1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BranchProbabilityInfo.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/EHPersonalities.h"
30 #include "llvm/Analysis/MemoryLocation.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/CodeGen/Analysis.h"
34 #include "llvm/CodeGen/CodeGenCommonISel.h"
35 #include "llvm/CodeGen/FunctionLoweringInfo.h"
36 #include "llvm/CodeGen/GCMetadata.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineFrameInfo.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineInstrBuilder.h"
41 #include "llvm/CodeGen/MachineInstrBundleIterator.h"
42 #include "llvm/CodeGen/MachineMemOperand.h"
43 #include "llvm/CodeGen/MachineModuleInfo.h"
44 #include "llvm/CodeGen/MachineOperand.h"
45 #include "llvm/CodeGen/MachineRegisterInfo.h"
46 #include "llvm/CodeGen/RuntimeLibcalls.h"
47 #include "llvm/CodeGen/SelectionDAG.h"
48 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
49 #include "llvm/CodeGen/StackMaps.h"
50 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
51 #include "llvm/CodeGen/TargetFrameLowering.h"
52 #include "llvm/CodeGen/TargetInstrInfo.h"
53 #include "llvm/CodeGen/TargetOpcodes.h"
54 #include "llvm/CodeGen/TargetRegisterInfo.h"
55 #include "llvm/CodeGen/TargetSubtargetInfo.h"
56 #include "llvm/CodeGen/WinEHFuncInfo.h"
57 #include "llvm/IR/Argument.h"
58 #include "llvm/IR/Attributes.h"
59 #include "llvm/IR/BasicBlock.h"
60 #include "llvm/IR/CFG.h"
61 #include "llvm/IR/CallingConv.h"
62 #include "llvm/IR/Constant.h"
63 #include "llvm/IR/ConstantRange.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/IR/DataLayout.h"
66 #include "llvm/IR/DebugInfoMetadata.h"
67 #include "llvm/IR/DerivedTypes.h"
68 #include "llvm/IR/DiagnosticInfo.h"
69 #include "llvm/IR/Function.h"
70 #include "llvm/IR/GetElementPtrTypeIterator.h"
71 #include "llvm/IR/InlineAsm.h"
72 #include "llvm/IR/InstrTypes.h"
73 #include "llvm/IR/Instructions.h"
74 #include "llvm/IR/IntrinsicInst.h"
75 #include "llvm/IR/Intrinsics.h"
76 #include "llvm/IR/IntrinsicsAArch64.h"
77 #include "llvm/IR/IntrinsicsWebAssembly.h"
78 #include "llvm/IR/LLVMContext.h"
79 #include "llvm/IR/Metadata.h"
80 #include "llvm/IR/Module.h"
81 #include "llvm/IR/Operator.h"
82 #include "llvm/IR/PatternMatch.h"
83 #include "llvm/IR/Statepoint.h"
84 #include "llvm/IR/Type.h"
85 #include "llvm/IR/User.h"
86 #include "llvm/IR/Value.h"
87 #include "llvm/MC/MCContext.h"
88 #include "llvm/Support/AtomicOrdering.h"
89 #include "llvm/Support/Casting.h"
90 #include "llvm/Support/CommandLine.h"
91 #include "llvm/Support/Compiler.h"
92 #include "llvm/Support/Debug.h"
93 #include "llvm/Support/MathExtras.h"
94 #include "llvm/Support/raw_ostream.h"
95 #include "llvm/Target/TargetIntrinsicInfo.h"
96 #include "llvm/Target/TargetMachine.h"
97 #include "llvm/Target/TargetOptions.h"
98 #include "llvm/Transforms/Utils/Local.h"
99 #include <cstddef>
100 #include <iterator>
101 #include <limits>
102 #include <tuple>
103 
104 using namespace llvm;
105 using namespace PatternMatch;
106 using namespace SwitchCG;
107 
108 #define DEBUG_TYPE "isel"
109 
110 /// LimitFloatPrecision - Generate low-precision inline sequences for
111 /// some float libcalls (6, 8 or 12 bits).
112 static unsigned LimitFloatPrecision;
113 
114 static cl::opt<bool>
115     InsertAssertAlign("insert-assert-align", cl::init(true),
116                       cl::desc("Insert the experimental `assertalign` node."),
117                       cl::ReallyHidden);
118 
119 static cl::opt<unsigned, true>
120     LimitFPPrecision("limit-float-precision",
121                      cl::desc("Generate low-precision inline sequences "
122                               "for some float libcalls"),
123                      cl::location(LimitFloatPrecision), cl::Hidden,
124                      cl::init(0));
125 
126 static cl::opt<unsigned> SwitchPeelThreshold(
127     "switch-peel-threshold", cl::Hidden, cl::init(66),
128     cl::desc("Set the case probability threshold for peeling the case from a "
129              "switch statement. A value greater than 100 will void this "
130              "optimization"));
131 
132 // Limit the width of DAG chains. This is important in general to prevent
133 // DAG-based analysis from blowing up. For example, alias analysis and
134 // load clustering may not complete in reasonable time. It is difficult to
135 // recognize and avoid this situation within each individual analysis, and
136 // future analyses are likely to have the same behavior. Limiting DAG width is
137 // the safe approach and will be especially important with global DAGs.
138 //
139 // MaxParallelChains default is arbitrarily high to avoid affecting
140 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
141 // sequence over this should have been converted to llvm.memcpy by the
142 // frontend. It is easy to induce this behavior with .ll code such as:
143 // %buffer = alloca [4096 x i8]
144 // %data = load [4096 x i8]* %argPtr
145 // store [4096 x i8] %data, [4096 x i8]* %buffer
146 static const unsigned MaxParallelChains = 64;
147 
148 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
149                                       const SDValue *Parts, unsigned NumParts,
150                                       MVT PartVT, EVT ValueVT, const Value *V,
151                                       Optional<CallingConv::ID> CC);
152 
153 /// getCopyFromParts - Create a value that contains the specified legal parts
154 /// combined into the value they represent.  If the parts combine to a type
155 /// larger than ValueVT then AssertOp can be used to specify whether the extra
156 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
157 /// (ISD::AssertSext).
158 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
159                                 const SDValue *Parts, unsigned NumParts,
160                                 MVT PartVT, EVT ValueVT, const Value *V,
161                                 Optional<CallingConv::ID> CC = None,
162                                 Optional<ISD::NodeType> AssertOp = None) {
163   // Let the target assemble the parts if it wants to
164   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
165   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
166                                                    PartVT, ValueVT, CC))
167     return Val;
168 
169   if (ValueVT.isVector())
170     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
171                                   CC);
172 
173   assert(NumParts > 0 && "No parts to assemble!");
174   SDValue Val = Parts[0];
175 
176   if (NumParts > 1) {
177     // Assemble the value from multiple parts.
178     if (ValueVT.isInteger()) {
179       unsigned PartBits = PartVT.getSizeInBits();
180       unsigned ValueBits = ValueVT.getSizeInBits();
181 
182       // Assemble the power of 2 part.
183       unsigned RoundParts =
184           (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
185       unsigned RoundBits = PartBits * RoundParts;
186       EVT RoundVT = RoundBits == ValueBits ?
187         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
188       SDValue Lo, Hi;
189 
190       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
191 
192       if (RoundParts > 2) {
193         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
194                               PartVT, HalfVT, V);
195         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
196                               RoundParts / 2, PartVT, HalfVT, V);
197       } else {
198         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
199         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
200       }
201 
202       if (DAG.getDataLayout().isBigEndian())
203         std::swap(Lo, Hi);
204 
205       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
206 
207       if (RoundParts < NumParts) {
208         // Assemble the trailing non-power-of-2 part.
209         unsigned OddParts = NumParts - RoundParts;
210         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
211         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
212                               OddVT, V, CC);
213 
214         // Combine the round and odd parts.
215         Lo = Val;
216         if (DAG.getDataLayout().isBigEndian())
217           std::swap(Lo, Hi);
218         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
219         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
220         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
221                          DAG.getConstant(Lo.getValueSizeInBits(), DL,
222                                          TLI.getShiftAmountTy(
223                                              TotalVT, DAG.getDataLayout())));
224         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
225         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
226       }
227     } else if (PartVT.isFloatingPoint()) {
228       // FP split into multiple FP parts (for ppcf128)
229       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
230              "Unexpected split");
231       SDValue Lo, Hi;
232       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
233       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
234       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
235         std::swap(Lo, Hi);
236       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
237     } else {
238       // FP split into integer parts (soft fp)
239       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
240              !PartVT.isVector() && "Unexpected split");
241       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
242       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
243     }
244   }
245 
246   // There is now one part, held in Val.  Correct it to match ValueVT.
247   // PartEVT is the type of the register class that holds the value.
248   // ValueVT is the type of the inline asm operation.
249   EVT PartEVT = Val.getValueType();
250 
251   if (PartEVT == ValueVT)
252     return Val;
253 
254   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
255       ValueVT.bitsLT(PartEVT)) {
256     // For an FP value in an integer part, we need to truncate to the right
257     // width first.
258     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
259     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
260   }
261 
262   // Handle types that have the same size.
263   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
264     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
265 
266   // Handle types with different sizes.
267   if (PartEVT.isInteger() && ValueVT.isInteger()) {
268     if (ValueVT.bitsLT(PartEVT)) {
269       // For a truncate, see if we have any information to
270       // indicate whether the truncated bits will always be
271       // zero or sign-extension.
272       if (AssertOp)
273         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
274                           DAG.getValueType(ValueVT));
275       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
276     }
277     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
278   }
279 
280   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
281     // FP_ROUND's are always exact here.
282     if (ValueVT.bitsLT(Val.getValueType()))
283       return DAG.getNode(
284           ISD::FP_ROUND, DL, ValueVT, Val,
285           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
286 
287     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
288   }
289 
290   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
291   // then truncating.
292   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
293       ValueVT.bitsLT(PartEVT)) {
294     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
295     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
296   }
297 
298   report_fatal_error("Unknown mismatch in getCopyFromParts!");
299 }
300 
301 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
302                                               const Twine &ErrMsg) {
303   const Instruction *I = dyn_cast_or_null<Instruction>(V);
304   if (!V)
305     return Ctx.emitError(ErrMsg);
306 
307   const char *AsmError = ", possible invalid constraint for vector type";
308   if (const CallInst *CI = dyn_cast<CallInst>(I))
309     if (CI->isInlineAsm())
310       return Ctx.emitError(I, ErrMsg + AsmError);
311 
312   return Ctx.emitError(I, ErrMsg);
313 }
314 
315 /// getCopyFromPartsVector - Create a value that contains the specified legal
316 /// parts combined into the value they represent.  If the parts combine to a
317 /// type larger than ValueVT then AssertOp can be used to specify whether the
318 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
319 /// ValueVT (ISD::AssertSext).
320 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
321                                       const SDValue *Parts, unsigned NumParts,
322                                       MVT PartVT, EVT ValueVT, const Value *V,
323                                       Optional<CallingConv::ID> CallConv) {
324   assert(ValueVT.isVector() && "Not a vector value");
325   assert(NumParts > 0 && "No parts to assemble!");
326   const bool IsABIRegCopy = CallConv.has_value();
327 
328   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
329   SDValue Val = Parts[0];
330 
331   // Handle a multi-element vector.
332   if (NumParts > 1) {
333     EVT IntermediateVT;
334     MVT RegisterVT;
335     unsigned NumIntermediates;
336     unsigned NumRegs;
337 
338     if (IsABIRegCopy) {
339       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
340           *DAG.getContext(), *CallConv, ValueVT, IntermediateVT,
341           NumIntermediates, RegisterVT);
342     } else {
343       NumRegs =
344           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
345                                      NumIntermediates, RegisterVT);
346     }
347 
348     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
349     NumParts = NumRegs; // Silence a compiler warning.
350     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
351     assert(RegisterVT.getSizeInBits() ==
352            Parts[0].getSimpleValueType().getSizeInBits() &&
353            "Part type sizes don't match!");
354 
355     // Assemble the parts into intermediate operands.
356     SmallVector<SDValue, 8> Ops(NumIntermediates);
357     if (NumIntermediates == NumParts) {
358       // If the register was not expanded, truncate or copy the value,
359       // as appropriate.
360       for (unsigned i = 0; i != NumParts; ++i)
361         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
362                                   PartVT, IntermediateVT, V, CallConv);
363     } else if (NumParts > 0) {
364       // If the intermediate type was expanded, build the intermediate
365       // operands from the parts.
366       assert(NumParts % NumIntermediates == 0 &&
367              "Must expand into a divisible number of parts!");
368       unsigned Factor = NumParts / NumIntermediates;
369       for (unsigned i = 0; i != NumIntermediates; ++i)
370         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
371                                   PartVT, IntermediateVT, V, CallConv);
372     }
373 
374     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
375     // intermediate operands.
376     EVT BuiltVectorTy =
377         IntermediateVT.isVector()
378             ? EVT::getVectorVT(
379                   *DAG.getContext(), IntermediateVT.getScalarType(),
380                   IntermediateVT.getVectorElementCount() * NumParts)
381             : EVT::getVectorVT(*DAG.getContext(),
382                                IntermediateVT.getScalarType(),
383                                NumIntermediates);
384     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
385                                                 : ISD::BUILD_VECTOR,
386                       DL, BuiltVectorTy, Ops);
387   }
388 
389   // There is now one part, held in Val.  Correct it to match ValueVT.
390   EVT PartEVT = Val.getValueType();
391 
392   if (PartEVT == ValueVT)
393     return Val;
394 
395   if (PartEVT.isVector()) {
396     // Vector/Vector bitcast.
397     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
398       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
399 
400     // If the element type of the source/dest vectors are the same, but the
401     // parts vector has more elements than the value vector, then we have a
402     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
403     // elements we want.
404     if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
405       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
406               ValueVT.getVectorElementCount().getKnownMinValue()) &&
407              (PartEVT.getVectorElementCount().isScalable() ==
408               ValueVT.getVectorElementCount().isScalable()) &&
409              "Cannot narrow, it would be a lossy transformation");
410       PartEVT =
411           EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(),
412                            ValueVT.getVectorElementCount());
413       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
414                         DAG.getVectorIdxConstant(0, DL));
415       if (PartEVT == ValueVT)
416         return Val;
417     }
418 
419     // Promoted vector extract
420     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
421   }
422 
423   // Trivial bitcast if the types are the same size and the destination
424   // vector type is legal.
425   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
426       TLI.isTypeLegal(ValueVT))
427     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
428 
429   if (ValueVT.getVectorNumElements() != 1) {
430      // Certain ABIs require that vectors are passed as integers. For vectors
431      // are the same size, this is an obvious bitcast.
432      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
433        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
434      } else if (ValueVT.bitsLT(PartEVT)) {
435        const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
436        EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
437        // Drop the extra bits.
438        Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
439        return DAG.getBitcast(ValueVT, Val);
440      }
441 
442      diagnosePossiblyInvalidConstraint(
443          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
444      return DAG.getUNDEF(ValueVT);
445   }
446 
447   // Handle cases such as i8 -> <1 x i1>
448   EVT ValueSVT = ValueVT.getVectorElementType();
449   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
450     if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits())
451       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
452     else
453       Val = ValueVT.isFloatingPoint()
454                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
455                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
456   }
457 
458   return DAG.getBuildVector(ValueVT, DL, Val);
459 }
460 
461 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
462                                  SDValue Val, SDValue *Parts, unsigned NumParts,
463                                  MVT PartVT, const Value *V,
464                                  Optional<CallingConv::ID> CallConv);
465 
466 /// getCopyToParts - Create a series of nodes that contain the specified value
467 /// split into legal parts.  If the parts contain more bits than Val, then, for
468 /// integers, ExtendKind can be used to specify how to generate the extra bits.
469 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
470                            SDValue *Parts, unsigned NumParts, MVT PartVT,
471                            const Value *V,
472                            Optional<CallingConv::ID> CallConv = None,
473                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
474   // Let the target split the parts if it wants to
475   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
476   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
477                                       CallConv))
478     return;
479   EVT ValueVT = Val.getValueType();
480 
481   // Handle the vector case separately.
482   if (ValueVT.isVector())
483     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
484                                 CallConv);
485 
486   unsigned PartBits = PartVT.getSizeInBits();
487   unsigned OrigNumParts = NumParts;
488   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
489          "Copying to an illegal type!");
490 
491   if (NumParts == 0)
492     return;
493 
494   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
495   EVT PartEVT = PartVT;
496   if (PartEVT == ValueVT) {
497     assert(NumParts == 1 && "No-op copy with multiple parts!");
498     Parts[0] = Val;
499     return;
500   }
501 
502   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
503     // If the parts cover more bits than the value has, promote the value.
504     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
505       assert(NumParts == 1 && "Do not know what to promote to!");
506       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
507     } else {
508       if (ValueVT.isFloatingPoint()) {
509         // FP values need to be bitcast, then extended if they are being put
510         // into a larger container.
511         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
512         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
513       }
514       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
515              ValueVT.isInteger() &&
516              "Unknown mismatch!");
517       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
518       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
519       if (PartVT == MVT::x86mmx)
520         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
521     }
522   } else if (PartBits == ValueVT.getSizeInBits()) {
523     // Different types of the same size.
524     assert(NumParts == 1 && PartEVT != ValueVT);
525     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
526   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
527     // If the parts cover less bits than value has, truncate the value.
528     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
529            ValueVT.isInteger() &&
530            "Unknown mismatch!");
531     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
532     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
533     if (PartVT == MVT::x86mmx)
534       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
535   }
536 
537   // The value may have changed - recompute ValueVT.
538   ValueVT = Val.getValueType();
539   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
540          "Failed to tile the value with PartVT!");
541 
542   if (NumParts == 1) {
543     if (PartEVT != ValueVT) {
544       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
545                                         "scalar-to-vector conversion failed");
546       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
547     }
548 
549     Parts[0] = Val;
550     return;
551   }
552 
553   // Expand the value into multiple parts.
554   if (NumParts & (NumParts - 1)) {
555     // The number of parts is not a power of 2.  Split off and copy the tail.
556     assert(PartVT.isInteger() && ValueVT.isInteger() &&
557            "Do not know what to expand to!");
558     unsigned RoundParts = 1 << Log2_32(NumParts);
559     unsigned RoundBits = RoundParts * PartBits;
560     unsigned OddParts = NumParts - RoundParts;
561     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
562       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL));
563 
564     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
565                    CallConv);
566 
567     if (DAG.getDataLayout().isBigEndian())
568       // The odd parts were reversed by getCopyToParts - unreverse them.
569       std::reverse(Parts + RoundParts, Parts + NumParts);
570 
571     NumParts = RoundParts;
572     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
573     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
574   }
575 
576   // The number of parts is a power of 2.  Repeatedly bisect the value using
577   // EXTRACT_ELEMENT.
578   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
579                          EVT::getIntegerVT(*DAG.getContext(),
580                                            ValueVT.getSizeInBits()),
581                          Val);
582 
583   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
584     for (unsigned i = 0; i < NumParts; i += StepSize) {
585       unsigned ThisBits = StepSize * PartBits / 2;
586       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
587       SDValue &Part0 = Parts[i];
588       SDValue &Part1 = Parts[i+StepSize/2];
589 
590       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
591                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
592       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
593                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
594 
595       if (ThisBits == PartBits && ThisVT != PartVT) {
596         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
597         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
598       }
599     }
600   }
601 
602   if (DAG.getDataLayout().isBigEndian())
603     std::reverse(Parts, Parts + OrigNumParts);
604 }
605 
606 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
607                                      const SDLoc &DL, EVT PartVT) {
608   if (!PartVT.isVector())
609     return SDValue();
610 
611   EVT ValueVT = Val.getValueType();
612   ElementCount PartNumElts = PartVT.getVectorElementCount();
613   ElementCount ValueNumElts = ValueVT.getVectorElementCount();
614 
615   // We only support widening vectors with equivalent element types and
616   // fixed/scalable properties. If a target needs to widen a fixed-length type
617   // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
618   if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
619       PartNumElts.isScalable() != ValueNumElts.isScalable() ||
620       PartVT.getVectorElementType() != ValueVT.getVectorElementType())
621     return SDValue();
622 
623   // Widening a scalable vector to another scalable vector is done by inserting
624   // the vector into a larger undef one.
625   if (PartNumElts.isScalable())
626     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
627                        Val, DAG.getVectorIdxConstant(0, DL));
628 
629   EVT ElementVT = PartVT.getVectorElementType();
630   // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
631   // undef elements.
632   SmallVector<SDValue, 16> Ops;
633   DAG.ExtractVectorElements(Val, Ops);
634   SDValue EltUndef = DAG.getUNDEF(ElementVT);
635   Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
636 
637   // FIXME: Use CONCAT for 2x -> 4x.
638   return DAG.getBuildVector(PartVT, DL, Ops);
639 }
640 
641 /// getCopyToPartsVector - Create a series of nodes that contain the specified
642 /// value split into legal parts.
643 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
644                                  SDValue Val, SDValue *Parts, unsigned NumParts,
645                                  MVT PartVT, const Value *V,
646                                  Optional<CallingConv::ID> CallConv) {
647   EVT ValueVT = Val.getValueType();
648   assert(ValueVT.isVector() && "Not a vector");
649   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
650   const bool IsABIRegCopy = CallConv.has_value();
651 
652   if (NumParts == 1) {
653     EVT PartEVT = PartVT;
654     if (PartEVT == ValueVT) {
655       // Nothing to do.
656     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
657       // Bitconvert vector->vector case.
658       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
659     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
660       Val = Widened;
661     } else if (PartVT.isVector() &&
662                PartEVT.getVectorElementType().bitsGE(
663                    ValueVT.getVectorElementType()) &&
664                PartEVT.getVectorElementCount() ==
665                    ValueVT.getVectorElementCount()) {
666 
667       // Promoted vector extract
668       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
669     } else if (PartEVT.isVector() &&
670                PartEVT.getVectorElementType() !=
671                    ValueVT.getVectorElementType() &&
672                TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
673                    TargetLowering::TypeWidenVector) {
674       // Combination of widening and promotion.
675       EVT WidenVT =
676           EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(),
677                            PartVT.getVectorElementCount());
678       SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
679       Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
680     } else {
681       if (ValueVT.getVectorElementCount().isScalar()) {
682         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
683                           DAG.getVectorIdxConstant(0, DL));
684       } else {
685         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
686         assert(PartVT.getFixedSizeInBits() > ValueSize &&
687                "lossy conversion of vector to scalar type");
688         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
689         Val = DAG.getBitcast(IntermediateType, Val);
690         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
691       }
692     }
693 
694     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
695     Parts[0] = Val;
696     return;
697   }
698 
699   // Handle a multi-element vector.
700   EVT IntermediateVT;
701   MVT RegisterVT;
702   unsigned NumIntermediates;
703   unsigned NumRegs;
704   if (IsABIRegCopy) {
705     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
706         *DAG.getContext(), CallConv.value(), ValueVT, IntermediateVT,
707         NumIntermediates, RegisterVT);
708   } else {
709     NumRegs =
710         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
711                                    NumIntermediates, RegisterVT);
712   }
713 
714   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
715   NumParts = NumRegs; // Silence a compiler warning.
716   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
717 
718   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
719          "Mixing scalable and fixed vectors when copying in parts");
720 
721   Optional<ElementCount> DestEltCnt;
722 
723   if (IntermediateVT.isVector())
724     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
725   else
726     DestEltCnt = ElementCount::getFixed(NumIntermediates);
727 
728   EVT BuiltVectorTy = EVT::getVectorVT(
729       *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt);
730 
731   if (ValueVT == BuiltVectorTy) {
732     // Nothing to do.
733   } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
734     // Bitconvert vector->vector case.
735     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
736   } else {
737     if (BuiltVectorTy.getVectorElementType().bitsGT(
738             ValueVT.getVectorElementType())) {
739       // Integer promotion.
740       ValueVT = EVT::getVectorVT(*DAG.getContext(),
741                                  BuiltVectorTy.getVectorElementType(),
742                                  ValueVT.getVectorElementCount());
743       Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
744     }
745 
746     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
747       Val = Widened;
748     }
749   }
750 
751   assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
752 
753   // Split the vector into intermediate operands.
754   SmallVector<SDValue, 8> Ops(NumIntermediates);
755   for (unsigned i = 0; i != NumIntermediates; ++i) {
756     if (IntermediateVT.isVector()) {
757       // This does something sensible for scalable vectors - see the
758       // definition of EXTRACT_SUBVECTOR for further details.
759       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
760       Ops[i] =
761           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
762                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
763     } else {
764       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
765                            DAG.getVectorIdxConstant(i, DL));
766     }
767   }
768 
769   // Split the intermediate operands into legal parts.
770   if (NumParts == NumIntermediates) {
771     // If the register was not expanded, promote or copy the value,
772     // as appropriate.
773     for (unsigned i = 0; i != NumParts; ++i)
774       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
775   } else if (NumParts > 0) {
776     // If the intermediate type was expanded, split each the value into
777     // legal parts.
778     assert(NumIntermediates != 0 && "division by zero");
779     assert(NumParts % NumIntermediates == 0 &&
780            "Must expand into a divisible number of parts!");
781     unsigned Factor = NumParts / NumIntermediates;
782     for (unsigned i = 0; i != NumIntermediates; ++i)
783       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
784                      CallConv);
785   }
786 }
787 
788 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
789                            EVT valuevt, Optional<CallingConv::ID> CC)
790     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
791       RegCount(1, regs.size()), CallConv(CC) {}
792 
793 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
794                            const DataLayout &DL, unsigned Reg, Type *Ty,
795                            Optional<CallingConv::ID> CC) {
796   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
797 
798   CallConv = CC;
799 
800   for (EVT ValueVT : ValueVTs) {
801     unsigned NumRegs =
802         isABIMangled()
803             ? TLI.getNumRegistersForCallingConv(Context, CC.value(), ValueVT)
804             : TLI.getNumRegisters(Context, ValueVT);
805     MVT RegisterVT =
806         isABIMangled()
807             ? TLI.getRegisterTypeForCallingConv(Context, CC.value(), ValueVT)
808             : TLI.getRegisterType(Context, ValueVT);
809     for (unsigned i = 0; i != NumRegs; ++i)
810       Regs.push_back(Reg + i);
811     RegVTs.push_back(RegisterVT);
812     RegCount.push_back(NumRegs);
813     Reg += NumRegs;
814   }
815 }
816 
817 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
818                                       FunctionLoweringInfo &FuncInfo,
819                                       const SDLoc &dl, SDValue &Chain,
820                                       SDValue *Flag, const Value *V) const {
821   // A Value with type {} or [0 x %t] needs no registers.
822   if (ValueVTs.empty())
823     return SDValue();
824 
825   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
826 
827   // Assemble the legal parts into the final values.
828   SmallVector<SDValue, 4> Values(ValueVTs.size());
829   SmallVector<SDValue, 8> Parts;
830   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
831     // Copy the legal parts from the registers.
832     EVT ValueVT = ValueVTs[Value];
833     unsigned NumRegs = RegCount[Value];
834     MVT RegisterVT =
835         isABIMangled() ? TLI.getRegisterTypeForCallingConv(
836                              *DAG.getContext(), CallConv.value(), RegVTs[Value])
837                        : RegVTs[Value];
838 
839     Parts.resize(NumRegs);
840     for (unsigned i = 0; i != NumRegs; ++i) {
841       SDValue P;
842       if (!Flag) {
843         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
844       } else {
845         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
846         *Flag = P.getValue(2);
847       }
848 
849       Chain = P.getValue(1);
850       Parts[i] = P;
851 
852       // If the source register was virtual and if we know something about it,
853       // add an assert node.
854       if (!Register::isVirtualRegister(Regs[Part + i]) ||
855           !RegisterVT.isInteger())
856         continue;
857 
858       const FunctionLoweringInfo::LiveOutInfo *LOI =
859         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
860       if (!LOI)
861         continue;
862 
863       unsigned RegSize = RegisterVT.getScalarSizeInBits();
864       unsigned NumSignBits = LOI->NumSignBits;
865       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
866 
867       if (NumZeroBits == RegSize) {
868         // The current value is a zero.
869         // Explicitly express that as it would be easier for
870         // optimizations to kick in.
871         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
872         continue;
873       }
874 
875       // FIXME: We capture more information than the dag can represent.  For
876       // now, just use the tightest assertzext/assertsext possible.
877       bool isSExt;
878       EVT FromVT(MVT::Other);
879       if (NumZeroBits) {
880         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
881         isSExt = false;
882       } else if (NumSignBits > 1) {
883         FromVT =
884             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
885         isSExt = true;
886       } else {
887         continue;
888       }
889       // Add an assertion node.
890       assert(FromVT != MVT::Other);
891       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
892                              RegisterVT, P, DAG.getValueType(FromVT));
893     }
894 
895     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
896                                      RegisterVT, ValueVT, V, CallConv);
897     Part += NumRegs;
898     Parts.clear();
899   }
900 
901   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
902 }
903 
904 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
905                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
906                                  const Value *V,
907                                  ISD::NodeType PreferredExtendType) const {
908   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
909   ISD::NodeType ExtendKind = PreferredExtendType;
910 
911   // Get the list of the values's legal parts.
912   unsigned NumRegs = Regs.size();
913   SmallVector<SDValue, 8> Parts(NumRegs);
914   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
915     unsigned NumParts = RegCount[Value];
916 
917     MVT RegisterVT =
918         isABIMangled() ? TLI.getRegisterTypeForCallingConv(
919                              *DAG.getContext(), CallConv.value(), RegVTs[Value])
920                        : RegVTs[Value];
921 
922     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
923       ExtendKind = ISD::ZERO_EXTEND;
924 
925     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
926                    NumParts, RegisterVT, V, CallConv, ExtendKind);
927     Part += NumParts;
928   }
929 
930   // Copy the parts into the registers.
931   SmallVector<SDValue, 8> Chains(NumRegs);
932   for (unsigned i = 0; i != NumRegs; ++i) {
933     SDValue Part;
934     if (!Flag) {
935       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
936     } else {
937       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
938       *Flag = Part.getValue(1);
939     }
940 
941     Chains[i] = Part.getValue(0);
942   }
943 
944   if (NumRegs == 1 || Flag)
945     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
946     // flagged to it. That is the CopyToReg nodes and the user are considered
947     // a single scheduling unit. If we create a TokenFactor and return it as
948     // chain, then the TokenFactor is both a predecessor (operand) of the
949     // user as well as a successor (the TF operands are flagged to the user).
950     // c1, f1 = CopyToReg
951     // c2, f2 = CopyToReg
952     // c3     = TokenFactor c1, c2
953     // ...
954     //        = op c3, ..., f2
955     Chain = Chains[NumRegs-1];
956   else
957     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
958 }
959 
960 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
961                                         unsigned MatchingIdx, const SDLoc &dl,
962                                         SelectionDAG &DAG,
963                                         std::vector<SDValue> &Ops) const {
964   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
965 
966   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
967   if (HasMatching)
968     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
969   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
970     // Put the register class of the virtual registers in the flag word.  That
971     // way, later passes can recompute register class constraints for inline
972     // assembly as well as normal instructions.
973     // Don't do this for tied operands that can use the regclass information
974     // from the def.
975     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
976     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
977     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
978   }
979 
980   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
981   Ops.push_back(Res);
982 
983   if (Code == InlineAsm::Kind_Clobber) {
984     // Clobbers should always have a 1:1 mapping with registers, and may
985     // reference registers that have illegal (e.g. vector) types. Hence, we
986     // shouldn't try to apply any sort of splitting logic to them.
987     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
988            "No 1:1 mapping from clobbers to regs?");
989     Register SP = TLI.getStackPointerRegisterToSaveRestore();
990     (void)SP;
991     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
992       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
993       assert(
994           (Regs[I] != SP ||
995            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
996           "If we clobbered the stack pointer, MFI should know about it.");
997     }
998     return;
999   }
1000 
1001   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1002     MVT RegisterVT = RegVTs[Value];
1003     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
1004                                            RegisterVT);
1005     for (unsigned i = 0; i != NumRegs; ++i) {
1006       assert(Reg < Regs.size() && "Mismatch in # registers expected");
1007       unsigned TheReg = Regs[Reg++];
1008       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1009     }
1010   }
1011 }
1012 
1013 SmallVector<std::pair<unsigned, TypeSize>, 4>
1014 RegsForValue::getRegsAndSizes() const {
1015   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
1016   unsigned I = 0;
1017   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1018     unsigned RegCount = std::get<0>(CountAndVT);
1019     MVT RegisterVT = std::get<1>(CountAndVT);
1020     TypeSize RegisterSize = RegisterVT.getSizeInBits();
1021     for (unsigned E = I + RegCount; I != E; ++I)
1022       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1023   }
1024   return OutVec;
1025 }
1026 
1027 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1028                                const TargetLibraryInfo *li) {
1029   AA = aa;
1030   GFI = gfi;
1031   LibInfo = li;
1032   Context = DAG.getContext();
1033   LPadToCallSiteMap.clear();
1034   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1035 }
1036 
1037 void SelectionDAGBuilder::clear() {
1038   NodeMap.clear();
1039   UnusedArgNodeMap.clear();
1040   PendingLoads.clear();
1041   PendingExports.clear();
1042   PendingConstrainedFP.clear();
1043   PendingConstrainedFPStrict.clear();
1044   CurInst = nullptr;
1045   HasTailCall = false;
1046   SDNodeOrder = LowestSDNodeOrder;
1047   StatepointLowering.clear();
1048 }
1049 
1050 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1051   DanglingDebugInfoMap.clear();
1052 }
1053 
1054 // Update DAG root to include dependencies on Pending chains.
1055 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1056   SDValue Root = DAG.getRoot();
1057 
1058   if (Pending.empty())
1059     return Root;
1060 
1061   // Add current root to PendingChains, unless we already indirectly
1062   // depend on it.
1063   if (Root.getOpcode() != ISD::EntryToken) {
1064     unsigned i = 0, e = Pending.size();
1065     for (; i != e; ++i) {
1066       assert(Pending[i].getNode()->getNumOperands() > 1);
1067       if (Pending[i].getNode()->getOperand(0) == Root)
1068         break;  // Don't add the root if we already indirectly depend on it.
1069     }
1070 
1071     if (i == e)
1072       Pending.push_back(Root);
1073   }
1074 
1075   if (Pending.size() == 1)
1076     Root = Pending[0];
1077   else
1078     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1079 
1080   DAG.setRoot(Root);
1081   Pending.clear();
1082   return Root;
1083 }
1084 
1085 SDValue SelectionDAGBuilder::getMemoryRoot() {
1086   return updateRoot(PendingLoads);
1087 }
1088 
1089 SDValue SelectionDAGBuilder::getRoot() {
1090   // Chain up all pending constrained intrinsics together with all
1091   // pending loads, by simply appending them to PendingLoads and
1092   // then calling getMemoryRoot().
