   LibInfo = LibraryInfo;
1327   Context = &MF->getFunction().getContext();
1328   UA = NewUA;
1329   PSI = PSIin;
1330   BFI = BFIin;
1331   FnVarLocs = VarLocs;
1332 }
1333 
1334 SelectionDAG::~SelectionDAG() {
1335   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1336   allnodes_clear();
1337   OperandRecycler.clear(OperandAllocator);
1338   delete DbgInfo;
1339 }
1340 
1341 bool SelectionDAG::shouldOptForSize() const {
1342   return MF->getFunction().hasOptSize() ||
1343       llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1344 }
1345 
1346 void SelectionDAG::allnodes_clear() {
1347   assert(&*AllNodes.begin() == &EntryNode);
1348   AllNodes.remove(AllNodes.begin());
1349   while (!AllNodes.empty())
1350     DeallocateNode(&AllNodes.front());
1351 #ifndef NDEBUG
1352   NextPersistentId = 0;
1353 #endif
1354 }
1355 
1356 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1357                                           void *&InsertPos) {
1358   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1359   if (N) {
1360     switch (N->getOpcode()) {
1361     default: break;
1362     case ISD::Constant:
1363     case ISD::ConstantFP:
1364       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1365                        "debug location.  Use another overload.");
1366     }
1367   }
1368   return N;
1369 }
1370 
1371 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1372                                           const SDLoc &DL, void *&InsertPos) {
1373   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1374   if (N) {
1375     switch (N->getOpcode()) {
1376     case ISD::Constant:
1377     case ISD::ConstantFP:
1378       // Erase debug location from the node if the node is used at several
1379       // different places. Do not propagate one location to all uses as it
1380       // will cause a worse single stepping debugging experience.
1381       if (N->getDebugLoc() != DL.getDebugLoc())
1382         N->setDebugLoc(DebugLoc());
1383       break;
1384     default:
1385       // When the node's point of use is located earlier in the instruction
1386       // sequence than its prior point of use, update its debug info to the
1387       // earlier location.
1388       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1389         N->setDebugLoc(DL.getDebugLoc());
1390       break;
1391     }
1392   }
1393   return N;
1394 }
1395 
1396 void SelectionDAG::clear() {
1397   allnodes_clear();
1398   OperandRecycler.clear(OperandAllocator);
1399   OperandAllocator.Reset();
1400   CSEMap.clear();
1401 
1402   ExtendedValueTypeNodes.clear();
1403   ExternalSymbols.clear();
1404   TargetExternalSymbols.clear();
1405   MCSymbols.clear();
1406   SDEI.clear();
1407   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1408             static_cast<CondCodeSDNode*>(nullptr));
1409   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1410             static_cast<SDNode*>(nullptr));
1411 
1412   EntryNode.UseList = nullptr;
1413   InsertNode(&EntryNode);
1414   Root = getEntryNode();
1415   DbgInfo->clear();
1416 }
1417 
1418 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1419   return VT.bitsGT(Op.getValueType())
1420              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1421              : getNode(ISD::FP_ROUND, DL, VT, Op,
1422                        getIntPtrConstant(0, DL, /*isTarget=*/true));
1423 }
1424 
1425 std::pair<SDValue, SDValue>
1426 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1427                                        const SDLoc &DL, EVT VT) {
1428   assert(!VT.bitsEq(Op.getValueType()) &&
1429          "Strict no-op FP extend/round not allowed.");
1430   SDValue Res =
1431       VT.bitsGT(Op.getValueType())
1432           ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1433           : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1434                     {Chain, Op, getIntPtrConstant(0, DL)});
1435 
1436   return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1437 }
1438 
1439 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1440   return VT.bitsGT(Op.getValueType()) ?
1441     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1442     getNode(ISD::TRUNCATE, DL, VT, Op);
1443 }
1444 
1445 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1446   return VT.bitsGT(Op.getValueType()) ?
1447     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1448     getNode(ISD::TRUNCATE, DL, VT, Op);
1449 }
1450 
1451 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1452   return VT.bitsGT(Op.getValueType()) ?
1453     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1454     getNode(ISD::TRUNCATE, DL, VT, Op);
1455 }
1456 
1457 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1458                                         EVT OpVT) {
1459   if (VT.bitsLE(Op.getValueType()))
1460     return getNode(ISD::TRUNCATE, SL, VT, Op);
1461 
1462   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1463   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1464 }
1465 
1466 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1467   EVT OpVT = Op.getValueType();
1468   assert(VT.isInteger() && OpVT.isInteger() &&
1469          "Cannot getZeroExtendInReg FP types");
1470   assert(VT.isVector() == OpVT.isVector() &&
1471          "getZeroExtendInReg type should be vector iff the operand "
1472          "type is vector!");
1473   assert((!VT.isVector() ||
1474           VT.getVectorElementCount() == OpVT.getVectorElementCount()) &&
1475          "Vector element counts must match in getZeroExtendInReg");
1476   assert(VT.bitsLE(OpVT) && "Not extending!");
1477   if (OpVT == VT)
1478     return Op;
1479   APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(),
1480                                    VT.getScalarSizeInBits());
1481   return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1482 }
1483 
1484 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1485   // Only unsigned pointer semantics are supported right now. In the future this
1486   // might delegate to TLI to check pointer signedness.
1487   return getZExtOrTrunc(Op, DL, VT);
1488 }
1489 
1490 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1491   // Only unsigned pointer semantics are supported right now. In the future this
1492   // might delegate to TLI to check pointer signedness.
1493   return getZeroExtendInReg(Op, DL, VT);
1494 }
1495 
1496 SDValue SelectionDAG::getNegative(SDValue Val, const SDLoc &DL, EVT VT) {
1497   return getNode(ISD::SUB, DL, VT, getConstant(0, DL, VT), Val);
1498 }
1499 
1500 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1501 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1502   return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT));
1503 }
1504 
1505 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1506   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1507   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1508 }
1509 
1510 SDValue SelectionDAG::getVPLogicalNOT(const SDLoc &DL, SDValue Val,
1511                                       SDValue Mask, SDValue EVL, EVT VT) {
1512   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1513   return getNode(ISD::VP_XOR, DL, VT, Val, TrueValue, Mask, EVL);
1514 }
1515 
1516 SDValue SelectionDAG::getVPPtrExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op,
1517                                          SDValue Mask, SDValue EVL) {
1518   return getVPZExtOrTrunc(DL, VT, Op, Mask, EVL);
1519 }
1520 
1521 SDValue SelectionDAG::getVPZExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op,
1522                                        SDValue Mask, SDValue EVL) {
1523   if (VT.bitsGT(Op.getValueType()))
1524     return getNode(ISD::VP_ZERO_EXTEND, DL, VT, Op, Mask, EVL);
1525   if (VT.bitsLT(Op.getValueType()))
1526     return getNode(ISD::VP_TRUNCATE, DL, VT, Op, Mask, EVL);
1527   return Op;
1528 }
1529 
1530 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1531                                       EVT OpVT) {
1532   if (!V)
1533     return getConstant(0, DL, VT);
1534 
1535   switch (TLI->getBooleanContents(OpVT)) {
1536   case TargetLowering::ZeroOrOneBooleanContent:
1537   case TargetLowering::UndefinedBooleanContent:
1538     return getConstant(1, DL, VT);
1539   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1540     return getAllOnesConstant(DL, VT);
1541   }
1542   llvm_unreachable("Unexpected boolean content enum!");
1543 }
1544 
1545 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1546                                   bool isT, bool isO) {
1547   EVT EltVT = VT.getScalarType();
1548   assert((EltVT.getSizeInBits() >= 64 ||
1549           (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1550          "getConstant with a uint64_t value that doesn't fit in the type!");
1551   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1552 }
1553 
1554 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1555                                   bool isT, bool isO) {
1556   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1557 }
1558 
1559 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1560                                   EVT VT, bool isT, bool isO) {
1561   assert(VT.isInteger() && "Cannot create FP integer constant!");
1562 
1563   EVT EltVT = VT.getScalarType();
1564   const ConstantInt *Elt = &Val;
1565 
1566   // In some cases the vector type is legal but the element type is illegal and
1567   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1568   // inserted value (the type does not need to match the vector element type).
1569   // Any extra bits introduced will be truncated away.
1570   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1571                            TargetLowering::TypePromoteInteger) {
1572     EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1573     APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1574     Elt = ConstantInt::get(*getContext(), NewVal);
1575   }
1576   // In other cases the element type is illegal and needs to be expanded, for
1577   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1578   // the value into n parts and use a vector type with n-times the elements.
1579   // Then bitcast to the type requested.
1580   // Legalizing constants too early makes the DAGCombiner's job harder so we
1581   // only legalize if the DAG tells us we must produce legal types.
1582   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1583            TLI->getTypeAction(*getContext(), EltVT) ==
1584                TargetLowering::TypeExpandInteger) {
1585     const APInt &NewVal = Elt->getValue();
1586     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1587     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1588 
1589     // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node.
1590     if (VT.isScalableVector()) {
1591       assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 &&
1592              "Can only handle an even split!");
1593       unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits;
1594 
1595       SmallVector<SDValue, 2> ScalarParts;
1596       for (unsigned i = 0; i != Parts; ++i)
1597         ScalarParts.push_back(getConstant(
1598             NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1599             ViaEltVT, isT, isO));
1600 
1601       return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts);
1602     }
1603 
1604     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1605     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1606 
1607     // Check the temporary vector is the correct size. If this fails then
1608     // getTypeToTransformTo() probably returned a type whose size (in bits)
1609     // isn't a power-of-2 factor of the requested type size.
1610     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1611 
1612     SmallVector<SDValue, 2> EltParts;
1613     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i)
1614       EltParts.push_back(getConstant(
1615           NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1616           ViaEltVT, isT, isO));
1617 
1618     // EltParts is currently in little endian order. If we actually want
1619     // big-endian order then reverse it now.
1620     if (getDataLayout().isBigEndian())
1621       std::reverse(EltParts.begin(), EltParts.end());
1622 
1623     // The elements must be reversed when the element order is different
1624     // to the endianness of the elements (because the BITCAST is itself a
1625     // vector shuffle in this situation). However, we do not need any code to
1626     // perform this reversal because getConstant() is producing a vector
1627     // splat.
1628     // This situation occurs in MIPS MSA.
1629 
1630     SmallVector<SDValue, 8> Ops;
1631     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1632       llvm::append_range(Ops, EltParts);
1633 
1634     SDValue V =
1635         getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1636     return V;
1637   }
1638 
1639   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1640          "APInt size does not match type size!");
1641   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1642   FoldingSetNodeID ID;
1643   AddNodeIDNode(ID, Opc, getVTList(EltVT), std::nullopt);
1644   ID.AddPointer(Elt);
1645   ID.AddBoolean(isO);
1646   void *IP = nullptr;
1647   SDNode *N = nullptr;
1648   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1649     if (!VT.isVector())
1650       return SDValue(N, 0);
1651 
1652   if (!N) {
1653     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1654     CSEMap.InsertNode(N, IP);
1655     InsertNode(N);
1656     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1657   }
1658 
1659   SDValue Result(N, 0);
1660   if (VT.isVector())
1661     Result = getSplat(VT, DL, Result);
1662   return Result;
1663 }
1664 
1665 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1666                                         bool isTarget) {
1667   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1668 }
1669 
1670 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1671                                              const SDLoc &DL, bool LegalTypes) {
1672   assert(VT.isInteger() && "Shift amount is not an integer type!");
1673   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1674   return getConstant(Val, DL, ShiftVT);
1675 }
1676 
1677 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
1678                                            bool isTarget) {
1679   return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1680 }
1681 
1682 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1683                                     bool isTarget) {
1684   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1685 }
1686 
1687 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1688                                     EVT VT, bool isTarget) {
1689   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1690 
1691   EVT EltVT = VT.getScalarType();
1692 
1693   // Do the map lookup using the actual bit pattern for the floating point
1694   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1695   // we don't have issues with SNANs.
1696   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1697   FoldingSetNodeID ID;
1698   AddNodeIDNode(ID, Opc, getVTList(EltVT), std::nullopt);
1699   ID.AddPointer(&V);
1700   void *IP = nullptr;
1701   SDNode *N = nullptr;
1702   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1703     if (!VT.isVector())
1704       return SDValue(N, 0);
1705 
1706   if (!N) {
1707     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1708     CSEMap.InsertNode(N, IP);
1709     InsertNode(N);
1710   }
1711 
1712   SDValue Result(N, 0);
1713   if (VT.isVector())
1714     Result = getSplat(VT, DL, Result);
1715   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1716   return Result;
1717 }
1718 
1719 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1720                                     bool isTarget) {
1721   EVT EltVT = VT.getScalarType();
1722   if (EltVT == MVT::f32)
1723     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1724   if (EltVT == MVT::f64)
1725     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1726   if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1727       EltVT == MVT::f16 || EltVT == MVT::bf16) {
1728     bool Ignored;
1729     APFloat APF = APFloat(Val);
1730     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1731                 &Ignored);
1732     return getConstantFP(APF, DL, VT, isTarget);
1733   }
1734   llvm_unreachable("Unsupported type in getConstantFP");
1735 }
1736 
1737 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1738                                        EVT VT, int64_t Offset, bool isTargetGA,
1739                                        unsigned TargetFlags) {
1740   assert((TargetFlags == 0 || isTargetGA) &&
1741          "Cannot set target flags on target-independent globals");
1742 
1743   // Truncate (with sign-extension) the offset value to the pointer size.
1744   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1745   if (BitWidth < 64)
1746     Offset = SignExtend64(Offset, BitWidth);
1747 
1748   unsigned Opc;
1749   if (GV->isThreadLocal())
1750     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1751   else
1752     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1753 
1754   FoldingSetNodeID ID;
1755   AddNodeIDNode(ID, Opc, getVTList(VT), std::nullopt);
1756   ID.AddPointer(GV);
1757   ID.AddInteger(Offset);
1758   ID.AddInteger(TargetFlags);
1759   void *IP = nullptr;
1760   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1761     return SDValue(E, 0);
1762 
1763   auto *N = newSDNode<GlobalAddressSDNode>(
1764       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1765   CSEMap.InsertNode(N, IP);
1766     InsertNode(N);
1767   return SDValue(N, 0);
1768 }
1769 
1770 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1771   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1772   FoldingSetNodeID ID;
1773   AddNodeIDNode(ID, Opc, getVTList(VT), std::nullopt);
1774   ID.AddInteger(FI);
1775   void *IP = nullptr;
1776   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1777     return SDValue(E, 0);
1778 
1779   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1780   CSEMap.InsertNode(N, IP);
1781   InsertNode(N);
1782   return SDValue(N, 0);
1783 }
1784 
1785 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1786                                    unsigned TargetFlags) {
1787   assert((TargetFlags == 0 || isTarget) &&
1788          "Cannot set target flags on target-independent jump tables");
1789   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1790   FoldingSetNodeID ID;
1791   AddNodeIDNode(ID, Opc, getVTList(VT), std::nullopt);
1792   ID.AddInteger(JTI);
1793   ID.AddInteger(TargetFlags);
1794   void *IP = nullptr;
1795   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1796     return SDValue(E, 0);
1797 
1798   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1799   CSEMap.InsertNode(N, IP);
1800   InsertNode(N);
1801   return SDValue(N, 0);
1802 }
1803 
1804 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1805                                       MaybeAlign Alignment, int Offset,
1806                                       bool isTarget, unsigned TargetFlags) {
1807   assert((TargetFlags == 0 || isTarget) &&
1808          "Cannot set target flags on target-independent globals");
1809   if (!Alignment)
1810     Alignment = shouldOptForSize()
1811                     ? getDataLayout().getABITypeAlign(C->getType())
1812                     : getDataLayout().getPrefTypeAlign(C->getType());
1813   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1814   FoldingSetNodeID ID;
1815   AddNodeIDNode(ID, Opc, getVTList(VT), std::nullopt);
1816   ID.AddInteger(Alignment->value());
1817   ID.AddInteger(Offset);
1818   ID.AddPointer(C);
1819   ID.AddInteger(TargetFlags);
1820   void *IP = nullptr;
1821   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1822     return SDValue(E, 0);
1823 
1824   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1825                                           TargetFlags);
1826   CSEMap.InsertNode(N, IP);
1827   InsertNode(N);
1828   SDValue V = SDValue(N, 0);
1829   NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1830   return V;
1831 }
1832 
1833 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1834                                       MaybeAlign Alignment, int Offset,
1835                                       bool isTarget, unsigned TargetFlags) {
1836   assert((TargetFlags == 0 || isTarget) &&
1837          "Cannot set target flags on target-independent globals");
1838   if (!Alignment)
1839     Alignment = getDataLayout().getPrefTypeAlign(C->getType());
1840   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1841   FoldingSetNodeID ID;
1842   AddNodeIDNode(ID, Opc, getVTList(VT), std::nullopt);
1843   ID.AddInteger(Alignment->value());
1844   ID.AddInteger(Offset);
1845   C->addSelectionDAGCSEId(ID);
1846   ID.AddInteger(TargetFlags);
1847   void *IP = nullptr;
1848   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1849     return SDValue(E, 0);
1850 
1851   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1852                                           TargetFlags);
1853   CSEMap.InsertNode(N, IP);
1854   InsertNode(N);
1855   return SDValue(N, 0);
1856 }
1857 
1858 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1859                                      unsigned TargetFlags) {
1860   FoldingSetNodeID ID;
1861   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), std::nullopt);
1862   ID.AddInteger(Index);
1863   ID.AddInteger(Offset);
1864   ID.AddInteger(TargetFlags);
1865   void *IP = nullptr;
1866   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1867     return SDValue(E, 0);
1868 
1869   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1870   CSEMap.InsertNode(N, IP);
1871   InsertNode(N);
1872   return SDValue(N, 0);
1873 }
1874 
1875 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1876   FoldingSetNodeID ID;
1877   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), std::nullopt);
1878   ID.AddPointer(MBB);
1879   void *IP = nullptr;
1880   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1881     return SDValue(E, 0);
1882 
1883   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1884   CSEMap.InsertNode(N, IP);
1885   InsertNode(N);
1886   return SDValue(N, 0);
1887 }
1888 
1889 SDValue SelectionDAG::getValueType(EVT VT) {
1890   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1891       ValueTypeNodes.size())
1892     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1893 
1894   SDNode *&N = VT.isExtended() ?
1895     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1896 
1897   if (N) return SDValue(N, 0);
1898   N = newSDNode<VTSDNode>(VT);
1899   InsertNode(N);
1900   return SDValue(N, 0);
1901 }
1902 
1903 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1904   SDNode *&N = ExternalSymbols[Sym];
1905   if (N) return SDValue(N, 0);
1906   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1907   InsertNode(N);
1908   return SDValue(N, 0);
1909 }
1910 
1911 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1912   SDNode *&N = MCSymbols[Sym];
1913   if (N)
1914     return SDValue(N, 0);
1915   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1916   InsertNode(N);
1917   return SDValue(N, 0);
1918 }
1919 
1920 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1921                                               unsigned TargetFlags) {
1922   SDNode *&N =
1923       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1924   if (N) return SDValue(N, 0);
1925   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1926   InsertNode(N);
1927   return SDValue(N, 0);
1928 }
1929 
1930 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1931   if ((unsigned)Cond >= CondCodeNodes.size())
1932     CondCodeNodes.resize(Cond+1);
1933 
1934   if (!CondCodeNodes[Cond]) {
1935     auto *N = newSDNode<CondCodeSDNode>(Cond);
1936     CondCodeNodes[Cond] = N;
1937     InsertNode(N);
1938   }
1939 
1940   return SDValue(CondCodeNodes[Cond], 0);
1941 }
1942 
1943 SDValue SelectionDAG::getVScale(const SDLoc &DL, EVT VT, APInt MulImm,
1944                                 bool ConstantFold) {
1945   assert(MulImm.getBitWidth() == VT.getSizeInBits() &&
1946          "APInt size does not match type size!");
1947 
1948   if (MulImm == 0)
1949     return getConstant(0, DL, VT);
1950 
1951   if (ConstantFold) {
1952     const MachineFunction &MF = getMachineFunction();
1953     auto Attr = MF.getFunction().getFnAttribute(Attribute::VScaleRange);
1954     if (Attr.isValid()) {
1955       unsigned VScaleMin = Attr.getVScaleRangeMin();
1956       if (std::optional<unsigned> VScaleMax = Attr.getVScaleRangeMax())
1957         if (*VScaleMax == VScaleMin)
1958           return getConstant(MulImm * VScaleMin, DL, VT);
1959     }
1960   }
1961 
1962   return getNode(ISD::VSCALE, DL, VT, getConstant(MulImm, DL, VT));
1963 }
1964 
1965 SDValue SelectionDAG::getElementCount(const SDLoc &DL, EVT VT, ElementCount EC,
1966                                       bool ConstantFold) {
1967   if (EC.isScalable())
1968     return getVScale(DL, VT,
1969                      APInt(VT.getSizeInBits(), EC.getKnownMinValue()));
1970 
1971   return getConstant(EC.getKnownMinValue(), DL, VT);
1972 }
1973 
1974 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) {
1975   APInt One(ResVT.getScalarSizeInBits(), 1);
1976   return getStepVector(DL, ResVT, One);
1977 }
1978 
1979 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) {
1980   assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth());
1981   if (ResVT.isScalableVector())
1982     return getNode(
1983         ISD::STEP_VECTOR, DL, ResVT,
1984         getTargetConstant(StepVal, DL, ResVT.getVectorElementType()));
1985 
1986   SmallVector<SDValue, 16> OpsStepConstants;
1987   for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++)
1988     OpsStepConstants.push_back(
1989         getConstant(StepVal * i, DL, ResVT.getVectorElementType()));
1990   return getBuildVector(ResVT, DL, OpsStepConstants);
1991 }
1992 
1993 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1994 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1995 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1996   std::swap(N1, N2);
1997   ShuffleVectorSDNode::commuteMask(M);
1998 }
1999 
2000 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
2001                                        SDValue N2, ArrayRef<int> Mask) {
2002   assert(VT.getVectorNumElements() == Mask.size() &&
2003          "Must have the same number of vector elements as mask elements!");
2004   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2005          "Invalid VECTOR_SHUFFLE");
2006 
2007   // Canonicalize shuffle undef, undef -> undef
2008   if (N1.isUndef() && N2.isUndef())
2009     return getUNDEF(VT);
2010 
2011   // Validate that all indices in Mask are within the range of the elements
2012   // input to the shuffle.
2013   int NElts = Mask.size();
2014   assert(llvm::all_of(Mask,
2015                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
2016          "Index out of range");
2017 
2018   // Copy the mask so we can do any needed cleanup.
2019   SmallVector<int, 8> MaskVec(Mask);
2020 
2021   // Canonicalize shuffle v, v -> v, undef
2022   if (N1 == N2) {
2023     N2 = getUNDEF(VT);
2024     for (int i = 0; i != NElts; ++i)
2025       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
2026   }
2027 
2028   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
2029   if (N1.isUndef())
2030     commuteShuffle(N1, N2, MaskVec);
2031 
2032   if (TLI->hasVectorBlend()) {
2033     // If shuffling a splat, try to blend the splat instead. We do this here so
2034     // that even when this arises during lowering we don't have to re-handle it.
2035     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
2036       BitVector UndefElements;
2037       SDValue Splat = BV->getSplatValue(&UndefElements);
2038       if (!Splat)
2039         return;
2040 
2041       for (int i = 0; i < NElts; ++i) {
2042         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
2043           continue;
2044 
2045         // If this input comes from undef, mark it as such.
2046         if (UndefElements[MaskVec[i] - Offset]) {
2047           MaskVec[i] = -1;
2048           continue;
2049         }
2050 
2051         // If we can blend a non-undef lane, use that instead.
2052         if (!UndefElements[i])
2053           MaskVec[i] = i + Offset;
2054       }
2055     };
2056     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
2057       BlendSplat(N1BV, 0);
2058     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
2059       BlendSplat(N2BV, NElts);
2060   }
2061 
2062   // Canonicalize all index into lhs, -> shuffle lhs, undef
2063   // Canonicalize all index into rhs, -> shuffle rhs, undef
2064   bool AllLHS = true, AllRHS = true;
2065   bool N2Undef = N2.isUndef();
2066   for (int i = 0; i != NElts; ++i) {
2067     if (MaskVec[i] >= NElts) {
2068       if (N2Undef)
2069         MaskVec[i] = -1;
2070       else
2071         AllLHS = false;
2072     } else if (MaskVec[i] >= 0) {
2073       AllRHS = false;
2074     }
2075   }
2076   if (AllLHS && AllRHS)
2077     return getUNDEF(VT);
2078   if (AllLHS && !N2Undef)
2079     N2 = getUNDEF(VT);
2080   if (AllRHS) {
2081     N1 = getUNDEF(VT);
2082     commuteShuffle(N1, N2, MaskVec);
2083   }
2084   // Reset our undef status after accounting for the mask.
2085   N2Undef = N2.isUndef();
2086   // Re-check whether both sides ended up undef.
2087   if (N1.isUndef() && N2Undef)
2088     return getUNDEF(VT);
2089 
2090   // If Identity shuffle return that node.
2091   bool Identity = true, AllSame = true;
2092   for (int i = 0; i != NElts; ++i) {
2093     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
2094     if (MaskVec[i] != MaskVec[0]) AllSame = false;
2095   }
2096   if (Identity && NElts)
2097     return N1;
2098 
2099   // Shuffling a constant splat doesn't change the result.
2100   if (N2Undef) {
2101     SDValue V = N1;
2102 
2103     // Look through any bitcasts. We check that these don't change the number
2104     // (and size) of elements and just changes their types.
2105     while (V.getOpcode() == ISD::BITCAST)
2106       V = V->getOperand(0);
2107 
2108     // A splat should always show up as a build vector node.
2109     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2110       BitVector UndefElements;
2111       SDValue Splat = BV->getSplatValue(&UndefElements);
2112       // If this is a splat of an undef, shuffling it is also undef.
2113       if (Splat && Splat.isUndef())
2114         return getUNDEF(VT);
2115 
2116       bool SameNumElts =
2117           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
2118 
2119       // We only have a splat which can skip shuffles if there is a splatted
2120       // value and no undef lanes rearranged by the shuffle.
2121       if (Splat && UndefElements.none()) {
2122         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
2123         // number of elements match or the value splatted is a zero constant.
2124         if (SameNumElts)
2125           return N1;
2126         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
2127           if (C->isZero())
2128             return N1;
2129       }
2130 
2131       // If the shuffle itself creates a splat, build the vector directly.
2132       if (AllSame && SameNumElts) {
2133         EVT BuildVT = BV->getValueType(0);
2134         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
2135         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
2136 
2137         // We may have jumped through bitcasts, so the type of the
2138         // BUILD_VECTOR may not match the type of the shuffle.
2139         if (BuildVT != VT)
2140           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
2141         return NewBV;
2142       }
2143     }
2144   }
2145 
2146   FoldingSetNodeID ID;
2147   SDValue Ops[2] = { N1, N2 };
2148   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
2149   for (int i = 0; i != NElts; ++i)
2150     ID.AddInteger(MaskVec[i]);
2151 
2152   void* IP = nullptr;
2153   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2154     return SDValue(E, 0);
2155 
2156   // Allocate the mask array for the node out of the BumpPtrAllocator, since
2157   // SDNode doesn't have access to it.  This memory will be "leaked" when
2158   // the node is deallocated, but recovered when the NodeAllocator is released.
2159   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
2160   llvm::copy(MaskVec, MaskAlloc);
2161 
2162   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
2163                                            dl.getDebugLoc(), MaskAlloc);
2164   createOperands(N, Ops);
2165 
2166   CSEMap.InsertNode(N, IP);
2167   InsertNode(N);
2168   SDValue V = SDValue(N, 0);
2169   NewSDValueDbgMsg(V, "Creating new node: ", this);
2170   return V;
2171 }
2172 
2173 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
2174   EVT VT = SV.getValueType(0);
2175   SmallVector<int, 8> MaskVec(SV.getMask());
2176   ShuffleVectorSDNode::commuteMask(MaskVec);
2177 
2178   SDValue Op0 = SV.getOperand(0);
2179   SDValue Op1 = SV.getOperand(1);
2180   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
2181 }
2182 
2183 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
2184   FoldingSetNodeID ID;
2185   AddNodeIDNode(ID, ISD::Register, getVTList(VT), std::nullopt);
2186   ID.AddInteger(RegNo);
2187   void *IP = nullptr;
2188   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2189     return SDValue(E, 0);
2190 
2191   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
2192   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, UA);
2193   CSEMap.InsertNode(N, IP);
2194   InsertNode(N);
2195   return SDValue(N, 0);
2196 }
2197 
2198 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
2199   FoldingSetNodeID ID;
2200   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), std::nullopt);
2201   ID.AddPointer(RegMask);
2202   void *IP = nullptr;
2203   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2204     return SDValue(E, 0);
2205 
2206   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
2207   CSEMap.InsertNode(N, IP);
2208   InsertNode(N);
2209   return SDValue(N, 0);
2210 }
2211 
2212 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
2213                                  MCSymbol *Label) {
2214   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
2215 }
2216 
2217 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
2218                                    SDValue Root, MCSymbol *Label) {
2219   FoldingSetNodeID ID;
2220   SDValue Ops[] = { Root };
2221   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
2222   ID.AddPointer(Label);
2223   void *IP = nullptr;
2224   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2225     return SDValue(E, 0);
2226 
2227   auto *N =
2228       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
2229   createOperands(N, Ops);
2230 
2231   CSEMap.InsertNode(N, IP);
2232   InsertNode(N);
2233   return SDValue(N, 0);
2234 }
2235 
2236 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
2237                                       int64_t Offset, bool isTarget,
2238                                       unsigned TargetFlags) {
2239   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
2240 
2241   FoldingSetNodeID ID;
2242   AddNodeIDNode(ID, Opc, getVTList(VT), std::nullopt);
2243   ID.AddPointer(BA);
2244   ID.AddInteger(Offset);
2245   ID.AddInteger(TargetFlags);
2246   void *IP = nullptr;
2247   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2248     return SDValue(E, 0);
2249 
2250   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
2251   CSEMap.InsertNode(N, IP);
2252   InsertNode(N);
2253   return SDValue(N, 0);
2254 }
2255 
2256 SDValue SelectionDAG::getSrcValue(const Value *V) {
2257   FoldingSetNodeID ID;
2258   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), std::nullopt);
2259   ID.AddPointer(V);
2260 
2261   void *IP = nullptr;
2262   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2263     return SDValue(E, 0);
2264 
2265   auto *N = newSDNode<SrcValueSDNode>(V);
2266   CSEMap.InsertNode(N, IP);
2267   InsertNode(N);
2268   return SDValue(N, 0);
2269 }
2270 
2271 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
2272   FoldingSetNodeID ID;
2273   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), std::nullopt);
2274   ID.AddPointer(MD);
2275 
2276   void *IP = nullptr;
2277   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2278     return SDValue(E, 0);
2279 
2280   auto *N = newSDNode<MDNodeSDNode>(MD);
2281   CSEMap.InsertNode(N, IP);
2282   InsertNode(N);
2283   return SDValue(N, 0);
2284 }
2285 
2286 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
2287   if (VT == V.getValueType())
2288     return V;
2289 
2290   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
2291 }
2292 
2293 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
2294                                        unsigned SrcAS, unsigned DestAS) {
2295   SDValue Ops[] = {Ptr};
2296   FoldingSetNodeID ID;
2297   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
2298   ID.AddInteger(SrcAS);
2299   ID.AddInteger(DestAS);
2300 
2301   void *IP = nullptr;
2302   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2303     return SDValue(E, 0);
2304 
2305   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
2306                                            VT, SrcAS, DestAS);
2307   createOperands(N, Ops);
2308 
2309   CSEMap.InsertNode(N, IP);
2310   InsertNode(N);
2311   return SDValue(N, 0);
2312 }
2313 
2314 SDValue SelectionDAG::getFreeze(SDValue V) {
2315   return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
2316 }
2317 
2318 /// getShiftAmountOperand - Return the specified value casted to
2319 /// the target's desired shift amount type.
2320 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
2321   EVT OpTy = Op.getValueType();
2322   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
2323   if (OpTy == ShTy || OpTy.isVector()) return Op;
2324 
2325   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
2326 }
2327 
2328 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
2329   SDLoc dl(Node);
2330   const TargetLowering &TLI = getTargetLoweringInfo();
2331   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2332   EVT VT = Node->getValueType(0);
2333   SDValue Tmp1 = Node->getOperand(0);
2334   SDValue Tmp2 = Node->getOperand(1);
2335   const MaybeAlign MA(Node->getConstantOperandVal(3));
2336 
2337   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
2338                                Tmp2, MachinePointerInfo(V));
2339   SDValue VAList = VAListLoad;
2340 
2341   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2342     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2343                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
2344 
2345     VAList =
2346         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
2347                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
2348   }
2349 
2350   // Increment the pointer, VAList, to the next vaarg
2351   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2352                  getConstant(getDataLayout().getTypeAllocSize(
2353                                                VT.getTypeForEVT(*getContext())),
2354                              dl, VAList.getValueType()));
2355   // Store the incremented VAList to the legalized pointer
2356   Tmp1 =
2357       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
2358   // Load the actual argument out of the pointer VAList
2359   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
2360 }
2361 
2362 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
2363   SDLoc dl(Node);
2364   const TargetLowering &TLI = getTargetLoweringInfo();
2365   // This defaults to loading a pointer from the input and storing it to the
2366   // output, returning the chain.
2367   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2368   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2369   SDValue Tmp1 =
2370       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
2371               Node->getOperand(2), MachinePointerInfo(VS));
2372   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2373                   MachinePointerInfo(VD));
2374 }
2375 
2376 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) {
2377   const DataLayout &DL = getDataLayout();
2378   Type *Ty = VT.getTypeForEVT(*getContext());
2379   Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2380 
2381   if (TLI->isTypeLegal(VT) || !VT.isVector())
2382     return RedAlign;
2383 
2384   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2385   const Align StackAlign = TFI->getStackAlign();
2386 
2387   // See if we can choose a smaller ABI alignment in cases where it's an
2388   // illegal vector type that will get broken down.
2389   if (RedAlign > StackAlign) {
2390     EVT IntermediateVT;
2391     MVT RegisterVT;
2392     unsigned NumIntermediates;
2393     TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2394                                 NumIntermediates, RegisterVT);
2395     Ty = IntermediateVT.getTypeForEVT(*getContext());
2396     Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2397     if (RedAlign2 < RedAlign)
2398       RedAlign = RedAlign2;
2399   }
2400 
2401   return RedAlign;
2402 }
2403 
2404 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) {
2405   MachineFrameInfo &MFI = MF->getFrameInfo();
2406   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2407   int StackID = 0;
2408   if (Bytes.isScalable())
2409     StackID = TFI->getStackIDForScalableVectors();
2410   // The stack id gives an indication of whether the object is scalable or
2411   // not, so it's safe to pass in the minimum size here.
2412   int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinValue(), Alignment,
2413                                        false, nullptr, StackID);
2414   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2415 }
2416 
2417 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
2418   Type *Ty = VT.getTypeForEVT(*getContext());
2419   Align StackAlign =
2420       std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2421   return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2422 }
2423 
2424 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
2425   TypeSize VT1Size = VT1.getStoreSize();
2426   TypeSize VT2Size = VT2.getStoreSize();
2427   assert(VT1Size.isScalable() == VT2Size.isScalable() &&
2428          "Don't know how to choose the maximum size when creating a stack "
2429          "temporary");
2430   TypeSize Bytes = VT1Size.getKnownMinValue() > VT2Size.getKnownMinValue()
2431                        ? VT1Size
2432                        : VT2Size;
2433 
2434   Type *Ty1 = VT1.getTypeForEVT(*getContext());
2435   Type *Ty2 = VT2.getTypeForEVT(*getContext());
2436   const DataLayout &DL = getDataLayout();
2437   Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2438   return CreateStackTemporary(Bytes, Align);
2439 }
2440 
2441 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2442                                 ISD::CondCode Cond, const SDLoc &dl) {
2443   EVT OpVT = N1.getValueType();
2444 
2445   auto GetUndefBooleanConstant = [&]() {
2446     if (VT.getScalarType() == MVT::i1 ||
2447         TLI->getBooleanContents(OpVT) ==
2448             TargetLowering::UndefinedBooleanContent)
2449       return getUNDEF(VT);
2450     // ZeroOrOne / ZeroOrNegative require specific values for the high bits,
2451     // so we cannot use getUNDEF(). Return zero instead.
2452     return getConstant(0, dl, VT);
2453   };
2454 
2455   // These setcc operations always fold.
2456   switch (Cond) {
2457   default: break;
2458   case ISD::SETFALSE:
2459   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2460   case ISD::SETTRUE:
2461   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2462 
2463   case ISD::SETOEQ:
2464   case ISD::SETOGT:
2465   case ISD::SETOGE:
2466   case ISD::SETOLT:
2467   case ISD::SETOLE:
2468   case ISD::SETONE:
2469   case ISD::SETO:
2470   case ISD::SETUO:
2471   case ISD::SETUEQ:
2472   case ISD::SETUNE:
2473     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2474     break;
2475   }
2476 
2477   if (OpVT.isInteger()) {
2478     // For EQ and NE, we can always pick a value for the undef to make the
2479     // predicate pass or fail, so we can return undef.
2480     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2481     // icmp eq/ne X, undef -> undef.
2482     if ((N1.isUndef() || N2.isUndef()) &&
2483         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2484       return GetUndefBooleanConstant();
2485 
2486     // If both operands are undef, we can return undef for int comparison.
2487     // icmp undef, undef -> undef.
2488     if (N1.isUndef() && N2.isUndef())
2489       return GetUndefBooleanConstant();
2490 
2491     // icmp X, X -> true/false
2492     // icmp X, undef -> true/false because undef could be X.
2493     if (N1 == N2)
2494       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2495   }
2496 
2497   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2498     const APInt &C2 = N2C->getAPIntValue();
2499     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2500       const APInt &C1 = N1C->getAPIntValue();
2501 
2502       return getBoolConstant(ICmpInst::compare(C1, C2, getICmpCondCode(Cond)),
2503                              dl, VT, OpVT);
2504     }
2505   }
2506 
2507   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2508   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2509 
2510   if (N1CFP && N2CFP) {
2511     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2512     switch (Cond) {
2513     default: break;
2514     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2515                         return GetUndefBooleanConstant();
2516                       [[fallthrough]];
2517     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2518                                              OpVT);
2519     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2520                         return GetUndefBooleanConstant();
2521                       [[fallthrough]];
2522     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2523                                              R==APFloat::cmpLessThan, dl, VT,
2524                                              OpVT);
2525     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2526                         return GetUndefBooleanConstant();
2527                       [[fallthrough]];
2528     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2529                                              OpVT);
2530     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2531                         return GetUndefBooleanConstant();
2532                       [[fallthrough]];
2533     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2534                                              VT, OpVT);
2535     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2536                         return GetUndefBooleanConstant();
2537                       [[fallthrough]];
2538     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2539                                              R==APFloat::cmpEqual, dl, VT,
2540                                              OpVT);
2541     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2542                         return GetUndefBooleanConstant();
2543                       [[fallthrough]];
2544     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2545                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2546     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2547                                              OpVT);
2548     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2549                                              OpVT);
2550     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2551                                              R==APFloat::cmpEqual, dl, VT,
2552                                              OpVT);
2553     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2554                                              OpVT);
2555     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2556                                              R==APFloat::cmpLessThan, dl, VT,
2557                                              OpVT);
2558     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2559                                              R==APFloat::cmpUnordered, dl, VT,
2560                                              OpVT);
2561     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2562                                              VT, OpVT);
2563     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2564                                              OpVT);
2565     }
2566   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2567     // Ensure that the constant occurs on the RHS.
2568     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2569     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2570       return SDValue();
2571     return getSetCC(dl, VT, N2, N1, SwappedCond);
2572   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2573              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2574     // If an operand is known to be a nan (or undef that could be a nan), we can
2575     // fold it.
2576     // Choosing NaN for the undef will always make unordered comparison succeed
2577     // and ordered comparison fails.
2578     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2579     switch (ISD::getUnorderedFlavor(Cond)) {
2580     default:
2581       llvm_unreachable("Unknown flavor!");
2582     case 0: // Known false.
2583       return getBoolConstant(false, dl, VT, OpVT);
2584     case 1: // Known true.
2585       return getBoolConstant(true, dl, VT, OpVT);
2586     case 2: // Undefined.
2587       return GetUndefBooleanConstant();
2588     }
2589   }
2590 
2591   // Could not fold it.
2592   return SDValue();
2593 }
2594 
2595 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2596 /// use this predicate to simplify operations downstream.
2597 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2598   unsigned BitWidth = Op.getScalarValueSizeInBits();
2599   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2600 }
2601 
2602 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2603 /// this predicate to simplify operations downstream.  Mask is known to be zero
2604 /// for bits that V cannot have.
2605 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2606                                      unsigned Depth) const {
2607   return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2608 }
2609 
2610 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2611 /// DemandedElts.  We use this predicate to simplify operations downstream.
2612 /// Mask is known to be zero for bits that V cannot have.
2613 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2614                                      const APInt &DemandedElts,
2615                                      unsigned Depth) const {
2616   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2617 }
2618 
2619 /// MaskedVectorIsZero - Return true if 'Op' is known to be zero in
2620 /// DemandedElts.  We use this predicate to simplify operations downstream.
2621 bool SelectionDAG::MaskedVectorIsZero(SDValue V, const APInt &DemandedElts,
2622                                       unsigned Depth /* = 0 */) const {
2623   return computeKnownBits(V, DemandedElts, Depth).isZero();
2624 }
2625 
2626 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2627 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2628                                         unsigned Depth) const {
2629   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2630 }
2631 
2632 APInt SelectionDAG::computeVectorKnownZeroElements(SDValue Op,
2633                                                    const APInt &DemandedElts,
2634                                                    unsigned Depth) const {
2635   EVT VT = Op.getValueType();
2636   assert(VT.isVector() && !VT.isScalableVector() && "Only for fixed vectors!");
2637 
2638   unsigned NumElts = VT.getVectorNumElements();
2639   assert(DemandedElts.getBitWidth() == NumElts && "Unexpected demanded mask.");
2640 
2641   APInt KnownZeroElements = APInt::getZero(NumElts);
2642   for (unsigned EltIdx = 0; EltIdx != NumElts; ++EltIdx) {
2643     if (!DemandedElts[EltIdx])
2644       continue; // Don't query elements that are not demanded.
2645     APInt Mask = APInt::getOneBitSet(NumElts, EltIdx);
2646     if (MaskedVectorIsZero(Op, Mask, Depth))
2647       KnownZeroElements.setBit(EltIdx);
2648   }
2649   return KnownZeroElements;
2650 }
2651 
2652 /// isSplatValue - Return true if the vector V has the same value
2653 /// across all DemandedElts. For scalable vectors, we don't know the
2654 /// number of lanes at compile time.  Instead, we use a 1 bit APInt
2655 /// to represent a conservative value for all lanes; that is, that
2656 /// one bit value is implicitly splatted across all lanes.
2657 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2658                                 APInt &UndefElts, unsigned Depth) const {
2659   unsigned Opcode = V.getOpcode();
2660   EVT VT = V.getValueType();
2661   assert(VT.isVector() && "Vector type expected");
2662   assert((!VT.isScalableVector() || DemandedElts.getBitWidth() == 1) &&
2663          "scalable demanded bits are ignored");
2664 
2665   if (!DemandedElts)
2666     return false; // No demanded elts, better to assume we don't know anything.
2667 
2668   if (Depth >= MaxRecursionDepth)
2669     return false; // Limit search depth.
2670 
2671   // Deal with some common cases here that work for both fixed and scalable
2672   // vector types.
2673   switch (Opcode) {
2674   case ISD::SPLAT_VECTOR:
2675     UndefElts = V.getOperand(0).isUndef()
2676                     ? APInt::getAllOnes(DemandedElts.getBitWidth())
2677                     : APInt(DemandedElts.getBitWidth(), 0);
2678     return true;
2679   case ISD::ADD:
2680   case ISD::SUB:
2681   case ISD::AND:
2682   case ISD::XOR:
2683   case ISD::OR: {
2684     APInt UndefLHS, UndefRHS;
2685     SDValue LHS = V.getOperand(0);
2686     SDValue RHS = V.getOperand(1);
2687     if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) &&
2688         isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) {
2689       UndefElts = UndefLHS | UndefRHS;
2690       return true;
2691     }
2692     return false;
2693   }
2694   case ISD::ABS:
2695   case ISD::TRUNCATE:
2696   case ISD::SIGN_EXTEND:
2697   case ISD::ZERO_EXTEND:
2698     return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1);
2699   default:
2700     if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
2701         Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
2702       return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, *this,
2703                                             Depth);
2704     break;
2705 }
2706 
2707   // We don't support other cases than those above for scalable vectors at
2708   // the moment.
2709   if (VT.isScalableVector())
2710     return false;
2711 
2712   unsigned NumElts = VT.getVectorNumElements();
2713   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2714   UndefElts = APInt::getZero(NumElts);
2715 
2716   switch (Opcode) {
2717   case ISD::BUILD_VECTOR: {
2718     SDValue Scl;
2719     for (unsigned i = 0; i != NumElts; ++i) {
2720       SDValue Op = V.getOperand(i);
2721       if (Op.isUndef()) {
2722         UndefElts.setBit(i);
2723         continue;
2724       }
2725       if (!DemandedElts[i])
2726         continue;
2727       if (Scl && Scl != Op)
2728         return false;
2729       Scl = Op;
2730     }
2731     return true;
2732   }
2733   case ISD::VECTOR_SHUFFLE: {
2734     // Check if this is a shuffle node doing a splat or a shuffle of a splat.
2735     APInt DemandedLHS = APInt::getZero(NumElts);
2736     APInt DemandedRHS = APInt::getZero(NumElts);
2737     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2738     for (int i = 0; i != (int)NumElts; ++i) {
2739       int M = Mask[i];
2740       if (M < 0) {
2741         UndefElts.setBit(i);
2742         continue;
2743       }
2744       if (!DemandedElts[i])
2745         continue;
2746       if (M < (int)NumElts)
2747         DemandedLHS.setBit(M);
2748       else
2749         DemandedRHS.setBit(M - NumElts);
2750     }
2751 
2752     // If we aren't demanding either op, assume there's no splat.
2753     // If we are demanding both ops, assume there's no splat.
2754     if ((DemandedLHS.isZero() && DemandedRHS.isZero()) ||
2755         (!DemandedLHS.isZero() && !DemandedRHS.isZero()))
2756       return false;
2757 
2758     // See if the demanded elts of the source op is a splat or we only demand
2759     // one element, which should always be a splat.
2760     // TODO: Handle source ops splats with undefs.
2761     auto CheckSplatSrc = [&](SDValue Src, const APInt &SrcElts) {
2762       APInt SrcUndefs;
2763       return (SrcElts.popcount() == 1) ||
2764              (isSplatValue(Src, SrcElts, SrcUndefs, Depth + 1) &&
2765               (SrcElts & SrcUndefs).isZero());
2766     };
2767     if (!DemandedLHS.isZero())
2768       return CheckSplatSrc(V.getOperand(0), DemandedLHS);
2769     return CheckSplatSrc(V.getOperand(1), DemandedRHS);
2770   }
2771   case ISD::EXTRACT_SUBVECTOR: {
2772     // Offset the demanded elts by the subvector index.
2773     SDValue Src = V.getOperand(0);
2774     // We don't support scalable vectors at the moment.
2775     if (Src.getValueType().isScalableVector())
2776       return false;
2777     uint64_t Idx = V.getConstantOperandVal(1);
2778     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2779     APInt UndefSrcElts;
2780     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
2781     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
2782       UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2783       return true;
2784     }
2785     break;
2786   }
2787   case ISD::ANY_EXTEND_VECTOR_INREG:
2788   case ISD::SIGN_EXTEND_VECTOR_INREG:
2789   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2790     // Widen the demanded elts by the src element count.
2791     SDValue Src = V.getOperand(0);
2792     // We don't support scalable vectors at the moment.
2793     if (Src.getValueType().isScalableVector())
2794       return false;
2795     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2796     APInt UndefSrcElts;
2797     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts);
2798     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
2799       UndefElts = UndefSrcElts.trunc(NumElts);
2800       return true;
2801     }
2802     break;
2803   }
2804   case ISD::BITCAST: {
2805     SDValue Src = V.getOperand(0);
2806     EVT SrcVT = Src.getValueType();
2807     unsigned SrcBitWidth = SrcVT.getScalarSizeInBits();
2808     unsigned BitWidth = VT.getScalarSizeInBits();
2809 
2810     // Ignore bitcasts from unsupported types.
2811     // TODO: Add fp support?
2812     if (!SrcVT.isVector() || !SrcVT.isInteger() || !VT.isInteger())
2813       break;
2814 
2815     // Bitcast 'small element' vector to 'large element' vector.
2816     if ((BitWidth % SrcBitWidth) == 0) {
2817       // See if each sub element is a splat.
2818       unsigned Scale = BitWidth / SrcBitWidth;
2819       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2820       APInt ScaledDemandedElts =
2821           APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2822       for (unsigned I = 0; I != Scale; ++I) {
2823         APInt SubUndefElts;
2824         APInt SubDemandedElt = APInt::getOneBitSet(Scale, I);
2825         APInt SubDemandedElts = APInt::getSplat(NumSrcElts, SubDemandedElt);
2826         SubDemandedElts &= ScaledDemandedElts;
2827         if (!isSplatValue(Src, SubDemandedElts, SubUndefElts, Depth + 1))
2828           return false;
2829         // TODO: Add support for merging sub undef elements.
2830         if (!SubUndefElts.isZero())
2831           return false;
2832       }
2833       return true;
2834     }
2835     break;
2836   }
2837   }
2838 
2839   return false;
2840 }
2841 
2842 /// Helper wrapper to main isSplatValue function.
2843 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) const {
2844   EVT VT = V.getValueType();
2845   assert(VT.isVector() && "Vector type expected");
2846 
2847   APInt UndefElts;
2848   // Since the number of lanes in a scalable vector is unknown at compile time,
2849   // we track one bit which is implicitly broadcast to all lanes.  This means
2850   // that all lanes in a scalable vector are considered demanded.
2851   APInt DemandedElts
2852     = APInt::getAllOnes(VT.isScalableVector() ? 1 : VT.getVectorNumElements());
2853   return isSplatValue(V, DemandedElts, UndefElts) &&
2854          (AllowUndefs || !UndefElts);
2855 }
2856 
2857 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2858   V = peekThroughExtractSubvectors(V);
2859 
2860   EVT VT = V.getValueType();
2861   unsigned Opcode = V.getOpcode();
2862   switch (Opcode) {
2863   default: {
2864     APInt UndefElts;
2865     // Since the number of lanes in a scalable vector is unknown at compile time,
2866     // we track one bit which is implicitly broadcast to all lanes.  This means
2867     // that all lanes in a scalable vector are considered demanded.
2868     APInt DemandedElts
2869       = APInt::getAllOnes(VT.isScalableVector() ? 1 : VT.getVectorNumElements());
2870 
2871     if (isSplatValue(V, DemandedElts, UndefElts)) {
2872       if (VT.isScalableVector()) {
2873         // DemandedElts and UndefElts are ignored for scalable vectors, since
2874         // the only supported cases are SPLAT_VECTOR nodes.
2875         SplatIdx = 0;
2876       } else {
2877         // Handle case where all demanded elements are UNDEF.
2878         if (DemandedElts.isSubsetOf(UndefElts)) {
2879           SplatIdx = 0;
2880           return getUNDEF(VT);
2881         }
2882         SplatIdx = (UndefElts & DemandedElts).countr_one();
2883       }
2884       return V;
2885     }
2886     break;
2887   }
2888   case ISD::SPLAT_VECTOR:
2889     SplatIdx = 0;
2890     return V;
2891   case ISD::VECTOR_SHUFFLE: {
2892     assert(!VT.isScalableVector());
2893     // Check if this is a shuffle node doing a splat.
2894     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2895     // getTargetVShiftNode currently struggles without the splat source.
2896     auto *SVN = cast<ShuffleVectorSDNode>(V);
2897     if (!SVN->isSplat())
2898       break;
2899     int Idx = SVN->getSplatIndex();
2900     int NumElts = V.getValueType().getVectorNumElements();
2901     SplatIdx = Idx % NumElts;
2902     return V.getOperand(Idx / NumElts);
2903   }
2904   }
2905 
2906   return SDValue();
2907 }
2908 
2909 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) {
2910   int SplatIdx;
2911   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) {
2912     EVT SVT = SrcVector.getValueType().getScalarType();
2913     EVT LegalSVT = SVT;
2914     if (LegalTypes && !TLI->isTypeLegal(SVT)) {
2915       if (!SVT.isInteger())
2916         return SDValue();
2917       LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
2918       if (LegalSVT.bitsLT(SVT))
2919         return SDValue();
2920     }
2921     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector,
2922                    getVectorIdxConstant(SplatIdx, SDLoc(V)));
2923   }
2924   return SDValue();
2925 }
2926 
2927 const APInt *
2928 SelectionDAG::getValidShiftAmountConstant(SDValue V,
2929                                           const APInt &DemandedElts) const {
2930   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2931           V.getOpcode() == ISD::SRA) &&
2932          "Unknown shift node");
2933   unsigned BitWidth = V.getScalarValueSizeInBits();
2934   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2935     // Shifting more than the bitwidth is not valid.
2936     const APInt &ShAmt = SA->getAPIntValue();
2937     if (ShAmt.ult(BitWidth))
2938       return &ShAmt;
2939   }
2940   return nullptr;
2941 }
2942 
2943 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant(
2944     SDValue V, const APInt &DemandedElts) const {
2945   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2946           V.getOpcode() == ISD::SRA) &&
2947          "Unknown shift node");
2948   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2949     return ValidAmt;
2950   unsigned BitWidth = V.getScalarValueSizeInBits();
2951   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2952   if (!BV)
2953     return nullptr;
2954   const APInt *MinShAmt = nullptr;
2955   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2956     if (!DemandedElts[i])
2957       continue;
2958     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2959     if (!SA)
2960       return nullptr;
2961     // Shifting more than the bitwidth is not valid.
2962     const APInt &ShAmt = SA->getAPIntValue();
2963     if (ShAmt.uge(BitWidth))
2964       return nullptr;
2965     if (MinShAmt && MinShAmt->ule(ShAmt))
2966       continue;
2967     MinShAmt = &ShAmt;
2968   }
2969   return MinShAmt;
2970 }
2971 
2972 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant(
2973     SDValue V, const APInt &DemandedElts) const {
2974   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2975           V.getOpcode() == ISD::SRA) &&
2976          "Unknown shift node");
2977   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2978     return ValidAmt;
2979   unsigned BitWidth = V.getScalarValueSizeInBits();
2980   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2981   if (!BV)
2982     return nullptr;
2983   const APInt *MaxShAmt = nullptr;
2984   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2985     if (!DemandedElts[i])
2986       continue;
2987     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2988     if (!SA)
2989       return nullptr;
2990     // Shifting more than the bitwidth is not valid.
2991     const APInt &ShAmt = SA->getAPIntValue();
2992     if (ShAmt.uge(BitWidth))
2993       return nullptr;
2994     if (MaxShAmt && MaxShAmt->uge(ShAmt))
2995       continue;
2996     MaxShAmt = &ShAmt;
2997   }
2998   return MaxShAmt;
2999 }
3000 
3001 /// Determine which bits of Op are known to be either zero or one and return
3002 /// them in Known. For vectors, the known bits are those that are shared by
3003 /// every vector element.
3004 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
3005   EVT VT = Op.getValueType();
3006 
3007   // Since the number of lanes in a scalable vector is unknown at compile time,
3008   // we track one bit which is implicitly broadcast to all lanes.  This means
3009   // that all lanes in a scalable vector are considered demanded.
3010   APInt DemandedElts = VT.isFixedLengthVector()
3011                            ? APInt::getAllOnes(VT.getVectorNumElements())
3012                            : APInt(1, 1);
3013   return computeKnownBits(Op, DemandedElts, Depth);
3014 }
3015 
3016 /// Determine which bits of Op are known to be either zero or one and return
3017 /// them in Known. The DemandedElts argument allows us to only collect the known
3018 /// bits that are shared by the requested vector elements.
3019 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
3020                                          unsigned Depth) const {
3021   unsigned BitWidth = Op.getScalarValueSizeInBits();
3022 
3023   KnownBits Known(BitWidth);   // Don't know anything.
3024 
3025   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3026     // We know all of the bits for a constant!
3027     return KnownBits::makeConstant(C->getAPIntValue());
3028   }
3029   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
3030     // We know all of the bits for a constant fp!
3031     return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt());
3032   }
3033 
3034   if (Depth >= MaxRecursionDepth)
3035     return Known;  // Limit search depth.
3036 
3037   KnownBits Known2;
3038   unsigned NumElts = DemandedElts.getBitWidth();
3039   assert((!Op.getValueType().isFixedLengthVector() ||
3040           NumElts == Op.getValueType().getVectorNumElements()) &&
3041          "Unexpected vector size");
3042 
3043   if (!DemandedElts)
3044     return Known;  // No demanded elts, better to assume we don't know anything.
3045 
3046   unsigned Opcode = Op.getOpcode();
3047   switch (Opcode) {
3048   case ISD::MERGE_VALUES:
3049     return computeKnownBits(Op.getOperand(Op.getResNo()), DemandedElts,
3050                             Depth + 1);
3051   case ISD::SPLAT_VECTOR: {
3052     SDValue SrcOp = Op.getOperand(0);
3053     assert(SrcOp.getValueSizeInBits() >= BitWidth &&
3054            "Expected SPLAT_VECTOR implicit truncation");
3055     // Implicitly truncate the bits to match the official semantics of
3056     // SPLAT_VECTOR.
3057     Known = computeKnownBits(SrcOp, Depth + 1).trunc(BitWidth);
3058     break;
3059   }
3060   case ISD::BUILD_VECTOR:
3061     assert(!Op.getValueType().isScalableVector());
3062     // Collect the known bits that are shared by every demanded vector element.
3063     Known.Zero.setAllBits(); Known.One.setAllBits();
3064     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
3065       if (!DemandedElts[i])
3066         continue;
3067 
3068       SDValue SrcOp = Op.getOperand(i);
3069       Known2 = computeKnownBits(SrcOp, Depth + 1);
3070 
3071       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3072       if (SrcOp.getValueSizeInBits() != BitWidth) {
3073         assert(SrcOp.getValueSizeInBits() > BitWidth &&
3074                "Expected BUILD_VECTOR implicit truncation");
3075         Known2 = Known2.trunc(BitWidth);
3076       }
3077 
3078       // Known bits are the values that are shared by every demanded element.
3079       Known = Known.intersectWith(Known2);
3080 
3081       // If we don't know any bits, early out.
3082       if (Known.isUnknown())
3083         break;
3084     }
3085     break;
3086   case ISD::VECTOR_SHUFFLE: {
3087     assert(!Op.getValueType().isScalableVector());
3088     // Collect the known bits that are shared by every vector element referenced
3089     // by the shuffle.
3090     APInt DemandedLHS, DemandedRHS;
3091     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3092     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3093     if (!getShuffleDemandedElts(NumElts, SVN->getMask(), DemandedElts,
3094                                 DemandedLHS, DemandedRHS))
3095       break;
3096 
3097     // Known bits are the values that are shared by every demanded element.
3098     Known.Zero.setAllBits(); Known.One.setAllBits();
3099     if (!!DemandedLHS) {
3100       SDValue LHS = Op.getOperand(0);
3101       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
3102       Known = Known.intersectWith(Known2);
3103     }
3104     // If we don't know any bits, early out.
3105     if (Known.isUnknown())
3106       break;
3107     if (!!DemandedRHS) {
3108       SDValue RHS = Op.getOperand(1);
3109       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
3110       Known = Known.intersectWith(Known2);
3111     }
3112     break;
3113   }
3114   case ISD::VSCALE: {
3115     const Function &F = getMachineFunction().getFunction();
3116     const APInt &Multiplier = Op.getConstantOperandAPInt(0);
3117     Known = getVScaleRange(&F, BitWidth).multiply(Multiplier).toKnownBits();
3118     break;
3119   }
3120   case ISD::CONCAT_VECTORS: {
3121     if (Op.getValueType().isScalableVector())
3122       break;
3123     // Split DemandedElts and test each of the demanded subvectors.
3124     Known.Zero.setAllBits(); Known.One.setAllBits();
3125     EVT SubVectorVT = Op.getOperand(0).getValueType();
3126     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3127     unsigned NumSubVectors = Op.getNumOperands();
3128     for (unsigned i = 0; i != NumSubVectors; ++i) {
3129       APInt DemandedSub =
3130           DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
3131       if (!!DemandedSub) {
3132         SDValue Sub = Op.getOperand(i);
3133         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
3134         Known = Known.intersectWith(Known2);
3135       }
3136       // If we don't know any bits, early out.
3137       if (Known.isUnknown())
3138         break;
3139     }
3140     break;
3141   }
3142   case ISD::INSERT_SUBVECTOR: {
3143     if (Op.getValueType().isScalableVector())
3144       break;
3145     // Demand any elements from the subvector and the remainder from the src its
3146     // inserted into.
3147     SDValue Src = Op.getOperand(0);
3148     SDValue Sub = Op.getOperand(1);
3149     uint64_t Idx = Op.getConstantOperandVal(2);
3150     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3151     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3152     APInt DemandedSrcElts = DemandedElts;
3153     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
3154 
3155     Known.One.setAllBits();
3156     Known.Zero.setAllBits();
3157     if (!!DemandedSubElts) {
3158       Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
3159       if (Known.isUnknown())
3160         break; // early-out.
3161     }
3162     if (!!DemandedSrcElts) {
3163       Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
3164       Known = Known.intersectWith(Known2);
3165     }
3166     break;
3167   }
3168   case ISD::EXTRACT_SUBVECTOR: {
3169     // Offset the demanded elts by the subvector index.
3170     SDValue Src = Op.getOperand(0);
3171     // Bail until we can represent demanded elements for scalable vectors.
3172     if (Op.getValueType().isScalableVector() || Src.getValueType().isScalableVector())
3173       break;
3174     uint64_t Idx = Op.getConstantOperandVal(1);
3175     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3176     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
3177     Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
3178     break;
3179   }
3180   case ISD::SCALAR_TO_VECTOR: {
3181     if (Op.getValueType().isScalableVector())
3182       break;
3183     // We know about scalar_to_vector as much as we know about it source,
3184     // which becomes the first element of otherwise unknown vector.
3185     if (DemandedElts != 1)
3186       break;
3187 
3188     SDValue N0 = Op.getOperand(0);
3189     Known = computeKnownBits(N0, Depth + 1);
3190     if (N0.getValueSizeInBits() != BitWidth)
3191       Known = Known.trunc(BitWidth);
3192 
3193     break;
3194   }
3195   case ISD::BITCAST: {
3196     if (Op.getValueType().isScalableVector())
3197       break;
3198 
3199     SDValue N0 = Op.getOperand(0);
3200     EVT SubVT = N0.getValueType();
3201     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
3202 
3203     // Ignore bitcasts from unsupported types.
3204     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
3205       break;
3206 
3207     // Fast handling of 'identity' bitcasts.
3208     if (BitWidth == SubBitWidth) {
3209       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
3210       break;
3211     }
3212 
3213     bool IsLE = getDataLayout().isLittleEndian();
3214 
3215     // Bitcast 'small element' vector to 'large element' scalar/vector.
3216     if ((BitWidth % SubBitWidth) == 0) {
3217       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
3218 
3219       // Collect known bits for the (larger) output by collecting the known
3220       // bits from each set of sub elements and shift these into place.
3221       // We need to separately call computeKnownBits for each set of
3222       // sub elements as the knownbits for each is likely to be different.
3223       unsigned SubScale = BitWidth / SubBitWidth;
3224       APInt SubDemandedElts(NumElts * SubScale, 0);
3225       for (unsigned i = 0; i != NumElts; ++i)
3226         if (DemandedElts[i])
3227           SubDemandedElts.setBit(i * SubScale);
3228 
3229       for (unsigned i = 0; i != SubScale; ++i) {
3230         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
3231                          Depth + 1);
3232         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
3233         Known.insertBits(Known2, SubBitWidth * Shifts);
3234       }
3235     }
3236 
3237     // Bitcast 'large element' scalar/vector to 'small element' vector.
3238     if ((SubBitWidth % BitWidth) == 0) {
3239       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
3240 
3241       // Collect known bits for the (smaller) output by collecting the known
3242       // bits from the overlapping larger input elements and extracting the
3243       // sub sections we actually care about.
3244       unsigned SubScale = SubBitWidth / BitWidth;
3245       APInt SubDemandedElts =
3246           APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale);
3247       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
3248 
3249       Known.Zero.setAllBits(); Known.One.setAllBits();
3250       for (unsigned i = 0; i != NumElts; ++i)
3251         if (DemandedElts[i]) {
3252           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
3253           unsigned Offset = (Shifts % SubScale) * BitWidth;
3254           Known = Known.intersectWith(Known2.extractBits(BitWidth, Offset));
3255           // If we don't know any bits, early out.
3256           if (Known.isUnknown())
3257             break;
3258         }
3259     }
3260     break;
3261   }
3262   case ISD::AND:
3263     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3264     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3265 
3266     Known &= Known2;
3267     break;
3268   case ISD::OR:
3269     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3270     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3271 
3272     Known |= Known2;
3273     break;
3274   case ISD::XOR:
3275     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3276     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3277 
3278     Known ^= Known2;
3279     break;
3280   case ISD::MUL: {
3281     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3282     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3283     bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3284     // TODO: SelfMultiply can be poison, but not undef.
3285     if (SelfMultiply)
3286       SelfMultiply &= isGuaranteedNotToBeUndefOrPoison(
3287           Op.getOperand(0), DemandedElts, false, Depth + 1);
3288     Known = KnownBits::mul(Known, Known2, SelfMultiply);
3289 
3290     // If the multiplication is known not to overflow, the product of a number
3291     // with itself is non-negative. Only do this if we didn't already computed
3292     // the opposite value for the sign bit.
3293     if (Op->getFlags().hasNoSignedWrap() &&
3294         Op.getOperand(0) == Op.getOperand(1) &&
3295         !Known.isNegative())
3296       Known.makeNonNegative();
3297     break;
3298   }
3299   case ISD::MULHU: {
3300     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3301     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3302     Known = KnownBits::mulhu(Known, Known2);
3303     break;
3304   }
3305   case ISD::MULHS: {
3306     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3307     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3308     Known = KnownBits::mulhs(Known, Known2);
3309     break;
3310   }
3311   case ISD::UMUL_LOHI: {
3312     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3313     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3314     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3315     bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3316     if (Op.getResNo() == 0)
3317       Known = KnownBits::mul(Known, Known2, SelfMultiply);
3318     else
3319       Known = KnownBits::mulhu(Known, Known2);
3320     break;
3321   }
3322   case ISD::SMUL_LOHI: {
3323     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3324     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3325     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3326     bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3327     if (Op.getResNo() == 0)
3328       Known = KnownBits::mul(Known, Known2, SelfMultiply);
3329     else
3330       Known = KnownBits::mulhs(Known, Known2);
3331     break;
3332   }
3333   case ISD::AVGCEILU: {
3334     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3335     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3336     Known = Known.zext(BitWidth + 1);
3337     Known2 = Known2.zext(BitWidth + 1);
3338     KnownBits One = KnownBits::makeConstant(APInt(1, 1));
3339     Known = KnownBits::computeForAddCarry(Known, Known2, One);
3340     Known = Known.extractBits(BitWidth, 1);
3341     break;
3342   }
3343   case ISD::SELECT:
3344   case ISD::VSELECT:
3345     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3346     // If we don't know any bits, early out.
3347     if (Known.isUnknown())
3348       break;
3349     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
3350 
3351     // Only known if known in both the LHS and RHS.
3352     Known = Known.intersectWith(Known2);
3353     break;
3354   case ISD::SELECT_CC:
3355     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
3356     // If we don't know any bits, early out.
3357     if (Known.isUnknown())
3358       break;
3359     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3360 
3361     // Only known if known in both the LHS and RHS.
3362     Known = Known.intersectWith(Known2);
3363     break;
3364   case ISD::SMULO:
3365   case ISD::UMULO:
3366     if (Op.getResNo() != 1)
3367       break;
3368     // The boolean result conforms to getBooleanContents.
3369     // If we know the result of a setcc has the top bits zero, use this info.
3370     // We know that we have an integer-based boolean since these operations
3371     // are only available for integer.
3372     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3373             TargetLowering::ZeroOrOneBooleanContent &&
3374         BitWidth > 1)
3375       Known.Zero.setBitsFrom(1);
3376     break;
3377   case ISD::SETCC:
3378   case ISD::SETCCCARRY:
3379   case ISD::STRICT_FSETCC:
3380   case ISD::STRICT_FSETCCS: {
3381     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3382     // If we know the result of a setcc has the top bits zero, use this info.
3383     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3384             TargetLowering::ZeroOrOneBooleanContent &&
3385         BitWidth > 1)
3386       Known.Zero.setBitsFrom(1);
3387     break;
3388   }
3389   case ISD::SHL:
3390     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3391     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3392     Known = KnownBits::shl(Known, Known2);
3393 
3394     // Minimum shift low bits are known zero.
3395     if (const APInt *ShMinAmt =
3396             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3397       Known.Zero.setLowBits(ShMinAmt->getZExtValue());
3398     break;
3399   case ISD::SRL:
3400     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3401     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3402     Known = KnownBits::lshr(Known, Known2);
3403 
3404     // Minimum shift high bits are known zero.
3405     if (const APInt *ShMinAmt =
3406             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3407       Known.Zero.setHighBits(ShMinAmt->getZExtValue());
3408     break;
3409   case ISD::SRA:
3410     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3411     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3412     Known = KnownBits::ashr(Known, Known2);
3413     break;
3414   case ISD::FSHL:
3415   case ISD::FSHR:
3416     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
3417       unsigned Amt = C->getAPIntValue().urem(BitWidth);
3418 
3419       // For fshl, 0-shift returns the 1st arg.
3420       // For fshr, 0-shift returns the 2nd arg.
3421       if (Amt == 0) {
3422         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
3423                                  DemandedElts, Depth + 1);
3424         break;
3425       }
3426 
3427       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3428       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3429       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3430       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3431       if (Opcode == ISD::FSHL) {
3432         Known.One <<= Amt;
3433         Known.Zero <<= Amt;
3434         Known2.One.lshrInPlace(BitWidth - Amt);
3435         Known2.Zero.lshrInPlace(BitWidth - Amt);
3436       } else {
3437         Known.One <<= BitWidth - Amt;
3438         Known.Zero <<= BitWidth - Amt;
3439         Known2.One.lshrInPlace(Amt);
3440         Known2.Zero.lshrInPlace(Amt);
3441       }
3442       Known = Known.unionWith(Known2);
3443     }
3444     break;
3445   case ISD::SHL_PARTS:
3446   case ISD::SRA_PARTS:
3447   case ISD::SRL_PARTS: {
3448     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3449 
3450     // Collect lo/hi source values and concatenate.
3451     unsigned LoBits = Op.getOperand(0).getScalarValueSizeInBits();
3452     unsigned HiBits = Op.getOperand(1).getScalarValueSizeInBits();
3453     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3454     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3455     Known = Known2.concat(Known);
3456 
3457     // Collect shift amount.
3458     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3459 
3460     if (Opcode == ISD::SHL_PARTS)
3461       Known = KnownBits::shl(Known, Known2);
3462     else if (Opcode == ISD::SRA_PARTS)
3463       Known = KnownBits::ashr(Known, Known2);
3464     else // if (Opcode == ISD::SRL_PARTS)
3465       Known = KnownBits::lshr(Known, Known2);
3466 
3467     // TODO: Minimum shift low/high bits are known zero.
3468 
3469     if (Op.getResNo() == 0)
3470       Known = Known.extractBits(LoBits, 0);
3471     else
3472       Known = Known.extractBits(HiBits, LoBits);
3473     break;
3474   }
3475   case ISD::SIGN_EXTEND_INREG: {
3476     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3477     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3478     Known = Known.sextInReg(EVT.getScalarSizeInBits());
3479     break;
3480   }
3481   case ISD::CTTZ:
3482   case ISD::CTTZ_ZERO_UNDEF: {
3483     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3484     // If we have a known 1, its position is our upper bound.
3485     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3486     unsigned LowBits = llvm::bit_width(PossibleTZ);
3487     Known.Zero.setBitsFrom(LowBits);
3488     break;
3489   }
3490   case ISD::CTLZ:
3491   case ISD::CTLZ_ZERO_UNDEF: {
3492     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3493     // If we have a known 1, its position is our upper bound.
3494     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3495     unsigned LowBits = llvm::bit_width(PossibleLZ);
3496     Known.Zero.setBitsFrom(LowBits);
3497     break;
3498   }
3499   case ISD::CTPOP: {
3500     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3501     // If we know some of the bits are zero, they can't be one.
3502     unsigned PossibleOnes = Known2.countMaxPopulation();
3503     Known.Zero.setBitsFrom(llvm::bit_width(PossibleOnes));
3504     break;
3505   }
3506   case ISD::PARITY: {
3507     // Parity returns 0 everywhere but the LSB.
3508     Known.Zero.setBitsFrom(1);
3509     break;
3510   }
3511   case ISD::LOAD: {
3512     LoadSDNode *LD = cast<LoadSDNode>(Op);
3513     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3514     if (ISD::isNON_EXTLoad(LD) && Cst) {
3515       // Determine any common known bits from the loaded constant pool value.
3516       Type *CstTy = Cst->getType();
3517       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits() &&
3518           !Op.getValueType().isScalableVector()) {
3519         // If its a vector splat, then we can (quickly) reuse the scalar path.
3520         // NOTE: We assume all elements match and none are UNDEF.
3521         if (CstTy->isVectorTy()) {
3522           if (const Constant *Splat = Cst->getSplatValue()) {
3523             Cst = Splat;
3524             CstTy = Cst->getType();
3525           }
3526         }
3527         // TODO - do we need to handle different bitwidths?
3528         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3529           // Iterate across all vector elements finding common known bits.
3530           Known.One.setAllBits();
3531           Known.Zero.setAllBits();
3532           for (unsigned i = 0; i != NumElts; ++i) {
3533             if (!DemandedElts[i])
3534               continue;
3535             if (Constant *Elt = Cst->getAggregateElement(i)) {
3536               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3537                 const APInt &Value = CInt->getValue();
3538                 Known.One &= Value;
3539                 Known.Zero &= ~Value;
3540                 continue;
3541               }
3542               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3543                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3544                 Known.One &= Value;
3545                 Known.Zero &= ~Value;
3546                 continue;
3547               }
3548             }
3549             Known.One.clearAllBits();
3550             Known.Zero.clearAllBits();
3551             break;
3552           }
3553         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3554           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3555             Known = KnownBits::makeConstant(CInt->getValue());
3556           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3557             Known =
3558                 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt());
3559           }
3560         }
3561       }
3562     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3563       // If this is a ZEXTLoad and we are looking at the loaded value.
3564       EVT VT = LD->getMemoryVT();
3565       unsigned MemBits = VT.getScalarSizeInBits();
3566       Known.Zero.setBitsFrom(MemBits);
3567     } else if (const MDNode *Ranges = LD->getRanges()) {
3568       EVT VT = LD->getValueType(0);
3569 
3570       // TODO: Handle for extending loads
3571       if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
3572         if (VT.isVector()) {
3573           // Handle truncation to the first demanded element.
3574           // TODO: Figure out which demanded elements are covered
3575           if (DemandedElts != 1 || !getDataLayout().isLittleEndian())
3576             break;
3577 
3578           // Handle the case where a load has a vector type, but scalar memory
3579           // with an attached range.
3580           EVT MemVT = LD->getMemoryVT();
3581           KnownBits KnownFull(MemVT.getSizeInBits());
3582 
3583           computeKnownBitsFromRangeMetadata(*Ranges, KnownFull);
3584           Known = KnownFull.trunc(BitWidth);
3585         } else
3586           computeKnownBitsFromRangeMetadata(*Ranges, Known);
3587       }
3588     }
3589     break;
3590   }
3591   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3592     if (Op.getValueType().isScalableVector())
3593       break;
3594     EVT InVT = Op.getOperand(0).getValueType();
3595     APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements());
3596     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3597     Known = Known.zext(BitWidth);
3598     break;
3599   }
3600   case ISD::ZERO_EXTEND: {
3601     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3602     Known = Known.zext(BitWidth);
3603     break;
3604   }
3605   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3606     if (Op.getValueType().isScalableVector())
3607       break;
3608     EVT InVT = Op.getOperand(0).getValueType();
3609     APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements());
3610     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3611     // If the sign bit is known to be zero or one, then sext will extend
3612     // it to the top bits, else it will just zext.
3613     Known = Known.sext(BitWidth);
3614     break;
3615   }
3616   case ISD::SIGN_EXTEND: {
3617     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3618     // If the sign bit is known to be zero or one, then sext will extend
3619     // it to the top bits, else it will just zext.
3620     Known = Known.sext(BitWidth);
3621     break;
3622   }
3623   case ISD::ANY_EXTEND_VECTOR_INREG: {
3624     if (Op.getValueType().isScalableVector())
3625       break;
3626     EVT InVT = Op.getOperand(0).getValueType();
3627     APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements());
3628     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3629     Known = Known.anyext(BitWidth);
3630     break;
3631   }
3632   case ISD::ANY_EXTEND: {
3633     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3634     Known = Known.anyext(BitWidth);
3635     break;
3636   }
3637   case ISD::TRUNCATE: {
3638     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3639     Known = Known.trunc(BitWidth);
3640     break;
3641   }
3642   case ISD::AssertZext: {
3643     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3644     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3645     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3646     Known.Zero |= (~InMask);
3647     Known.One  &= (~Known.Zero);
3648     break;
3649   }
3650   case ISD::AssertAlign: {
3651     unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
3652     assert(LogOfAlign != 0);
3653 
3654     // TODO: Should use maximum with source
3655     // If a node is guaranteed to be aligned, set low zero bits accordingly as
3656     // well as clearing one bits.
3657     Known.Zero.setLowBits(LogOfAlign);
3658     Known.One.clearLowBits(LogOfAlign);
3659     break;
3660   }
3661   case ISD::FGETSIGN:
3662     // All bits are zero except the low bit.
3663     Known.Zero.setBitsFrom(1);
3664     break;
3665   case ISD::ADD:
3666   case ISD::SUB: {
3667     SDNodeFlags Flags = Op.getNode()->getFlags();
3668     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3669     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3670     Known = KnownBits::computeForAddSub(Op.getOpcode() == ISD::ADD,
3671                                         Flags.hasNoSignedWrap(), Known, Known2);
3672     break;
3673   }
3674   case ISD::USUBO:
3675   case ISD::SSUBO:
3676   case ISD::USUBO_CARRY:
3677   case ISD::SSUBO_CARRY:
3678     if (Op.getResNo() == 1) {
3679       // If we know the result of a setcc has the top bits zero, use this info.
3680       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3681               TargetLowering::ZeroOrOneBooleanContent &&
3682           BitWidth > 1)
3683         Known.Zero.setBitsFrom(1);
3684       break;
3685     }
3686     [[fallthrough]];
3687   case ISD::SUBC: {
3688     assert(Op.getResNo() == 0 &&
3689            "We only compute knownbits for the difference here.");
3690 
3691     // TODO: Compute influence of the carry operand.
3692     if (Opcode == ISD::USUBO_CARRY || Opcode == ISD::SSUBO_CARRY)
3693       break;
3694 
3695     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3696     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3697     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3698                                         Known, Known2);
3699     break;
3700   }
3701   case ISD::UADDO:
3702   case ISD::SADDO:
3703   case ISD::UADDO_CARRY:
3704   case ISD::SADDO_CARRY:
3705     if (Op.getResNo() == 1) {
3706       // If we know the result of a setcc has the top bits zero, use this info.
3707       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3708               TargetLowering::ZeroOrOneBooleanContent &&
3709           BitWidth > 1)
3710         Known.Zero.setBitsFrom(1);
3711       break;
3712     }
3713     [[fallthrough]];
3714   case ISD::ADDC:
3715   case ISD::ADDE: {
3716     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3717 
3718     // With ADDE and UADDO_CARRY, a carry bit may be added in.
3719     KnownBits Carry(1);
3720     if (Opcode == ISD::ADDE)
3721       // Can't track carry from glue, set carry to unknown.
3722       Carry.resetAll();
3723     else if (Opcode == ISD::UADDO_CARRY || Opcode == ISD::SADDO_CARRY)
3724       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3725       // the trouble (how often will we find a known carry bit). And I haven't
3726       // tested this very much yet, but something like this might work:
3727       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3728       //   Carry = Carry.zextOrTrunc(1, false);
3729       Carry.resetAll();
3730     else
3731       Carry.setAllZero();
3732 
3733     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3734     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3735     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3736     break;
3737   }
3738   case ISD::UDIV: {
3739     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3740     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3741     Known = KnownBits::udiv(Known, Known2, Op->getFlags().hasExact());
3742     break;
3743   }
3744   case ISD::SDIV: {
3745     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3746     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3747     Known = KnownBits::sdiv(Known, Known2, Op->getFlags().hasExact());
3748     break;
3749   }
3750   case ISD::SREM: {
3751     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3752     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3753     Known = KnownBits::srem(Known, Known2);
3754     break;
3755   }
3756   case ISD::UREM: {
3757     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3758     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3759     Known = KnownBits::urem(Known, Known2);
3760     break;
3761   }
3762   case ISD::EXTRACT_ELEMENT: {
3763     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3764     const unsigned Index = Op.getConstantOperandVal(1);
3765     const unsigned EltBitWidth = Op.getValueSizeInBits();
3766 
3767     // Remove low part of known bits mask
3768     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3769     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3770 
3771     // Remove high part of known bit mask
3772     Known = Known.trunc(EltBitWidth);
3773     break;
3774   }
3775   case ISD::EXTRACT_VECTOR_ELT: {
3776     SDValue InVec = Op.getOperand(0);
3777     SDValue EltNo = Op.getOperand(1);
3778     EVT VecVT = InVec.getValueType();
3779     // computeKnownBits not yet implemented for scalable vectors.
3780     if (VecVT.isScalableVector())
3781       break;
3782     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3783     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3784 
3785     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3786     // anything about the extended bits.
3787     if (BitWidth > EltBitWidth)
3788       Known = Known.trunc(EltBitWidth);
3789 
3790     // If we know the element index, just demand that vector element, else for
3791     // an unknown element index, ignore DemandedElts and demand them all.
3792     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
3793     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3794     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3795       DemandedSrcElts =
3796           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3797 
3798     Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
3799     if (BitWidth > EltBitWidth)
3800       Known = Known.anyext(BitWidth);
3801     break;
3802   }
3803   case ISD::INSERT_VECTOR_ELT: {
3804     if (Op.getValueType().isScalableVector())
3805       break;
3806 
3807     // If we know the element index, split the demand between the
3808     // source vector and the inserted element, otherwise assume we need
3809     // the original demanded vector elements and the value.
3810     SDValue InVec = Op.getOperand(0);
3811     SDValue InVal = Op.getOperand(1);
3812     SDValue EltNo = Op.getOperand(2);
3813     bool DemandedVal = true;
3814     APInt DemandedVecElts = DemandedElts;
3815     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3816     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3817       unsigned EltIdx = CEltNo->getZExtValue();
3818       DemandedVal = !!DemandedElts[EltIdx];
3819       DemandedVecElts.clearBit(EltIdx);
3820     }
3821     Known.One.setAllBits();
3822     Known.Zero.setAllBits();
3823     if (DemandedVal) {
3824       Known2 = computeKnownBits(InVal, Depth + 1);
3825       Known = Known.intersectWith(Known2.zextOrTrunc(BitWidth));
3826     }
3827     if (!!DemandedVecElts) {
3828       Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
3829       Known = Known.intersectWith(Known2);
3830     }
3831     break;
3832   }
3833   case ISD::BITREVERSE: {
3834     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3835     Known = Known2.reverseBits();
3836     break;
3837   }
3838   case ISD::BSWAP: {
3839     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3840     Known = Known2.byteSwap();
3841     break;
3842   }
3843   case ISD::ABS: {
3844     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3845     Known = Known2.abs();
3846     break;
3847   }
3848   case ISD::USUBSAT: {
3849     // The result of usubsat will never be larger than the LHS.
3850     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3851     Known.Zero.setHighBits(Known2.countMinLeadingZeros());
3852     break;
3853   }
3854   case ISD::UMIN: {
3855     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3856     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3857     Known = KnownBits::umin(Known, Known2);
3858     break;
3859   }
3860   case ISD::UMAX: {
3861     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3862     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3863     Known = KnownBits::umax(Known, Known2);
3864     break;
3865   }
3866   case ISD::SMIN:
3867   case ISD::SMAX: {
3868     // If we have a clamp pattern, we know that the number of sign bits will be
3869     // the minimum of the clamp min/max range.
3870     bool IsMax = (Opcode == ISD::SMAX);
3871     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3872     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3873       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3874         CstHigh =
3875             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3876     if (CstLow && CstHigh) {
3877       if (!IsMax)
3878         std::swap(CstLow, CstHigh);
3879 
3880       const APInt &ValueLow = CstLow->getAPIntValue();
3881       const APInt &ValueHigh = CstHigh->getAPIntValue();
3882       if (ValueLow.sle(ValueHigh)) {
3883         unsigned LowSignBits = ValueLow.getNumSignBits();
3884         unsigned HighSignBits = ValueHigh.getNumSignBits();
3885         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3886         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3887           Known.One.setHighBits(MinSignBits);
3888           break;
3889         }
3890         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3891           Known.Zero.setHighBits(MinSignBits);
3892           break;
3893         }
3894       }
3895     }
3896 
3897     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3898     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3899     if (IsMax)
3900       Known = KnownBits::smax(Known, Known2);
3901     else
3902       Known = KnownBits::smin(Known, Known2);
3903 
3904     // For SMAX, if CstLow is non-negative we know the result will be
3905     // non-negative and thus all sign bits are 0.
3906     // TODO: There's an equivalent of this for smin with negative constant for
3907     // known ones.
3908     if (IsMax && CstLow) {
3909       const APInt &ValueLow = CstLow->getAPIntValue();
3910       if (ValueLow.isNonNegative()) {
3911         unsigned SignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3912         Known.Zero.setHighBits(std::min(SignBits, ValueLow.getNumSignBits()));
3913       }
3914     }
3915 
3916     break;
3917   }
3918   case ISD::FP_TO_UINT_SAT: {
3919     // FP_TO_UINT_SAT produces an unsigned value that fits in the saturating VT.
3920     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3921     Known.Zero |= APInt::getBitsSetFrom(BitWidth, VT.getScalarSizeInBits());
3922     break;
3923   }
3924   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
3925     if (Op.getResNo() == 1) {
3926       // The boolean result conforms to getBooleanContents.
3927       // If we know the result of a setcc has the top bits zero, use this info.
3928       // We know that we have an integer-based boolean since these operations
3929       // are only available for integer.
3930       if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3931               TargetLowering::ZeroOrOneBooleanContent &&
3932           BitWidth > 1)
3933         Known.Zero.setBitsFrom(1);
3934       break;
3935     }
3936     [[fallthrough]];
3937   case ISD::ATOMIC_CMP_SWAP:
3938   case ISD::ATOMIC_SWAP:
3939   case ISD::ATOMIC_LOAD_ADD:
3940   case ISD::ATOMIC_LOAD_SUB:
3941   case ISD::ATOMIC_LOAD_AND:
3942   case ISD::ATOMIC_LOAD_CLR:
3943   case ISD::ATOMIC_LOAD_OR:
3944   case ISD::ATOMIC_LOAD_XOR:
3945   case ISD::ATOMIC_LOAD_NAND:
3946   case ISD::ATOMIC_LOAD_MIN:
3947   case ISD::ATOMIC_LOAD_MAX:
3948   case ISD::ATOMIC_LOAD_UMIN:
3949   case ISD::ATOMIC_LOAD_UMAX:
3950   case ISD::ATOMIC_LOAD: {
3951     unsigned MemBits =
3952         cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
3953     // If we are looking at the loaded value.
3954     if (Op.getResNo() == 0) {
3955       if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
3956         Known.Zero.setBitsFrom(MemBits);
3957     }
3958     break;
3959   }
3960   case ISD::FrameIndex:
3961   case ISD::TargetFrameIndex:
3962     TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
3963                                        Known, getMachineFunction());
3964     break;
3965 
3966   default:
3967     if (Opcode < ISD::BUILTIN_OP_END)
3968       break;
3969     [[fallthrough]];
3970   case ISD::INTRINSIC_WO_CHAIN:
3971   case ISD::INTRINSIC_W_CHAIN:
3972   case ISD::INTRINSIC_VOID:
3973     // TODO: Probably okay to remove after audit; here to reduce change size
3974     // in initial enablement patch for scalable vectors
3975     if (Op.getValueType().isScalableVector())
3976       break;
3977 
3978     // Allow the target to implement this method for its nodes.
3979     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3980     break;
3981   }
3982 
3983   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3984   return Known;
3985 }
3986 
3987 /// Convert ConstantRange OverflowResult into SelectionDAG::OverflowKind.
3988 static SelectionDAG::OverflowKind mapOverflowResult(ConstantRange::OverflowResult OR) {
3989   switch (OR) {
3990   case ConstantRange::OverflowResult::MayOverflow:
3991     return SelectionDAG::OFK_Sometime;
3992   case ConstantRange::OverflowResult::AlwaysOverflowsLow:
3993   case ConstantRange::OverflowResult::AlwaysOverflowsHigh:
3994     return SelectionDAG::OFK_Always;
3995   case ConstantRange::OverflowResult::NeverOverflows:
3996     return SelectionDAG::OFK_Never;
3997   }
3998   llvm_unreachable("Unknown OverflowResult");
3999 }
4000 
4001 SelectionDAG::OverflowKind
4002 SelectionDAG::computeOverflowForSignedAdd(SDValue N0, SDValue N1) const {
4003   // X + 0 never overflow
4004   if (isNullConstant(N1))
4005     return OFK_Never;
4006 
4007   // If both operands each have at least two sign bits, the addition
4008   // cannot overflow.
4009   if (ComputeNumSignBits(N0) > 1 && ComputeNumSignBits(N1) > 1)
4010     return OFK_Never;
4011 
4012   // TODO: Add ConstantRange::signedAddMayOverflow handling.
4013   return OFK_Sometime;
4014 }
4015 
4016 SelectionDAG::OverflowKind
4017 SelectionDAG::computeOverflowForUnsignedAdd(SDValue N0, SDValue N1) const {
4018   // X + 0 never overflow
4019   if (isNullConstant(N1))
4020     return OFK_Never;
4021 
4022   // mulhi + 1 never overflow
4023   KnownBits N1Known = computeKnownBits(N1);
4024   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
4025       N1Known.getMaxValue().ult(2))
4026     return OFK_Never;
4027 
4028   KnownBits N0Known = computeKnownBits(N0);
4029   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1 &&
4030       N0Known.getMaxValue().ult(2))
4031     return OFK_Never;
4032 
4033   // Fallback to ConstantRange::unsignedAddMayOverflow handling.
4034   ConstantRange N0Range = ConstantRange::fromKnownBits(N0Known, false);
4035   ConstantRange N1Range = ConstantRange::fromKnownBits(N1Known, false);
4036   return mapOverflowResult(N0Range.unsignedAddMayOverflow(N1Range));
4037 }
4038 
4039 SelectionDAG::OverflowKind
4040 SelectionDAG::computeOverflowForSignedSub(SDValue N0, SDValue N1) const {
4041   // X - 0 never overflow
4042   if (isNullConstant(N1))
4043     return OFK_Never;
4044 
4045   // If both operands each have at least two sign bits, the subtraction
4046   // cannot overflow.
4047   if (ComputeNumSignBits(N0) > 1 && ComputeNumSignBits(N1) > 1)
4048     return OFK_Never;
4049 
4050   // TODO: Add ConstantRange::signedSubMayOverflow handling.
4051   return OFK_Sometime;
4052 }
4053 
4054 SelectionDAG::OverflowKind
4055 SelectionDAG::computeOverflowForUnsignedSub(SDValue N0, SDValue N1) const {
4056   // X - 0 never overflow
4057   if (isNullConstant(N1))
4058     return OFK_Never;
4059 
4060   // TODO: Add ConstantRange::unsignedSubMayOverflow handling.
4061   return OFK_Sometime;
4062 }
4063 
4064 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val, unsigned Depth) const {
4065   if (Depth >= MaxRecursionDepth)
4066     return false; // Limit search depth.
4067 
4068   EVT OpVT = Val.getValueType();
4069   unsigned BitWidth = OpVT.getScalarSizeInBits();
4070 
4071   // Is the constant a known power of 2?
4072   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
4073     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
4074 
4075   // A left-shift of a constant one will have exactly one bit set because
4076   // shifting the bit off the end is undefined.
4077   if (Val.getOpcode() == ISD::SHL) {
4078     auto *C = isConstOrConstSplat(Val.getOperand(0));
4079     if (C && C->getAPIntValue() == 1)
4080       return true;
4081   }
4082 
4083   // Similarly, a logical right-shift of a constant sign-bit will have exactly
4084   // one bit set.
4085   if (Val.getOpcode() == ISD::SRL) {
4086     auto *C = isConstOrConstSplat(Val.getOperand(0));
4087     if (C && C->getAPIntValue().isSignMask())
4088       return true;
4089   }
4090 
4091   // Are all operands of a build vector constant powers of two?
4092   if (Val.getOpcode() == ISD::BUILD_VECTOR)
4093     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
4094           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
4095             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
4096           return false;
4097         }))
4098       return true;
4099 
4100   // Is the operand of a splat vector a constant power of two?
4101   if (Val.getOpcode() == ISD::SPLAT_VECTOR)
4102     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0)))
4103       if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2())
4104         return true;
4105 
4106   // vscale(power-of-two) is a power-of-two for some targets
4107   if (Val.getOpcode() == ISD::VSCALE &&
4108       getTargetLoweringInfo().isVScaleKnownToBeAPowerOfTwo() &&
4109       isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1))
4110     return true;
4111 
4112   // More could be done here, though the above checks are enough
4113   // to handle some common cases.
4114   return false;
4115 }
4116 
4117 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
4118   EVT VT = Op.getValueType();
4119 
4120   // Since the number of lanes in a scalable vector is unknown at compile time,
4121   // we track one bit which is implicitly broadcast to all lanes.  This means
4122   // that all lanes in a scalable vector are considered demanded.
4123   APInt DemandedElts = VT.isFixedLengthVector()
4124                            ? APInt::getAllOnes(VT.getVectorNumElements())
4125                            : APInt(1, 1);
4126   return ComputeNumSignBits(Op, DemandedElts, Depth);
4127 }
4128 
4129 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
4130                                           unsigned Depth) const {
4131   EVT VT = Op.getValueType();
4132   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
4133   unsigned VTBits = VT.getScalarSizeInBits();
4134   unsigned NumElts = DemandedElts.getBitWidth();
4135   unsigned Tmp, Tmp2;
4136   unsigned FirstAnswer = 1;
4137 
4138   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
4139     const APInt &Val = C->getAPIntValue();
4140     return Val.getNumSignBits();
4141   }
4142 
4143   if (Depth >= MaxRecursionDepth)
4144     return 1;  // Limit search depth.
4145 
4146   if (!DemandedElts)
4147     return 1;  // No demanded elts, better to assume we don't know anything.
4148 
4149   unsigned Opcode = Op.getOpcode();
4150   switch (Opcode) {
4151   default: break;
4152   case ISD::AssertSext:
4153     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
4154     return VTBits-Tmp+1;
4155   case ISD::AssertZext:
4156     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
4157     return VTBits-Tmp;
4158   case ISD::MERGE_VALUES:
4159     return ComputeNumSignBits(Op.getOperand(Op.getResNo()), DemandedElts,
4160                               Depth + 1);
4161   case ISD::SPLAT_VECTOR: {
4162     // Check if the sign bits of source go down as far as the truncated value.
4163     unsigned NumSrcBits = Op.getOperand(0).getValueSizeInBits();
4164     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4165     if (NumSrcSignBits > (NumSrcBits - VTBits))
4166       return NumSrcSignBits - (NumSrcBits - VTBits);
4167     break;
4168   }
4169   case ISD::BUILD_VECTOR:
4170     assert(!VT.isScalableVector());
4171     Tmp = VTBits;
4172     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
4173       if (!DemandedElts[i])
4174         continue;
4175 
4176       SDValue SrcOp = Op.getOperand(i);
4177       // BUILD_VECTOR can implicitly truncate sources, we handle this specially
4178       // for constant nodes to ensure we only look at the sign bits.
4179       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SrcOp)) {
4180         APInt T = C->getAPIntValue().trunc(VTBits);
4181         Tmp2 = T.getNumSignBits();
4182       } else {
4183         Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
4184 
4185         if (SrcOp.getValueSizeInBits() != VTBits) {
4186           assert(SrcOp.getValueSizeInBits() > VTBits &&
4187                  "Expected BUILD_VECTOR implicit truncation");
4188           unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
4189           Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
4190         }
4191       }
4192       Tmp = std::min(Tmp, Tmp2);
4193     }
4194     return Tmp;
4195 
4196   case ISD::VECTOR_SHUFFLE: {
4197     // Collect the minimum number of sign bits that are shared by every vector
4198     // element referenced by the shuffle.
4199     APInt DemandedLHS, DemandedRHS;
4200     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
4201     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
4202     if (!getShuffleDemandedElts(NumElts, SVN->getMask(), DemandedElts,
4203                                 DemandedLHS, DemandedRHS))
4204       return 1;
4205 
4206     Tmp = std::numeric_limits<unsigned>::max();
4207     if (!!DemandedLHS)
4208       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
4209     if (!!DemandedRHS) {
4210       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
4211       Tmp = std::min(Tmp, Tmp2);
4212     }
4213     // If we don't know anything, early out and try computeKnownBits fall-back.
4214     if (Tmp == 1)
4215       break;
4216     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4217     return Tmp;
4218   }
4219 
4220   case ISD::BITCAST: {
4221     if (VT.isScalableVector())
4222       break;
4223     SDValue N0 = Op.getOperand(0);
4224     EVT SrcVT = N0.getValueType();
4225     unsigned SrcBits = SrcVT.getScalarSizeInBits();
4226 
4227     // Ignore bitcasts from unsupported types..
4228     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
4229       break;
4230 
4231     // Fast handling of 'identity' bitcasts.
4232     if (VTBits == SrcBits)
4233       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
4234 
4235     bool IsLE = getDataLayout().isLittleEndian();
4236 
4237     // Bitcast 'large element' scalar/vector to 'small element' vector.
4238     if ((SrcBits % VTBits) == 0) {
4239       assert(VT.isVector() && "Expected bitcast to vector");
4240 
4241       unsigned Scale = SrcBits / VTBits;
4242       APInt SrcDemandedElts =
4243           APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale);
4244 
4245       // Fast case - sign splat can be simply split across the small elements.
4246       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
4247       if (Tmp == SrcBits)
4248         return VTBits;
4249 
4250       // Slow case - determine how far the sign extends into each sub-element.
4251       Tmp2 = VTBits;
4252       for (unsigned i = 0; i != NumElts; ++i)
4253         if (DemandedElts[i]) {
4254           unsigned SubOffset = i % Scale;
4255           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
4256           SubOffset = SubOffset * VTBits;
4257           if (Tmp <= SubOffset)
4258             return 1;
4259           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
4260         }
4261       return Tmp2;
4262     }
4263     break;
4264   }
4265 
4266   case ISD::FP_TO_SINT_SAT:
4267     // FP_TO_SINT_SAT produces a signed value that fits in the saturating VT.
4268     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
4269     return VTBits - Tmp + 1;
4270   case ISD::SIGN_EXTEND:
4271     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
4272     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
4273   case ISD::SIGN_EXTEND_INREG:
4274     // Max of the input and what this extends.
4275     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
4276     Tmp = VTBits-Tmp+1;
4277     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
4278     return std::max(Tmp, Tmp2);
4279   case ISD::SIGN_EXTEND_VECTOR_INREG: {
4280     if (VT.isScalableVector())
4281       break;
4282     SDValue Src = Op.getOperand(0);
4283     EVT SrcVT = Src.getValueType();
4284     APInt DemandedSrcElts = DemandedElts.zext(SrcVT.getVectorNumElements());
4285     Tmp = VTBits - SrcVT.getScalarSizeInBits();
4286     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
4287   }
4288   case ISD::SRA:
4289     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4290     // SRA X, C -> adds C sign bits.
4291     if (const APInt *ShAmt =
4292             getValidMinimumShiftAmountConstant(Op, DemandedElts))
4293       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
4294     return Tmp;
4295   case ISD::SHL:
4296     if (const APInt *ShAmt =
4297             getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
4298       // shl destroys sign bits, ensure it doesn't shift out all sign bits.
4299       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4300       if (ShAmt->ult(Tmp))
4301         return Tmp - ShAmt->getZExtValue();
4302     }
4303     break;
4304   case ISD::AND:
4305   case ISD::OR:
4306   case ISD::XOR:    // NOT is handled here.
4307     // Logical binary ops preserve the number of sign bits at the worst.
4308     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
4309     if (Tmp != 1) {
4310       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
4311       FirstAnswer = std::min(Tmp, Tmp2);
4312       // We computed what we know about the sign bits as our first
4313       // answer. Now proceed to the generic code that uses
4314       // computeKnownBits, and pick whichever answer is better.
4315     }
4316     break;
4317 
4318   case ISD::SELECT:
4319   case ISD::VSELECT:
4320     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
4321     if (Tmp == 1) return 1;  // Early out.
4322     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
4323     return std::min(Tmp, Tmp2);
4324   case ISD::SELECT_CC:
4325     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
4326     if (Tmp == 1) return 1;  // Early out.
4327     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
4328     return std::min(Tmp, Tmp2);
4329 
4330   case ISD::SMIN:
4331   case ISD::SMAX: {
4332     // If we have a clamp pattern, we know that the number of sign bits will be
4333     // the minimum of the clamp min/max range.
4334     bool IsMax = (Opcode == ISD::SMAX);
4335     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
4336     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
4337       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
4338         CstHigh =
4339             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
4340     if (CstLow && CstHigh) {
4341       if (!IsMax)
4342         std::swap(CstLow, CstHigh);
4343       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
4344         Tmp = CstLow->getAPIntValue().getNumSignBits();
4345         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
4346         return std::min(Tmp, Tmp2);
4347       }
4348     }
4349 
4350     // Fallback - just get the minimum number of sign bits of the operands.