1093   PendingLoads.reserve(PendingLoads.size() +
1094                        PendingConstrainedFP.size() +
1095                        PendingConstrainedFPStrict.size());
1096   PendingLoads.append(PendingConstrainedFP.begin(),
1097                       PendingConstrainedFP.end());
1098   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1099                       PendingConstrainedFPStrict.end());
1100   PendingConstrainedFP.clear();
1101   PendingConstrainedFPStrict.clear();
1102   return getMemoryRoot();
1103 }
1104 
1105 SDValue SelectionDAGBuilder::getControlRoot() {
1106   // We need to emit pending fpexcept.strict constrained intrinsics,
1107   // so append them to the PendingExports list.
1108   PendingExports.append(PendingConstrainedFPStrict.begin(),
1109                         PendingConstrainedFPStrict.end());
1110   PendingConstrainedFPStrict.clear();
1111   return updateRoot(PendingExports);
1112 }
1113 
1114 void SelectionDAGBuilder::visit(const Instruction &I) {
1115   // Set up outgoing PHI node register values before emitting the terminator.
1116   if (I.isTerminator()) {
1117     HandlePHINodesInSuccessorBlocks(I.getParent());
1118   }
1119 
1120   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1121   if (!isa<DbgInfoIntrinsic>(I))
1122     ++SDNodeOrder;
1123 
1124   CurInst = &I;
1125 
1126   visit(I.getOpcode(), I);
1127 
1128   if (!I.isTerminator() && !HasTailCall &&
1129       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1130     CopyToExportRegsIfNeeded(&I);
1131 
1132   CurInst = nullptr;
1133 }
1134 
1135 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1136   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1137 }
1138 
1139 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1140   // Note: this doesn't use InstVisitor, because it has to work with
1141   // ConstantExpr's in addition to instructions.
1142   switch (Opcode) {
1143   default: llvm_unreachable("Unknown instruction type encountered!");
1144     // Build the switch statement using the Instruction.def file.
1145 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1146     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1147 #include "llvm/IR/Instruction.def"
1148   }
1149 }
1150 
1151 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI,
1152                                                DebugLoc DL, unsigned Order) {
1153   // We treat variadic dbg_values differently at this stage.
1154   if (DI->hasArgList()) {
1155     // For variadic dbg_values we will now insert an undef.
1156     // FIXME: We can potentially recover these!
1157     SmallVector<SDDbgOperand, 2> Locs;
1158     for (const Value *V : DI->getValues()) {
1159       auto Undef = UndefValue::get(V->getType());
1160       Locs.push_back(SDDbgOperand::fromConst(Undef));
1161     }
1162     SDDbgValue *SDV = DAG.getDbgValueList(
1163         DI->getVariable(), DI->getExpression(), Locs, {},
1164         /*IsIndirect=*/false, DL, Order, /*IsVariadic=*/true);
1165     DAG.AddDbgValue(SDV, /*isParameter=*/false);
1166   } else {
1167     // TODO: Dangling debug info will eventually either be resolved or produce
1168     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1169     // between the original dbg.value location and its resolved DBG_VALUE,
1170     // which we should ideally fill with an extra Undef DBG_VALUE.
1171     assert(DI->getNumVariableLocationOps() == 1 &&
1172            "DbgValueInst without an ArgList should have a single location "
1173            "operand.");
1174     DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, DL, Order);
1175   }
1176 }
1177 
1178 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1179                                                 const DIExpression *Expr) {
1180   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1181     const DbgValueInst *DI = DDI.getDI();
1182     DIVariable *DanglingVariable = DI->getVariable();
1183     DIExpression *DanglingExpr = DI->getExpression();
1184     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1185       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1186       return true;
1187     }
1188     return false;
1189   };
1190 
1191   for (auto &DDIMI : DanglingDebugInfoMap) {
1192     DanglingDebugInfoVector &DDIV = DDIMI.second;
1193 
1194     // If debug info is to be dropped, run it through final checks to see
1195     // whether it can be salvaged.
1196     for (auto &DDI : DDIV)
1197       if (isMatchingDbgValue(DDI))
1198         salvageUnresolvedDbgValue(DDI);
1199 
1200     erase_if(DDIV, isMatchingDbgValue);
1201   }
1202 }
1203 
1204 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1205 // generate the debug data structures now that we've seen its definition.
1206 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1207                                                    SDValue Val) {
1208   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1209   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1210     return;
1211 
1212   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1213   for (auto &DDI : DDIV) {
1214     const DbgValueInst *DI = DDI.getDI();
1215     assert(!DI->hasArgList() && "Not implemented for variadic dbg_values");
1216     assert(DI && "Ill-formed DanglingDebugInfo");
1217     DebugLoc dl = DDI.getdl();
1218     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1219     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1220     DILocalVariable *Variable = DI->getVariable();
1221     DIExpression *Expr = DI->getExpression();
1222     assert(Variable->isValidLocationForIntrinsic(dl) &&
1223            "Expected inlined-at fields to agree");
1224     SDDbgValue *SDV;
1225     if (Val.getNode()) {
1226       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1227       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1228       // we couldn't resolve it directly when examining the DbgValue intrinsic
1229       // in the first place we should not be more successful here). Unless we
1230       // have some test case that prove this to be correct we should avoid
1231       // calling EmitFuncArgumentDbgValue here.
1232       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl,
1233                                     FuncArgumentDbgValueKind::Value, Val)) {
1234         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1235                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1236         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1237         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1238         // inserted after the definition of Val when emitting the instructions
1239         // after ISel. An alternative could be to teach
1240         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1241         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1242                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1243                    << ValSDNodeOrder << "\n");
1244         SDV = getDbgValue(Val, Variable, Expr, dl,
1245                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1246         DAG.AddDbgValue(SDV, false);
1247       } else
1248         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1249                           << "in EmitFuncArgumentDbgValue\n");
1250     } else {
1251       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1252       auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType());
1253       auto SDV =
1254           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1255       DAG.AddDbgValue(SDV, false);
1256     }
1257   }
1258   DDIV.clear();
1259 }
1260 
1261 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1262   // TODO: For the variadic implementation, instead of only checking the fail
1263   // state of `handleDebugValue`, we need know specifically which values were
1264   // invalid, so that we attempt to salvage only those values when processing
1265   // a DIArgList.
1266   assert(!DDI.getDI()->hasArgList() &&
1267          "Not implemented for variadic dbg_values");
1268   Value *V = DDI.getDI()->getValue(0);
1269   DILocalVariable *Var = DDI.getDI()->getVariable();
1270   DIExpression *Expr = DDI.getDI()->getExpression();
1271   DebugLoc DL = DDI.getdl();
1272   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1273   unsigned SDOrder = DDI.getSDNodeOrder();
1274   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1275   // that DW_OP_stack_value is desired.
1276   assert(isa<DbgValueInst>(DDI.getDI()));
1277   bool StackValue = true;
1278 
1279   // Can this Value can be encoded without any further work?
1280   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, /*IsVariadic=*/false))
1281     return;
1282 
1283   // Attempt to salvage back through as many instructions as possible. Bail if
1284   // a non-instruction is seen, such as a constant expression or global
1285   // variable. FIXME: Further work could recover those too.
1286   while (isa<Instruction>(V)) {
1287     Instruction &VAsInst = *cast<Instruction>(V);
1288     // Temporary "0", awaiting real implementation.
1289     SmallVector<uint64_t, 16> Ops;
1290     SmallVector<Value *, 4> AdditionalValues;
1291     V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops,
1292                              AdditionalValues);
1293     // If we cannot salvage any further, and haven't yet found a suitable debug
1294     // expression, bail out.
1295     if (!V)
1296       break;
1297 
1298     // TODO: If AdditionalValues isn't empty, then the salvage can only be
1299     // represented with a DBG_VALUE_LIST, so we give up. When we have support
1300     // here for variadic dbg_values, remove that condition.
1301     if (!AdditionalValues.empty())
1302       break;
1303 
1304     // New value and expr now represent this debuginfo.
1305     Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1306 
1307     // Some kind of simplification occurred: check whether the operand of the
1308     // salvaged debug expression can be encoded in this DAG.
1309     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder,
1310                          /*IsVariadic=*/false)) {
1311       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1312                         << *DDI.getDI() << "\nBy stripping back to:\n  " << *V);
1313       return;
1314     }
1315   }
1316 
1317   // This was the final opportunity to salvage this debug information, and it
1318   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1319   // any earlier variable location.
1320   auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType());
1321   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1322   DAG.AddDbgValue(SDV, false);
1323 
1324   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << *DDI.getDI()
1325                     << "\n");
1326   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1327                     << "\n");
1328 }
1329 
1330 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1331                                            DILocalVariable *Var,
1332                                            DIExpression *Expr, DebugLoc dl,
1333                                            DebugLoc InstDL, unsigned Order,
1334                                            bool IsVariadic) {
1335   if (Values.empty())
1336     return true;
1337   SmallVector<SDDbgOperand> LocationOps;
1338   SmallVector<SDNode *> Dependencies;
1339   for (const Value *V : Values) {
1340     // Constant value.
1341     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1342         isa<ConstantPointerNull>(V)) {
1343       LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1344       continue;
1345     }
1346 
1347     // If the Value is a frame index, we can create a FrameIndex debug value
1348     // without relying on the DAG at all.
1349     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1350       auto SI = FuncInfo.StaticAllocaMap.find(AI);
1351       if (SI != FuncInfo.StaticAllocaMap.end()) {
1352         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1353         continue;
1354       }
1355     }
1356 
1357     // Do not use getValue() in here; we don't want to generate code at
1358     // this point if it hasn't been done yet.
1359     SDValue N = NodeMap[V];
1360     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1361       N = UnusedArgNodeMap[V];
1362     if (N.getNode()) {
1363       // Only emit func arg dbg value for non-variadic dbg.values for now.
1364       if (!IsVariadic &&
1365           EmitFuncArgumentDbgValue(V, Var, Expr, dl,
1366                                    FuncArgumentDbgValueKind::Value, N))
1367         return true;
1368       if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1369         // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1370         // describe stack slot locations.
1371         //
1372         // Consider "int x = 0; int *px = &x;". There are two kinds of
1373         // interesting debug values here after optimization:
1374         //
1375         //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
1376         //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1377         //
1378         // Both describe the direct values of their associated variables.
1379         Dependencies.push_back(N.getNode());
1380         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1381         continue;
1382       }
1383       LocationOps.emplace_back(
1384           SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1385       continue;
1386     }
1387 
1388     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1389     // Special rules apply for the first dbg.values of parameter variables in a
1390     // function. Identify them by the fact they reference Argument Values, that
1391     // they're parameters, and they are parameters of the current function. We
1392     // need to let them dangle until they get an SDNode.
1393     bool IsParamOfFunc =
1394         isa<Argument>(V) && Var->isParameter() && !InstDL.getInlinedAt();
1395     if (IsParamOfFunc)
1396       return false;
1397 
1398     // The value is not used in this block yet (or it would have an SDNode).
1399     // We still want the value to appear for the user if possible -- if it has
1400     // an associated VReg, we can refer to that instead.
1401     auto VMI = FuncInfo.ValueMap.find(V);
1402     if (VMI != FuncInfo.ValueMap.end()) {
1403       unsigned Reg = VMI->second;
1404       // If this is a PHI node, it may be split up into several MI PHI nodes
1405       // (in FunctionLoweringInfo::set).
1406       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1407                        V->getType(), None);
1408       if (RFV.occupiesMultipleRegs()) {
1409         // FIXME: We could potentially support variadic dbg_values here.
1410         if (IsVariadic)
1411           return false;
1412         unsigned Offset = 0;
1413         unsigned BitsToDescribe = 0;
1414         if (auto VarSize = Var->getSizeInBits())
1415           BitsToDescribe = *VarSize;
1416         if (auto Fragment = Expr->getFragmentInfo())
1417           BitsToDescribe = Fragment->SizeInBits;
1418         for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
1419           // Bail out if all bits are described already.
1420           if (Offset >= BitsToDescribe)
1421             break;
1422           // TODO: handle scalable vectors.
1423           unsigned RegisterSize = RegAndSize.second;
1424           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1425                                       ? BitsToDescribe - Offset
1426                                       : RegisterSize;
1427           auto FragmentExpr = DIExpression::createFragmentExpression(
1428               Expr, Offset, FragmentSize);
1429           if (!FragmentExpr)
1430             continue;
1431           SDDbgValue *SDV = DAG.getVRegDbgValue(
1432               Var, *FragmentExpr, RegAndSize.first, false, dl, SDNodeOrder);
1433           DAG.AddDbgValue(SDV, false);
1434           Offset += RegisterSize;
1435         }
1436         return true;
1437       }
1438       // We can use simple vreg locations for variadic dbg_values as well.
1439       LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1440       continue;
1441     }
1442     // We failed to create a SDDbgOperand for V.
1443     return false;
1444   }
1445 
1446   // We have created a SDDbgOperand for each Value in Values.
1447   // Should use Order instead of SDNodeOrder?
1448   assert(!LocationOps.empty());
1449   SDDbgValue *SDV =
1450       DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1451                           /*IsIndirect=*/false, dl, SDNodeOrder, IsVariadic);
1452   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1453   return true;
1454 }
1455 
1456 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1457   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1458   for (auto &Pair : DanglingDebugInfoMap)
1459     for (auto &DDI : Pair.second)
1460       salvageUnresolvedDbgValue(DDI);
1461   clearDanglingDebugInfo();
1462 }
1463 
1464 /// getCopyFromRegs - If there was virtual register allocated for the value V
1465 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1466 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1467   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1468   SDValue Result;
1469 
1470   if (It != FuncInfo.ValueMap.end()) {
1471     Register InReg = It->second;
1472 
1473     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1474                      DAG.getDataLayout(), InReg, Ty,
1475                      None); // This is not an ABI copy.
1476     SDValue Chain = DAG.getEntryNode();
1477     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1478                                  V);
1479     resolveDanglingDebugInfo(V, Result);
1480   }
1481 
1482   return Result;
1483 }
1484 
1485 /// getValue - Return an SDValue for the given Value.
1486 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1487   // If we already have an SDValue for this value, use it. It's important
1488   // to do this first, so that we don't create a CopyFromReg if we already
1489   // have a regular SDValue.
1490   SDValue &N = NodeMap[V];
1491   if (N.getNode()) return N;
1492 
1493   // If there's a virtual register allocated and initialized for this
1494   // value, use it.
1495   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1496     return copyFromReg;
1497 
1498   // Otherwise create a new SDValue and remember it.
1499   SDValue Val = getValueImpl(V);
1500   NodeMap[V] = Val;
1501   resolveDanglingDebugInfo(V, Val);
1502   return Val;
1503 }
1504 
1505 /// getNonRegisterValue - Return an SDValue for the given Value, but
1506 /// don't look in FuncInfo.ValueMap for a virtual register.
1507 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1508   // If we already have an SDValue for this value, use it.
1509   SDValue &N = NodeMap[V];
1510   if (N.getNode()) {
1511     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1512       // Remove the debug location from the node as the node is about to be used
1513       // in a location which may differ from the original debug location.  This
1514       // is relevant to Constant and ConstantFP nodes because they can appear
1515       // as constant expressions inside PHI nodes.
1516       N->setDebugLoc(DebugLoc());
1517     }
1518     return N;
1519   }
1520 
1521   // Otherwise create a new SDValue and remember it.
1522   SDValue Val = getValueImpl(V);
1523   NodeMap[V] = Val;
1524   resolveDanglingDebugInfo(V, Val);
1525   return Val;
1526 }
1527 
1528 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1529 /// Create an SDValue for the given value.
1530 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1531   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1532 
1533   if (const Constant *C = dyn_cast<Constant>(V)) {
1534     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1535 
1536     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1537       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1538 
1539     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1540       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1541 
1542     if (isa<ConstantPointerNull>(C)) {
1543       unsigned AS = V->getType()->getPointerAddressSpace();
1544       return DAG.getConstant(0, getCurSDLoc(),
1545                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1546     }
1547 
1548     if (match(C, m_VScale(DAG.getDataLayout())))
1549       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1550 
1551     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1552       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1553 
1554     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1555       return DAG.getUNDEF(VT);
1556 
1557     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1558       visit(CE->getOpcode(), *CE);
1559       SDValue N1 = NodeMap[V];
1560       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1561       return N1;
1562     }
1563 
1564     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1565       SmallVector<SDValue, 4> Constants;
1566       for (const Use &U : C->operands()) {
1567         SDNode *Val = getValue(U).getNode();
1568         // If the operand is an empty aggregate, there are no values.
1569         if (!Val) continue;
1570         // Add each leaf value from the operand to the Constants list
1571         // to form a flattened list of all the values.
1572         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1573           Constants.push_back(SDValue(Val, i));
1574       }
1575 
1576       return DAG.getMergeValues(Constants, getCurSDLoc());
1577     }
1578 
1579     if (const ConstantDataSequential *CDS =
1580           dyn_cast<ConstantDataSequential>(C)) {
1581       SmallVector<SDValue, 4> Ops;
1582       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1583         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1584         // Add each leaf value from the operand to the Constants list
1585         // to form a flattened list of all the values.
1586         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1587           Ops.push_back(SDValue(Val, i));
1588       }
1589 
1590       if (isa<ArrayType>(CDS->getType()))
1591         return DAG.getMergeValues(Ops, getCurSDLoc());
1592       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1593     }
1594 
1595     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1596       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1597              "Unknown struct or array constant!");
1598 
1599       SmallVector<EVT, 4> ValueVTs;
1600       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1601       unsigned NumElts = ValueVTs.size();
1602       if (NumElts == 0)
1603         return SDValue(); // empty struct
1604       SmallVector<SDValue, 4> Constants(NumElts);
1605       for (unsigned i = 0; i != NumElts; ++i) {
1606         EVT EltVT = ValueVTs[i];
1607         if (isa<UndefValue>(C))
1608           Constants[i] = DAG.getUNDEF(EltVT);
1609         else if (EltVT.isFloatingPoint())
1610           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1611         else
1612           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1613       }
1614 
1615       return DAG.getMergeValues(Constants, getCurSDLoc());
1616     }
1617 
1618     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1619       return DAG.getBlockAddress(BA, VT);
1620 
1621     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1622       return getValue(Equiv->getGlobalValue());
1623 
1624     if (const auto *NC = dyn_cast<NoCFIValue>(C))
1625       return getValue(NC->getGlobalValue());
1626 
1627     VectorType *VecTy = cast<VectorType>(V->getType());
1628 
1629     // Now that we know the number and type of the elements, get that number of
1630     // elements into the Ops array based on what kind of constant it is.
1631     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1632       SmallVector<SDValue, 16> Ops;
1633       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1634       for (unsigned i = 0; i != NumElements; ++i)
1635         Ops.push_back(getValue(CV->getOperand(i)));
1636 
1637       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1638     }
1639 
1640     if (isa<ConstantAggregateZero>(C)) {
1641       EVT EltVT =
1642           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1643 
1644       SDValue Op;
1645       if (EltVT.isFloatingPoint())
1646         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1647       else
1648         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1649 
1650       if (isa<ScalableVectorType>(VecTy))
1651         return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op);
1652 
1653       SmallVector<SDValue, 16> Ops;
1654       Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op);
1655       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1656     }
1657 
1658     llvm_unreachable("Unknown vector constant");
1659   }
1660 
1661   // If this is a static alloca, generate it as the frameindex instead of
1662   // computation.
1663   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1664     DenseMap<const AllocaInst*, int>::iterator SI =
1665       FuncInfo.StaticAllocaMap.find(AI);
1666     if (SI != FuncInfo.StaticAllocaMap.end())
1667       return DAG.getFrameIndex(SI->second,
1668                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1669   }
1670 
1671   // If this is an instruction which fast-isel has deferred, select it now.
1672   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1673     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1674 
1675     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1676                      Inst->getType(), None);
1677     SDValue Chain = DAG.getEntryNode();
1678     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1679   }
1680 
1681   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V))
1682     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1683 
1684   if (const auto *BB = dyn_cast<BasicBlock>(V))
1685     return DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
1686 
1687   llvm_unreachable("Can't get register for value!");
1688 }
1689 
1690 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1691   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1692   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1693   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1694   bool IsSEH = isAsynchronousEHPersonality(Pers);
1695   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1696   if (!IsSEH)
1697     CatchPadMBB->setIsEHScopeEntry();
1698   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1699   if (IsMSVCCXX || IsCoreCLR)
1700     CatchPadMBB->setIsEHFuncletEntry();
1701 }
1702 
1703 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1704   // Update machine-CFG edge.
1705   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1706   FuncInfo.MBB->addSuccessor(TargetMBB);
1707   TargetMBB->setIsEHCatchretTarget(true);
1708   DAG.getMachineFunction().setHasEHCatchret(true);
1709 
1710   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1711   bool IsSEH = isAsynchronousEHPersonality(Pers);
1712   if (IsSEH) {
1713     // If this is not a fall-through branch or optimizations are switched off,
1714     // emit the branch.
1715     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1716         TM.getOptLevel() == CodeGenOpt::None)
1717       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1718                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1719     return;
1720   }
1721 
1722   // Figure out the funclet membership for the catchret's successor.
1723   // This will be used by the FuncletLayout pass to determine how to order the
1724   // BB's.
1725   // A 'catchret' returns to the outer scope's color.
1726   Value *ParentPad = I.getCatchSwitchParentPad();
1727   const BasicBlock *SuccessorColor;
1728   if (isa<ConstantTokenNone>(ParentPad))
1729     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1730   else
1731     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1732   assert(SuccessorColor && "No parent funclet for catchret!");
1733   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1734   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1735 
1736   // Create the terminator node.
1737   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1738                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1739                             DAG.getBasicBlock(SuccessorColorMBB));
1740   DAG.setRoot(Ret);
1741 }
1742 
1743 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1744   // Don't emit any special code for the cleanuppad instruction. It just marks
1745   // the start of an EH scope/funclet.
1746   FuncInfo.MBB->setIsEHScopeEntry();
1747   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1748   if (Pers != EHPersonality::Wasm_CXX) {
1749     FuncInfo.MBB->setIsEHFuncletEntry();
1750     FuncInfo.MBB->setIsCleanupFuncletEntry();
1751   }
1752 }
1753 
1754 // In wasm EH, even though a catchpad may not catch an exception if a tag does
1755 // not match, it is OK to add only the first unwind destination catchpad to the
1756 // successors, because there will be at least one invoke instruction within the
1757 // catch scope that points to the next unwind destination, if one exists, so
1758 // CFGSort cannot mess up with BB sorting order.
1759 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
1760 // call within them, and catchpads only consisting of 'catch (...)' have a
1761 // '__cxa_end_catch' call within them, both of which generate invokes in case
1762 // the next unwind destination exists, i.e., the next unwind destination is not
1763 // the caller.)
1764 //
1765 // Having at most one EH pad successor is also simpler and helps later
1766 // transformations.
1767 //
1768 // For example,
1769 // current:
1770 //   invoke void @foo to ... unwind label %catch.dispatch
1771 // catch.dispatch:
1772 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
1773 // catch.start:
1774 //   ...
1775 //   ... in this BB or some other child BB dominated by this BB there will be an
1776 //   invoke that points to 'next' BB as an unwind destination
1777 //
1778 // next: ; We don't need to add this to 'current' BB's successor
1779 //   ...
1780 static void findWasmUnwindDestinations(
1781     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1782     BranchProbability Prob,
1783     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1784         &UnwindDests) {
1785   while (EHPadBB) {
1786     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1787     if (isa<CleanupPadInst>(Pad)) {
1788       // Stop on cleanup pads.
1789       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1790       UnwindDests.back().first->setIsEHScopeEntry();
1791       break;
1792     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1793       // Add the catchpad handlers to the possible destinations. We don't
1794       // continue to the unwind destination of the catchswitch for wasm.
1795       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1796         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1797         UnwindDests.back().first->setIsEHScopeEntry();
1798       }
1799       break;
1800     } else {
1801       continue;
1802     }
1803   }
1804 }
1805 
1806 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1807 /// many places it could ultimately go. In the IR, we have a single unwind
1808 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1809 /// This function skips over imaginary basic blocks that hold catchswitch
1810 /// instructions, and finds all the "real" machine
1811 /// basic block destinations. As those destinations may not be successors of
1812 /// EHPadBB, here we also calculate the edge probability to those destinations.
1813 /// The passed-in Prob is the edge probability to EHPadBB.
1814 static void findUnwindDestinations(
1815     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1816     BranchProbability Prob,
1817     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1818         &UnwindDests) {
1819   EHPersonality Personality =
1820     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1821   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1822   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1823   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1824   bool IsSEH = isAsynchronousEHPersonality(Personality);
1825 
1826   if (IsWasmCXX) {
1827     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1828     assert(UnwindDests.size() <= 1 &&
1829            "There should be at most one unwind destination for wasm");
1830     return;
1831   }
1832 
1833   while (EHPadBB) {
1834     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1835     BasicBlock *NewEHPadBB = nullptr;
1836     if (isa<LandingPadInst>(Pad)) {
1837       // Stop on landingpads. They are not funclets.
1838       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1839       break;
1840     } else if (isa<CleanupPadInst>(Pad)) {
1841       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1842       // personalities.
1843       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1844       UnwindDests.back().first->setIsEHScopeEntry();
1845       UnwindDests.back().first->setIsEHFuncletEntry();
1846       break;
1847     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1848       // Add the catchpad handlers to the possible destinations.
1849       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1850         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1851         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1852         if (IsMSVCCXX || IsCoreCLR)
1853           UnwindDests.back().first->setIsEHFuncletEntry();
1854         if (!IsSEH)
1855           UnwindDests.back().first->setIsEHScopeEntry();
1856       }
1857       NewEHPadBB = CatchSwitch->getUnwindDest();
1858     } else {
1859       continue;
1860     }
1861 
1862     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1863     if (BPI && NewEHPadBB)
1864       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1865     EHPadBB = NewEHPadBB;
1866   }
1867 }
1868 
1869 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1870   // Update successor info.
1871   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1872   auto UnwindDest = I.getUnwindDest();
1873   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1874   BranchProbability UnwindDestProb =
1875       (BPI && UnwindDest)
1876           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1877           : BranchProbability::getZero();
1878   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1879   for (auto &UnwindDest : UnwindDests) {
1880     UnwindDest.first->setIsEHPad();
1881     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1882   }
1883   FuncInfo.MBB->normalizeSuccProbs();
1884 
1885   // Create the terminator node.
1886   SDValue Ret =
1887       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1888   DAG.setRoot(Ret);
1889 }
1890 
1891 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1892   report_fatal_error("visitCatchSwitch not yet implemented!");
1893 }
1894 
1895 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1896   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1897   auto &DL = DAG.getDataLayout();
1898   SDValue Chain = getControlRoot();
1899   SmallVector<ISD::OutputArg, 8> Outs;
1900   SmallVector<SDValue, 8> OutVals;
1901 
1902   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1903   // lower
1904   //
1905   //   %val = call <ty> @llvm.experimental.deoptimize()
1906   //   ret <ty> %val
1907   //
1908   // differently.
1909   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1910     LowerDeoptimizingReturn();
1911     return;
1912   }
1913 
1914   if (!FuncInfo.CanLowerReturn) {
1915     unsigned DemoteReg = FuncInfo.DemoteRegister;
1916     const Function *F = I.getParent()->getParent();
1917 
1918     // Emit a store of the return value through the virtual register.
1919     // Leave Outs empty so that LowerReturn won't try to load return
1920     // registers the usual way.
1921     SmallVector<EVT, 1> PtrValueVTs;
1922     ComputeValueVTs(TLI, DL,
1923                     F->getReturnType()->getPointerTo(
1924                         DAG.getDataLayout().getAllocaAddrSpace()),
1925                     PtrValueVTs);
1926 
1927     SDValue RetPtr =
1928         DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]);
1929     SDValue RetOp = getValue(I.getOperand(0));
1930 
1931     SmallVector<EVT, 4> ValueVTs, MemVTs;
1932     SmallVector<uint64_t, 4> Offsets;
1933     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1934                     &Offsets);
1935     unsigned NumValues = ValueVTs.size();
1936 
1937     SmallVector<SDValue, 4> Chains(NumValues);
1938     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
1939     for (unsigned i = 0; i != NumValues; ++i) {
1940       // An aggregate return value cannot wrap around the address space, so
1941       // offsets to its parts don't wrap either.
1942       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
1943                                            TypeSize::Fixed(Offsets[i]));
1944 
1945       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
1946       if (MemVTs[i] != ValueVTs[i])
1947         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1948       Chains[i] = DAG.getStore(
1949           Chain, getCurSDLoc(), Val,
1950           // FIXME: better loc info would be nice.
1951           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
1952           commonAlignment(BaseAlign, Offsets[i]));
1953     }
1954 
1955     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1956                         MVT::Other, Chains);
1957   } else if (I.getNumOperands() != 0) {
1958     SmallVector<EVT, 4> ValueVTs;
1959     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1960     unsigned NumValues = ValueVTs.size();
1961     if (NumValues) {
1962       SDValue RetOp = getValue(I.getOperand(0));
1963 
1964       const Function *F = I.getParent()->getParent();
1965 
1966       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1967           I.getOperand(0)->getType(), F->getCallingConv(),
1968           /*IsVarArg*/ false, DL);
1969 
1970       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1971       if (F->getAttributes().hasRetAttr(Attribute::SExt))
1972         ExtendKind = ISD::SIGN_EXTEND;
1973       else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
1974         ExtendKind = ISD::ZERO_EXTEND;
1975 
1976       LLVMContext &Context = F->getContext();
1977       bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
1978 
1979       for (unsigned j = 0; j != NumValues; ++j) {
1980         EVT VT = ValueVTs[j];
1981 
1982         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1983           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1984 
1985         CallingConv::ID CC = F->getCallingConv();
1986 
1987         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1988         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1989         SmallVector<SDValue, 4> Parts(NumParts);
1990         getCopyToParts(DAG, getCurSDLoc(),
1991                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1992                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1993 
1994         // 'inreg' on function refers to return value
1995         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1996         if (RetInReg)
1997           Flags.setInReg();
1998 
1999         if (I.getOperand(0)->getType()->isPointerTy()) {
2000           Flags.setPointer();
2001           Flags.setPointerAddrSpace(
2002               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
2003         }
2004 
2005         if (NeedsRegBlock) {
2006           Flags.setInConsecutiveRegs();
2007           if (j == NumValues - 1)
2008             Flags.setInConsecutiveRegsLast();
2009         }
2010 
2011         // Propagate extension type if any
2012         if (ExtendKind == ISD::SIGN_EXTEND)
2013           Flags.setSExt();
2014         else if (ExtendKind == ISD::ZERO_EXTEND)
2015           Flags.setZExt();
2016 
2017         for (unsigned i = 0; i < NumParts; ++i) {
2018           Outs.push_back(ISD::OutputArg(Flags,
2019                                         Parts[i].getValueType().getSimpleVT(),
2020                                         VT, /*isfixed=*/true, 0, 0));
2021           OutVals.push_back(Parts[i]);
2022         }
2023       }
2024     }
2025   }
2026 
2027   // Push in swifterror virtual register as the last element of Outs. This makes
2028   // sure swifterror virtual register will be returned in the swifterror
2029   // physical register.
2030   const Function *F = I.getParent()->getParent();
2031   if (TLI.supportSwiftError() &&
2032       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2033     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2034     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2035     Flags.setSwiftError();
2036     Outs.push_back(ISD::OutputArg(
2037         Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)),
2038         /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0));
2039     // Create SDNode for the swifterror virtual register.
2040     OutVals.push_back(
2041         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2042                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2043                         EVT(TLI.getPointerTy(DL))));
2044   }
2045 
2046   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2047   CallingConv::ID CallConv =
2048     DAG.getMachineFunction().getFunction().getCallingConv();
2049   Chain = DAG.getTargetLoweringInfo().LowerReturn(
2050       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2051 
2052   // Verify that the target's LowerReturn behaved as expected.
2053   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2054          "LowerReturn didn't return a valid chain!");
2055 
2056   // Update the DAG with the new chain value resulting from return lowering.
2057   DAG.setRoot(Chain);
2058 }
2059 
2060 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2061 /// created for it, emit nodes to copy the value into the virtual
2062 /// registers.
2063 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2064   // Skip empty types
2065   if (V->getType()->isEmptyTy())
2066     return;
2067 
2068   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2069   if (VMI != FuncInfo.ValueMap.end()) {
2070     assert(!V->use_empty() && "Unused value assigned virtual registers!");
2071     CopyValueToVirtualRegister(V, VMI->second);
2072   }
2073 }
2074 
2075 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2076 /// the current basic block, add it to ValueMap now so that we'll get a
2077 /// CopyTo/FromReg.
2078 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2079   // No need to export constants.
2080   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2081 
2082   // Already exported?
2083   if (FuncInfo.isExportedInst(V)) return;
2084 
2085   unsigned Reg = FuncInfo.InitializeRegForValue(V);
2086   CopyValueToVirtualRegister(V, Reg);
2087 }
2088 
2089 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2090                                                      const BasicBlock *FromBB) {
2091   // The operands of the setcc have to be in this block.  We don't know
2092   // how to export them from some other block.
2093   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2094     // Can export from current BB.
2095     if (VI->getParent() == FromBB)
2096       return true;
2097 
2098     // Is already exported, noop.
2099     return FuncInfo.isExportedInst(V);
2100   }
2101 
2102   // If this is an argument, we can export it if the BB is the entry block or
2103   // if it is already exported.
2104   if (isa<Argument>(V)) {
2105     if (FromBB->isEntryBlock())
2106       return true;
2107 
2108     // Otherwise, can only export this if it is already exported.
2109     return FuncInfo.isExportedInst(V);
2110   }
2111 
2112   // Otherwise, constants can always be exported.
2113   return true;
2114 }
2115 
2116 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2117 BranchProbability
2118 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2119                                         const MachineBasicBlock *Dst) const {
2120   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2121   const BasicBlock *SrcBB = Src->getBasicBlock();
2122   const BasicBlock *DstBB = Dst->getBasicBlock();
2123   if (!BPI) {
2124     // If BPI is not available, set the default probability as 1 / N, where N is
2125     // the number of successors.
2126     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2127     return BranchProbability(1, SuccSize);
2128   }
2129   return BPI->getEdgeProbability(SrcBB, DstBB);
2130 }
2131 
2132 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2133                                                MachineBasicBlock *Dst,
2134                                                BranchProbability Prob) {
2135   if (!FuncInfo.BPI)
2136     Src->addSuccessorWithoutProb(Dst);
2137   else {
2138     if (Prob.isUnknown())
2139       Prob = getEdgeProbability(Src, Dst);
2140     Src->addSuccessor(Dst, Prob);
2141   }
2142 }
2143 
2144 static bool InBlock(const Value *V, const BasicBlock *BB) {
2145   if (const Instruction *I = dyn_cast<Instruction>(V))
2146     return I->getParent() == BB;
2147   return true;
2148 }
2149 
2150 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2151 /// This function emits a branch and is used at the leaves of an OR or an
2152 /// AND operator tree.