4351     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4352     if (Tmp == 1)
4353       return 1;  // Early out.
4354     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4355     return std::min(Tmp, Tmp2);
4356   }
4357   case ISD::UMIN:
4358   case ISD::UMAX:
4359     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4360     if (Tmp == 1)
4361       return 1;  // Early out.
4362     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4363     return std::min(Tmp, Tmp2);
4364   case ISD::SADDO:
4365   case ISD::UADDO:
4366   case ISD::SADDO_CARRY:
4367   case ISD::UADDO_CARRY:
4368   case ISD::SSUBO:
4369   case ISD::USUBO:
4370   case ISD::SSUBO_CARRY:
4371   case ISD::USUBO_CARRY:
4372   case ISD::SMULO:
4373   case ISD::UMULO:
4374     if (Op.getResNo() != 1)
4375       break;
4376     // The boolean result conforms to getBooleanContents.  Fall through.
4377     // If setcc returns 0/-1, all bits are sign bits.
4378     // We know that we have an integer-based boolean since these operations
4379     // are only available for integer.
4380     if (TLI->getBooleanContents(VT.isVector(), false) ==
4381         TargetLowering::ZeroOrNegativeOneBooleanContent)
4382       return VTBits;
4383     break;
4384   case ISD::SETCC:
4385   case ISD::SETCCCARRY:
4386   case ISD::STRICT_FSETCC:
4387   case ISD::STRICT_FSETCCS: {
4388     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
4389     // If setcc returns 0/-1, all bits are sign bits.
4390     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
4391         TargetLowering::ZeroOrNegativeOneBooleanContent)
4392       return VTBits;
4393     break;
4394   }
4395   case ISD::ROTL:
4396   case ISD::ROTR:
4397     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4398 
4399     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
4400     if (Tmp == VTBits)
4401       return VTBits;
4402 
4403     if (ConstantSDNode *C =
4404             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
4405       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
4406 
4407       // Handle rotate right by N like a rotate left by 32-N.
4408       if (Opcode == ISD::ROTR)
4409         RotAmt = (VTBits - RotAmt) % VTBits;
4410 
4411       // If we aren't rotating out all of the known-in sign bits, return the
4412       // number that are left.  This handles rotl(sext(x), 1) for example.
4413       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
4414     }
4415     break;
4416   case ISD::ADD:
4417   case ISD::ADDC:
4418     // Add can have at most one carry bit.  Thus we know that the output
4419     // is, at worst, one more bit than the inputs.
4420     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4421     if (Tmp == 1) return 1; // Early out.
4422 
4423     // Special case decrementing a value (ADD X, -1):
4424     if (ConstantSDNode *CRHS =
4425             isConstOrConstSplat(Op.getOperand(1), DemandedElts))
4426       if (CRHS->isAllOnes()) {
4427         KnownBits Known =
4428             computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4429 
4430         // If the input is known to be 0 or 1, the output is 0/-1, which is all
4431         // sign bits set.
4432         if ((Known.Zero | 1).isAllOnes())
4433           return VTBits;
4434 
4435         // If we are subtracting one from a positive number, there is no carry
4436         // out of the result.
4437         if (Known.isNonNegative())
4438           return Tmp;
4439       }
4440 
4441     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4442     if (Tmp2 == 1) return 1; // Early out.
4443     return std::min(Tmp, Tmp2) - 1;
4444   case ISD::SUB:
4445     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4446     if (Tmp2 == 1) return 1; // Early out.
4447 
4448     // Handle NEG.
4449     if (ConstantSDNode *CLHS =
4450             isConstOrConstSplat(Op.getOperand(0), DemandedElts))
4451       if (CLHS->isZero()) {
4452         KnownBits Known =
4453             computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4454         // If the input is known to be 0 or 1, the output is 0/-1, which is all
4455         // sign bits set.
4456         if ((Known.Zero | 1).isAllOnes())
4457           return VTBits;
4458 
4459         // If the input is known to be positive (the sign bit is known clear),
4460         // the output of the NEG has the same number of sign bits as the input.
4461         if (Known.isNonNegative())
4462           return Tmp2;
4463 
4464         // Otherwise, we treat this like a SUB.
4465       }
4466 
4467     // Sub can have at most one carry bit.  Thus we know that the output
4468     // is, at worst, one more bit than the inputs.
4469     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4470     if (Tmp == 1) return 1; // Early out.
4471     return std::min(Tmp, Tmp2) - 1;
4472   case ISD::MUL: {
4473     // The output of the Mul can be at most twice the valid bits in the inputs.
4474     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4475     if (SignBitsOp0 == 1)
4476       break;
4477     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
4478     if (SignBitsOp1 == 1)
4479       break;
4480     unsigned OutValidBits =
4481         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
4482     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
4483   }
4484   case ISD::SREM:
4485     // The sign bit is the LHS's sign bit, except when the result of the
4486     // remainder is zero. The magnitude of the result should be less than or
4487     // equal to the magnitude of the LHS. Therefore, the result should have
4488     // at least as many sign bits as the left hand side.
4489     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4490   case ISD::TRUNCATE: {
4491     // Check if the sign bits of source go down as far as the truncated value.
4492     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
4493     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4494     if (NumSrcSignBits > (NumSrcBits - VTBits))
4495       return NumSrcSignBits - (NumSrcBits - VTBits);
4496     break;
4497   }
4498   case ISD::EXTRACT_ELEMENT: {
4499     if (VT.isScalableVector())
4500       break;
4501     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
4502     const int BitWidth = Op.getValueSizeInBits();
4503     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
4504 
4505     // Get reverse index (starting from 1), Op1 value indexes elements from
4506     // little end. Sign starts at big end.
4507     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
4508 
4509     // If the sign portion ends in our element the subtraction gives correct
4510     // result. Otherwise it gives either negative or > bitwidth result
4511     return std::clamp(KnownSign - rIndex * BitWidth, 0, BitWidth);
4512   }
4513   case ISD::INSERT_VECTOR_ELT: {
4514     if (VT.isScalableVector())
4515       break;
4516     // If we know the element index, split the demand between the
4517     // source vector and the inserted element, otherwise assume we need
4518     // the original demanded vector elements and the value.
4519     SDValue InVec = Op.getOperand(0);
4520     SDValue InVal = Op.getOperand(1);
4521     SDValue EltNo = Op.getOperand(2);
4522     bool DemandedVal = true;
4523     APInt DemandedVecElts = DemandedElts;
4524     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
4525     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
4526       unsigned EltIdx = CEltNo->getZExtValue();
4527       DemandedVal = !!DemandedElts[EltIdx];
4528       DemandedVecElts.clearBit(EltIdx);
4529     }
4530     Tmp = std::numeric_limits<unsigned>::max();
4531     if (DemandedVal) {
4532       // TODO - handle implicit truncation of inserted elements.
4533       if (InVal.getScalarValueSizeInBits() != VTBits)
4534         break;
4535       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
4536       Tmp = std::min(Tmp, Tmp2);
4537     }
4538     if (!!DemandedVecElts) {
4539       Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
4540       Tmp = std::min(Tmp, Tmp2);
4541     }
4542     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4543     return Tmp;
4544   }
4545   case ISD::EXTRACT_VECTOR_ELT: {
4546     assert(!VT.isScalableVector());
4547     SDValue InVec = Op.getOperand(0);
4548     SDValue EltNo = Op.getOperand(1);
4549     EVT VecVT = InVec.getValueType();
4550     // ComputeNumSignBits not yet implemented for scalable vectors.
4551     if (VecVT.isScalableVector())
4552       break;
4553     const unsigned BitWidth = Op.getValueSizeInBits();
4554     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
4555     const unsigned NumSrcElts = VecVT.getVectorNumElements();
4556 
4557     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
4558     // anything about sign bits. But if the sizes match we can derive knowledge
4559     // about sign bits from the vector operand.
4560     if (BitWidth != EltBitWidth)
4561       break;
4562 
4563     // If we know the element index, just demand that vector element, else for
4564     // an unknown element index, ignore DemandedElts and demand them all.
4565     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
4566     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
4567     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
4568       DemandedSrcElts =
4569           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
4570 
4571     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
4572   }
4573   case ISD::EXTRACT_SUBVECTOR: {
4574     // Offset the demanded elts by the subvector index.
4575     SDValue Src = Op.getOperand(0);
4576     // Bail until we can represent demanded elements for scalable vectors.
4577     if (Src.getValueType().isScalableVector())
4578       break;
4579     uint64_t Idx = Op.getConstantOperandVal(1);
4580     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
4581     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
4582     return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4583   }
4584   case ISD::CONCAT_VECTORS: {
4585     if (VT.isScalableVector())
4586       break;
4587     // Determine the minimum number of sign bits across all demanded
4588     // elts of the input vectors. Early out if the result is already 1.
4589     Tmp = std::numeric_limits<unsigned>::max();
4590     EVT SubVectorVT = Op.getOperand(0).getValueType();
4591     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
4592     unsigned NumSubVectors = Op.getNumOperands();
4593     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
4594       APInt DemandedSub =
4595           DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
4596       if (!DemandedSub)
4597         continue;
4598       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
4599       Tmp = std::min(Tmp, Tmp2);
4600     }
4601     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4602     return Tmp;
4603   }
4604   case ISD::INSERT_SUBVECTOR: {
4605     if (VT.isScalableVector())
4606       break;
4607     // Demand any elements from the subvector and the remainder from the src its
4608     // inserted into.
4609     SDValue Src = Op.getOperand(0);
4610     SDValue Sub = Op.getOperand(1);
4611     uint64_t Idx = Op.getConstantOperandVal(2);
4612     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
4613     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
4614     APInt DemandedSrcElts = DemandedElts;
4615     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
4616 
4617     Tmp = std::numeric_limits<unsigned>::max();
4618     if (!!DemandedSubElts) {
4619       Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
4620       if (Tmp == 1)
4621         return 1; // early-out
4622     }
4623     if (!!DemandedSrcElts) {
4624       Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4625       Tmp = std::min(Tmp, Tmp2);
4626     }
4627     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4628     return Tmp;
4629   }
4630   case ISD::LOAD: {
4631     LoadSDNode *LD = cast<LoadSDNode>(Op);
4632     if (const MDNode *Ranges = LD->getRanges()) {
4633       if (DemandedElts != 1)
4634         break;
4635 
4636       ConstantRange CR = getConstantRangeFromMetadata(*Ranges);
4637       if (VTBits > CR.getBitWidth()) {
4638         switch (LD->getExtensionType()) {
4639         case ISD::SEXTLOAD:
4640           CR = CR.signExtend(VTBits);
4641           break;
4642         case ISD::ZEXTLOAD:
4643           CR = CR.zeroExtend(VTBits);
4644           break;
4645         default:
4646           break;
4647         }
4648       }
4649 
4650       if (VTBits != CR.getBitWidth())
4651         break;
4652       return std::min(CR.getSignedMin().getNumSignBits(),
4653                       CR.getSignedMax().getNumSignBits());
4654     }
4655 
4656     break;
4657   }
4658   case ISD::ATOMIC_CMP_SWAP:
4659   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4660   case ISD::ATOMIC_SWAP:
4661   case ISD::ATOMIC_LOAD_ADD:
4662   case ISD::ATOMIC_LOAD_SUB:
4663   case ISD::ATOMIC_LOAD_AND:
4664   case ISD::ATOMIC_LOAD_CLR:
4665   case ISD::ATOMIC_LOAD_OR:
4666   case ISD::ATOMIC_LOAD_XOR:
4667   case ISD::ATOMIC_LOAD_NAND:
4668   case ISD::ATOMIC_LOAD_MIN:
4669   case ISD::ATOMIC_LOAD_MAX:
4670   case ISD::ATOMIC_LOAD_UMIN:
4671   case ISD::ATOMIC_LOAD_UMAX:
4672   case ISD::ATOMIC_LOAD: {
4673     Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
4674     // If we are looking at the loaded value.
4675     if (Op.getResNo() == 0) {
4676       if (Tmp == VTBits)
4677         return 1; // early-out
4678       if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND)
4679         return VTBits - Tmp + 1;
4680       if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
4681         return VTBits - Tmp;
4682     }
4683     break;
4684   }
4685   }
4686 
4687   // If we are looking at the loaded value of the SDNode.
4688   if (Op.getResNo() == 0) {
4689     // Handle LOADX separately here. EXTLOAD case will fallthrough.
4690     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
4691       unsigned ExtType = LD->getExtensionType();
4692       switch (ExtType) {
4693       default: break;
4694       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
4695         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4696         return VTBits - Tmp + 1;
4697       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
4698         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4699         return VTBits - Tmp;
4700       case ISD::NON_EXTLOAD:
4701         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
4702           // We only need to handle vectors - computeKnownBits should handle
4703           // scalar cases.
4704           Type *CstTy = Cst->getType();
4705           if (CstTy->isVectorTy() && !VT.isScalableVector() &&
4706               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits() &&
4707               VTBits == CstTy->getScalarSizeInBits()) {
4708             Tmp = VTBits;
4709             for (unsigned i = 0; i != NumElts; ++i) {
4710               if (!DemandedElts[i])
4711                 continue;
4712               if (Constant *Elt = Cst->getAggregateElement(i)) {
4713                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4714                   const APInt &Value = CInt->getValue();
4715                   Tmp = std::min(Tmp, Value.getNumSignBits());
4716                   continue;
4717                 }
4718                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4719                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
4720                   Tmp = std::min(Tmp, Value.getNumSignBits());
4721                   continue;
4722                 }
4723               }
4724               // Unknown type. Conservatively assume no bits match sign bit.
4725               return 1;
4726             }
4727             return Tmp;
4728           }
4729         }
4730         break;
4731       }
4732     }
4733   }
4734 
4735   // Allow the target to implement this method for its nodes.
4736   if (Opcode >= ISD::BUILTIN_OP_END ||
4737       Opcode == ISD::INTRINSIC_WO_CHAIN ||
4738       Opcode == ISD::INTRINSIC_W_CHAIN ||
4739       Opcode == ISD::INTRINSIC_VOID) {
4740     // TODO: This can probably be removed once target code is audited.  This
4741     // is here purely to reduce patch size and review complexity.
4742     if (!VT.isScalableVector()) {
4743       unsigned NumBits =
4744         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4745       if (NumBits > 1)
4746         FirstAnswer = std::max(FirstAnswer, NumBits);
4747     }
4748   }
4749 
4750   // Finally, if we can prove that the top bits of the result are 0's or 1's,
4751   // use this information.
4752   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4753   return std::max(FirstAnswer, Known.countMinSignBits());
4754 }
4755 
4756 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op,
4757                                                  unsigned Depth) const {
4758   unsigned SignBits = ComputeNumSignBits(Op, Depth);
4759   return Op.getScalarValueSizeInBits() - SignBits + 1;
4760 }
4761 
4762 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op,
4763                                                  const APInt &DemandedElts,
4764                                                  unsigned Depth) const {
4765   unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth);
4766   return Op.getScalarValueSizeInBits() - SignBits + 1;
4767 }
4768 
4769 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly,
4770                                                     unsigned Depth) const {
4771   // Early out for FREEZE.
4772   if (Op.getOpcode() == ISD::FREEZE)
4773     return true;
4774 
4775   // TODO: Assume we don't know anything for now.
4776   EVT VT = Op.getValueType();
4777   if (VT.isScalableVector())
4778     return false;
4779 
4780   APInt DemandedElts = VT.isVector()
4781                            ? APInt::getAllOnes(VT.getVectorNumElements())
4782                            : APInt(1, 1);
4783   return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth);
4784 }
4785 
4786 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op,
4787                                                     const APInt &DemandedElts,
4788                                                     bool PoisonOnly,
4789                                                     unsigned Depth) const {
4790   unsigned Opcode = Op.getOpcode();
4791 
4792   // Early out for FREEZE.
4793   if (Opcode == ISD::FREEZE)
4794     return true;
4795 
4796   if (Depth >= MaxRecursionDepth)
4797     return false; // Limit search depth.
4798 
4799   if (isIntOrFPConstant(Op))
4800     return true;
4801 
4802   switch (Opcode) {
4803   case ISD::VALUETYPE:
4804   case ISD::FrameIndex:
4805   case ISD::TargetFrameIndex:
4806     return true;
4807 
4808   case ISD::UNDEF:
4809     return PoisonOnly;
4810 
4811   case ISD::BUILD_VECTOR:
4812     // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements -
4813     // this shouldn't affect the result.
4814     for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) {
4815       if (!DemandedElts[i])
4816         continue;
4817       if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly,
4818                                             Depth + 1))
4819         return false;
4820     }
4821     return true;
4822 
4823     // TODO: Search for noundef attributes from library functions.
4824 
4825     // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef.
4826 
4827   default:
4828     // Allow the target to implement this method for its nodes.
4829     if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
4830         Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
4831       return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode(
4832           Op, DemandedElts, *this, PoisonOnly, Depth);
4833     break;
4834   }
4835 
4836   // If Op can't create undef/poison and none of its operands are undef/poison
4837   // then Op is never undef/poison.
4838   // NOTE: TargetNodes should handle this in themselves in
4839   // isGuaranteedNotToBeUndefOrPoisonForTargetNode.
4840   return !canCreateUndefOrPoison(Op, PoisonOnly, /*ConsiderFlags*/ true,
4841                                  Depth) &&
4842          all_of(Op->ops(), [&](SDValue V) {
4843            return isGuaranteedNotToBeUndefOrPoison(V, PoisonOnly, Depth + 1);
4844          });
4845 }
4846 
4847 bool SelectionDAG::canCreateUndefOrPoison(SDValue Op, bool PoisonOnly,
4848                                           bool ConsiderFlags,
4849                                           unsigned Depth) const {
4850   // TODO: Assume we don't know anything for now.
4851   EVT VT = Op.getValueType();
4852   if (VT.isScalableVector())
4853     return true;
4854 
4855   APInt DemandedElts = VT.isVector()
4856                            ? APInt::getAllOnes(VT.getVectorNumElements())
4857                            : APInt(1, 1);
4858   return canCreateUndefOrPoison(Op, DemandedElts, PoisonOnly, ConsiderFlags,
4859                                 Depth);
4860 }
4861 
4862 bool SelectionDAG::canCreateUndefOrPoison(SDValue Op, const APInt &DemandedElts,
4863                                           bool PoisonOnly, bool ConsiderFlags,
4864                                           unsigned Depth) const {
4865   // TODO: Assume we don't know anything for now.
4866   EVT VT = Op.getValueType();
4867   if (VT.isScalableVector())
4868     return true;
4869 
4870   unsigned Opcode = Op.getOpcode();
4871   switch (Opcode) {
4872   case ISD::AssertSext:
4873   case ISD::AssertZext:
4874   case ISD::FREEZE:
4875   case ISD::CONCAT_VECTORS:
4876   case ISD::INSERT_SUBVECTOR:
4877   case ISD::AND:
4878   case ISD::OR:
4879   case ISD::XOR:
4880   case ISD::ROTL:
4881   case ISD::ROTR:
4882   case ISD::FSHL:
4883   case ISD::FSHR:
4884   case ISD::BSWAP:
4885   case ISD::CTPOP:
4886   case ISD::BITREVERSE:
4887   case ISD::PARITY:
4888   case ISD::SIGN_EXTEND:
4889   case ISD::ZERO_EXTEND:
4890   case ISD::TRUNCATE:
4891   case ISD::SIGN_EXTEND_INREG:
4892   case ISD::SIGN_EXTEND_VECTOR_INREG:
4893   case ISD::ZERO_EXTEND_VECTOR_INREG:
4894   case ISD::BITCAST:
4895   case ISD::BUILD_VECTOR:
4896   case ISD::BUILD_PAIR:
4897     return false;
4898 
4899   case ISD::ADD:
4900   case ISD::SUB:
4901   case ISD::MUL:
4902     // Matches hasPoisonGeneratingFlags().
4903     return ConsiderFlags && (Op->getFlags().hasNoSignedWrap() ||
4904                              Op->getFlags().hasNoUnsignedWrap());
4905 
4906   case ISD::SHL:
4907     // If the max shift amount isn't in range, then the shift can create poison.
4908     if (!getValidMaximumShiftAmountConstant(Op, DemandedElts))
4909       return true;
4910 
4911     // Matches hasPoisonGeneratingFlags().
4912     return ConsiderFlags && (Op->getFlags().hasNoSignedWrap() ||
4913                              Op->getFlags().hasNoUnsignedWrap());
4914 
4915   case ISD::INSERT_VECTOR_ELT:{
4916     // Ensure that the element index is in bounds.
4917     EVT VecVT = Op.getOperand(0).getValueType();
4918     KnownBits KnownIdx = computeKnownBits(Op.getOperand(2), Depth + 1);
4919     return KnownIdx.getMaxValue().uge(VecVT.getVectorMinNumElements());
4920   }
4921 
4922   default:
4923     // Allow the target to implement this method for its nodes.
4924     if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
4925         Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
4926       return TLI->canCreateUndefOrPoisonForTargetNode(
4927           Op, DemandedElts, *this, PoisonOnly, ConsiderFlags, Depth);
4928     break;
4929   }
4930 
4931   // Be conservative and return true.
4932   return true;
4933 }
4934 
4935 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
4936   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
4937       !isa<ConstantSDNode>(Op.getOperand(1)))
4938     return false;
4939 
4940   if (Op.getOpcode() == ISD::OR &&
4941       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
4942     return false;
4943 
4944   return true;
4945 }
4946 
4947 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
4948   // If we're told that NaNs won't happen, assume they won't.
4949   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
4950     return true;
4951 
4952   if (Depth >= MaxRecursionDepth)
4953     return false; // Limit search depth.
4954 
4955   // If the value is a constant, we can obviously see if it is a NaN or not.
4956   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
4957     return !C->getValueAPF().isNaN() ||
4958            (SNaN && !C->getValueAPF().isSignaling());
4959   }
4960 
4961   unsigned Opcode = Op.getOpcode();
4962   switch (Opcode) {
4963   case ISD::FADD:
4964   case ISD::FSUB:
4965   case ISD::FMUL:
4966   case ISD::FDIV:
4967   case ISD::FREM:
4968   case ISD::FSIN:
4969   case ISD::FCOS:
4970   case ISD::FMA:
4971   case ISD::FMAD: {
4972     if (SNaN)
4973       return true;
4974     // TODO: Need isKnownNeverInfinity
4975     return false;
4976   }
4977   case ISD::FCANONICALIZE:
4978   case ISD::FEXP:
4979   case ISD::FEXP2:
4980   case ISD::FTRUNC:
4981   case ISD::FFLOOR:
4982   case ISD::FCEIL:
4983   case ISD::FROUND:
4984   case ISD::FROUNDEVEN:
4985   case ISD::FRINT:
4986   case ISD::FNEARBYINT:
4987   case ISD::FLDEXP: {
4988     if (SNaN)
4989       return true;
4990     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4991   }
4992   case ISD::FABS:
4993   case ISD::FNEG:
4994   case ISD::FCOPYSIGN: {
4995     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4996   }
4997   case ISD::SELECT:
4998     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4999            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
5000   case ISD::FP_EXTEND:
5001   case ISD::FP_ROUND: {
5002     if (SNaN)
5003       return true;
5004     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
5005   }
5006   case ISD::SINT_TO_FP:
5007   case ISD::UINT_TO_FP:
5008     return true;
5009   case ISD::FSQRT: // Need is known positive
5010   case ISD::FLOG:
5011   case ISD::FLOG2:
5012   case ISD::FLOG10:
5013   case ISD::FPOWI:
5014   case ISD::FPOW: {
5015     if (SNaN)
5016       return true;
5017     // TODO: Refine on operand
5018     return false;
5019   }
5020   case ISD::FMINNUM:
5021   case ISD::FMAXNUM: {
5022     // Only one needs to be known not-nan, since it will be returned if the
5023     // other ends up being one.
5024     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
5025            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
5026   }
5027   case ISD::FMINNUM_IEEE:
5028   case ISD::FMAXNUM_IEEE: {
5029     if (SNaN)
5030       return true;
5031     // This can return a NaN if either operand is an sNaN, or if both operands
5032     // are NaN.
5033     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
5034             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
5035            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
5036             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
5037   }
5038   case ISD::FMINIMUM:
5039   case ISD::FMAXIMUM: {
5040     // TODO: Does this quiet or return the origina NaN as-is?
5041     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
5042            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
5043   }
5044   case ISD::EXTRACT_VECTOR_ELT: {
5045     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
5046   }
5047   case ISD::BUILD_VECTOR: {
5048     for (const SDValue &Opnd : Op->ops())
5049       if (!isKnownNeverNaN(Opnd, SNaN, Depth + 1))
5050         return false;
5051     return true;
5052   }
5053   default:
5054     if (Opcode >= ISD::BUILTIN_OP_END ||
5055         Opcode == ISD::INTRINSIC_WO_CHAIN ||
5056         Opcode == ISD::INTRINSIC_W_CHAIN ||
5057         Opcode == ISD::INTRINSIC_VOID) {
5058       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
5059     }
5060 
5061     return false;
5062   }
5063 }
5064 
5065 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
5066   assert(Op.getValueType().isFloatingPoint() &&
5067          "Floating point type expected");
5068 
5069   // If the value is a constant, we can obviously see if it is a zero or not.
5070   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
5071     return !C->isZero();
5072 
5073   // Return false if we find any zero in a vector.
5074   if (Op->getOpcode() == ISD::BUILD_VECTOR ||
5075       Op->getOpcode() == ISD::SPLAT_VECTOR) {
5076     for (const SDValue &OpVal : Op->op_values()) {
5077       if (OpVal.isUndef())
5078         return false;
5079       if (auto *C = dyn_cast<ConstantFPSDNode>(OpVal))
5080         if (C->isZero())
5081           return false;
5082     }
5083     return true;
5084   }
5085   return false;
5086 }
5087 
5088 bool SelectionDAG::isKnownNeverZero(SDValue Op, unsigned Depth) const {
5089   if (Depth >= MaxRecursionDepth)
5090     return false; // Limit search depth.
5091 
5092   assert(!Op.getValueType().isFloatingPoint() &&
5093          "Floating point types unsupported - use isKnownNeverZeroFloat");
5094 
5095   // If the value is a constant, we can obviously see if it is a zero or not.
5096   if (ISD::matchUnaryPredicate(Op,
5097                                [](ConstantSDNode *C) { return !C->isZero(); }))
5098     return true;
5099 
5100   // TODO: Recognize more cases here. Most of the cases are also incomplete to
5101   // some degree.
5102   switch (Op.getOpcode()) {
5103   default:
5104     break;
5105 
5106   case ISD::OR:
5107     return isKnownNeverZero(Op.getOperand(1), Depth + 1) ||
5108            isKnownNeverZero(Op.getOperand(0), Depth + 1);
5109 
5110   case ISD::VSELECT:
5111   case ISD::SELECT:
5112     return isKnownNeverZero(Op.getOperand(1), Depth + 1) &&
5113            isKnownNeverZero(Op.getOperand(2), Depth + 1);
5114 
5115   case ISD::SHL:
5116     if (Op->getFlags().hasNoSignedWrap() || Op->getFlags().hasNoUnsignedWrap())
5117       return isKnownNeverZero(Op.getOperand(0), Depth + 1);
5118 
5119     // 1 << X is never zero. TODO: This can be expanded if we can bound X.
5120     // The expression is really !Known.One[BitWidth-MaxLog2(Known):0].isZero()
5121     if (computeKnownBits(Op.getOperand(0), Depth + 1).One[0])
5122       return true;
5123     break;
5124 
5125   case ISD::UADDSAT:
5126   case ISD::UMAX:
5127     return isKnownNeverZero(Op.getOperand(1), Depth + 1) ||
5128            isKnownNeverZero(Op.getOperand(0), Depth + 1);
5129 
5130   case ISD::UMIN:
5131     return isKnownNeverZero(Op.getOperand(1), Depth + 1) &&
5132            isKnownNeverZero(Op.getOperand(0), Depth + 1);
5133 
5134   case ISD::ROTL:
5135   case ISD::ROTR:
5136   case ISD::BITREVERSE:
5137   case ISD::BSWAP:
5138   case ISD::CTPOP:
5139   case ISD::ABS:
5140     return isKnownNeverZero(Op.getOperand(0), Depth + 1);
5141 
5142   case ISD::SRA:
5143   case ISD::SRL:
5144     if (Op->getFlags().hasExact())
5145       return isKnownNeverZero(Op.getOperand(0), Depth + 1);
5146     // Signed >> X is never zero. TODO: This can be expanded if we can bound X.
5147     // The expression is really
5148     // !Known.One[SignBit:SignBit-(BitWidth-MaxLog2(Known))].isZero()
5149     if (computeKnownBits(Op.getOperand(0), Depth + 1).isNegative())
5150       return true;
5151     break;
5152 
5153   case ISD::UDIV:
5154   case ISD::SDIV:
5155     // div exact can only produce a zero if the dividend is zero.
5156     // TODO: For udiv this is also true if Op1 u<= Op0
5157     if (Op->getFlags().hasExact())
5158       return isKnownNeverZero(Op.getOperand(0), Depth + 1);
5159     break;
5160 
5161   case ISD::ADD:
5162     if (Op->getFlags().hasNoUnsignedWrap())
5163       if (isKnownNeverZero(Op.getOperand(1), Depth + 1) ||
5164           isKnownNeverZero(Op.getOperand(0), Depth + 1))
5165         return true;
5166     // TODO: There are a lot more cases we can prove for add.
5167     break;
5168 
5169   case ISD::SUB: {
5170     if (isNullConstant(Op.getOperand(0)))
5171       return isKnownNeverZero(Op.getOperand(1), Depth + 1);
5172 
5173     std::optional<bool> ne =
5174         KnownBits::ne(computeKnownBits(Op.getOperand(0), Depth + 1),
5175                       computeKnownBits(Op.getOperand(1), Depth + 1));
5176     return ne && *ne;
5177   }
5178 
5179   case ISD::MUL:
5180     if (Op->getFlags().hasNoSignedWrap() || Op->getFlags().hasNoUnsignedWrap())
5181       if (isKnownNeverZero(Op.getOperand(1), Depth + 1) &&
5182           isKnownNeverZero(Op.getOperand(0), Depth + 1))
5183         return true;
5184     break;
5185 
5186   case ISD::ZERO_EXTEND:
5187   case ISD::SIGN_EXTEND:
5188     return isKnownNeverZero(Op.getOperand(0), Depth + 1);
5189   }
5190 
5191   return computeKnownBits(Op, Depth).isNonZero();
5192 }
5193 
5194 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
5195   // Check the obvious case.
5196   if (A == B) return true;
5197 
5198   // For negative and positive zero.
5199   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
5200     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
5201       if (CA->isZero() && CB->isZero()) return true;
5202 
5203   // Otherwise they may not be equal.
5204   return false;
5205 }
5206 
5207 // Only bits set in Mask must be negated, other bits may be arbitrary.
5208 SDValue llvm::getBitwiseNotOperand(SDValue V, SDValue Mask, bool AllowUndefs) {
5209   if (isBitwiseNot(V, AllowUndefs))
5210     return V.getOperand(0);
5211 
5212   // Handle any_extend (not (truncate X)) pattern, where Mask only sets
5213   // bits in the non-extended part.
5214   ConstantSDNode *MaskC = isConstOrConstSplat(Mask);
5215   if (!MaskC || V.getOpcode() != ISD::ANY_EXTEND)
5216     return SDValue();
5217   SDValue ExtArg = V.getOperand(0);
5218   if (ExtArg.getScalarValueSizeInBits() >=
5219           MaskC->getAPIntValue().getActiveBits() &&
5220       isBitwiseNot(ExtArg, AllowUndefs) &&
5221       ExtArg.getOperand(0).getOpcode() == ISD::TRUNCATE &&
5222       ExtArg.getOperand(0).getOperand(0).getValueType() == V.getValueType())
5223     return ExtArg.getOperand(0).getOperand(0);
5224   return SDValue();
5225 }
5226 
5227 static bool haveNoCommonBitsSetCommutative(SDValue A, SDValue B) {
5228   // Match masked merge pattern (X & ~M) op (Y & M)
5229   // Including degenerate case (X & ~M) op M
5230   auto MatchNoCommonBitsPattern = [&](SDValue Not, SDValue Mask,
5231                                       SDValue Other) {
5232     if (SDValue NotOperand =
5233             getBitwiseNotOperand(Not, Mask, /* AllowUndefs */ true)) {
5234       if (NotOperand->getOpcode() == ISD::ZERO_EXTEND ||
5235           NotOperand->getOpcode() == ISD::TRUNCATE)
5236         NotOperand = NotOperand->getOperand(0);
5237 
5238       if (Other == NotOperand)
5239         return true;
5240       if (Other->getOpcode() == ISD::AND)
5241         return NotOperand == Other->getOperand(0) ||
5242                NotOperand == Other->getOperand(1);
5243     }
5244     return false;
5245   };
5246 
5247   if (A->getOpcode() == ISD::ZERO_EXTEND || A->getOpcode() == ISD::TRUNCATE)
5248     A = A->getOperand(0);
5249 
5250   if (B->getOpcode() == ISD::ZERO_EXTEND || B->getOpcode() == ISD::TRUNCATE)
5251     B = B->getOperand(0);
5252 
5253   if (A->getOpcode() == ISD::AND)
5254     return MatchNoCommonBitsPattern(A->getOperand(0), A->getOperand(1), B) ||
5255            MatchNoCommonBitsPattern(A->getOperand(1), A->getOperand(0), B);
5256   return false;
5257 }
5258 
5259 // FIXME: unify with llvm::haveNoCommonBitsSet.
5260 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
5261   assert(A.getValueType() == B.getValueType() &&
5262          "Values must have the same type");
5263   if (haveNoCommonBitsSetCommutative(A, B) ||
5264       haveNoCommonBitsSetCommutative(B, A))
5265     return true;
5266   return KnownBits::haveNoCommonBitsSet(computeKnownBits(A),
5267                                         computeKnownBits(B));
5268 }
5269 
5270 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step,
5271                                SelectionDAG &DAG) {
5272   if (cast<ConstantSDNode>(Step)->isZero())
5273     return DAG.getConstant(0, DL, VT);
5274 
5275   return SDValue();
5276 }
5277 
5278 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
5279                                 ArrayRef<SDValue> Ops,
5280                                 SelectionDAG &DAG) {
5281   int NumOps = Ops.size();
5282   assert(NumOps != 0 && "Can't build an empty vector!");
5283   assert(!VT.isScalableVector() &&
5284          "BUILD_VECTOR cannot be used with scalable types");
5285   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
5286          "Incorrect element count in BUILD_VECTOR!");
5287 
5288   // BUILD_VECTOR of UNDEFs is UNDEF.
5289   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
5290     return DAG.getUNDEF(VT);
5291 
5292   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
5293   SDValue IdentitySrc;
5294   bool IsIdentity = true;
5295   for (int i = 0; i != NumOps; ++i) {
5296     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
5297         Ops[i].getOperand(0).getValueType() != VT ||
5298         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
5299         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
5300         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
5301       IsIdentity = false;
5302       break;
5303     }
5304     IdentitySrc = Ops[i].getOperand(0);
5305   }
5306   if (IsIdentity)
5307     return IdentitySrc;
5308 
5309   return SDValue();
5310 }
5311 
5312 /// Try to simplify vector concatenation to an input value, undef, or build
5313 /// vector.
5314 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
5315                                   ArrayRef<SDValue> Ops,
5316                                   SelectionDAG &DAG) {
5317   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
5318   assert(llvm::all_of(Ops,
5319                       [Ops](SDValue Op) {
5320                         return Ops[0].getValueType() == Op.getValueType();
5321                       }) &&
5322          "Concatenation of vectors with inconsistent value types!");
5323   assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
5324              VT.getVectorElementCount() &&
5325          "Incorrect element count in vector concatenation!");
5326 
5327   if (Ops.size() == 1)
5328     return Ops[0];
5329 
5330   // Concat of UNDEFs is UNDEF.
5331   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
5332     return DAG.getUNDEF(VT);
5333 
5334   // Scan the operands and look for extract operations from a single source
5335   // that correspond to insertion at the same location via this concatenation:
5336   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
5337   SDValue IdentitySrc;
5338   bool IsIdentity = true;
5339   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
5340     SDValue Op = Ops[i];
5341     unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
5342     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
5343         Op.getOperand(0).getValueType() != VT ||
5344         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
5345         Op.getConstantOperandVal(1) != IdentityIndex) {
5346       IsIdentity = false;
5347       break;
5348     }
5349     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
5350            "Unexpected identity source vector for concat of extracts");
5351     IdentitySrc = Op.getOperand(0);
5352   }
5353   if (IsIdentity) {
5354     assert(IdentitySrc && "Failed to set source vector of extracts");
5355     return IdentitySrc;
5356   }
5357 
5358   // The code below this point is only designed to work for fixed width
5359   // vectors, so we bail out for now.
5360   if (VT.isScalableVector())
5361     return SDValue();
5362 
5363   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
5364   // simplified to one big BUILD_VECTOR.
5365   // FIXME: Add support for SCALAR_TO_VECTOR as well.
5366   EVT SVT = VT.getScalarType();
5367   SmallVector<SDValue, 16> Elts;
5368   for (SDValue Op : Ops) {
5369     EVT OpVT = Op.getValueType();
5370     if (Op.isUndef())
5371       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
5372     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
5373       Elts.append(Op->op_begin(), Op->op_end());
5374     else
5375       return SDValue();
5376   }
5377 
5378   // BUILD_VECTOR requires all inputs to be of the same type, find the
5379   // maximum type and extend them all.
5380   for (SDValue Op : Elts)
5381     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
5382 
5383   if (SVT.bitsGT(VT.getScalarType())) {
5384     for (SDValue &Op : Elts) {
5385       if (Op.isUndef())
5386         Op = DAG.getUNDEF(SVT);
5387       else
5388         Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
5389                  ? DAG.getZExtOrTrunc(Op, DL, SVT)
5390                  : DAG.getSExtOrTrunc(Op, DL, SVT);
5391     }
5392   }
5393 
5394   SDValue V = DAG.getBuildVector(VT, DL, Elts);
5395   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
5396   return V;
5397 }
5398 
5399 /// Gets or creates the specified node.
5400 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
5401   FoldingSetNodeID ID;
5402   AddNodeIDNode(ID, Opcode, getVTList(VT), std::nullopt);
5403   void *IP = nullptr;
5404   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5405     return SDValue(E, 0);
5406 
5407   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
5408                               getVTList(VT));
5409   CSEMap.InsertNode(N, IP);
5410 
5411   InsertNode(N);
5412   SDValue V = SDValue(N, 0);
5413   NewSDValueDbgMsg(V, "Creating new node: ", this);
5414   return V;
5415 }
5416 
5417 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5418                               SDValue N1) {
5419   SDNodeFlags Flags;
5420   if (Inserter)
5421     Flags = Inserter->getFlags();
5422   return getNode(Opcode, DL, VT, N1, Flags);
5423 }
5424 
5425 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5426                               SDValue N1, const SDNodeFlags Flags) {
5427   assert(N1.getOpcode() != ISD::DELETED_NODE && "Operand is DELETED_NODE!");
5428   // Constant fold unary operations with an integer constant operand. Even
5429   // opaque constant will be folded, because the folding of unary operations
5430   // doesn't create new constants with different values. Nevertheless, the
5431   // opaque flag is preserved during folding to prevent future folding with
5432   // other constants.
5433   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
5434     const APInt &Val = C->getAPIntValue();
5435     switch (Opcode) {
5436     default: break;
5437     case ISD::SIGN_EXTEND:
5438       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
5439                          C->isTargetOpcode(), C->isOpaque());
5440     case ISD::TRUNCATE:
5441       if (C->isOpaque())
5442         break;
5443       [[fallthrough]];
5444     case ISD::ZERO_EXTEND:
5445       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
5446                          C->isTargetOpcode(), C->isOpaque());
5447     case ISD::ANY_EXTEND:
5448       // Some targets like RISCV prefer to sign extend some types.
5449       if (TLI->isSExtCheaperThanZExt(N1.getValueType(), VT))
5450         return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
5451                            C->isTargetOpcode(), C->isOpaque());
5452       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
5453                          C->isTargetOpcode(), C->isOpaque());
5454     case ISD::UINT_TO_FP:
5455     case ISD::SINT_TO_FP: {
5456       APFloat apf(EVTToAPFloatSemantics(VT),
5457                   APInt::getZero(VT.getSizeInBits()));
5458       (void)apf.convertFromAPInt(Val,
5459                                  Opcode==ISD::SINT_TO_FP,
5460                                  APFloat::rmNearestTiesToEven);
5461       return getConstantFP(apf, DL, VT);
5462     }
5463     case ISD::BITCAST:
5464       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
5465         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
5466       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
5467         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
5468       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
5469         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
5470       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
5471         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
5472       break;
5473     case ISD::ABS:
5474       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
5475                          C->isOpaque());
5476     case ISD::BITREVERSE:
5477       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
5478                          C->isOpaque());
5479     case ISD::BSWAP:
5480       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
5481                          C->isOpaque());
5482     case ISD::CTPOP:
5483       return getConstant(Val.popcount(), DL, VT, C->isTargetOpcode(),
5484                          C->isOpaque());
5485     case ISD::CTLZ:
5486     case ISD::CTLZ_ZERO_UNDEF:
5487       return getConstant(Val.countl_zero(), DL, VT, C->isTargetOpcode(),
5488                          C->isOpaque());
5489     case ISD::CTTZ:
5490     case ISD::CTTZ_ZERO_UNDEF:
5491       return getConstant(Val.countr_zero(), DL, VT, C->isTargetOpcode(),
5492                          C->isOpaque());
5493     case ISD::FP16_TO_FP:
5494     case ISD::BF16_TO_FP: {
5495       bool Ignored;
5496       APFloat FPV(Opcode == ISD::FP16_TO_FP ? APFloat::IEEEhalf()
5497                                             : APFloat::BFloat(),
5498                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
5499 
5500       // This can return overflow, underflow, or inexact; we don't care.
5501       // FIXME need to be more flexible about rounding mode.
5502       (void)FPV.convert(EVTToAPFloatSemantics(VT),
5503                         APFloat::rmNearestTiesToEven, &Ignored);
5504       return getConstantFP(FPV, DL, VT);
5505     }
5506     case ISD::STEP_VECTOR: {
5507       if (SDValue V = FoldSTEP_VECTOR(DL, VT, N1, *this))
5508         return V;
5509       break;
5510     }
5511     }
5512   }
5513 
5514   // Constant fold unary operations with a floating point constant operand.
5515   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N1)) {
5516     APFloat V = C->getValueAPF();    // make copy
5517     switch (Opcode) {
5518     case ISD::FNEG:
5519       V.changeSign();
5520       return getConstantFP(V, DL, VT);
5521     case ISD::FABS:
5522       V.clearSign();
5523       return getConstantFP(V, DL, VT);
5524     case ISD::FCEIL: {
5525       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
5526       if (fs == APFloat::opOK || fs == APFloat::opInexact)
5527         return getConstantFP(V, DL, VT);
5528       break;
5529     }
5530     case ISD::FTRUNC: {
5531       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
5532       if (fs == APFloat::opOK || fs == APFloat::opInexact)
5533         return getConstantFP(V, DL, VT);
5534       break;
5535     }
5536     case ISD::FFLOOR: {
5537       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
5538       if (fs == APFloat::opOK || fs == APFloat::opInexact)
5539         return getConstantFP(V, DL, VT);
5540       break;
5541     }
5542     case ISD::FP_EXTEND: {
5543       bool ignored;
5544       // This can return overflow, underflow, or inexact; we don't care.
5545       // FIXME need to be more flexible about rounding mode.
5546       (void)V.convert(EVTToAPFloatSemantics(VT),
5547                       APFloat::rmNearestTiesToEven, &ignored);
5548       return getConstantFP(V, DL, VT);
5549     }
5550     case ISD::FP_TO_SINT:
5551     case ISD::FP_TO_UINT: {
5552       bool ignored;
5553       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
5554       // FIXME need to be more flexible about rounding mode.
5555       APFloat::opStatus s =
5556           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
5557       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
5558         break;
5559       return getConstant(IntVal, DL, VT);
5560     }
5561     case ISD::BITCAST:
5562       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
5563         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
5564       if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16)
5565         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
5566       if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
5567         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
5568       if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
5569         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
5570       break;
5571     case ISD::FP_TO_FP16:
5572     case ISD::FP_TO_BF16: {
5573       bool Ignored;
5574       // This can return overflow, underflow, or inexact; we don't care.
5575       // FIXME need to be more flexible about rounding mode.
5576       (void)V.convert(Opcode == ISD::FP_TO_FP16 ? APFloat::IEEEhalf()
5577                                                 : APFloat::BFloat(),
5578                       APFloat::rmNearestTiesToEven, &Ignored);
5579       return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
5580     }
5581     }
5582   }
5583 
5584   // Constant fold unary operations with a vector integer or float operand.
5585   switch (Opcode) {
5586   default:
5587     // FIXME: Entirely reasonable to perform folding of other unary
5588     // operations here as the need arises.
5589     break;
5590   case ISD::FNEG:
5591   case ISD::FABS:
5592   case ISD::FCEIL:
5593   case ISD::FTRUNC:
5594   case ISD::FFLOOR:
5595   case ISD::FP_EXTEND:
5596   case ISD::FP_TO_SINT:
5597   case ISD::FP_TO_UINT:
5598   case ISD::TRUNCATE:
5599   case ISD::ANY_EXTEND:
5600   case ISD::ZERO_EXTEND:
5601   case ISD::SIGN_EXTEND:
5602   case ISD::UINT_TO_FP:
5603   case ISD::SINT_TO_FP:
5604   case ISD::ABS:
5605   case ISD::BITREVERSE:
5606   case ISD::BSWAP:
5607   case ISD::CTLZ:
5608   case ISD::CTLZ_ZERO_UNDEF:
5609   case ISD::CTTZ:
5610   case ISD::CTTZ_ZERO_UNDEF:
5611   case ISD::CTPOP: {
5612     SDValue Ops = {N1};
5613     if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops))
5614       return Fold;
5615   }
5616   }
5617 
5618   unsigned OpOpcode = N1.getNode()->getOpcode();
5619   switch (Opcode) {
5620   case ISD::STEP_VECTOR:
5621     assert(VT.isScalableVector() &&
5622            "STEP_VECTOR can only be used with scalable types");
5623     assert(OpOpcode == ISD::TargetConstant &&
5624            VT.getVectorElementType() == N1.getValueType() &&
5625            "Unexpected step operand");
5626     break;
5627   case ISD::FREEZE:
5628     assert(VT == N1.getValueType() && "Unexpected VT!");
5629     if (isGuaranteedNotToBeUndefOrPoison(N1, /*PoisonOnly*/ false,
5630                                          /*Depth*/ 1))
5631       return N1;
5632     break;
5633   case ISD::TokenFactor:
5634   case ISD::MERGE_VALUES:
5635   case ISD::CONCAT_VECTORS:
5636     return N1;         // Factor, merge or concat of one node?  No need.
5637   case ISD::BUILD_VECTOR: {
5638     // Attempt to simplify BUILD_VECTOR.
5639     SDValue Ops[] = {N1};
5640     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5641       return V;
5642     break;
5643   }
5644   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
5645   case ISD::FP_EXTEND:
5646     assert(VT.isFloatingPoint() && N1.getValueType().isFloatingPoint() &&
5647            "Invalid FP cast!");
5648     if (N1.getValueType() == VT) return N1;  // noop conversion.
5649     assert((!VT.isVector() || VT.getVectorElementCount() ==
5650                                   N1.getValueType().getVectorElementCount()) &&
5651            "Vector element count mismatch!");
5652     assert(N1.getValueType().bitsLT(VT) && "Invalid fpext node, dst < src!");
5653     if (N1.isUndef())
5654       return getUNDEF(VT);
5655     break;
5656   case ISD::FP_TO_SINT:
5657   case ISD::FP_TO_UINT:
5658     if (N1.isUndef())
5659       return getUNDEF(VT);
5660     break;
5661   case ISD::SINT_TO_FP:
5662   case ISD::UINT_TO_FP:
5663     // [us]itofp(undef) = 0, because the result value is bounded.
5664     if (N1.isUndef())
5665       return getConstantFP(0.0, DL, VT);
5666     break;
5667   case ISD::SIGN_EXTEND:
5668     assert(VT.isInteger() && N1.getValueType().isInteger() &&
5669            "Invalid SIGN_EXTEND!");
5670     assert(VT.isVector() == N1.getValueType().isVector() &&
5671            "SIGN_EXTEND result type type should be vector iff the operand "
5672            "type is vector!");
5673     if (N1.getValueType() == VT) return N1;   // noop extension
5674     assert((!VT.isVector() || VT.getVectorElementCount() ==
5675                                   N1.getValueType().getVectorElementCount()) &&
5676            "Vector element count mismatch!");
5677     assert(N1.getValueType().bitsLT(VT) && "Invalid sext node, dst < src!");
5678     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
5679       return getNode(OpOpcode, DL, VT, N1.getOperand(0));
5680     if (OpOpcode == ISD::UNDEF)
5681       // sext(undef) = 0, because the top bits will all be the same.
5682       return getConstant(0, DL, VT);
5683     break;
5684   case ISD::ZERO_EXTEND:
5685     assert(VT.isInteger() && N1.getValueType().isInteger() &&
5686            "Invalid ZERO_EXTEND!");
5687     assert(VT.isVector() == N1.getValueType().isVector() &&
5688            "ZERO_EXTEND result type type should be vector iff the operand "
5689            "type is vector!");
5690     if (N1.getValueType() == VT) return N1;   // noop extension
5691     assert((!VT.isVector() || VT.getVectorElementCount() ==
5692                                   N1.getValueType().getVectorElementCount()) &&
5693            "Vector element count mismatch!");
5694     assert(N1.getValueType().bitsLT(VT) && "Invalid zext node, dst < src!");
5695     if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x)
5696       return getNode(ISD::ZERO_EXTEND, DL, VT, N1.getOperand(0));
5697     if (OpOpcode == ISD::UNDEF)
5698       // zext(undef) = 0, because the top bits will be zero.
5699       return getConstant(0, DL, VT);
5700     break;
5701   case ISD::ANY_EXTEND:
5702     assert(VT.isInteger() && N1.getValueType().isInteger() &&
5703            "Invalid ANY_EXTEND!");
5704     assert(VT.isVector() == N1.getValueType().isVector() &&
5705            "ANY_EXTEND result type type should be vector iff the operand "
5706            "type is vector!");
5707     if (N1.getValueType() == VT) return N1;   // noop extension
5708     assert((!VT.isVector() || VT.getVectorElementCount() ==
5709                                   N1.getValueType().getVectorElementCount()) &&
5710            "Vector element count mismatch!");
5711     assert(N1.getValueType().bitsLT(VT) && "Invalid anyext node, dst < src!");
5712 
5713     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
5714         OpOpcode == ISD::ANY_EXTEND)
5715       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
5716       return getNode(OpOpcode, DL, VT, N1.getOperand(0));
5717     if (OpOpcode == ISD::UNDEF)
5718       return getUNDEF(VT);
5719 
5720     // (ext (trunc x)) -> x
5721     if (OpOpcode == ISD::TRUNCATE) {
5722       SDValue OpOp = N1.getOperand(0);
5723       if (OpOp.getValueType() == VT) {
5724         transferDbgValues(N1, OpOp);
5725         return OpOp;
5726       }
5727     }
5728     break;
5729   case ISD::TRUNCATE:
5730     assert(VT.isInteger() && N1.getValueType().isInteger() &&
5731            "Invalid TRUNCATE!");
5732     assert(VT.isVector() == N1.getValueType().isVector() &&
5733            "TRUNCATE result type type should be vector iff the operand "
5734            "type is vector!");
5735     if (N1.getValueType() == VT) return N1;   // noop truncate
5736     assert((!VT.isVector() || VT.getVectorElementCount() ==
5737                                   N1.getValueType().getVectorElementCount()) &&
5738            "Vector element count mismatch!");
5739     assert(N1.getValueType().bitsGT(VT) && "Invalid truncate node, src < dst!");
5740     if (OpOpcode == ISD::TRUNCATE)
5741       return getNode(ISD::TRUNCATE, DL, VT, N1.getOperand(0));
5742     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
5743         OpOpcode == ISD::ANY_EXTEND) {
5744       // If the source is smaller than the dest, we still need an extend.
5745       if (N1.getOperand(0).getValueType().getScalarType().bitsLT(
5746               VT.getScalarType()))
5747         return getNode(OpOpcode, DL, VT, N1.getOperand(0));
5748       if (N1.getOperand(0).getValueType().bitsGT(VT))
5749         return getNode(ISD::TRUNCATE, DL, VT, N1.getOperand(0));
5750       return N1.getOperand(0);
5751     }
5752     if (OpOpcode == ISD::UNDEF)
5753       return getUNDEF(VT);
5754     if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes)
5755       return getVScale(DL, VT,
5756                        N1.getConstantOperandAPInt(0).trunc(VT.getSizeInBits()));
5757     break;
5758   case ISD::ANY_EXTEND_VECTOR_INREG:
5759   case ISD::ZERO_EXTEND_VECTOR_INREG:
5760   case ISD::SIGN_EXTEND_VECTOR_INREG:
5761     assert(VT.isVector() && "This DAG node is restricted to vector types.");
5762     assert(N1.getValueType().bitsLE(VT) &&
5763            "The input must be the same size or smaller than the result.");
5764     assert(VT.getVectorMinNumElements() <
5765                N1.getValueType().getVectorMinNumElements() &&
5766            "The destination vector type must have fewer lanes than the input.");
5767     break;
5768   case ISD::ABS:
5769     assert(VT.isInteger() && VT == N1.getValueType() && "Invalid ABS!");
5770     if (OpOpcode == ISD::UNDEF)
5771       return getConstant(0, DL, VT);
5772     break;
5773   case ISD::BSWAP:
5774     assert(VT.isInteger() && VT == N1.getValueType() && "Invalid BSWAP!");
5775     assert((VT.getScalarSizeInBits() % 16 == 0) &&
5776            "BSWAP types must be a multiple of 16 bits!");
5777     if (OpOpcode == ISD::UNDEF)
5778       return getUNDEF(VT);
5779     // bswap(bswap(X)) -> X.
5780     if (OpOpcode == ISD::BSWAP)
5781       return N1.getOperand(0);
5782     break;
5783   case ISD::BITREVERSE:
5784     assert(VT.isInteger() && VT == N1.getValueType() && "Invalid BITREVERSE!");
5785     if (OpOpcode == ISD::UNDEF)
5786       return getUNDEF(VT);
5787     break;
5788   case ISD::BITCAST:
5789     assert(VT.getSizeInBits() == N1.getValueSizeInBits() &&
5790            "Cannot BITCAST between types of different sizes!");
5791     if (VT == N1.getValueType()) return N1;   // noop conversion.
5792     if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x)
5793       return getNode(ISD::BITCAST, DL, VT, N1.getOperand(0));
5794     if (OpOpcode == ISD::UNDEF)
5795       return getUNDEF(VT);
5796     break;
5797   case ISD::SCALAR_TO_VECTOR:
5798     assert(VT.isVector() && !N1.getValueType().isVector() &&
5799            (VT.getVectorElementType() == N1.getValueType() ||
5800             (VT.getVectorElementType().isInteger() &&
5801              N1.getValueType().isInteger() &&
5802              VT.getVectorElementType().bitsLE(N1.getValueType()))) &&
5803            "Illegal SCALAR_TO_VECTOR node!");
5804     if (OpOpcode == ISD::UNDEF)
5805       return getUNDEF(VT);
5806     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
5807     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
5808         isa<ConstantSDNode>(N1.getOperand(1)) &&
5809         N1.getConstantOperandVal(1) == 0 &&
5810         N1.getOperand(0).getValueType() == VT)
5811       return N1.getOperand(0);
5812     break;
5813   case ISD::FNEG:
5814     // Negation of an unknown bag of bits is still completely undefined.
5815     if (OpOpcode == ISD::UNDEF)
5816       return getUNDEF(VT);
5817 
5818     if (OpOpcode == ISD::FNEG) // --X -> X
5819       return N1.getOperand(0);
5820     break;
5821   case ISD::FABS:
5822     if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X)
5823       return getNode(ISD::FABS, DL, VT, N1.getOperand(0));
5824     break;
5825   case ISD::VSCALE:
5826     assert(VT == N1.getValueType() && "Unexpected VT!");
5827     break;
5828   case ISD::CTPOP:
5829     if (N1.getValueType().getScalarType() == MVT::i1)
5830       return N1;
5831     break;
5832   case ISD::CTLZ:
5833   case ISD::CTTZ:
5834     if (N1.getValueType().getScalarType() == MVT::i1)
5835       return getNOT(DL, N1, N1.getValueType());
5836     break;
5837   case ISD::VECREDUCE_ADD:
5838     if (N1.getValueType().getScalarType() == MVT::i1)
5839       return getNode(ISD::VECREDUCE_XOR, DL, VT, N1);
5840     break;
5841   case ISD::VECREDUCE_SMIN:
5842   case ISD::VECREDUCE_UMAX:
5843     if (N1.getValueType().getScalarType() == MVT::i1)
5844       return getNode(ISD::VECREDUCE_OR, DL, VT, N1);
5845     break;
5846   case ISD::VECREDUCE_SMAX:
5847   case ISD::VECREDUCE_UMIN:
5848     if (N1.getValueType().getScalarType() == MVT::i1)
5849       return getNode(ISD::VECREDUCE_AND, DL, VT, N1);
5850     break;
5851   }
5852 
5853   SDNode *N;
5854   SDVTList VTs = getVTList(VT);
5855   SDValue Ops[] = {N1};
5856   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
5857     FoldingSetNodeID ID;
5858     AddNodeIDNode(ID, Opcode, VTs, Ops);
5859     void *IP = nullptr;
5860     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5861       E->intersectFlagsWith(Flags);
5862       return SDValue(E, 0);
5863     }
5864 
5865     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5866     N->setFlags(Flags);
5867     createOperands(N, Ops);
5868     CSEMap.InsertNode(N, IP);
5869   } else {
5870     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5871     createOperands(N, Ops);
5872   }
5873 
5874   InsertNode(N);
5875   SDValue V = SDValue(N, 0);
5876   NewSDValueDbgMsg(V, "Creating new node: ", this);
5877   return V;
5878 }
5879 
5880 static std::optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
5881                                       const APInt &C2) {
5882   switch (Opcode) {
5883   case ISD::ADD:  return C1 + C2;
5884   case ISD::SUB:  return C1 - C2;
5885   case ISD::MUL:  return C1 * C2;
5886   case ISD::AND:  return C1 & C2;
5887   case ISD::OR:   return C1 | C2;
5888   case ISD::XOR:  return C1 ^ C2;
5889   case ISD::SHL:  return C1 << C2;
5890   case ISD::SRL:  return C1.lshr(C2);
5891   case ISD::SRA:  return C1.ashr(C2);
5892   case ISD::ROTL: return C1.rotl(C2);
5893   case ISD::ROTR: return C1.rotr(C2);
5894   case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
5895   case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
5896   case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
5897   case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
5898   case ISD::SADDSAT: return C1.sadd_sat(C2);
5899   case ISD::UADDSAT: return C1.uadd_sat(C2);
5900   case ISD::SSUBSAT: return C1.ssub_sat(C2);
5901   case ISD::USUBSAT: return C1.usub_sat(C2);
5902   case ISD::SSHLSAT: return C1.sshl_sat(C2);
5903   case ISD::USHLSAT: return C1.ushl_sat(C2);
5904   case ISD::UDIV:
5905     if (!C2.getBoolValue())
5906       break;
5907     return C1.udiv(C2);
5908   case ISD::UREM:
5909     if (!C2.getBoolValue())
5910       break;
5911     return C1.urem(C2);
5912   case ISD::SDIV:
5913     if (!C2.getBoolValue())
5914       break;
5915     return C1.sdiv(C2);
5916   case ISD::SREM:
5917     if (!C2.getBoolValue())
5918       break;
5919     return C1.srem(C2);
5920   case ISD::MULHS: {
5921     unsigned FullWidth = C1.getBitWidth() * 2;
5922     APInt C1Ext = C1.sext(FullWidth);
5923     APInt C2Ext = C2.sext(FullWidth);
5924     return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
5925   }
5926   case ISD::MULHU: {
5927     unsigned FullWidth = C1.getBitWidth() * 2;
5928     APInt C1Ext = C1.zext(FullWidth);
5929     APInt C2Ext = C2.zext(FullWidth);
5930     return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
5931   }
5932   case ISD::AVGFLOORS: {
5933     unsigned FullWidth = C1.getBitWidth() + 1;
5934     APInt C1Ext = C1.sext(FullWidth);
5935     APInt C2Ext = C2.sext(FullWidth);
5936     return (C1Ext + C2Ext).extractBits(C1.getBitWidth(), 1);
5937   }
5938   case ISD::AVGFLOORU: {
5939     unsigned FullWidth = C1.getBitWidth() + 1;
5940     APInt C1Ext = C1.zext(FullWidth);
5941     APInt C2Ext = C2.zext(FullWidth);
5942     return (C1Ext + C2Ext).extractBits(C1.getBitWidth(), 1);
5943   }
5944   case ISD::AVGCEILS: {
5945     unsigned FullWidth = C1.getBitWidth() + 1;
5946     APInt C1Ext = C1.sext(FullWidth);
5947     APInt C2Ext = C2.sext(FullWidth);
5948     return (C1Ext + C2Ext + 1).extractBits(C1.getBitWidth(), 1);
5949   }
5950   case ISD::AVGCEILU: {
5951     unsigned FullWidth = C1.getBitWidth() + 1;
5952     APInt C1Ext = C1.zext(FullWidth);
5953     APInt C2Ext = C2.zext(FullWidth);
5954     return (C1Ext + C2Ext + 1).extractBits(C1.getBitWidth(), 1);
5955   }
5956   case ISD::ABDS:
5957     return APIntOps::smax(C1, C2) - APIntOps::smin(C1, C2);
5958   case ISD::ABDU:
5959     return APIntOps::umax(C1, C2) - APIntOps::umin(C1, C2);
5960   }
5961   return std::nullopt;
5962 }
5963 
5964 // Handle constant folding with UNDEF.
5965 // TODO: Handle more cases.
5966 static std::optional<APInt> FoldValueWithUndef(unsigned Opcode, const APInt &C1,
5967                                                bool IsUndef1, const APInt &C2,
5968                                                bool IsUndef2) {
5969   if (!(IsUndef1 || IsUndef2))
5970     return FoldValue(Opcode, C1, C2);
5971 
5972   // Fold and(x, undef) -> 0
5973   // Fold mul(x, undef) -> 0
5974   if (Opcode == ISD::AND || Opcode == ISD::MUL)
5975     return APInt::getZero(C1.getBitWidth());
5976 
5977   return std::nullopt;
5978 }
5979 
5980 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
5981                                        const GlobalAddressSDNode *GA,
5982                                        const SDNode *N2) {
5983   if (GA->getOpcode() != ISD::GlobalAddress)
5984     return SDValue();
5985   if (!TLI->isOffsetFoldingLegal(GA))
5986     return SDValue();
5987   auto *C2 = dyn_cast<ConstantSDNode>(N2);
5988   if (!C2)
5989     return SDValue();
5990   int64_t Offset = C2->getSExtValue();
5991   switch (Opcode) {
5992   case ISD::ADD: break;
5993   case ISD::SUB: Offset = -uint64_t(Offset); break;
5994   default: return SDValue();
5995   }
5996   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
5997                           GA->getOffset() + uint64_t(Offset));
5998 }
5999 
6000 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
6001   switch (Opcode) {
6002   case ISD::SDIV:
6003   case ISD::UDIV:
6004   case ISD::SREM:
6005   case ISD::UREM: {
6006     // If a divisor is zero/undef or any element of a divisor vector is
6007     // zero/undef, the whole op is undef.
6008     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
6009     SDValue Divisor = Ops[1];
6010     if (Divisor.isUndef() || isNullConstant(Divisor))
6011       return true;
6012 
6013     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
6014            llvm::any_of(Divisor->op_values(),
6015                         [](SDValue V) { return V.isUndef() ||
6016                                         isNullConstant(V); });
6017     // TODO: Handle signed overflow.
6018   }
6019   // TODO: Handle oversized shifts.
6020   default:
6021     return false;
6022   }
6023 }
6024 
6025 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
6026                                              EVT VT, ArrayRef<SDValue> Ops) {
6027   // If the opcode is a target-specific ISD node, there's nothing we can
6028   // do here and the operand rules may not line up with the below, so
6029   // bail early.
6030   // We can't create a scalar CONCAT_VECTORS so skip it. It will break
6031   // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by
6032   // foldCONCAT_VECTORS in getNode before this is called.
6033   if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS)
6034     return SDValue();
6035 
6036   unsigned NumOps = Ops.size();
6037   if (NumOps == 0)
6038     return SDValue();
6039 
6040   if (isUndef(Opcode, Ops))
6041     return getUNDEF(VT);
6042 
6043   // Handle binops special cases.
6044   if (NumOps == 2) {
6045     if (SDValue CFP = foldConstantFPMath(Opcode, DL, VT, Ops[0], Ops[1]))
6046       return CFP;
6047 
6048     if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) {
6049       if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) {
6050         if (C1->isOpaque() || C2->isOpaque())
6051           return SDValue();
6052 
6053         std::optional<APInt> FoldAttempt =
6054             FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
6055         if (!FoldAttempt)
6056           return SDValue();
6057 
6058         SDValue Folded = getConstant(*FoldAttempt, DL, VT);
6059         assert((!Folded || !VT.isVector()) &&
6060                "Can't fold vectors ops with scalar operands");
6061         return Folded;
6062       }
6063     }
6064 
6065     // fold (add Sym, c) -> Sym+c
6066     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[0]))
6067       return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode());
6068     if (TLI->isCommutativeBinOp(Opcode))
6069       if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[1]))
6070         return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode());
6071   }
6072 
6073   // This is for vector folding only from here on.
6074   if (!VT.isVector())
6075     return SDValue();
6076 
6077   ElementCount NumElts = VT.getVectorElementCount();
6078 
6079   // See if we can fold through bitcasted integer ops.
6080   if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() &&
6081       Ops[0].getValueType() == VT && Ops[1].getValueType() == VT &&
6082       Ops[0].getOpcode() == ISD::BITCAST &&
6083       Ops[1].getOpcode() == ISD::BITCAST) {
6084     SDValue N1 = peekThroughBitcasts(Ops[0]);
6085     SDValue N2 = peekThroughBitcasts(Ops[1]);
6086     auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
6087     auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
6088     EVT BVVT = N1.getValueType();
6089     if (BV1 && BV2 && BVVT.isInteger() && BVVT == N2.getValueType()) {
6090       bool IsLE = getDataLayout().isLittleEndian();
6091       unsigned EltBits = VT.getScalarSizeInBits();
6092       SmallVector<APInt> RawBits1, RawBits2;
6093       BitVector UndefElts1, UndefElts2;
6094       if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) &&
6095           BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2)) {
6096         SmallVector<APInt> RawBits;
6097         for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) {
6098           std::optional<APInt> Fold = FoldValueWithUndef(
6099               Opcode, RawBits1[I], UndefElts1[I], RawBits2[I], UndefElts2[I]);
6100           if (!Fold)
6101             break;
6102           RawBits.push_back(*Fold);
6103         }
6104         if (RawBits.size() == NumElts.getFixedValue()) {
6105           // We have constant folded, but we need to cast this again back to
6106           // the original (possibly legalized) type.
6107           SmallVector<APInt> DstBits;
6108           BitVector DstUndefs;
6109           BuildVectorSDNode::recastRawBits(IsLE, BVVT.getScalarSizeInBits(),
6110                                            DstBits, RawBits, DstUndefs,
6111                                            BitVector(RawBits.size(), false));
6112           EVT BVEltVT = BV1->getOperand(0).getValueType();
6113           unsigned BVEltBits = BVEltVT.getSizeInBits();
6114           SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT));
6115           for (unsigned I = 0, E = DstBits.size(); I != E; ++I) {
6116             if (DstUndefs[I])
6117               continue;
6118             Ops[I] = getConstant(DstBits[I].sext(BVEltBits), DL, BVEltVT);
6119           }
6120           return getBitcast(VT, getBuildVector(BVVT, DL, Ops));
6121         }
6122       }
6123     }
6124   }
6125 
6126   // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)).
6127   //      (shl step_vector(C0), C1) -> (step_vector(C0 << C1))
6128   if ((Opcode == ISD::MUL || Opcode == ISD::SHL) &&
6129       Ops[0].getOpcode() == ISD::STEP_VECTOR) {
6130     APInt RHSVal;
6131     if (ISD::isConstantSplatVector(Ops[1].getNode(), RHSVal)) {
6132       APInt NewStep = Opcode == ISD::MUL
6133                           ? Ops[0].getConstantOperandAPInt(0) * RHSVal
6134                           : Ops[0].getConstantOperandAPInt(0) << RHSVal;
6135       return getStepVector(DL, VT, NewStep);
6136     }
6137   }
6138 
6139   auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) {
6140     return !Op.getValueType().isVector() ||
6141            Op.getValueType().getVectorElementCount() == NumElts;
6142   };
6143 
6144   auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) {
6145     return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE ||
6146            Op.getOpcode() == ISD::BUILD_VECTOR ||
6147            Op.getOpcode() == ISD::SPLAT_VECTOR;
6148   };
6149 
6150   // All operands must be vector types with the same number of elements as
6151   // the result type and must be either UNDEF or a build/splat vector
6152   // or UNDEF scalars.
6153   if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) ||
6154       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
6155     return SDValue();
6156 
6157   // If we are comparing vectors, then the result needs to be a i1 boolean that
6158   // is then extended back to the legal result type depending on how booleans
6159   // are represented.
6160   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
6161   ISD::NodeType ExtendCode =
6162       (Opcode == ISD::SETCC && SVT != VT.getScalarType())
6163           ? TargetLowering::getExtendForContent(TLI->getBooleanContents(VT))
6164           : ISD::SIGN_EXTEND;
6165 
6166   // Find legal integer scalar type for constant promotion and
6167   // ensure that its scalar size is at least as large as source.
6168   EVT LegalSVT = VT.getScalarType();
6169   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
6170     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
6171     if (LegalSVT.bitsLT(VT.getScalarType()))
6172       return SDValue();
6173   }
6174 
6175   // For scalable vector types we know we're dealing with SPLAT_VECTORs. We
6176   // only have one operand to check. For fixed-length vector types we may have
6177   // a combination of BUILD_VECTOR and SPLAT_VECTOR.
6178   unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue();
6179 
6180   // Constant fold each scalar lane separately.
6181   SmallVector<SDValue, 4> ScalarResults;
6182   for (unsigned I = 0; I != NumVectorElts; I++) {
6183     SmallVector<SDValue, 4> ScalarOps;
6184     for (SDValue Op : Ops) {
6185       EVT InSVT = Op.getValueType().getScalarType();
6186       if (Op.getOpcode() != ISD::BUILD_VECTOR &&
6187           Op.getOpcode() != ISD::SPLAT_VECTOR) {
6188         if (Op.isUndef())
6189           ScalarOps.push_back(getUNDEF(InSVT));
6190         else
6191           ScalarOps.push_back(Op);
6192         continue;
6193       }
6194 
6195       SDValue ScalarOp =
6196           Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I);
6197       EVT ScalarVT = ScalarOp.getValueType();
6198 
6199       // Build vector (integer) scalar operands may need implicit
6200       // truncation - do this before constant folding.
6201       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) {
6202         // Don't create illegally-typed nodes unless they're constants or undef
6203         // - if we fail to constant fold we can't guarantee the (dead) nodes
6204         // we're creating will be cleaned up before being visited for
6205         // legalization.
6206         if (NewNodesMustHaveLegalTypes && !ScalarOp.isUndef() &&
6207             !isa<ConstantSDNode>(ScalarOp) &&
6208             TLI->getTypeAction(*getContext(), InSVT) !=
6209                 TargetLowering::TypeLegal)
6210           return SDValue();
6211         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
6212       }
6213 
6214       ScalarOps.push_back(ScalarOp);
6215     }
6216 
6217     // Constant fold the scalar operands.
6218     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps);
6219 
6220     // Legalize the (integer) scalar constant if necessary.
6221     if (LegalSVT != SVT)
6222       ScalarResult = getNode(ExtendCode, DL, LegalSVT, ScalarResult);
6223 
6224     // Scalar folding only succeeded if the result is a constant or UNDEF.
6225     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
6226         ScalarResult.getOpcode() != ISD::ConstantFP)
6227       return SDValue();
6228     ScalarResults.push_back(ScalarResult);
6229   }
6230 
6231   SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0])
6232                                    : getBuildVector(VT, DL, ScalarResults);
6233   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
6234   return V;
6235 }
6236 
6237 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
6238                                          EVT VT, SDValue N1, SDValue N2) {
6239   // TODO: We don't do any constant folding for strict FP opcodes here, but we
6240   //       should. That will require dealing with a potentially non-default
6241   //       rounding mode, checking the "opStatus" return value from the APFloat
6242   //       math calculations, and possibly other variations.
6243   ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, /*AllowUndefs*/ false);
6244   ConstantFPSDNode *N2CFP = isConstOrConstSplatFP(N2, /*AllowUndefs*/ false);
6245   if (N1CFP && N2CFP) {
6246     APFloat C1 = N1CFP->getValueAPF(); // make copy
6247     const APFloat &C2 = N2CFP->getValueAPF();
6248     switch (Opcode) {
6249     case ISD::FADD:
6250       C1.add(C2, APFloat::rmNearestTiesToEven);
6251       return getConstantFP(C1, DL, VT);
6252     case ISD::FSUB:
6253       C1.subtract(C2, APFloat::rmNearestTiesToEven);
6254       return getConstantFP(C1, DL, VT);
6255     case ISD::FMUL:
6256       C1.multiply(C2, APFloat::rmNearestTiesToEven);
6257       return getConstantFP(C1, DL, VT);
6258     case ISD::FDIV:
6259       C1.divide(C2, APFloat::rmNearestTiesToEven);
6260       return getConstantFP(C1, DL, VT);
6261     case ISD::FREM:
6262       C1.mod(C2);
6263       return getConstantFP(C1, DL, VT);
6264     case ISD::FCOPYSIGN:
6265       C1.copySign(C2);
6266       return getConstantFP(C1, DL, VT);
6267     case ISD::FMINNUM:
6268       return getConstantFP(minnum(C1, C2), DL, VT);
6269     case ISD::FMAXNUM:
6270       return getConstantFP(maxnum(C1, C2), DL, VT);
6271     case ISD::FMINIMUM:
6272       return getConstantFP(minimum(C1, C2), DL, VT);
6273     case ISD::FMAXIMUM:
6274       return getConstantFP(maximum(C1, C2), DL, VT);
6275     default: break;
6276     }
6277   }
6278   if (N1CFP && Opcode == ISD::FP_ROUND) {
6279     APFloat C1 = N1CFP->getValueAPF();    // make copy
6280     bool Unused;
6281     // This can return overflow, underflow, or inexact; we don't care.
6282     // FIXME need to be more flexible about rounding mode.
6283     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
6284                       &Unused);
6285     return getConstantFP(C1, DL, VT);
6286   }
6287 
6288   switch (Opcode) {
6289   case ISD::FSUB:
6290     // -0.0 - undef --> undef (consistent with "fneg undef")
6291     if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, /*AllowUndefs*/ true))
6292       if (N1C && N1C->getValueAPF().isNegZero() && N2.isUndef())
6293         return getUNDEF(VT);
6294     [[fallthrough]];
6295 
6296   case ISD::FADD:
6297   case ISD::FMUL:
6298   case ISD::FDIV:
6299   case ISD::FREM:
6300     // If both operands are undef, the result is undef. If 1 operand is undef,
6301     // the result is NaN. This should match the behavior of the IR optimizer.
6302     if (N1.isUndef() && N2.isUndef())
6303       return getUNDEF(VT);
6304     if (N1.isUndef() || N2.isUndef())
6305       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
6306   }
6307   return SDValue();
6308 }
6309 
6310 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) {
6311   assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
6312 
6313   // There's no need to assert on a byte-aligned pointer. All pointers are at
6314   // least byte aligned.
6315   if (A == Align(1))
6316     return Val;
6317 
6318   FoldingSetNodeID ID;
6319   AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val});
6320   ID.AddInteger(A.value());
6321 
6322   void *IP = nullptr;
6323   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
6324     return SDValue(E, 0);
6325 
6326   auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(),
6327                                          Val.getValueType(), A);
6328   createOperands(N, {Val});
6329 
6330   CSEMap.InsertNode(N, IP);
6331   InsertNode(N);
6332 
6333   SDValue V(N, 0);
6334   NewSDValueDbgMsg(V, "Creating new node: ", this);
6335   return V;
6336 }
6337 
6338 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6339                               SDValue N1, SDValue N2) {
6340   SDNodeFlags Flags;
6341   if (Inserter)
6342     Flags = Inserter->getFlags();
6343   return getNode(Opcode, DL, VT, N1, N2, Flags);
6344 }
6345 
6346 void SelectionDAG::canonicalizeCommutativeBinop(unsigned Opcode, SDValue &N1,
6347                                                 SDValue &N2) const {
6348   if (!TLI->isCommutativeBinOp(Opcode))
6349     return;
6350 
6351   // Canonicalize:
6352   //   binop(const, nonconst) -> binop(nonconst, const)
6353   SDNode *N1C = isConstantIntBuildVectorOrConstantInt(N1);
6354   SDNode *N2C = isConstantIntBuildVectorOrConstantInt(N2);
6355   SDNode *N1CFP = isConstantFPBuildVectorOrConstantFP(N1);
6356   SDNode *N2CFP = isConstantFPBuildVectorOrConstantFP(N2);
6357   if ((N1C && !N2C) || (N1CFP && !N2CFP))
6358     std::swap(N1, N2);
6359 
6360   // Canonicalize:
6361   //  binop(splat(x), step_vector) -> binop(step_vector, splat(x))
6362   else if (N1.getOpcode() == ISD::SPLAT_VECTOR &&
6363            N2.getOpcode() == ISD::STEP_VECTOR)
6364     std::swap(N1, N2);
6365 }
6366 
6367 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6368                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
6369   assert(N1.getOpcode() != ISD::DELETED_NODE &&
6370          N2.getOpcode() != ISD::DELETED_NODE &&
6371          "Operand is DELETED_NODE!");
6372 
6373   canonicalizeCommutativeBinop(Opcode, N1, N2);
6374 
6375   auto *N1C = dyn_cast<ConstantSDNode>(N1);
6376   auto *N2C = dyn_cast<ConstantSDNode>(N2);
6377 
6378   // Don't allow undefs in vector splats - we might be returning N2 when folding
6379   // to zero etc.
6380   ConstantSDNode *N2CV =
6381       isConstOrConstSplat(N2, /*AllowUndefs*/ false, /*AllowTruncation*/ true);
6382 
6383   switch (Opcode) {
6384   default: break;
6385   case ISD::TokenFactor:
6386     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
6387            N2.getValueType() == MVT::Other && "Invalid token factor!");
6388     // Fold trivial token factors.
6389     if (N1.getOpcode() == ISD::EntryToken) return N2;
6390     if (N2.getOpcode() == ISD::EntryToken) return N1;
6391     if (N1 == N2) return N1;
6392     break;
6393   case ISD::BUILD_VECTOR: {
6394     // Attempt to simplify BUILD_VECTOR.
6395     SDValue Ops[] = {N1, N2};
6396     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
6397       return V;
6398     break;
6399   }
6400   case ISD::CONCAT_VECTORS: {
6401     SDValue Ops[] = {N1, N2};
6402     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
6403       return V;
6404     break;
6405   }
6406   case ISD::AND:
6407     assert(VT.isInteger() && "This operator does not apply to FP types!");
6408     assert(N1.getValueType() == N2.getValueType() &&
6409            N1.getValueType() == VT && "Binary operator types must match!");
6410     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
6411     // worth handling here.
6412     if (N2CV && N2CV->isZero())
6413       return N2;
6414     if (N2CV && N2CV->isAllOnes()) // X & -1 -> X
6415       return N1;
6416     break;
6417   case ISD::OR:
6418   case ISD::XOR:
6419   case ISD::ADD:
6420   case ISD::SUB:
6421     assert(VT.isInteger() && "This operator does not apply to FP types!");
6422     assert(N1.getValueType() == N2.getValueType() &&
6423            N1.getValueType() == VT && "Binary operator types must match!");
6424     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
6425     // it's worth handling here.
6426     if (N2CV && N2CV->isZero())
6427       return N1;
6428     if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() &&
6429         VT.getVectorElementType() == MVT::i1)
6430       return getNode(ISD::XOR, DL, VT, N1, N2);
6431     break;
6432   case ISD::MUL:
6433     assert(VT.isInteger() && "This operator does not apply to FP types!");
6434     assert(N1.getValueType() == N2.getValueType() &&
6435            N1.getValueType() == VT && "Binary operator types must match!");
6436     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
6437       return getNode(ISD::AND, DL, VT, N1, N2);
6438     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
6439       const APInt &MulImm = N1->getConstantOperandAPInt(0);
6440       const APInt &N2CImm = N2C->getAPIntValue();
6441       return getVScale(DL, VT, MulImm * N2CImm);
6442     }
6443     break;
6444   case ISD::UDIV:
6445   case ISD::UREM:
6446   case ISD::MULHU:
6447   case ISD::MULHS:
6448   case ISD::SDIV:
6449   case ISD::SREM:
6450   case ISD::SADDSAT:
6451   case ISD::SSUBSAT:
6452   case ISD::UADDSAT:
6453   case ISD::USUBSAT:
6454     assert(VT.isInteger() && "This operator does not apply to FP types!");
6455     assert(N1.getValueType() == N2.getValueType() &&
6456            N1.getValueType() == VT && "Binary operator types must match!");
6457     if (VT.isVector() && VT.getVectorElementType() == MVT::i1) {
6458       // fold (add_sat x, y) -> (or x, y) for bool types.
6459       if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT)
6460         return getNode(ISD::OR, DL, VT, N1, N2);
6461       // fold (sub_sat x, y) -> (and x, ~y) for bool types.
6462       if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT)
6463         return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT));
6464     }
6465     break;
6466   case ISD::ABDS:
6467   case ISD::ABDU:
6468     assert(VT.isInteger() && "This operator does not apply to FP types!");
6469     assert(N1.getValueType() == N2.getValueType() &&
6470            N1.getValueType() == VT && "Binary operator types must match!");
6471     break;
6472   case ISD::SMIN:
6473   case ISD::UMAX:
6474     assert(VT.isInteger() && "This operator does not apply to FP types!");
6475     assert(N1.getValueType() == N2.getValueType() &&
6476            N1.getValueType() == VT && "Binary operator types must match!");
6477     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
6478       return getNode(ISD::OR, DL, VT, N1, N2);
6479     break;
6480   case ISD::SMAX:
6481   case ISD::UMIN:
6482     assert(VT.isInteger() && "This operator does not apply to FP types!");
6483     assert(N1.getValueType() == N2.getValueType() &&
6484            N1.getValueType() == VT && "Binary operator types must match!");
6485     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
6486       return getNode(ISD::AND, DL, VT, N1, N2);
6487     break;
6488   case ISD::FADD:
6489   case ISD::FSUB:
6490   case ISD::FMUL:
6491   case ISD::FDIV:
6492   case ISD::FREM:
6493     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
6494     assert(N1.getValueType() == N2.getValueType() &&
6495            N1.getValueType() == VT && "Binary operator types must match!");
6496     if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
6497       return V;
6498     break;
6499   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
6500     assert(N1.getValueType() == VT &&
6501            N1.getValueType().isFloatingPoint() &&
6502            N2.getValueType().isFloatingPoint() &&
6503            "Invalid FCOPYSIGN!");
6504     break;
6505   case ISD::SHL:
6506     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
6507       const APInt &MulImm = N1->getConstantOperandAPInt(0);
6508       const APInt &ShiftImm = N2C->getAPIntValue();
6509       return getVScale(DL, VT, MulImm << ShiftImm);
6510     }
6511     [[fallthrough]];
6512   case ISD::SRA:
6513   case ISD::SRL:
6514     if (SDValue V = simplifyShift(N1, N2))
6515       return V;
6516     [[fallthrough]];
6517   case ISD::ROTL:
6518   case ISD::ROTR:
6519     assert(VT == N1.getValueType() &&
6520            "Shift operators return type must be the same as their first arg");
6521     assert(VT.isInteger() && N2.getValueType().isInteger() &&
6522            "Shifts only work on integers");
6523     assert((!VT.isVector() || VT == N2.getValueType()) &&
6524            "Vector shift amounts must be in the same as their first arg");
6525     // Verify that the shift amount VT is big enough to hold valid shift
6526     // amounts.  This catches things like trying to shift an i1024 value by an
6527     // i8, which is easy to fall into in generic code that uses
6528     // TLI.getShiftAmount().
6529     assert(N2.getValueType().getScalarSizeInBits() >=
6530                Log2_32_Ceil(VT.getScalarSizeInBits()) &&
6531            "Invalid use of small shift amount with oversized value!");
6532 
6533     // Always fold shifts of i1 values so the code generator doesn't need to
6534     // handle them.  Since we know the size of the shift has to be less than the
6535     // size of the value, the shift/rotate count is guaranteed to be zero.
6536     if (VT == MVT::i1)
6537       return N1;
6538     if (N2CV && N2CV->isZero())
6539       return N1;
6540     break;
6541   case ISD::FP_ROUND:
6542     assert(VT.isFloatingPoint() &&
6543            N1.getValueType().isFloatingPoint() &&
6544            VT.bitsLE(N1.getValueType()) &&
6545            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
6546            "Invalid FP_ROUND!");
6547     if (N1.getValueType() == VT) return N1;  // noop conversion.
6548     break;
6549   case ISD::AssertSext:
6550   case ISD::AssertZext: {
6551     EVT EVT = cast<VTSDNode>(N2)->getVT();
6552     assert(VT == N1.getValueType() && "Not an inreg extend!");
6553     assert(VT.isInteger() && EVT.isInteger() &&
6554            "Cannot *_EXTEND_INREG FP types");
6555     assert(!EVT.isVector() &&
6556            "AssertSExt/AssertZExt type should be the vector element type "
6557            "rather than the vector type!");
6558     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
6559     if (VT.getScalarType() == EVT) return N1; // noop assertion.
6560     break;
6561   }
6562   case ISD::SIGN_EXTEND_INREG: {
6563     EVT EVT = cast<VTSDNode>(N2)->getVT();
6564     assert(VT == N1.getValueType() && "Not an inreg extend!");
6565     assert(VT.isInteger() && EVT.isInteger() &&
6566            "Cannot *_EXTEND_INREG FP types");
6567     assert(EVT.isVector() == VT.isVector() &&
6568            "SIGN_EXTEND_INREG type should be vector iff the operand "
6569            "type is vector!");
6570     assert((!EVT.isVector() ||
6571             EVT.getVectorElementCount() == VT.getVectorElementCount()) &&
6572            "Vector element counts must match in SIGN_EXTEND_INREG");
6573     assert(EVT.bitsLE(VT) && "Not extending!");
6574     if (EVT == VT) return N1;  // Not actually extending
6575 
6576     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
6577       unsigned FromBits = EVT.getScalarSizeInBits();
6578       Val <<= Val.getBitWidth() - FromBits;
6579       Val.ashrInPlace(Val.getBitWidth() - FromBits);
6580       return getConstant(Val, DL, ConstantVT);
6581     };
6582 
6583     if (N1C) {
6584       const APInt &Val = N1C->getAPIntValue();
6585       return SignExtendInReg(Val, VT);
6586     }
6587 
6588     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
6589       SmallVector<SDValue, 8> Ops;
6590       llvm::EVT OpVT = N1.getOperand(0).getValueType();
6591       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
6592         SDValue Op = N1.getOperand(i);
6593         if (Op.isUndef()) {
6594           Ops.push_back(getUNDEF(OpVT));
6595           continue;
6596         }
6597         ConstantSDNode *C = cast<ConstantSDNode>(Op);
6598         APInt Val = C->getAPIntValue();
6599         Ops.push_back(SignExtendInReg(Val, OpVT));
6600       }
6601       return getBuildVector(VT, DL, Ops);
6602     }
6603     break;
6604   }
6605   case ISD::FP_TO_SINT_SAT:
6606   case ISD::FP_TO_UINT_SAT: {
6607     assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() &&
6608            N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT");
6609     assert(N1.getValueType().isVector() == VT.isVector() &&
6610            "FP_TO_*INT_SAT type should be vector iff the operand type is "
6611            "vector!");
6612     assert((!VT.isVector() || VT.getVectorElementCount() ==
6613                                   N1.getValueType().getVectorElementCount()) &&
6614            "Vector element counts must match in FP_TO_*INT_SAT");
6615     assert(!cast<VTSDNode>(N2)->getVT().isVector() &&
6616            "Type to saturate to must be a scalar.");
6617     assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) &&
6618            "Not extending!");
6619     break;
6620   }
6621   case ISD::EXTRACT_VECTOR_ELT:
6622     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
6623            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
6624              element type of the vector.");
6625 
6626     // Extract from an undefined value or using an undefined index is undefined.
6627     if (N1.isUndef() || N2.isUndef())
6628       return getUNDEF(VT);
6629 
6630     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
6631     // vectors. For scalable vectors we will provide appropriate support for
6632     // dealing with arbitrary indices.
6633     if (N2C && N1.getValueType().isFixedLengthVector() &&
6634         N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
6635       return getUNDEF(VT);
6636 
6637     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
6638     // expanding copies of large vectors from registers. This only works for
6639     // fixed length vectors, since we need to know the exact number of
6640     // elements.
6641     if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() &&
6642         N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) {
6643       unsigned Factor =
6644         N1.getOperand(0).getValueType().getVectorNumElements();
6645       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
6646                      N1.getOperand(N2C->getZExtValue() / Factor),
6647                      getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
6648     }
6649 
6650     // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
6651     // lowering is expanding large vector constants.
6652     if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
6653                 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
6654       assert((N1.getOpcode() != ISD::BUILD_VECTOR ||
6655               N1.getValueType().isFixedLengthVector()) &&
6656              "BUILD_VECTOR used for scalable vectors");
6657       unsigned Index =
6658           N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
6659       SDValue Elt = N1.getOperand(Index);
6660 
6661       if (VT != Elt.getValueType())
6662         // If the vector element type is not legal, the BUILD_VECTOR operands
6663         // are promoted and implicitly truncated, and the result implicitly
6664         // extended. Make that explicit here.
6665         Elt = getAnyExtOrTrunc(Elt, DL, VT);
6666 
6667       return Elt;
6668     }
6669 
6670     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
6671     // operations are lowered to scalars.
6672     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
6673       // If the indices are the same, return the inserted element else
6674       // if the indices are known different, extract the element from
6675       // the original vector.
6676       SDValue N1Op2 = N1.getOperand(2);
6677       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
6678 
6679       if (N1Op2C && N2C) {
6680         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
6681           if (VT == N1.getOperand(1).getValueType())
6682             return N1.getOperand(1);
6683           if (VT.isFloatingPoint()) {
6684             assert(VT.getSizeInBits() > N1.getOperand(1).getValueType().getSizeInBits());
6685             return getFPExtendOrRound(N1.getOperand(1), DL, VT);
6686           }
6687           return getSExtOrTrunc(N1.getOperand(1), DL, VT);
6688         }
6689         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
6690       }
6691     }
6692 
6693     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
6694     // when vector types are scalarized and v1iX is legal.
6695     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
6696     // Here we are completely ignoring the extract element index (N2),
6697     // which is fine for fixed width vectors, since any index other than 0
6698     // is undefined anyway. However, this cannot be ignored for scalable
6699     // vectors - in theory we could support this, but we don't want to do this
6700     // without a profitability check.
6701     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
6702         N1.getValueType().isFixedLengthVector() &&
6703         N1.getValueType().getVectorNumElements() == 1) {
6704       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
6705                      N1.getOperand(1));
6706     }
6707     break;
6708   case ISD::EXTRACT_ELEMENT:
6709     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
6710     assert(!N1.getValueType().isVector() && !VT.isVector() &&
6711            (N1.getValueType().isInteger() == VT.isInteger()) &&
6712            N1.getValueType() != VT &&
6713            "Wrong types for EXTRACT_ELEMENT!");
6714 
6715     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
6716     // 64-bit integers into 32-bit parts.  Instead of building the extract of
6717     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
6718     if (N1.getOpcode() == ISD::BUILD_PAIR)
6719       return N1.getOperand(N2C->getZExtValue());
6720 
6721     // EXTRACT_ELEMENT of a constant int is also very common.
6722     if (N1C) {
6723       unsigned ElementSize = VT.getSizeInBits();
6724       unsigned Shift = ElementSize * N2C->getZExtValue();
6725       const APInt &Val = N1C->getAPIntValue();
6726       return getConstant(Val.extractBits(ElementSize, Shift), DL, VT);
6727     }
6728     break;
6729   case ISD::EXTRACT_SUBVECTOR: {
6730     EVT N1VT = N1.getValueType();
6731     assert(VT.isVector() && N1VT.isVector() &&
6732            "Extract subvector VTs must be vectors!");
6733     assert(VT.getVectorElementType() == N1VT.getVectorElementType() &&
6734            "Extract subvector VTs must have the same element type!");
6735     assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
6736            "Cannot extract a scalable vector from a fixed length vector!");
6737     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
6738             VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) &&
6739            "Extract subvector must be from larger vector to smaller vector!");
6740     assert(N2C && "Extract subvector index must be a constant");
6741     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
6742             (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
6743                 N1VT.getVectorMinNumElements()) &&
6744            "Extract subvector overflow!");
6745     assert(N2C->getAPIntValue().getBitWidth() ==
6746                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
6747            "Constant index for EXTRACT_SUBVECTOR has an invalid size");
6748 
6749     // Trivial extraction.
6750     if (VT == N1VT)
6751       return N1;
6752 
6753     // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
6754     if (N1.isUndef())
6755       return getUNDEF(VT);
6756 
6757     // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
6758     // the concat have the same type as the extract.
6759     if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 &&
6760         VT == N1.getOperand(0).getValueType()) {
6761       unsigned Factor = VT.getVectorMinNumElements();
6762       return N1.getOperand(N2C->getZExtValue() / Factor);
6763     }
6764 
6765     // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
6766     // during shuffle legalization.
6767     if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
6768         VT == N1.getOperand(1).getValueType())
6769       return N1.getOperand(1);
6770     break;
6771   }
6772   }
6773 
6774   // Perform trivial constant folding.
6775   if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}))
6776     return SV;
6777 
6778   // Canonicalize an UNDEF to the RHS, even over a constant.
6779   if (N1.isUndef()) {
6780     if (TLI->isCommutativeBinOp(Opcode)) {
6781       std::swap(N1, N2);
6782     } else {
6783       switch (Opcode) {
6784       case ISD::SUB:
6785         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
6786       case ISD::SIGN_EXTEND_INREG:
6787       case ISD::UDIV:
6788       case ISD::SDIV:
6789       case ISD::UREM:
6790       case ISD::SREM:
6791       case ISD::SSUBSAT:
6792       case ISD::USUBSAT:
6793         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
6794       }
6795     }
6796   }
6797 
6798   // Fold a bunch of operators when the RHS is undef.
6799   if (N2.isUndef()) {
6800     switch (Opcode) {
6801     case ISD::XOR:
6802       if (N1.isUndef())
6803         // Handle undef ^ undef -> 0 special case. This is a common
6804         // idiom (misuse).
6805         return getConstant(0, DL, VT);
6806       [[fallthrough]];
6807     case ISD::ADD:
6808     case ISD::SUB:
6809     case ISD::UDIV:
6810     case ISD::SDIV:
6811     case ISD::UREM:
6812     case ISD::SREM:
6813       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
6814     case ISD::MUL:
6815     case ISD::AND:
6816     case ISD::SSUBSAT:
6817     case ISD::USUBSAT:
6818       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
6819     case ISD::OR:
6820     case ISD::SADDSAT:
6821     case ISD::UADDSAT:
6822       return getAllOnesConstant(DL, VT);
6823     }
6824   }
6825 
6826   // Memoize this node if possible.
6827   SDNode *N;
6828   SDVTList VTs = getVTList(VT);
6829   SDValue Ops[] = {N1, N2};
6830   if (VT != MVT::Glue) {
6831     FoldingSetNodeID ID;
6832     AddNodeIDNode(ID, Opcode, VTs, Ops);
6833     void *IP = nullptr;
6834     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6835       E->intersectFlagsWith(Flags);
6836       return SDValue(E, 0);
6837     }
6838 
6839     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6840     N->setFlags(Flags);
6841     createOperands(N, Ops);
6842     CSEMap.InsertNode(N, IP);
6843   } else {
6844     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6845     createOperands(N, Ops);
6846   }
6847 
6848   InsertNode(N);
6849   SDValue V = SDValue(N, 0);
6850   NewSDValueDbgMsg(V, "Creating new node: ", this);
6851   return V;
6852 }
6853 
6854 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6855                               SDValue N1, SDValue N2, SDValue N3) {
6856   SDNodeFlags Flags;
6857   if (Inserter)
6858     Flags = Inserter->getFlags();
6859   return getNode(Opcode, DL, VT, N1, N2, N3, Flags);
6860 }
6861 
6862 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6863                               SDValue N1, SDValue N2, SDValue N3,
6864                               const SDNodeFlags Flags) {
6865   assert(N1.getOpcode() != ISD::DELETED_NODE &&
6866          N2.getOpcode() != ISD::DELETED_NODE &&
6867          N3.getOpcode() != ISD::DELETED_NODE &&
6868          "Operand is DELETED_NODE!");
6869   // Perform various simplifications.
6870   switch (Opcode) {
6871   case ISD::FMA: {
6872     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
6873     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
6874            N3.getValueType() == VT && "FMA types must match!");
6875     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6876     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
6877     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
6878     if (N1CFP && N2CFP && N3CFP) {
6879       APFloat  V1 = N1CFP->getValueAPF();
6880       const APFloat &V2 = N2CFP->getValueAPF();
6881       const APFloat &V3 = N3CFP->getValueAPF();
6882       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
6883       return getConstantFP(V1, DL, VT);
6884     }
6885     break;
6886   }
6887   case ISD::BUILD_VECTOR: {
6888     // Attempt to simplify BUILD_VECTOR.
6889     SDValue Ops[] = {N1, N2, N3};
6890     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
6891       return V;
6892     break;
6893   }
6894   case ISD::CONCAT_VECTORS: {
6895     SDValue Ops[] = {N1, N2, N3};
6896     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
6897       return V;
6898     break;
6899   }
6900   case ISD::SETCC: {
6901     assert(VT.isInteger() && "SETCC result type must be an integer!");
6902     assert(N1.getValueType() == N2.getValueType() &&
6903            "SETCC operands must have the same type!");
6904     assert(VT.isVector() == N1.getValueType().isVector() &&
6905            "SETCC type should be vector iff the operand type is vector!");
6906     assert((!VT.isVector() || VT.getVectorElementCount() ==
6907                                   N1.getValueType().getVectorElementCount()) &&
6908            "SETCC vector element counts must match!");
6909     // Use FoldSetCC to simplify SETCC's.
6910     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
6911       return V;
6912     // Vector constant folding.
6913     SDValue Ops[] = {N1, N2, N3};
6914     if (SDValue V = FoldConstantArithmetic(Opcode, DL, VT, Ops)) {
6915       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
6916       return V;
6917     }
6918     break;
6919   }
6920   case ISD::SELECT:
6921   case ISD::VSELECT:
6922     if (SDValue V = simplifySelect(N1, N2, N3))
6923       return V;
6924     break;
6925   case ISD::VECTOR_SHUFFLE:
6926     llvm_unreachable("should use getVectorShuffle constructor!");
6927   case ISD::VECTOR_SPLICE: {
6928     if (cast<ConstantSDNode>(N3)->isZero())
6929       return N1;
6930     break;
6931   }
6932   case ISD::INSERT_VECTOR_ELT: {
6933     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
6934     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
6935     // for scalable vectors where we will generate appropriate code to
6936     // deal with out-of-bounds cases correctly.
6937     if (N3C && N1.getValueType().isFixedLengthVector() &&
6938         N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
6939       return getUNDEF(VT);
6940 
6941     // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
6942     if (N3.isUndef())
6943       return getUNDEF(VT);
6944 
6945     // If the inserted element is an UNDEF, just use the input vector.
6946     if (N2.isUndef())
6947       return N1;
6948 
6949     break;
6950   }
6951   case ISD::INSERT_SUBVECTOR: {
6952     // Inserting undef into undef is still undef.
6953     if (N1.isUndef() && N2.isUndef())
6954       return getUNDEF(VT);
6955 
6956     EVT N2VT = N2.getValueType();
6957     assert(VT == N1.getValueType() &&
6958            "Dest and insert subvector source types must match!");
6959     assert(VT.isVector() && N2VT.isVector() &&
6960            "Insert subvector VTs must be vectors!");
6961     assert(VT.getVectorElementType() == N2VT.getVectorElementType() &&
6962            "Insert subvector VTs must have the same element type!");
6963     assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
6964            "Cannot insert a scalable vector into a fixed length vector!");
6965     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
6966             VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) &&
6967            "Insert subvector must be from smaller vector to larger vector!");
6968     assert(isa<ConstantSDNode>(N3) &&
6969            "Insert subvector index must be constant");
6970     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
6971             (N2VT.getVectorMinNumElements() +
6972              cast<ConstantSDNode>(N3)->getZExtValue()) <=
6973                 VT.getVectorMinNumElements()) &&
6974            "Insert subvector overflow!");
6975     assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() ==
6976                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
6977            "Constant index for INSERT_SUBVECTOR has an invalid size");
6978 
6979     // Trivial insertion.
6980     if (VT == N2VT)
6981       return N2;
6982 
6983     // If this is an insert of an extracted vector into an undef vector, we
6984     // can just use the input to the extract.
6985     if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
6986         N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
6987       return N2.getOperand(0);
6988     break;
6989   }
6990   case ISD::BITCAST:
6991     // Fold bit_convert nodes from a type to themselves.
6992     if (N1.getValueType() == VT)
6993       return N1;
6994     break;
6995   case ISD::VP_TRUNCATE:
6996   case ISD::VP_SIGN_EXTEND:
6997   case ISD::VP_ZERO_EXTEND:
6998     // Don't create noop casts.