2153 void
2154 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2155                                                   MachineBasicBlock *TBB,
2156                                                   MachineBasicBlock *FBB,
2157                                                   MachineBasicBlock *CurBB,
2158                                                   MachineBasicBlock *SwitchBB,
2159                                                   BranchProbability TProb,
2160                                                   BranchProbability FProb,
2161                                                   bool InvertCond) {
2162   const BasicBlock *BB = CurBB->getBasicBlock();
2163 
2164   // If the leaf of the tree is a comparison, merge the condition into
2165   // the caseblock.
2166   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2167     // The operands of the cmp have to be in this block.  We don't know
2168     // how to export them from some other block.  If this is the first block
2169     // of the sequence, no exporting is needed.
2170     if (CurBB == SwitchBB ||
2171         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2172          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2173       ISD::CondCode Condition;
2174       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2175         ICmpInst::Predicate Pred =
2176             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2177         Condition = getICmpCondCode(Pred);
2178       } else {
2179         const FCmpInst *FC = cast<FCmpInst>(Cond);
2180         FCmpInst::Predicate Pred =
2181             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2182         Condition = getFCmpCondCode(Pred);
2183         if (TM.Options.NoNaNsFPMath)
2184           Condition = getFCmpCodeWithoutNaN(Condition);
2185       }
2186 
2187       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2188                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2189       SL->SwitchCases.push_back(CB);
2190       return;
2191     }
2192   }
2193 
2194   // Create a CaseBlock record representing this branch.
2195   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2196   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2197                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2198   SL->SwitchCases.push_back(CB);
2199 }
2200 
2201 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2202                                                MachineBasicBlock *TBB,
2203                                                MachineBasicBlock *FBB,
2204                                                MachineBasicBlock *CurBB,
2205                                                MachineBasicBlock *SwitchBB,
2206                                                Instruction::BinaryOps Opc,
2207                                                BranchProbability TProb,
2208                                                BranchProbability FProb,
2209                                                bool InvertCond) {
2210   // Skip over not part of the tree and remember to invert op and operands at
2211   // next level.
2212   Value *NotCond;
2213   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2214       InBlock(NotCond, CurBB->getBasicBlock())) {
2215     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2216                          !InvertCond);
2217     return;
2218   }
2219 
2220   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2221   const Value *BOpOp0, *BOpOp1;
2222   // Compute the effective opcode for Cond, taking into account whether it needs
2223   // to be inverted, e.g.
2224   //   and (not (or A, B)), C
2225   // gets lowered as
2226   //   and (and (not A, not B), C)
2227   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2228   if (BOp) {
2229     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2230                ? Instruction::And
2231                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2232                       ? Instruction::Or
2233                       : (Instruction::BinaryOps)0);
2234     if (InvertCond) {
2235       if (BOpc == Instruction::And)
2236         BOpc = Instruction::Or;
2237       else if (BOpc == Instruction::Or)
2238         BOpc = Instruction::And;
2239     }
2240   }
2241 
2242   // If this node is not part of the or/and tree, emit it as a branch.
2243   // Note that all nodes in the tree should have same opcode.
2244   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2245   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2246       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2247       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2248     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2249                                  TProb, FProb, InvertCond);
2250     return;
2251   }
2252 
2253   //  Create TmpBB after CurBB.
2254   MachineFunction::iterator BBI(CurBB);
2255   MachineFunction &MF = DAG.getMachineFunction();
2256   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2257   CurBB->getParent()->insert(++BBI, TmpBB);
2258 
2259   if (Opc == Instruction::Or) {
2260     // Codegen X | Y as:
2261     // BB1:
2262     //   jmp_if_X TBB
2263     //   jmp TmpBB
2264     // TmpBB:
2265     //   jmp_if_Y TBB
2266     //   jmp FBB
2267     //
2268 
2269     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2270     // The requirement is that
2271     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2272     //     = TrueProb for original BB.
2273     // Assuming the original probabilities are A and B, one choice is to set
2274     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2275     // A/(1+B) and 2B/(1+B). This choice assumes that
2276     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2277     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2278     // TmpBB, but the math is more complicated.
2279 
2280     auto NewTrueProb = TProb / 2;
2281     auto NewFalseProb = TProb / 2 + FProb;
2282     // Emit the LHS condition.
2283     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2284                          NewFalseProb, InvertCond);
2285 
2286     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2287     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2288     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2289     // Emit the RHS condition into TmpBB.
2290     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2291                          Probs[1], InvertCond);
2292   } else {
2293     assert(Opc == Instruction::And && "Unknown merge op!");
2294     // Codegen X & Y as:
2295     // BB1:
2296     //   jmp_if_X TmpBB
2297     //   jmp FBB
2298     // TmpBB:
2299     //   jmp_if_Y TBB
2300     //   jmp FBB
2301     //
2302     //  This requires creation of TmpBB after CurBB.
2303 
2304     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2305     // The requirement is that
2306     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2307     //     = FalseProb for original BB.
2308     // Assuming the original probabilities are A and B, one choice is to set
2309     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2310     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2311     // TrueProb for BB1 * FalseProb for TmpBB.
2312 
2313     auto NewTrueProb = TProb + FProb / 2;
2314     auto NewFalseProb = FProb / 2;
2315     // Emit the LHS condition.
2316     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2317                          NewFalseProb, InvertCond);
2318 
2319     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2320     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2321     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2322     // Emit the RHS condition into TmpBB.
2323     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2324                          Probs[1], InvertCond);
2325   }
2326 }
2327 
2328 /// If the set of cases should be emitted as a series of branches, return true.
2329 /// If we should emit this as a bunch of and/or'd together conditions, return
2330 /// false.
2331 bool
2332 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2333   if (Cases.size() != 2) return true;
2334 
2335   // If this is two comparisons of the same values or'd or and'd together, they
2336   // will get folded into a single comparison, so don't emit two blocks.
2337   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2338        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2339       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2340        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2341     return false;
2342   }
2343 
2344   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2345   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2346   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2347       Cases[0].CC == Cases[1].CC &&
2348       isa<Constant>(Cases[0].CmpRHS) &&
2349       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2350     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2351       return false;
2352     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2353       return false;
2354   }
2355 
2356   return true;
2357 }
2358 
2359 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2360   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2361 
2362   // Update machine-CFG edges.
2363   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2364 
2365   if (I.isUnconditional()) {
2366     // Update machine-CFG edges.
2367     BrMBB->addSuccessor(Succ0MBB);
2368 
2369     // If this is not a fall-through branch or optimizations are switched off,
2370     // emit the branch.
2371     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2372       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2373                               MVT::Other, getControlRoot(),
2374                               DAG.getBasicBlock(Succ0MBB)));
2375 
2376     return;
2377   }
2378 
2379   // If this condition is one of the special cases we handle, do special stuff
2380   // now.
2381   const Value *CondVal = I.getCondition();
2382   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2383 
2384   // If this is a series of conditions that are or'd or and'd together, emit
2385   // this as a sequence of branches instead of setcc's with and/or operations.
2386   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2387   // unpredictable branches, and vector extracts because those jumps are likely
2388   // expensive for any target), this should improve performance.
2389   // For example, instead of something like:
2390   //     cmp A, B
2391   //     C = seteq
2392   //     cmp D, E
2393   //     F = setle
2394   //     or C, F
2395   //     jnz foo
2396   // Emit:
2397   //     cmp A, B
2398   //     je foo
2399   //     cmp D, E
2400   //     jle foo
2401   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2402   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2403       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2404     Value *Vec;
2405     const Value *BOp0, *BOp1;
2406     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2407     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2408       Opcode = Instruction::And;
2409     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2410       Opcode = Instruction::Or;
2411 
2412     if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2413                     match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
2414       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2415                            getEdgeProbability(BrMBB, Succ0MBB),
2416                            getEdgeProbability(BrMBB, Succ1MBB),
2417                            /*InvertCond=*/false);
2418       // If the compares in later blocks need to use values not currently
2419       // exported from this block, export them now.  This block should always
2420       // be the first entry.
2421       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2422 
2423       // Allow some cases to be rejected.
2424       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2425         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2426           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2427           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2428         }
2429 
2430         // Emit the branch for this block.
2431         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2432         SL->SwitchCases.erase(SL->SwitchCases.begin());
2433         return;
2434       }
2435 
2436       // Okay, we decided not to do this, remove any inserted MBB's and clear
2437       // SwitchCases.
2438       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2439         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2440 
2441       SL->SwitchCases.clear();
2442     }
2443   }
2444 
2445   // Create a CaseBlock record representing this branch.
2446   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2447                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2448 
2449   // Use visitSwitchCase to actually insert the fast branch sequence for this
2450   // cond branch.
2451   visitSwitchCase(CB, BrMBB);
2452 }
2453 
2454 /// visitSwitchCase - Emits the necessary code to represent a single node in
2455 /// the binary search tree resulting from lowering a switch instruction.
2456 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2457                                           MachineBasicBlock *SwitchBB) {
2458   SDValue Cond;
2459   SDValue CondLHS = getValue(CB.CmpLHS);
2460   SDLoc dl = CB.DL;
2461 
2462   if (CB.CC == ISD::SETTRUE) {
2463     // Branch or fall through to TrueBB.
2464     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2465     SwitchBB->normalizeSuccProbs();
2466     if (CB.TrueBB != NextBlock(SwitchBB)) {
2467       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2468                               DAG.getBasicBlock(CB.TrueBB)));
2469     }
2470     return;
2471   }
2472 
2473   auto &TLI = DAG.getTargetLoweringInfo();
2474   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2475 
2476   // Build the setcc now.
2477   if (!CB.CmpMHS) {
2478     // Fold "(X == true)" to X and "(X == false)" to !X to
2479     // handle common cases produced by branch lowering.
2480     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2481         CB.CC == ISD::SETEQ)
2482       Cond = CondLHS;
2483     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2484              CB.CC == ISD::SETEQ) {
2485       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2486       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2487     } else {
2488       SDValue CondRHS = getValue(CB.CmpRHS);
2489 
2490       // If a pointer's DAG type is larger than its memory type then the DAG
2491       // values are zero-extended. This breaks signed comparisons so truncate
2492       // back to the underlying type before doing the compare.
2493       if (CondLHS.getValueType() != MemVT) {
2494         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2495         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2496       }
2497       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2498     }
2499   } else {
2500     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2501 
2502     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2503     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2504 
2505     SDValue CmpOp = getValue(CB.CmpMHS);
2506     EVT VT = CmpOp.getValueType();
2507 
2508     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2509       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2510                           ISD::SETLE);
2511     } else {
2512       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2513                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2514       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2515                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2516     }
2517   }
2518 
2519   // Update successor info
2520   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2521   // TrueBB and FalseBB are always different unless the incoming IR is
2522   // degenerate. This only happens when running llc on weird IR.
2523   if (CB.TrueBB != CB.FalseBB)
2524     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2525   SwitchBB->normalizeSuccProbs();
2526 
2527   // If the lhs block is the next block, invert the condition so that we can
2528   // fall through to the lhs instead of the rhs block.
2529   if (CB.TrueBB == NextBlock(SwitchBB)) {
2530     std::swap(CB.TrueBB, CB.FalseBB);
2531     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2532     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2533   }
2534 
2535   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2536                                MVT::Other, getControlRoot(), Cond,
2537                                DAG.getBasicBlock(CB.TrueBB));
2538 
2539   // Insert the false branch. Do this even if it's a fall through branch,
2540   // this makes it easier to do DAG optimizations which require inverting
2541   // the branch condition.
2542   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2543                        DAG.getBasicBlock(CB.FalseBB));
2544 
2545   DAG.setRoot(BrCond);
2546 }
2547 
2548 /// visitJumpTable - Emit JumpTable node in the current MBB
2549 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2550   // Emit the code for the jump table
2551   assert(JT.Reg != -1U && "Should lower JT Header first!");
2552   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2553   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2554                                      JT.Reg, PTy);
2555   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2556   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2557                                     MVT::Other, Index.getValue(1),
2558                                     Table, Index);
2559   DAG.setRoot(BrJumpTable);
2560 }
2561 
2562 /// visitJumpTableHeader - This function emits necessary code to produce index
2563 /// in the JumpTable from switch case.
2564 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2565                                                JumpTableHeader &JTH,
2566                                                MachineBasicBlock *SwitchBB) {
2567   SDLoc dl = getCurSDLoc();
2568 
2569   // Subtract the lowest switch case value from the value being switched on.
2570   SDValue SwitchOp = getValue(JTH.SValue);
2571   EVT VT = SwitchOp.getValueType();
2572   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2573                             DAG.getConstant(JTH.First, dl, VT));
2574 
2575   // The SDNode we just created, which holds the value being switched on minus
2576   // the smallest case value, needs to be copied to a virtual register so it
2577   // can be used as an index into the jump table in a subsequent basic block.
2578   // This value may be smaller or larger than the target's pointer type, and
2579   // therefore require extension or truncating.
2580   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2581   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2582 
2583   unsigned JumpTableReg =
2584       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2585   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2586                                     JumpTableReg, SwitchOp);
2587   JT.Reg = JumpTableReg;
2588 
2589   if (!JTH.FallthroughUnreachable) {
2590     // Emit the range check for the jump table, and branch to the default block
2591     // for the switch statement if the value being switched on exceeds the
2592     // largest case in the switch.
2593     SDValue CMP = DAG.getSetCC(
2594         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2595                                    Sub.getValueType()),
2596         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2597 
2598     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2599                                  MVT::Other, CopyTo, CMP,
2600                                  DAG.getBasicBlock(JT.Default));
2601 
2602     // Avoid emitting unnecessary branches to the next block.
2603     if (JT.MBB != NextBlock(SwitchBB))
2604       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2605                            DAG.getBasicBlock(JT.MBB));
2606 
2607     DAG.setRoot(BrCond);
2608   } else {
2609     // Avoid emitting unnecessary branches to the next block.
2610     if (JT.MBB != NextBlock(SwitchBB))
2611       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2612                               DAG.getBasicBlock(JT.MBB)));
2613     else
2614       DAG.setRoot(CopyTo);
2615   }
2616 }
2617 
2618 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2619 /// variable if there exists one.
2620 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2621                                  SDValue &Chain) {
2622   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2623   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2624   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2625   MachineFunction &MF = DAG.getMachineFunction();
2626   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2627   MachineSDNode *Node =
2628       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2629   if (Global) {
2630     MachinePointerInfo MPInfo(Global);
2631     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2632                  MachineMemOperand::MODereferenceable;
2633     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2634         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2635     DAG.setNodeMemRefs(Node, {MemRef});
2636   }
2637   if (PtrTy != PtrMemTy)
2638     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2639   return SDValue(Node, 0);
2640 }
2641 
2642 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2643 /// tail spliced into a stack protector check success bb.
2644 ///
2645 /// For a high level explanation of how this fits into the stack protector
2646 /// generation see the comment on the declaration of class
2647 /// StackProtectorDescriptor.
2648 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2649                                                   MachineBasicBlock *ParentBB) {
2650 
2651   // First create the loads to the guard/stack slot for the comparison.
2652   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2653   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2654   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2655 
2656   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2657   int FI = MFI.getStackProtectorIndex();
2658 
2659   SDValue Guard;
2660   SDLoc dl = getCurSDLoc();
2661   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2662   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2663   Align Align =
2664       DAG.getDataLayout().getPrefTypeAlign(Type::getInt8PtrTy(M.getContext()));
2665 
2666   // Generate code to load the content of the guard slot.
2667   SDValue GuardVal = DAG.getLoad(
2668       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2669       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2670       MachineMemOperand::MOVolatile);
2671 
2672   if (TLI.useStackGuardXorFP())
2673     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2674 
2675   // Retrieve guard check function, nullptr if instrumentation is inlined.
2676   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2677     // The target provides a guard check function to validate the guard value.
2678     // Generate a call to that function with the content of the guard slot as
2679     // argument.
2680     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2681     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2682 
2683     TargetLowering::ArgListTy Args;
2684     TargetLowering::ArgListEntry Entry;
2685     Entry.Node = GuardVal;
2686     Entry.Ty = FnTy->getParamType(0);
2687     if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
2688       Entry.IsInReg = true;
2689     Args.push_back(Entry);
2690 
2691     TargetLowering::CallLoweringInfo CLI(DAG);
2692     CLI.setDebugLoc(getCurSDLoc())
2693         .setChain(DAG.getEntryNode())
2694         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2695                    getValue(GuardCheckFn), std::move(Args));
2696 
2697     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2698     DAG.setRoot(Result.second);
2699     return;
2700   }
2701 
2702   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2703   // Otherwise, emit a volatile load to retrieve the stack guard value.
2704   SDValue Chain = DAG.getEntryNode();
2705   if (TLI.useLoadStackGuardNode()) {
2706     Guard = getLoadStackGuard(DAG, dl, Chain);
2707   } else {
2708     const Value *IRGuard = TLI.getSDagStackGuard(M);
2709     SDValue GuardPtr = getValue(IRGuard);
2710 
2711     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2712                         MachinePointerInfo(IRGuard, 0), Align,
2713                         MachineMemOperand::MOVolatile);
2714   }
2715 
2716   // Perform the comparison via a getsetcc.
2717   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2718                                                         *DAG.getContext(),
2719                                                         Guard.getValueType()),
2720                              Guard, GuardVal, ISD::SETNE);
2721 
2722   // If the guard/stackslot do not equal, branch to failure MBB.
2723   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2724                                MVT::Other, GuardVal.getOperand(0),
2725                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2726   // Otherwise branch to success MBB.
2727   SDValue Br = DAG.getNode(ISD::BR, dl,
2728                            MVT::Other, BrCond,
2729                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2730 
2731   DAG.setRoot(Br);
2732 }
2733 
2734 /// Codegen the failure basic block for a stack protector check.
2735 ///
2736 /// A failure stack protector machine basic block consists simply of a call to
2737 /// __stack_chk_fail().
2738 ///
2739 /// For a high level explanation of how this fits into the stack protector
2740 /// generation see the comment on the declaration of class
2741 /// StackProtectorDescriptor.
2742 void
2743 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2744   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2745   TargetLowering::MakeLibCallOptions CallOptions;
2746   CallOptions.setDiscardResult(true);
2747   SDValue Chain =
2748       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2749                       None, CallOptions, getCurSDLoc()).second;
2750   // On PS4/PS5, the "return address" must still be within the calling
2751   // function, even if it's at the very end, so emit an explicit TRAP here.
2752   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2753   if (TM.getTargetTriple().isPS())
2754     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2755   // WebAssembly needs an unreachable instruction after a non-returning call,
2756   // because the function return type can be different from __stack_chk_fail's
2757   // return type (void).
2758   if (TM.getTargetTriple().isWasm())
2759     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2760 
2761   DAG.setRoot(Chain);
2762 }
2763 
2764 /// visitBitTestHeader - This function emits necessary code to produce value
2765 /// suitable for "bit tests"
2766 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2767                                              MachineBasicBlock *SwitchBB) {
2768   SDLoc dl = getCurSDLoc();
2769 
2770   // Subtract the minimum value.
2771   SDValue SwitchOp = getValue(B.SValue);
2772   EVT VT = SwitchOp.getValueType();
2773   SDValue RangeSub =
2774       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2775 
2776   // Determine the type of the test operands.
2777   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2778   bool UsePtrType = false;
2779   if (!TLI.isTypeLegal(VT)) {
2780     UsePtrType = true;
2781   } else {
2782     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2783       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2784         // Switch table case range are encoded into series of masks.
2785         // Just use pointer type, it's guaranteed to fit.
2786         UsePtrType = true;
2787         break;
2788       }
2789   }
2790   SDValue Sub = RangeSub;
2791   if (UsePtrType) {
2792     VT = TLI.getPointerTy(DAG.getDataLayout());
2793     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2794   }
2795 
2796   B.RegVT = VT.getSimpleVT();
2797   B.Reg = FuncInfo.CreateReg(B.RegVT);
2798   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2799 
2800   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2801 
2802   if (!B.FallthroughUnreachable)
2803     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2804   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2805   SwitchBB->normalizeSuccProbs();
2806 
2807   SDValue Root = CopyTo;
2808   if (!B.FallthroughUnreachable) {
2809     // Conditional branch to the default block.
2810     SDValue RangeCmp = DAG.getSetCC(dl,
2811         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2812                                RangeSub.getValueType()),
2813         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2814         ISD::SETUGT);
2815 
2816     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2817                        DAG.getBasicBlock(B.Default));
2818   }
2819 
2820   // Avoid emitting unnecessary branches to the next block.
2821   if (MBB != NextBlock(SwitchBB))
2822     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2823 
2824   DAG.setRoot(Root);
2825 }
2826 
2827 /// visitBitTestCase - this function produces one "bit test"
2828 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2829                                            MachineBasicBlock* NextMBB,
2830                                            BranchProbability BranchProbToNext,
2831                                            unsigned Reg,
2832                                            BitTestCase &B,
2833                                            MachineBasicBlock *SwitchBB) {
2834   SDLoc dl = getCurSDLoc();
2835   MVT VT = BB.RegVT;
2836   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2837   SDValue Cmp;
2838   unsigned PopCount = countPopulation(B.Mask);
2839   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2840   if (PopCount == 1) {
2841     // Testing for a single bit; just compare the shift count with what it
2842     // would need to be to shift a 1 bit in that position.
2843     Cmp = DAG.getSetCC(
2844         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2845         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2846         ISD::SETEQ);
2847   } else if (PopCount == BB.Range) {
2848     // There is only one zero bit in the range, test for it directly.
2849     Cmp = DAG.getSetCC(
2850         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2851         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2852         ISD::SETNE);
2853   } else {
2854     // Make desired shift
2855     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2856                                     DAG.getConstant(1, dl, VT), ShiftOp);
2857 
2858     // Emit bit tests and jumps
2859     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2860                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2861     Cmp = DAG.getSetCC(
2862         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2863         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2864   }
2865 
2866   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2867   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2868   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2869   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2870   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2871   // one as they are relative probabilities (and thus work more like weights),
2872   // and hence we need to normalize them to let the sum of them become one.
2873   SwitchBB->normalizeSuccProbs();
2874 
2875   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2876                               MVT::Other, getControlRoot(),
2877                               Cmp, DAG.getBasicBlock(B.TargetBB));
2878 
2879   // Avoid emitting unnecessary branches to the next block.
2880   if (NextMBB != NextBlock(SwitchBB))
2881     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2882                         DAG.getBasicBlock(NextMBB));
2883 
2884   DAG.setRoot(BrAnd);
2885 }
2886 
2887 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2888   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2889 
2890   // Retrieve successors. Look through artificial IR level blocks like
2891   // catchswitch for successors.
2892   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2893   const BasicBlock *EHPadBB = I.getSuccessor(1);
2894 
2895   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2896   // have to do anything here to lower funclet bundles.
2897   assert(!I.hasOperandBundlesOtherThan(
2898              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
2899               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
2900               LLVMContext::OB_cfguardtarget,
2901               LLVMContext::OB_clang_arc_attachedcall}) &&
2902          "Cannot lower invokes with arbitrary operand bundles yet!");
2903 
2904   const Value *Callee(I.getCalledOperand());
2905   const Function *Fn = dyn_cast<Function>(Callee);
2906   if (isa<InlineAsm>(Callee))
2907     visitInlineAsm(I, EHPadBB);
2908   else if (Fn && Fn->isIntrinsic()) {
2909     switch (Fn->getIntrinsicID()) {
2910     default:
2911       llvm_unreachable("Cannot invoke this intrinsic");
2912     case Intrinsic::donothing:
2913       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2914     case Intrinsic::seh_try_begin:
2915     case Intrinsic::seh_scope_begin:
2916     case Intrinsic::seh_try_end:
2917     case Intrinsic::seh_scope_end:
2918       break;
2919     case Intrinsic::experimental_patchpoint_void:
2920     case Intrinsic::experimental_patchpoint_i64:
2921       visitPatchpoint(I, EHPadBB);
2922       break;
2923     case Intrinsic::experimental_gc_statepoint:
2924       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
2925       break;
2926     case Intrinsic::wasm_rethrow: {
2927       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2928       // special because it can be invoked, so we manually lower it to a DAG
2929       // node here.
2930       SmallVector<SDValue, 8> Ops;
2931       Ops.push_back(getRoot()); // inchain
2932       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2933       Ops.push_back(
2934           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
2935                                 TLI.getPointerTy(DAG.getDataLayout())));
2936       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2937       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2938       break;
2939     }
2940     }
2941   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2942     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2943     // Eventually we will support lowering the @llvm.experimental.deoptimize
2944     // intrinsic, and right now there are no plans to support other intrinsics
2945     // with deopt state.
2946     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2947   } else {
2948     LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
2949   }
2950 
2951   // If the value of the invoke is used outside of its defining block, make it
2952   // available as a virtual register.
2953   // We already took care of the exported value for the statepoint instruction
2954   // during call to the LowerStatepoint.
2955   if (!isa<GCStatepointInst>(I)) {
2956     CopyToExportRegsIfNeeded(&I);
2957   }
2958 
2959   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2960   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2961   BranchProbability EHPadBBProb =
2962       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2963           : BranchProbability::getZero();
2964   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2965 
2966   // Update successor info.
2967   addSuccessorWithProb(InvokeMBB, Return);
2968   for (auto &UnwindDest : UnwindDests) {
2969     UnwindDest.first->setIsEHPad();
2970     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2971   }
2972   InvokeMBB->normalizeSuccProbs();
2973 
2974   // Drop into normal successor.
2975   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2976                           DAG.getBasicBlock(Return)));
2977 }
2978 
2979 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2980   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2981 
2982   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2983   // have to do anything here to lower funclet bundles.
2984   assert(!I.hasOperandBundlesOtherThan(
2985              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2986          "Cannot lower callbrs with arbitrary operand bundles yet!");
2987 
2988   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
2989   visitInlineAsm(I);
2990   CopyToExportRegsIfNeeded(&I);
2991 
2992   // Retrieve successors.
2993   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2994 
2995   // Update successor info.
2996   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
2997   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2998     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2999     addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
3000     Target->setIsInlineAsmBrIndirectTarget();
3001   }
3002   CallBrMBB->normalizeSuccProbs();
3003 
3004   // Drop into default successor.
3005   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
3006                           MVT::Other, getControlRoot(),
3007                           DAG.getBasicBlock(Return)));
3008 }
3009 
3010 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
3011   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
3012 }
3013 
3014 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3015   assert(FuncInfo.MBB->isEHPad() &&
3016          "Call to landingpad not in landing pad!");
3017 
3018   // If there aren't registers to copy the values into (e.g., during SjLj
3019   // exceptions), then don't bother to create these DAG nodes.
3020   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3021   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3022   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3023       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3024     return;
3025 
3026   // If landingpad's return type is token type, we don't create DAG nodes
3027   // for its exception pointer and selector value. The extraction of exception
3028   // pointer or selector value from token type landingpads is not currently
3029   // supported.
3030   if (LP.getType()->isTokenTy())
3031     return;
3032 
3033   SmallVector<EVT, 2> ValueVTs;
3034   SDLoc dl = getCurSDLoc();
3035   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3036   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3037 
3038   // Get the two live-in registers as SDValues. The physregs have already been
3039   // copied into virtual registers.
3040   SDValue Ops[2];
3041   if (FuncInfo.ExceptionPointerVirtReg) {
3042     Ops[0] = DAG.getZExtOrTrunc(
3043         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3044                            FuncInfo.ExceptionPointerVirtReg,
3045                            TLI.getPointerTy(DAG.getDataLayout())),
3046         dl, ValueVTs[0]);
3047   } else {
3048     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3049   }
3050   Ops[1] = DAG.getZExtOrTrunc(
3051       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3052                          FuncInfo.ExceptionSelectorVirtReg,
3053                          TLI.getPointerTy(DAG.getDataLayout())),
3054       dl, ValueVTs[1]);
3055 
3056   // Merge into one.
3057   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3058                             DAG.getVTList(ValueVTs), Ops);
3059   setValue(&LP, Res);
3060 }
3061 
3062 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3063                                            MachineBasicBlock *Last) {
3064   // Update JTCases.
3065   for (JumpTableBlock &JTB : SL->JTCases)
3066     if (JTB.first.HeaderBB == First)
3067       JTB.first.HeaderBB = Last;
3068 
3069   // Update BitTestCases.
3070   for (BitTestBlock &BTB : SL->BitTestCases)
3071     if (BTB.Parent == First)
3072       BTB.Parent = Last;
3073 }
3074 
3075 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3076   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3077 
3078   // Update machine-CFG edges with unique successors.
3079   SmallSet<BasicBlock*, 32> Done;
3080   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3081     BasicBlock *BB = I.getSuccessor(i);
3082     bool Inserted = Done.insert(BB).second;
3083     if (!Inserted)
3084         continue;
3085 
3086     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
3087     addSuccessorWithProb(IndirectBrMBB, Succ);
3088   }
3089   IndirectBrMBB->normalizeSuccProbs();
3090 
3091   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3092                           MVT::Other, getControlRoot(),
3093                           getValue(I.getAddress())));
3094 }
3095 
3096 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3097   if (!DAG.getTarget().Options.TrapUnreachable)
3098     return;
3099 
3100   // We may be able to ignore unreachable behind a noreturn call.
3101   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
3102     const BasicBlock &BB = *I.getParent();
3103     if (&I != &BB.front()) {
3104       BasicBlock::const_iterator PredI =
3105         std::prev(BasicBlock::const_iterator(&I));
3106       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
3107         if (Call->doesNotReturn())
3108           return;
3109       }
3110     }
3111   }
3112 
3113   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3114 }
3115 
3116 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3117   SDNodeFlags Flags;
3118   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3119     Flags.copyFMF(*FPOp);
3120 
3121   SDValue Op = getValue(I.getOperand(0));
3122   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3123                                     Op, Flags);
3124   setValue(&I, UnNodeValue);
3125 }
3126 
3127 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3128   SDNodeFlags Flags;
3129   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3130     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3131     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3132   }
3133   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3134     Flags.setExact(ExactOp->isExact());
3135   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3136     Flags.copyFMF(*FPOp);
3137 
3138   SDValue Op1 = getValue(I.getOperand(0));
3139   SDValue Op2 = getValue(I.getOperand(1));
3140   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3141                                      Op1, Op2, Flags);
3142   setValue(&I, BinNodeValue);
3143 }
3144 
3145 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3146   SDValue Op1 = getValue(I.getOperand(0));
3147   SDValue Op2 = getValue(I.getOperand(1));
3148 
3149   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3150       Op1.getValueType(), DAG.getDataLayout());
3151 
3152   // Coerce the shift amount to the right type if we can. This exposes the
3153   // truncate or zext to optimization early.
3154   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3155     assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) &&
3156            "Unexpected shift type");
3157     Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
3158   }
3159 
3160   bool nuw = false;
3161   bool nsw = false;
3162   bool exact = false;
3163 
3164   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3165 
3166     if (const OverflowingBinaryOperator *OFBinOp =
3167             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3168       nuw = OFBinOp->hasNoUnsignedWrap();
3169       nsw = OFBinOp->hasNoSignedWrap();
3170     }
3171     if (const PossiblyExactOperator *ExactOp =
3172             dyn_cast<const PossiblyExactOperator>(&I))
3173       exact = ExactOp->isExact();
3174   }
3175   SDNodeFlags Flags;
3176   Flags.setExact(exact);
3177   Flags.setNoSignedWrap(nsw);
3178   Flags.setNoUnsignedWrap(nuw);
3179   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3180                             Flags);
3181   setValue(&I, Res);
3182 }
3183 
3184 void SelectionDAGBuilder::visitSDiv(const User &I) {
3185   SDValue Op1 = getValue(I.getOperand(0));
3186   SDValue Op2 = getValue(I.getOperand(1));
3187 
3188   SDNodeFlags Flags;
3189   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3190                  cast<PossiblyExactOperator>(&I)->isExact());
3191   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3192                            Op2, Flags));
3193 }
3194 
3195 void SelectionDAGBuilder::visitICmp(const User &I) {
3196   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3197   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3198     predicate = IC->getPredicate();
3199   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3200     predicate = ICmpInst::Predicate(IC->getPredicate());
3201   SDValue Op1 = getValue(I.getOperand(0));
3202   SDValue Op2 = getValue(I.getOperand(1));
3203   ISD::CondCode Opcode = getICmpCondCode(predicate);
3204 
3205   auto &TLI = DAG.getTargetLoweringInfo();
3206   EVT MemVT =
3207       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3208 
3209   // If a pointer's DAG type is larger than its memory type then the DAG values
3210   // are zero-extended. This breaks signed comparisons so truncate back to the
3211   // underlying type before doing the compare.
3212   if (Op1.getValueType() != MemVT) {
3213     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3214     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3215   }
3216 
3217   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3218                                                         I.getType());
3219   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3220 }
3221 
3222 void SelectionDAGBuilder::visitFCmp(const User &I) {
3223   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3224   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3225     predicate = FC->getPredicate();
3226   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3227     predicate = FCmpInst::Predicate(FC->getPredicate());
3228   SDValue Op1 = getValue(I.getOperand(0));
3229   SDValue Op2 = getValue(I.getOperand(1));
3230 
3231   ISD::CondCode Condition = getFCmpCondCode(predicate);
3232   auto *FPMO = cast<FPMathOperator>(&I);
3233   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3234     Condition = getFCmpCodeWithoutNaN(Condition);
3235 
3236   SDNodeFlags Flags;
3237   Flags.copyFMF(*FPMO);
3238   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3239 
3240   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3241                                                         I.getType());
3242   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3243 }
3244 
3245 // Check if the condition of the select has one use or two users that are both
3246 // selects with the same condition.
3247 static bool hasOnlySelectUsers(const Value *Cond) {
3248   return llvm::all_of(Cond->users(), [](const Value *V) {
3249     return isa<SelectInst>(V);
3250   });
3251 }
3252 
3253 void SelectionDAGBuilder::visitSelect(const User &I) {
3254   SmallVector<EVT, 4> ValueVTs;
3255   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3256                   ValueVTs);
3257   unsigned NumValues = ValueVTs.size();
3258   if (NumValues == 0) return;
3259 
3260   SmallVector<SDValue, 4> Values(NumValues);
3261   SDValue Cond     = getValue(I.getOperand(0));
3262   SDValue LHSVal   = getValue(I.getOperand(1));
3263   SDValue RHSVal   = getValue(I.getOperand(2));
3264   SmallVector<SDValue, 1> BaseOps(1, Cond);
3265   ISD::NodeType OpCode =
3266       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3267 
3268   bool IsUnaryAbs = false;
3269   bool Negate = false;
3270 
3271   SDNodeFlags Flags;
3272   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3273     Flags.copyFMF(*FPOp);
3274 
3275   // Min/max matching is only viable if all output VTs are the same.
3276   if (is_splat(ValueVTs)) {
3277     EVT VT = ValueVTs[0];
3278     LLVMContext &Ctx = *DAG.getContext();
3279     auto &TLI = DAG.getTargetLoweringInfo();
3280 
3281     // We care about the legality of the operation after it has been type
3282     // legalized.