6999     if (N1.getValueType() == VT)
7000       return N1;
7001     break;
7002   }
7003 
7004   // Memoize node if it doesn't produce a flag.
7005   SDNode *N;
7006   SDVTList VTs = getVTList(VT);
7007   SDValue Ops[] = {N1, N2, N3};
7008   if (VT != MVT::Glue) {
7009     FoldingSetNodeID ID;
7010     AddNodeIDNode(ID, Opcode, VTs, Ops);
7011     void *IP = nullptr;
7012     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
7013       E->intersectFlagsWith(Flags);
7014       return SDValue(E, 0);
7015     }
7016 
7017     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7018     N->setFlags(Flags);
7019     createOperands(N, Ops);
7020     CSEMap.InsertNode(N, IP);
7021   } else {
7022     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7023     createOperands(N, Ops);
7024   }
7025 
7026   InsertNode(N);
7027   SDValue V = SDValue(N, 0);
7028   NewSDValueDbgMsg(V, "Creating new node: ", this);
7029   return V;
7030 }
7031 
7032 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7033                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
7034   SDValue Ops[] = { N1, N2, N3, N4 };
7035   return getNode(Opcode, DL, VT, Ops);
7036 }
7037 
7038 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7039                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
7040                               SDValue N5) {
7041   SDValue Ops[] = { N1, N2, N3, N4, N5 };
7042   return getNode(Opcode, DL, VT, Ops);
7043 }
7044 
7045 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
7046 /// the incoming stack arguments to be loaded from the stack.
7047 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
7048   SmallVector<SDValue, 8> ArgChains;
7049 
7050   // Include the original chain at the beginning of the list. When this is
7051   // used by target LowerCall hooks, this helps legalize find the
7052   // CALLSEQ_BEGIN node.
7053   ArgChains.push_back(Chain);
7054 
7055   // Add a chain value for each stack argument.
7056   for (SDNode *U : getEntryNode().getNode()->uses())
7057     if (LoadSDNode *L = dyn_cast<LoadSDNode>(U))
7058       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
7059         if (FI->getIndex() < 0)
7060           ArgChains.push_back(SDValue(L, 1));
7061 
7062   // Build a tokenfactor for all the chains.
7063   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
7064 }
7065 
7066 /// getMemsetValue - Vectorized representation of the memset value
7067 /// operand.
7068 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
7069                               const SDLoc &dl) {
7070   assert(!Value.isUndef());
7071 
7072   unsigned NumBits = VT.getScalarSizeInBits();
7073   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
7074     assert(C->getAPIntValue().getBitWidth() == 8);
7075     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
7076     if (VT.isInteger()) {
7077       bool IsOpaque = VT.getSizeInBits() > 64 ||
7078           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
7079       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
7080     }
7081     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
7082                              VT);
7083   }
7084 
7085   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
7086   EVT IntVT = VT.getScalarType();
7087   if (!IntVT.isInteger())
7088     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
7089 
7090   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
7091   if (NumBits > 8) {
7092     // Use a multiplication with 0x010101... to extend the input to the
7093     // required length.
7094     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
7095     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
7096                         DAG.getConstant(Magic, dl, IntVT));
7097   }
7098 
7099   if (VT != Value.getValueType() && !VT.isInteger())
7100     Value = DAG.getBitcast(VT.getScalarType(), Value);
7101   if (VT != Value.getValueType())
7102     Value = DAG.getSplatBuildVector(VT, dl, Value);
7103 
7104   return Value;
7105 }
7106 
7107 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
7108 /// used when a memcpy is turned into a memset when the source is a constant
7109 /// string ptr.
7110 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
7111                                   const TargetLowering &TLI,
7112                                   const ConstantDataArraySlice &Slice) {
7113   // Handle vector with all elements zero.
7114   if (Slice.Array == nullptr) {
7115     if (VT.isInteger())
7116       return DAG.getConstant(0, dl, VT);
7117     if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
7118       return DAG.getConstantFP(0.0, dl, VT);
7119     if (VT.isVector()) {
7120       unsigned NumElts = VT.getVectorNumElements();
7121       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
7122       return DAG.getNode(ISD::BITCAST, dl, VT,
7123                          DAG.getConstant(0, dl,
7124                                          EVT::getVectorVT(*DAG.getContext(),
7125                                                           EltVT, NumElts)));
7126     }
7127     llvm_unreachable("Expected type!");
7128   }
7129 
7130   assert(!VT.isVector() && "Can't handle vector type here!");
7131   unsigned NumVTBits = VT.getSizeInBits();
7132   unsigned NumVTBytes = NumVTBits / 8;
7133   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
7134 
7135   APInt Val(NumVTBits, 0);
7136   if (DAG.getDataLayout().isLittleEndian()) {
7137     for (unsigned i = 0; i != NumBytes; ++i)
7138       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
7139   } else {
7140     for (unsigned i = 0; i != NumBytes; ++i)
7141       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
7142   }
7143 
7144   // If the "cost" of materializing the integer immediate is less than the cost
7145   // of a load, then it is cost effective to turn the load into the immediate.
7146   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
7147   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
7148     return DAG.getConstant(Val, dl, VT);
7149   return SDValue();
7150 }
7151 
7152 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset,
7153                                            const SDLoc &DL,
7154                                            const SDNodeFlags Flags) {
7155   EVT VT = Base.getValueType();
7156   SDValue Index;
7157 
7158   if (Offset.isScalable())
7159     Index = getVScale(DL, Base.getValueType(),
7160                       APInt(Base.getValueSizeInBits().getFixedValue(),
7161                             Offset.getKnownMinValue()));
7162   else
7163     Index = getConstant(Offset.getFixedValue(), DL, VT);
7164 
7165   return getMemBasePlusOffset(Base, Index, DL, Flags);
7166 }
7167 
7168 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
7169                                            const SDLoc &DL,
7170                                            const SDNodeFlags Flags) {
7171   assert(Offset.getValueType().isInteger());
7172   EVT BasePtrVT = Ptr.getValueType();
7173   return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
7174 }
7175 
7176 /// Returns true if memcpy source is constant data.
7177 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
7178   uint64_t SrcDelta = 0;
7179   GlobalAddressSDNode *G = nullptr;
7180   if (Src.getOpcode() == ISD::GlobalAddress)
7181     G = cast<GlobalAddressSDNode>(Src);
7182   else if (Src.getOpcode() == ISD::ADD &&
7183            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
7184            Src.getOperand(1).getOpcode() == ISD::Constant) {
7185     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
7186     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
7187   }
7188   if (!G)
7189     return false;
7190 
7191   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
7192                                   SrcDelta + G->getOffset());
7193 }
7194 
7195 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
7196                                       SelectionDAG &DAG) {
7197   // On Darwin, -Os means optimize for size without hurting performance, so
7198   // only really optimize for size when -Oz (MinSize) is used.
7199   if (MF.getTarget().getTargetTriple().isOSDarwin())
7200     return MF.getFunction().hasMinSize();
7201   return DAG.shouldOptForSize();
7202 }
7203 
7204 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
7205                           SmallVector<SDValue, 32> &OutChains, unsigned From,
7206                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
7207                           SmallVector<SDValue, 16> &OutStoreChains) {
7208   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
7209   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
7210   SmallVector<SDValue, 16> GluedLoadChains;
7211   for (unsigned i = From; i < To; ++i) {
7212     OutChains.push_back(OutLoadChains[i]);
7213     GluedLoadChains.push_back(OutLoadChains[i]);
7214   }
7215 
7216   // Chain for all loads.
7217   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
7218                                   GluedLoadChains);
7219 
7220   for (unsigned i = From; i < To; ++i) {
7221     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
7222     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
7223                                   ST->getBasePtr(), ST->getMemoryVT(),
7224                                   ST->getMemOperand());
7225     OutChains.push_back(NewStore);
7226   }
7227 }
7228 
7229 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
7230                                        SDValue Chain, SDValue Dst, SDValue Src,
7231                                        uint64_t Size, Align Alignment,
7232                                        bool isVol, bool AlwaysInline,
7233                                        MachinePointerInfo DstPtrInfo,
7234                                        MachinePointerInfo SrcPtrInfo,
7235                                        const AAMDNodes &AAInfo, AAResults *AA) {
7236   // Turn a memcpy of undef to nop.
7237   // FIXME: We need to honor volatile even is Src is undef.
7238   if (Src.isUndef())
7239     return Chain;
7240 
7241   // Expand memcpy to a series of load and store ops if the size operand falls
7242   // below a certain threshold.
7243   // TODO: In the AlwaysInline case, if the size is big then generate a loop
7244   // rather than maybe a humongous number of loads and stores.
7245   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7246   const DataLayout &DL = DAG.getDataLayout();
7247   LLVMContext &C = *DAG.getContext();
7248   std::vector<EVT> MemOps;
7249   bool DstAlignCanChange = false;
7250   MachineFunction &MF = DAG.getMachineFunction();
7251   MachineFrameInfo &MFI = MF.getFrameInfo();
7252   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
7253   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
7254   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
7255     DstAlignCanChange = true;
7256   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
7257   if (!SrcAlign || Alignment > *SrcAlign)
7258     SrcAlign = Alignment;
7259   assert(SrcAlign && "SrcAlign must be set");
7260   ConstantDataArraySlice Slice;
7261   // If marked as volatile, perform a copy even when marked as constant.
7262   bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice);
7263   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
7264   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
7265   const MemOp Op = isZeroConstant
7266                        ? MemOp::Set(Size, DstAlignCanChange, Alignment,
7267                                     /*IsZeroMemset*/ true, isVol)
7268                        : MemOp::Copy(Size, DstAlignCanChange, Alignment,
7269                                      *SrcAlign, isVol, CopyFromConstant);
7270   if (!TLI.findOptimalMemOpLowering(
7271           MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
7272           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
7273     return SDValue();
7274 
7275   if (DstAlignCanChange) {
7276     Type *Ty = MemOps[0].getTypeForEVT(C);
7277     Align NewAlign = DL.getABITypeAlign(Ty);
7278 
7279     // Don't promote to an alignment that would require dynamic stack
7280     // realignment which may conflict with optimizations such as tail call
7281     // optimization.
7282     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
7283     if (!TRI->hasStackRealignment(MF))
7284       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
7285         NewAlign = NewAlign.previous();
7286 
7287     if (NewAlign > Alignment) {
7288       // Give the stack frame object a larger alignment if needed.
7289       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
7290         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
7291       Alignment = NewAlign;
7292     }
7293   }
7294 
7295   // Prepare AAInfo for loads/stores after lowering this memcpy.
7296   AAMDNodes NewAAInfo = AAInfo;
7297   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
7298 
7299   const Value *SrcVal = dyn_cast_if_present<const Value *>(SrcPtrInfo.V);
7300   bool isConstant =
7301       AA && SrcVal &&
7302       AA->pointsToConstantMemory(MemoryLocation(SrcVal, Size, AAInfo));
7303 
7304   MachineMemOperand::Flags MMOFlags =
7305       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
7306   SmallVector<SDValue, 16> OutLoadChains;
7307   SmallVector<SDValue, 16> OutStoreChains;
7308   SmallVector<SDValue, 32> OutChains;
7309   unsigned NumMemOps = MemOps.size();
7310   uint64_t SrcOff = 0, DstOff = 0;
7311   for (unsigned i = 0; i != NumMemOps; ++i) {
7312     EVT VT = MemOps[i];
7313     unsigned VTSize = VT.getSizeInBits() / 8;
7314     SDValue Value, Store;
7315 
7316     if (VTSize > Size) {
7317       // Issuing an unaligned load / store pair  that overlaps with the previous
7318       // pair. Adjust the offset accordingly.
7319       assert(i == NumMemOps-1 && i != 0);
7320       SrcOff -= VTSize - Size;
7321       DstOff -= VTSize - Size;
7322     }
7323 
7324     if (CopyFromConstant &&
7325         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
7326       // It's unlikely a store of a vector immediate can be done in a single
7327       // instruction. It would require a load from a constantpool first.
7328       // We only handle zero vectors here.
7329       // FIXME: Handle other cases where store of vector immediate is done in
7330       // a single instruction.
7331       ConstantDataArraySlice SubSlice;
7332       if (SrcOff < Slice.Length) {
7333         SubSlice = Slice;
7334         SubSlice.move(SrcOff);
7335       } else {
7336         // This is an out-of-bounds access and hence UB. Pretend we read zero.
7337         SubSlice.Array = nullptr;
7338         SubSlice.Offset = 0;
7339         SubSlice.Length = VTSize;
7340       }
7341       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
7342       if (Value.getNode()) {
7343         Store = DAG.getStore(
7344             Chain, dl, Value,
7345             DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
7346             DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
7347         OutChains.push_back(Store);
7348       }
7349     }
7350 
7351     if (!Store.getNode()) {
7352       // The type might not be legal for the target.  This should only happen
7353       // if the type is smaller than a legal type, as on PPC, so the right
7354       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
7355       // to Load/Store if NVT==VT.
7356       // FIXME does the case above also need this?
7357       EVT NVT = TLI.getTypeToTransformTo(C, VT);
7358       assert(NVT.bitsGE(VT));
7359 
7360       bool isDereferenceable =
7361         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
7362       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
7363       if (isDereferenceable)
7364         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
7365       if (isConstant)
7366         SrcMMOFlags |= MachineMemOperand::MOInvariant;
7367 
7368       Value = DAG.getExtLoad(
7369           ISD::EXTLOAD, dl, NVT, Chain,
7370           DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
7371           SrcPtrInfo.getWithOffset(SrcOff), VT,
7372           commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo);
7373       OutLoadChains.push_back(Value.getValue(1));
7374 
7375       Store = DAG.getTruncStore(
7376           Chain, dl, Value,
7377           DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
7378           DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo);
7379       OutStoreChains.push_back(Store);
7380     }
7381     SrcOff += VTSize;
7382     DstOff += VTSize;
7383     Size -= VTSize;
7384   }
7385 
7386   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
7387                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
7388   unsigned NumLdStInMemcpy = OutStoreChains.size();
7389 
7390   if (NumLdStInMemcpy) {
7391     // It may be that memcpy might be converted to memset if it's memcpy
7392     // of constants. In such a case, we won't have loads and stores, but
7393     // just stores. In the absence of loads, there is nothing to gang up.
7394     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
7395       // If target does not care, just leave as it.
7396       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
7397         OutChains.push_back(OutLoadChains[i]);
7398         OutChains.push_back(OutStoreChains[i]);
7399       }
7400     } else {
7401       // Ld/St less than/equal limit set by target.
7402       if (NumLdStInMemcpy <= GluedLdStLimit) {
7403           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
7404                                         NumLdStInMemcpy, OutLoadChains,
7405                                         OutStoreChains);
7406       } else {
7407         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
7408         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
7409         unsigned GlueIter = 0;
7410 
7411         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
7412           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
7413           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
7414 
7415           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
7416                                        OutLoadChains, OutStoreChains);
7417           GlueIter += GluedLdStLimit;
7418         }
7419 
7420         // Residual ld/st.
7421         if (RemainingLdStInMemcpy) {
7422           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
7423                                         RemainingLdStInMemcpy, OutLoadChains,
7424                                         OutStoreChains);
7425         }
7426       }
7427     }
7428   }
7429   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
7430 }
7431 
7432 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
7433                                         SDValue Chain, SDValue Dst, SDValue Src,
7434                                         uint64_t Size, Align Alignment,
7435                                         bool isVol, bool AlwaysInline,
7436                                         MachinePointerInfo DstPtrInfo,
7437                                         MachinePointerInfo SrcPtrInfo,
7438                                         const AAMDNodes &AAInfo) {
7439   // Turn a memmove of undef to nop.
7440   // FIXME: We need to honor volatile even is Src is undef.
7441   if (Src.isUndef())
7442     return Chain;
7443 
7444   // Expand memmove to a series of load and store ops if the size operand falls
7445   // below a certain threshold.
7446   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7447   const DataLayout &DL = DAG.getDataLayout();
7448   LLVMContext &C = *DAG.getContext();
7449   std::vector<EVT> MemOps;
7450   bool DstAlignCanChange = false;
7451   MachineFunction &MF = DAG.getMachineFunction();
7452   MachineFrameInfo &MFI = MF.getFrameInfo();
7453   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
7454   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
7455   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
7456     DstAlignCanChange = true;
7457   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
7458   if (!SrcAlign || Alignment > *SrcAlign)
7459     SrcAlign = Alignment;
7460   assert(SrcAlign && "SrcAlign must be set");
7461   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
7462   if (!TLI.findOptimalMemOpLowering(
7463           MemOps, Limit,
7464           MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
7465                       /*IsVolatile*/ true),
7466           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
7467           MF.getFunction().getAttributes()))
7468     return SDValue();
7469 
7470   if (DstAlignCanChange) {
7471     Type *Ty = MemOps[0].getTypeForEVT(C);
7472     Align NewAlign = DL.getABITypeAlign(Ty);
7473 
7474     // Don't promote to an alignment that would require dynamic stack
7475     // realignment which may conflict with optimizations such as tail call
7476     // optimization.
7477     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
7478     if (!TRI->hasStackRealignment(MF))
7479       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
7480         NewAlign = NewAlign.previous();
7481 
7482     if (NewAlign > Alignment) {
7483       // Give the stack frame object a larger alignment if needed.
7484       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
7485         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
7486       Alignment = NewAlign;
7487     }
7488   }
7489 
7490   // Prepare AAInfo for loads/stores after lowering this memmove.
7491   AAMDNodes NewAAInfo = AAInfo;
7492   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
7493 
7494   MachineMemOperand::Flags MMOFlags =
7495       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
7496   uint64_t SrcOff = 0, DstOff = 0;
7497   SmallVector<SDValue, 8> LoadValues;
7498   SmallVector<SDValue, 8> LoadChains;
7499   SmallVector<SDValue, 8> OutChains;
7500   unsigned NumMemOps = MemOps.size();
7501   for (unsigned i = 0; i < NumMemOps; i++) {
7502     EVT VT = MemOps[i];
7503     unsigned VTSize = VT.getSizeInBits() / 8;
7504     SDValue Value;
7505 
7506     bool isDereferenceable =
7507       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
7508     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
7509     if (isDereferenceable)
7510       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
7511 
7512     Value = DAG.getLoad(
7513         VT, dl, Chain,
7514         DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
7515         SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo);
7516     LoadValues.push_back(Value);
7517     LoadChains.push_back(Value.getValue(1));
7518     SrcOff += VTSize;
7519   }
7520   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
7521   OutChains.clear();
7522   for (unsigned i = 0; i < NumMemOps; i++) {
7523     EVT VT = MemOps[i];
7524     unsigned VTSize = VT.getSizeInBits() / 8;
7525     SDValue Store;
7526 
7527     Store = DAG.getStore(
7528         Chain, dl, LoadValues[i],
7529         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
7530         DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
7531     OutChains.push_back(Store);
7532     DstOff += VTSize;
7533   }
7534 
7535   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
7536 }
7537 
7538 /// Lower the call to 'memset' intrinsic function into a series of store
7539 /// operations.
7540 ///
7541 /// \param DAG Selection DAG where lowered code is placed.
7542 /// \param dl Link to corresponding IR location.
7543 /// \param Chain Control flow dependency.
7544 /// \param Dst Pointer to destination memory location.
7545 /// \param Src Value of byte to write into the memory.
7546 /// \param Size Number of bytes to write.
7547 /// \param Alignment Alignment of the destination in bytes.
7548 /// \param isVol True if destination is volatile.
7549 /// \param AlwaysInline Makes sure no function call is generated.
7550 /// \param DstPtrInfo IR information on the memory pointer.
7551 /// \returns New head in the control flow, if lowering was successful, empty
7552 /// SDValue otherwise.
7553 ///
7554 /// The function tries to replace 'llvm.memset' intrinsic with several store
7555 /// operations and value calculation code. This is usually profitable for small
7556 /// memory size or when the semantic requires inlining.
7557 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
7558                                SDValue Chain, SDValue Dst, SDValue Src,
7559                                uint64_t Size, Align Alignment, bool isVol,
7560                                bool AlwaysInline, MachinePointerInfo DstPtrInfo,
7561                                const AAMDNodes &AAInfo) {
7562   // Turn a memset of undef to nop.
7563   // FIXME: We need to honor volatile even is Src is undef.
7564   if (Src.isUndef())
7565     return Chain;
7566 
7567   // Expand memset to a series of load/store ops if the size operand
7568   // falls below a certain threshold.
7569   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7570   std::vector<EVT> MemOps;
7571   bool DstAlignCanChange = false;
7572   MachineFunction &MF = DAG.getMachineFunction();
7573   MachineFrameInfo &MFI = MF.getFrameInfo();
7574   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
7575   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
7576   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
7577     DstAlignCanChange = true;
7578   bool IsZeroVal = isNullConstant(Src);
7579   unsigned Limit = AlwaysInline ? ~0 : TLI.getMaxStoresPerMemset(OptSize);
7580 
7581   if (!TLI.findOptimalMemOpLowering(
7582           MemOps, Limit,
7583           MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
7584           DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
7585     return SDValue();
7586 
7587   if (DstAlignCanChange) {
7588     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
7589     const DataLayout &DL = DAG.getDataLayout();
7590     Align NewAlign = DL.getABITypeAlign(Ty);
7591 
7592     // Don't promote to an alignment that would require dynamic stack
7593     // realignment which may conflict with optimizations such as tail call
7594     // optimization.
7595     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
7596     if (!TRI->hasStackRealignment(MF))
7597       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
7598         NewAlign = NewAlign.previous();
7599 
7600     if (NewAlign > Alignment) {
7601       // Give the stack frame object a larger alignment if needed.
7602       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
7603         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
7604       Alignment = NewAlign;
7605     }
7606   }
7607 
7608   SmallVector<SDValue, 8> OutChains;
7609   uint64_t DstOff = 0;
7610   unsigned NumMemOps = MemOps.size();
7611 
7612   // Find the largest store and generate the bit pattern for it.
7613   EVT LargestVT = MemOps[0];
7614   for (unsigned i = 1; i < NumMemOps; i++)
7615     if (MemOps[i].bitsGT(LargestVT))
7616       LargestVT = MemOps[i];
7617   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
7618 
7619   // Prepare AAInfo for loads/stores after lowering this memset.
7620   AAMDNodes NewAAInfo = AAInfo;
7621   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
7622 
7623   for (unsigned i = 0; i < NumMemOps; i++) {
7624     EVT VT = MemOps[i];
7625     unsigned VTSize = VT.getSizeInBits() / 8;
7626     if (VTSize > Size) {
7627       // Issuing an unaligned load / store pair  that overlaps with the previous
7628       // pair. Adjust the offset accordingly.
7629       assert(i == NumMemOps-1 && i != 0);
7630       DstOff -= VTSize - Size;
7631     }
7632 
7633     // If this store is smaller than the largest store see whether we can get
7634     // the smaller value for free with a truncate.
7635     SDValue Value = MemSetValue;
7636     if (VT.bitsLT(LargestVT)) {
7637       if (!LargestVT.isVector() && !VT.isVector() &&
7638           TLI.isTruncateFree(LargestVT, VT))
7639         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
7640       else
7641         Value = getMemsetValue(Src, VT, DAG, dl);
7642     }
7643     assert(Value.getValueType() == VT && "Value with wrong type.");
7644     SDValue Store = DAG.getStore(
7645         Chain, dl, Value,
7646         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
7647         DstPtrInfo.getWithOffset(DstOff), Alignment,
7648         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone,
7649         NewAAInfo);
7650     OutChains.push_back(Store);
7651     DstOff += VT.getSizeInBits() / 8;
7652     Size -= VTSize;
7653   }
7654 
7655   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
7656 }
7657 
7658 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
7659                                             unsigned AS) {
7660   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
7661   // pointer operands can be losslessly bitcasted to pointers of address space 0
7662   if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) {
7663     report_fatal_error("cannot lower memory intrinsic in address space " +
7664                        Twine(AS));
7665   }
7666 }
7667 
7668 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
7669                                 SDValue Src, SDValue Size, Align Alignment,
7670                                 bool isVol, bool AlwaysInline, bool isTailCall,
7671                                 MachinePointerInfo DstPtrInfo,
7672                                 MachinePointerInfo SrcPtrInfo,
7673                                 const AAMDNodes &AAInfo, AAResults *AA) {
7674   // Check to see if we should lower the memcpy to loads and stores first.
7675   // For cases within the target-specified limits, this is the best choice.
7676   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
7677   if (ConstantSize) {
7678     // Memcpy with size zero? Just return the original chain.
7679     if (ConstantSize->isZero())
7680       return Chain;
7681 
7682     SDValue Result = getMemcpyLoadsAndStores(
7683         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
7684         isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo, AA);
7685     if (Result.getNode())
7686       return Result;
7687   }
7688 
7689   // Then check to see if we should lower the memcpy with target-specific
7690   // code. If the target chooses to do this, this is the next best.
7691   if (TSI) {
7692     SDValue Result = TSI->EmitTargetCodeForMemcpy(
7693         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline,
7694         DstPtrInfo, SrcPtrInfo);
7695     if (Result.getNode())
7696       return Result;
7697   }
7698 
7699   // If we really need inline code and the target declined to provide it,
7700   // use a (potentially long) sequence of loads and stores.
7701   if (AlwaysInline) {
7702     assert(ConstantSize && "AlwaysInline requires a constant size!");
7703     return getMemcpyLoadsAndStores(
7704         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
7705         isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo, AA);
7706   }
7707 
7708   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
7709   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
7710 
7711   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
7712   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
7713   // respect volatile, so they may do things like read or write memory
7714   // beyond the given memory regions. But fixing this isn't easy, and most
7715   // people don't care.
7716 
7717   // Emit a library call.
7718   TargetLowering::ArgListTy Args;
7719   TargetLowering::ArgListEntry Entry;
7720   Entry.Ty = Type::getInt8PtrTy(*getContext());
7721   Entry.Node = Dst; Args.push_back(Entry);
7722   Entry.Node = Src; Args.push_back(Entry);
7723 
7724   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7725   Entry.Node = Size; Args.push_back(Entry);
7726   // FIXME: pass in SDLoc
7727   TargetLowering::CallLoweringInfo CLI(*this);
7728   CLI.setDebugLoc(dl)
7729       .setChain(Chain)
7730       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
7731                     Dst.getValueType().getTypeForEVT(*getContext()),
7732                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
7733                                       TLI->getPointerTy(getDataLayout())),
7734                     std::move(Args))
7735       .setDiscardResult()
7736       .setTailCall(isTailCall);
7737 
7738   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
7739   return CallResult.second;
7740 }
7741 
7742 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
7743                                       SDValue Dst, SDValue Src, SDValue Size,
7744                                       Type *SizeTy, unsigned ElemSz,
7745                                       bool isTailCall,
7746                                       MachinePointerInfo DstPtrInfo,
7747                                       MachinePointerInfo SrcPtrInfo) {
7748   // Emit a library call.
7749   TargetLowering::ArgListTy Args;
7750   TargetLowering::ArgListEntry Entry;
7751   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7752   Entry.Node = Dst;
7753   Args.push_back(Entry);
7754 
7755   Entry.Node = Src;
7756   Args.push_back(Entry);
7757 
7758   Entry.Ty = SizeTy;
7759   Entry.Node = Size;
7760   Args.push_back(Entry);
7761 
7762   RTLIB::Libcall LibraryCall =
7763       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7764   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7765     report_fatal_error("Unsupported element size");
7766 
7767   TargetLowering::CallLoweringInfo CLI(*this);
7768   CLI.setDebugLoc(dl)
7769       .setChain(Chain)
7770       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7771                     Type::getVoidTy(*getContext()),
7772                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
7773                                       TLI->getPointerTy(getDataLayout())),
7774                     std::move(Args))
7775       .setDiscardResult()
7776       .setTailCall(isTailCall);
7777 
7778   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7779   return CallResult.second;
7780 }
7781 
7782 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
7783                                  SDValue Src, SDValue Size, Align Alignment,
7784                                  bool isVol, bool isTailCall,
7785                                  MachinePointerInfo DstPtrInfo,
7786                                  MachinePointerInfo SrcPtrInfo,
7787                                  const AAMDNodes &AAInfo, AAResults *AA) {
7788   // Check to see if we should lower the memmove to loads and stores first.
7789   // For cases within the target-specified limits, this is the best choice.
7790   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
7791   if (ConstantSize) {
7792     // Memmove with size zero? Just return the original chain.
7793     if (ConstantSize->isZero())
7794       return Chain;
7795 
7796     SDValue Result = getMemmoveLoadsAndStores(
7797         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
7798         isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
7799     if (Result.getNode())
7800       return Result;
7801   }
7802 
7803   // Then check to see if we should lower the memmove with target-specific
7804   // code. If the target chooses to do this, this is the next best.
7805   if (TSI) {
7806     SDValue Result =
7807         TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size,
7808                                       Alignment, isVol, DstPtrInfo, SrcPtrInfo);
7809     if (Result.getNode())
7810       return Result;
7811   }
7812 
7813   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
7814   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
7815 
7816   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
7817   // not be safe.  See memcpy above for more details.
7818 
7819   // Emit a library call.
7820   TargetLowering::ArgListTy Args;
7821   TargetLowering::ArgListEntry Entry;
7822   Entry.Ty = Type::getInt8PtrTy(*getContext());
7823   Entry.Node = Dst; Args.push_back(Entry);
7824   Entry.Node = Src; Args.push_back(Entry);
7825 
7826   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7827   Entry.Node = Size; Args.push_back(Entry);
7828   // FIXME:  pass in SDLoc
7829   TargetLowering::CallLoweringInfo CLI(*this);
7830   CLI.setDebugLoc(dl)
7831       .setChain(Chain)
7832       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
7833                     Dst.getValueType().getTypeForEVT(*getContext()),
7834                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
7835                                       TLI->getPointerTy(getDataLayout())),
7836                     std::move(Args))
7837       .setDiscardResult()
7838       .setTailCall(isTailCall);
7839 
7840   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
7841   return CallResult.second;
7842 }
7843 
7844 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
7845                                        SDValue Dst, SDValue Src, SDValue Size,
7846                                        Type *SizeTy, unsigned ElemSz,
7847                                        bool isTailCall,
7848                                        MachinePointerInfo DstPtrInfo,
7849                                        MachinePointerInfo SrcPtrInfo) {
7850   // Emit a library call.
7851   TargetLowering::ArgListTy Args;
7852   TargetLowering::ArgListEntry Entry;
7853   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7854   Entry.Node = Dst;
7855   Args.push_back(Entry);
7856 
7857   Entry.Node = Src;
7858   Args.push_back(Entry);
7859 
7860   Entry.Ty = SizeTy;
7861   Entry.Node = Size;
7862   Args.push_back(Entry);
7863 
7864   RTLIB::Libcall LibraryCall =
7865       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7866   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7867     report_fatal_error("Unsupported element size");
7868 
7869   TargetLowering::CallLoweringInfo CLI(*this);
7870   CLI.setDebugLoc(dl)
7871       .setChain(Chain)
7872       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7873                     Type::getVoidTy(*getContext()),
7874                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
7875                                       TLI->getPointerTy(getDataLayout())),
7876                     std::move(Args))
7877       .setDiscardResult()
7878       .setTailCall(isTailCall);
7879 
7880   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7881   return CallResult.second;
7882 }
7883 
7884 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
7885                                 SDValue Src, SDValue Size, Align Alignment,
7886                                 bool isVol, bool AlwaysInline, bool isTailCall,
7887                                 MachinePointerInfo DstPtrInfo,
7888                                 const AAMDNodes &AAInfo) {
7889   // Check to see if we should lower the memset to stores first.
7890   // For cases within the target-specified limits, this is the best choice.
7891   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
7892   if (ConstantSize) {
7893     // Memset with size zero? Just return the original chain.
7894     if (ConstantSize->isZero())
7895       return Chain;
7896 
7897     SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
7898                                      ConstantSize->getZExtValue(), Alignment,
7899                                      isVol, false, DstPtrInfo, AAInfo);
7900 
7901     if (Result.getNode())
7902       return Result;
7903   }
7904 
7905   // Then check to see if we should lower the memset with target-specific
7906   // code. If the target chooses to do this, this is the next best.
7907   if (TSI) {
7908     SDValue Result = TSI->EmitTargetCodeForMemset(
7909         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, DstPtrInfo);
7910     if (Result.getNode())
7911       return Result;
7912   }
7913 
7914   // If we really need inline code and the target declined to provide it,
7915   // use a (potentially long) sequence of loads and stores.
7916   if (AlwaysInline) {
7917     assert(ConstantSize && "AlwaysInline requires a constant size!");
7918     SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
7919                                      ConstantSize->getZExtValue(), Alignment,
7920                                      isVol, true, DstPtrInfo, AAInfo);
7921     assert(Result &&
7922            "getMemsetStores must return a valid sequence when AlwaysInline");
7923     return Result;
7924   }
7925 
7926   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
7927 
7928   // Emit a library call.
7929   auto &Ctx = *getContext();
7930   const auto& DL = getDataLayout();
7931 
7932   TargetLowering::CallLoweringInfo CLI(*this);
7933   // FIXME: pass in SDLoc
7934   CLI.setDebugLoc(dl).setChain(Chain);
7935 
7936   ConstantSDNode *ConstantSrc = dyn_cast<ConstantSDNode>(Src);
7937   const bool SrcIsZero = ConstantSrc && ConstantSrc->isZero();
7938   const char *BzeroName = getTargetLoweringInfo().getLibcallName(RTLIB::BZERO);
7939 
7940   // Helper function to create an Entry from Node and Type.
7941   const auto CreateEntry = [](SDValue Node, Type *Ty) {
7942     TargetLowering::ArgListEntry Entry;
7943     Entry.Node = Node;
7944     Entry.Ty = Ty;
7945     return Entry;
7946   };
7947 
7948   // If zeroing out and bzero is present, use it.
7949   if (SrcIsZero && BzeroName) {
7950     TargetLowering::ArgListTy Args;
7951     Args.push_back(CreateEntry(Dst, Type::getInt8PtrTy(Ctx)));
7952     Args.push_back(CreateEntry(Size, DL.getIntPtrType(Ctx)));
7953     CLI.setLibCallee(
7954         TLI->getLibcallCallingConv(RTLIB::BZERO), Type::getVoidTy(Ctx),
7955         getExternalSymbol(BzeroName, TLI->getPointerTy(DL)), std::move(Args));
7956   } else {
7957     TargetLowering::ArgListTy Args;
7958     Args.push_back(CreateEntry(Dst, Type::getInt8PtrTy(Ctx)));
7959     Args.push_back(CreateEntry(Src, Src.getValueType().getTypeForEVT(Ctx)));
7960     Args.push_back(CreateEntry(Size, DL.getIntPtrType(Ctx)));
7961     CLI.setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
7962                      Dst.getValueType().getTypeForEVT(Ctx),
7963                      getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
7964                                        TLI->getPointerTy(DL)),
7965                      std::move(Args));
7966   }
7967 
7968   CLI.setDiscardResult().setTailCall(isTailCall);
7969 
7970   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7971   return CallResult.second;
7972 }
7973 
7974 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
7975                                       SDValue Dst, SDValue Value, SDValue Size,
7976                                       Type *SizeTy, unsigned ElemSz,
7977                                       bool isTailCall,
7978                                       MachinePointerInfo DstPtrInfo) {
7979   // Emit a library call.
7980   TargetLowering::ArgListTy Args;
7981   TargetLowering::ArgListEntry Entry;
7982   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7983   Entry.Node = Dst;
7984   Args.push_back(Entry);
7985 
7986   Entry.Ty = Type::getInt8Ty(*getContext());
7987   Entry.Node = Value;
7988   Args.push_back(Entry);
7989 
7990   Entry.Ty = SizeTy;
7991   Entry.Node = Size;
7992   Args.push_back(Entry);
7993 
7994   RTLIB::Libcall LibraryCall =
7995       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7996   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7997     report_fatal_error("Unsupported element size");
7998 
7999   TargetLowering::CallLoweringInfo CLI(*this);
8000   CLI.setDebugLoc(dl)
8001       .setChain(Chain)
8002       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
8003                     Type::getVoidTy(*getContext()),
8004                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
8005                                       TLI->getPointerTy(getDataLayout())),
8006                     std::move(Args))
8007       .setDiscardResult()
8008       .setTailCall(isTailCall);
8009 
8010   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
8011   return CallResult.second;
8012 }
8013 
8014 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
8015                                 SDVTList VTList, ArrayRef<SDValue> Ops,
8016                                 MachineMemOperand *MMO) {
8017   FoldingSetNodeID ID;
8018   ID.AddInteger(MemVT.getRawBits());
8019   AddNodeIDNode(ID, Opcode, VTList, Ops);
8020   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8021   ID.AddInteger(MMO->getFlags());
8022   void* IP = nullptr;
8023   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8024     cast<AtomicSDNode>(E)->refineAlignment(MMO);
8025     return SDValue(E, 0);
8026   }
8027 
8028   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
8029                                     VTList, MemVT, MMO);
8030   createOperands(N, Ops);
8031 
8032   CSEMap.InsertNode(N, IP);
8033   InsertNode(N);
8034   return SDValue(N, 0);
8035 }
8036 
8037 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
8038                                        EVT MemVT, SDVTList VTs, SDValue Chain,
8039                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
8040                                        MachineMemOperand *MMO) {
8041   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
8042          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
8043   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
8044 
8045   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
8046   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
8047 }
8048 
8049 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
8050                                 SDValue Chain, SDValue Ptr, SDValue Val,
8051                                 MachineMemOperand *MMO) {
8052   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
8053           Opcode == ISD::ATOMIC_LOAD_SUB ||
8054           Opcode == ISD::ATOMIC_LOAD_AND ||
8055           Opcode == ISD::ATOMIC_LOAD_CLR ||
8056           Opcode == ISD::ATOMIC_LOAD_OR ||
8057           Opcode == ISD::ATOMIC_LOAD_XOR ||
8058           Opcode == ISD::ATOMIC_LOAD_NAND ||
8059           Opcode == ISD::ATOMIC_LOAD_MIN ||
8060           Opcode == ISD::ATOMIC_LOAD_MAX ||
8061           Opcode == ISD::ATOMIC_LOAD_UMIN ||
8062           Opcode == ISD::ATOMIC_LOAD_UMAX ||
8063           Opcode == ISD::ATOMIC_LOAD_FADD ||
8064           Opcode == ISD::ATOMIC_LOAD_FSUB ||
8065           Opcode == ISD::ATOMIC_LOAD_FMAX ||
8066           Opcode == ISD::ATOMIC_LOAD_FMIN ||
8067           Opcode == ISD::ATOMIC_LOAD_UINC_WRAP ||
8068           Opcode == ISD::ATOMIC_LOAD_UDEC_WRAP ||
8069           Opcode == ISD::ATOMIC_SWAP ||
8070           Opcode == ISD::ATOMIC_STORE) &&
8071          "Invalid Atomic Op");
8072 
8073   EVT VT = Val.getValueType();
8074 
8075   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
8076                                                getVTList(VT, MVT::Other);
8077   SDValue Ops[] = {Chain, Ptr, Val};
8078   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
8079 }
8080 
8081 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
8082                                 EVT VT, SDValue Chain, SDValue Ptr,
8083                                 MachineMemOperand *MMO) {
8084   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
8085 
8086   SDVTList VTs = getVTList(VT, MVT::Other);
8087   SDValue Ops[] = {Chain, Ptr};
8088   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
8089 }
8090 
8091 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
8092 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
8093   if (Ops.size() == 1)
8094     return Ops[0];
8095 
8096   SmallVector<EVT, 4> VTs;
8097   VTs.reserve(Ops.size());
8098   for (const SDValue &Op : Ops)
8099     VTs.push_back(Op.getValueType());
8100   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
8101 }
8102 
8103 SDValue SelectionDAG::getMemIntrinsicNode(
8104     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
8105     EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
8106     MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
8107   if (!Size && MemVT.isScalableVector())
8108     Size = MemoryLocation::UnknownSize;
8109   else if (!Size)
8110     Size = MemVT.getStoreSize();
8111 
8112   MachineFunction &MF = getMachineFunction();
8113   MachineMemOperand *MMO =
8114       MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
8115 
8116   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
8117 }
8118 
8119 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
8120                                           SDVTList VTList,
8121                                           ArrayRef<SDValue> Ops, EVT MemVT,
8122                                           MachineMemOperand *MMO) {
8123   assert((Opcode == ISD::INTRINSIC_VOID ||
8124           Opcode == ISD::INTRINSIC_W_CHAIN ||
8125           Opcode == ISD::PREFETCH ||
8126           (Opcode <= (unsigned)std::numeric_limits<int>::max() &&
8127            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
8128          "Opcode is not a memory-accessing opcode!");
8129 
8130   // Memoize the node unless it returns a flag.
8131   MemIntrinsicSDNode *N;
8132   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
8133     FoldingSetNodeID ID;
8134     AddNodeIDNode(ID, Opcode, VTList, Ops);
8135     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
8136         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
8137     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8138     ID.AddInteger(MMO->getFlags());
8139     ID.AddInteger(MemVT.getRawBits());
8140     void *IP = nullptr;
8141     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8142       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
8143       return SDValue(E, 0);
8144     }
8145 
8146     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
8147                                       VTList, MemVT, MMO);
8148     createOperands(N, Ops);
8149 
8150   CSEMap.InsertNode(N, IP);
8151   } else {
8152     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
8153                                       VTList, MemVT, MMO);
8154     createOperands(N, Ops);
8155   }
8156   InsertNode(N);
8157   SDValue V(N, 0);
8158   NewSDValueDbgMsg(V, "Creating new node: ", this);
8159   return V;
8160 }
8161 
8162 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
8163                                       SDValue Chain, int FrameIndex,
8164                                       int64_t Size, int64_t Offset) {
8165   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
8166   const auto VTs = getVTList(MVT::Other);
8167   SDValue Ops[2] = {
8168       Chain,
8169       getFrameIndex(FrameIndex,
8170                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
8171                     true)};
8172 
8173   FoldingSetNodeID ID;
8174   AddNodeIDNode(ID, Opcode, VTs, Ops);
8175   ID.AddInteger(FrameIndex);
8176   ID.AddInteger(Size);
8177   ID.AddInteger(Offset);
8178   void *IP = nullptr;
8179   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
8180     return SDValue(E, 0);
8181 
8182   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
8183       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
8184   createOperands(N, Ops);
8185   CSEMap.InsertNode(N, IP);
8186   InsertNode(N);
8187   SDValue V(N, 0);
8188   NewSDValueDbgMsg(V, "Creating new node: ", this);
8189   return V;
8190 }
8191 
8192 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain,
8193                                          uint64_t Guid, uint64_t Index,
8194                                          uint32_t Attr) {
8195   const unsigned Opcode = ISD::PSEUDO_PROBE;
8196   const auto VTs = getVTList(MVT::Other);
8197   SDValue Ops[] = {Chain};
8198   FoldingSetNodeID ID;
8199   AddNodeIDNode(ID, Opcode, VTs, Ops);
8200   ID.AddInteger(Guid);
8201   ID.AddInteger(Index);
8202   void *IP = nullptr;
8203   if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP))
8204     return SDValue(E, 0);
8205 
8206   auto *N = newSDNode<PseudoProbeSDNode>(
8207       Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr);
8208   createOperands(N, Ops);
8209   CSEMap.InsertNode(N, IP);
8210   InsertNode(N);
8211   SDValue V(N, 0);
8212   NewSDValueDbgMsg(V, "Creating new node: ", this);
8213   return V;
8214 }
8215 
8216 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
8217 /// MachinePointerInfo record from it.  This is particularly useful because the
8218 /// code generator has many cases where it doesn't bother passing in a
8219 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
8220 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
8221                                            SelectionDAG &DAG, SDValue Ptr,
8222                                            int64_t Offset = 0) {
8223   // If this is FI+Offset, we can model it.
8224   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
8225     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
8226                                              FI->getIndex(), Offset);
8227 
8228   // If this is (FI+Offset1)+Offset2, we can model it.
8229   if (Ptr.getOpcode() != ISD::ADD ||
8230       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
8231       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
8232     return Info;
8233 
8234   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
8235   return MachinePointerInfo::getFixedStack(
8236       DAG.getMachineFunction(), FI,
8237       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
8238 }
8239 
8240 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
8241 /// MachinePointerInfo record from it.  This is particularly useful because the
8242 /// code generator has many cases where it doesn't bother passing in a
8243 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
8244 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
8245                                            SelectionDAG &DAG, SDValue Ptr,
8246                                            SDValue OffsetOp) {
8247   // If the 'Offset' value isn't a constant, we can't handle this.
8248   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
8249     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
8250   if (OffsetOp.isUndef())
8251     return InferPointerInfo(Info, DAG, Ptr);
8252   return Info;
8253 }
8254 
8255 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
8256                               EVT VT, const SDLoc &dl, SDValue Chain,
8257                               SDValue Ptr, SDValue Offset,
8258                               MachinePointerInfo PtrInfo, EVT MemVT,
8259                               Align Alignment,
8260                               MachineMemOperand::Flags MMOFlags,
8261                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
8262   assert(Chain.getValueType() == MVT::Other &&
8263         "Invalid chain type");
8264 
8265   MMOFlags |= MachineMemOperand::MOLoad;
8266   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
8267   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
8268   // clients.
8269   if (PtrInfo.V.isNull())
8270     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
8271 
8272   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
8273   MachineFunction &MF = getMachineFunction();
8274   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
8275                                                    Alignment, AAInfo, Ranges);
8276   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
8277 }
8278 
8279 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
8280                               EVT VT, const SDLoc &dl, SDValue Chain,
8281                               SDValue Ptr, SDValue Offset, EVT MemVT,
8282                               MachineMemOperand *MMO) {
8283   if (VT == MemVT) {
8284     ExtType = ISD::NON_EXTLOAD;
8285   } else if (ExtType == ISD::NON_EXTLOAD) {
8286     assert(VT == MemVT && "Non-extending load from different memory type!");
8287   } else {
8288     // Extending load.
8289     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
8290            "Should only be an extending load, not truncating!");
8291     assert(VT.isInteger() == MemVT.isInteger() &&
8292            "Cannot convert from FP to Int or Int -> FP!");
8293     assert(VT.isVector() == MemVT.isVector() &&
8294            "Cannot use an ext load to convert to or from a vector!");
8295     assert((!VT.isVector() ||
8296             VT.getVectorElementCount() == MemVT.getVectorElementCount()) &&
8297            "Cannot use an ext load to change the number of vector elements!");
8298   }
8299 
8300   bool Indexed = AM != ISD::UNINDEXED;
8301   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
8302 
8303   SDVTList VTs = Indexed ?
8304     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
8305   SDValue Ops[] = { Chain, Ptr, Offset };
8306   FoldingSetNodeID ID;
8307   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
8308   ID.AddInteger(MemVT.getRawBits());
8309   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
8310       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
8311   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8312   ID.AddInteger(MMO->getFlags());
8313   void *IP = nullptr;
8314   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8315     cast<LoadSDNode>(E)->refineAlignment(MMO);
8316     return SDValue(E, 0);
8317   }
8318   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
8319                                   ExtType, MemVT, MMO);
8320   createOperands(N, Ops);
8321 
8322   CSEMap.InsertNode(N, IP);
8323   InsertNode(N);
8324   SDValue V(N, 0);
8325   NewSDValueDbgMsg(V, "Creating new node: ", this);
8326   return V;
8327 }
8328 
8329 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
8330                               SDValue Ptr, MachinePointerInfo PtrInfo,
8331                               MaybeAlign Alignment,
8332                               MachineMemOperand::Flags MMOFlags,
8333                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
8334   SDValue Undef = getUNDEF(Ptr.getValueType());
8335   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
8336                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
8337 }
8338 
8339 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
8340                               SDValue Ptr, MachineMemOperand *MMO) {
8341   SDValue Undef = getUNDEF(Ptr.getValueType());
8342   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
8343                  VT, MMO);
8344 }
8345 
8346 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
8347                                  EVT VT, SDValue Chain, SDValue Ptr,
8348                                  MachinePointerInfo PtrInfo, EVT MemVT,
8349                                  MaybeAlign Alignment,
8350                                  MachineMemOperand::Flags MMOFlags,
8351                                  const AAMDNodes &AAInfo) {
8352   SDValue Undef = getUNDEF(Ptr.getValueType());
8353   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
8354                  MemVT, Alignment, MMOFlags, AAInfo);
8355 }
8356 
8357 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
8358                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
8359                                  MachineMemOperand *MMO) {
8360   SDValue Undef = getUNDEF(Ptr.getValueType());
8361   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
8362                  MemVT, MMO);
8363 }
8364 
8365 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
8366                                      SDValue Base, SDValue Offset,
8367                                      ISD::MemIndexedMode AM) {
8368   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
8369   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
8370   // Don't propagate the invariant or dereferenceable flags.
8371   auto MMOFlags =
8372       LD->getMemOperand()->getFlags() &
8373       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
8374   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
8375                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
8376                  LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
8377 }
8378 
8379 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
8380                                SDValue Ptr, MachinePointerInfo PtrInfo,
8381                                Align Alignment,
8382                                MachineMemOperand::Flags MMOFlags,
8383                                const AAMDNodes &AAInfo) {
8384   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8385 
8386   MMOFlags |= MachineMemOperand::MOStore;
8387   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
8388 
8389   if (PtrInfo.V.isNull())
8390     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
8391 
8392   MachineFunction &MF = getMachineFunction();
8393   uint64_t Size =
8394       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
8395   MachineMemOperand *MMO =
8396       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
8397   return getStore(Chain, dl, Val, Ptr, MMO);
8398 }
8399 
8400 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
8401                                SDValue Ptr, MachineMemOperand *MMO) {
8402   assert(Chain.getValueType() == MVT::Other &&
8403         "Invalid chain type");
8404   EVT VT = Val.getValueType();
8405   SDVTList VTs = getVTList(MVT::Other);
8406   SDValue Undef = getUNDEF(Ptr.getValueType());
8407   SDValue Ops[] = { Chain, Val, Ptr, Undef };
8408   FoldingSetNodeID ID;
8409   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
8410   ID.AddInteger(VT.getRawBits());
8411   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
8412       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
8413   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8414   ID.AddInteger(MMO->getFlags());
8415   void *IP = nullptr;
8416   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8417     cast<StoreSDNode>(E)->refineAlignment(MMO);
8418     return SDValue(E, 0);
8419   }
8420   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8421                                    ISD::UNINDEXED, false, VT, MMO);
8422   createOperands(N, Ops);
8423 
8424   CSEMap.InsertNode(N, IP);
8425   InsertNode(N);
8426   SDValue V(N, 0);
8427   NewSDValueDbgMsg(V, "Creating new node: ", this);
8428   return V;
8429 }
8430 
8431 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
8432                                     SDValue Ptr, MachinePointerInfo PtrInfo,
8433                                     EVT SVT, Align Alignment,
8434                                     MachineMemOperand::Flags MMOFlags,
8435                                     const AAMDNodes &AAInfo) {
8436   assert(Chain.getValueType() == MVT::Other &&
8437         "Invalid chain type");
8438 
8439   MMOFlags |= MachineMemOperand::MOStore;
8440   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
8441 
8442   if (PtrInfo.V.isNull())
8443     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
8444 
8445   MachineFunction &MF = getMachineFunction();
8446   MachineMemOperand *MMO = MF.getMachineMemOperand(
8447       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
8448       Alignment, AAInfo);
8449   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
8450 }
8451 
8452 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
8453                                     SDValue Ptr, EVT SVT,
8454                                     MachineMemOperand *MMO) {
8455   EVT VT = Val.getValueType();
8456 
8457   assert(Chain.getValueType() == MVT::Other &&
8458         "Invalid chain type");
8459   if (VT == SVT)
8460     return getStore(Chain, dl, Val, Ptr, MMO);
8461 
8462   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
8463          "Should only be a truncating store, not extending!");
8464   assert(VT.isInteger() == SVT.isInteger() &&
8465          "Can't do FP-INT conversion!");
8466   assert(VT.isVector() == SVT.isVector() &&
8467          "Cannot use trunc store to convert to or from a vector!");
8468   assert((!VT.isVector() ||
8469           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
8470          "Cannot use trunc store to change the number of vector elements!");
8471 
8472   SDVTList VTs = getVTList(MVT::Other);
8473   SDValue Undef = getUNDEF(Ptr.getValueType());
8474   SDValue Ops[] = { Chain, Val, Ptr, Undef };
8475   FoldingSetNodeID ID;
8476   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
8477   ID.AddInteger(SVT.getRawBits());
8478   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
8479       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
8480   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8481   ID.AddInteger(MMO->getFlags());
8482   void *IP = nullptr;
8483   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8484     cast<StoreSDNode>(E)->refineAlignment(MMO);
8485     return SDValue(E, 0);
8486   }
8487   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8488                                    ISD::UNINDEXED, true, SVT, MMO);
8489   createOperands(N, Ops);
8490 
8491   CSEMap.InsertNode(N, IP);
8492   InsertNode(N);
8493   SDValue V(N, 0);
8494   NewSDValueDbgMsg(V, "Creating new node: ", this);
8495   return V;
8496 }
8497 
8498 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
8499                                       SDValue Base, SDValue Offset,
8500                                       ISD::MemIndexedMode AM) {
8501   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
8502   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
8503   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
8504   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
8505   FoldingSetNodeID ID;
8506   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
8507   ID.AddInteger(ST->getMemoryVT().getRawBits());
8508   ID.AddInteger(ST->getRawSubclassData());
8509   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
8510   ID.AddInteger(ST->getMemOperand()->getFlags());
8511   void *IP = nullptr;
8512   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
8513     return SDValue(E, 0);
8514 
8515   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
8516                                    ST->isTruncatingStore(), ST->getMemoryVT(),
8517                                    ST->getMemOperand());
8518   createOperands(N, Ops);
8519 
8520   CSEMap.InsertNode(N, IP);
8521   InsertNode(N);
8522   SDValue V(N, 0);
8523   NewSDValueDbgMsg(V, "Creating new node: ", this);
8524   return V;
8525 }
8526 
8527 SDValue SelectionDAG::getLoadVP(
8528     ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl,
8529     SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL,
8530     MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment,
8531     MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
8532     const MDNode *Ranges, bool IsExpanding) {
8533   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8534 
8535   MMOFlags |= MachineMemOperand::MOLoad;
8536   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
8537   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
8538   // clients.
8539   if (PtrInfo.V.isNull())
8540     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
8541 
8542   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
8543   MachineFunction &MF = getMachineFunction();
8544   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
8545                                                    Alignment, AAInfo, Ranges);
8546   return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT,
8547                    MMO, IsExpanding);
8548 }
8549 
8550 SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM,
8551                                 ISD::LoadExtType ExtType, EVT VT,
8552                                 const SDLoc &dl, SDValue Chain, SDValue Ptr,
8553                                 SDValue Offset, SDValue Mask, SDValue EVL,
8554                                 EVT MemVT, MachineMemOperand *MMO,
8555                                 bool IsExpanding) {
8556   bool Indexed = AM != ISD::UNINDEXED;
8557   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
8558 
8559   SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other)
8560                          : getVTList(VT, MVT::Other);
8561   SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL};
8562   FoldingSetNodeID ID;
8563   AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops);
8564   ID.AddInteger(MemVT.getRawBits());
8565   ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>(
8566       dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
8567   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8568   ID.AddInteger(MMO->getFlags());
8569   void *IP = nullptr;
8570   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8571     cast<VPLoadSDNode>(E)->refineAlignment(MMO);
8572     return SDValue(E, 0);
8573   }
8574   auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
8575                                     ExtType, IsExpanding, MemVT, MMO);
8576   createOperands(N, Ops);
8577 
8578   CSEMap.InsertNode(N, IP);
8579   InsertNode(N);
8580   SDValue V(N, 0);
8581   NewSDValueDbgMsg(V, "Creating new node: ", this);
8582   return V;
8583 }
8584 
8585 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain,
8586                                 SDValue Ptr, SDValue Mask, SDValue EVL,
8587                                 MachinePointerInfo PtrInfo,
8588                                 MaybeAlign Alignment,
8589                                 MachineMemOperand::Flags MMOFlags,
8590                                 const AAMDNodes &AAInfo, const MDNode *Ranges,
8591                                 bool IsExpanding) {
8592   SDValue Undef = getUNDEF(Ptr.getValueType());
8593   return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
8594                    Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges,
8595                    IsExpanding);
8596 }
8597 
8598 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain,
8599                                 SDValue Ptr, SDValue Mask, SDValue EVL,
8600                                 MachineMemOperand *MMO, bool IsExpanding) {
8601   SDValue Undef = getUNDEF(Ptr.getValueType());
8602   return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
8603                    Mask, EVL, VT, MMO, IsExpanding);
8604 }
8605 
8606 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl,
8607                                    EVT VT, SDValue Chain, SDValue Ptr,
8608                                    SDValue Mask, SDValue EVL,
8609                                    MachinePointerInfo PtrInfo, EVT MemVT,
8610                                    MaybeAlign Alignment,
8611                                    MachineMemOperand::Flags MMOFlags,
8612                                    const AAMDNodes &AAInfo, bool IsExpanding) {
8613   SDValue Undef = getUNDEF(Ptr.getValueType());
8614   return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
8615                    EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr,
8616                    IsExpanding);
8617 }
8618 
8619 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl,
8620                                    EVT VT, SDValue Chain, SDValue Ptr,
8621                                    SDValue Mask, SDValue EVL, EVT MemVT,
8622                                    MachineMemOperand *MMO, bool IsExpanding) {
8623   SDValue Undef = getUNDEF(Ptr.getValueType());
8624   return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
8625                    EVL, MemVT, MMO, IsExpanding);
8626 }
8627 
8628 SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl,
8629                                        SDValue Base, SDValue Offset,
8630                                        ISD::MemIndexedMode AM) {
8631   auto *LD = cast<VPLoadSDNode>(OrigLoad);
8632   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
8633   // Don't propagate the invariant or dereferenceable flags.
8634   auto MMOFlags =
8635       LD->getMemOperand()->getFlags() &
8636       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
8637   return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
8638                    LD->getChain(), Base, Offset, LD->getMask(),
8639                    LD->getVectorLength(), LD->getPointerInfo(),
8640                    LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(),
8641                    nullptr, LD->isExpandingLoad());
8642 }
8643 
8644 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val,
8645                                  SDValue Ptr, SDValue Offset, SDValue Mask,
8646                                  SDValue EVL, EVT MemVT, MachineMemOperand *MMO,
8647                                  ISD::MemIndexedMode AM, bool IsTruncating,
8648                                  bool IsCompressing) {
8649   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8650   bool Indexed = AM != ISD::UNINDEXED;
8651   assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!");
8652   SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
8653                          : getVTList(MVT::Other);
8654   SDValue Ops[] = {Chain, Val, Ptr, Offset, Mask, EVL};
8655   FoldingSetNodeID ID;
8656   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
8657   ID.AddInteger(MemVT.getRawBits());
8658   ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
8659       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
8660   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8661   ID.AddInteger(MMO->getFlags());
8662   void *IP = nullptr;
8663   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8664     cast<VPStoreSDNode>(E)->refineAlignment(MMO);
8665     return SDValue(E, 0);
8666   }
8667   auto *N = newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
8668                                      IsTruncating, IsCompressing, MemVT, MMO);
8669   createOperands(N, Ops);
8670 
8671   CSEMap.InsertNode(N, IP);
8672   InsertNode(N);
8673   SDValue V(N, 0);
8674   NewSDValueDbgMsg(V, "Creating new node: ", this);
8675   return V;
8676 }
8677 
8678 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl,
8679                                       SDValue Val, SDValue Ptr, SDValue Mask,
8680                                       SDValue EVL, MachinePointerInfo PtrInfo,
8681                                       EVT SVT, Align Alignment,
8682                                       MachineMemOperand::Flags MMOFlags,
8683                                       const AAMDNodes &AAInfo,
8684                                       bool IsCompressing) {
8685   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8686 
8687   MMOFlags |= MachineMemOperand::MOStore;
8688   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
8689 
8690   if (PtrInfo.V.isNull())
8691     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
8692 
8693   MachineFunction &MF = getMachineFunction();
8694   MachineMemOperand *MMO = MF.getMachineMemOperand(
8695       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
8696       Alignment, AAInfo);
8697   return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO,
8698                          IsCompressing);
8699 }
8700 
8701 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl,
8702                                       SDValue Val, SDValue Ptr, SDValue Mask,
8703                                       SDValue EVL, EVT SVT,
8704                                       MachineMemOperand *MMO,
8705                                       bool IsCompressing) {
8706   EVT VT = Val.getValueType();
8707 
8708   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8709   if (VT == SVT)
8710     return getStoreVP(Chain, dl, Val, Ptr, getUNDEF(Ptr.getValueType()), Mask,
8711                       EVL, VT, MMO, ISD::UNINDEXED,
8712                       /*IsTruncating*/ false, IsCompressing);
8713 
8714   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
8715          "Should only be a truncating store, not extending!");
8716   assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
8717   assert(VT.isVector() == SVT.isVector() &&
8718          "Cannot use trunc store to convert to or from a vector!");
8719   assert((!VT.isVector() ||
8720           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
8721          "Cannot use trunc store to change the number of vector elements!");
8722 
8723   SDVTList VTs = getVTList(MVT::Other);
8724   SDValue Undef = getUNDEF(Ptr.getValueType());
8725   SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL};
8726   FoldingSetNodeID ID;
8727   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
8728   ID.AddInteger(SVT.getRawBits());
8729   ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
8730       dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO));
8731   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8732   ID.AddInteger(MMO->getFlags());
8733   void *IP = nullptr;
8734   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8735     cast<VPStoreSDNode>(E)->refineAlignment(MMO);
8736     return SDValue(E, 0);
8737   }
8738   auto *N =
8739       newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8740                                ISD::UNINDEXED, true, IsCompressing, SVT, MMO);
8741   createOperands(N, Ops);
8742 
8743   CSEMap.InsertNode(N, IP);
8744   InsertNode(N);
8745   SDValue V(N, 0);
8746   NewSDValueDbgMsg(V, "Creating new node: ", this);
8747   return V;
8748 }
8749 
8750 SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl,
8751                                         SDValue Base, SDValue Offset,
8752                                         ISD::MemIndexedMode AM) {
8753   auto *ST = cast<VPStoreSDNode>(OrigStore);
8754   assert(ST->getOffset().isUndef() && "Store is already an indexed store!");
8755   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
8756   SDValue Ops[] = {ST->getChain(), ST->getValue(), Base,
8757                    Offset,         ST->getMask(),  ST->getVectorLength()};
8758   FoldingSetNodeID ID;
8759   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
8760   ID.AddInteger(ST->getMemoryVT().getRawBits());
8761   ID.AddInteger(ST->getRawSubclassData());
8762   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
8763   ID.AddInteger(ST->getMemOperand()->getFlags());
8764   void *IP = nullptr;
8765   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
8766     return SDValue(E, 0);
8767 
8768   auto *N = newSDNode<VPStoreSDNode>(
8769       dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(),
8770       ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand());
8771   createOperands(N, Ops);
8772 
8773   CSEMap.InsertNode(N, IP);
8774   InsertNode(N);
8775   SDValue V(N, 0);
8776   NewSDValueDbgMsg(V, "Creating new node: ", this);
8777   return V;
8778 }
8779 
8780 SDValue SelectionDAG::getStridedLoadVP(
8781     ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL,
8782     SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask,
8783     SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment,
8784     MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
8785     const MDNode *Ranges, bool IsExpanding) {
8786   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8787 
8788   MMOFlags |= MachineMemOperand::MOLoad;
8789   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
8790   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
8791   // clients.
8792   if (PtrInfo.V.isNull())
8793     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
8794 
8795   uint64_t Size = MemoryLocation::UnknownSize;
8796   MachineFunction &MF = getMachineFunction();
8797   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
8798                                                    Alignment, AAInfo, Ranges);
8799   return getStridedLoadVP(AM, ExtType, VT, DL, Chain, Ptr, Offset, Stride, Mask,
8800                           EVL, MemVT, MMO, IsExpanding);
8801 }
8802 
8803 SDValue SelectionDAG::getStridedLoadVP(
8804     ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL,
8805     SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask,
8806     SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding) {
8807   bool Indexed = AM != ISD::UNINDEXED;
8808   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
8809 
8810   SDValue Ops[] = {Chain, Ptr, Offset, Stride, Mask, EVL};
8811   SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other)
8812                          : getVTList(VT, MVT::Other);
8813   FoldingSetNodeID ID;
8814   AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_LOAD, VTs, Ops);
8815   ID.AddInteger(VT.getRawBits());
8816   ID.AddInteger(getSyntheticNodeSubclassData<VPStridedLoadSDNode>(
8817       DL.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
8818   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8819 
8820   void *IP = nullptr;
8821   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8822     cast<VPStridedLoadSDNode>(E)->refineAlignment(MMO);
8823     return SDValue(E, 0);
8824   }
8825 
8826   auto *N =
8827       newSDNode<VPStridedLoadSDNode>(DL.getIROrder(), DL.getDebugLoc(), VTs, AM,
8828                                      ExtType, IsExpanding, MemVT, MMO);
8829   createOperands(N, Ops);
8830   CSEMap.InsertNode(N, IP);
8831   InsertNode(N);
8832   SDValue V(N, 0);
8833   NewSDValueDbgMsg(V, "Creating new node: ", this);
8834   return V;
8835 }
8836 
8837 SDValue SelectionDAG::getStridedLoadVP(
8838     EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Stride,
8839     SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, MaybeAlign Alignment,
8840     MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
8841     const MDNode *Ranges, bool IsExpanding) {
8842   SDValue Undef = getUNDEF(Ptr.getValueType());
8843   return getStridedLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, DL, Chain, Ptr,
8844                           Undef, Stride, Mask, EVL, PtrInfo, VT, Alignment,
8845                           MMOFlags, AAInfo, Ranges, IsExpanding);
8846 }
8847 
8848 SDValue SelectionDAG::getStridedLoadVP(EVT VT, const SDLoc &DL, SDValue Chain,
8849                                        SDValue Ptr, SDValue Stride,
8850                                        SDValue Mask, SDValue EVL,
8851                                        MachineMemOperand *MMO,
8852                                        bool IsExpanding) {
8853   SDValue Undef = getUNDEF(Ptr.getValueType());
8854   return getStridedLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, DL, Chain, Ptr,
8855                           Undef, Stride, Mask, EVL, VT, MMO, IsExpanding);
8856 }
8857 
8858 SDValue SelectionDAG::getExtStridedLoadVP(
8859     ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain,
8860     SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL,
8861     MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment,
8862     MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
8863     bool IsExpanding) {
8864   SDValue Undef = getUNDEF(Ptr.getValueType());
8865   return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef,
8866                           Stride, Mask, EVL, PtrInfo, MemVT, Alignment,
8867                           MMOFlags, AAInfo, nullptr, IsExpanding);
8868 }
8869 
8870 SDValue SelectionDAG::getExtStridedLoadVP(
8871     ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain,
8872     SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT,
8873     MachineMemOperand *MMO, bool IsExpanding) {
8874   SDValue Undef = getUNDEF(Ptr.getValueType());
8875   return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef,
8876                           Stride, Mask, EVL, MemVT, MMO, IsExpanding);
8877 }
8878 
8879 SDValue SelectionDAG::getIndexedStridedLoadVP(SDValue OrigLoad, const SDLoc &DL,
8880                                               SDValue Base, SDValue Offset,
8881                                               ISD::MemIndexedMode AM) {
8882   auto *SLD = cast<VPStridedLoadSDNode>(OrigLoad);
8883   assert(SLD->getOffset().isUndef() &&
8884          "Strided load is already a indexed load!");
8885   // Don't propagate the invariant or dereferenceable flags.
8886   auto MMOFlags =
8887       SLD->getMemOperand()->getFlags() &
8888       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
8889   return getStridedLoadVP(
8890       AM, SLD->getExtensionType(), OrigLoad.getValueType(), DL, SLD->getChain(),
8891       Base, Offset, SLD->getStride(), SLD->getMask(), SLD->getVectorLength(),
8892       SLD->getPointerInfo(), SLD->getMemoryVT(), SLD->getAlign(), MMOFlags,
8893       SLD->getAAInfo(), nullptr, SLD->isExpandingLoad());
8894 }
8895 
8896 SDValue SelectionDAG::getStridedStoreVP(SDValue Chain, const SDLoc &DL,
8897                                         SDValue Val, SDValue Ptr,
8898                                         SDValue Offset, SDValue Stride,
8899                                         SDValue Mask, SDValue EVL, EVT MemVT,
8900                                         MachineMemOperand *MMO,
8901                                         ISD::MemIndexedMode AM,
8902                                         bool IsTruncating, bool IsCompressing) {
8903   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8904   bool Indexed = AM != ISD::UNINDEXED;
8905   assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!");
8906   SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
8907                          : getVTList(MVT::Other);
8908   SDValue Ops[] = {Chain, Val, Ptr, Offset, Stride, Mask, EVL};
8909   FoldingSetNodeID ID;
8910   AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops);
8911   ID.AddInteger(MemVT.getRawBits());
8912   ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
8913       DL.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
8914   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8915   void *IP = nullptr;
8916   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8917     cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO);
8918     return SDValue(E, 0);
8919   }
8920   auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(),
8921                                             VTs, AM, IsTruncating,
8922                                             IsCompressing, MemVT, MMO);
8923   createOperands(N, Ops);
8924 
8925   CSEMap.InsertNode(N, IP);
8926   InsertNode(N);
8927   SDValue V(N, 0);
8928   NewSDValueDbgMsg(V, "Creating new node: ", this);
8929   return V;
8930 }
8931 
8932 SDValue SelectionDAG::getTruncStridedStoreVP(
8933     SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Stride,
8934     SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT SVT,
8935     Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
8936     bool IsCompressing) {
8937   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8938 
8939   MMOFlags |= MachineMemOperand::MOStore;
8940   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
8941 
8942   if (PtrInfo.V.isNull())
8943     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
8944 
8945   MachineFunction &MF = getMachineFunction();
8946   MachineMemOperand *MMO = MF.getMachineMemOperand(
8947       PtrInfo, MMOFlags, MemoryLocation::UnknownSize, Alignment, AAInfo);
8948   return getTruncStridedStoreVP(Chain, DL, Val, Ptr, Stride, Mask, EVL, SVT,
8949                                 MMO, IsCompressing);
8950 }
8951 
8952 SDValue SelectionDAG::getTruncStridedStoreVP(SDValue Chain, const SDLoc &DL,
8953                                              SDValue Val, SDValue Ptr,
8954                                              SDValue Stride, SDValue Mask,
8955                                              SDValue EVL, EVT SVT,
8956                                              MachineMemOperand *MMO,
8957                                              bool IsCompressing) {
8958   EVT VT = Val.getValueType();
8959 
8960   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8961   if (VT == SVT)
8962     return getStridedStoreVP(Chain, DL, Val, Ptr, getUNDEF(Ptr.getValueType()),
8963                              Stride, Mask, EVL, VT, MMO, ISD::UNINDEXED,
8964                              /*IsTruncating*/ false, IsCompressing);
8965 
8966   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
8967          "Should only be a truncating store, not extending!");
8968   assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
8969   assert(VT.isVector() == SVT.isVector() &&
8970          "Cannot use trunc store to convert to or from a vector!");
8971   assert((!VT.isVector() ||
8972           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
8973          "Cannot use trunc store to change the number of vector elements!");
8974 
8975   SDVTList VTs = getVTList(MVT::Other);
8976   SDValue Undef = getUNDEF(Ptr.getValueType());
8977   SDValue Ops[] = {Chain, Val, Ptr, Undef, Stride, Mask, EVL};
8978   FoldingSetNodeID ID;
8979   AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops);
8980   ID.AddInteger(SVT.getRawBits());
8981   ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
8982       DL.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO));
8983   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8984   void *IP = nullptr;
8985   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8986     cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO);
8987     return SDValue(E, 0);
8988   }
8989   auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(),
8990                                             VTs, ISD::UNINDEXED, true,
8991                                             IsCompressing, SVT, MMO);
8992   createOperands(N, Ops);
8993 
8994   CSEMap.InsertNode(N, IP);
8995   InsertNode(N);
8996   SDValue V(N, 0);
8997   NewSDValueDbgMsg(V, "Creating new node: ", this);
8998   return V;
8999 }
9000 
9001 SDValue SelectionDAG::getIndexedStridedStoreVP(SDValue OrigStore,
9002                                                const SDLoc &DL, SDValue Base,
9003                                                SDValue Offset,
9004                                                ISD::MemIndexedMode AM) {
9005   auto *SST = cast<VPStridedStoreSDNode>(OrigStore);
9006   assert(SST->getOffset().isUndef() &&
9007          "Strided store is already an indexed store!");
9008   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
9009   SDValue Ops[] = {
9010       SST->getChain(), SST->getValue(),       Base, Offset, SST->getStride(),
9011       SST->getMask(),  SST->getVectorLength()};
9012   FoldingSetNodeID ID;
9013   AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops);
9014   ID.AddInteger(SST->getMemoryVT().getRawBits());
9015   ID.AddInteger(SST->getRawSubclassData());
9016   ID.AddInteger(SST->getPointerInfo().getAddrSpace());
9017   void *IP = nullptr;
9018   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
9019     return SDValue(E, 0);
9020 
9021   auto *N = newSDNode<VPStridedStoreSDNode>(
9022       DL.getIROrder(), DL.getDebugLoc(), VTs, AM, SST->isTruncatingStore(),
9023       SST->isCompressingStore(), SST->getMemoryVT(), SST->getMemOperand());
9024   createOperands(N, Ops);
9025 
9026   CSEMap.InsertNode(N, IP);
9027   InsertNode(N);
9028   SDValue V(N, 0);
9029   NewSDValueDbgMsg(V, "Creating new node: ", this);
9030   return V;
9031 }
9032 
9033 SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl,
9034                                   ArrayRef<SDValue> Ops, MachineMemOperand *MMO,
9035                                   ISD::MemIndexType IndexType) {
9036   assert(Ops.size() == 6 && "Incompatible number of operands");
9037 
9038   FoldingSetNodeID ID;
9039   AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops);
9040   ID.AddInteger(VT.getRawBits());
9041   ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>(
9042       dl.getIROrder(), VTs, VT, MMO, IndexType));
9043   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9044   ID.AddInteger(MMO->getFlags());
9045   void *IP = nullptr;
9046   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
9047     cast<VPGatherSDNode>(E)->refineAlignment(MMO);
9048     return SDValue(E, 0);
9049   }
9050 
9051   auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
9052                                       VT, MMO, IndexType);
9053   createOperands(N, Ops);
9054 
9055   assert(N->getMask().getValueType().getVectorElementCount() ==
9056              N->getValueType(0).getVectorElementCount() &&
9057          "Vector width mismatch between mask and data");
9058   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
9059              N->getValueType(0).getVectorElementCount().isScalable() &&
9060          "Scalable flags of index and data do not match");
9061   assert(ElementCount::isKnownGE(
9062              N->getIndex().getValueType().getVectorElementCount(),
9063              N->getValueType(0).getVectorElementCount()) &&
9064          "Vector width mismatch between index and data");
9065   assert(isa<ConstantSDNode>(N->getScale()) &&
9066          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
9067          "Scale should be a constant power of 2");
9068 
9069   CSEMap.InsertNode(N, IP);
9070   InsertNode(N);
9071   SDValue V(N, 0);
9072   NewSDValueDbgMsg(V, "Creating new node: ", this);
9073   return V;
9074 }
9075 
9076 SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl,
9077                                    ArrayRef<SDValue> Ops,
9078                                    MachineMemOperand *MMO,
9079                                    ISD::MemIndexType IndexType) {
9080   assert(Ops.size() == 7 && "Incompatible number of operands");
9081 
9082   FoldingSetNodeID ID;
9083   AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops);
9084   ID.AddInteger(VT.getRawBits());
9085   ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>(
9086       dl.getIROrder(), VTs, VT, MMO, IndexType));
9087   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9088   ID.AddInteger(MMO->getFlags());
9089   void *IP = nullptr;
9090   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
9091     cast<VPScatterSDNode>(E)->refineAlignment(MMO);
9092     return SDValue(E, 0);
9093   }
9094   auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
9095                                        VT, MMO, IndexType);
9096   createOperands(N, Ops);
9097 
9098   assert(N->getMask().getValueType().getVectorElementCount() ==
9099              N->getValue().getValueType().getVectorElementCount() &&
9100          "Vector width mismatch between mask and data");
9101   assert(
9102       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
9103           N->getValue().getValueType().getVectorElementCount().isScalable() &&
9104       "Scalable flags of index and data do not match");
9105   assert(ElementCount::isKnownGE(
9106              N->getIndex().getValueType().getVectorElementCount(),
9107              N->getValue().getValueType().getVectorElementCount()) &&
9108          "Vector width mismatch between index and data");
9109   assert(isa<ConstantSDNode>(N->getScale()) &&
9110          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
9111          "Scale should be a constant power of 2");
9112 
9113   CSEMap.InsertNode(N, IP);
9114   InsertNode(N);
9115   SDValue V(N, 0);
9116   NewSDValueDbgMsg(V, "Creating new node: ", this);
9117   return V;
9118 }
9119 
9120 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
9121                                     SDValue Base, SDValue Offset, SDValue Mask,
9122                                     SDValue PassThru, EVT MemVT,
9123                                     MachineMemOperand *MMO,
9124                                     ISD::MemIndexedMode AM,
9125                                     ISD::LoadExtType ExtTy, bool isExpanding) {
9126   bool Indexed = AM != ISD::UNINDEXED;
9127   assert((Indexed || Offset.isUndef()) &&
9128          "Unindexed masked load with an offset!");
9129   SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
9130                          : getVTList(VT, MVT::Other);
9131   SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
9132   FoldingSetNodeID ID;
9133   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
9134   ID.AddInteger(MemVT.getRawBits());
9135   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
9136       dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
9137   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9138   ID.AddInteger(MMO->getFlags());
9139   void *IP = nullptr;
9140   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
9141     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
9142     return SDValue(E, 0);
9143   }
9144   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
9145                                         AM, ExtTy, isExpanding, MemVT, MMO);
9146   createOperands(N, Ops);
9147 
9148   CSEMap.InsertNode(N, IP);
9149   InsertNode(N);
9150   SDValue V(N, 0);
9151   NewSDValueDbgMsg(V, "Creating new node: ", this);
9152   return V;
9153 }
9154 
9155 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
9156                                            SDValue Base, SDValue Offset,
9157                                            ISD::MemIndexedMode AM) {
9158   MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
9159   assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
9160   return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
9161                        Offset, LD->getMask(), LD->getPassThru(),
9162                        LD->getMemoryVT(), LD->getMemOperand(), AM,
9163                        LD->getExtensionType(), LD->isExpandingLoad());
9164 }
9165 
9166 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
9167                                      SDValue Val, SDValue Base, SDValue Offset,
9168                                      SDValue Mask, EVT MemVT,
9169                                      MachineMemOperand *MMO,
9170                                      ISD::MemIndexedMode AM, bool IsTruncating,
9171                                      bool IsCompressing) {
9172   assert(Chain.getValueType() == MVT::Other &&
9173         "Invalid chain type");
9174   bool Indexed = AM != ISD::UNINDEXED;
9175   assert((Indexed || Offset.isUndef()) &&
9176          "Unindexed masked store with an offset!");
9177   SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
9178                          : getVTList(MVT::Other);
9179   SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
9180   FoldingSetNodeID ID;
9181   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
9182   ID.AddInteger(MemVT.getRawBits());
9183   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
9184       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
9185   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9186   ID.AddInteger(MMO->getFlags());
9187   void *IP = nullptr;
9188   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
9189     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
9190     return SDValue(E, 0);
9191   }
9192   auto *N =
9193       newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
9194                                    IsTruncating, IsCompressing, MemVT, MMO);
9195   createOperands(N, Ops);
9196 
9197   CSEMap.InsertNode(N, IP);
9198   InsertNode(N);
9199   SDValue V(N, 0);
9200   NewSDValueDbgMsg(V, "Creating new node: ", this);
9201   return V;
9202 }
9203 
9204 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
9205                                             SDValue Base, SDValue Offset,
9206                                             ISD::MemIndexedMode AM) {
9207   MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
9208   assert(ST->getOffset().isUndef() &&
9209          "Masked store is already a indexed store!");
9210   return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
9211                         ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
9212                         AM, ST->isTruncatingStore(), ST->isCompressingStore());
9213 }
9214 
9215 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl,
9216                                       ArrayRef<SDValue> Ops,
9217                                       MachineMemOperand *MMO,
9218                                       ISD::MemIndexType IndexType,
9219                                       ISD::LoadExtType ExtTy) {
9220   assert(Ops.size() == 6 && "Incompatible number of operands");
9221 
9222   FoldingSetNodeID ID;
9223   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
9224   ID.AddInteger(MemVT.getRawBits());
9225   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
9226       dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy));
9227   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9228   ID.AddInteger(MMO->getFlags());
9229   void *IP = nullptr;
9230   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
9231     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
9232     return SDValue(E, 0);
9233   }
9234 
9235   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
9236                                           VTs, MemVT, MMO, IndexType, ExtTy);
9237   createOperands(N, Ops);
9238 
9239   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
9240          "Incompatible type of the PassThru value in MaskedGatherSDNode");
9241   assert(N->getMask().getValueType().getVectorElementCount() ==
9242              N->getValueType(0).getVectorElementCount() &&
9243          "Vector width mismatch between mask and data");
9244   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
9245              N->getValueType(0).getVectorElementCount().isScalable() &&
9246          "Scalable flags of index and data do not match");
9247   assert(ElementCount::isKnownGE(
9248              N->getIndex().getValueType().getVectorElementCount(),
9249              N->getValueType(0).getVectorElementCount()) &&
9250          "Vector width mismatch between index and data");
9251   assert(isa<ConstantSDNode>(N->getScale()) &&
9252          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
9253          "Scale should be a constant power of 2");
9254 
9255   CSEMap.InsertNode(N, IP);
9256   InsertNode(N);
9257   SDValue V(N, 0);
9258   NewSDValueDbgMsg(V, "Creating new node: ", this);
9259   return V;
9260 }
9261 
9262 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl,
9263                                        ArrayRef<SDValue> Ops,
9264                                        MachineMemOperand *MMO,
9265                                        ISD::MemIndexType IndexType,
9266                                        bool IsTrunc) {
9267   assert(Ops.size() == 6 && "Incompatible number of operands");
9268 
9269   FoldingSetNodeID ID;
9270   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
9271   ID.AddInteger(MemVT.getRawBits());
9272   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
9273       dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc));
9274   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9275   ID.AddInteger(MMO->getFlags());
9276   void *IP = nullptr;
9277   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
9278     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
9279     return SDValue(E, 0);
9280   }
9281 
9282   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
9283                                            VTs, MemVT, MMO, IndexType, IsTrunc);
9284   createOperands(N, Ops);
9285 
9286   assert(N->getMask().getValueType().getVectorElementCount() ==
9287              N->getValue().getValueType().getVectorElementCount() &&
9288          "Vector width mismatch between mask and data");
9289   assert(
9290       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
9291           N->getValue().getValueType().getVectorElementCount().isScalable() &&
9292       "Scalable flags of index and data do not match");
9293   assert(ElementCount::isKnownGE(
9294              N->getIndex().getValueType().getVectorElementCount(),
9295              N->getValue().getValueType().getVectorElementCount()) &&
9296          "Vector width mismatch between index and data");
9297   assert(isa<ConstantSDNode>(N->getScale()) &&
9298          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
9299          "Scale should be a constant power of 2");
9300 
9301   CSEMap.InsertNode(N, IP);
9302   InsertNode(N);
9303   SDValue V(N, 0);
9304   NewSDValueDbgMsg(V, "Creating new node: ", this);
9305   return V;
9306 }
9307 
9308 SDValue SelectionDAG::getGetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr,
9309                                   EVT MemVT, MachineMemOperand *MMO) {
9310   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
9311   SDVTList VTs = getVTList(MVT::Other);
9312   SDValue Ops[] = {Chain, Ptr};
9313   FoldingSetNodeID ID;
9314   AddNodeIDNode(ID, ISD::GET_FPENV_MEM, VTs, Ops);
9315   ID.AddInteger(MemVT.getRawBits());
9316   ID.AddInteger(getSyntheticNodeSubclassData<FPStateAccessSDNode>(
9317       ISD::GET_FPENV_MEM, dl.getIROrder(), VTs, MemVT, MMO));
9318   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9319   ID.AddInteger(MMO->getFlags());
9320   void *IP = nullptr;
9321   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
9322     return SDValue(E, 0);
9323 
9324   auto *N = newSDNode<FPStateAccessSDNode>(ISD::GET_FPENV_MEM, dl.getIROrder(),
9325                                            dl.getDebugLoc(), VTs, MemVT, MMO);
9326   createOperands(N, Ops);
9327 
9328   CSEMap.InsertNode(N, IP);
9329   InsertNode(N);
9330   SDValue V(N, 0);
9331   NewSDValueDbgMsg(V, "Creating new node: ", this);
9332   return V;
9333 }
9334 
9335 SDValue SelectionDAG::getSetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr,
9336                                   EVT MemVT, MachineMemOperand *MMO) {
9337   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
9338   SDVTList VTs = getVTList(MVT::Other);
9339   SDValue Ops[] = {Chain, Ptr};
9340   FoldingSetNodeID ID;
9341   AddNodeIDNode(ID, ISD::SET_FPENV_MEM, VTs, Ops);
9342   ID.AddInteger(MemVT.getRawBits());
9343   ID.AddInteger(getSyntheticNodeSubclassData<FPStateAccessSDNode>(
9344       ISD::SET_FPENV_MEM, dl.getIROrder(), VTs, MemVT, MMO));
9345   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9346   ID.AddInteger(MMO->getFlags());
9347   void *IP = nullptr;
9348   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
9349     return SDValue(E, 0);
9350 
9351   auto *N = newSDNode<FPStateAccessSDNode>(ISD::SET_FPENV_MEM, dl.getIROrder(),
9352                                            dl.getDebugLoc(), VTs, MemVT, MMO);
9353   createOperands(N, Ops);
9354 
9355   CSEMap.InsertNode(N, IP);
9356   InsertNode(N);
9357   SDValue V(N, 0);
9358   NewSDValueDbgMsg(V, "Creating new node: ", this);
9359   return V;
9360 }
9361 
9362 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
9363   // select undef, T, F --> T (if T is a constant), otherwise F
9364   // select, ?, undef, F --> F
9365   // select, ?, T, undef --> T
9366   if (Cond.isUndef())
9367     return isConstantValueOfAnyType(T) ? T : F;
9368   if (T.isUndef())
9369     return F;
9370   if (F.isUndef())
9371     return T;
9372 
9373   // select true, T, F --> T
9374   // select false, T, F --> F
9375   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
9376     return CondC->isZero() ? F : T;
9377 
9378   // TODO: This should simplify VSELECT with non-zero constant condition using
9379   // something like this (but check boolean contents to be complete?):
9380   if (ConstantSDNode *CondC = isConstOrConstSplat(Cond, /*AllowUndefs*/ false,
9381                                                   /*AllowTruncation*/ true))
9382     if (CondC->isZero())
9383       return F;
9384 
9385   // select ?, T, T --> T
9386   if (T == F)
9387     return T;
9388 
9389   return SDValue();
9390 }
9391 
9392 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
9393   // shift undef, Y --> 0 (can always assume that the undef value is 0)
9394   if (X.isUndef())
9395     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
9396   // shift X, undef --> undef (because it may shift by the bitwidth)
9397   if (Y.isUndef())
9398     return getUNDEF(X.getValueType());
9399 
9400   // shift 0, Y --> 0
9401   // shift X, 0 --> X
9402   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
9403     return X;
9404 
9405   // shift X, C >= bitwidth(X) --> undef
9406   // All vector elements must be too big (or undef) to avoid partial undefs.
9407   auto isShiftTooBig = [X](ConstantSDNode *Val) {
9408     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
9409   };
9410   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
9411     return getUNDEF(X.getValueType());
9412 
9413   return SDValue();
9414 }
9415 
9416 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
9417                                       SDNodeFlags Flags) {
9418   // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
9419   // (an undef operand can be chosen to be Nan/Inf), then the result of this
9420   // operation is poison. That result can be relaxed to undef.
9421   ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
9422   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
9423   bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
9424                 (YC && YC->getValueAPF().isNaN());
9425   bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
9426                 (YC && YC->getValueAPF().isInfinity());
9427 
9428   if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
9429     return getUNDEF(X.getValueType());
9430 
9431   if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
9432     return getUNDEF(X.getValueType());
9433 
9434   if (!YC)
9435     return SDValue();
9436 
9437   // X + -0.0 --> X
9438   if (Opcode == ISD::FADD)
9439     if (YC->getValueAPF().isNegZero())
9440       return X;
9441 
9442   // X - +0.0 --> X
9443   if (Opcode == ISD::FSUB)
9444     if (YC->getValueAPF().isPosZero())
9445       return X;
9446 
9447   // X * 1.0 --> X
9448   // X / 1.0 --> X
9449   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
9450     if (YC->getValueAPF().isExactlyValue(1.0))
9451       return X;
9452 
9453   // X * 0.0 --> 0.0
9454   if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
9455     if (YC->getValueAPF().isZero())
9456       return getConstantFP(0.0, SDLoc(Y), Y.getValueType());
9457 
9458   return SDValue();
9459 }
9460 
9461 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
9462                                SDValue Ptr, SDValue SV, unsigned Align) {
9463   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
9464   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
9465 }
9466 
9467 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
9468                               ArrayRef<SDUse> Ops) {
9469   switch (Ops.size()) {
9470   case 0: return getNode(Opcode, DL, VT);
9471   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
9472   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
9473   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
9474   default: break;
9475   }
9476 
9477   // Copy from an SDUse array into an SDValue array for use with
9478   // the regular getNode logic.
9479   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
9480   return getNode(Opcode, DL, VT, NewOps);
9481 }
9482 
9483 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
9484                               ArrayRef<SDValue> Ops) {
9485   SDNodeFlags Flags;
9486   if (Inserter)
9487     Flags = Inserter->getFlags();
9488   return getNode(Opcode, DL, VT, Ops, Flags);
9489 }
9490 
9491 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
9492                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
9493   unsigned NumOps = Ops.size();
9494   switch (NumOps) {
9495   case 0: return getNode(Opcode, DL, VT);
9496   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
9497   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
9498   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
9499   default: break;
9500   }
9501 
9502 #ifndef NDEBUG
9503   for (const auto &Op : Ops)
9504     assert(Op.getOpcode() != ISD::DELETED_NODE &&
9505            "Operand is DELETED_NODE!");
9506 #endif
9507 
9508   switch (Opcode) {
9509   default: break;
9510   case ISD::BUILD_VECTOR:
9511     // Attempt to simplify BUILD_VECTOR.
9512     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
9513       return V;
9514     break;
9515   case ISD::CONCAT_VECTORS:
9516     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
9517       return V;
9518     break;
9519   case ISD::SELECT_CC:
9520     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
9521     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
9522            "LHS and RHS of condition must have same type!");
9523     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
9524            "True and False arms of SelectCC must have same type!");
9525     assert(Ops[2].getValueType() == VT &&
9526            "select_cc node must be of same type as true and false value!");
9527     assert((!Ops[0].getValueType().isVector() ||
9528             Ops[0].getValueType().getVectorElementCount() ==
9529                 VT.getVectorElementCount()) &&
9530            "Expected select_cc with vector result to have the same sized "
9531            "comparison type!");
9532     break;
9533   case ISD::BR_CC:
9534     assert(NumOps == 5 && "BR_CC takes 5 operands!");
9535     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
9536            "LHS/RHS of comparison should match types!");
9537     break;
9538   case ISD::VP_ADD:
9539   case ISD::VP_SUB:
9540     // If it is VP_ADD/VP_SUB mask operation then turn it to VP_XOR
9541     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
9542       Opcode = ISD::VP_XOR;
9543     break;
9544   case ISD::VP_MUL:
9545     // If it is VP_MUL mask operation then turn it to VP_AND
9546     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
9547       Opcode = ISD::VP_AND;
9548     break;
9549   case ISD::VP_REDUCE_MUL:
9550     // If it is VP_REDUCE_MUL mask operation then turn it to VP_REDUCE_AND
9551     if (VT == MVT::i1)
9552       Opcode = ISD::VP_REDUCE_AND;
9553     break;
9554   case ISD::VP_REDUCE_ADD:
9555     // If it is VP_REDUCE_ADD mask operation then turn it to VP_REDUCE_XOR
9556     if (VT == MVT::i1)
9557       Opcode = ISD::VP_REDUCE_XOR;
9558     break;
9559   case ISD::VP_REDUCE_SMAX:
9560   case ISD::VP_REDUCE_UMIN:
9561     // If it is VP_REDUCE_SMAX/VP_REDUCE_UMIN mask operation then turn it to
9562     // VP_REDUCE_AND.
9563     if (VT == MVT::i1)
9564       Opcode = ISD::VP_REDUCE_AND;
9565     break;
9566   case ISD::VP_REDUCE_SMIN:
9567   case ISD::VP_REDUCE_UMAX:
9568     // If it is VP_REDUCE_SMIN/VP_REDUCE_UMAX mask operation then turn it to
9569     // VP_REDUCE_OR.
9570     if (VT == MVT::i1)
9571       Opcode = ISD::VP_REDUCE_OR;
9572     break;
9573   }
9574 
9575   // Memoize nodes.
9576   SDNode *N;
9577   SDVTList VTs = getVTList(VT);
9578 
9579   if (VT != MVT::Glue) {
9580     FoldingSetNodeID ID;
9581     AddNodeIDNode(ID, Opcode, VTs, Ops);
9582     void *IP = nullptr;
9583 
9584     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
9585       return SDValue(E, 0);
9586 
9587     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
9588     createOperands(N, Ops);
9589 
9590     CSEMap.InsertNode(N, IP);
9591   } else {
9592     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
9593     createOperands(N, Ops);
9594   }
9595 
9596   N->setFlags(Flags);
9597   InsertNode(N);
9598   SDValue V(N, 0);
9599   NewSDValueDbgMsg(V, "Creating new node: ", this);
9600   return V;
9601 }
9602 
9603 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
9604                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
9605   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
9606 }
9607 
9608 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
9609                               ArrayRef<SDValue> Ops) {
9610   SDNodeFlags Flags;
9611   if (Inserter)
9612     Flags = Inserter->getFlags();
9613   return getNode(Opcode, DL, VTList, Ops, Flags);
9614 }
9615 
9616 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
9617                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
9618   if (VTList.NumVTs == 1)
9619     return getNode(Opcode, DL, VTList.VTs[0], Ops, Flags);
9620 
9621 #ifndef NDEBUG
9622   for (const auto &Op : Ops)
9623     assert(Op.getOpcode() != ISD::DELETED_NODE &&
9624            "Operand is DELETED_NODE!");
9625 #endif
9626 
9627   switch (Opcode) {
9628   case ISD::SADDO:
9629   case ISD::UADDO:
9630   case ISD::SSUBO:
9631   case ISD::USUBO: {
9632     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
9633            "Invalid add/sub overflow op!");
9634     assert(VTList.VTs[0].isInteger() && VTList.VTs[1].isInteger() &&
9635            Ops[0].getValueType() == Ops[1].getValueType() &&
9636            Ops[0].getValueType() == VTList.VTs[0] &&
9637            "Binary operator types must match!");
9638     SDValue N1 = Ops[0], N2 = Ops[1];
9639     canonicalizeCommutativeBinop(Opcode, N1, N2);
9640 
9641     // (X +- 0) -> X with zero-overflow.
9642     ConstantSDNode *N2CV = isConstOrConstSplat(N2, /*AllowUndefs*/ false,
9643                                                /*AllowTruncation*/ true);
9644     if (N2CV && N2CV->isZero()) {
9645       SDValue ZeroOverFlow = getConstant(0, DL, VTList.VTs[1]);
9646       return getNode(ISD::MERGE_VALUES, DL, VTList, {N1, ZeroOverFlow}, Flags);
9647     }
9648     break;
9649   }
9650   case ISD::SMUL_LOHI:
9651   case ISD::UMUL_LOHI: {
9652     assert(VTList.NumVTs == 2 && Ops.size() == 2 && "Invalid mul lo/hi op!");
9653     assert(VTList.VTs[0].isInteger() && VTList.VTs[0] == VTList.VTs[1] &&
9654            VTList.VTs[0] == Ops[0].getValueType() &&
9655            VTList.VTs[0] == Ops[1].getValueType() &&
9656            "Binary operator types must match!");
9657     break;
9658   }
9659   case ISD::FFREXP: {
9660     assert(VTList.NumVTs == 2 && Ops.size() == 1 && "Invalid ffrexp op!");
9661     assert(VTList.VTs[0].isFloatingPoint() && VTList.VTs[1].isInteger() &&
9662            VTList.VTs[0] == Ops[0].getValueType() && "frexp type mismatch");
9663 
9664     if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Ops[0])) {
9665       int FrexpExp;
9666       APFloat FrexpMant =
9667           frexp(C->getValueAPF(), FrexpExp, APFloat::rmNearestTiesToEven);
9668       SDValue Result0 = getConstantFP(FrexpMant, DL, VTList.VTs[0]);
9669       SDValue Result1 =
9670           getConstant(FrexpMant.isFinite() ? FrexpExp : 0, DL, VTList.VTs[1]);
9671       return getNode(ISD::MERGE_VALUES, DL, VTList, {Result0, Result1}, Flags);
9672     }
9673 
9674     break;
9675   }
9676   case ISD::STRICT_FP_EXTEND:
9677     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
9678            "Invalid STRICT_FP_EXTEND!");
9679     assert(VTList.VTs[0].isFloatingPoint() &&
9680            Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
9681     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
9682            "STRICT_FP_EXTEND result type should be vector iff the operand "
9683            "type is vector!");
9684     assert((!VTList.VTs[0].isVector() ||
9685             VTList.VTs[0].getVectorElementCount() ==
9686                 Ops[1].getValueType().getVectorElementCount()) &&
9687            "Vector element count mismatch!");
9688     assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
9689            "Invalid fpext node, dst <= src!");
9690     break;
9691   case ISD::STRICT_FP_ROUND:
9692     assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
9693     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
9694            "STRICT_FP_ROUND result type should be vector iff the operand "
9695            "type is vector!");
9696     assert((!VTList.VTs[0].isVector() ||
9697             VTList.VTs[0].getVectorElementCount() ==
9698                 Ops[1].getValueType().getVectorElementCount()) &&
9699            "Vector element count mismatch!");
9700     assert(VTList.VTs[0].isFloatingPoint() &&
9701            Ops[1].getValueType().isFloatingPoint() &&
9702            VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
9703            isa<ConstantSDNode>(Ops[2]) &&
9704            (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
9705             cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
9706            "Invalid STRICT_FP_ROUND!");
9707     break;
9708 #if 0
9709   // FIXME: figure out how to safely handle things like
9710   // int foo(int x) { return 1 << (x & 255); }
9711   // int bar() { return foo(256); }
9712   case ISD::SRA_PARTS:
9713   case ISD::SRL_PARTS:
9714   case ISD::SHL_PARTS:
9715     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
9716         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
9717       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
9718     else if (N3.getOpcode() == ISD::AND)
9719       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
9720         // If the and is only masking out bits that cannot effect the shift,
9721         // eliminate the and.
9722         unsigned NumBits = VT.getScalarSizeInBits()*2;
9723         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
9724           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
9725       }
9726     break;
9727 #endif
9728   }
9729 
9730   // Memoize the node unless it returns a flag.
9731   SDNode *N;
9732   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
9733     FoldingSetNodeID ID;
9734     AddNodeIDNode(ID, Opcode, VTList, Ops);
9735     void *IP = nullptr;
9736     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
9737       return SDValue(E, 0);
9738 
9739     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
9740     createOperands(N, Ops);
9741     CSEMap.InsertNode(N, IP);
9742   } else {
9743     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
9744     createOperands(N, Ops);
9745   }
9746 
9747   N->setFlags(Flags);
9748   InsertNode(N);
9749   SDValue V(N, 0);
9750   NewSDValueDbgMsg(V, "Creating new node: ", this);
9751   return V;
9752 }
9753 
9754 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
9755                               SDVTList VTList) {
9756   return getNode(Opcode, DL, VTList, std::nullopt);
9757 }
9758 
9759 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
9760                               SDValue N1) {
9761   SDValue Ops[] = { N1 };
9762   return getNode(Opcode, DL, VTList, Ops);
9763 }
9764 
9765 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
9766                               SDValue N1, SDValue N2) {
9767   SDValue Ops[] = { N1, N2 };
9768   return getNode(Opcode, DL, VTList, Ops);
9769 }
9770 
9771 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
9772                               SDValue N1, SDValue N2, SDValue N3) {
9773   SDValue Ops[] = { N1, N2, N3 };
9774   return getNode(Opcode, DL, VTList, Ops);
9775 }
9776 
9777 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
9778                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
9779   SDValue Ops[] = { N1, N2, N3, N4 };
9780   return getNode(Opcode, DL, VTList, Ops);
9781 }
9782 
9783 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
9784                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
9785                               SDValue N5) {
9786   SDValue Ops[] = { N1, N2, N3, N4, N5 };
9787   return getNode(Opcode, DL, VTList, Ops);
9788 }
9789 
9790 SDVTList SelectionDAG::getVTList(EVT VT) {
9791   return makeVTList(SDNode::getValueTypeList(VT), 1);
9792 }
9793 
9794 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
9795   FoldingSetNodeID ID;
9796   ID.AddInteger(2U);
9797   ID.AddInteger(VT1.getRawBits());
9798   ID.AddInteger(VT2.getRawBits());
9799 
9800   void *IP = nullptr;
9801   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
9802   if (!Result) {
9803     EVT *Array = Allocator.Allocate<EVT>(2);
9804     Array[0] = VT1;
9805     Array[1] = VT2;
9806     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
9807     VTListMap.InsertNode(Result, IP);
9808   }
9809   return Result->getSDVTList();
9810 }
9811 
9812 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
9813   FoldingSetNodeID ID;
9814   ID.AddInteger(3U);
9815   ID.AddInteger(VT1.getRawBits());
9816   ID.AddInteger(VT2.getRawBits());
9817   ID.AddInteger(VT3.getRawBits());
9818 
9819   void *IP = nullptr;
9820   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
9821   if (!Result) {
9822     EVT *Array = Allocator.Allocate<EVT>(3);
9823     Array[0] = VT1;
9824     Array[1] = VT2;
9825     Array[2] = VT3;
9826     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
9827     VTListMap.InsertNode(Result, IP);
9828   }
9829   return Result->getSDVTList();
9830 }
9831 
9832 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
9833   FoldingSetNodeID ID;
9834   ID.AddInteger(4U);
9835   ID.AddInteger(VT1.getRawBits());
9836   ID.AddInteger(VT2.getRawBits());
9837   ID.AddInteger(VT3.getRawBits());
9838   ID.AddInteger(VT4.getRawBits());
9839 
9840   void *IP = nullptr;
9841   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
9842   if (!Result) {
9843     EVT *Array = Allocator.Allocate<EVT>(4);
9844     Array[0] = VT1;
9845     Array[1] = VT2;
9846     Array[2] = VT3;
9847     Array[3] = VT4;
9848     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
9849     VTListMap.InsertNode(Result, IP);
9850   }
9851   return Result->getSDVTList();
9852 }
9853 
9854 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
9855   unsigned NumVTs = VTs.size();
9856   FoldingSetNodeID ID;
9857   ID.AddInteger(NumVTs);
9858   for (unsigned index = 0; index < NumVTs; index++) {
9859     ID.AddInteger(VTs[index].getRawBits());
9860   }
9861 
9862   void *IP = nullptr;
9863   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
9864   if (!Result) {
9865     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
9866     llvm::copy(VTs, Array);
9867     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
9868     VTListMap.InsertNode(Result, IP);
9869   }
9870   return Result->getSDVTList();
9871 }
9872 
9873 
9874 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
9875 /// specified operands.  If the resultant node already exists in the DAG,
9876 /// this does not modify the specified node, instead it returns the node that
9877 /// already exists.  If the resultant node does not exist in the DAG, the
9878 /// input node is returned.  As a degenerate case, if you specify the same
9879 /// input operands as the node already has, the input node is returned.