3283     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3284       VT = TLI.getTypeToTransformTo(Ctx, VT);
3285 
3286     // If the vselect is legal, assume we want to leave this as a vector setcc +
3287     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3288     // min/max is legal on the scalar type.
3289     bool UseScalarMinMax = VT.isVector() &&
3290       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3291 
3292     Value *LHS, *RHS;
3293     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3294     ISD::NodeType Opc = ISD::DELETED_NODE;
3295     switch (SPR.Flavor) {
3296     case SPF_UMAX:    Opc = ISD::UMAX; break;
3297     case SPF_UMIN:    Opc = ISD::UMIN; break;
3298     case SPF_SMAX:    Opc = ISD::SMAX; break;
3299     case SPF_SMIN:    Opc = ISD::SMIN; break;
3300     case SPF_FMINNUM:
3301       switch (SPR.NaNBehavior) {
3302       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3303       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3304       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3305       case SPNB_RETURNS_ANY: {
3306         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3307           Opc = ISD::FMINNUM;
3308         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3309           Opc = ISD::FMINIMUM;
3310         else if (UseScalarMinMax)
3311           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3312             ISD::FMINNUM : ISD::FMINIMUM;
3313         break;
3314       }
3315       }
3316       break;
3317     case SPF_FMAXNUM:
3318       switch (SPR.NaNBehavior) {
3319       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3320       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3321       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3322       case SPNB_RETURNS_ANY:
3323 
3324         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3325           Opc = ISD::FMAXNUM;
3326         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3327           Opc = ISD::FMAXIMUM;
3328         else if (UseScalarMinMax)
3329           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3330             ISD::FMAXNUM : ISD::FMAXIMUM;
3331         break;
3332       }
3333       break;
3334     case SPF_NABS:
3335       Negate = true;
3336       LLVM_FALLTHROUGH;
3337     case SPF_ABS:
3338       IsUnaryAbs = true;
3339       Opc = ISD::ABS;
3340       break;
3341     default: break;
3342     }
3343 
3344     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3345         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3346          (UseScalarMinMax &&
3347           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3348         // If the underlying comparison instruction is used by any other
3349         // instruction, the consumed instructions won't be destroyed, so it is
3350         // not profitable to convert to a min/max.
3351         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3352       OpCode = Opc;
3353       LHSVal = getValue(LHS);
3354       RHSVal = getValue(RHS);
3355       BaseOps.clear();
3356     }
3357 
3358     if (IsUnaryAbs) {
3359       OpCode = Opc;
3360       LHSVal = getValue(LHS);
3361       BaseOps.clear();
3362     }
3363   }
3364 
3365   if (IsUnaryAbs) {
3366     for (unsigned i = 0; i != NumValues; ++i) {
3367       SDLoc dl = getCurSDLoc();
3368       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3369       Values[i] =
3370           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3371       if (Negate)
3372         Values[i] = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT),
3373                                 Values[i]);
3374     }
3375   } else {
3376     for (unsigned i = 0; i != NumValues; ++i) {
3377       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3378       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3379       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3380       Values[i] = DAG.getNode(
3381           OpCode, getCurSDLoc(),
3382           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3383     }
3384   }
3385 
3386   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3387                            DAG.getVTList(ValueVTs), Values));
3388 }
3389 
3390 void SelectionDAGBuilder::visitTrunc(const User &I) {
3391   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3392   SDValue N = getValue(I.getOperand(0));
3393   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3394                                                         I.getType());
3395   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3396 }
3397 
3398 void SelectionDAGBuilder::visitZExt(const User &I) {
3399   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3400   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3401   SDValue N = getValue(I.getOperand(0));
3402   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3403                                                         I.getType());
3404   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3405 }
3406 
3407 void SelectionDAGBuilder::visitSExt(const User &I) {
3408   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3409   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3410   SDValue N = getValue(I.getOperand(0));
3411   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3412                                                         I.getType());
3413   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3414 }
3415 
3416 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3417   // FPTrunc is never a no-op cast, no need to check
3418   SDValue N = getValue(I.getOperand(0));
3419   SDLoc dl = getCurSDLoc();
3420   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3421   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3422   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3423                            DAG.getTargetConstant(
3424                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3425 }
3426 
3427 void SelectionDAGBuilder::visitFPExt(const User &I) {
3428   // FPExt is never a no-op cast, no need to check
3429   SDValue N = getValue(I.getOperand(0));
3430   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3431                                                         I.getType());
3432   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3433 }
3434 
3435 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3436   // FPToUI is never a no-op cast, no need to check
3437   SDValue N = getValue(I.getOperand(0));
3438   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3439                                                         I.getType());
3440   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3441 }
3442 
3443 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3444   // FPToSI is never a no-op cast, no need to check
3445   SDValue N = getValue(I.getOperand(0));
3446   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3447                                                         I.getType());
3448   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3449 }
3450 
3451 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3452   // UIToFP is never a no-op cast, no need to check
3453   SDValue N = getValue(I.getOperand(0));
3454   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3455                                                         I.getType());
3456   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3457 }
3458 
3459 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3460   // SIToFP is never a no-op cast, no need to check
3461   SDValue N = getValue(I.getOperand(0));
3462   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3463                                                         I.getType());
3464   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3465 }
3466 
3467 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3468   // What to do depends on the size of the integer and the size of the pointer.
3469   // We can either truncate, zero extend, or no-op, accordingly.
3470   SDValue N = getValue(I.getOperand(0));
3471   auto &TLI = DAG.getTargetLoweringInfo();
3472   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3473                                                         I.getType());
3474   EVT PtrMemVT =
3475       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3476   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3477   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3478   setValue(&I, N);
3479 }
3480 
3481 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3482   // What to do depends on the size of the integer and the size of the pointer.
3483   // We can either truncate, zero extend, or no-op, accordingly.
3484   SDValue N = getValue(I.getOperand(0));
3485   auto &TLI = DAG.getTargetLoweringInfo();
3486   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3487   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3488   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3489   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3490   setValue(&I, N);
3491 }
3492 
3493 void SelectionDAGBuilder::visitBitCast(const User &I) {
3494   SDValue N = getValue(I.getOperand(0));
3495   SDLoc dl = getCurSDLoc();
3496   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3497                                                         I.getType());
3498 
3499   // BitCast assures us that source and destination are the same size so this is
3500   // either a BITCAST or a no-op.
3501   if (DestVT != N.getValueType())
3502     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3503                              DestVT, N)); // convert types.
3504   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3505   // might fold any kind of constant expression to an integer constant and that
3506   // is not what we are looking for. Only recognize a bitcast of a genuine
3507   // constant integer as an opaque constant.
3508   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3509     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3510                                  /*isOpaque*/true));
3511   else
3512     setValue(&I, N);            // noop cast.
3513 }
3514 
3515 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3516   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3517   const Value *SV = I.getOperand(0);
3518   SDValue N = getValue(SV);
3519   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3520 
3521   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3522   unsigned DestAS = I.getType()->getPointerAddressSpace();
3523 
3524   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3525     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3526 
3527   setValue(&I, N);
3528 }
3529 
3530 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3531   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3532   SDValue InVec = getValue(I.getOperand(0));
3533   SDValue InVal = getValue(I.getOperand(1));
3534   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3535                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3536   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3537                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3538                            InVec, InVal, InIdx));
3539 }
3540 
3541 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3542   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3543   SDValue InVec = getValue(I.getOperand(0));
3544   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3545                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3546   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3547                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3548                            InVec, InIdx));
3549 }
3550 
3551 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3552   SDValue Src1 = getValue(I.getOperand(0));
3553   SDValue Src2 = getValue(I.getOperand(1));
3554   ArrayRef<int> Mask;
3555   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3556     Mask = SVI->getShuffleMask();
3557   else
3558     Mask = cast<ConstantExpr>(I).getShuffleMask();
3559   SDLoc DL = getCurSDLoc();
3560   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3561   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3562   EVT SrcVT = Src1.getValueType();
3563 
3564   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3565       VT.isScalableVector()) {
3566     // Canonical splat form of first element of first input vector.
3567     SDValue FirstElt =
3568         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3569                     DAG.getVectorIdxConstant(0, DL));
3570     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3571     return;
3572   }
3573 
3574   // For now, we only handle splats for scalable vectors.
3575   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3576   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3577   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3578 
3579   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3580   unsigned MaskNumElts = Mask.size();
3581 
3582   if (SrcNumElts == MaskNumElts) {
3583     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3584     return;
3585   }
3586 
3587   // Normalize the shuffle vector since mask and vector length don't match.
3588   if (SrcNumElts < MaskNumElts) {
3589     // Mask is longer than the source vectors. We can use concatenate vector to
3590     // make the mask and vectors lengths match.
3591 
3592     if (MaskNumElts % SrcNumElts == 0) {
3593       // Mask length is a multiple of the source vector length.
3594       // Check if the shuffle is some kind of concatenation of the input
3595       // vectors.
3596       unsigned NumConcat = MaskNumElts / SrcNumElts;
3597       bool IsConcat = true;
3598       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3599       for (unsigned i = 0; i != MaskNumElts; ++i) {
3600         int Idx = Mask[i];
3601         if (Idx < 0)
3602           continue;
3603         // Ensure the indices in each SrcVT sized piece are sequential and that
3604         // the same source is used for the whole piece.
3605         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3606             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3607              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3608           IsConcat = false;
3609           break;
3610         }
3611         // Remember which source this index came from.
3612         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3613       }
3614 
3615       // The shuffle is concatenating multiple vectors together. Just emit
3616       // a CONCAT_VECTORS operation.
3617       if (IsConcat) {
3618         SmallVector<SDValue, 8> ConcatOps;
3619         for (auto Src : ConcatSrcs) {
3620           if (Src < 0)
3621             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3622           else if (Src == 0)
3623             ConcatOps.push_back(Src1);
3624           else
3625             ConcatOps.push_back(Src2);
3626         }
3627         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3628         return;
3629       }
3630     }
3631 
3632     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3633     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3634     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3635                                     PaddedMaskNumElts);
3636 
3637     // Pad both vectors with undefs to make them the same length as the mask.
3638     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3639 
3640     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3641     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3642     MOps1[0] = Src1;
3643     MOps2[0] = Src2;
3644 
3645     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3646     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3647 
3648     // Readjust mask for new input vector length.
3649     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3650     for (unsigned i = 0; i != MaskNumElts; ++i) {
3651       int Idx = Mask[i];
3652       if (Idx >= (int)SrcNumElts)
3653         Idx -= SrcNumElts - PaddedMaskNumElts;
3654       MappedOps[i] = Idx;
3655     }
3656 
3657     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3658 
3659     // If the concatenated vector was padded, extract a subvector with the
3660     // correct number of elements.
3661     if (MaskNumElts != PaddedMaskNumElts)
3662       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3663                            DAG.getVectorIdxConstant(0, DL));
3664 
3665     setValue(&I, Result);
3666     return;
3667   }
3668 
3669   if (SrcNumElts > MaskNumElts) {
3670     // Analyze the access pattern of the vector to see if we can extract
3671     // two subvectors and do the shuffle.
3672     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3673     bool CanExtract = true;
3674     for (int Idx : Mask) {
3675       unsigned Input = 0;
3676       if (Idx < 0)
3677         continue;
3678 
3679       if (Idx >= (int)SrcNumElts) {
3680         Input = 1;
3681         Idx -= SrcNumElts;
3682       }
3683 
3684       // If all the indices come from the same MaskNumElts sized portion of
3685       // the sources we can use extract. Also make sure the extract wouldn't
3686       // extract past the end of the source.
3687       int NewStartIdx = alignDown(Idx, MaskNumElts);
3688       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3689           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3690         CanExtract = false;
3691       // Make sure we always update StartIdx as we use it to track if all
3692       // elements are undef.
3693       StartIdx[Input] = NewStartIdx;
3694     }
3695 
3696     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3697       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3698       return;
3699     }
3700     if (CanExtract) {
3701       // Extract appropriate subvector and generate a vector shuffle
3702       for (unsigned Input = 0; Input < 2; ++Input) {
3703         SDValue &Src = Input == 0 ? Src1 : Src2;
3704         if (StartIdx[Input] < 0)
3705           Src = DAG.getUNDEF(VT);
3706         else {
3707           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3708                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3709         }
3710       }
3711 
3712       // Calculate new mask.
3713       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3714       for (int &Idx : MappedOps) {
3715         if (Idx >= (int)SrcNumElts)
3716           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3717         else if (Idx >= 0)
3718           Idx -= StartIdx[0];
3719       }
3720 
3721       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3722       return;
3723     }
3724   }
3725 
3726   // We can't use either concat vectors or extract subvectors so fall back to
3727   // replacing the shuffle with extract and build vector.
3728   // to insert and build vector.
3729   EVT EltVT = VT.getVectorElementType();
3730   SmallVector<SDValue,8> Ops;
3731   for (int Idx : Mask) {
3732     SDValue Res;
3733 
3734     if (Idx < 0) {
3735       Res = DAG.getUNDEF(EltVT);
3736     } else {
3737       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3738       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3739 
3740       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3741                         DAG.getVectorIdxConstant(Idx, DL));
3742     }
3743 
3744     Ops.push_back(Res);
3745   }
3746 
3747   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3748 }
3749 
3750 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3751   ArrayRef<unsigned> Indices = I.getIndices();
3752   const Value *Op0 = I.getOperand(0);
3753   const Value *Op1 = I.getOperand(1);
3754   Type *AggTy = I.getType();
3755   Type *ValTy = Op1->getType();
3756   bool IntoUndef = isa<UndefValue>(Op0);
3757   bool FromUndef = isa<UndefValue>(Op1);
3758 
3759   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3760 
3761   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3762   SmallVector<EVT, 4> AggValueVTs;
3763   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3764   SmallVector<EVT, 4> ValValueVTs;
3765   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3766 
3767   unsigned NumAggValues = AggValueVTs.size();
3768   unsigned NumValValues = ValValueVTs.size();
3769   SmallVector<SDValue, 4> Values(NumAggValues);
3770 
3771   // Ignore an insertvalue that produces an empty object
3772   if (!NumAggValues) {
3773     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3774     return;
3775   }
3776 
3777   SDValue Agg = getValue(Op0);
3778   unsigned i = 0;
3779   // Copy the beginning value(s) from the original aggregate.
3780   for (; i != LinearIndex; ++i)
3781     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3782                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3783   // Copy values from the inserted value(s).
3784   if (NumValValues) {
3785     SDValue Val = getValue(Op1);
3786     for (; i != LinearIndex + NumValValues; ++i)
3787       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3788                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3789   }
3790   // Copy remaining value(s) from the original aggregate.
3791   for (; i != NumAggValues; ++i)
3792     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3793                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3794 
3795   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3796                            DAG.getVTList(AggValueVTs), Values));
3797 }
3798 
3799 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3800   ArrayRef<unsigned> Indices = I.getIndices();
3801   const Value *Op0 = I.getOperand(0);
3802   Type *AggTy = Op0->getType();
3803   Type *ValTy = I.getType();
3804   bool OutOfUndef = isa<UndefValue>(Op0);
3805 
3806   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3807 
3808   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3809   SmallVector<EVT, 4> ValValueVTs;
3810   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3811 
3812   unsigned NumValValues = ValValueVTs.size();
3813 
3814   // Ignore a extractvalue that produces an empty object
3815   if (!NumValValues) {
3816     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3817     return;
3818   }
3819 
3820   SmallVector<SDValue, 4> Values(NumValValues);
3821 
3822   SDValue Agg = getValue(Op0);
3823   // Copy out the selected value(s).
3824   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3825     Values[i - LinearIndex] =
3826       OutOfUndef ?
3827         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3828         SDValue(Agg.getNode(), Agg.getResNo() + i);
3829 
3830   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3831                            DAG.getVTList(ValValueVTs), Values));
3832 }
3833 
3834 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3835   Value *Op0 = I.getOperand(0);
3836   // Note that the pointer operand may be a vector of pointers. Take the scalar
3837   // element which holds a pointer.
3838   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3839   SDValue N = getValue(Op0);
3840   SDLoc dl = getCurSDLoc();
3841   auto &TLI = DAG.getTargetLoweringInfo();
3842 
3843   // Normalize Vector GEP - all scalar operands should be converted to the
3844   // splat vector.
3845   bool IsVectorGEP = I.getType()->isVectorTy();
3846   ElementCount VectorElementCount =
3847       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
3848                   : ElementCount::getFixed(0);
3849 
3850   if (IsVectorGEP && !N.getValueType().isVector()) {
3851     LLVMContext &Context = *DAG.getContext();
3852     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3853     if (VectorElementCount.isScalable())
3854       N = DAG.getSplatVector(VT, dl, N);
3855     else
3856       N = DAG.getSplatBuildVector(VT, dl, N);
3857   }
3858 
3859   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3860        GTI != E; ++GTI) {
3861     const Value *Idx = GTI.getOperand();
3862     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3863       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3864       if (Field) {
3865         // N = N + Offset
3866         uint64_t Offset =
3867             DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
3868 
3869         // In an inbounds GEP with an offset that is nonnegative even when
3870         // interpreted as signed, assume there is no unsigned overflow.
3871         SDNodeFlags Flags;
3872         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3873           Flags.setNoUnsignedWrap(true);
3874 
3875         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3876                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3877       }
3878     } else {
3879       // IdxSize is the width of the arithmetic according to IR semantics.
3880       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
3881       // (and fix up the result later).
3882       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3883       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3884       TypeSize ElementSize =
3885           DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType());
3886       // We intentionally mask away the high bits here; ElementSize may not
3887       // fit in IdxTy.
3888       APInt ElementMul(IdxSize, ElementSize.getKnownMinSize());
3889       bool ElementScalable = ElementSize.isScalable();
3890 
3891       // If this is a scalar constant or a splat vector of constants,
3892       // handle it quickly.
3893       const auto *C = dyn_cast<Constant>(Idx);
3894       if (C && isa<VectorType>(C->getType()))
3895         C = C->getSplatValue();
3896 
3897       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
3898       if (CI && CI->isZero())
3899         continue;
3900       if (CI && !ElementScalable) {
3901         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
3902         LLVMContext &Context = *DAG.getContext();
3903         SDValue OffsVal;
3904         if (IsVectorGEP)
3905           OffsVal = DAG.getConstant(
3906               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
3907         else
3908           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
3909 
3910         // In an inbounds GEP with an offset that is nonnegative even when
3911         // interpreted as signed, assume there is no unsigned overflow.
3912         SDNodeFlags Flags;
3913         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3914           Flags.setNoUnsignedWrap(true);
3915 
3916         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3917 
3918         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3919         continue;
3920       }
3921 
3922       // N = N + Idx * ElementMul;
3923       SDValue IdxN = getValue(Idx);
3924 
3925       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
3926         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
3927                                   VectorElementCount);
3928         if (VectorElementCount.isScalable())
3929           IdxN = DAG.getSplatVector(VT, dl, IdxN);
3930         else
3931           IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3932       }
3933 
3934       // If the index is smaller or larger than intptr_t, truncate or extend
3935       // it.
3936       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3937 
3938       if (ElementScalable) {
3939         EVT VScaleTy = N.getValueType().getScalarType();
3940         SDValue VScale = DAG.getNode(
3941             ISD::VSCALE, dl, VScaleTy,
3942             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
3943         if (IsVectorGEP)
3944           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
3945         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
3946       } else {
3947         // If this is a multiply by a power of two, turn it into a shl
3948         // immediately.  This is a very common case.
3949         if (ElementMul != 1) {
3950           if (ElementMul.isPowerOf2()) {
3951             unsigned Amt = ElementMul.logBase2();
3952             IdxN = DAG.getNode(ISD::SHL, dl,
3953                                N.getValueType(), IdxN,
3954                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
3955           } else {
3956             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
3957                                             IdxN.getValueType());
3958             IdxN = DAG.getNode(ISD::MUL, dl,
3959                                N.getValueType(), IdxN, Scale);
3960           }
3961         }
3962       }
3963 
3964       N = DAG.getNode(ISD::ADD, dl,
3965                       N.getValueType(), N, IdxN);
3966     }
3967   }
3968 
3969   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
3970   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
3971   if (IsVectorGEP) {
3972     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
3973     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
3974   }
3975 
3976   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
3977     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
3978 
3979   setValue(&I, N);
3980 }
3981 
3982 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3983   // If this is a fixed sized alloca in the entry block of the function,
3984   // allocate it statically on the stack.
3985   if (FuncInfo.StaticAllocaMap.count(&I))
3986     return;   // getValue will auto-populate this.
3987 
3988   SDLoc dl = getCurSDLoc();
3989   Type *Ty = I.getAllocatedType();
3990   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3991   auto &DL = DAG.getDataLayout();
3992   TypeSize TySize = DL.getTypeAllocSize(Ty);
3993   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
3994 
3995   SDValue AllocSize = getValue(I.getArraySize());
3996 
3997   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3998   if (AllocSize.getValueType() != IntPtr)
3999     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4000 
4001   if (TySize.isScalable())
4002     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4003                             DAG.getVScale(dl, IntPtr,
4004                                           APInt(IntPtr.getScalarSizeInBits(),
4005                                                 TySize.getKnownMinValue())));
4006   else
4007     AllocSize =
4008         DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4009                     DAG.getConstant(TySize.getFixedValue(), dl, IntPtr));
4010 
4011   // Handle alignment.  If the requested alignment is less than or equal to
4012   // the stack alignment, ignore it.  If the size is greater than or equal to
4013   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4014   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4015   if (*Alignment <= StackAlign)
4016     Alignment = None;
4017 
4018   const uint64_t StackAlignMask = StackAlign.value() - 1U;
4019   // Round the size of the allocation up to the stack alignment size
4020   // by add SA-1 to the size. This doesn't overflow because we're computing
4021   // an address inside an alloca.
4022   SDNodeFlags Flags;
4023   Flags.setNoUnsignedWrap(true);
4024   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4025                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
4026 
4027   // Mask out the low bits for alignment purposes.
4028   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4029                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
4030 
4031   SDValue Ops[] = {
4032       getRoot(), AllocSize,
4033       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4034   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4035   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4036   setValue(&I, DSA);
4037   DAG.setRoot(DSA.getValue(1));
4038 
4039   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4040 }
4041 
4042 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4043   if (I.isAtomic())
4044     return visitAtomicLoad(I);
4045 
4046   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4047   const Value *SV = I.getOperand(0);
4048   if (TLI.supportSwiftError()) {
4049     // Swifterror values can come from either a function parameter with
4050     // swifterror attribute or an alloca with swifterror attribute.
4051     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4052       if (Arg->hasSwiftErrorAttr())
4053         return visitLoadFromSwiftError(I);
4054     }
4055 
4056     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4057       if (Alloca->isSwiftError())
4058         return visitLoadFromSwiftError(I);
4059     }
4060   }
4061 
4062   SDValue Ptr = getValue(SV);
4063 
4064   Type *Ty = I.getType();
4065   Align Alignment = I.getAlign();
4066 
4067   AAMDNodes AAInfo = I.getAAMetadata();
4068   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4069 
4070   SmallVector<EVT, 4> ValueVTs, MemVTs;
4071   SmallVector<uint64_t, 4> Offsets;
4072   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4073   unsigned NumValues = ValueVTs.size();
4074   if (NumValues == 0)
4075     return;
4076 
4077   bool isVolatile = I.isVolatile();
4078 
4079   SDValue Root;
4080   bool ConstantMemory = false;
4081   if (isVolatile)
4082     // Serialize volatile loads with other side effects.
4083     Root = getRoot();
4084   else if (NumValues > MaxParallelChains)
4085     Root = getMemoryRoot();
4086   else if (AA &&
4087            AA->pointsToConstantMemory(MemoryLocation(
4088                SV,
4089                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4090                AAInfo))) {
4091     // Do not serialize (non-volatile) loads of constant memory with anything.
4092     Root = DAG.getEntryNode();
4093     ConstantMemory = true;
4094   } else {
4095     // Do not serialize non-volatile loads against each other.
4096     Root = DAG.getRoot();
4097   }
4098 
4099   SDLoc dl = getCurSDLoc();
4100 
4101   if (isVolatile)
4102     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4103 
4104   // An aggregate load cannot wrap around the address space, so offsets to its
4105   // parts don't wrap either.
4106   SDNodeFlags Flags;
4107   Flags.setNoUnsignedWrap(true);
4108 
4109   SmallVector<SDValue, 4> Values(NumValues);
4110   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4111   EVT PtrVT = Ptr.getValueType();
4112 
4113   MachineMemOperand::Flags MMOFlags
4114     = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4115 
4116   unsigned ChainI = 0;
4117   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4118     // Serializing loads here may result in excessive register pressure, and
4119     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4120     // could recover a bit by hoisting nodes upward in the chain by recognizing
4121     // they are side-effect free or do not alias. The optimizer should really
4122     // avoid this case by converting large object/array copies to llvm.memcpy
4123     // (MaxParallelChains should always remain as failsafe).
4124     if (ChainI == MaxParallelChains) {
4125       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4126       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4127                                   makeArrayRef(Chains.data(), ChainI));
4128       Root = Chain;
4129       ChainI = 0;
4130     }
4131     SDValue A = DAG.getNode(ISD::ADD, dl,
4132                             PtrVT, Ptr,
4133                             DAG.getConstant(Offsets[i], dl, PtrVT),
4134                             Flags);
4135 
4136     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4137                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4138                             MMOFlags, AAInfo, Ranges);
4139     Chains[ChainI] = L.getValue(1);
4140 
4141     if (MemVTs[i] != ValueVTs[i])
4142       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4143 
4144     Values[i] = L;
4145   }
4146 
4147   if (!ConstantMemory) {
4148     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4149                                 makeArrayRef(Chains.data(), ChainI));
4150     if (isVolatile)
4151       DAG.setRoot(Chain);
4152     else
4153       PendingLoads.push_back(Chain);
4154   }
4155 
4156   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4157                            DAG.getVTList(ValueVTs), Values));
4158 }
4159 
4160 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4161   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4162          "call visitStoreToSwiftError when backend supports swifterror");
4163 
4164   SmallVector<EVT, 4> ValueVTs;
4165   SmallVector<uint64_t, 4> Offsets;
4166   const Value *SrcV = I.getOperand(0);
4167   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4168                   SrcV->getType(), ValueVTs, &Offsets);
4169   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4170          "expect a single EVT for swifterror");
4171 
4172   SDValue Src = getValue(SrcV);
4173   // Create a virtual register, then update the virtual register.
4174   Register VReg =
4175       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4176   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4177   // Chain can be getRoot or getControlRoot.
4178   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4179                                       SDValue(Src.getNode(), Src.getResNo()));
4180   DAG.setRoot(CopyNode);
4181 }
4182 
4183 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4184   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4185          "call visitLoadFromSwiftError when backend supports swifterror");
4186 
4187   assert(!I.isVolatile() &&
4188          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4189          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4190          "Support volatile, non temporal, invariant for load_from_swift_error");
4191 
4192   const Value *SV = I.getOperand(0);
4193   Type *Ty = I.getType();
4194   assert(
4195       (!AA ||
4196        !AA->pointsToConstantMemory(MemoryLocation(
4197            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4198            I.getAAMetadata()))) &&
4199       "load_from_swift_error should not be constant memory");
4200 
4201   SmallVector<EVT, 4> ValueVTs;
4202   SmallVector<uint64_t, 4> Offsets;
4203   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4204                   ValueVTs, &Offsets);
4205   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4206          "expect a single EVT for swifterror");
4207 
4208   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4209   SDValue L = DAG.getCopyFromReg(
4210       getRoot(), getCurSDLoc(),
4211       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4212 
4213   setValue(&I, L);
4214 }
4215 
4216 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4217   if (I.isAtomic())
4218     return visitAtomicStore(I);
4219 
4220   const Value *SrcV = I.getOperand(0);
4221   const Value *PtrV = I.getOperand(1);
4222 
4223   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4224   if (TLI.supportSwiftError()) {
4225     // Swifterror values can come from either a function parameter with
4226     // swifterror attribute or an alloca with swifterror attribute.
4227     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4228       if (Arg->hasSwiftErrorAttr())
4229         return visitStoreToSwiftError(I);
4230     }
4231 
4232     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4233       if (Alloca->isSwiftError())
4234         return visitStoreToSwiftError(I);
4235     }
4236   }
4237 
4238   SmallVector<EVT, 4> ValueVTs, MemVTs;
4239   SmallVector<uint64_t, 4> Offsets;
4240   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4241                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4242   unsigned NumValues = ValueVTs.size();
4243   if (NumValues == 0)
4244     return;
4245 
4246   // Get the lowered operands. Note that we do this after
4247   // checking if NumResults is zero, because with zero results
4248   // the operands won't have values in the map.
4249   SDValue Src = getValue(SrcV);
4250   SDValue Ptr = getValue(PtrV);
4251 
4252   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4253   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4254   SDLoc dl = getCurSDLoc();
4255   Align Alignment = I.getAlign();
4256   AAMDNodes AAInfo = I.getAAMetadata();
4257 
4258   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4259 
4260   // An aggregate load cannot wrap around the address space, so offsets to its
4261   // parts don't wrap either.
4262   SDNodeFlags Flags;
4263   Flags.setNoUnsignedWrap(true);
4264 
4265   unsigned ChainI = 0;
4266   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4267     // See visitLoad comments.
4268     if (ChainI == MaxParallelChains) {
4269       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4270                                   makeArrayRef(Chains.data(), ChainI));
4271       Root = Chain;
4272       ChainI = 0;
4273     }
4274     SDValue Add =
4275         DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags);
4276     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4277     if (MemVTs[i] != ValueVTs[i])
4278       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4279     SDValue St =
4280         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4281                      Alignment, MMOFlags, AAInfo);
4282     Chains[ChainI] = St;
4283   }
4284 
4285   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4286                                   makeArrayRef(Chains.data(), ChainI));
4287   DAG.setRoot(StoreNode);
4288 }
4289 
4290 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4291                                            bool IsCompressing) {
4292   SDLoc sdl = getCurSDLoc();
4293 
4294   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4295                                MaybeAlign &Alignment) {
4296     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4297     Src0 = I.getArgOperand(0);
4298     Ptr = I.getArgOperand(1);
4299     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
4300     Mask = I.getArgOperand(3);
4301   };
4302   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4303                                     MaybeAlign &Alignment) {
4304     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4305     Src0 = I.getArgOperand(0);
4306     Ptr = I.getArgOperand(1);
4307     Mask = I.getArgOperand(2);
4308     Alignment = None;
4309   };
4310 
4311   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4312   MaybeAlign Alignment;
4313   if (IsCompressing)
4314     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4315   else
4316     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4317 
4318   SDValue Ptr = getValue(PtrOperand);
4319   SDValue Src0 = getValue(Src0Operand);
4320   SDValue Mask = getValue(MaskOperand);
4321   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4322 
4323   EVT VT = Src0.getValueType();
4324   if (!Alignment)
4325     Alignment = DAG.getEVTAlign(VT);
4326 
4327   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4328       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4329       MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata());
4330   SDValue StoreNode =
4331       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4332                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4333   DAG.setRoot(StoreNode);
4334   setValue(&I, StoreNode);
4335 }
4336 
4337 // Get a uniform base for the Gather/Scatter intrinsic.
4338 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4339 // We try to represent it as a base pointer + vector of indices.
4340 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4341 // The first operand of the GEP may be a single pointer or a vector of pointers
4342 // Example:
4343 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4344 //  or
4345 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4346 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4347 //
4348 // When the first GEP operand is a single pointer - it is the uniform base we
4349 // are looking for. If first operand of the GEP is a splat vector - we
4350 // extract the splat value and use it as a uniform base.
4351 // In all other cases the function returns 'false'.
4352 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4353                            ISD::MemIndexType &IndexType, SDValue &Scale,
4354                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB,
4355                            uint64_t ElemSize) {
4356   SelectionDAG& DAG = SDB->DAG;
4357   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4358   const DataLayout &DL = DAG.getDataLayout();
4359 
4360   assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
4361 
4362   // Handle splat constant pointer.
4363   if (auto *C = dyn_cast<Constant>(Ptr)) {
4364     C = C->getSplatValue();
4365     if (!C)
4366       return false;
4367 
4368     Base = SDB->getValue(C);
4369 
4370     ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4371     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4372     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4373     IndexType = ISD::SIGNED_SCALED;
4374     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4375     return true;
4376   }
4377 
4378   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4379   if (!GEP || GEP->getParent() != CurBB)
4380     return false;
4381 
4382   if (GEP->getNumOperands() != 2)
4383     return false;
4384 
4385   const Value *BasePtr = GEP->getPointerOperand();
4386   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4387 
4388   // Make sure the base is scalar and the index is a vector.
4389   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4390     return false;
4391 
4392   Base = SDB->getValue(BasePtr);
4393   Index = SDB->getValue(IndexVal);
4394   IndexType = ISD::SIGNED_SCALED;
4395 
4396   // MGATHER/MSCATTER are only required to support scaling by one or by the
4397   // element size. Other scales may be produced using target-specific DAG
4398   // combines.
4399   uint64_t ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType());
4400   if (ScaleVal != ElemSize && ScaleVal != 1)
4401     return false;
4402 
4403   Scale =
4404       DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4405   return true;
4406 }
4407 
4408 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4409   SDLoc sdl = getCurSDLoc();
4410 
4411   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4412   const Value *Ptr = I.getArgOperand(1);
4413   SDValue Src0 = getValue(I.getArgOperand(0));
4414   SDValue Mask = getValue(I.getArgOperand(3));
4415   EVT VT = Src0.getValueType();
4416   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4417                         ->getMaybeAlignValue()
4418                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4419   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4420 
4421   SDValue Base;
4422   SDValue Index;
4423   ISD::MemIndexType IndexType;
4424   SDValue Scale;
4425   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4426                                     I.getParent(), VT.getScalarStoreSize());
4427 
4428   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4429   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4430       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4431       // TODO: Make MachineMemOperands aware of scalable
4432       // vectors.
4433       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata());
4434   if (!UniformBase) {
4435     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4436     Index = getValue(Ptr);
4437     IndexType = ISD::SIGNED_SCALED;
4438     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4439   }
4440 
4441   EVT IdxVT = Index.getValueType();
4442   EVT EltTy = IdxVT.getVectorElementType();
4443   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4444     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4445     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4446   }
4447 
4448   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4449   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4450                                          Ops, MMO, IndexType, false);
4451   DAG.setRoot(Scatter);
4452   setValue(&I, Scatter);
4453 }
4454 
4455 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4456   SDLoc sdl = getCurSDLoc();
4457 
4458   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4459                               MaybeAlign &Alignment) {
4460     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4461     Ptr = I.getArgOperand(0);
4462     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4463     Mask = I.getArgOperand(2);
4464     Src0 = I.getArgOperand(3);
4465   };
4466   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4467                                  MaybeAlign &Alignment) {
4468     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4469     Ptr = I.getArgOperand(0);
4470     Alignment = None;
4471     Mask = I.getArgOperand(1);
4472     Src0 = I.getArgOperand(2);
4473   };
4474 
4475   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4476   MaybeAlign Alignment;
4477   if (IsExpanding)
4478     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4479   else
4480     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4481 
4482   SDValue Ptr = getValue(PtrOperand);
4483   SDValue Src0 = getValue(Src0Operand);
4484   SDValue Mask = getValue(MaskOperand);
4485   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4486 
4487   EVT VT = Src0.getValueType();
4488   if (!Alignment)
4489     Alignment = DAG.getEVTAlign(VT);
4490 
4491   AAMDNodes AAInfo = I.getAAMetadata();
4492   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4493 
4494   // Do not serialize masked loads of constant memory with anything.