9880 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
9881   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
9882 
9883   // Check to see if there is no change.
9884   if (Op == N->getOperand(0)) return N;
9885 
9886   // See if the modified node already exists.
9887   void *InsertPos = nullptr;
9888   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
9889     return Existing;
9890 
9891   // Nope it doesn't.  Remove the node from its current place in the maps.
9892   if (InsertPos)
9893     if (!RemoveNodeFromCSEMaps(N))
9894       InsertPos = nullptr;
9895 
9896   // Now we update the operands.
9897   N->OperandList[0].set(Op);
9898 
9899   updateDivergence(N);
9900   // If this gets put into a CSE map, add it.
9901   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
9902   return N;
9903 }
9904 
9905 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
9906   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
9907 
9908   // Check to see if there is no change.
9909   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
9910     return N;   // No operands changed, just return the input node.
9911 
9912   // See if the modified node already exists.
9913   void *InsertPos = nullptr;
9914   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
9915     return Existing;
9916 
9917   // Nope it doesn't.  Remove the node from its current place in the maps.
9918   if (InsertPos)
9919     if (!RemoveNodeFromCSEMaps(N))
9920       InsertPos = nullptr;
9921 
9922   // Now we update the operands.
9923   if (N->OperandList[0] != Op1)
9924     N->OperandList[0].set(Op1);
9925   if (N->OperandList[1] != Op2)
9926     N->OperandList[1].set(Op2);
9927 
9928   updateDivergence(N);
9929   // If this gets put into a CSE map, add it.
9930   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
9931   return N;
9932 }
9933 
9934 SDNode *SelectionDAG::
9935 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
9936   SDValue Ops[] = { Op1, Op2, Op3 };
9937   return UpdateNodeOperands(N, Ops);
9938 }
9939 
9940 SDNode *SelectionDAG::
9941 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
9942                    SDValue Op3, SDValue Op4) {
9943   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
9944   return UpdateNodeOperands(N, Ops);
9945 }
9946 
9947 SDNode *SelectionDAG::
9948 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
9949                    SDValue Op3, SDValue Op4, SDValue Op5) {
9950   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
9951   return UpdateNodeOperands(N, Ops);
9952 }
9953 
9954 SDNode *SelectionDAG::
9955 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
9956   unsigned NumOps = Ops.size();
9957   assert(N->getNumOperands() == NumOps &&
9958          "Update with wrong number of operands");
9959 
9960   // If no operands changed just return the input node.
9961   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
9962     return N;
9963 
9964   // See if the modified node already exists.
9965   void *InsertPos = nullptr;
9966   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
9967     return Existing;
9968 
9969   // Nope it doesn't.  Remove the node from its current place in the maps.
9970   if (InsertPos)
9971     if (!RemoveNodeFromCSEMaps(N))
9972       InsertPos = nullptr;
9973 
9974   // Now we update the operands.
9975   for (unsigned i = 0; i != NumOps; ++i)
9976     if (N->OperandList[i] != Ops[i])
9977       N->OperandList[i].set(Ops[i]);
9978 
9979   updateDivergence(N);
9980   // If this gets put into a CSE map, add it.
9981   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
9982   return N;
9983 }
9984 
9985 /// DropOperands - Release the operands and set this node to have
9986 /// zero operands.
9987 void SDNode::DropOperands() {
9988   // Unlike the code in MorphNodeTo that does this, we don't need to
9989   // watch for dead nodes here.
9990   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
9991     SDUse &Use = *I++;
9992     Use.set(SDValue());
9993   }
9994 }
9995 
9996 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
9997                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
9998   if (NewMemRefs.empty()) {
9999     N->clearMemRefs();
10000     return;
10001   }
10002 
10003   // Check if we can avoid allocating by storing a single reference directly.
10004   if (NewMemRefs.size() == 1) {
10005     N->MemRefs = NewMemRefs[0];
10006     N->NumMemRefs = 1;
10007     return;
10008   }
10009 
10010   MachineMemOperand **MemRefsBuffer =
10011       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
10012   llvm::copy(NewMemRefs, MemRefsBuffer);
10013   N->MemRefs = MemRefsBuffer;
10014   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
10015 }
10016 
10017 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
10018 /// machine opcode.
10019 ///
10020 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
10021                                    EVT VT) {
10022   SDVTList VTs = getVTList(VT);
10023   return SelectNodeTo(N, MachineOpc, VTs, std::nullopt);
10024 }
10025 
10026 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
10027                                    EVT VT, SDValue Op1) {
10028   SDVTList VTs = getVTList(VT);
10029   SDValue Ops[] = { Op1 };
10030   return SelectNodeTo(N, MachineOpc, VTs, Ops);
10031 }
10032 
10033 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
10034                                    EVT VT, SDValue Op1,
10035                                    SDValue Op2) {
10036   SDVTList VTs = getVTList(VT);
10037   SDValue Ops[] = { Op1, Op2 };
10038   return SelectNodeTo(N, MachineOpc, VTs, Ops);
10039 }
10040 
10041 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
10042                                    EVT VT, SDValue Op1,
10043                                    SDValue Op2, SDValue Op3) {
10044   SDVTList VTs = getVTList(VT);
10045   SDValue Ops[] = { Op1, Op2, Op3 };
10046   return SelectNodeTo(N, MachineOpc, VTs, Ops);
10047 }
10048 
10049 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
10050                                    EVT VT, ArrayRef<SDValue> Ops) {
10051   SDVTList VTs = getVTList(VT);
10052   return SelectNodeTo(N, MachineOpc, VTs, Ops);
10053 }
10054 
10055 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
10056                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
10057   SDVTList VTs = getVTList(VT1, VT2);
10058   return SelectNodeTo(N, MachineOpc, VTs, Ops);
10059 }
10060 
10061 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
10062                                    EVT VT1, EVT VT2) {
10063   SDVTList VTs = getVTList(VT1, VT2);
10064   return SelectNodeTo(N, MachineOpc, VTs, std::nullopt);
10065 }
10066 
10067 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
10068                                    EVT VT1, EVT VT2, EVT VT3,
10069                                    ArrayRef<SDValue> Ops) {
10070   SDVTList VTs = getVTList(VT1, VT2, VT3);
10071   return SelectNodeTo(N, MachineOpc, VTs, Ops);
10072 }
10073 
10074 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
10075                                    EVT VT1, EVT VT2,
10076                                    SDValue Op1, SDValue Op2) {
10077   SDVTList VTs = getVTList(VT1, VT2);
10078   SDValue Ops[] = { Op1, Op2 };
10079   return SelectNodeTo(N, MachineOpc, VTs, Ops);
10080 }
10081 
10082 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
10083                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
10084   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
10085   // Reset the NodeID to -1.
10086   New->setNodeId(-1);
10087   if (New != N) {
10088     ReplaceAllUsesWith(N, New);
10089     RemoveDeadNode(N);
10090   }
10091   return New;
10092 }
10093 
10094 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
10095 /// the line number information on the merged node since it is not possible to
10096 /// preserve the information that operation is associated with multiple lines.
10097 /// This will make the debugger working better at -O0, were there is a higher
10098 /// probability having other instructions associated with that line.
10099 ///
10100 /// For IROrder, we keep the smaller of the two
10101 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
10102   DebugLoc NLoc = N->getDebugLoc();
10103   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
10104     N->setDebugLoc(DebugLoc());
10105   }
10106   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
10107   N->setIROrder(Order);
10108   return N;
10109 }
10110 
10111 /// MorphNodeTo - This *mutates* the specified node to have the specified
10112 /// return type, opcode, and operands.
10113 ///
10114 /// Note that MorphNodeTo returns the resultant node.  If there is already a
10115 /// node of the specified opcode and operands, it returns that node instead of
10116 /// the current one.  Note that the SDLoc need not be the same.
10117 ///
10118 /// Using MorphNodeTo is faster than creating a new node and swapping it in
10119 /// with ReplaceAllUsesWith both because it often avoids allocating a new
10120 /// node, and because it doesn't require CSE recalculation for any of
10121 /// the node's users.
10122 ///
10123 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
10124 /// As a consequence it isn't appropriate to use from within the DAG combiner or
10125 /// the legalizer which maintain worklists that would need to be updated when
10126 /// deleting things.
10127 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
10128                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
10129   // If an identical node already exists, use it.
10130   void *IP = nullptr;
10131   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
10132     FoldingSetNodeID ID;
10133     AddNodeIDNode(ID, Opc, VTs, Ops);
10134     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
10135       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
10136   }
10137 
10138   if (!RemoveNodeFromCSEMaps(N))
10139     IP = nullptr;
10140 
10141   // Start the morphing.
10142   N->NodeType = Opc;
10143   N->ValueList = VTs.VTs;
10144   N->NumValues = VTs.NumVTs;
10145 
10146   // Clear the operands list, updating used nodes to remove this from their
10147   // use list.  Keep track of any operands that become dead as a result.
10148   SmallPtrSet<SDNode*, 16> DeadNodeSet;
10149   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
10150     SDUse &Use = *I++;
10151     SDNode *Used = Use.getNode();
10152     Use.set(SDValue());
10153     if (Used->use_empty())
10154       DeadNodeSet.insert(Used);
10155   }
10156 
10157   // For MachineNode, initialize the memory references information.
10158   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
10159     MN->clearMemRefs();
10160 
10161   // Swap for an appropriately sized array from the recycler.
10162   removeOperands(N);
10163   createOperands(N, Ops);
10164 
10165   // Delete any nodes that are still dead after adding the uses for the
10166   // new operands.
10167   if (!DeadNodeSet.empty()) {
10168     SmallVector<SDNode *, 16> DeadNodes;
10169     for (SDNode *N : DeadNodeSet)
10170       if (N->use_empty())
10171         DeadNodes.push_back(N);
10172     RemoveDeadNodes(DeadNodes);
10173   }
10174 
10175   if (IP)
10176     CSEMap.InsertNode(N, IP);   // Memoize the new node.
10177   return N;
10178 }
10179 
10180 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
10181   unsigned OrigOpc = Node->getOpcode();
10182   unsigned NewOpc;
10183   switch (OrigOpc) {
10184   default:
10185     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
10186 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
10187   case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
10188 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
10189   case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
10190 #include "llvm/IR/ConstrainedOps.def"
10191   }
10192 
10193   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
10194 
10195   // We're taking this node out of the chain, so we need to re-link things.
10196   SDValue InputChain = Node->getOperand(0);
10197   SDValue OutputChain = SDValue(Node, 1);
10198   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
10199 
10200   SmallVector<SDValue, 3> Ops;
10201   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
10202     Ops.push_back(Node->getOperand(i));
10203 
10204   SDVTList VTs = getVTList(Node->getValueType(0));
10205   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
10206 
10207   // MorphNodeTo can operate in two ways: if an existing node with the
10208   // specified operands exists, it can just return it.  Otherwise, it
10209   // updates the node in place to have the requested operands.
10210   if (Res == Node) {
10211     // If we updated the node in place, reset the node ID.  To the isel,
10212     // this should be just like a newly allocated machine node.
10213     Res->setNodeId(-1);
10214   } else {
10215     ReplaceAllUsesWith(Node, Res);
10216     RemoveDeadNode(Node);
10217   }
10218 
10219   return Res;
10220 }
10221 
10222 /// getMachineNode - These are used for target selectors to create a new node
10223 /// with specified return type(s), MachineInstr opcode, and operands.
10224 ///
10225 /// Note that getMachineNode returns the resultant node.  If there is already a
10226 /// node of the specified opcode and operands, it returns that node instead of
10227 /// the current one.
10228 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
10229                                             EVT VT) {
10230   SDVTList VTs = getVTList(VT);
10231   return getMachineNode(Opcode, dl, VTs, std::nullopt);
10232 }
10233 
10234 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
10235                                             EVT VT, SDValue Op1) {
10236   SDVTList VTs = getVTList(VT);
10237   SDValue Ops[] = { Op1 };
10238   return getMachineNode(Opcode, dl, VTs, Ops);
10239 }
10240 
10241 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
10242                                             EVT VT, SDValue Op1, SDValue Op2) {
10243   SDVTList VTs = getVTList(VT);
10244   SDValue Ops[] = { Op1, Op2 };
10245   return getMachineNode(Opcode, dl, VTs, Ops);
10246 }
10247 
10248 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
10249                                             EVT VT, SDValue Op1, SDValue Op2,
10250                                             SDValue Op3) {
10251   SDVTList VTs = getVTList(VT);
10252   SDValue Ops[] = { Op1, Op2, Op3 };
10253   return getMachineNode(Opcode, dl, VTs, Ops);
10254 }
10255 
10256 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
10257                                             EVT VT, ArrayRef<SDValue> Ops) {
10258   SDVTList VTs = getVTList(VT);
10259   return getMachineNode(Opcode, dl, VTs, Ops);
10260 }
10261 
10262 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
10263                                             EVT VT1, EVT VT2, SDValue Op1,
10264                                             SDValue Op2) {
10265   SDVTList VTs = getVTList(VT1, VT2);
10266   SDValue Ops[] = { Op1, Op2 };
10267   return getMachineNode(Opcode, dl, VTs, Ops);
10268 }
10269 
10270 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
10271                                             EVT VT1, EVT VT2, SDValue Op1,
10272                                             SDValue Op2, SDValue Op3) {
10273   SDVTList VTs = getVTList(VT1, VT2);
10274   SDValue Ops[] = { Op1, Op2, Op3 };
10275   return getMachineNode(Opcode, dl, VTs, Ops);
10276 }
10277 
10278 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
10279                                             EVT VT1, EVT VT2,
10280                                             ArrayRef<SDValue> Ops) {
10281   SDVTList VTs = getVTList(VT1, VT2);
10282   return getMachineNode(Opcode, dl, VTs, Ops);
10283 }
10284 
10285 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
10286                                             EVT VT1, EVT VT2, EVT VT3,
10287                                             SDValue Op1, SDValue Op2) {
10288   SDVTList VTs = getVTList(VT1, VT2, VT3);
10289   SDValue Ops[] = { Op1, Op2 };
10290   return getMachineNode(Opcode, dl, VTs, Ops);
10291 }
10292 
10293 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
10294                                             EVT VT1, EVT VT2, EVT VT3,
10295                                             SDValue Op1, SDValue Op2,
10296                                             SDValue Op3) {
10297   SDVTList VTs = getVTList(VT1, VT2, VT3);
10298   SDValue Ops[] = { Op1, Op2, Op3 };
10299   return getMachineNode(Opcode, dl, VTs, Ops);
10300 }
10301 
10302 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
10303                                             EVT VT1, EVT VT2, EVT VT3,
10304                                             ArrayRef<SDValue> Ops) {
10305   SDVTList VTs = getVTList(VT1, VT2, VT3);
10306   return getMachineNode(Opcode, dl, VTs, Ops);
10307 }
10308 
10309 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
10310                                             ArrayRef<EVT> ResultTys,
10311                                             ArrayRef<SDValue> Ops) {
10312   SDVTList VTs = getVTList(ResultTys);
10313   return getMachineNode(Opcode, dl, VTs, Ops);
10314 }
10315 
10316 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
10317                                             SDVTList VTs,
10318                                             ArrayRef<SDValue> Ops) {
10319   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
10320   MachineSDNode *N;
10321   void *IP = nullptr;
10322 
10323   if (DoCSE) {
10324     FoldingSetNodeID ID;
10325     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
10326     IP = nullptr;
10327     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
10328       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
10329     }
10330   }
10331 
10332   // Allocate a new MachineSDNode.
10333   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
10334   createOperands(N, Ops);
10335 
10336   if (DoCSE)
10337     CSEMap.InsertNode(N, IP);
10338 
10339   InsertNode(N);
10340   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
10341   return N;
10342 }
10343 
10344 /// getTargetExtractSubreg - A convenience function for creating
10345 /// TargetOpcode::EXTRACT_SUBREG nodes.
10346 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
10347                                              SDValue Operand) {
10348   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
10349   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
10350                                   VT, Operand, SRIdxVal);
10351   return SDValue(Subreg, 0);
10352 }
10353 
10354 /// getTargetInsertSubreg - A convenience function for creating
10355 /// TargetOpcode::INSERT_SUBREG nodes.
10356 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
10357                                             SDValue Operand, SDValue Subreg) {
10358   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
10359   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
10360                                   VT, Operand, Subreg, SRIdxVal);
10361   return SDValue(Result, 0);
10362 }
10363 
10364 /// getNodeIfExists - Get the specified node if it's already available, or
10365 /// else return NULL.
10366 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
10367                                       ArrayRef<SDValue> Ops) {
10368   SDNodeFlags Flags;
10369   if (Inserter)
10370     Flags = Inserter->getFlags();
10371   return getNodeIfExists(Opcode, VTList, Ops, Flags);
10372 }
10373 
10374 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
10375                                       ArrayRef<SDValue> Ops,
10376                                       const SDNodeFlags Flags) {
10377   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
10378     FoldingSetNodeID ID;
10379     AddNodeIDNode(ID, Opcode, VTList, Ops);
10380     void *IP = nullptr;
10381     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
10382       E->intersectFlagsWith(Flags);
10383       return E;
10384     }
10385   }
10386   return nullptr;
10387 }
10388 
10389 /// doesNodeExist - Check if a node exists without modifying its flags.
10390 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList,
10391                                  ArrayRef<SDValue> Ops) {
10392   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
10393     FoldingSetNodeID ID;
10394     AddNodeIDNode(ID, Opcode, VTList, Ops);
10395     void *IP = nullptr;
10396     if (FindNodeOrInsertPos(ID, SDLoc(), IP))
10397       return true;
10398   }
10399   return false;
10400 }
10401 
10402 /// getDbgValue - Creates a SDDbgValue node.
10403 ///
10404 /// SDNode
10405 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
10406                                       SDNode *N, unsigned R, bool IsIndirect,
10407                                       const DebugLoc &DL, unsigned O) {
10408   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
10409          "Expected inlined-at fields to agree");
10410   return new (DbgInfo->getAlloc())
10411       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R),
10412                  {}, IsIndirect, DL, O,
10413                  /*IsVariadic=*/false);
10414 }
10415 
10416 /// Constant
10417 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
10418                                               DIExpression *Expr,
10419                                               const Value *C,
10420                                               const DebugLoc &DL, unsigned O) {
10421   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
10422          "Expected inlined-at fields to agree");
10423   return new (DbgInfo->getAlloc())
10424       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {},
10425                  /*IsIndirect=*/false, DL, O,
10426                  /*IsVariadic=*/false);
10427 }
10428 
10429 /// FrameIndex
10430 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
10431                                                 DIExpression *Expr, unsigned FI,
10432                                                 bool IsIndirect,
10433                                                 const DebugLoc &DL,
10434                                                 unsigned O) {
10435   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
10436          "Expected inlined-at fields to agree");
10437   return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O);
10438 }
10439 
10440 /// FrameIndex with dependencies
10441 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
10442                                                 DIExpression *Expr, unsigned FI,
10443                                                 ArrayRef<SDNode *> Dependencies,
10444                                                 bool IsIndirect,
10445                                                 const DebugLoc &DL,
10446                                                 unsigned O) {
10447   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
10448          "Expected inlined-at fields to agree");
10449   return new (DbgInfo->getAlloc())
10450       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI),
10451                  Dependencies, IsIndirect, DL, O,
10452                  /*IsVariadic=*/false);
10453 }
10454 
10455 /// VReg
10456 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr,
10457                                           unsigned VReg, bool IsIndirect,
10458                                           const DebugLoc &DL, unsigned O) {
10459   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
10460          "Expected inlined-at fields to agree");
10461   return new (DbgInfo->getAlloc())
10462       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg),
10463                  {}, IsIndirect, DL, O,
10464                  /*IsVariadic=*/false);
10465 }
10466 
10467 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr,
10468                                           ArrayRef<SDDbgOperand> Locs,
10469                                           ArrayRef<SDNode *> Dependencies,
10470                                           bool IsIndirect, const DebugLoc &DL,
10471                                           unsigned O, bool IsVariadic) {
10472   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
10473          "Expected inlined-at fields to agree");
10474   return new (DbgInfo->getAlloc())
10475       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect,
10476                  DL, O, IsVariadic);
10477 }
10478 
10479 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
10480                                      unsigned OffsetInBits, unsigned SizeInBits,
10481                                      bool InvalidateDbg) {
10482   SDNode *FromNode = From.getNode();
10483   SDNode *ToNode = To.getNode();
10484   assert(FromNode && ToNode && "Can't modify dbg values");
10485 
10486   // PR35338
10487   // TODO: assert(From != To && "Redundant dbg value transfer");
10488   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
10489   if (From == To || FromNode == ToNode)
10490     return;
10491 
10492   if (!FromNode->getHasDebugValue())
10493     return;
10494 
10495   SDDbgOperand FromLocOp =
10496       SDDbgOperand::fromNode(From.getNode(), From.getResNo());
10497   SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo());
10498 
10499   SmallVector<SDDbgValue *, 2> ClonedDVs;
10500   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
10501     if (Dbg->isInvalidated())
10502       continue;
10503 
10504     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
10505 
10506     // Create a new location ops vector that is equal to the old vector, but
10507     // with each instance of FromLocOp replaced with ToLocOp.
10508     bool Changed = false;
10509     auto NewLocOps = Dbg->copyLocationOps();
10510     std::replace_if(
10511         NewLocOps.begin(), NewLocOps.end(),
10512         [&Changed, FromLocOp](const SDDbgOperand &Op) {
10513           bool Match = Op == FromLocOp;
10514           Changed |= Match;
10515           return Match;
10516         },
10517         ToLocOp);
10518     // Ignore this SDDbgValue if we didn't find a matching location.
10519     if (!Changed)
10520       continue;
10521 
10522     DIVariable *Var = Dbg->getVariable();
10523     auto *Expr = Dbg->getExpression();
10524     // If a fragment is requested, update the expression.
10525     if (SizeInBits) {
10526       // When splitting a larger (e.g., sign-extended) value whose
10527       // lower bits are described with an SDDbgValue, do not attempt
10528       // to transfer the SDDbgValue to the upper bits.
10529       if (auto FI = Expr->getFragmentInfo())
10530         if (OffsetInBits + SizeInBits > FI->SizeInBits)
10531           continue;
10532       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
10533                                                              SizeInBits);
10534       if (!Fragment)
10535         continue;
10536       Expr = *Fragment;
10537     }
10538 
10539     auto AdditionalDependencies = Dbg->getAdditionalDependencies();
10540     // Clone the SDDbgValue and move it to To.
10541     SDDbgValue *Clone = getDbgValueList(
10542         Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(),
10543         Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()),
10544         Dbg->isVariadic());
10545     ClonedDVs.push_back(Clone);
10546 
10547     if (InvalidateDbg) {
10548       // Invalidate value and indicate the SDDbgValue should not be emitted.
10549       Dbg->setIsInvalidated();
10550       Dbg->setIsEmitted();
10551     }
10552   }
10553 
10554   for (SDDbgValue *Dbg : ClonedDVs) {
10555     assert(is_contained(Dbg->getSDNodes(), ToNode) &&
10556            "Transferred DbgValues should depend on the new SDNode");
10557     AddDbgValue(Dbg, false);
10558   }
10559 }
10560 
10561 void SelectionDAG::salvageDebugInfo(SDNode &N) {
10562   if (!N.getHasDebugValue())
10563     return;
10564 
10565   SmallVector<SDDbgValue *, 2> ClonedDVs;
10566   for (auto *DV : GetDbgValues(&N)) {
10567     if (DV->isInvalidated())
10568       continue;
10569     switch (N.getOpcode()) {
10570     default:
10571       break;
10572     case ISD::ADD:
10573       SDValue N0 = N.getOperand(0);
10574       SDValue N1 = N.getOperand(1);
10575       if (!isa<ConstantSDNode>(N0) && isa<ConstantSDNode>(N1)) {
10576         uint64_t Offset = N.getConstantOperandVal(1);
10577 
10578         // Rewrite an ADD constant node into a DIExpression. Since we are
10579         // performing arithmetic to compute the variable's *value* in the
10580         // DIExpression, we need to mark the expression with a
10581         // DW_OP_stack_value.
10582         auto *DIExpr = DV->getExpression();
10583         auto NewLocOps = DV->copyLocationOps();
10584         bool Changed = false;
10585         for (size_t i = 0; i < NewLocOps.size(); ++i) {
10586           // We're not given a ResNo to compare against because the whole
10587           // node is going away. We know that any ISD::ADD only has one
10588           // result, so we can assume any node match is using the result.
10589           if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE ||
10590               NewLocOps[i].getSDNode() != &N)
10591             continue;
10592           NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo());
10593           SmallVector<uint64_t, 3> ExprOps;
10594           DIExpression::appendOffset(ExprOps, Offset);
10595           DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true);
10596           Changed = true;
10597         }
10598         (void)Changed;
10599         assert(Changed && "Salvage target doesn't use N");
10600 
10601         auto AdditionalDependencies = DV->getAdditionalDependencies();
10602         SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr,
10603                                             NewLocOps, AdditionalDependencies,
10604                                             DV->isIndirect(), DV->getDebugLoc(),
10605                                             DV->getOrder(), DV->isVariadic());
10606         ClonedDVs.push_back(Clone);
10607         DV->setIsInvalidated();
10608         DV->setIsEmitted();
10609         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
10610                    N0.getNode()->dumprFull(this);
10611                    dbgs() << " into " << *DIExpr << '\n');
10612       }
10613     }
10614   }
10615 
10616   for (SDDbgValue *Dbg : ClonedDVs) {
10617     assert(!Dbg->getSDNodes().empty() &&
10618            "Salvaged DbgValue should depend on a new SDNode");
10619     AddDbgValue(Dbg, false);
10620   }
10621 }
10622 
10623 /// Creates a SDDbgLabel node.
10624 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
10625                                       const DebugLoc &DL, unsigned O) {
10626   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
10627          "Expected inlined-at fields to agree");
10628   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
10629 }
10630 
10631 namespace {
10632 
10633 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
10634 /// pointed to by a use iterator is deleted, increment the use iterator
10635 /// so that it doesn't dangle.
10636 ///
10637 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
10638   SDNode::use_iterator &UI;
10639   SDNode::use_iterator &UE;
10640 
10641   void NodeDeleted(SDNode *N, SDNode *E) override {
10642     // Increment the iterator as needed.
10643     while (UI != UE && N == *UI)
10644       ++UI;
10645   }
10646 
10647 public:
10648   RAUWUpdateListener(SelectionDAG &d,
10649                      SDNode::use_iterator &ui,
10650                      SDNode::use_iterator &ue)
10651     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
10652 };
10653 
10654 } // end anonymous namespace
10655 
10656 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
10657 /// This can cause recursive merging of nodes in the DAG.
10658 ///
10659 /// This version assumes From has a single result value.
10660 ///
10661 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
10662   SDNode *From = FromN.getNode();
10663   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
10664          "Cannot replace with this method!");
10665   assert(From != To.getNode() && "Cannot replace uses of with self");
10666 
10667   // Preserve Debug Values
10668   transferDbgValues(FromN, To);
10669   // Preserve extra info.
10670   copyExtraInfo(From, To.getNode());
10671 
10672   // Iterate over all the existing uses of From. New uses will be added
10673   // to the beginning of the use list, which we avoid visiting.
10674   // This specifically avoids visiting uses of From that arise while the
10675   // replacement is happening, because any such uses would be the result
10676   // of CSE: If an existing node looks like From after one of its operands
10677   // is replaced by To, we don't want to replace of all its users with To
10678   // too. See PR3018 for more info.
10679   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
10680   RAUWUpdateListener Listener(*this, UI, UE);
10681   while (UI != UE) {
10682     SDNode *User = *UI;
10683 
10684     // This node is about to morph, remove its old self from the CSE maps.
10685     RemoveNodeFromCSEMaps(User);
10686 
10687     // A user can appear in a use list multiple times, and when this
10688     // happens the uses are usually next to each other in the list.
10689     // To help reduce the number of CSE recomputations, process all
10690     // the uses of this user that we can find this way.
10691     do {
10692       SDUse &Use = UI.getUse();
10693       ++UI;
10694       Use.set(To);
10695       if (To->isDivergent() != From->isDivergent())
10696         updateDivergence(User);
10697     } while (UI != UE && *UI == User);
10698     // Now that we have modified User, add it back to the CSE maps.  If it
10699     // already exists there, recursively merge the results together.
10700     AddModifiedNodeToCSEMaps(User);
10701   }
10702 
10703   // If we just RAUW'd the root, take note.
10704   if (FromN == getRoot())
10705     setRoot(To);
10706 }
10707 
10708 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
10709 /// This can cause recursive merging of nodes in the DAG.
10710 ///
10711 /// This version assumes that for each value of From, there is a
10712 /// corresponding value in To in the same position with the same type.
10713 ///
10714 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
10715 #ifndef NDEBUG
10716   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
10717     assert((!From->hasAnyUseOfValue(i) ||
10718             From->getValueType(i) == To->getValueType(i)) &&
10719            "Cannot use this version of ReplaceAllUsesWith!");
10720 #endif
10721 
10722   // Handle the trivial case.
10723   if (From == To)
10724     return;
10725 
10726   // Preserve Debug Info. Only do this if there's a use.
10727   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
10728     if (From->hasAnyUseOfValue(i)) {
10729       assert((i < To->getNumValues()) && "Invalid To location");
10730       transferDbgValues(SDValue(From, i), SDValue(To, i));
10731     }
10732   // Preserve extra info.
10733   copyExtraInfo(From, To);
10734 
10735   // Iterate over just the existing users of From. See the comments in
10736   // the ReplaceAllUsesWith above.
10737   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
10738   RAUWUpdateListener Listener(*this, UI, UE);
10739   while (UI != UE) {
10740     SDNode *User = *UI;
10741 
10742     // This node is about to morph, remove its old self from the CSE maps.
10743     RemoveNodeFromCSEMaps(User);
10744 
10745     // A user can appear in a use list multiple times, and when this
10746     // happens the uses are usually next to each other in the list.
10747     // To help reduce the number of CSE recomputations, process all
10748     // the uses of this user that we can find this way.
10749     do {
10750       SDUse &Use = UI.getUse();
10751       ++UI;
10752       Use.setNode(To);
10753       if (To->isDivergent() != From->isDivergent())
10754         updateDivergence(User);
10755     } while (UI != UE && *UI == User);
10756 
10757     // Now that we have modified User, add it back to the CSE maps.  If it
10758     // already exists there, recursively merge the results together.
10759     AddModifiedNodeToCSEMaps(User);
10760   }
10761 
10762   // If we just RAUW'd the root, take note.
10763   if (From == getRoot().getNode())
10764     setRoot(SDValue(To, getRoot().getResNo()));
10765 }
10766 
10767 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
10768 /// This can cause recursive merging of nodes in the DAG.
10769 ///
10770 /// This version can replace From with any result values.  To must match the
10771 /// number and types of values returned by From.
10772 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
10773   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
10774     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
10775 
10776   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) {
10777     // Preserve Debug Info.
10778     transferDbgValues(SDValue(From, i), To[i]);
10779     // Preserve extra info.
10780     copyExtraInfo(From, To[i].getNode());
10781   }
10782 
10783   // Iterate over just the existing users of From. See the comments in
10784   // the ReplaceAllUsesWith above.
10785   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
10786   RAUWUpdateListener Listener(*this, UI, UE);
10787   while (UI != UE) {
10788     SDNode *User = *UI;
10789 
10790     // This node is about to morph, remove its old self from the CSE maps.
10791     RemoveNodeFromCSEMaps(User);
10792 
10793     // A user can appear in a use list multiple times, and when this happens the
10794     // uses are usually next to each other in the list.  To help reduce the
10795     // number of CSE and divergence recomputations, process all the uses of this
10796     // user that we can find this way.
10797     bool To_IsDivergent = false;
10798     do {
10799       SDUse &Use = UI.getUse();
10800       const SDValue &ToOp = To[Use.getResNo()];
10801       ++UI;
10802       Use.set(ToOp);
10803       To_IsDivergent |= ToOp->isDivergent();
10804     } while (UI != UE && *UI == User);
10805 
10806     if (To_IsDivergent != From->isDivergent())
10807       updateDivergence(User);
10808 
10809     // Now that we have modified User, add it back to the CSE maps.  If it
10810     // already exists there, recursively merge the results together.
10811     AddModifiedNodeToCSEMaps(User);
10812   }
10813 
10814   // If we just RAUW'd the root, take note.
10815   if (From == getRoot().getNode())
10816     setRoot(SDValue(To[getRoot().getResNo()]));
10817 }
10818 
10819 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
10820 /// uses of other values produced by From.getNode() alone.  The Deleted
10821 /// vector is handled the same way as for ReplaceAllUsesWith.
10822 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
10823   // Handle the really simple, really trivial case efficiently.
10824   if (From == To) return;
10825 
10826   // Handle the simple, trivial, case efficiently.
10827   if (From.getNode()->getNumValues() == 1) {
10828     ReplaceAllUsesWith(From, To);
10829     return;
10830   }
10831 
10832   // Preserve Debug Info.
10833   transferDbgValues(From, To);
10834   copyExtraInfo(From.getNode(), To.getNode());
10835 
10836   // Iterate over just the existing users of From. See the comments in
10837   // the ReplaceAllUsesWith above.
10838   SDNode::use_iterator UI = From.getNode()->use_begin(),
10839                        UE = From.getNode()->use_end();
10840   RAUWUpdateListener Listener(*this, UI, UE);
10841   while (UI != UE) {
10842     SDNode *User = *UI;
10843     bool UserRemovedFromCSEMaps = false;
10844 
10845     // A user can appear in a use list multiple times, and when this
10846     // happens the uses are usually next to each other in the list.
10847     // To help reduce the number of CSE recomputations, process all
10848     // the uses of this user that we can find this way.
10849     do {
10850       SDUse &Use = UI.getUse();
10851 
10852       // Skip uses of different values from the same node.
10853       if (Use.getResNo() != From.getResNo()) {
10854         ++UI;
10855         continue;
10856       }
10857 
10858       // If this node hasn't been modified yet, it's still in the CSE maps,
10859       // so remove its old self from the CSE maps.
10860       if (!UserRemovedFromCSEMaps) {
10861         RemoveNodeFromCSEMaps(User);
10862         UserRemovedFromCSEMaps = true;
10863       }
10864 
10865       ++UI;
10866       Use.set(To);
10867       if (To->isDivergent() != From->isDivergent())
10868         updateDivergence(User);
10869     } while (UI != UE && *UI == User);
10870     // We are iterating over all uses of the From node, so if a use
10871     // doesn't use the specific value, no changes are made.
10872     if (!UserRemovedFromCSEMaps)
10873       continue;
10874 
10875     // Now that we have modified User, add it back to the CSE maps.  If it
10876     // already exists there, recursively merge the results together.
10877     AddModifiedNodeToCSEMaps(User);
10878   }
10879 
10880   // If we just RAUW'd the root, take note.
10881   if (From == getRoot())
10882     setRoot(To);
10883 }
10884 
10885 namespace {
10886 
10887 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
10888 /// to record information about a use.
10889 struct UseMemo {
10890   SDNode *User;
10891   unsigned Index;
10892   SDUse *Use;
10893 };
10894 
10895 /// operator< - Sort Memos by User.
10896 bool operator<(const UseMemo &L, const UseMemo &R) {
10897   return (intptr_t)L.User < (intptr_t)R.User;
10898 }
10899 
10900 /// RAUOVWUpdateListener - Helper for ReplaceAllUsesOfValuesWith - When the node
10901 /// pointed to by a UseMemo is deleted, set the User to nullptr to indicate that
10902 /// the node already has been taken care of recursively.
10903 class RAUOVWUpdateListener : public SelectionDAG::DAGUpdateListener {
10904   SmallVector<UseMemo, 4> &Uses;
10905 
10906   void NodeDeleted(SDNode *N, SDNode *E) override {
10907     for (UseMemo &Memo : Uses)
10908       if (Memo.User == N)
10909         Memo.User = nullptr;
10910   }
10911 
10912 public:
10913   RAUOVWUpdateListener(SelectionDAG &d, SmallVector<UseMemo, 4> &uses)
10914       : SelectionDAG::DAGUpdateListener(d), Uses(uses) {}
10915 };
10916 
10917 } // end anonymous namespace
10918 
10919 bool SelectionDAG::calculateDivergence(SDNode *N) {
10920   if (TLI->isSDNodeAlwaysUniform(N)) {
10921     assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, UA) &&
10922            "Conflicting divergence information!");
10923     return false;
10924   }
10925   if (TLI->isSDNodeSourceOfDivergence(N, FLI, UA))
10926     return true;
10927   for (const auto &Op : N->ops()) {
10928     if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent())
10929       return true;
10930   }
10931   return false;
10932 }
10933 
10934 void SelectionDAG::updateDivergence(SDNode *N) {
10935   SmallVector<SDNode *, 16> Worklist(1, N);
10936   do {
10937     N = Worklist.pop_back_val();
10938     bool IsDivergent = calculateDivergence(N);
10939     if (N->SDNodeBits.IsDivergent != IsDivergent) {
10940       N->SDNodeBits.IsDivergent = IsDivergent;
10941       llvm::append_range(Worklist, N->uses());
10942     }
10943   } while (!Worklist.empty());
10944 }
10945 
10946 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
10947   DenseMap<SDNode *, unsigned> Degree;
10948   Order.reserve(AllNodes.size());
10949   for (auto &N : allnodes()) {
10950     unsigned NOps = N.getNumOperands();
10951     Degree[&N] = NOps;
10952     if (0 == NOps)
10953       Order.push_back(&N);
10954   }
10955   for (size_t I = 0; I != Order.size(); ++I) {
10956     SDNode *N = Order[I];
10957     for (auto *U : N->uses()) {
10958       unsigned &UnsortedOps = Degree[U];
10959       if (0 == --UnsortedOps)
10960         Order.push_back(U);
10961     }
10962   }
10963 }
10964 
10965 #ifndef NDEBUG
10966 void SelectionDAG::VerifyDAGDivergence() {
10967   std::vector<SDNode *> TopoOrder;
10968   CreateTopologicalOrder(TopoOrder);
10969   for (auto *N : TopoOrder) {
10970     assert(calculateDivergence(N) == N->isDivergent() &&
10971            "Divergence bit inconsistency detected");
10972   }
10973 }
10974 #endif
10975 
10976 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
10977 /// uses of other values produced by From.getNode() alone.  The same value
10978 /// may appear in both the From and To list.  The Deleted vector is
10979 /// handled the same way as for ReplaceAllUsesWith.
10980 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
10981                                               const SDValue *To,
10982                                               unsigned Num){
10983   // Handle the simple, trivial case efficiently.
10984   if (Num == 1)
10985     return ReplaceAllUsesOfValueWith(*From, *To);
10986 
10987   transferDbgValues(*From, *To);
10988   copyExtraInfo(From->getNode(), To->getNode());
10989 
10990   // Read up all the uses and make records of them. This helps
10991   // processing new uses that are introduced during the
10992   // replacement process.
10993   SmallVector<UseMemo, 4> Uses;
10994   for (unsigned i = 0; i != Num; ++i) {
10995     unsigned FromResNo = From[i].getResNo();
10996     SDNode *FromNode = From[i].getNode();
10997     for (SDNode::use_iterator UI = FromNode->use_begin(),
10998          E = FromNode->use_end(); UI != E; ++UI) {
10999       SDUse &Use = UI.getUse();
11000       if (Use.getResNo() == FromResNo) {
11001         UseMemo Memo = { *UI, i, &Use };
11002         Uses.push_back(Memo);
11003       }
11004     }
11005   }
11006 
11007   // Sort the uses, so that all the uses from a given User are together.
11008   llvm::sort(Uses);
11009   RAUOVWUpdateListener Listener(*this, Uses);
11010 
11011   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
11012        UseIndex != UseIndexEnd; ) {
11013     // We know that this user uses some value of From.  If it is the right
11014     // value, update it.
11015     SDNode *User = Uses[UseIndex].User;
11016     // If the node has been deleted by recursive CSE updates when updating
11017     // another node, then just skip this entry.
11018     if (User == nullptr) {
11019       ++UseIndex;
11020       continue;
11021     }
11022 
11023     // This node is about to morph, remove its old self from the CSE maps.
11024     RemoveNodeFromCSEMaps(User);
11025 
11026     // The Uses array is sorted, so all the uses for a given User
11027     // are next to each other in the list.
11028     // To help reduce the number of CSE recomputations, process all
11029     // the uses of this user that we can find this way.
11030     do {
11031       unsigned i = Uses[UseIndex].Index;
11032       SDUse &Use = *Uses[UseIndex].Use;
11033       ++UseIndex;
11034 
11035       Use.set(To[i]);
11036     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
11037 
11038     // Now that we have modified User, add it back to the CSE maps.  If it
11039     // already exists there, recursively merge the results together.
11040     AddModifiedNodeToCSEMaps(User);
11041   }
11042 }
11043 
11044 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
11045 /// based on their topological order. It returns the maximum id and a vector
11046 /// of the SDNodes* in assigned order by reference.
11047 unsigned SelectionDAG::AssignTopologicalOrder() {
11048   unsigned DAGSize = 0;
11049 
11050   // SortedPos tracks the progress of the algorithm. Nodes before it are
11051   // sorted, nodes after it are unsorted. When the algorithm completes
11052   // it is at the end of the list.
11053   allnodes_iterator SortedPos = allnodes_begin();
11054 
11055   // Visit all the nodes. Move nodes with no operands to the front of
11056   // the list immediately. Annotate nodes that do have operands with their
11057   // operand count. Before we do this, the Node Id fields of the nodes
11058   // may contain arbitrary values. After, the Node Id fields for nodes
11059   // before SortedPos will contain the topological sort index, and the
11060   // Node Id fields for nodes At SortedPos and after will contain the
11061   // count of outstanding operands.
11062   for (SDNode &N : llvm::make_early_inc_range(allnodes())) {
11063     checkForCycles(&N, this);
11064     unsigned Degree = N.getNumOperands();
11065     if (Degree == 0) {
11066       // A node with no uses, add it to the result array immediately.
11067       N.setNodeId(DAGSize++);
11068       allnodes_iterator Q(&N);
11069       if (Q != SortedPos)
11070         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
11071       assert(SortedPos != AllNodes.end() && "Overran node list");
11072       ++SortedPos;
11073     } else {
11074       // Temporarily use the Node Id as scratch space for the degree count.
11075       N.setNodeId(Degree);
11076     }
11077   }
11078 
11079   // Visit all the nodes. As we iterate, move nodes into sorted order,
11080   // such that by the time the end is reached all nodes will be sorted.
11081   for (SDNode &Node : allnodes()) {
11082     SDNode *N = &Node;
11083     checkForCycles(N, this);
11084     // N is in sorted position, so all its uses have one less operand
11085     // that needs to be sorted.
11086     for (SDNode *P : N->uses()) {
11087       unsigned Degree = P->getNodeId();
11088       assert(Degree != 0 && "Invalid node degree");
11089       --Degree;
11090       if (Degree == 0) {
11091         // All of P's operands are sorted, so P may sorted now.
11092         P->setNodeId(DAGSize++);
11093         if (P->getIterator() != SortedPos)
11094           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
11095         assert(SortedPos != AllNodes.end() && "Overran node list");
11096         ++SortedPos;
11097       } else {
11098         // Update P's outstanding operand count.
11099         P->setNodeId(Degree);
11100       }
11101     }
11102     if (Node.getIterator() == SortedPos) {
11103 #ifndef NDEBUG
11104       allnodes_iterator I(N);
11105       SDNode *S = &*++I;
11106       dbgs() << "Overran sorted position:\n";
11107       S->dumprFull(this); dbgs() << "\n";
11108       dbgs() << "Checking if this is due to cycles\n";
11109       checkForCycles(this, true);
11110 #endif
11111       llvm_unreachable(nullptr);
11112     }
11113   }
11114 
11115   assert(SortedPos == AllNodes.end() &&
11116          "Topological sort incomplete!");
11117   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
11118          "First node in topological sort is not the entry token!");
11119   assert(AllNodes.front().getNodeId() == 0 &&
11120          "First node in topological sort has non-zero id!");
11121   assert(AllNodes.front().getNumOperands() == 0 &&
11122          "First node in topological sort has operands!");
11123   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
11124          "Last node in topologic sort has unexpected id!");
11125   assert(AllNodes.back().use_empty() &&
11126          "Last node in topologic sort has users!");
11127   assert(DAGSize == allnodes_size() && "Node count mismatch!");
11128   return DAGSize;
11129 }
11130 
11131 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
11132 /// value is produced by SD.
11133 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) {
11134   for (SDNode *SD : DB->getSDNodes()) {
11135     if (!SD)
11136       continue;
11137     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
11138     SD->setHasDebugValue(true);
11139   }
11140   DbgInfo->add(DB, isParameter);
11141 }
11142 
11143 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); }
11144 
11145 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain,
11146                                                    SDValue NewMemOpChain) {
11147   assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node");
11148   assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT");
11149   // The new memory operation must have the same position as the old load in
11150   // terms of memory dependency. Create a TokenFactor for the old load and new
11151   // memory operation and update uses of the old load's output chain to use that
11152   // TokenFactor.
11153   if (OldChain == NewMemOpChain || OldChain.use_empty())
11154     return NewMemOpChain;
11155 
11156   SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other,
11157                                 OldChain, NewMemOpChain);
11158   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
11159   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain);
11160   return TokenFactor;
11161 }
11162 
11163 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
11164                                                    SDValue NewMemOp) {
11165   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
11166   SDValue OldChain = SDValue(OldLoad, 1);
11167   SDValue NewMemOpChain = NewMemOp.getValue(1);
11168   return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain);
11169 }
11170 
11171 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
11172                                                      Function **OutFunction) {
11173   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
11174 
11175   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
11176   auto *Module = MF->getFunction().getParent();
11177   auto *Function = Module->getFunction(Symbol);
11178 
11179   if (OutFunction != nullptr)
11180       *OutFunction = Function;
11181 
11182   if (Function != nullptr) {
11183     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
11184     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
11185   }
11186 
11187   std::string ErrorStr;
11188   raw_string_ostream ErrorFormatter(ErrorStr);
11189   ErrorFormatter << "Undefined external symbol ";
11190   ErrorFormatter << '"' << Symbol << '"';
11191   report_fatal_error(Twine(ErrorFormatter.str()));
11192 }
11193 
11194 //===----------------------------------------------------------------------===//
11195 //                              SDNode Class
11196 //===----------------------------------------------------------------------===//
11197 
11198 bool llvm::isNullConstant(SDValue V) {
11199   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
11200   return Const != nullptr && Const->isZero();
11201 }
11202 
11203 bool llvm::isNullFPConstant(SDValue V) {
11204   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
11205   return Const != nullptr && Const->isZero() && !Const->isNegative();
11206 }
11207 
11208 bool llvm::isAllOnesConstant(SDValue V) {
11209   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
11210   return Const != nullptr && Const->isAllOnes();
11211 }
11212 
11213 bool llvm::isOneConstant(SDValue V) {
11214   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
11215   return Const != nullptr && Const->isOne();
11216 }
11217 
11218 bool llvm::isMinSignedConstant(SDValue V) {
11219   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
11220   return Const != nullptr && Const->isMinSignedValue();
11221 }
11222 
11223 bool llvm::isNeutralConstant(unsigned Opcode, SDNodeFlags Flags, SDValue V,
11224                              unsigned OperandNo) {
11225   // NOTE: The cases should match with IR's ConstantExpr::getBinOpIdentity().
11226   // TODO: Target-specific opcodes could be added.
11227   if (auto *Const = isConstOrConstSplat(V)) {
11228     switch (Opcode) {
11229     case ISD::ADD:
11230     case ISD::OR:
11231     case ISD::XOR:
11232     case ISD::UMAX:
11233       return Const->isZero();
11234     case ISD::MUL:
11235       return Const->isOne();
11236     case ISD::AND:
11237     case ISD::UMIN:
11238       return Const->isAllOnes();
11239     case ISD::SMAX:
11240       return Const->isMinSignedValue();
11241     case ISD::SMIN:
11242       return Const->isMaxSignedValue();
11243     case ISD::SUB:
11244     case ISD::SHL:
11245     case ISD::SRA:
11246     case ISD::SRL:
11247       return OperandNo == 1 && Const->isZero();
11248     case ISD::UDIV:
11249     case ISD::SDIV:
11250       return OperandNo == 1 && Const->isOne();
11251     }
11252   } else if (auto *ConstFP = isConstOrConstSplatFP(V)) {
11253     switch (Opcode) {
11254     case ISD::FADD:
11255       return ConstFP->isZero() &&
11256              (Flags.hasNoSignedZeros() || ConstFP->isNegative());
11257     case ISD::FSUB:
11258       return OperandNo == 1 && ConstFP->isZero() &&
11259              (Flags.hasNoSignedZeros() || !ConstFP->isNegative());
11260     case ISD::FMUL:
11261       return ConstFP->isExactlyValue(1.0);
11262     case ISD::FDIV:
11263       return OperandNo == 1 && ConstFP->isExactlyValue(1.0);
11264     case ISD::FMINNUM:
11265     case ISD::FMAXNUM: {
11266       // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
11267       EVT VT = V.getValueType();
11268       const fltSemantics &Semantics = SelectionDAG::EVTToAPFloatSemantics(VT);
11269       APFloat NeutralAF = !Flags.hasNoNaNs()
11270                               ? APFloat::getQNaN(Semantics)
11271                               : !Flags.hasNoInfs()
11272                                     ? APFloat::getInf(Semantics)
11273                                     : APFloat::getLargest(Semantics);
11274       if (Opcode == ISD::FMAXNUM)
11275         NeutralAF.changeSign();
11276 
11277       return ConstFP->isExactlyValue(NeutralAF);
11278     }
11279     }
11280   }
11281   return false;
11282 }
11283 
11284 SDValue llvm::peekThroughBitcasts(SDValue V) {
11285   while (V.getOpcode() == ISD::BITCAST)
11286     V = V.getOperand(0);
11287   return V;
11288 }
11289 
11290 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
11291   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
11292     V = V.getOperand(0);
11293   return V;
11294 }
11295 
11296 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
11297   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
11298     V = V.getOperand(0);
11299   return V;
11300 }
11301 
11302 SDValue llvm::peekThroughTruncates(SDValue V) {
11303   while (V.getOpcode() == ISD::TRUNCATE)
11304     V = V.getOperand(0);
11305   return V;
11306 }
11307 
11308 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
11309   if (V.getOpcode() != ISD::XOR)
11310     return false;
11311   V = peekThroughBitcasts(V.getOperand(1));
11312   unsigned NumBits = V.getScalarValueSizeInBits();
11313   ConstantSDNode *C =
11314       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
11315   return C && (C->getAPIntValue().countr_one() >= NumBits);
11316 }
11317 
11318 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
11319                                           bool AllowTruncation) {
11320   EVT VT = N.getValueType();
11321   APInt DemandedElts = VT.isFixedLengthVector()
11322                            ? APInt::getAllOnes(VT.getVectorMinNumElements())
11323                            : APInt(1, 1);
11324   return isConstOrConstSplat(N, DemandedElts, AllowUndefs, AllowTruncation);
11325 }
11326 
11327 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
11328                                           bool AllowUndefs,
11329                                           bool AllowTruncation) {
11330   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
11331     return CN;
11332 
11333   // SplatVectors can truncate their operands. Ignore that case here unless
11334   // AllowTruncation is set.
11335   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
11336     EVT VecEltVT = N->getValueType(0).getVectorElementType();
11337     if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
11338       EVT CVT = CN->getValueType(0);
11339       assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension");
11340       if (AllowTruncation || CVT == VecEltVT)
11341         return CN;
11342     }
11343   }
11344 
11345   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
11346     BitVector UndefElements;
11347     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
11348 
11349     // BuildVectors can truncate their operands. Ignore that case here unless
11350     // AllowTruncation is set.
11351     // TODO: Look into whether we should allow UndefElements in non-DemandedElts
11352     if (CN && (UndefElements.none() || AllowUndefs)) {
11353       EVT CVT = CN->getValueType(0);
11354       EVT NSVT = N.getValueType().getScalarType();
11355       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
11356       if (AllowTruncation || (CVT == NSVT))
11357         return CN;
11358     }
11359   }
11360 
11361   return nullptr;
11362 }
11363 
11364 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
11365   EVT VT = N.getValueType();
11366   APInt DemandedElts = VT.isFixedLengthVector()
11367                            ? APInt::getAllOnes(VT.getVectorMinNumElements())
11368                            : APInt(1, 1);
11369   return isConstOrConstSplatFP(N, DemandedElts, AllowUndefs);
11370 }
11371 
11372 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
11373                                               const APInt &DemandedElts,
11374                                               bool AllowUndefs) {
11375   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
11376     return CN;
11377 
11378   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
11379     BitVector UndefElements;
11380     ConstantFPSDNode *CN =
11381         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
11382     // TODO: Look into whether we should allow UndefElements in non-DemandedElts
11383     if (CN && (UndefElements.none() || AllowUndefs))
11384       return CN;
11385   }
11386 
11387   if (N.getOpcode() == ISD::SPLAT_VECTOR)
11388     if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0)))
11389       return CN;
11390 
11391   return nullptr;
11392 }
11393 
11394 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
11395   // TODO: may want to use peekThroughBitcast() here.
11396   ConstantSDNode *C =
11397       isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true);
11398   return C && C->isZero();
11399 }
11400 
11401 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) {
11402   ConstantSDNode *C =
11403       isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation*/ true);
11404   return C && C->isOne();
11405 }
11406 
11407 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) {
11408   N = peekThroughBitcasts(N);
11409   unsigned BitWidth = N.getScalarValueSizeInBits();
11410   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
11411   return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth;
11412 }
11413 
11414 HandleSDNode::~HandleSDNode() {
11415   DropOperands();
11416 }
11417 
11418 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
11419                                          const DebugLoc &DL,
11420                                          const GlobalValue *GA, EVT VT,
11421                                          int64_t o, unsigned TF)
11422     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
11423   TheGlobal = GA;
11424 }
11425 
11426 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
11427                                          EVT VT, unsigned SrcAS,
11428                                          unsigned DestAS)
11429     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
11430       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
11431 
11432 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
11433                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
11434     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
11435   MemSDNodeBits.IsVolatile = MMO->isVolatile();
11436   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
11437   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
11438   MemSDNodeBits.IsInvariant = MMO->isInvariant();
11439 
11440   // We check here that the size of the memory operand fits within the size of
11441   // the MMO. This is because the MMO might indicate only a possible address
11442   // range instead of specifying the affected memory addresses precisely.
11443   // TODO: Make MachineMemOperands aware of scalable vectors.
11444   assert(memvt.getStoreSize().getKnownMinValue() <= MMO->getSize() &&
11445          "Size mismatch!");
11446 }
11447 
11448 /// Profile - Gather unique data for the node.
11449 ///
11450 void SDNode::Profile(FoldingSetNodeID &ID) const {
11451   AddNodeIDNode(ID, this);
11452 }
11453 
11454 namespace {
11455 
11456   struct EVTArray {
11457     std::vector<EVT> VTs;
11458 
11459     EVTArray() {
11460       VTs.reserve(MVT::VALUETYPE_SIZE);
11461       for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i)
11462         VTs.push_back(MVT((MVT::SimpleValueType)i));
11463     }
11464   };
11465 
11466 } // end anonymous namespace
11467 
11468 /// getValueTypeList - Return a pointer to the specified value type.
11469 ///
11470 const EVT *SDNode::getValueTypeList(EVT VT) {
11471   static std::set<EVT, EVT::compareRawBits> EVTs;
11472   static EVTArray SimpleVTArray;
11473   static sys::SmartMutex<true> VTMutex;
11474 
11475   if (VT.isExtended()) {
11476     sys::SmartScopedLock<true> Lock(VTMutex);
11477     return &(*EVTs.insert(VT).first);
11478   }
11479   assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!");
11480   return &SimpleVTArray.VTs[VT.getSimpleVT().SimpleTy];
11481 }
11482 
11483 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
11484 /// indicated value.  This method ignores uses of other values defined by this
11485 /// operation.
11486 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
11487   assert(Value < getNumValues() && "Bad value!");
11488 
11489   // TODO: Only iterate over uses of a given value of the node
11490   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
11491     if (UI.getUse().getResNo() == Value) {
11492       if (NUses == 0)
11493         return false;
11494       --NUses;
11495     }
11496   }
11497 
11498   // Found exactly the right number of uses?
11499   return NUses == 0;
11500 }
11501 
11502 /// hasAnyUseOfValue - Return true if there are any use of the indicated
11503 /// value. This method ignores uses of other values defined by this operation.
11504 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
11505   assert(Value < getNumValues() && "Bad value!");
11506 
11507   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
11508     if (UI.getUse().getResNo() == Value)
11509       return true;
11510 
11511   return false;
11512 }
11513 
11514 /// isOnlyUserOf - Return true if this node is the only use of N.
11515 bool SDNode::isOnlyUserOf(const SDNode *N) const {
11516   bool Seen = false;
11517   for (const SDNode *User : N->uses()) {
11518     if (User == this)
11519       Seen = true;
11520     else
11521       return false;
11522   }
11523 
11524   return Seen;
11525 }
11526 
11527 /// Return true if the only users of N are contained in Nodes.
11528 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
11529   bool Seen = false;
11530   for (const SDNode *User : N->uses()) {
11531     if (llvm::is_contained(Nodes, User))
11532       Seen = true;
11533     else
11534       return false;
11535   }
11536 
11537   return Seen;
11538 }
11539 
11540 /// isOperand - Return true if this node is an operand of N.
11541 bool SDValue::isOperandOf(const SDNode *N) const {
11542   return is_contained(N->op_values(), *this);
11543 }
11544 
11545 bool SDNode::isOperandOf(const SDNode *N) const {
11546   return any_of(N->op_values(),
11547                 [this](SDValue Op) { return this == Op.getNode(); });
11548 }
11549 
11550 /// reachesChainWithoutSideEffects - Return true if this operand (which must
11551 /// be a chain) reaches the specified operand without crossing any
11552 /// side-effecting instructions on any chain path.  In practice, this looks
11553 /// through token factors and non-volatile loads.  In order to remain efficient,
11554 /// this only looks a couple of nodes in, it does not do an exhaustive search.
11555 ///
11556 /// Note that we only need to examine chains when we're searching for
11557 /// side-effects; SelectionDAG requires that all side-effects are represented
11558 /// by chains, even if another operand would force a specific ordering. This
11559 /// constraint is necessary to allow transformations like splitting loads.
11560 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
11561                                              unsigned Depth) const {
11562   if (*this == Dest) return true;
11563 
11564   // Don't search too deeply, we just want to be able to see through
11565   // TokenFactor's etc.
11566   if (Depth == 0) return false;
11567 
11568   // If this is a token factor, all inputs to the TF happen in parallel.
11569   if (getOpcode() == ISD::TokenFactor) {
11570     // First, try a shallow search.
11571     if (is_contained((*this)->ops(), Dest)) {
11572       // We found the chain we want as an operand of this TokenFactor.
11573       // Essentially, we reach the chain without side-effects if we could
11574       // serialize the TokenFactor into a simple chain of operations with
11575       // Dest as the last operation. This is automatically true if the
11576       // chain has one use: there are no other ordering constraints.
11577       // If the chain has more than one use, we give up: some other
11578       // use of Dest might force a side-effect between Dest and the current
11579       // node.
11580       if (Dest.hasOneUse())
11581         return true;
11582     }
11583     // Next, try a deep search: check whether every operand of the TokenFactor
11584     // reaches Dest.
11585     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
11586       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
11587     });
11588   }
11589 
11590   // Loads don't have side effects, look through them.
11591   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
11592     if (Ld->isUnordered())
11593       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
11594   }
11595   return false;
11596 }
11597 
11598 bool SDNode::hasPredecessor(const SDNode *N) const {
11599   SmallPtrSet<const SDNode *, 32> Visited;
11600   SmallVector<const SDNode *, 16> Worklist;
11601   Worklist.push_back(this);
11602   return hasPredecessorHelper(N, Visited, Worklist);
11603 }
11604 
11605 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
11606   this->Flags.intersectWith(Flags);
11607 }
11608 
11609 SDValue
11610 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
11611                                   ArrayRef<ISD::NodeType> CandidateBinOps,
11612                                   bool AllowPartials) {
11613   // The pattern must end in an extract from index 0.
11614   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
11615       !isNullConstant(Extract->getOperand(1)))
11616     return SDValue();
11617 
11618   // Match against one of the candidate binary ops.
11619   SDValue Op = Extract->getOperand(0);
11620   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
11621         return Op.getOpcode() == unsigned(BinOp);
11622       }))
11623     return SDValue();
11624 
11625   // Floating-point reductions may require relaxed constraints on the final step
11626   // of the reduction because they may reorder intermediate operations.
11627   unsigned CandidateBinOp = Op.getOpcode();
11628   if (Op.getValueType().isFloatingPoint()) {
11629     SDNodeFlags Flags = Op->getFlags();
11630     switch (CandidateBinOp) {
11631     case ISD::FADD:
11632       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
11633         return SDValue();
11634       break;
11635     default:
11636       llvm_unreachable("Unhandled FP opcode for binop reduction");
11637     }
11638   }
11639 
11640   // Matching failed - attempt to see if we did enough stages that a partial
11641   // reduction from a subvector is possible.
11642   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
11643     if (!AllowPartials || !Op)
11644       return SDValue();
11645     EVT OpVT = Op.getValueType();
11646     EVT OpSVT = OpVT.getScalarType();
11647     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
11648     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
11649       return SDValue();
11650     BinOp = (ISD::NodeType)CandidateBinOp;
11651     return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
11652                    getVectorIdxConstant(0, SDLoc(Op)));
11653   };
11654 
11655   // At each stage, we're looking for something that looks like:
11656   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
11657   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
11658   //                               i32 undef, i32 undef, i32 undef, i32 undef>
11659   // %a = binop <8 x i32> %op, %s
11660   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
11661   // we expect something like:
11662   // <4,5,6,7,u,u,u,u>
11663   // <2,3,u,u,u,u,u,u>
11664   // <1,u,u,u,u,u,u,u>
11665   // While a partial reduction match would be:
11666   // <2,3,u,u,u,u,u,u>
11667   // <1,u,u,u,u,u,u,u>
11668   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
11669   SDValue PrevOp;
11670   for (unsigned i = 0; i < Stages; ++i) {
11671     unsigned MaskEnd = (1 << i);
11672 
11673     if (Op.getOpcode() != CandidateBinOp)
11674       return PartialReduction(PrevOp, MaskEnd);
11675 
11676     SDValue Op0 = Op.getOperand(0);
11677     SDValue Op1 = Op.getOperand(1);
11678 
11679     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
11680     if (Shuffle) {
11681       Op = Op1;
11682     } else {
11683       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
11684       Op = Op0;
11685     }
11686 
11687     // The first operand of the shuffle should be the same as the other operand
11688     // of the binop.
11689     if (!Shuffle || Shuffle->getOperand(0) != Op)
11690       return PartialReduction(PrevOp, MaskEnd);
11691 
11692     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
11693     for (int Index = 0; Index < (int)MaskEnd; ++Index)
11694       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
11695         return PartialReduction(PrevOp, MaskEnd);
11696 
11697     PrevOp = Op;
11698   }
11699 
11700   // Handle subvector reductions, which tend to appear after the shuffle
11701   // reduction stages.
11702   while (Op.getOpcode() == CandidateBinOp) {
11703     unsigned NumElts = Op.getValueType().getVectorNumElements();
11704     SDValue Op0 = Op.getOperand(0);
11705     SDValue Op1 = Op.getOperand(1);
11706     if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
11707         Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
11708         Op0.getOperand(0) != Op1.getOperand(0))
11709       break;
11710     SDValue Src = Op0.getOperand(0);
11711     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
11712     if (NumSrcElts != (2 * NumElts))
11713       break;
11714     if (!(Op0.getConstantOperandAPInt(1) == 0 &&
11715           Op1.getConstantOperandAPInt(1) == NumElts) &&
11716         !(Op1.getConstantOperandAPInt(1) == 0 &&
11717           Op0.getConstantOperandAPInt(1) == NumElts))
11718       break;
11719     Op = Src;
11720   }
11721 
11722   BinOp = (ISD::NodeType)CandidateBinOp;
11723   return Op;
11724 }
11725 
11726 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
11727   EVT VT = N->getValueType(0);
11728   EVT EltVT = VT.getVectorElementType();
11729   unsigned NE = VT.getVectorNumElements();
11730 
11731   SDLoc dl(N);
11732 
11733   // If ResNE is 0, fully unroll the vector op.
11734   if (ResNE == 0)
11735     ResNE = NE;
11736   else if (NE > ResNE)
11737     NE = ResNE;
11738 
11739   if (N->getNumValues() == 2) {
11740     SmallVector<SDValue, 8> Scalars0, Scalars1;
11741     SmallVector<SDValue, 4> Operands(N->getNumOperands());
11742     EVT VT1 = N->getValueType(1);
11743     EVT EltVT1 = VT1.getVectorElementType();
11744 
11745     unsigned i;
11746     for (i = 0; i != NE; ++i) {
11747       for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
11748         SDValue Operand = N->getOperand(j);
11749         EVT OperandVT = Operand.getValueType();
11750 
11751         // A vector operand; extract a single element.
11752         EVT OperandEltVT = OperandVT.getVectorElementType();
11753         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
11754                               Operand, getVectorIdxConstant(i, dl));
11755       }
11756 
11757       SDValue EltOp = getNode(N->getOpcode(), dl, {EltVT, EltVT1}, Operands);
11758       Scalars0.push_back(EltOp);
11759       Scalars1.push_back(EltOp.getValue(1));
11760     }
11761 
11762     SDValue Vec0 = getBuildVector(VT, dl, Scalars0);
11763     SDValue Vec1 = getBuildVector(VT1, dl, Scalars1);
11764     return getMergeValues({Vec0, Vec1}, dl);
11765   }
11766 
11767   assert(N->getNumValues() == 1 &&
11768          "Can't unroll a vector with multiple results!");
11769 
11770   SmallVector<SDValue, 8> Scalars;
11771   SmallVector<SDValue, 4> Operands(N->getNumOperands());
11772 
11773   unsigned i;
11774   for (i= 0; i != NE; ++i) {
11775     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
11776       SDValue Operand = N->getOperand(j);
11777       EVT OperandVT = Operand.getValueType();
11778       if (OperandVT.isVector()) {
11779         // A vector operand; extract a single element.
11780         EVT OperandEltVT = OperandVT.getVectorElementType();
11781         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
11782                               Operand, getVectorIdxConstant(i, dl));
11783       } else {
11784         // A scalar operand; just use it as is.
11785         Operands[j] = Operand;
11786       }
11787     }
11788 
11789     switch (N->getOpcode()) {
11790     default: {
11791       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
11792                                 N->getFlags()));
11793       break;
11794     }
11795     case ISD::VSELECT:
11796       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
11797       break;
11798     case ISD::SHL:
11799     case ISD::SRA:
11800     case ISD::SRL:
11801     case ISD::ROTL:
11802     case ISD::ROTR:
11803       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
11804                                getShiftAmountOperand(Operands[0].getValueType(),
11805                                                      Operands[1])));
11806       break;
11807     case ISD::SIGN_EXTEND_INREG: {
11808       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
11809       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
11810                                 Operands[0],
11811                                 getValueType(ExtVT)));
11812     }
11813     }
11814   }
11815 
11816   for (; i < ResNE; ++i)
11817     Scalars.push_back(getUNDEF(EltVT));
11818 
11819   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
11820   return getBuildVector(VecVT, dl, Scalars);
11821 }
11822 
11823 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
11824     SDNode *N, unsigned ResNE) {
11825   unsigned Opcode = N->getOpcode();
11826   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
11827           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
11828           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
11829          "Expected an overflow opcode");
11830 
11831   EVT ResVT = N->getValueType(0);
11832   EVT OvVT = N->getValueType(1);
11833   EVT ResEltVT = ResVT.getVectorElementType();
11834   EVT OvEltVT = OvVT.getVectorElementType();
11835   SDLoc dl(N);
11836 
11837   // If ResNE is 0, fully unroll the vector op.
11838   unsigned NE = ResVT.getVectorNumElements();
11839   if (ResNE == 0)
11840     ResNE = NE;
11841   else if (NE > ResNE)
11842     NE = ResNE;
11843 
11844   SmallVector<SDValue, 8> LHSScalars;
11845   SmallVector<SDValue, 8> RHSScalars;
11846   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
11847   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
11848 
11849   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
11850   SDVTList VTs = getVTList(ResEltVT, SVT);
11851   SmallVector<SDValue, 8> ResScalars;
11852   SmallVector<SDValue, 8> OvScalars;
11853   for (unsigned i = 0; i < NE; ++i) {
11854     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
11855     SDValue Ov =
11856         getSelect(dl, OvEltVT, Res.getValue(1),
11857                   getBoolConstant(true, dl, OvEltVT, ResVT),
11858                   getConstant(0, dl, OvEltVT));
11859 
11860     ResScalars.push_back(Res);
11861     OvScalars.push_back(Ov);
11862   }
11863 
11864   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
11865   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
11866 
11867   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
11868   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
11869   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
11870                         getBuildVector(NewOvVT, dl, OvScalars));
11871 }
11872 
11873 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
11874                                                   LoadSDNode *Base,
11875                                                   unsigned Bytes,
11876                                                   int Dist) const {
11877   if (LD->isVolatile() || Base->isVolatile())
11878     return false;
11879   // TODO: probably too restrictive for atomics, revisit
11880   if (!LD->isSimple())
11881     return false;
11882   if (LD->isIndexed() || Base->isIndexed())
11883     return false;
11884   if (LD->getChain() != Base->getChain())
11885     return false;
11886   EVT VT = LD->getMemoryVT();
11887   if (VT.getSizeInBits() / 8 != Bytes)
11888     return false;
11889 
11890   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
11891   auto LocDecomp = BaseIndexOffset::match(LD, *this);
11892 
11893   int64_t Offset = 0;
11894   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
11895     return (Dist * (int64_t)Bytes == Offset);
11896   return false;
11897 }
11898 
11899 /// InferPtrAlignment - Infer alignment of a load / store address. Return
11900 /// std::nullopt if it cannot be inferred.
11901 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const {
11902   // If this is a GlobalAddress + cst, return the alignment.
11903   const GlobalValue *GV = nullptr;
11904   int64_t GVOffset = 0;
11905   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
11906     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
11907     KnownBits Known(PtrWidth);
11908     llvm::computeKnownBits(GV, Known, getDataLayout());
11909     unsigned AlignBits = Known.countMinTrailingZeros();
11910     if (AlignBits)
11911       return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
11912   }
11913 
11914   // If this is a direct reference to a stack slot, use information about the
11915   // stack slot's alignment.
11916   int FrameIdx = INT_MIN;
11917   int64_t FrameOffset = 0;
11918   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
11919     FrameIdx = FI->getIndex();
11920   } else if (isBaseWithConstantOffset(Ptr) &&
11921              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
11922     // Handle FI+Cst
11923     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
11924     FrameOffset = Ptr.getConstantOperandVal(1);
11925   }
11926 
11927   if (FrameIdx != INT_MIN) {
11928     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
11929     return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
11930   }
11931 
11932   return std::nullopt;
11933 }
11934 
11935 /// Split the scalar node with EXTRACT_ELEMENT using the provided
11936 /// VTs and return the low/high part.
11937 std::pair<SDValue, SDValue> SelectionDAG::SplitScalar(const SDValue &N,
11938                                                       const SDLoc &DL,
11939                                                       const EVT &LoVT,
11940                                                       const EVT &HiVT) {
11941   assert(!LoVT.isVector() && !HiVT.isVector() && !N.getValueType().isVector() &&
11942          "Split node must be a scalar type");
11943   SDValue Lo =
11944       getNode(ISD::EXTRACT_ELEMENT, DL, LoVT, N, getIntPtrConstant(0, DL));
11945   SDValue Hi =
11946       getNode(ISD::EXTRACT_ELEMENT, DL, HiVT, N, getIntPtrConstant(1, DL));
11947   return std::make_pair(Lo, Hi);
11948 }
11949 
11950 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
11951 /// which is split (or expanded) into two not necessarily identical pieces.
11952 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
11953   // Currently all types are split in half.
11954   EVT LoVT, HiVT;
11955   if (!VT.isVector())
11956     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
11957   else
11958     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
11959 
11960   return std::make_pair(LoVT, HiVT);
11961 }
11962 
11963 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
11964 /// type, dependent on an enveloping VT that has been split into two identical
11965 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
11966 std::pair<EVT, EVT>
11967 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT,
11968                                        bool *HiIsEmpty) const {
11969   EVT EltTp = VT.getVectorElementType();
11970   // Examples:
11971   //   custom VL=8  with enveloping VL=8/8 yields 8/0 (hi empty)
11972   //   custom VL=9  with enveloping VL=8/8 yields 8/1
11973   //   custom VL=10 with enveloping VL=8/8 yields 8/2
11974   //   etc.
11975   ElementCount VTNumElts = VT.getVectorElementCount();
11976   ElementCount EnvNumElts = EnvVT.getVectorElementCount();
11977   assert(VTNumElts.isScalable() == EnvNumElts.isScalable() &&
11978          "Mixing fixed width and scalable vectors when enveloping a type");
11979   EVT LoVT, HiVT;
11980   if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) {
11981     LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
11982     HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts);
11983     *HiIsEmpty = false;
11984   } else {
11985     // Flag that hi type has zero storage size, but return split envelop type
11986     // (this would be easier if vector types with zero elements were allowed).
11987     LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts);
11988     HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
11989     *HiIsEmpty = true;
11990   }
11991   return std::make_pair(LoVT, HiVT);
11992 }
11993 
11994 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
11995 /// low/high part.
11996 std::pair<SDValue, SDValue>
11997 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
11998                           const EVT &HiVT) {
11999   assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
12000          LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
12001          "Splitting vector with an invalid mixture of fixed and scalable "
12002          "vector types");
12003   assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <=
12004              N.getValueType().getVectorMinNumElements() &&
12005          "More vector elements requested than available!");
12006   SDValue Lo, Hi;
12007   Lo =
12008       getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
12009   // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
12010   // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
12011   // IDX with the runtime scaling factor of the result vector type. For
12012   // fixed-width result vectors, that runtime scaling factor is 1.
12013   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
12014                getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL));
12015   return std::make_pair(Lo, Hi);
12016 }
12017 
12018 std::pair<SDValue, SDValue> SelectionDAG::SplitEVL(SDValue N, EVT VecVT,
12019                                                    const SDLoc &DL) {
12020   // Split the vector length parameter.
12021   // %evl -> umin(%evl, %halfnumelts) and usubsat(%evl - %halfnumelts).
12022   EVT VT = N.getValueType();
12023   assert(VecVT.getVectorElementCount().isKnownEven() &&
12024          "Expecting the mask to be an evenly-sized vector");
12025   unsigned HalfMinNumElts = VecVT.getVectorMinNumElements() / 2;
12026   SDValue HalfNumElts =
12027       VecVT.isFixedLengthVector()
12028           ? getConstant(HalfMinNumElts, DL, VT)
12029           : getVScale(DL, VT, APInt(VT.getScalarSizeInBits(), HalfMinNumElts));
12030   SDValue Lo = getNode(ISD::UMIN, DL, VT, N, HalfNumElts);
12031   SDValue Hi = getNode(ISD::USUBSAT, DL, VT, N, HalfNumElts);
12032   return std::make_pair(Lo, Hi);
12033 }
12034 
12035 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
12036 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
12037   EVT VT = N.getValueType();
12038   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
12039                                 NextPowerOf2(VT.getVectorNumElements()));
12040   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
12041                  getVectorIdxConstant(0, DL));
12042 }
12043 
12044 void SelectionDAG::ExtractVectorElements(SDValue Op,
12045                                          SmallVectorImpl<SDValue> &Args,
12046                                          unsigned Start, unsigned Count,
12047                                          EVT EltVT) {
12048   EVT VT = Op.getValueType();
12049   if (Count == 0)
12050     Count = VT.getVectorNumElements();
12051   if (EltVT == EVT())
12052     EltVT = VT.getVectorElementType();
12053   SDLoc SL(Op);
12054   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
12055     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
12056                            getVectorIdxConstant(i, SL)));
12057   }
12058 }
12059 
12060 // getAddressSpace - Return the address space this GlobalAddress belongs to.
12061 unsigned GlobalAddressSDNode::getAddressSpace() const {
12062   return getGlobal()->getType()->getAddressSpace();
12063 }
12064 
12065 Type *ConstantPoolSDNode::getType() const {
12066   if (isMachineConstantPoolEntry())
12067     return Val.MachineCPVal->getType();
12068   return Val.ConstVal->getType();
12069 }
12070 
12071 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
12072                                         unsigned &SplatBitSize,
12073                                         bool &HasAnyUndefs,
12074                                         unsigned MinSplatBits,
12075                                         bool IsBigEndian) const {
12076   EVT VT = getValueType(0);
12077   assert(VT.isVector() && "Expected a vector type");
12078   unsigned VecWidth = VT.getSizeInBits();
12079   if (MinSplatBits > VecWidth)
12080     return false;
12081 
12082   // FIXME: The widths are based on this node's type, but build vectors can
12083   // truncate their operands.
12084   SplatValue = APInt(VecWidth, 0);
12085   SplatUndef = APInt(VecWidth, 0);
12086 
12087   // Get the bits. Bits with undefined values (when the corresponding element
12088   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
12089   // in SplatValue. If any of the values are not constant, give up and return
12090   // false.
12091   unsigned int NumOps = getNumOperands();
12092   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
12093   unsigned EltWidth = VT.getScalarSizeInBits();
12094 
12095   for (unsigned j = 0; j < NumOps; ++j) {
12096     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
12097     SDValue OpVal = getOperand(i);
12098     unsigned BitPos = j * EltWidth;
12099 
12100     if (OpVal.isUndef())
12101       SplatUndef.setBits(BitPos, BitPos + EltWidth);
12102     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
12103       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
12104     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
12105       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
12106     else
12107       return false;
12108   }
12109 
12110   // The build_vector is all constants or undefs. Find the smallest element
12111   // size that splats the vector.
12112   HasAnyUndefs = (SplatUndef != 0);
12113 
12114   // FIXME: This does not work for vectors with elements less than 8 bits.
12115   while (VecWidth > 8) {
12116     unsigned HalfSize = VecWidth / 2;
12117     APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize);
12118     APInt LowValue = SplatValue.extractBits(HalfSize, 0);
12119     APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize);
12120     APInt LowUndef = SplatUndef.extractBits(HalfSize, 0);
12121 
12122     // If the two halves do not match (ignoring undef bits), stop here.
12123     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
12124         MinSplatBits > HalfSize)
12125       break;
12126 
12127     SplatValue = HighValue | LowValue;
12128     SplatUndef = HighUndef & LowUndef;
12129 
12130     VecWidth = HalfSize;
12131   }
12132 
12133   SplatBitSize = VecWidth;
12134   return true;
12135 }
12136 
12137 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
12138                                          BitVector *UndefElements) const {
12139   unsigned NumOps = getNumOperands();
12140   if (UndefElements) {
12141     UndefElements->clear();
12142     UndefElements->resize(NumOps);
12143   }
12144   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
12145   if (!DemandedElts)
12146     return SDValue();
12147   SDValue Splatted;
12148   for (unsigned i = 0; i != NumOps; ++i) {
12149     if (!DemandedElts[i])
12150       continue;
12151     SDValue Op = getOperand(i);
12152     if (Op.isUndef()) {
12153       if (UndefElements)
12154         (*UndefElements)[i] = true;
12155     } else if (!Splatted) {
12156       Splatted = Op;
12157     } else if (Splatted != Op) {
12158       return SDValue();
12159     }
12160   }
12161 
12162   if (!Splatted) {
12163     unsigned FirstDemandedIdx = DemandedElts.countr_zero();
12164     assert(getOperand(FirstDemandedIdx).isUndef() &&
12165            "Can only have a splat without a constant for all undefs.");
12166     return getOperand(FirstDemandedIdx);
12167   }
12168 
12169   return Splatted;
12170 }
12171 
12172 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
12173   APInt DemandedElts = APInt::getAllOnes(getNumOperands());
12174   return getSplatValue(DemandedElts, UndefElements);
12175 }
12176 
12177 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts,
12178                                             SmallVectorImpl<SDValue> &Sequence,
12179                                             BitVector *UndefElements) const {
12180   unsigned NumOps = getNumOperands();
12181   Sequence.clear();
12182   if (UndefElements) {
12183     UndefElements->clear();
12184     UndefElements->resize(NumOps);
12185   }
12186   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
12187   if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps))
12188     return false;
12189 
12190   // Set the undefs even if we don't find a sequence (like getSplatValue).
12191   if (UndefElements)
12192     for (unsigned I = 0; I != NumOps; ++I)
12193       if (DemandedElts[I] && getOperand(I).isUndef())
12194         (*UndefElements)[I] = true;
12195 
12196   // Iteratively widen the sequence length looking for repetitions.
12197   for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) {
12198     Sequence.append(SeqLen, SDValue());
12199     for (unsigned I = 0; I != NumOps; ++I) {
12200       if (!DemandedElts[I])
12201         continue;
12202       SDValue &SeqOp = Sequence[I % SeqLen];
12203       SDValue Op = getOperand(I);
12204       if (Op.isUndef()) {
12205         if (!SeqOp)
12206           SeqOp = Op;
12207         continue;
12208       }
12209       if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) {
12210         Sequence.clear();
12211         break;
12212       }
12213       SeqOp = Op;
12214     }
12215     if (!Sequence.empty())
12216       return true;
12217   }
12218 
12219   assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern");
12220   return false;
12221 }
12222 
12223 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
12224                                             BitVector *UndefElements) const {
12225   APInt DemandedElts = APInt::getAllOnes(getNumOperands());
12226   return getRepeatedSequence(DemandedElts, Sequence, UndefElements);
12227 }
12228 
12229 ConstantSDNode *
12230 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
12231                                         BitVector *UndefElements) const {
12232   return dyn_cast_or_null<ConstantSDNode>(
12233       getSplatValue(DemandedElts, UndefElements));
12234 }
12235 
12236 ConstantSDNode *
12237 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
12238   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
12239 }
12240 
12241 ConstantFPSDNode *
12242 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
12243                                           BitVector *UndefElements) const {
12244   return dyn_cast_or_null<ConstantFPSDNode>(
12245       getSplatValue(DemandedElts, UndefElements));
12246 }
12247 
12248 ConstantFPSDNode *
12249 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
12250   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
12251 }
12252 
12253 int32_t
12254 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
12255                                                    uint32_t BitWidth) const {
12256   if (ConstantFPSDNode *CN =
12257           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
12258     bool IsExact;
12259     APSInt IntVal(BitWidth);
12260     const APFloat &APF = CN->getValueAPF();
12261     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
12262             APFloat::opOK ||
12263         !IsExact)
12264       return -1;
12265 
12266     return IntVal.exactLogBase2();
12267   }
12268   return -1;
12269 }
12270 
12271 bool BuildVectorSDNode::getConstantRawBits(
12272     bool IsLittleEndian, unsigned DstEltSizeInBits,
12273     SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const {
12274   // Early-out if this contains anything but Undef/Constant/ConstantFP.
12275   if (!isConstant())
12276     return false;
12277 
12278   unsigned NumSrcOps = getNumOperands();
12279   unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits();
12280   assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
12281          "Invalid bitcast scale");
12282 
12283   // Extract raw src bits.
12284   SmallVector<APInt> SrcBitElements(NumSrcOps,
12285                                     APInt::getZero(SrcEltSizeInBits));
12286   BitVector SrcUndeElements(NumSrcOps, false);
12287 
12288   for (unsigned I = 0; I != NumSrcOps; ++I) {
12289     SDValue Op = getOperand(I);
12290     if (Op.isUndef()) {
12291       SrcUndeElements.set(I);
12292       continue;
12293     }
12294     auto *CInt = dyn_cast<ConstantSDNode>(Op);
12295     auto *CFP = dyn_cast<ConstantFPSDNode>(Op);
12296     assert((CInt || CFP) && "Unknown constant");
12297     SrcBitElements[I] = CInt ? CInt->getAPIntValue().trunc(SrcEltSizeInBits)
12298                              : CFP->getValueAPF().bitcastToAPInt();
12299   }
12300 
12301   // Recast to dst width.
12302   recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements,
12303                 SrcBitElements, UndefElements, SrcUndeElements);
12304   return true;
12305 }
12306 
12307 void BuildVectorSDNode::recastRawBits(bool IsLittleEndian,
12308                                       unsigned DstEltSizeInBits,
12309                                       SmallVectorImpl<APInt> &DstBitElements,
12310                                       ArrayRef<APInt> SrcBitElements,
12311                                       BitVector &DstUndefElements,
12312                                       const BitVector &SrcUndefElements) {
12313   unsigned NumSrcOps = SrcBitElements.size();
12314   unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth();
12315   assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
12316          "Invalid bitcast scale");
12317   assert(NumSrcOps == SrcUndefElements.size() &&
12318          "Vector size mismatch");
12319 
12320   unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits;
12321   DstUndefElements.clear();
12322   DstUndefElements.resize(NumDstOps, false);
12323   DstBitElements.assign(NumDstOps, APInt::getZero(DstEltSizeInBits));
12324 
12325   // Concatenate src elements constant bits together into dst element.
12326   if (SrcEltSizeInBits <= DstEltSizeInBits) {
12327     unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits;
12328     for (unsigned I = 0; I != NumDstOps; ++I) {
12329       DstUndefElements.set(I);
12330       APInt &DstBits = DstBitElements[I];
12331       for (unsigned J = 0; J != Scale; ++J) {
12332         unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
12333         if (SrcUndefElements[Idx])
12334           continue;
12335         DstUndefElements.reset(I);
12336         const APInt &SrcBits = SrcBitElements[Idx];
12337         assert(SrcBits.getBitWidth() == SrcEltSizeInBits &&
12338                "Illegal constant bitwidths");
12339         DstBits.insertBits(SrcBits, J * SrcEltSizeInBits);
12340       }
12341     }
12342     return;
12343   }
12344 
12345   // Split src element constant bits into dst elements.
12346   unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits;
12347   for (unsigned I = 0; I != NumSrcOps; ++I) {
12348     if (SrcUndefElements[I]) {
12349       DstUndefElements.set(I * Scale, (I + 1) * Scale);
12350       continue;
12351     }
12352     const APInt &SrcBits = SrcBitElements[I];
12353     for (unsigned J = 0; J != Scale; ++J) {
12354       unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
12355       APInt &DstBits = DstBitElements[Idx];
12356       DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits);
12357     }
12358   }
12359 }
12360 
12361 bool BuildVectorSDNode::isConstant() const {
12362   for (const SDValue &Op : op_values()) {
12363     unsigned Opc = Op.getOpcode();
12364     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
12365       return false;
12366   }
12367   return true;
12368 }
12369 
12370 std::optional<std::pair<APInt, APInt>>
12371 BuildVectorSDNode::isConstantSequence() const {
12372   unsigned NumOps = getNumOperands();
12373   if (NumOps < 2)
12374     return std::nullopt;
12375 
12376   if (!isa<ConstantSDNode>(getOperand(0)) ||
12377       !isa<ConstantSDNode>(getOperand(1)))
12378     return std::nullopt;
12379 
12380   unsigned EltSize = getValueType(0).getScalarSizeInBits();
12381   APInt Start = getConstantOperandAPInt(0).trunc(EltSize);
12382   APInt Stride = getConstantOperandAPInt(1).trunc(EltSize) - Start;
12383 
12384   if (Stride.isZero())
12385     return std::nullopt;
12386 
12387   for (unsigned i = 2; i < NumOps; ++i) {
12388     if (!isa<ConstantSDNode>(getOperand(i)))
12389       return std::nullopt;
12390 
12391     APInt Val = getConstantOperandAPInt(i).trunc(EltSize);
12392     if (Val != (Start + (Stride * i)))
12393       return std::nullopt;
12394   }
12395 
12396   return std::make_pair(Start, Stride);
12397 }
12398 
12399 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
12400   // Find the first non-undef value in the shuffle mask.
12401   unsigned i, e;
12402   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
12403     /* search */;
12404 
12405   // If all elements are undefined, this shuffle can be considered a splat
12406   // (although it should eventually get simplified away completely).
12407   if (i == e)
12408     return true;
12409 
12410   // Make sure all remaining elements are either undef or the same as the first
12411   // non-undef value.
12412   for (int Idx = Mask[i]; i != e; ++i)
12413     if (Mask[i] >= 0 && Mask[i] != Idx)
12414       return false;
12415   return true;
12416 }
12417 
12418 // Returns the SDNode if it is a constant integer BuildVector
12419 // or constant integer.
12420 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const {
12421   if (isa<ConstantSDNode>(N))
12422     return N.getNode();
12423   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
12424     return N.getNode();
12425   // Treat a GlobalAddress supporting constant offset folding as a
12426   // constant integer.
12427   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
12428     if (GA->getOpcode() == ISD::GlobalAddress &&
12429         TLI->isOffsetFoldingLegal(GA))
12430       return GA;
12431   if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
12432       isa<ConstantSDNode>(N.getOperand(0)))
12433     return N.getNode();
12434   return nullptr;
12435 }
12436 
12437 // Returns the SDNode if it is a constant float BuildVector
12438 // or constant float.
12439 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const {
12440   if (isa<ConstantFPSDNode>(N))
12441     return N.getNode();
12442 
12443   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
12444     return N.getNode();
12445 
12446   if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
12447       isa<ConstantFPSDNode>(N.getOperand(0)))
12448     return N.getNode();
12449 
12450   return nullptr;
12451 }
12452 
12453 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
12454   assert(!Node->OperandList && "Node already has operands");
12455   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
12456          "too many operands to fit into SDNode");
12457   SDUse *Ops = OperandRecycler.allocate(
12458       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
12459 
12460   bool IsDivergent = false;
12461   for (unsigned I = 0; I != Vals.size(); ++I) {
12462     Ops[I].setUser(Node);
12463     Ops[I].setInitial(Vals[I]);
12464     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
12465       IsDivergent |= Ops[I].getNode()->isDivergent();
12466   }
12467   Node->NumOperands = Vals.size();
12468   Node->OperandList = Ops;
12469   if (!TLI->isSDNodeAlwaysUniform(Node)) {
12470     IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, UA);
12471     Node->SDNodeBits.IsDivergent = IsDivergent;
12472   }
12473   checkForCycles(Node);
12474 }
12475 
12476 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
12477                                      SmallVectorImpl<SDValue> &Vals) {
12478   size_t Limit = SDNode::getMaxNumOperands();
12479   while (Vals.size() > Limit) {
12480     unsigned SliceIdx = Vals.size() - Limit;
12481     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
12482     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
12483     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
12484     Vals.emplace_back(NewTF);
12485   }
12486   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
12487 }
12488 
12489 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL,
12490                                         EVT VT, SDNodeFlags Flags) {
12491   switch (Opcode) {
12492   default:
12493     return SDValue();
12494   case ISD::ADD:
12495   case ISD::OR:
12496   case ISD::XOR:
12497   case ISD::UMAX:
12498     return getConstant(0, DL, VT);
12499   case ISD::MUL:
12500     return getConstant(1, DL, VT);
12501   case ISD::AND:
12502   case ISD::UMIN:
12503     return getAllOnesConstant(DL, VT);
12504   case ISD::SMAX:
12505     return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT);
12506   case ISD::SMIN:
12507     return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT);
12508   case ISD::FADD:
12509     return getConstantFP(-0.0, DL, VT);
12510   case ISD::FMUL:
12511     return getConstantFP(1.0, DL, VT);
12512   case ISD::FMINNUM:
12513   case ISD::FMAXNUM: {
12514     // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
12515     const fltSemantics &Semantics = EVTToAPFloatSemantics(VT);
12516     APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) :
12517                         !Flags.hasNoInfs() ? APFloat::getInf(Semantics) :
12518                         APFloat::getLargest(Semantics);
12519     if (Opcode == ISD::FMAXNUM)
12520       NeutralAF.changeSign();
12521 
12522     return getConstantFP(NeutralAF, DL, VT);
12523   }
12524   case ISD::FMINIMUM:
12525   case ISD::FMAXIMUM: {
12526     // Neutral element for fminimum is Inf or FLT_MAX, depending on FMF.
12527     const fltSemantics &Semantics = EVTToAPFloatSemantics(VT);
12528     APFloat NeutralAF = !Flags.hasNoInfs() ? APFloat::getInf(Semantics)
12529                                            : APFloat::getLargest(Semantics);
12530     if (Opcode == ISD::FMAXIMUM)
12531       NeutralAF.changeSign();
12532 
12533     return getConstantFP(NeutralAF, DL, VT);
12534   }
12535 
12536   }
12537 }
12538 
12539 /// Helper used to make a call to a library function that has one argument of
12540 /// pointer type.
12541 ///
12542 /// Such functions include 'fegetmode', 'fesetenv' and some others, which are
12543 /// used to get or set floating-point state. They have one argument of pointer
12544 /// type, which points to the memory region containing bits of the
12545 /// floating-point state. The value returned by such function is ignored in the
12546 /// created call.
12547 ///
12548 /// \param LibFunc Reference to library function (value of RTLIB::Libcall).
12549 /// \param Ptr Pointer used to save/load state.
12550 /// \param InChain Ingoing token chain.
12551 /// \returns Outgoing chain token.
12552 SDValue SelectionDAG::makeStateFunctionCall(unsigned LibFunc, SDValue Ptr,
12553                                             SDValue InChain,
12554                                             const SDLoc &DLoc) {
12555   assert(InChain.getValueType() == MVT::Other && "Expected token chain");
12556   TargetLowering::ArgListTy Args;
12557   TargetLowering::ArgListEntry Entry;
12558   Entry.Node = Ptr;
12559   Entry.Ty = Ptr.getValueType().getTypeForEVT(*getContext());
12560   Args.push_back(Entry);
12561   RTLIB::Libcall LC = static_cast<RTLIB::Libcall>(LibFunc);
12562   SDValue Callee = getExternalSymbol(TLI->getLibcallName(LC),
12563                                      TLI->getPointerTy(getDataLayout()));
12564   TargetLowering::CallLoweringInfo CLI(*this);
12565   CLI.setDebugLoc(DLoc).setChain(InChain).setLibCallee(
12566       TLI->getLibcallCallingConv(LC), Type::getVoidTy(*getContext()), Callee,
12567       std::move(Args));
12568   return TLI->LowerCallTo(CLI).second;
12569 }
12570 
12571 void SelectionDAG::copyExtraInfo(SDNode *From, SDNode *To) {
12572   assert(From && To && "Invalid SDNode; empty source SDValue?");
12573   auto I = SDEI.find(From);
12574   if (I == SDEI.end())
12575     return;
12576 
12577   // Use of operator[] on the DenseMap may cause an insertion, which invalidates
12578   // the iterator, hence the need to make a copy to prevent a use-after-free.
12579   NodeExtraInfo NEI = I->second;
12580   if (LLVM_LIKELY(!NEI.PCSections)) {
12581     // No deep copy required for the types of extra info set.
12582     //
12583     // FIXME: Investigate if other types of extra info also need deep copy. This
12584     // depends on the types of nodes they can be attached to: if some extra info
12585     // is only ever attached to nodes where a replacement To node is always the
12586     // node where later use and propagation of the extra info has the intended
12587     // semantics, no deep copy is required.
12588     SDEI[To] = std::move(NEI);
12589     return;
12590   }
12591 
12592   // We need to copy NodeExtraInfo to all _new_ nodes that are being introduced
12593   // through the replacement of From with To. Otherwise, replacements of a node
12594   // (From) with more complex nodes (To and its operands) may result in lost
12595   // extra info where the root node (To) is insignificant in further propagating
12596   // and using extra info when further lowering to MIR.
12597   //
12598   // In the first step pre-populate the visited set with the nodes reachable
12599   // from the old From node. This avoids copying NodeExtraInfo to parts of the
12600   // DAG that is not new and should be left untouched.
12601   SmallVector<const SDNode *> Leafs{From}; // Leafs reachable with VisitFrom.
12602   DenseSet<const SDNode *> FromReach; // The set of nodes reachable from From.
12603   auto VisitFrom = [&](auto &&Self, const SDNode *N, int MaxDepth) {
12604     if (MaxDepth == 0) {
12605       // Remember this node in case we need to increase MaxDepth and continue
12606       // populating FromReach from this node.
12607       Leafs.emplace_back(N);
12608       return;
12609     }
12610     if (!FromReach.insert(N).second)
12611       return;
12612     for (const SDValue &Op : N->op_values())
12613       Self(Self, Op.getNode(), MaxDepth - 1);
12614   };
12615 
12616   // Copy extra info to To and all its transitive operands (that are new).
12617   SmallPtrSet<const SDNode *, 8> Visited;
12618   auto DeepCopyTo = [&](auto &&Self, const SDNode *N) {
12619     if (FromReach.contains(N))
12620       return true;
12621     if (!Visited.insert(N).second)
12622       return true;
12623     if (getEntryNode().getNode() == N)
12624       return false;
12625     for (const SDValue &Op : N->op_values()) {
12626       if (!Self(Self, Op.getNode()))
12627         return false;
12628     }
12629     // Copy only if entry node was not reached.
12630     SDEI[N] = NEI;
12631     return true;
12632   };
12633 
12634   // We first try with a lower MaxDepth, assuming that the path to common
12635   // operands between From and To is relatively short. This significantly
12636   // improves performance in the common case. The initial MaxDepth is big
12637   // enough to avoid retry in the common case; the last MaxDepth is large
12638   // enough to avoid having to use the fallback below (and protects from
12639   // potential stack exhaustion from recursion).
12640   for (int PrevDepth = 0, MaxDepth = 16; MaxDepth <= 1024;
12641        PrevDepth = MaxDepth, MaxDepth *= 2, Visited.clear()) {
12642     // StartFrom is the previous (or initial) set of leafs reachable at the
12643     // previous maximum depth.
12644     SmallVector<const SDNode *> StartFrom;
12645     std::swap(StartFrom, Leafs);
12646     for (const SDNode *N : StartFrom)
12647       VisitFrom(VisitFrom, N, MaxDepth - PrevDepth);
12648     if (LLVM_LIKELY(DeepCopyTo(DeepCopyTo, To)))
12649       return;
12650     // This should happen very rarely (reached the entry node).
12651     LLVM_DEBUG(dbgs() << __func__ << ": MaxDepth=" << MaxDepth << " too low\n");
12652     assert(!Leafs.empty());
12653   }
12654 
12655   // This should not happen - but if it did, that means the subgraph reachable
12656   // from From has depth greater or equal to maximum MaxDepth, and VisitFrom()
12657   // could not visit all reachable common operands. Consequently, we were able
12658   // to reach the entry node.
12659   errs() << "warning: incomplete propagation of SelectionDAG::NodeExtraInfo\n";
12660   assert(false && "From subgraph too complex - increase max. MaxDepth?");
12661   // Best-effort fallback if assertions disabled.
12662   SDEI[To] = std::move(NEI);
12663 }
12664 
12665 #ifndef NDEBUG
12666 static void checkForCyclesHelper(const SDNode *N,
12667                                  SmallPtrSetImpl<const SDNode*> &Visited,
12668                                  SmallPtrSetImpl<const SDNode*> &Checked,
12669                                  const llvm::SelectionDAG *DAG) {
12670   // If this node has already been checked, don't check it again.
12671   if (Checked.count(N))
12672     return;
12673 
12674   // If a node has already been visited on this depth-first walk, reject it as
12675   // a cycle.
12676   if (!Visited.insert(N).second) {
12677     errs() << "Detected cycle in SelectionDAG\n";
12678     dbgs() << "Offending node:\n";
12679     N->dumprFull(DAG); dbgs() << "\n";
12680     abort();
12681   }
12682 
12683   for (const SDValue &Op : N->op_values())
12684     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
12685 
12686   Checked.insert(N);
12687   Visited.erase(N);
12688 }
12689 #endif
12690 
12691 void llvm::checkForCycles(const llvm::SDNode *N,
12692                           const llvm::SelectionDAG *DAG,
12693                           bool force) {
12694 #ifndef NDEBUG
12695   bool check = force;
12696 #ifdef EXPENSIVE_CHECKS
12697   check = true;
12698 #endif  // EXPENSIVE_CHECKS
12699   if (check) {
12700     assert(N && "Checking nonexistent SDNode");
12701     SmallPtrSet<const SDNode*, 32> visited;
12702     SmallPtrSet<const SDNode*, 32> checked;
12703     checkForCyclesHelper(N, visited, checked, DAG);
12704   }
12705 #endif  // !NDEBUG
12706 }
12707 
12708 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
12709   checkForCycles(DAG->getRoot().getNode(), DAG, force);
12710 }
12711