4495   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
4496   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4497 
4498   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4499 
4500   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4501       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4502       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
4503 
4504   SDValue Load =
4505       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4506                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4507   if (AddToChain)
4508     PendingLoads.push_back(Load.getValue(1));
4509   setValue(&I, Load);
4510 }
4511 
4512 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4513   SDLoc sdl = getCurSDLoc();
4514 
4515   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4516   const Value *Ptr = I.getArgOperand(0);
4517   SDValue Src0 = getValue(I.getArgOperand(3));
4518   SDValue Mask = getValue(I.getArgOperand(2));
4519 
4520   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4521   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4522   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4523                         ->getMaybeAlignValue()
4524                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4525 
4526   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4527 
4528   SDValue Root = DAG.getRoot();
4529   SDValue Base;
4530   SDValue Index;
4531   ISD::MemIndexType IndexType;
4532   SDValue Scale;
4533   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4534                                     I.getParent(), VT.getScalarStoreSize());
4535   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4536   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4537       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4538       // TODO: Make MachineMemOperands aware of scalable
4539       // vectors.
4540       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges);
4541 
4542   if (!UniformBase) {
4543     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4544     Index = getValue(Ptr);
4545     IndexType = ISD::SIGNED_SCALED;
4546     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4547   }
4548 
4549   EVT IdxVT = Index.getValueType();
4550   EVT EltTy = IdxVT.getVectorElementType();
4551   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4552     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4553     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4554   }
4555 
4556   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4557   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4558                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
4559 
4560   PendingLoads.push_back(Gather.getValue(1));
4561   setValue(&I, Gather);
4562 }
4563 
4564 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4565   SDLoc dl = getCurSDLoc();
4566   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4567   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4568   SyncScope::ID SSID = I.getSyncScopeID();
4569 
4570   SDValue InChain = getRoot();
4571 
4572   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4573   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4574 
4575   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4576   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4577 
4578   MachineFunction &MF = DAG.getMachineFunction();
4579   MachineMemOperand *MMO = MF.getMachineMemOperand(
4580       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4581       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4582       FailureOrdering);
4583 
4584   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4585                                    dl, MemVT, VTs, InChain,
4586                                    getValue(I.getPointerOperand()),
4587                                    getValue(I.getCompareOperand()),
4588                                    getValue(I.getNewValOperand()), MMO);
4589 
4590   SDValue OutChain = L.getValue(2);
4591 
4592   setValue(&I, L);
4593   DAG.setRoot(OutChain);
4594 }
4595 
4596 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4597   SDLoc dl = getCurSDLoc();
4598   ISD::NodeType NT;
4599   switch (I.getOperation()) {
4600   default: llvm_unreachable("Unknown atomicrmw operation");
4601   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4602   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4603   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4604   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4605   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4606   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4607   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4608   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4609   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4610   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4611   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4612   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4613   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4614   case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break;
4615   case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break;
4616   }
4617   AtomicOrdering Ordering = I.getOrdering();
4618   SyncScope::ID SSID = I.getSyncScopeID();
4619 
4620   SDValue InChain = getRoot();
4621 
4622   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4623   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4624   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4625 
4626   MachineFunction &MF = DAG.getMachineFunction();
4627   MachineMemOperand *MMO = MF.getMachineMemOperand(
4628       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4629       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4630 
4631   SDValue L =
4632     DAG.getAtomic(NT, dl, MemVT, InChain,
4633                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4634                   MMO);
4635 
4636   SDValue OutChain = L.getValue(1);
4637 
4638   setValue(&I, L);
4639   DAG.setRoot(OutChain);
4640 }
4641 
4642 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4643   SDLoc dl = getCurSDLoc();
4644   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4645   SDValue Ops[3];
4646   Ops[0] = getRoot();
4647   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4648                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4649   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4650                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4651   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4652 }
4653 
4654 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4655   SDLoc dl = getCurSDLoc();
4656   AtomicOrdering Order = I.getOrdering();
4657   SyncScope::ID SSID = I.getSyncScopeID();
4658 
4659   SDValue InChain = getRoot();
4660 
4661   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4662   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4663   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4664 
4665   if (!TLI.supportsUnalignedAtomics() &&
4666       I.getAlign().value() < MemVT.getSizeInBits() / 8)
4667     report_fatal_error("Cannot generate unaligned atomic load");
4668 
4669   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4670 
4671   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4672       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4673       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4674 
4675   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4676 
4677   SDValue Ptr = getValue(I.getPointerOperand());
4678 
4679   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4680     // TODO: Once this is better exercised by tests, it should be merged with
4681     // the normal path for loads to prevent future divergence.
4682     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4683     if (MemVT != VT)
4684       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4685 
4686     setValue(&I, L);
4687     SDValue OutChain = L.getValue(1);
4688     if (!I.isUnordered())
4689       DAG.setRoot(OutChain);
4690     else
4691       PendingLoads.push_back(OutChain);
4692     return;
4693   }
4694 
4695   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4696                             Ptr, MMO);
4697 
4698   SDValue OutChain = L.getValue(1);
4699   if (MemVT != VT)
4700     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4701 
4702   setValue(&I, L);
4703   DAG.setRoot(OutChain);
4704 }
4705 
4706 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4707   SDLoc dl = getCurSDLoc();
4708 
4709   AtomicOrdering Ordering = I.getOrdering();
4710   SyncScope::ID SSID = I.getSyncScopeID();
4711 
4712   SDValue InChain = getRoot();
4713 
4714   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4715   EVT MemVT =
4716       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4717 
4718   if (I.getAlign().value() < MemVT.getSizeInBits() / 8)
4719     report_fatal_error("Cannot generate unaligned atomic store");
4720 
4721   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4722 
4723   MachineFunction &MF = DAG.getMachineFunction();
4724   MachineMemOperand *MMO = MF.getMachineMemOperand(
4725       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4726       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4727 
4728   SDValue Val = getValue(I.getValueOperand());
4729   if (Val.getValueType() != MemVT)
4730     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4731   SDValue Ptr = getValue(I.getPointerOperand());
4732 
4733   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4734     // TODO: Once this is better exercised by tests, it should be merged with
4735     // the normal path for stores to prevent future divergence.
4736     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4737     DAG.setRoot(S);
4738     return;
4739   }
4740   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4741                                    Ptr, Val, MMO);
4742 
4743 
4744   DAG.setRoot(OutChain);
4745 }
4746 
4747 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4748 /// node.
4749 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4750                                                unsigned Intrinsic) {
4751   // Ignore the callsite's attributes. A specific call site may be marked with
4752   // readnone, but the lowering code will expect the chain based on the
4753   // definition.
4754   const Function *F = I.getCalledFunction();
4755   bool HasChain = !F->doesNotAccessMemory();
4756   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4757 
4758   // Build the operand list.
4759   SmallVector<SDValue, 8> Ops;
4760   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4761     if (OnlyLoad) {
4762       // We don't need to serialize loads against other loads.
4763       Ops.push_back(DAG.getRoot());
4764     } else {
4765       Ops.push_back(getRoot());
4766     }
4767   }
4768 
4769   // Info is set by getTgtMemIntrinsic
4770   TargetLowering::IntrinsicInfo Info;
4771   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4772   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4773                                                DAG.getMachineFunction(),
4774                                                Intrinsic);
4775 
4776   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4777   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4778       Info.opc == ISD::INTRINSIC_W_CHAIN)
4779     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4780                                         TLI.getPointerTy(DAG.getDataLayout())));
4781 
4782   // Add all operands of the call to the operand list.
4783   for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
4784     const Value *Arg = I.getArgOperand(i);
4785     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4786       Ops.push_back(getValue(Arg));
4787       continue;
4788     }
4789 
4790     // Use TargetConstant instead of a regular constant for immarg.
4791     EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
4792     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4793       assert(CI->getBitWidth() <= 64 &&
4794              "large intrinsic immediates not handled");
4795       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4796     } else {
4797       Ops.push_back(
4798           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4799     }
4800   }
4801 
4802   SmallVector<EVT, 4> ValueVTs;
4803   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4804 
4805   if (HasChain)
4806     ValueVTs.push_back(MVT::Other);
4807 
4808   SDVTList VTs = DAG.getVTList(ValueVTs);
4809 
4810   // Propagate fast-math-flags from IR to node(s).
4811   SDNodeFlags Flags;
4812   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
4813     Flags.copyFMF(*FPMO);
4814   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
4815 
4816   // Create the node.
4817   SDValue Result;
4818   if (IsTgtIntrinsic) {
4819     // This is target intrinsic that touches memory
4820     Result =
4821         DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT,
4822                                 MachinePointerInfo(Info.ptrVal, Info.offset),
4823                                 Info.align, Info.flags, Info.size,
4824                                 I.getAAMetadata());
4825   } else if (!HasChain) {
4826     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4827   } else if (!I.getType()->isVoidTy()) {
4828     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4829   } else {
4830     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4831   }
4832 
4833   if (HasChain) {
4834     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4835     if (OnlyLoad)
4836       PendingLoads.push_back(Chain);
4837     else
4838       DAG.setRoot(Chain);
4839   }
4840 
4841   if (!I.getType()->isVoidTy()) {
4842     if (!isa<VectorType>(I.getType()))
4843       Result = lowerRangeToAssertZExt(DAG, I, Result);
4844 
4845     MaybeAlign Alignment = I.getRetAlign();
4846     if (!Alignment)
4847       Alignment = F->getAttributes().getRetAlignment();
4848     // Insert `assertalign` node if there's an alignment.
4849     if (InsertAssertAlign && Alignment) {
4850       Result =
4851           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
4852     }
4853 
4854     setValue(&I, Result);
4855   }
4856 }
4857 
4858 /// GetSignificand - Get the significand and build it into a floating-point
4859 /// number with exponent of 1:
4860 ///
4861 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4862 ///
4863 /// where Op is the hexadecimal representation of floating point value.
4864 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4865   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4866                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4867   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4868                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4869   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4870 }
4871 
4872 /// GetExponent - Get the exponent:
4873 ///
4874 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4875 ///
4876 /// where Op is the hexadecimal representation of floating point value.
4877 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4878                            const TargetLowering &TLI, const SDLoc &dl) {
4879   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4880                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4881   SDValue t1 = DAG.getNode(
4882       ISD::SRL, dl, MVT::i32, t0,
4883       DAG.getConstant(23, dl,
4884                       TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout())));
4885   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4886                            DAG.getConstant(127, dl, MVT::i32));
4887   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4888 }
4889 
4890 /// getF32Constant - Get 32-bit floating point constant.
4891 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4892                               const SDLoc &dl) {
4893   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4894                            MVT::f32);
4895 }
4896 
4897 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4898                                        SelectionDAG &DAG) {
4899   // TODO: What fast-math-flags should be set on the floating-point nodes?
4900 
4901   //   IntegerPartOfX = ((int32_t)(t0);
4902   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4903 
4904   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4905   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4906   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4907 
4908   //   IntegerPartOfX <<= 23;
4909   IntegerPartOfX =
4910       DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4911                   DAG.getConstant(23, dl,
4912                                   DAG.getTargetLoweringInfo().getShiftAmountTy(
4913                                       MVT::i32, DAG.getDataLayout())));
4914 
4915   SDValue TwoToFractionalPartOfX;
4916   if (LimitFloatPrecision <= 6) {
4917     // For floating-point precision of 6:
4918     //
4919     //   TwoToFractionalPartOfX =
4920     //     0.997535578f +
4921     //       (0.735607626f + 0.252464424f * x) * x;
4922     //
4923     // error 0.0144103317, which is 6 bits
4924     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4925                              getF32Constant(DAG, 0x3e814304, dl));
4926     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4927                              getF32Constant(DAG, 0x3f3c50c8, dl));
4928     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4929     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4930                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4931   } else if (LimitFloatPrecision <= 12) {
4932     // For floating-point precision of 12:
4933     //
4934     //   TwoToFractionalPartOfX =
4935     //     0.999892986f +
4936     //       (0.696457318f +
4937     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4938     //
4939     // error 0.000107046256, which is 13 to 14 bits
4940     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4941                              getF32Constant(DAG, 0x3da235e3, dl));
4942     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4943                              getF32Constant(DAG, 0x3e65b8f3, dl));
4944     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4945     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4946                              getF32Constant(DAG, 0x3f324b07, dl));
4947     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4948     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4949                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4950   } else { // LimitFloatPrecision <= 18
4951     // For floating-point precision of 18:
4952     //
4953     //   TwoToFractionalPartOfX =
4954     //     0.999999982f +
4955     //       (0.693148872f +
4956     //         (0.240227044f +
4957     //           (0.554906021e-1f +
4958     //             (0.961591928e-2f +
4959     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4960     // error 2.47208000*10^(-7), which is better than 18 bits
4961     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4962                              getF32Constant(DAG, 0x3924b03e, dl));
4963     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4964                              getF32Constant(DAG, 0x3ab24b87, dl));
4965     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4966     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4967                              getF32Constant(DAG, 0x3c1d8c17, dl));
4968     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4969     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4970                              getF32Constant(DAG, 0x3d634a1d, dl));
4971     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4972     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4973                              getF32Constant(DAG, 0x3e75fe14, dl));
4974     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4975     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4976                               getF32Constant(DAG, 0x3f317234, dl));
4977     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4978     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4979                                          getF32Constant(DAG, 0x3f800000, dl));
4980   }
4981 
4982   // Add the exponent into the result in integer domain.
4983   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4984   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4985                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4986 }
4987 
4988 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4989 /// limited-precision mode.
4990 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4991                          const TargetLowering &TLI, SDNodeFlags Flags) {
4992   if (Op.getValueType() == MVT::f32 &&
4993       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4994 
4995     // Put the exponent in the right bit position for later addition to the
4996     // final result:
4997     //
4998     // t0 = Op * log2(e)
4999 
5000     // TODO: What fast-math-flags should be set here?
5001     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5002                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5003     return getLimitedPrecisionExp2(t0, dl, DAG);
5004   }
5005 
5006   // No special expansion.
5007   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5008 }
5009 
5010 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5011 /// limited-precision mode.
5012 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5013                          const TargetLowering &TLI, SDNodeFlags Flags) {
5014   // TODO: What fast-math-flags should be set on the floating-point nodes?
5015 
5016   if (Op.getValueType() == MVT::f32 &&
5017       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5018     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5019 
5020     // Scale the exponent by log(2).
5021     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5022     SDValue LogOfExponent =
5023         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5024                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5025 
5026     // Get the significand and build it into a floating-point number with
5027     // exponent of 1.
5028     SDValue X = GetSignificand(DAG, Op1, dl);
5029 
5030     SDValue LogOfMantissa;
5031     if (LimitFloatPrecision <= 6) {
5032       // For floating-point precision of 6:
5033       //
5034       //   LogofMantissa =
5035       //     -1.1609546f +
5036       //       (1.4034025f - 0.23903021f * x) * x;
5037       //
5038       // error 0.0034276066, which is better than 8 bits
5039       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5040                                getF32Constant(DAG, 0xbe74c456, dl));
5041       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5042                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5043       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5044       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5045                                   getF32Constant(DAG, 0x3f949a29, dl));
5046     } else if (LimitFloatPrecision <= 12) {
5047       // For floating-point precision of 12:
5048       //
5049       //   LogOfMantissa =
5050       //     -1.7417939f +
5051       //       (2.8212026f +
5052       //         (-1.4699568f +
5053       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5054       //
5055       // error 0.000061011436, which is 14 bits
5056       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5057                                getF32Constant(DAG, 0xbd67b6d6, dl));
5058       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5059                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5060       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5061       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5062                                getF32Constant(DAG, 0x3fbc278b, dl));
5063       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5064       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5065                                getF32Constant(DAG, 0x40348e95, dl));
5066       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5067       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5068                                   getF32Constant(DAG, 0x3fdef31a, dl));
5069     } else { // LimitFloatPrecision <= 18
5070       // For floating-point precision of 18:
5071       //
5072       //   LogOfMantissa =
5073       //     -2.1072184f +
5074       //       (4.2372794f +
5075       //         (-3.7029485f +
5076       //           (2.2781945f +
5077       //             (-0.87823314f +
5078       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5079       //
5080       // error 0.0000023660568, which is better than 18 bits
5081       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5082                                getF32Constant(DAG, 0xbc91e5ac, dl));
5083       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5084                                getF32Constant(DAG, 0x3e4350aa, dl));
5085       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5086       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5087                                getF32Constant(DAG, 0x3f60d3e3, dl));
5088       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5089       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5090                                getF32Constant(DAG, 0x4011cdf0, dl));
5091       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5092       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5093                                getF32Constant(DAG, 0x406cfd1c, dl));
5094       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5095       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5096                                getF32Constant(DAG, 0x408797cb, dl));
5097       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5098       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5099                                   getF32Constant(DAG, 0x4006dcab, dl));
5100     }
5101 
5102     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5103   }
5104 
5105   // No special expansion.
5106   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5107 }
5108 
5109 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5110 /// limited-precision mode.
5111 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5112                           const TargetLowering &TLI, SDNodeFlags Flags) {
5113   // TODO: What fast-math-flags should be set on the floating-point nodes?
5114 
5115   if (Op.getValueType() == MVT::f32 &&
5116       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5117     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5118 
5119     // Get the exponent.
5120     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5121 
5122     // Get the significand and build it into a floating-point number with
5123     // exponent of 1.
5124     SDValue X = GetSignificand(DAG, Op1, dl);
5125 
5126     // Different possible minimax approximations of significand in
5127     // floating-point for various degrees of accuracy over [1,2].
5128     SDValue Log2ofMantissa;
5129     if (LimitFloatPrecision <= 6) {
5130       // For floating-point precision of 6:
5131       //
5132       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5133       //
5134       // error 0.0049451742, which is more than 7 bits
5135       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5136                                getF32Constant(DAG, 0xbeb08fe0, dl));
5137       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5138                                getF32Constant(DAG, 0x40019463, dl));
5139       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5140       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5141                                    getF32Constant(DAG, 0x3fd6633d, dl));
5142     } else if (LimitFloatPrecision <= 12) {
5143       // For floating-point precision of 12:
5144       //
5145       //   Log2ofMantissa =
5146       //     -2.51285454f +
5147       //       (4.07009056f +
5148       //         (-2.12067489f +
5149       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5150       //
5151       // error 0.0000876136000, which is better than 13 bits
5152       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5153                                getF32Constant(DAG, 0xbda7262e, dl));
5154       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5155                                getF32Constant(DAG, 0x3f25280b, dl));
5156       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5157       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5158                                getF32Constant(DAG, 0x4007b923, dl));
5159       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5160       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5161                                getF32Constant(DAG, 0x40823e2f, dl));
5162       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5163       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5164                                    getF32Constant(DAG, 0x4020d29c, dl));
5165     } else { // LimitFloatPrecision <= 18
5166       // For floating-point precision of 18:
5167       //
5168       //   Log2ofMantissa =
5169       //     -3.0400495f +
5170       //       (6.1129976f +
5171       //         (-5.3420409f +
5172       //           (3.2865683f +
5173       //             (-1.2669343f +
5174       //               (0.27515199f -
5175       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5176       //
5177       // error 0.0000018516, which is better than 18 bits
5178       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5179                                getF32Constant(DAG, 0xbcd2769e, dl));
5180       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5181                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5182       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5183       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5184                                getF32Constant(DAG, 0x3fa22ae7, dl));
5185       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5186       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5187                                getF32Constant(DAG, 0x40525723, dl));
5188       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5189       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5190                                getF32Constant(DAG, 0x40aaf200, dl));
5191       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5192       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5193                                getF32Constant(DAG, 0x40c39dad, dl));
5194       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5195       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5196                                    getF32Constant(DAG, 0x4042902c, dl));
5197     }
5198 
5199     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5200   }
5201 
5202   // No special expansion.
5203   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5204 }
5205 
5206 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5207 /// limited-precision mode.
5208 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5209                            const TargetLowering &TLI, SDNodeFlags Flags) {
5210   // TODO: What fast-math-flags should be set on the floating-point nodes?
5211 
5212   if (Op.getValueType() == MVT::f32 &&
5213       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5214     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5215 
5216     // Scale the exponent by log10(2) [0.30102999f].
5217     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5218     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5219                                         getF32Constant(DAG, 0x3e9a209a, dl));
5220 
5221     // Get the significand and build it into a floating-point number with
5222     // exponent of 1.
5223     SDValue X = GetSignificand(DAG, Op1, dl);
5224 
5225     SDValue Log10ofMantissa;
5226     if (LimitFloatPrecision <= 6) {
5227       // For floating-point precision of 6:
5228       //
5229       //   Log10ofMantissa =
5230       //     -0.50419619f +
5231       //       (0.60948995f - 0.10380950f * x) * x;
5232       //
5233       // error 0.0014886165, which is 6 bits
5234       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5235                                getF32Constant(DAG, 0xbdd49a13, dl));
5236       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5237                                getF32Constant(DAG, 0x3f1c0789, dl));
5238       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5239       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5240                                     getF32Constant(DAG, 0x3f011300, dl));
5241     } else if (LimitFloatPrecision <= 12) {
5242       // For floating-point precision of 12:
5243       //
5244       //   Log10ofMantissa =
5245       //     -0.64831180f +
5246       //       (0.91751397f +
5247       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5248       //
5249       // error 0.00019228036, which is better than 12 bits
5250       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5251                                getF32Constant(DAG, 0x3d431f31, dl));
5252       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5253                                getF32Constant(DAG, 0x3ea21fb2, dl));
5254       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5255       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5256                                getF32Constant(DAG, 0x3f6ae232, dl));
5257       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5258       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5259                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5260     } else { // LimitFloatPrecision <= 18
5261       // For floating-point precision of 18:
5262       //
5263       //   Log10ofMantissa =
5264       //     -0.84299375f +
5265       //       (1.5327582f +
5266       //         (-1.0688956f +
5267       //           (0.49102474f +
5268       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5269       //
5270       // error 0.0000037995730, which is better than 18 bits
5271       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5272                                getF32Constant(DAG, 0x3c5d51ce, dl));
5273       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5274                                getF32Constant(DAG, 0x3e00685a, dl));
5275       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5276       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5277                                getF32Constant(DAG, 0x3efb6798, dl));
5278       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5279       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5280                                getF32Constant(DAG, 0x3f88d192, dl));
5281       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5282       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5283                                getF32Constant(DAG, 0x3fc4316c, dl));
5284       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5285       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5286                                     getF32Constant(DAG, 0x3f57ce70, dl));
5287     }
5288 
5289     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5290   }
5291 
5292   // No special expansion.
5293   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5294 }
5295 
5296 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5297 /// limited-precision mode.
5298 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5299                           const TargetLowering &TLI, SDNodeFlags Flags) {
5300   if (Op.getValueType() == MVT::f32 &&
5301       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5302     return getLimitedPrecisionExp2(Op, dl, DAG);
5303 
5304   // No special expansion.
5305   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5306 }
5307 
5308 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5309 /// limited-precision mode with x == 10.0f.
5310 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5311                          SelectionDAG &DAG, const TargetLowering &TLI,
5312                          SDNodeFlags Flags) {
5313   bool IsExp10 = false;
5314   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5315       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5316     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5317       APFloat Ten(10.0f);
5318       IsExp10 = LHSC->isExactlyValue(Ten);
5319     }
5320   }
5321 
5322   // TODO: What fast-math-flags should be set on the FMUL node?
5323   if (IsExp10) {
5324     // Put the exponent in the right bit position for later addition to the
5325     // final result:
5326     //
5327     //   #define LOG2OF10 3.3219281f
5328     //   t0 = Op * LOG2OF10;
5329     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5330                              getF32Constant(DAG, 0x40549a78, dl));
5331     return getLimitedPrecisionExp2(t0, dl, DAG);
5332   }
5333 
5334   // No special expansion.
5335   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5336 }
5337 
5338 /// ExpandPowI - Expand a llvm.powi intrinsic.
5339 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5340                           SelectionDAG &DAG) {
5341   // If RHS is a constant, we can expand this out to a multiplication tree if
5342   // it's beneficial on the target, otherwise we end up lowering to a call to
5343   // __powidf2 (for example).
5344   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5345     unsigned Val = RHSC->getSExtValue();
5346 
5347     // powi(x, 0) -> 1.0
5348     if (Val == 0)
5349       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5350 
5351     if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI(
5352             Val, DAG.shouldOptForSize())) {
5353       // Get the exponent as a positive value.
5354       if ((int)Val < 0)
5355         Val = -Val;
5356       // We use the simple binary decomposition method to generate the multiply
5357       // sequence.  There are more optimal ways to do this (for example,
5358       // powi(x,15) generates one more multiply than it should), but this has
5359       // the benefit of being both really simple and much better than a libcall.
5360       SDValue Res; // Logically starts equal to 1.0
5361       SDValue CurSquare = LHS;
5362       // TODO: Intrinsics should have fast-math-flags that propagate to these
5363       // nodes.
5364       while (Val) {
5365         if (Val & 1) {
5366           if (Res.getNode())
5367             Res =
5368                 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare);
5369           else
5370             Res = CurSquare; // 1.0*CurSquare.
5371         }
5372 
5373         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5374                                 CurSquare, CurSquare);
5375         Val >>= 1;
5376       }
5377 
5378       // If the original was negative, invert the result, producing 1/(x*x*x).
5379       if (RHSC->getSExtValue() < 0)
5380         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5381                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5382       return Res;
5383     }
5384   }
5385 
5386   // Otherwise, expand to a libcall.
5387   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5388 }
5389 
5390 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5391                             SDValue LHS, SDValue RHS, SDValue Scale,
5392                             SelectionDAG &DAG, const TargetLowering &TLI) {
5393   EVT VT = LHS.getValueType();
5394   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5395   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5396   LLVMContext &Ctx = *DAG.getContext();
5397 
5398   // If the type is legal but the operation isn't, this node might survive all
5399   // the way to operation legalization. If we end up there and we do not have
5400   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5401   // node.
5402 
5403   // Coax the legalizer into expanding the node during type legalization instead
5404   // by bumping the size by one bit. This will force it to Promote, enabling the
5405   // early expansion and avoiding the need to expand later.
5406 
5407   // We don't have to do this if Scale is 0; that can always be expanded, unless
5408   // it's a saturating signed operation. Those can experience true integer
5409   // division overflow, a case which we must avoid.
5410 
5411   // FIXME: We wouldn't have to do this (or any of the early
5412   // expansion/promotion) if it was possible to expand a libcall of an
5413   // illegal type during operation legalization. But it's not, so things
5414   // get a bit hacky.
5415   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5416   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5417       (TLI.isTypeLegal(VT) ||
5418        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5419     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5420         Opcode, VT, ScaleInt);
5421     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5422       EVT PromVT;
5423       if (VT.isScalarInteger())
5424         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5425       else if (VT.isVector()) {
5426         PromVT = VT.getVectorElementType();
5427         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5428         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5429       } else
5430         llvm_unreachable("Wrong VT for DIVFIX?");
5431       if (Signed) {
5432         LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
5433         RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
5434       } else {
5435         LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
5436         RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
5437       }
5438       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5439       // For saturating operations, we need to shift up the LHS to get the
5440       // proper saturation width, and then shift down again afterwards.
5441       if (Saturating)
5442         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5443                           DAG.getConstant(1, DL, ShiftTy));
5444       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5445       if (Saturating)
5446         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5447                           DAG.getConstant(1, DL, ShiftTy));
5448       return DAG.getZExtOrTrunc(Res, DL, VT);
5449     }
5450   }
5451 
5452   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5453 }
5454 
5455 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5456 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5457 static void
5458 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5459                      const SDValue &N) {
5460   switch (N.getOpcode()) {
5461   case ISD::CopyFromReg: {
5462     SDValue Op = N.getOperand(1);
5463     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5464                       Op.getValueType().getSizeInBits());
5465     return;
5466   }
5467   case ISD::BITCAST:
5468   case ISD::AssertZext:
5469   case ISD::AssertSext:
5470   case ISD::TRUNCATE:
5471     getUnderlyingArgRegs(Regs, N.getOperand(0));
5472     return;
5473   case ISD::BUILD_PAIR:
5474   case ISD::BUILD_VECTOR:
5475   case ISD::CONCAT_VECTORS:
5476     for (SDValue Op : N->op_values())
5477       getUnderlyingArgRegs(Regs, Op);
5478     return;
5479   default:
5480     return;
5481   }
5482 }
5483 
5484 /// If the DbgValueInst is a dbg_value of a function argument, create the
5485 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5486 /// instruction selection, they will be inserted to the entry BB.
5487 /// We don't currently support this for variadic dbg_values, as they shouldn't
5488 /// appear for function arguments or in the prologue.
5489 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5490     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5491     DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) {
5492   const Argument *Arg = dyn_cast<Argument>(V);
5493   if (!Arg)
5494     return false;
5495 
5496   MachineFunction &MF = DAG.getMachineFunction();
5497   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5498 
5499   // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
5500   // we've been asked to pursue.
5501   auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
5502                               bool Indirect) {
5503     if (Reg.isVirtual() && MF.useDebugInstrRef()) {
5504       // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
5505       // pointing at the VReg, which will be patched up later.
5506       auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
5507       auto MIB = BuildMI(MF, DL, Inst);
5508       MIB.addReg(Reg);
5509       MIB.addImm(0);
5510       MIB.addMetadata(Variable);
5511       auto *NewDIExpr = FragExpr;
5512       // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
5513       // the DIExpression.
5514       if (Indirect)
5515         NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
5516       MIB.addMetadata(NewDIExpr);
5517       return MIB;
5518     } else {
5519       // Create a completely standard DBG_VALUE.
5520       auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
5521       return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
5522     }
5523   };
5524 
5525   if (Kind == FuncArgumentDbgValueKind::Value) {
5526     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5527     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5528     // the entry block.
5529     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5530     if (!IsInEntryBlock)
5531       return false;
5532 
5533     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5534     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5535     // variable that also is a param.
5536     //
5537     // Although, if we are at the top of the entry block already, we can still
5538     // emit using ArgDbgValue. This might catch some situations when the
5539     // dbg.value refers to an argument that isn't used in the entry block, so
5540     // any CopyToReg node would be optimized out and the only way to express
5541     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5542     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5543     // we should only emit as ArgDbgValue if the Variable is an argument to the
5544     // current function, and the dbg.value intrinsic is found in the entry
5545     // block.
5546     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5547         !DL->getInlinedAt();
5548     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5549     if (!IsInPrologue && !VariableIsFunctionInputArg)
5550       return false;
5551 
5552     // Here we assume that a function argument on IR level only can be used to
5553     // describe one input parameter on source level. If we for example have
5554     // source code like this
5555     //
5556     //    struct A { long x, y; };
5557     //    void foo(struct A a, long b) {
5558     //      ...
5559     //      b = a.x;
5560     //      ...
5561     //    }
5562     //
5563     // and IR like this
5564     //
5565     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5566     //  entry:
5567     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5568     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5569     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5570     //    ...
5571     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5572     //    ...
5573     //
5574     // then the last dbg.value is describing a parameter "b" using a value that
5575     // is an argument. But since we already has used %a1 to describe a parameter
5576     // we should not handle that last dbg.value here (that would result in an
5577     // incorrect hoisting of the DBG_VALUE to the function entry).
5578     // Notice that we allow one dbg.value per IR level argument, to accommodate
5579     // for the situation with fragments above.
5580     if (VariableIsFunctionInputArg) {
5581       unsigned ArgNo = Arg->getArgNo();
5582       if (ArgNo >= FuncInfo.DescribedArgs.size())
5583         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5584       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5585         return false;
5586       FuncInfo.DescribedArgs.set(ArgNo);
5587     }
5588   }
5589 
5590   bool IsIndirect = false;
5591   Optional<MachineOperand> Op;
5592   // Some arguments' frame index is recorded during argument lowering.
5593   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5594   if (FI != std::numeric_limits<int>::max())
5595     Op = MachineOperand::CreateFI(FI);
5596 
5597   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
5598   if (!Op && N.getNode()) {
5599     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5600     Register Reg;
5601     if (ArgRegsAndSizes.size() == 1)
5602       Reg = ArgRegsAndSizes.front().first;
5603 
5604     if (Reg && Reg.isVirtual()) {
5605       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5606       Register PR = RegInfo.getLiveInPhysReg(Reg);
5607       if (PR)
5608         Reg = PR;
5609     }
5610     if (Reg) {
5611       Op = MachineOperand::CreateReg(Reg, false);
5612       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5613     }
5614   }
5615 
5616   if (!Op && N.getNode()) {
5617     // Check if frame index is available.
5618     SDValue LCandidate = peekThroughBitcasts(N);
5619     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5620       if (FrameIndexSDNode *FINode =
5621           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5622         Op = MachineOperand::CreateFI(FINode->getIndex());
5623   }
5624 
5625   if (!Op) {
5626     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5627     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
5628                                          SplitRegs) {
5629       unsigned Offset = 0;
5630       for (const auto &RegAndSize : SplitRegs) {
5631         // If the expression is already a fragment, the current register
5632         // offset+size might extend beyond the fragment. In this case, only
5633         // the register bits that are inside the fragment are relevant.
5634         int RegFragmentSizeInBits = RegAndSize.second;
5635         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5636           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5637           // The register is entirely outside the expression fragment,
5638           // so is irrelevant for debug info.
5639           if (Offset >= ExprFragmentSizeInBits)
5640             break;
5641           // The register is partially outside the expression fragment, only
5642           // the low bits within the fragment are relevant for debug info.
5643           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5644             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5645           }
5646         }
5647 
5648         auto FragmentExpr = DIExpression::createFragmentExpression(
5649             Expr, Offset, RegFragmentSizeInBits);
5650         Offset += RegAndSize.second;
5651         // If a valid fragment expression cannot be created, the variable's
5652         // correct value cannot be determined and so it is set as Undef.
5653         if (!FragmentExpr) {
5654           SDDbgValue *SDV = DAG.getConstantDbgValue(
5655               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5656           DAG.AddDbgValue(SDV, false);
5657           continue;
5658         }
5659         MachineInstr *NewMI =
5660             MakeVRegDbgValue(RegAndSize.first, *FragmentExpr,
5661                              Kind != FuncArgumentDbgValueKind::Value);
5662         FuncInfo.ArgDbgValues.push_back(NewMI);
5663       }
5664     };
5665 
5666     // Check if ValueMap has reg number.
5667     DenseMap<const Value *, Register>::const_iterator
5668       VMI = FuncInfo.ValueMap.find(V);
5669     if (VMI != FuncInfo.ValueMap.end()) {
5670       const auto &TLI = DAG.getTargetLoweringInfo();
5671       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5672                        V->getType(), None);
5673       if (RFV.occupiesMultipleRegs()) {
5674         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5675         return true;
5676       }
5677 
5678       Op = MachineOperand::CreateReg(VMI->second, false);
5679       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5680     } else if (ArgRegsAndSizes.size() > 1) {
5681       // This was split due to the calling convention, and no virtual register
5682       // mapping exists for the value.
5683       splitMultiRegDbgValue(ArgRegsAndSizes);
5684       return true;
5685     }
5686   }
5687 
5688   if (!Op)
5689     return false;
5690 
5691   assert(Variable->isValidLocationForIntrinsic(DL) &&
5692          "Expected inlined-at fields to agree");
5693   MachineInstr *NewMI = nullptr;
5694 
5695   if (Op->isReg())
5696     NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
5697   else
5698     NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
5699                     Variable, Expr);
5700 
5701   // Otherwise, use ArgDbgValues.
5702   FuncInfo.ArgDbgValues.push_back(NewMI);
5703   return true;
5704 }
5705 
5706 /// Return the appropriate SDDbgValue based on N.
5707 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5708                                              DILocalVariable *Variable,
5709                                              DIExpression *Expr,
5710                                              const DebugLoc &dl,
5711                                              unsigned DbgSDNodeOrder) {
5712   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5713     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5714     // stack slot locations.
5715     //
5716     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5717     // debug values here after optimization:
5718     //
5719     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5720     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5721     //
5722     // Both describe the direct values of their associated variables.
5723     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5724                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5725   }
5726   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5727                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5728 }
5729 
5730 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5731   switch (Intrinsic) {
5732   case Intrinsic::smul_fix:
5733     return ISD::SMULFIX;
5734   case Intrinsic::umul_fix:
5735     return ISD::UMULFIX;
5736   case Intrinsic::smul_fix_sat:
5737     return ISD::SMULFIXSAT;
5738   case Intrinsic::umul_fix_sat:
5739     return ISD::UMULFIXSAT;
5740   case Intrinsic::sdiv_fix:
5741     return ISD::SDIVFIX;
5742   case Intrinsic::udiv_fix:
5743     return ISD::UDIVFIX;
5744   case Intrinsic::sdiv_fix_sat:
5745     return ISD::SDIVFIXSAT;
5746   case Intrinsic::udiv_fix_sat:
5747     return ISD::UDIVFIXSAT;
5748   default:
5749     llvm_unreachable("Unhandled fixed point intrinsic");
5750   }
5751 }
5752 
5753 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5754                                            const char *FunctionName) {
5755   assert(FunctionName && "FunctionName must not be nullptr");
5756   SDValue Callee = DAG.getExternalSymbol(
5757       FunctionName,
5758       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5759   LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
5760 }
5761 
5762 /// Given a @llvm.call.preallocated.setup, return the corresponding
5763 /// preallocated call.
5764 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
5765   assert(cast<CallBase>(PreallocatedSetup)
5766                  ->getCalledFunction()
5767                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
5768          "expected call_preallocated_setup Value");
5769   for (auto *U : PreallocatedSetup->users()) {
5770     auto *UseCall = cast<CallBase>(U);
5771     const Function *Fn = UseCall->getCalledFunction();
5772     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
5773       return UseCall;
5774     }
5775   }
5776   llvm_unreachable("expected corresponding call to preallocated setup/arg");
5777 }
5778 
5779 /// Lower the call to the specified intrinsic function.
5780 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5781                                              unsigned Intrinsic) {
5782   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5783   SDLoc sdl = getCurSDLoc();
5784   DebugLoc dl = getCurDebugLoc();
5785   SDValue Res;
5786 
5787   SDNodeFlags Flags;
5788   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
5789     Flags.copyFMF(*FPOp);
5790 
5791   switch (Intrinsic) {
5792   default:
5793     // By default, turn this into a target intrinsic node.
5794     visitTargetIntrinsic(I, Intrinsic);
5795     return;
5796   case Intrinsic::vscale: {
5797     match(&I, m_VScale(DAG.getDataLayout()));
5798     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5799     setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
5800     return;
5801   }
5802   case Intrinsic::vastart:  visitVAStart(I); return;
5803   case Intrinsic::vaend:    visitVAEnd(I); return;
5804   case Intrinsic::vacopy:   visitVACopy(I); return;
5805   case Intrinsic::returnaddress:
5806     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5807                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5808                              getValue(I.getArgOperand(0))));
5809     return;
5810   case Intrinsic::addressofreturnaddress:
5811     setValue(&I,
5812              DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5813                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
5814     return;
5815   case Intrinsic::sponentry:
5816     setValue(&I,
5817              DAG.getNode(ISD::SPONENTRY, sdl,
5818                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
5819     return;
5820   case Intrinsic::frameaddress:
5821     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5822                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5823                              getValue(I.getArgOperand(0))));
5824     return;
5825   case Intrinsic::read_volatile_register:
5826   case Intrinsic::read_register: {
5827     Value *Reg = I.getArgOperand(0);
5828     SDValue Chain = getRoot();
5829     SDValue RegName =
5830         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5831     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5832     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5833       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5834     setValue(&I, Res);
5835     DAG.setRoot(Res.getValue(1));
5836     return;
5837   }
5838   case Intrinsic::write_register: {
5839     Value *Reg = I.getArgOperand(0);
5840     Value *RegValue = I.getArgOperand(1);
5841     SDValue Chain = getRoot();
5842     SDValue RegName =
5843         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5844     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5845                             RegName, getValue(RegValue)));
5846     return;
5847   }
5848   case Intrinsic::memcpy: {
5849     const auto &MCI = cast<MemCpyInst>(I);
5850     SDValue Op1 = getValue(I.getArgOperand(0));
5851     SDValue Op2 = getValue(I.getArgOperand(1));
5852     SDValue Op3 = getValue(I.getArgOperand(2));
5853     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5854     Align DstAlign = MCI.getDestAlign().valueOrOne();
5855     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5856     Align Alignment = std::min(DstAlign, SrcAlign);
5857     bool isVol = MCI.isVolatile();
5858     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5859     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5860     // node.
5861     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5862     SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5863                                /* AlwaysInline */ false, isTC,
5864                                MachinePointerInfo(I.getArgOperand(0)),
5865                                MachinePointerInfo(I.getArgOperand(1)),
5866                                I.getAAMetadata());
5867     updateDAGForMaybeTailCall(MC);
5868     return;
5869   }
5870   case Intrinsic::memcpy_inline: {
5871     const auto &MCI = cast<MemCpyInlineInst>(I);
5872     SDValue Dst = getValue(I.getArgOperand(0));
5873     SDValue Src = getValue(I.getArgOperand(1));
5874     SDValue Size = getValue(I.getArgOperand(2));
5875     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
5876     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
5877     Align DstAlign = MCI.getDestAlign().valueOrOne();
5878     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5879     Align Alignment = std::min(DstAlign, SrcAlign);
5880     bool isVol = MCI.isVolatile();
5881     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5882     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5883     // node.
5884     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
5885                                /* AlwaysInline */ true, isTC,
5886                                MachinePointerInfo(I.getArgOperand(0)),
5887                                MachinePointerInfo(I.getArgOperand(1)),
5888                                I.getAAMetadata());
5889     updateDAGForMaybeTailCall(MC);
5890     return;
5891   }
5892   case Intrinsic::memset: {
5893     const auto &MSI = cast<MemSetInst>(I);
5894     SDValue Op1 = getValue(I.getArgOperand(0));
5895     SDValue Op2 = getValue(I.getArgOperand(1));
5896     SDValue Op3 = getValue(I.getArgOperand(2));
5897     // @llvm.memset defines 0 and 1 to both mean no alignment.
5898     Align Alignment = MSI.getDestAlign().valueOrOne();
5899     bool isVol = MSI.isVolatile();
5900     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5901     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5902     SDValue MS = DAG.getMemset(
5903         Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false,
5904         isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata());
5905     updateDAGForMaybeTailCall(MS);
5906     return;
5907   }
5908   case Intrinsic::memset_inline: {
5909     const auto &MSII = cast<MemSetInlineInst>(I);
5910     SDValue Dst = getValue(I.getArgOperand(0));
5911     SDValue Value = getValue(I.getArgOperand(1));
5912     SDValue Size = getValue(I.getArgOperand(2));
5913     assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size");
5914     // @llvm.memset defines 0 and 1 to both mean no alignment.
5915     Align DstAlign = MSII.getDestAlign().valueOrOne();
5916     bool isVol = MSII.isVolatile();
5917     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5918     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5919     SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol,
5920                                /* AlwaysInline */ true, isTC,
5921                                MachinePointerInfo(I.getArgOperand(0)),
5922                                I.getAAMetadata());
5923     updateDAGForMaybeTailCall(MC);
5924     return;
5925   }
5926   case Intrinsic::memmove: {
5927     const auto &MMI = cast<MemMoveInst>(I);
5928     SDValue Op1 = getValue(I.getArgOperand(0));
5929     SDValue Op2 = getValue(I.getArgOperand(1));
5930     SDValue Op3 = getValue(I.getArgOperand(2));
5931     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5932     Align DstAlign = MMI.getDestAlign().valueOrOne();
5933     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
5934     Align Alignment = std::min(DstAlign, SrcAlign);
5935     bool isVol = MMI.isVolatile();
5936     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5937     // FIXME: Support passing different dest/src alignments to the memmove DAG
5938     // node.
5939     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5940     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5941                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5942                                 MachinePointerInfo(I.getArgOperand(1)),
5943                                 I.getAAMetadata());
5944     updateDAGForMaybeTailCall(MM);
5945     return;
5946   }
5947   case Intrinsic::memcpy_element_unordered_atomic: {
5948     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5949     SDValue Dst = getValue(MI.getRawDest());
5950     SDValue Src = getValue(MI.getRawSource());
5951     SDValue Length = getValue(MI.getLength());
5952 
5953     Type *LengthTy = MI.getLength()->getType();
5954     unsigned ElemSz = MI.getElementSizeInBytes();
5955     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5956     SDValue MC =
5957         DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
5958                             isTC, MachinePointerInfo(MI.getRawDest()),
5959                             MachinePointerInfo(MI.getRawSource()));
5960     updateDAGForMaybeTailCall(MC);
5961     return;
5962   }
5963   case Intrinsic::memmove_element_unordered_atomic: {
5964     auto &MI = cast<AtomicMemMoveInst>(I);
5965     SDValue Dst = getValue(MI.getRawDest());
5966     SDValue Src = getValue(MI.getRawSource());
5967     SDValue Length = getValue(MI.getLength());
5968 
5969     Type *LengthTy = MI.getLength()->getType();
5970     unsigned ElemSz = MI.getElementSizeInBytes();
5971     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5972     SDValue MC =
5973         DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
5974                              isTC, MachinePointerInfo(MI.getRawDest()),
5975                              MachinePointerInfo(MI.getRawSource()));
5976     updateDAGForMaybeTailCall(MC);
5977     return;
5978   }
5979   case Intrinsic::memset_element_unordered_atomic: {
5980     auto &MI = cast<AtomicMemSetInst>(I);
5981     SDValue Dst = getValue(MI.getRawDest());
5982     SDValue Val = getValue(MI.getValue());
5983     SDValue Length = getValue(MI.getLength());
5984 
5985     Type *LengthTy = MI.getLength()->getType();
5986     unsigned ElemSz = MI.getElementSizeInBytes();
5987     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5988     SDValue MC =
5989         DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz,
5990                             isTC, MachinePointerInfo(MI.getRawDest()));
5991     updateDAGForMaybeTailCall(MC);
5992     return;
5993   }
5994   case Intrinsic::call_preallocated_setup: {
5995     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
5996     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
5997     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
5998                               getRoot(), SrcValue);
5999     setValue(&I, Res);
6000     DAG.setRoot(Res);
6001     return;
6002   }
6003   case Intrinsic::call_preallocated_arg: {
6004     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
6005     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6006     SDValue Ops[3];
6007     Ops[0] = getRoot();
6008     Ops[1] = SrcValue;
6009     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
6010                                    MVT::i32); // arg index
6011     SDValue Res = DAG.getNode(
6012         ISD::PREALLOCATED_ARG, sdl,
6013         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6014     setValue(&I, Res);
6015     DAG.setRoot(Res.getValue(1));
6016     return;
6017   }
6018   case Intrinsic::dbg_addr:
6019   case Intrinsic::dbg_declare: {
6020     // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e.
6021     // they are non-variadic.
6022     const auto &DI = cast<DbgVariableIntrinsic>(I);
6023     assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
6024     DILocalVariable *Variable = DI.getVariable();
6025     DIExpression *Expression = DI.getExpression();
6026     dropDanglingDebugInfo(Variable, Expression);
6027     assert(Variable && "Missing variable");
6028     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
6029                       << "\n");
6030     // Check if address has undef value.
6031     const Value *Address = DI.getVariableLocationOp(0);
6032     if (!Address || isa<UndefValue>(Address) ||
6033         (Address->use_empty() && !isa<Argument>(Address))) {
6034       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6035                         << " (bad/undef/unused-arg address)\n");
6036       return;
6037     }
6038 
6039     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
6040 
6041     // Check if this variable can be described by a frame index, typically
6042     // either as a static alloca or a byval parameter.
6043     int FI = std::numeric_limits<int>::max();
6044     if (const auto *AI =
6045             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
6046       if (AI->isStaticAlloca()) {
6047         auto I = FuncInfo.StaticAllocaMap.find(AI);
6048         if (I != FuncInfo.StaticAllocaMap.end())
6049           FI = I->second;
6050       }
6051     } else if (const auto *Arg = dyn_cast<Argument>(
6052                    Address->stripInBoundsConstantOffsets())) {
6053       FI = FuncInfo.getArgumentFrameIndex(Arg);
6054     }
6055 
6056     // llvm.dbg.addr is control dependent and always generates indirect
6057     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
6058     // the MachineFunction variable table.
6059     if (FI != std::numeric_limits<int>::max()) {
6060       if (Intrinsic == Intrinsic::dbg_addr) {
6061         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
6062             Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true,
6063             dl, SDNodeOrder);
6064         DAG.AddDbgValue(SDV, isParameter);
6065       } else {
6066         LLVM_DEBUG(dbgs() << "Skipping " << DI
6067                           << " (variable info stashed in MF side table)\n");
6068       }
6069       return;
6070     }
6071 
6072     SDValue &N = NodeMap[Address];
6073     if (!N.getNode() && isa<Argument>(Address))
6074       // Check unused arguments map.
6075       N = UnusedArgNodeMap[Address];
6076     SDDbgValue *SDV;
6077     if (N.getNode()) {
6078       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
6079         Address = BCI->getOperand(0);
6080       // Parameters are handled specially.
6081       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
6082       if (isParameter && FINode) {
6083         // Byval parameter. We have a frame index at this point.
6084         SDV =
6085             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
6086                                       /*IsIndirect*/ true, dl, SDNodeOrder);
6087       } else if (isa<Argument>(Address)) {
6088         // Address is an argument, so try to emit its dbg value using
6089         // virtual register info from the FuncInfo.ValueMap.
6090         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
6091                                  FuncArgumentDbgValueKind::Declare, N);
6092         return;
6093       } else {
6094         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
6095                               true, dl, SDNodeOrder);
6096       }
6097       DAG.AddDbgValue(SDV, isParameter);
6098     } else {
6099       // If Address is an argument then try to emit its dbg value using
6100       // virtual register info from the FuncInfo.ValueMap.
6101       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
6102                                     FuncArgumentDbgValueKind::Declare, N)) {
6103         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6104                           << " (could not emit func-arg dbg_value)\n");
6105       }
6106     }
6107     return;
6108   }
6109   case Intrinsic::dbg_label: {
6110     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6111     DILabel *Label = DI.getLabel();
6112     assert(Label && "Missing label");
6113 
6114     SDDbgLabel *SDV;
6115     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6116     DAG.AddDbgLabel(SDV);
6117     return;
6118   }
6119   case Intrinsic::dbg_value: {
6120     const DbgValueInst &DI = cast<DbgValueInst>(I);
6121     assert(DI.getVariable() && "Missing variable");
6122 
6123     DILocalVariable *Variable = DI.getVariable();
6124     DIExpression *Expression = DI.getExpression();
6125     dropDanglingDebugInfo(Variable, Expression);
6126     SmallVector<Value *, 4> Values(DI.getValues());
6127     if (Values.empty())
6128       return;
6129 
6130     if (llvm::is_contained(Values, nullptr))
6131       return;
6132 
6133     bool IsVariadic = DI.hasArgList();
6134     if (!handleDebugValue(Values, Variable, Expression, dl, DI.getDebugLoc(),
6135                           SDNodeOrder, IsVariadic))
6136       addDanglingDebugInfo(&DI, dl, SDNodeOrder);
6137     return;
6138   }
6139 
6140   case Intrinsic::eh_typeid_for: {
6141     // Find the type id for the given typeinfo.
6142     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6143     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6144     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6145     setValue(&I, Res);
6146     return;
6147   }
6148 
6149   case Intrinsic::eh_return_i32:
6150   case Intrinsic::eh_return_i64:
6151     DAG.getMachineFunction().setCallsEHReturn(true);
6152     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6153                             MVT::Other,
6154                             getControlRoot(),
6155                             getValue(I.getArgOperand(0)),
6156                             getValue(I.getArgOperand(1))));
6157     return;
6158   case Intrinsic::eh_unwind_init:
6159     DAG.getMachineFunction().setCallsUnwindInit(true);
6160     return;
6161   case Intrinsic::eh_dwarf_cfa:
6162     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6163                              TLI.getPointerTy(DAG.getDataLayout()),
6164                              getValue(I.getArgOperand(0))));
6165     return;
6166   case Intrinsic::eh_sjlj_callsite: {
6167     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6168     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0));
6169     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6170 
6171     MMI.setCurrentCallSite(CI->getZExtValue());
6172     return;
6173   }
6174   case Intrinsic::eh_sjlj_functioncontext: {
6175     // Get and store the index of the function context.
6176     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6177     AllocaInst *FnCtx =
6178       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6179     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6180     MFI.setFunctionContextIndex(FI);
6181     return;
6182   }
6183   case Intrinsic::eh_sjlj_setjmp: {
6184     SDValue Ops[2];
6185     Ops[0] = getRoot();
6186     Ops[1] = getValue(I.getArgOperand(0));
6187     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6188                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6189     setValue(&I, Op.getValue(0));
6190     DAG.setRoot(Op.getValue(1));
6191     return;
6192   }
6193   case Intrinsic::eh_sjlj_longjmp:
6194     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6195                             getRoot(), getValue(I.getArgOperand(0))));
6196     return;
6197   case Intrinsic::eh_sjlj_setup_dispatch:
6198     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6199                             getRoot()));
6200     return;
6201   case Intrinsic::masked_gather:
6202     visitMaskedGather(I);
6203     return;
6204   case Intrinsic::masked_load:
6205     visitMaskedLoad(I);
6206     return;
6207   case Intrinsic::masked_scatter:
6208     visitMaskedScatter(I);
6209     return;
6210   case Intrinsic::masked_store:
6211     visitMaskedStore(I);
6212     return;
6213   case Intrinsic::masked_expandload:
6214     visitMaskedLoad(I, true /* IsExpanding */);
6215     return;
6216   case Intrinsic::masked_compressstore:
6217     visitMaskedStore(I, true /* IsCompressing */);
6218     return;
6219   case Intrinsic::powi:
6220     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6221                             getValue(I.getArgOperand(1)), DAG));
6222     return;
6223   case Intrinsic::log:
6224     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6225     return;
6226   case Intrinsic::log2:
6227     setValue(&I,
6228              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6229     return;
6230   case Intrinsic::log10:
6231     setValue(&I,
6232              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6233     return;
6234   case Intrinsic::exp:
6235     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6236     return;
6237   case Intrinsic::exp2:
6238     setValue(&I,
6239              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6240     return;
6241   case Intrinsic::pow:
6242     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6243                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6244     return;
6245   case Intrinsic::sqrt:
6246   case Intrinsic::fabs:
6247   case Intrinsic::sin:
6248   case Intrinsic::cos:
6249   case Intrinsic::floor:
6250   case Intrinsic::ceil:
6251   case Intrinsic::trunc:
6252   case Intrinsic::rint:
6253   case Intrinsic::nearbyint:
6254   case Intrinsic::round:
6255   case Intrinsic::roundeven:
6256   case Intrinsic::canonicalize: {
6257     unsigned Opcode;
6258     switch (Intrinsic) {
6259     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6260     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6261     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6262     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6263     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6264     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6265     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6266     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6267     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6268     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6269     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6270     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6271     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6272     }
6273 
6274     setValue(&I, DAG.getNode(Opcode, sdl,
6275                              getValue(I.getArgOperand(0)).getValueType(),
6276                              getValue(I.getArgOperand(0)), Flags));
6277     return;
6278   }
6279   case Intrinsic::lround:
6280   case Intrinsic::llround:
6281   case Intrinsic::lrint:
6282   case Intrinsic::llrint: {
6283     unsigned Opcode;
6284     switch (Intrinsic) {
6285     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6286     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6287     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6288     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6289     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6290     }
6291 
6292     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6293     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6294                              getValue(I.getArgOperand(0))));
6295     return;
6296   }
6297   case Intrinsic::minnum:
6298     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6299                              getValue(I.getArgOperand(0)).getValueType(),
6300                              getValue(I.getArgOperand(0)),
6301                              getValue(I.getArgOperand(1)), Flags));
6302     return;
6303   case Intrinsic::maxnum:
6304     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6305                              getValue(I.getArgOperand(0)).getValueType(),
6306                              getValue(I.getArgOperand(0)),
6307                              getValue(I.getArgOperand(1)), Flags));
6308     return;
6309   case Intrinsic::minimum:
6310     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6311                              getValue(I.getArgOperand(0)).getValueType(),
6312                              getValue(I.getArgOperand(0)),
6313                              getValue(I.getArgOperand(1)), Flags));
6314     return;
6315   case Intrinsic::maximum:
6316     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6317                              getValue(I.getArgOperand(0)).getValueType(),
6318                              getValue(I.getArgOperand(0)),
6319                              getValue(I.getArgOperand(1)), Flags));
6320     return;
6321   case Intrinsic::copysign:
6322     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6323                              getValue(I.getArgOperand(0)).getValueType(),
6324                              getValue(I.getArgOperand(0)),
6325                              getValue(I.getArgOperand(1)), Flags));
6326     return;
6327   case Intrinsic::arithmetic_fence: {
6328     setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
6329                              getValue(I.getArgOperand(0)).getValueType(),
6330                              getValue(I.getArgOperand(0)), Flags));
6331     return;
6332   }
6333   case Intrinsic::fma:
6334     setValue(&I, DAG.getNode(
6335                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6336                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6337                      getValue(I.getArgOperand(2)), Flags));
6338     return;
6339 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6340   case Intrinsic::INTRINSIC:
6341 #include "llvm/IR/ConstrainedOps.def"
6342     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6343     return;
6344 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6345 #include "llvm/IR/VPIntrinsics.def"
6346     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6347     return;
6348   case Intrinsic::fptrunc_round: {
6349     // Get the last argument, the metadata and convert it to an integer in the
6350     // call
6351     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata();
6352     Optional<RoundingMode> RoundMode =
6353         convertStrToRoundingMode(cast<MDString>(MD)->getString());
6354 
6355     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6356 
6357     // Propagate fast-math-flags from IR to node(s).
6358     SDNodeFlags Flags;
6359     Flags.copyFMF(*cast<FPMathOperator>(&I));
6360     SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
6361 
6362     SDValue Result;
6363     Result = DAG.getNode(
6364         ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)),
6365         DAG.getTargetConstant((int)*RoundMode, sdl,
6366                               TLI.getPointerTy(DAG.getDataLayout())));
6367     setValue(&I, Result);
6368 
6369     return;
6370   }
6371   case Intrinsic::fmuladd: {
6372     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6373     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6374         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6375       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6376                                getValue(I.getArgOperand(0)).getValueType(),
6377                                getValue(I.getArgOperand(0)),
6378                                getValue(I.getArgOperand(1)),
6379                                getValue(I.getArgOperand(2)), Flags));
6380     } else {
6381       // TODO: Intrinsic calls should have fast-math-flags.
6382       SDValue Mul = DAG.getNode(
6383           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6384           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6385       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6386                                 getValue(I.getArgOperand(0)).getValueType(),
6387                                 Mul, getValue(I.getArgOperand(2)), Flags);
6388       setValue(&I, Add);
6389     }
6390     return;
6391   }
6392   case Intrinsic::convert_to_fp16:
6393     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6394                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6395                                          getValue(I.getArgOperand(0)),
6396                                          DAG.getTargetConstant(0, sdl,
6397                                                                MVT::i32))));
6398     return;
6399   case Intrinsic::convert_from_fp16:
6400     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6401                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6402                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6403                                          getValue(I.getArgOperand(0)))));
6404     return;
6405   case Intrinsic::fptosi_sat: {
6406     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6407     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
6408                              getValue(I.getArgOperand(0)),
6409                              DAG.getValueType(VT.getScalarType())));
6410     return;
6411   }
6412   case Intrinsic::fptoui_sat: {
6413     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6414     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
6415                              getValue(I.getArgOperand(0)),
6416                              DAG.getValueType(VT.getScalarType())));
6417     return;
6418   }
6419   case Intrinsic::set_rounding:
6420     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
6421                       {getRoot(), getValue(I.getArgOperand(0))});
6422     setValue(&I, Res);
6423     DAG.setRoot(Res.getValue(0));
6424     return;
6425   case Intrinsic::is_fpclass: {
6426     const DataLayout DLayout = DAG.getDataLayout();
6427     EVT DestVT = TLI.getValueType(DLayout, I.getType());
6428     EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType());
6429     unsigned Test = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6430     MachineFunction &MF = DAG.getMachineFunction();
6431     const Function &F = MF.getFunction();
6432     SDValue Op = getValue(I.getArgOperand(0));
6433     SDNodeFlags Flags;
6434     Flags.setNoFPExcept(
6435         !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
6436     // If ISD::IS_FPCLASS should be expanded, do it right now, because the
6437     // expansion can use illegal types. Making expansion early allows
6438     // legalizing these types prior to selection.
6439     if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) {
6440       SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG);
6441       setValue(&I, Result);
6442       return;
6443     }
6444 
6445     SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32);
6446     SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags);
6447     setValue(&I, V);
6448     return;
6449   }
6450   case Intrinsic::pcmarker: {
6451     SDValue Tmp = getValue(I.getArgOperand(0));
6452     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6453     return;
6454   }
6455   case Intrinsic::readcyclecounter: {
6456     SDValue Op = getRoot();
6457     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6458                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6459     setValue(&I, Res);
6460     DAG.setRoot(Res.getValue(1));
6461     return;
6462   }
6463   case Intrinsic::bitreverse:
6464     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6465                              getValue(I.getArgOperand(0)).getValueType(),
6466                              getValue(I.getArgOperand(0))));
6467     return;
6468   case Intrinsic::bswap:
6469     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6470                              getValue(I.getArgOperand(0)).getValueType(),
6471                              getValue(I.getArgOperand(0))));
6472     return;
6473   case Intrinsic::cttz: {
6474     SDValue Arg = getValue(I.getArgOperand(0));
6475     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6476     EVT Ty = Arg.getValueType();
6477     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6478                              sdl, Ty, Arg));
6479     return;
6480   }
6481   case Intrinsic::ctlz: {
6482     SDValue Arg = getValue(I.getArgOperand(0));
6483     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6484     EVT Ty = Arg.getValueType();
6485     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6486                              sdl, Ty, Arg));
6487     return;
6488   }
6489   case Intrinsic::ctpop: {
6490     SDValue Arg = getValue(I.getArgOperand(0));
6491     EVT Ty = Arg.getValueType();
6492     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6493     return;
6494   }
6495   case Intrinsic::fshl:
6496   case Intrinsic::fshr: {
6497     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6498     SDValue X = getValue(I.getArgOperand(0));
6499     SDValue Y = getValue(I.getArgOperand(1));
6500     SDValue Z = getValue(I.getArgOperand(2));
6501     EVT VT = X.getValueType();
6502 
6503     if (X == Y) {
6504       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6505       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6506     } else {
6507       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6508       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6509     }
6510     return;
6511   }
6512   case Intrinsic::sadd_sat: {
6513     SDValue Op1 = getValue(I.getArgOperand(0));
6514     SDValue Op2 = getValue(I.getArgOperand(1));
6515     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6516     return;
6517   }
6518   case Intrinsic::uadd_sat: {
6519     SDValue Op1 = getValue(I.getArgOperand(0));
6520     SDValue Op2 = getValue(I.getArgOperand(1));
6521     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6522     return;
6523   }
6524   case Intrinsic::ssub_sat: {
6525     SDValue Op1 = getValue(I.getArgOperand(0));
6526     SDValue Op2 = getValue(I.getArgOperand(1));
6527     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6528     return;
6529   }
6530   case Intrinsic::usub_sat: {
6531     SDValue Op1 = getValue(I.getArgOperand(0));
6532     SDValue Op2 = getValue(I.getArgOperand(1));
6533     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6534     return;
6535   }
6536   case Intrinsic::sshl_sat: {
6537     SDValue Op1 = getValue(I.getArgOperand(0));
6538     SDValue Op2 = getValue(I.getArgOperand(1));
6539     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6540     return;
6541   }
6542   case Intrinsic::ushl_sat: {
6543     SDValue Op1 = getValue(I.getArgOperand(0));
6544     SDValue Op2 = getValue(I.getArgOperand(1));
6545     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6546     return;
6547   }
6548   case Intrinsic::smul_fix:
6549   case Intrinsic::umul_fix:
6550   case Intrinsic::smul_fix_sat:
6551   case Intrinsic::umul_fix_sat: {
6552     SDValue Op1 = getValue(I.getArgOperand(0));
6553     SDValue Op2 = getValue(I.getArgOperand(1));
6554     SDValue Op3 = getValue(I.getArgOperand(2));
6555     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6556                              Op1.getValueType(), Op1, Op2, Op3));
6557     return;
6558   }
6559   case Intrinsic::sdiv_fix:
6560   case Intrinsic::udiv_fix:
6561   case Intrinsic::sdiv_fix_sat:
6562   case Intrinsic::udiv_fix_sat: {
6563     SDValue Op1 = getValue(I.getArgOperand(0));
6564     SDValue Op2 = getValue(I.getArgOperand(1));
6565     SDValue Op3 = getValue(I.getArgOperand(2));
6566     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6567                               Op1, Op2, Op3, DAG, TLI));
6568     return;
6569   }
6570   case Intrinsic::smax: {
6571     SDValue Op1 = getValue(I.getArgOperand(0));
6572     SDValue Op2 = getValue(I.getArgOperand(1));
6573     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
6574     return;
6575   }
6576   case Intrinsic::smin: {
6577     SDValue Op1 = getValue(I.getArgOperand(0));
6578     SDValue Op2 = getValue(I.getArgOperand(1));
6579     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
6580     return;
6581   }
6582   case Intrinsic::umax: {
6583     SDValue Op1 = getValue(I.getArgOperand(0));
6584     SDValue Op2 = getValue(I.getArgOperand(1));
6585     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
6586     return;
6587   }
6588   case Intrinsic::umin: {
6589     SDValue Op1 = getValue(I.getArgOperand(0));
6590     SDValue Op2 = getValue(I.getArgOperand(1));
6591     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
6592     return;
6593   }
6594   case Intrinsic::abs: {
6595     // TODO: Preserve "int min is poison" arg in SDAG?
6596     SDValue Op1 = getValue(I.getArgOperand(0));
6597     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
6598     return;
6599   }
6600   case Intrinsic::stacksave: {
6601     SDValue Op = getRoot();
6602     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6603     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6604     setValue(&I, Res);
6605     DAG.setRoot(Res.getValue(1));
6606     return;
6607   }
6608   case Intrinsic::stackrestore:
6609     Res = getValue(I.getArgOperand(0));
6610     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6611     return;
6612   case Intrinsic::get_dynamic_area_offset: {
6613     SDValue Op = getRoot();
6614     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6615     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6616     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6617     // target.
6618     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
6619       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6620                          " intrinsic!");
6621     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6622                       Op);
6623     DAG.setRoot(Op);
6624     setValue(&I, Res);
6625     return;
6626   }
6627   case Intrinsic::stackguard: {
6628     MachineFunction &MF = DAG.getMachineFunction();
6629     const Module &M = *MF.getFunction().getParent();
6630     SDValue Chain = getRoot();
6631     if (TLI.useLoadStackGuardNode()) {
6632       Res = getLoadStackGuard(DAG, sdl, Chain);
6633     } else {
6634       EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6635       const Value *Global = TLI.getSDagStackGuard(M);
6636       Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
6637       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6638                         MachinePointerInfo(Global, 0), Align,
6639                         MachineMemOperand::MOVolatile);
6640     }
6641     if (TLI.useStackGuardXorFP())
6642       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6643     DAG.setRoot(Chain);
6644     setValue(&I, Res);
6645     return;
6646   }
6647   case Intrinsic::stackprotector: {
6648     // Emit code into the DAG to store the stack guard onto the stack.
6649     MachineFunction &MF = DAG.getMachineFunction();
6650     MachineFrameInfo &MFI = MF.getFrameInfo();
6651     SDValue Src, Chain = getRoot();
6652 
6653     if (TLI.useLoadStackGuardNode())
6654       Src = getLoadStackGuard(DAG, sdl, Chain);
6655     else
6656       Src = getValue(I.getArgOperand(0));   // The guard's value.
6657 
6658     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6659 
6660     int FI = FuncInfo.StaticAllocaMap[Slot];
6661     MFI.setStackProtectorIndex(FI);
6662     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6663 
6664     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6665 
6666     // Store the stack protector onto the stack.
6667     Res = DAG.getStore(
6668         Chain, sdl, Src, FIN,
6669         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
6670         MaybeAlign(), MachineMemOperand::MOVolatile);
6671     setValue(&I, Res);
6672     DAG.setRoot(Res);
6673     return;
6674   }
6675   case Intrinsic::objectsize:
6676     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6677 
6678   case Intrinsic::is_constant:
6679     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6680 
6681   case Intrinsic::annotation:
6682   case Intrinsic::ptr_annotation:
6683   case Intrinsic::launder_invariant_group:
6684   case Intrinsic::strip_invariant_group:
6685     // Drop the intrinsic, but forward the value
6686     setValue(&I, getValue(I.getOperand(0)));
6687     return;
6688 
6689   case Intrinsic::assume:
6690   case Intrinsic::experimental_noalias_scope_decl:
6691   case Intrinsic::var_annotation:
6692   case Intrinsic::sideeffect:
6693     // Discard annotate attributes, noalias scope declarations, assumptions, and
6694     // artificial side-effects.
6695     return;
6696 
6697   case Intrinsic::codeview_annotation: {
6698     // Emit a label associated with this metadata.
6699     MachineFunction &MF = DAG.getMachineFunction();
6700     MCSymbol *Label =
6701         MF.getMMI().getContext().createTempSymbol("annotation", true);
6702     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6703     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6704     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6705     DAG.setRoot(Res);
6706     return;
6707   }
6708 
6709   case Intrinsic::init_trampoline: {
6710     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6711 
6712     SDValue Ops[6];
6713     Ops[0] = getRoot();
6714     Ops[1] = getValue(I.getArgOperand(0));
6715     Ops[2] = getValue(I.getArgOperand(1));
6716     Ops[3] = getValue(I.getArgOperand(2));
6717     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6718     Ops[5] = DAG.getSrcValue(F);
6719 
6720     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6721 
6722     DAG.setRoot(Res);
6723     return;
6724   }
6725   case Intrinsic::adjust_trampoline:
6726     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6727                              TLI.getPointerTy(DAG.getDataLayout()),
6728                              getValue(I.getArgOperand(0))));
6729     return;
6730   case Intrinsic::gcroot: {
6731     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6732            "only valid in functions with gc specified, enforced by Verifier");
6733     assert(GFI && "implied by previous");
6734     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6735     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6736 
6737     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6738     GFI->addStackRoot(FI->getIndex(), TypeMap);
6739     return;
6740   }
6741   case Intrinsic::gcread:
6742   case Intrinsic::gcwrite:
6743     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6744   case Intrinsic::flt_rounds:
6745     Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot());
6746     setValue(&I, Res);
6747     DAG.setRoot(Res.getValue(1));
6748     return;
6749 
6750   case Intrinsic::expect:
6751     // Just replace __builtin_expect(exp, c) with EXP.
6752     setValue(&I, getValue(I.getArgOperand(0)));
6753     return;
6754 
6755   case Intrinsic::ubsantrap:
6756   case Intrinsic::debugtrap:
6757   case Intrinsic::trap: {
6758     StringRef TrapFuncName =
6759         I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
6760     if (TrapFuncName.empty()) {
6761       switch (Intrinsic) {
6762       case Intrinsic::trap:
6763         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
6764         break;
6765       case Intrinsic::debugtrap:
6766         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
6767         break;
6768       case Intrinsic::ubsantrap:
6769         DAG.setRoot(DAG.getNode(
6770             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
6771             DAG.getTargetConstant(
6772                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
6773                 MVT::i32)));
6774         break;
6775       default: llvm_unreachable("unknown trap intrinsic");
6776       }
6777       return;
6778     }
6779     TargetLowering::ArgListTy Args;
6780     if (Intrinsic == Intrinsic::ubsantrap) {
6781       Args.push_back(TargetLoweringBase::ArgListEntry());
6782       Args[0].Val = I.getArgOperand(0);
6783       Args[0].Node = getValue(Args[0].Val);
6784       Args[0].Ty = Args[0].Val->getType();
6785     }
6786 
6787     TargetLowering::CallLoweringInfo CLI(DAG);
6788     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6789         CallingConv::C, I.getType(),
6790         DAG.getExternalSymbol(TrapFuncName.data(),
6791                               TLI.getPointerTy(DAG.getDataLayout())),
6792         std::move(Args));
6793 
6794     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6795     DAG.setRoot(Result.second);
6796     return;
6797   }
6798 
6799   case Intrinsic::uadd_with_overflow:
6800   case Intrinsic::sadd_with_overflow:
6801   case Intrinsic::usub_with_overflow:
6802   case Intrinsic::ssub_with_overflow:
6803   case Intrinsic::umul_with_overflow:
6804   case Intrinsic::smul_with_overflow: {
6805     ISD::NodeType Op;
6806     switch (Intrinsic) {
6807     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6808     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6809     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6810     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6811     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6812     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6813     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6814     }
6815     SDValue Op1 = getValue(I.getArgOperand(0));
6816     SDValue Op2 = getValue(I.getArgOperand(1));
6817 
6818     EVT ResultVT = Op1.getValueType();
6819     EVT OverflowVT = MVT::i1;
6820     if (ResultVT.isVector())
6821       OverflowVT = EVT::getVectorVT(
6822           *Context, OverflowVT, ResultVT.getVectorElementCount());
6823 
6824     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6825     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6826     return;
6827   }
6828   case Intrinsic::prefetch: {
6829     SDValue Ops[5];
6830     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6831     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6832     Ops[0] = DAG.getRoot();
6833     Ops[1] = getValue(I.getArgOperand(0));
6834     Ops[2] = getValue(I.getArgOperand(1));
6835     Ops[3] = getValue(I.getArgOperand(2));
6836     Ops[4] = getValue(I.getArgOperand(3));
6837     SDValue Result = DAG.getMemIntrinsicNode(
6838         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
6839         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
6840         /* align */ None, Flags);
6841 
6842     // Chain the prefetch in parallell with any pending loads, to stay out of
6843     // the way of later optimizations.
6844     PendingLoads.push_back(Result);
6845     Result = getRoot();
6846     DAG.setRoot(Result);
6847     return;
6848   }
6849   case Intrinsic::lifetime_start:
6850   case Intrinsic::lifetime_end: {
6851     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6852     // Stack coloring is not enabled in O0, discard region information.
6853     if (TM.getOptLevel() == CodeGenOpt::None)
6854       return;
6855 
6856     const int64_t ObjectSize =
6857         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6858     Value *const ObjectPtr = I.getArgOperand(1);
6859     SmallVector<const Value *, 4> Allocas;
6860     getUnderlyingObjects(ObjectPtr, Allocas);
6861 
6862     for (const Value *Alloca : Allocas) {
6863       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
6864 
6865       // Could not find an Alloca.
6866       if (!LifetimeObject)
6867         continue;
6868 
6869       // First check that the Alloca is static, otherwise it won't have a
6870       // valid frame index.
6871       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6872       if (SI == FuncInfo.StaticAllocaMap.end())
6873         return;
6874 
6875       const int FrameIndex = SI->second;
6876       int64_t Offset;
6877       if (GetPointerBaseWithConstantOffset(
6878               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6879         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6880       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6881                                 Offset);
6882       DAG.setRoot(Res);
6883     }
6884     return;
6885   }
6886   case Intrinsic::pseudoprobe: {
6887     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
6888     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6889     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
6890     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
6891     DAG.setRoot(Res);
6892     return;
6893   }
6894   case Intrinsic::invariant_start:
6895     // Discard region information.
6896     setValue(&I,
6897              DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType())));
6898     return;
6899   case Intrinsic::invariant_end:
6900     // Discard region information.
6901     return;
6902   case Intrinsic::clear_cache:
6903     /// FunctionName may be null.
6904     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6905       lowerCallToExternalSymbol(I, FunctionName);
6906     return;
6907   case Intrinsic::donothing:
6908   case Intrinsic::seh_try_begin:
6909   case Intrinsic::seh_scope_begin:
6910   case Intrinsic::seh_try_end:
6911   case Intrinsic::seh_scope_end:
6912     // ignore
6913     return;
6914   case Intrinsic::experimental_stackmap:
6915     visitStackmap(I);
6916     return;
6917   case Intrinsic::experimental_patchpoint_void:
6918   case Intrinsic::experimental_patchpoint_i64:
6919     visitPatchpoint(I);
6920     return;
6921   case Intrinsic::experimental_gc_statepoint:
6922     LowerStatepoint(cast<GCStatepointInst>(I));
6923     return;
6924   case Intrinsic::experimental_gc_result:
6925     visitGCResult(cast<GCResultInst>(I));
6926     return;
6927   case Intrinsic::experimental_gc_relocate:
6928     visitGCRelocate(cast<GCRelocateInst>(I));
6929     return;
6930   case Intrinsic::instrprof_cover:
6931     llvm_unreachable("instrprof failed to lower a cover");
6932   case Intrinsic::instrprof_increment:
6933     llvm_unreachable("instrprof failed to lower an increment");
6934   case Intrinsic::instrprof_value_profile:
6935     llvm_unreachable("instrprof failed to lower a value profiling call");
6936   case Intrinsic::localescape: {
6937     MachineFunction &MF = DAG.getMachineFunction();
6938     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6939 
6940     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6941     // is the same on all targets.
6942     for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
6943       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6944       if (isa<ConstantPointerNull>(Arg))
6945         continue; // Skip null pointers. They represent a hole in index space.
6946       AllocaInst *Slot = cast<AllocaInst>(Arg);
6947       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6948              "can only escape static allocas");
6949       int FI = FuncInfo.StaticAllocaMap[Slot];
6950       MCSymbol *FrameAllocSym =
6951           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6952               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6953       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6954               TII->get(TargetOpcode::LOCAL_ESCAPE))
6955           .addSym(FrameAllocSym)
6956           .addFrameIndex(FI);
6957     }
6958 
6959     return;
6960   }
6961 
6962   case Intrinsic::localrecover: {
6963     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6964     MachineFunction &MF = DAG.getMachineFunction();
6965 
6966     // Get the symbol that defines the frame offset.
6967     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6968     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6969     unsigned IdxVal =
6970         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6971     MCSymbol *FrameAllocSym =
6972         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6973             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6974 
6975     Value *FP = I.getArgOperand(1);
6976     SDValue FPVal = getValue(FP);
6977     EVT PtrVT = FPVal.getValueType();
6978 
6979     // Create a MCSymbol for the label to avoid any target lowering
6980     // that would make this PC relative.
6981     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6982     SDValue OffsetVal =
6983         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6984 
6985     // Add the offset to the FP.
6986     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
6987     setValue(&I, Add);
6988 
6989     return;
6990   }
6991 
6992   case Intrinsic::eh_exceptionpointer:
6993   case Intrinsic::eh_exceptioncode: {
6994     // Get the exception pointer vreg, copy from it, and resize it to fit.
6995     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6996     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6997     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6998     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6999     SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
7000     if (Intrinsic == Intrinsic::eh_exceptioncode)
7001       N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
7002     setValue(&I, N);
7003     return;
7004   }
7005   case Intrinsic::xray_customevent: {
7006     // Here we want to make sure that the intrinsic behaves as if it has a
7007     // specific calling convention, and only for x86_64.
7008     // FIXME: Support other platforms later.
7009     const auto &Triple = DAG.getTarget().getTargetTriple();
7010     if (Triple.getArch() != Triple::x86_64)
7011       return;
7012 
7013     SmallVector<SDValue, 8> Ops;
7014 
7015     // We want to say that we always want the arguments in registers.
7016     SDValue LogEntryVal = getValue(I.getArgOperand(0));
7017     SDValue StrSizeVal = getValue(I.getArgOperand(1));
7018     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7019     SDValue Chain = getRoot();
7020     Ops.push_back(LogEntryVal);
7021     Ops.push_back(StrSizeVal);
7022     Ops.push_back(Chain);
7023 
7024     // We need to enforce the calling convention for the callsite, so that
7025     // argument ordering is enforced correctly, and that register allocation can
7026     // see that some registers may be assumed clobbered and have to preserve
7027     // them across calls to the intrinsic.
7028     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7029                                            sdl, NodeTys, Ops);
7030     SDValue patchableNode = SDValue(MN, 0);
7031     DAG.setRoot(patchableNode);
7032     setValue(&I, patchableNode);
7033     return;
7034   }
7035   case Intrinsic::xray_typedevent: {
7036     // Here we want to make sure that the intrinsic behaves as if it has a
7037     // specific calling convention, and only for x86_64.
7038     // FIXME: Support other platforms later.
7039     const auto &Triple = DAG.getTarget().getTargetTriple();
7040     if (Triple.getArch() != Triple::x86_64)
7041       return;
7042 
7043     SmallVector<SDValue, 8> Ops;
7044 
7045     // We want to say that we always want the arguments in registers.
7046     // It's unclear to me how manipulating the selection DAG here forces callers
7047     // to provide arguments in registers instead of on the stack.
7048     SDValue LogTypeId = getValue(I.getArgOperand(0));
7049     SDValue LogEntryVal = getValue(I.getArgOperand(1));
7050     SDValue StrSizeVal = getValue(I.getArgOperand(2));
7051     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7052     SDValue Chain = getRoot();
7053     Ops.push_back(LogTypeId);
7054     Ops.push_back(LogEntryVal);
7055     Ops.push_back(StrSizeVal);
7056     Ops.push_back(Chain);
7057 
7058     // We need to enforce the calling convention for the callsite, so that
7059     // argument ordering is enforced correctly, and that register allocation can
7060     // see that some registers may be assumed clobbered and have to preserve
7061     // them across calls to the intrinsic.
7062     MachineSDNode *MN = DAG.getMachineNode(
7063         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
7064     SDValue patchableNode = SDValue(MN, 0);
7065     DAG.setRoot(patchableNode);
7066     setValue(&I, patchableNode);
7067     return;
7068   }
7069   case Intrinsic::experimental_deoptimize:
7070     LowerDeoptimizeCall(&I);
7071     return;
7072   case Intrinsic::experimental_stepvector:
7073     visitStepVector(I);
7074     return;
7075   case Intrinsic::vector_reduce_fadd:
7076   case Intrinsic::vector_reduce_fmul:
7077   case Intrinsic::vector_reduce_add:
7078   case Intrinsic::vector_reduce_mul:
7079   case Intrinsic::vector_reduce_and:
7080   case Intrinsic::vector_reduce_or:
7081   case Intrinsic::vector_reduce_xor:
7082   case Intrinsic::vector_reduce_smax:
7083   case Intrinsic::vector_reduce_smin:
7084   case Intrinsic::vector_reduce_umax:
7085   case Intrinsic::vector_reduce_umin:
7086   case Intrinsic::vector_reduce_fmax:
7087   case Intrinsic::vector_reduce_fmin:
7088     visitVectorReduce(I, Intrinsic);
7089     return;
7090 
7091   case Intrinsic::icall_branch_funnel: {
7092     SmallVector<SDValue, 16> Ops;
7093     Ops.push_back(getValue(I.getArgOperand(0)));
7094 
7095     int64_t Offset;
7096     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7097         I.getArgOperand(1), Offset, DAG.getDataLayout()));
7098     if (!Base)
7099       report_fatal_error(
7100           "llvm.icall.branch.funnel operand must be a GlobalValue");
7101     Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
7102 
7103     struct BranchFunnelTarget {
7104       int64_t Offset;
7105       SDValue Target;
7106     };
7107     SmallVector<BranchFunnelTarget, 8> Targets;
7108 
7109     for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
7110       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7111           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7112       if (ElemBase != Base)
7113         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7114                            "to the same GlobalValue");
7115 
7116       SDValue Val = getValue(I.getArgOperand(Op + 1));
7117       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7118       if (!GA)
7119         report_fatal_error(
7120             "llvm.icall.branch.funnel operand must be a GlobalValue");
7121       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7122                                      GA->getGlobal(), sdl, Val.getValueType(),
7123                                      GA->getOffset())});
7124     }
7125     llvm::sort(Targets,
7126                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7127                  return T1.Offset < T2.Offset;
7128                });
7129 
7130     for (auto &T : Targets) {
7131       Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
7132       Ops.push_back(T.Target);
7133     }
7134 
7135     Ops.push_back(DAG.getRoot()); // Chain
7136     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
7137                                  MVT::Other, Ops),
7138               0);
7139     DAG.setRoot(N);
7140     setValue(&I, N);
7141     HasTailCall = true;
7142     return;
7143   }
7144 
7145   case Intrinsic::wasm_landingpad_index:
7146     // Information this intrinsic contained has been transferred to
7147     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7148     // delete it now.
7149     return;
7150 
7151   case Intrinsic::aarch64_settag:
7152   case Intrinsic::aarch64_settag_zero: {
7153     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7154     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7155     SDValue Val = TSI.EmitTargetCodeForSetTag(
7156         DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
7157         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7158         ZeroMemory);
7159     DAG.setRoot(Val);
7160     setValue(&I, Val);
7161     return;
7162   }
7163   case Intrinsic::ptrmask: {
7164     SDValue Ptr = getValue(I.getOperand(0));
7165     SDValue Const = getValue(I.getOperand(1));
7166 
7167     EVT PtrVT = Ptr.getValueType();
7168     setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr,
7169                              DAG.getZExtOrTrunc(Const, sdl, PtrVT)));
7170     return;
7171   }
7172   case Intrinsic::get_active_lane_mask: {
7173     EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7174     SDValue Index = getValue(I.getOperand(0));
7175     EVT ElementVT = Index.getValueType();
7176 
7177     if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
7178       visitTargetIntrinsic(I, Intrinsic);
7179       return;
7180     }
7181 
7182     SDValue TripCount = getValue(I.getOperand(1));
7183     auto VecTy = CCVT.changeVectorElementType(ElementVT);
7184 
7185     SDValue VectorIndex, VectorTripCount;
7186     if (VecTy.isScalableVector()) {
7187       VectorIndex = DAG.getSplatVector(VecTy, sdl, Index);
7188       VectorTripCount = DAG.getSplatVector(VecTy, sdl, TripCount);
7189     } else {
7190       VectorIndex = DAG.getSplatBuildVector(VecTy, sdl, Index);
7191       VectorTripCount = DAG.getSplatBuildVector(VecTy, sdl, TripCount);
7192     }
7193     SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
7194     SDValue VectorInduction = DAG.getNode(
7195         ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
7196     SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
7197                                  VectorTripCount, ISD::CondCode::SETULT);
7198     setValue(&I, SetCC);
7199     return;
7200   }
7201   case Intrinsic::vector_insert: {
7202     SDValue Vec = getValue(I.getOperand(0));
7203     SDValue SubVec = getValue(I.getOperand(1));
7204     SDValue Index = getValue(I.getOperand(2));
7205 
7206     // The intrinsic's index type is i64, but the SDNode requires an index type
7207     // suitable for the target. Convert the index as required.
7208     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7209     if (Index.getValueType() != VectorIdxTy)
7210       Index = DAG.getVectorIdxConstant(
7211           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7212 
7213     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7214     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
7215                              Index));
7216     return;
7217   }
7218   case Intrinsic::vector_extract: {
7219     SDValue Vec = getValue(I.getOperand(0));
7220     SDValue Index = getValue(I.getOperand(1));
7221     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7222 
7223     // The intrinsic's index type is i64, but the SDNode requires an index type
7224     // suitable for the target. Convert the index as required.
7225     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7226     if (Index.getValueType() != VectorIdxTy)
7227       Index = DAG.getVectorIdxConstant(
7228           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7229 
7230     setValue(&I,
7231              DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
7232     return;
7233   }
7234   case Intrinsic::experimental_vector_reverse:
7235     visitVectorReverse(I);
7236     return;
7237   case Intrinsic::experimental_vector_splice:
7238     visitVectorSplice(I);
7239     return;
7240   }
7241 }
7242 
7243 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
7244     const ConstrainedFPIntrinsic &FPI) {
7245   SDLoc sdl = getCurSDLoc();
7246 
7247   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7248   SmallVector<EVT, 4> ValueVTs;
7249   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
7250   ValueVTs.push_back(MVT::Other); // Out chain
7251 
7252   // We do not need to serialize constrained FP intrinsics against
7253   // each other or against (nonvolatile) loads, so they can be
7254   // chained like loads.
7255   SDValue Chain = DAG.getRoot();
7256   SmallVector<SDValue, 4> Opers;
7257   Opers.push_back(Chain);
7258   if (FPI.isUnaryOp()) {
7259     Opers.push_back(getValue(FPI.getArgOperand(0)));
7260   } else if (FPI.isTernaryOp()) {
7261     Opers.push_back(getValue(FPI.getArgOperand(0)));
7262     Opers.push_back(getValue(FPI.getArgOperand(1)));
7263     Opers.push_back(getValue(FPI.getArgOperand(2)));
7264   } else {
7265     Opers.push_back(getValue(FPI.getArgOperand(0)));
7266     Opers.push_back(getValue(FPI.getArgOperand(1)));
7267   }
7268 
7269   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
7270     assert(Result.getNode()->getNumValues() == 2);
7271 
7272     // Push node to the appropriate list so that future instructions can be
7273     // chained up correctly.
7274     SDValue OutChain = Result.getValue(1);
7275     switch (EB) {
7276     case fp::ExceptionBehavior::ebIgnore:
7277       // The only reason why ebIgnore nodes still need to be chained is that
7278       // they might depend on the current rounding mode, and therefore must
7279       // not be moved across instruction that may change that mode.
7280       LLVM_FALLTHROUGH;
7281     case fp::ExceptionBehavior::ebMayTrap:
7282       // These must not be moved across calls or instructions that may change
7283       // floating-point exception masks.
7284       PendingConstrainedFP.push_back(OutChain);
7285       break;
7286     case fp::ExceptionBehavior::ebStrict:
7287       // These must not be moved across calls or instructions that may change
7288       // floating-point exception masks or read floating-point exception flags.
7289       // In addition, they cannot be optimized out even if unused.
7290       PendingConstrainedFPStrict.push_back(OutChain);
7291       break;
7292     }
7293   };
7294 
7295   SDVTList VTs = DAG.getVTList(ValueVTs);
7296   fp::ExceptionBehavior EB = *FPI.getExceptionBehavior();
7297 
7298   SDNodeFlags Flags;
7299   if (EB == fp::ExceptionBehavior::ebIgnore)
7300     Flags.setNoFPExcept(true);
7301 
7302   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
7303     Flags.copyFMF(*FPOp);
7304 
7305   unsigned Opcode;
7306   switch (FPI.getIntrinsicID()) {
7307   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7308 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7309   case Intrinsic::INTRINSIC:                                                   \
7310     Opcode = ISD::STRICT_##DAGN;                                               \
7311     break;
7312 #include "llvm/IR/ConstrainedOps.def"
7313   case Intrinsic::experimental_constrained_fmuladd: {
7314     Opcode = ISD::STRICT_FMA;
7315     // Break fmuladd into fmul and fadd.
7316     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
7317         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(),
7318                                         ValueVTs[0])) {
7319       Opers.pop_back();
7320       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
7321       pushOutChain(Mul, EB);
7322       Opcode = ISD::STRICT_FADD;
7323       Opers.clear();
7324       Opers.push_back(Mul.getValue(1));
7325       Opers.push_back(Mul.getValue(0));
7326       Opers.push_back(getValue(FPI.getArgOperand(2)));
7327     }
7328     break;
7329   }
7330   }
7331 
7332   // A few strict DAG nodes carry additional operands that are not
7333   // set up by the default code above.
7334   switch (Opcode) {
7335   default: break;
7336   case ISD::STRICT_FP_ROUND:
7337     Opers.push_back(
7338         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7339     break;
7340   case ISD::STRICT_FSETCC:
7341   case ISD::STRICT_FSETCCS: {
7342     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7343     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
7344     if (TM.Options.NoNaNsFPMath)
7345       Condition = getFCmpCodeWithoutNaN(Condition);
7346     Opers.push_back(DAG.getCondCode(Condition));
7347     break;
7348   }
7349   }
7350 
7351   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7352   pushOutChain(Result, EB);
7353 
7354   SDValue FPResult = Result.getValue(0);
7355   setValue(&FPI, FPResult);
7356 }
7357 
7358 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
7359   Optional<unsigned> ResOPC;
7360   switch (VPIntrin.getIntrinsicID()) {
7361 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD)                                    \
7362   case Intrinsic::VPID:                                                        \
7363     ResOPC = ISD::VPSD;                                                        \
7364     break;
7365 #include "llvm/IR/VPIntrinsics.def"
7366   }
7367 
7368   if (!ResOPC)
7369     llvm_unreachable(
7370         "Inconsistency: no SDNode available for this VPIntrinsic!");
7371 
7372   if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
7373       *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
7374     if (VPIntrin.getFastMathFlags().allowReassoc())
7375       return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
7376                                                 : ISD::VP_REDUCE_FMUL;
7377   }
7378 
7379   return *ResOPC;
7380 }
7381 
7382 void SelectionDAGBuilder::visitVPLoadGather(const VPIntrinsic &VPIntrin, EVT VT,
7383                                             SmallVector<SDValue, 7> &OpValues,
7384                                             bool IsGather) {
7385   SDLoc DL = getCurSDLoc();
7386   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7387   Value *PtrOperand = VPIntrin.getArgOperand(0);
7388   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7389   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7390   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7391   SDValue LD;
7392   bool AddToChain = true;
7393   if (!IsGather) {
7394     // Do not serialize variable-length loads of constant memory with
7395     // anything.
7396     if (!Alignment)
7397       Alignment = DAG.getEVTAlign(VT);
7398     MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7399     AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7400     SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7401     MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7402         MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7403         MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7404     LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
7405                        MMO, false /*IsExpanding */);
7406   } else {
7407     if (!Alignment)
7408       Alignment = DAG.getEVTAlign(VT.getScalarType());
7409     unsigned AS =
7410         PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7411     MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7412         MachinePointerInfo(AS), MachineMemOperand::MOLoad,
7413         MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7414     SDValue Base, Index, Scale;
7415     ISD::MemIndexType IndexType;
7416     bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7417                                       this, VPIntrin.getParent(),
7418                                       VT.getScalarStoreSize());
7419     if (!UniformBase) {
7420       Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7421       Index = getValue(PtrOperand);
7422       IndexType = ISD::SIGNED_SCALED;
7423       Scale =
7424           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7425     }
7426     EVT IdxVT = Index.getValueType();
7427     EVT EltTy = IdxVT.getVectorElementType();
7428     if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7429       EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7430       Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7431     }
7432     LD = DAG.getGatherVP(
7433         DAG.getVTList(VT, MVT::Other), VT, DL,
7434         {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
7435         IndexType);
7436   }
7437   if (AddToChain)
7438     PendingLoads.push_back(LD.getValue(1));
7439   setValue(&VPIntrin, LD);
7440 }
7441 
7442 void SelectionDAGBuilder::visitVPStoreScatter(const VPIntrinsic &VPIntrin,
7443                                               SmallVector<SDValue, 7> &OpValues,
7444                                               bool IsScatter) {
7445   SDLoc DL = getCurSDLoc();
7446   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7447   Value *PtrOperand = VPIntrin.getArgOperand(1);
7448   EVT VT = OpValues[0].getValueType();
7449   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7450   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7451   SDValue ST;
7452   if (!IsScatter) {
7453     if (!Alignment)
7454       Alignment = DAG.getEVTAlign(VT);
7455     SDValue Ptr = OpValues[1];
7456     SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
7457     MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7458         MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7459         MemoryLocation::UnknownSize, *Alignment, AAInfo);
7460     ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
7461                         OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
7462                         /* IsTruncating */ false, /*IsCompressing*/ false);
7463   } else {
7464     if (!Alignment)
7465       Alignment = DAG.getEVTAlign(VT.getScalarType());
7466     unsigned AS =
7467         PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7468     MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7469         MachinePointerInfo(AS), MachineMemOperand::MOStore,
7470         MemoryLocation::UnknownSize, *Alignment, AAInfo);
7471     SDValue Base, Index, Scale;
7472     ISD::MemIndexType IndexType;
7473     bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7474                                       this, VPIntrin.getParent(),
7475                                       VT.getScalarStoreSize());
7476     if (!UniformBase) {
7477       Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7478       Index = getValue(PtrOperand);
7479       IndexType = ISD::SIGNED_SCALED;
7480       Scale =
7481           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7482     }
7483     EVT IdxVT = Index.getValueType();
7484     EVT EltTy = IdxVT.getVectorElementType();
7485     if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7486       EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7487       Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7488     }
7489     ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
7490                           {getMemoryRoot(), OpValues[0], Base, Index, Scale,
7491                            OpValues[2], OpValues[3]},
7492                           MMO, IndexType);
7493   }
7494   DAG.setRoot(ST);
7495   setValue(&VPIntrin, ST);
7496 }
7497 
7498 void SelectionDAGBuilder::visitVPStridedLoad(
7499     const VPIntrinsic &VPIntrin, EVT VT, SmallVectorImpl<SDValue> &OpValues) {
7500   SDLoc DL = getCurSDLoc();
7501   Value *PtrOperand = VPIntrin.getArgOperand(0);
7502   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7503   if (!Alignment)
7504     Alignment = DAG.getEVTAlign(VT.getScalarType());
7505   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7506   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7507   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7508   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7509   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7510   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7511       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7512       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7513 
7514   SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1],
7515                                     OpValues[2], OpValues[3], MMO,
7516                                     false /*IsExpanding*/);
7517 
7518   if (AddToChain)
7519     PendingLoads.push_back(LD.getValue(1));
7520   setValue(&VPIntrin, LD);
7521 }
7522 
7523 void SelectionDAGBuilder::visitVPStridedStore(
7524     const VPIntrinsic &VPIntrin, SmallVectorImpl<SDValue> &OpValues) {
7525   SDLoc DL = getCurSDLoc();
7526   Value *PtrOperand = VPIntrin.getArgOperand(1);
7527   EVT VT = OpValues[0].getValueType();
7528   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7529   if (!Alignment)
7530     Alignment = DAG.getEVTAlign(VT.getScalarType());
7531   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7532   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7533       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7534       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7535 
7536   SDValue ST = DAG.getStridedStoreVP(
7537       getMemoryRoot(), DL, OpValues[0], OpValues[1],
7538       DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
7539       OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false,
7540       /*IsCompressing*/ false);
7541 
7542   DAG.setRoot(ST);
7543   setValue(&VPIntrin, ST);
7544 }
7545 
7546 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) {
7547   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7548   SDLoc DL = getCurSDLoc();
7549 
7550   ISD::CondCode Condition;
7551   CmpInst::Predicate CondCode = VPIntrin.getPredicate();
7552   bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy();
7553   if (IsFP) {
7554     // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan)
7555     // flags, but calls that don't return floating-point types can't be
7556     // FPMathOperators, like vp.fcmp. This affects constrained fcmp too.
7557     Condition = getFCmpCondCode(CondCode);
7558     if (TM.Options.NoNaNsFPMath)
7559       Condition = getFCmpCodeWithoutNaN(Condition);
7560   } else {
7561     Condition = getICmpCondCode(CondCode);
7562   }
7563 
7564   SDValue Op1 = getValue(VPIntrin.getOperand(0));
7565   SDValue Op2 = getValue(VPIntrin.getOperand(1));
7566   // #2 is the condition code
7567   SDValue MaskOp = getValue(VPIntrin.getOperand(3));
7568   SDValue EVL = getValue(VPIntrin.getOperand(4));
7569   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7570   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7571          "Unexpected target EVL type");
7572   EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL);
7573 
7574   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7575                                                         VPIntrin.getType());
7576   setValue(&VPIntrin,
7577            DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
7578 }
7579 
7580 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
7581     const VPIntrinsic &VPIntrin) {
7582   SDLoc DL = getCurSDLoc();
7583   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
7584 
7585   auto IID = VPIntrin.getIntrinsicID();
7586 
7587   if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin))
7588     return visitVPCmp(*CmpI);
7589 
7590   SmallVector<EVT, 4> ValueVTs;
7591   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7592   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
7593   SDVTList VTs = DAG.getVTList(ValueVTs);
7594 
7595   auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID);
7596 
7597   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7598   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7599          "Unexpected target EVL type");
7600 
7601   // Request operands.
7602   SmallVector<SDValue, 7> OpValues;
7603   for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
7604     auto Op = getValue(VPIntrin.getArgOperand(I));
7605     if (I == EVLParamPos)
7606       Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
7607     OpValues.push_back(Op);
7608   }
7609 
7610   switch (Opcode) {
7611   default: {
7612     SDNodeFlags SDFlags;
7613     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
7614       SDFlags.copyFMF(*FPMO);
7615     SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags);
7616     setValue(&VPIntrin, Result);
7617     break;
7618   }
7619   case ISD::VP_LOAD:
7620   case ISD::VP_GATHER:
7621     visitVPLoadGather(VPIntrin, ValueVTs[0], OpValues,
7622                       Opcode == ISD::VP_GATHER);
7623     break;
7624   case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
7625     visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
7626     break;
7627   case ISD::VP_STORE:
7628   case ISD::VP_SCATTER:
7629     visitVPStoreScatter(VPIntrin, OpValues, Opcode == ISD::VP_SCATTER);
7630     break;
7631   case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
7632     visitVPStridedStore(VPIntrin, OpValues);
7633     break;
7634   }
7635 }
7636 
7637 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
7638                                           const BasicBlock *EHPadBB,
7639                                           MCSymbol *&BeginLabel) {
7640   MachineFunction &MF = DAG.getMachineFunction();
7641   MachineModuleInfo &MMI = MF.getMMI();
7642 
7643   // Insert a label before the invoke call to mark the try range.  This can be
7644   // used to detect deletion of the invoke via the MachineModuleInfo.
7645   BeginLabel = MMI.getContext().createTempSymbol();
7646 
7647   // For SjLj, keep track of which landing pads go with which invokes
7648   // so as to maintain the ordering of pads in the LSDA.
7649   unsigned CallSiteIndex = MMI.getCurrentCallSite();
7650   if (CallSiteIndex) {
7651     MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7652     LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7653 
7654     // Now that the call site is handled, stop tracking it.
7655     MMI.setCurrentCallSite(0);
7656   }
7657 
7658   return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
7659 }
7660 
7661 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
7662                                         const BasicBlock *EHPadBB,
7663                                         MCSymbol *BeginLabel) {
7664   assert(BeginLabel && "BeginLabel should've been set");
7665 
7666   MachineFunction &MF = DAG.getMachineFunction();
7667   MachineModuleInfo &MMI = MF.getMMI();
7668 
7669   // Insert a label at the end of the invoke call to mark the try range.  This
7670   // can be used to detect deletion of the invoke via the MachineModuleInfo.
7671   MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7672   Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
7673 
7674   // Inform MachineModuleInfo of range.
7675   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7676   // There is a platform (e.g. wasm) that uses funclet style IR but does not
7677   // actually use outlined funclets and their LSDA info style.
7678   if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7679     assert(II && "II should've been set");
7680     WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
7681     EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
7682   } else if (!isScopedEHPersonality(Pers)) {
7683     assert(EHPadBB);
7684     MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7685   }
7686 
7687   return Chain;
7688 }
7689 
7690 std::pair<SDValue, SDValue>
7691 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7692                                     const BasicBlock *EHPadBB) {
7693   MCSymbol *BeginLabel = nullptr;
7694 
7695   if (EHPadBB) {
7696     // Both PendingLoads and PendingExports must be flushed here;
7697     // this call might not return.
7698     (void)getRoot();
7699     DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
7700     CLI.setChain(getRoot());
7701   }
7702 
7703   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7704   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7705 
7706   assert((CLI.IsTailCall || Result.second.getNode()) &&
7707          "Non-null chain expected with non-tail call!");
7708   assert((Result.second.getNode() || !Result.first.getNode()) &&
7709          "Null value expected with tail call!");
7710 
7711   if (!Result.second.getNode()) {
7712     // As a special case, a null chain means that a tail call has been emitted
7713     // and the DAG root is already updated.
7714     HasTailCall = true;
7715 
7716     // Since there's no actual continuation from this block, nothing can be
7717     // relying on us setting vregs for them.
7718     PendingExports.clear();
7719   } else {
7720     DAG.setRoot(Result.second);
7721   }
7722 
7723   if (EHPadBB) {
7724     DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
7725                            BeginLabel));
7726   }
7727 
7728   return Result;
7729 }
7730 
7731 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
7732                                       bool isTailCall,
7733                                       bool isMustTailCall,
7734                                       const BasicBlock *EHPadBB) {
7735   auto &DL = DAG.getDataLayout();
7736   FunctionType *FTy = CB.getFunctionType();
7737   Type *RetTy = CB.getType();
7738 
7739   TargetLowering::ArgListTy Args;
7740   Args.reserve(CB.arg_size());
7741 
7742   const Value *SwiftErrorVal = nullptr;
7743   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7744 
7745   if (isTailCall) {
7746     // Avoid emitting tail calls in functions with the disable-tail-calls
7747     // attribute.
7748     auto *Caller = CB.getParent()->getParent();
7749     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
7750         "true" && !isMustTailCall)
7751       isTailCall = false;
7752 
7753     // We can't tail call inside a function with a swifterror argument. Lowering
7754     // does not support this yet. It would have to move into the swifterror
7755     // register before the call.
7756     if (TLI.supportSwiftError() &&
7757         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7758       isTailCall = false;
7759   }
7760 
7761   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
7762     TargetLowering::ArgListEntry Entry;
7763     const Value *V = *I;
7764 
7765     // Skip empty types
7766     if (V->getType()->isEmptyTy())
7767       continue;
7768 
7769     SDValue ArgNode = getValue(V);
7770     Entry.Node = ArgNode; Entry.Ty = V->getType();
7771 
7772     Entry.setAttributes(&CB, I - CB.arg_begin());
7773 
7774     // Use swifterror virtual register as input to the call.
7775     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7776       SwiftErrorVal = V;
7777       // We find the virtual register for the actual swifterror argument.
7778       // Instead of using the Value, we use the virtual register instead.
7779       Entry.Node =
7780           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
7781                           EVT(TLI.getPointerTy(DL)));
7782     }
7783 
7784     Args.push_back(Entry);
7785 
7786     // If we have an explicit sret argument that is an Instruction, (i.e., it
7787     // might point to function-local memory), we can't meaningfully tail-call.
7788     if (Entry.IsSRet && isa<Instruction>(V))
7789       isTailCall = false;
7790   }
7791 
7792   // If call site has a cfguardtarget operand bundle, create and add an
7793   // additional ArgListEntry.
7794   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7795     TargetLowering::ArgListEntry Entry;
7796     Value *V = Bundle->Inputs[0];
7797     SDValue ArgNode = getValue(V);
7798     Entry.Node = ArgNode;
7799     Entry.Ty = V->getType();
7800     Entry.IsCFGuardTarget = true;
7801     Args.push_back(Entry);
7802   }
7803 
7804   // Check if target-independent constraints permit a tail call here.
7805   // Target-dependent constraints are checked within TLI->LowerCallTo.
7806   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
7807     isTailCall = false;
7808 
7809   // Disable tail calls if there is an swifterror argument. Targets have not
7810   // been updated to support tail calls.
7811   if (TLI.supportSwiftError() && SwiftErrorVal)
7812     isTailCall = false;
7813 
7814   TargetLowering::CallLoweringInfo CLI(DAG);
7815   CLI.setDebugLoc(getCurSDLoc())
7816       .setChain(getRoot())
7817       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
7818       .setTailCall(isTailCall)
7819       .setConvergent(CB.isConvergent())
7820       .setIsPreallocated(
7821           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
7822   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7823 
7824   if (Result.first.getNode()) {
7825     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
7826     setValue(&CB, Result.first);
7827   }
7828 
7829   // The last element of CLI.InVals has the SDValue for swifterror return.
7830   // Here we copy it to a virtual register and update SwiftErrorMap for
7831   // book-keeping.
7832   if (SwiftErrorVal && TLI.supportSwiftError()) {
7833     // Get the last element of InVals.
7834     SDValue Src = CLI.InVals.back();
7835     Register VReg =
7836         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
7837     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7838     DAG.setRoot(CopyNode);
7839   }
7840 }
7841 
7842 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7843                              SelectionDAGBuilder &Builder) {
7844   // Check to see if this load can be trivially constant folded, e.g. if the
7845   // input is from a string literal.
7846   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7847     // Cast pointer to the type we really want to load.
7848     Type *LoadTy =
7849         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7850     if (LoadVT.isVector())
7851       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
7852 
7853     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7854                                          PointerType::getUnqual(LoadTy));
7855 
7856     if (const Constant *LoadCst =
7857             ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
7858                                          LoadTy, Builder.DAG.getDataLayout()))
7859       return Builder.getValue(LoadCst);
7860   }
7861 
7862   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7863   // still constant memory, the input chain can be the entry node.
7864   SDValue Root;
7865   bool ConstantMemory = false;
7866 
7867   // Do not serialize (non-volatile) loads of constant memory with anything.
7868   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7869     Root = Builder.DAG.getEntryNode();
7870     ConstantMemory = true;
7871   } else {
7872     // Do not serialize non-volatile loads against each other.
7873     Root = Builder.DAG.getRoot();
7874   }
7875 
7876   SDValue Ptr = Builder.getValue(PtrVal);
7877   SDValue LoadVal =
7878       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
7879                           MachinePointerInfo(PtrVal), Align(1));
7880 
7881   if (!ConstantMemory)
7882     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7883   return LoadVal;
7884 }
7885 
7886 /// Record the value for an instruction that produces an integer result,
7887 /// converting the type where necessary.
7888 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7889                                                   SDValue Value,
7890                                                   bool IsSigned) {
7891   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7892                                                     I.getType(), true);
7893   if (IsSigned)
7894     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7895   else
7896     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7897   setValue(&I, Value);
7898 }
7899 
7900 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
7901 /// true and lower it. Otherwise return false, and it will be lowered like a
7902 /// normal call.
7903 /// The caller already checked that \p I calls the appropriate LibFunc with a
7904 /// correct prototype.
7905 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
7906   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7907   const Value *Size = I.getArgOperand(2);
7908   const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size));
7909   if (CSize && CSize->getZExtValue() == 0) {
7910     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7911                                                           I.getType(), true);
7912     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7913     return true;
7914   }
7915 
7916   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7917   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7918       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7919       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7920   if (Res.first.getNode()) {
7921     processIntegerCallValue(I, Res.first, true);
7922     PendingLoads.push_back(Res.second);
7923     return true;
7924   }
7925 
7926   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7927   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7928   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7929     return false;
7930 
7931   // If the target has a fast compare for the given size, it will return a
7932   // preferred load type for that size. Require that the load VT is legal and
7933   // that the target supports unaligned loads of that type. Otherwise, return
7934   // INVALID.
7935   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7936     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7937     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7938     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7939       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7940       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7941       // TODO: Check alignment of src and dest ptrs.
7942       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7943       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7944       if (!TLI.isTypeLegal(LVT) ||
7945           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7946           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7947         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7948     }
7949 
7950     return LVT;
7951   };
7952 
7953   // This turns into unaligned loads. We only do this if the target natively
7954   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7955   // we'll only produce a small number of byte loads.
7956   MVT LoadVT;
7957   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7958   switch (NumBitsToCompare) {
7959   default:
7960     return false;
7961   case 16:
7962     LoadVT = MVT::i16;
7963     break;
7964   case 32:
7965     LoadVT = MVT::i32;
7966     break;
7967   case 64:
7968   case 128:
7969   case 256:
7970     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7971     break;
7972   }
7973 
7974   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7975     return false;
7976 
7977   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7978   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7979 
7980   // Bitcast to a wide integer type if the loads are vectors.
7981   if (LoadVT.isVector()) {
7982     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7983     LoadL = DAG.getBitcast(CmpVT, LoadL);
7984     LoadR = DAG.getBitcast(CmpVT, LoadR);
7985   }
7986 
7987   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7988   processIntegerCallValue(I, Cmp, false);
7989   return true;
7990 }
7991 
7992 /// See if we can lower a memchr call into an optimized form. If so, return
7993 /// true and lower it. Otherwise return false, and it will be lowered like a
7994 /// normal call.
7995 /// The caller already checked that \p I calls the appropriate LibFunc with a
7996 /// correct prototype.
7997 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7998   const Value *Src = I.getArgOperand(0);
7999   const Value *Char = I.getArgOperand(1);
8000   const Value *Length = I.getArgOperand(2);
8001 
8002   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8003   std::pair<SDValue, SDValue> Res =
8004     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
8005                                 getValue(Src), getValue(Char), getValue(Length),
8006                                 MachinePointerInfo(Src));
8007   if (Res.first.getNode()) {
8008     setValue(&I, Res.first);
8009     PendingLoads.push_back(Res.second);
8010     return true;
8011   }
8012 
8013   return false;
8014 }
8015 
8016 /// See if we can lower a mempcpy call into an optimized form. If so, return
8017 /// true and lower it. Otherwise return false, and it will be lowered like a
8018 /// normal call.
8019 /// The caller already checked that \p I calls the appropriate LibFunc with a
8020 /// correct prototype.
8021 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
8022   SDValue Dst = getValue(I.getArgOperand(0));
8023   SDValue Src = getValue(I.getArgOperand(1));
8024   SDValue Size = getValue(I.getArgOperand(2));
8025 
8026   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
8027   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
8028   // DAG::getMemcpy needs Alignment to be defined.
8029   Align Alignment = std::min(DstAlign, SrcAlign);
8030 
8031   bool isVol = false;
8032   SDLoc sdl = getCurSDLoc();
8033 
8034   // In the mempcpy context we need to pass in a false value for isTailCall
8035   // because the return pointer needs to be adjusted by the size of
8036   // the copied memory.
8037   SDValue Root = isVol ? getRoot() : getMemoryRoot();
8038   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false,
8039                              /*isTailCall=*/false,
8040                              MachinePointerInfo(I.getArgOperand(0)),
8041                              MachinePointerInfo(I.getArgOperand(1)),
8042                              I.getAAMetadata());
8043   assert(MC.getNode() != nullptr &&
8044          "** memcpy should not be lowered as TailCall in mempcpy context **");
8045   DAG.setRoot(MC);
8046 
8047   // Check if Size needs to be truncated or extended.
8048   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
8049 
8050   // Adjust return pointer to point just past the last dst byte.
8051   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
8052                                     Dst, Size);
8053   setValue(&I, DstPlusSize);
8054   return true;
8055 }
8056 
8057 /// See if we can lower a strcpy call into an optimized form.  If so, return
8058 /// true and lower it, otherwise return false and it will be lowered like a
8059 /// normal call.
8060 /// The caller already checked that \p I calls the appropriate LibFunc with a
8061 /// correct prototype.
8062 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
8063   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8064 
8065   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8066   std::pair<SDValue, SDValue> Res =
8067     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
8068                                 getValue(Arg0), getValue(Arg1),
8069                                 MachinePointerInfo(Arg0),
8070                                 MachinePointerInfo(Arg1), isStpcpy);
8071   if (Res.first.getNode()) {
8072     setValue(&I, Res.first);
8073     DAG.setRoot(Res.second);
8074     return true;
8075   }
8076 
8077   return false;
8078 }
8079 
8080 /// See if we can lower a strcmp call into an optimized form.  If so, return
8081 /// true and lower it, otherwise return false and it will be lowered like a
8082 /// normal call.
8083 /// The caller already checked that \p I calls the appropriate LibFunc with a
8084 /// correct prototype.
8085 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
8086   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8087 
8088   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8089   std::pair<SDValue, SDValue> Res =
8090     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
8091                                 getValue(Arg0), getValue(Arg1),
8092                                 MachinePointerInfo(Arg0),
8093                                 MachinePointerInfo(Arg1));
8094   if (Res.first.getNode()) {
8095     processIntegerCallValue(I, Res.first, true);
8096     PendingLoads.push_back(Res.second);
8097     return true;
8098   }
8099 
8100   return false;
8101 }
8102 
8103 /// See if we can lower a strlen call into an optimized form.  If so, return
8104 /// true and lower it, otherwise return false and it will be lowered like a
8105 /// normal call.
8106 /// The caller already checked that \p I calls the appropriate LibFunc with a
8107 /// correct prototype.
8108 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
8109   const Value *Arg0 = I.getArgOperand(0);
8110 
8111   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8112   std::pair<SDValue, SDValue> Res =
8113     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
8114                                 getValue(Arg0), MachinePointerInfo(Arg0));
8115   if (Res.first.getNode()) {
8116     processIntegerCallValue(I, Res.first, false);
8117     PendingLoads.push_back(Res.second);
8118     return true;
8119   }
8120 
8121   return false;
8122 }
8123 
8124 /// See if we can lower a strnlen call into an optimized form.  If so, return
8125 /// true and lower it, otherwise return false and it will be lowered like a
8126 /// normal call.
8127 /// The caller already checked that \p I calls the appropriate LibFunc with a
8128 /// correct prototype.
8129 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
8130   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8131 
8132   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8133   std::pair<SDValue, SDValue> Res =
8134     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
8135                                  getValue(Arg0), getValue(Arg1),
8136                                  MachinePointerInfo(Arg0));
8137   if (Res.first.getNode()) {
8138     processIntegerCallValue(I, Res.first, false);
8139     PendingLoads.push_back(Res.second);
8140     return true;
8141   }
8142 
8143   return false;
8144 }
8145 
8146 /// See if we can lower a unary floating-point operation into an SDNode with
8147 /// the specified Opcode.  If so, return true and lower it, otherwise return
8148 /// false and it will be lowered like a normal call.
8149 /// The caller already checked that \p I calls the appropriate LibFunc with a
8150 /// correct prototype.
8151 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
8152                                               unsigned Opcode) {
8153   // We already checked this call's prototype; verify it doesn't modify errno.
8154   if (!I.onlyReadsMemory())
8155     return false;
8156 
8157   SDNodeFlags Flags;
8158   Flags.copyFMF(cast<FPMathOperator>(I));
8159 
8160   SDValue Tmp = getValue(I.getArgOperand(0));
8161   setValue(&I,
8162            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
8163   return true;
8164 }
8165 
8166 /// See if we can lower a binary floating-point operation into an SDNode with
8167 /// the specified Opcode. If so, return true and lower it. Otherwise return
8168 /// false, and it will be lowered like a normal call.
8169 /// The caller already checked that \p I calls the appropriate LibFunc with a
8170 /// correct prototype.
8171 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
8172                                                unsigned Opcode) {
8173   // We already checked this call's prototype; verify it doesn't modify errno.
8174   if (!I.onlyReadsMemory())
8175     return false;
8176 
8177   SDNodeFlags Flags;
8178   Flags.copyFMF(cast<FPMathOperator>(I));
8179 
8180   SDValue Tmp0 = getValue(I.getArgOperand(0));
8181   SDValue Tmp1 = getValue(I.getArgOperand(1));
8182   EVT VT = Tmp0.getValueType();
8183   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
8184   return true;
8185 }
8186 
8187 void SelectionDAGBuilder::visitCall(const CallInst &I) {
8188   // Handle inline assembly differently.
8189   if (I.isInlineAsm()) {
8190     visitInlineAsm(I);
8191     return;
8192   }
8193 
8194   if (Function *F = I.getCalledFunction()) {
8195     diagnoseDontCall(I);
8196 
8197     if (F->isDeclaration()) {
8198       // Is this an LLVM intrinsic or a target-specific intrinsic?
8199       unsigned IID = F->getIntrinsicID();
8200       if (!IID)
8201         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
8202           IID = II->getIntrinsicID(F);
8203 
8204       if (IID) {
8205         visitIntrinsicCall(I, IID);
8206         return;
8207       }
8208     }
8209 
8210     // Check for well-known libc/libm calls.  If the function is internal, it
8211     // can't be a library call.  Don't do the check if marked as nobuiltin for
8212     // some reason or the call site requires strict floating point semantics.
8213     LibFunc Func;
8214     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
8215         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
8216         LibInfo->hasOptimizedCodeGen(Func)) {
8217       switch (Func) {
8218       default: break;
8219       case LibFunc_bcmp:
8220         if (visitMemCmpBCmpCall(I))
8221           return;
8222         break;
8223       case LibFunc_copysign:
8224       case LibFunc_copysignf:
8225       case LibFunc_copysignl:
8226         // We already checked this call's prototype; verify it doesn't modify
8227         // errno.
8228         if (I.onlyReadsMemory()) {
8229           SDValue LHS = getValue(I.getArgOperand(0));
8230           SDValue RHS = getValue(I.getArgOperand(1));
8231           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
8232                                    LHS.getValueType(), LHS, RHS));
8233           return;
8234         }
8235         break;
8236       case LibFunc_fabs:
8237       case LibFunc_fabsf:
8238       case LibFunc_fabsl:
8239         if (visitUnaryFloatCall(I, ISD::FABS))
8240           return;
8241         break;
8242       case LibFunc_fmin:
8243       case LibFunc_fminf:
8244       case LibFunc_fminl:
8245         if (visitBinaryFloatCall(I, ISD::FMINNUM))
8246           return;
8247         break;
8248       case LibFunc_fmax:
8249       case LibFunc_fmaxf:
8250       case LibFunc_fmaxl:
8251         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
8252           return;
8253         break;
8254       case LibFunc_sin:
8255       case LibFunc_sinf:
8256       case LibFunc_sinl:
8257         if (visitUnaryFloatCall(I, ISD::FSIN))
8258           return;
8259         break;
8260       case LibFunc_cos:
8261       case LibFunc_cosf:
8262       case LibFunc_cosl:
8263         if (visitUnaryFloatCall(I, ISD::FCOS))
8264           return;
8265         break;
8266       case LibFunc_sqrt:
8267       case LibFunc_sqrtf:
8268       case LibFunc_sqrtl:
8269       case LibFunc_sqrt_finite:
8270       case LibFunc_sqrtf_finite:
8271       case LibFunc_sqrtl_finite:
8272         if (visitUnaryFloatCall(I, ISD::FSQRT))
8273           return;
8274         break;
8275       case LibFunc_floor:
8276       case LibFunc_floorf:
8277       case LibFunc_floorl:
8278         if (visitUnaryFloatCall(I, ISD::FFLOOR))
8279           return;
8280         break;
8281       case LibFunc_nearbyint:
8282       case LibFunc_nearbyintf:
8283       case LibFunc_nearbyintl:
8284         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
8285           return;
8286         break;
8287       case LibFunc_ceil:
8288       case LibFunc_ceilf:
8289       case LibFunc_ceill:
8290         if (visitUnaryFloatCall(I, ISD::FCEIL))
8291           return;
8292         break;
8293       case LibFunc_rint:
8294       case LibFunc_rintf:
8295       case LibFunc_rintl:
8296         if (visitUnaryFloatCall(I, ISD::FRINT))
8297           return;
8298         break;
8299       case LibFunc_round:
8300       case LibFunc_roundf:
8301       case LibFunc_roundl:
8302         if (visitUnaryFloatCall(I, ISD::FROUND))
8303           return;
8304         break;
8305       case LibFunc_trunc:
8306       case LibFunc_truncf:
8307       case LibFunc_truncl:
8308         if (visitUnaryFloatCall(I, ISD::FTRUNC))
8309           return;
8310         break;
8311       case LibFunc_log2:
8312       case LibFunc_log2f:
8313       case LibFunc_log2l:
8314         if (visitUnaryFloatCall(I, ISD::FLOG2))
8315           return;
8316         break;
8317       case LibFunc_exp2:
8318       case LibFunc_exp2f:
8319       case LibFunc_exp2l:
8320         if (visitUnaryFloatCall(I, ISD::FEXP2))
8321           return;
8322         break;
8323       case LibFunc_memcmp:
8324         if (visitMemCmpBCmpCall(I))
8325           return;
8326         break;
8327       case LibFunc_mempcpy:
8328         if (visitMemPCpyCall(I))
8329           return;
8330         break;
8331       case LibFunc_memchr:
8332         if (visitMemChrCall(I))
8333           return;
8334         break;
8335       case LibFunc_strcpy:
8336         if (visitStrCpyCall(I, false))
8337           return;
8338         break;
8339       case LibFunc_stpcpy:
8340         if (visitStrCpyCall(I, true))
8341           return;
8342         break;
8343       case LibFunc_strcmp:
8344         if (visitStrCmpCall(I))
8345           return;
8346         break;
8347       case LibFunc_strlen:
8348         if (visitStrLenCall(I))
8349           return;
8350         break;
8351       case LibFunc_strnlen:
8352         if (visitStrNLenCall(I))
8353           return;
8354         break;
8355       }
8356     }
8357   }
8358 
8359   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
8360   // have to do anything here to lower funclet bundles.
8361   // CFGuardTarget bundles are lowered in LowerCallTo.
8362   assert(!I.hasOperandBundlesOtherThan(
8363              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
8364               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
8365               LLVMContext::OB_clang_arc_attachedcall}) &&
8366          "Cannot lower calls with arbitrary operand bundles!");
8367 
8368   SDValue Callee = getValue(I.getCalledOperand());
8369 
8370   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
8371     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
8372   else
8373     // Check if we can potentially perform a tail call. More detailed checking
8374     // is be done within LowerCallTo, after more information about the call is
8375     // known.
8376     LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
8377 }
8378 
8379 namespace {
8380 
8381 /// AsmOperandInfo - This contains information for each constraint that we are
8382 /// lowering.
8383 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
8384 public:
8385   /// CallOperand - If this is the result output operand or a clobber
8386   /// this is null, otherwise it is the incoming operand to the CallInst.
8387   /// This gets modified as the asm is processed.
8388   SDValue CallOperand;
8389 
8390   /// AssignedRegs - If this is a register or register class operand, this
8391   /// contains the set of register corresponding to the operand.
8392   RegsForValue AssignedRegs;
8393 
8394   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
8395     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
8396   }
8397 
8398   /// Whether or not this operand accesses memory
8399   bool hasMemory(const TargetLowering &TLI) const {
8400     // Indirect operand accesses access memory.
8401     if (isIndirect)
8402       return true;
8403 
8404     for (const auto &Code : Codes)
8405       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
8406         return true;
8407 
8408     return false;
8409   }
8410 };
8411 
8412 
8413 } // end anonymous namespace
8414 
8415 /// Make sure that the output operand \p OpInfo and its corresponding input
8416 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
8417 /// out).
8418 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
8419                                SDISelAsmOperandInfo &MatchingOpInfo,
8420                                SelectionDAG &DAG) {
8421   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
8422     return;
8423 
8424   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
8425   const auto &TLI = DAG.getTargetLoweringInfo();
8426 
8427   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
8428       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
8429                                        OpInfo.ConstraintVT);
8430   std::pair<unsigned, const TargetRegisterClass *> InputRC =
8431       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
8432                                        MatchingOpInfo.ConstraintVT);
8433   if ((OpInfo.ConstraintVT.isInteger() !=
8434        MatchingOpInfo.ConstraintVT.isInteger()) ||
8435       (MatchRC.second != InputRC.second)) {
8436     // FIXME: error out in a more elegant fashion
8437     report_fatal_error("Unsupported asm: input constraint"
8438                        " with a matching output constraint of"
8439                        " incompatible type!");
8440   }
8441   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
8442 }
8443 
8444 /// Get a direct memory input to behave well as an indirect operand.
8445 /// This may introduce stores, hence the need for a \p Chain.
8446 /// \return The (possibly updated) chain.
8447 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
8448                                         SDISelAsmOperandInfo &OpInfo,
8449                                         SelectionDAG &DAG) {
8450   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8451 
8452   // If we don't have an indirect input, put it in the constpool if we can,
8453   // otherwise spill it to a stack slot.
8454   // TODO: This isn't quite right. We need to handle these according to
8455   // the addressing mode that the constraint wants. Also, this may take
8456   // an additional register for the computation and we don't want that
8457   // either.
8458 
8459   // If the operand is a float, integer, or vector constant, spill to a
8460   // constant pool entry to get its address.
8461   const Value *OpVal = OpInfo.CallOperandVal;
8462   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
8463       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
8464     OpInfo.CallOperand = DAG.getConstantPool(
8465         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
8466     return Chain;
8467   }
8468 
8469   // Otherwise, create a stack slot and emit a store to it before the asm.
8470   Type *Ty = OpVal->getType();
8471   auto &DL = DAG.getDataLayout();
8472   uint64_t TySize = DL.getTypeAllocSize(Ty);
8473   MachineFunction &MF = DAG.getMachineFunction();
8474   int SSFI = MF.getFrameInfo().CreateStackObject(
8475       TySize, DL.getPrefTypeAlign(Ty), false);
8476   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
8477   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
8478                             MachinePointerInfo::getFixedStack(MF, SSFI),
8479                             TLI.getMemValueType(DL, Ty));
8480   OpInfo.CallOperand = StackSlot;
8481 
8482   return Chain;
8483 }
8484 
8485 /// GetRegistersForValue - Assign registers (virtual or physical) for the
8486 /// specified operand.  We prefer to assign virtual registers, to allow the
8487 /// register allocator to handle the assignment process.  However, if the asm
8488 /// uses features that we can't model on machineinstrs, we have SDISel do the
8489 /// allocation.  This produces generally horrible, but correct, code.
8490 ///
8491 ///   OpInfo describes the operand
8492 ///   RefOpInfo describes the matching operand if any, the operand otherwise
8493 static llvm::Optional<unsigned>
8494 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
8495                      SDISelAsmOperandInfo &OpInfo,
8496                      SDISelAsmOperandInfo &RefOpInfo) {
8497   LLVMContext &Context = *DAG.getContext();
8498   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8499 
8500   MachineFunction &MF = DAG.getMachineFunction();
8501   SmallVector<unsigned, 4> Regs;
8502   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8503 
8504   // No work to do for memory/address operands.
8505   if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8506       OpInfo.ConstraintType == TargetLowering::C_Address)
8507     return None;
8508 
8509   // If this is a constraint for a single physreg, or a constraint for a
8510   // register class, find it.
8511   unsigned AssignedReg;
8512   const TargetRegisterClass *RC;
8513   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
8514       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
8515   // RC is unset only on failure. Return immediately.
8516   if (!RC)
8517     return None;
8518 
8519   // Get the actual register value type.  This is important, because the user
8520   // may have asked for (e.g.) the AX register in i32 type.  We need to
8521   // remember that AX is actually i16 to get the right extension.
8522   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
8523 
8524   if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
8525     // If this is an FP operand in an integer register (or visa versa), or more
8526     // generally if the operand value disagrees with the register class we plan
8527     // to stick it in, fix the operand type.
8528     //
8529     // If this is an input value, the bitcast to the new type is done now.
8530     // Bitcast for output value is done at the end of visitInlineAsm().
8531     if ((OpInfo.Type == InlineAsm::isOutput ||
8532          OpInfo.Type == InlineAsm::isInput) &&
8533         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
8534       // Try to convert to the first EVT that the reg class contains.  If the
8535       // types are identical size, use a bitcast to convert (e.g. two differing
8536       // vector types).  Note: output bitcast is done at the end of
8537       // visitInlineAsm().
8538       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
8539         // Exclude indirect inputs while they are unsupported because the code
8540         // to perform the load is missing and thus OpInfo.CallOperand still
8541         // refers to the input address rather than the pointed-to value.
8542         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
8543           OpInfo.CallOperand =
8544               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
8545         OpInfo.ConstraintVT = RegVT;
8546         // If the operand is an FP value and we want it in integer registers,
8547         // use the corresponding integer type. This turns an f64 value into
8548         // i64, which can be passed with two i32 values on a 32-bit machine.
8549       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
8550         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
8551         if (OpInfo.Type == InlineAsm::isInput)
8552           OpInfo.CallOperand =
8553               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
8554         OpInfo.ConstraintVT = VT;
8555       }
8556     }
8557   }
8558 
8559   // No need to allocate a matching input constraint since the constraint it's
8560   // matching to has already been allocated.
8561   if (OpInfo.isMatchingInputConstraint())
8562     return None;
8563 
8564   EVT ValueVT = OpInfo.ConstraintVT;
8565   if (OpInfo.ConstraintVT == MVT::Other)
8566     ValueVT = RegVT;
8567 
8568   // Initialize NumRegs.
8569   unsigned NumRegs = 1;
8570   if (OpInfo.ConstraintVT != MVT::Other)
8571     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
8572 
8573   // If this is a constraint for a specific physical register, like {r17},
8574   // assign it now.
8575 
8576   // If this associated to a specific register, initialize iterator to correct
8577   // place. If virtual, make sure we have enough registers
8578 
8579   // Initialize iterator if necessary
8580   TargetRegisterClass::iterator I = RC->begin();
8581   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8582 
8583   // Do not check for single registers.
8584   if (AssignedReg) {
8585     I = std::find(I, RC->end(), AssignedReg);
8586     if (I == RC->end()) {
8587       // RC does not contain the selected register, which indicates a
8588       // mismatch between the register and the required type/bitwidth.
8589       return {AssignedReg};
8590     }
8591   }
8592 
8593   for (; NumRegs; --NumRegs, ++I) {
8594     assert(I != RC->end() && "Ran out of registers to allocate!");
8595     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
8596     Regs.push_back(R);
8597   }
8598 
8599   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
8600   return None;
8601 }
8602 
8603 static unsigned
8604 findMatchingInlineAsmOperand(unsigned OperandNo,
8605                              const std::vector<SDValue> &AsmNodeOperands) {
8606   // Scan until we find the definition we already emitted of this operand.
8607   unsigned CurOp = InlineAsm::Op_FirstOperand;
8608   for (; OperandNo; --OperandNo) {
8609     // Advance to the next operand.
8610     unsigned OpFlag =
8611         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8612     assert((InlineAsm::isRegDefKind(OpFlag) ||
8613             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8614             InlineAsm::isMemKind(OpFlag)) &&
8615            "Skipped past definitions?");
8616     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8617   }
8618   return CurOp;
8619 }
8620 
8621 namespace {
8622 
8623 class ExtraFlags {
8624   unsigned Flags = 0;
8625 
8626 public:
8627   explicit ExtraFlags(const CallBase &Call) {
8628     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8629     if (IA->hasSideEffects())
8630       Flags |= InlineAsm::Extra_HasSideEffects;
8631     if (IA->isAlignStack())
8632       Flags |= InlineAsm::Extra_IsAlignStack;
8633     if (Call.isConvergent())
8634       Flags |= InlineAsm::Extra_IsConvergent;
8635     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8636   }
8637 
8638   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8639     // Ideally, we would only check against memory constraints.  However, the
8640     // meaning of an Other constraint can be target-specific and we can't easily
8641     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8642     // for Other constraints as well.
8643     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8644         OpInfo.ConstraintType == TargetLowering::C_Other) {
8645       if (OpInfo.Type == InlineAsm::isInput)
8646         Flags |= InlineAsm::Extra_MayLoad;
8647       else if (OpInfo.Type == InlineAsm::isOutput)
8648         Flags |= InlineAsm::Extra_MayStore;
8649       else if (OpInfo.Type == InlineAsm::isClobber)
8650         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8651     }
8652   }
8653 
8654   unsigned get() const { return Flags; }
8655 };
8656 
8657 } // end anonymous namespace
8658 
8659 /// visitInlineAsm - Handle a call to an InlineAsm object.
8660 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
8661                                          const BasicBlock *EHPadBB) {
8662   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8663 
8664   /// ConstraintOperands - Information about all of the constraints.
8665   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
8666 
8667   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8668   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8669       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
8670 
8671   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8672   // AsmDialect, MayLoad, MayStore).
8673   bool HasSideEffect = IA->hasSideEffects();
8674   ExtraFlags ExtraInfo(Call);
8675 
8676   for (auto &T : TargetConstraints) {
8677     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8678     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8679 
8680     if (OpInfo.CallOperandVal)
8681       OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8682 
8683     if (!HasSideEffect)
8684       HasSideEffect = OpInfo.hasMemory(TLI);
8685 
8686     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8687     // FIXME: Could we compute this on OpInfo rather than T?
8688 
8689     // Compute the constraint code and ConstraintType to use.
8690     TLI.ComputeConstraintToUse(T, SDValue());
8691 
8692     if (T.ConstraintType == TargetLowering::C_Immediate &&
8693         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8694       // We've delayed emitting a diagnostic like the "n" constraint because
8695       // inlining could cause an integer showing up.
8696       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
8697                                           "' expects an integer constant "
8698                                           "expression");
8699 
8700     ExtraInfo.update(T);
8701   }
8702 
8703   // We won't need to flush pending loads if this asm doesn't touch
8704   // memory and is nonvolatile.
8705   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8706 
8707   bool EmitEHLabels = isa<InvokeInst>(Call) && IA->canThrow();
8708   if (EmitEHLabels) {
8709     assert(EHPadBB && "InvokeInst must have an EHPadBB");
8710   }
8711   bool IsCallBr = isa<CallBrInst>(Call);
8712 
8713   if (IsCallBr || EmitEHLabels) {
8714     // If this is a callbr or invoke we need to flush pending exports since
8715     // inlineasm_br and invoke are terminators.
8716     // We need to do this before nodes are glued to the inlineasm_br node.
8717     Chain = getControlRoot();
8718   }
8719 
8720   MCSymbol *BeginLabel = nullptr;
8721   if (EmitEHLabels) {
8722     Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
8723   }
8724 
8725   // Second pass over the constraints: compute which constraint option to use.
8726   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8727     // If this is an output operand with a matching input operand, look up the
8728     // matching input. If their types mismatch, e.g. one is an integer, the
8729     // other is floating point, or their sizes are different, flag it as an
8730     // error.
8731     if (OpInfo.hasMatchingInput()) {
8732       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8733       patchMatchingInput(OpInfo, Input, DAG);
8734     }
8735 
8736     // Compute the constraint code and ConstraintType to use.
8737     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8738 
8739     if ((OpInfo.ConstraintType == TargetLowering::C_Memory &&
8740          OpInfo.Type == InlineAsm::isClobber) ||
8741         OpInfo.ConstraintType == TargetLowering::C_Address)
8742       continue;
8743 
8744     // If this is a memory input, and if the operand is not indirect, do what we
8745     // need to provide an address for the memory input.
8746     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8747         !OpInfo.isIndirect) {
8748       assert((OpInfo.isMultipleAlternative ||
8749               (OpInfo.Type == InlineAsm::isInput)) &&
8750              "Can only indirectify direct input operands!");
8751 
8752       // Memory operands really want the address of the value.
8753       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8754 
8755       // There is no longer a Value* corresponding to this operand.
8756       OpInfo.CallOperandVal = nullptr;
8757 
8758       // It is now an indirect operand.
8759       OpInfo.isIndirect = true;
8760     }
8761 
8762   }
8763 
8764   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8765   std::vector<SDValue> AsmNodeOperands;
8766   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8767   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8768       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
8769 
8770   // If we have a !srcloc metadata node associated with it, we want to attach
8771   // this to the ultimately generated inline asm machineinstr.  To do this, we
8772   // pass in the third operand as this (potentially null) inline asm MDNode.
8773   const MDNode *SrcLoc = Call.getMetadata("srcloc");
8774   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8775 
8776   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8777   // bits as operand 3.
8778   AsmNodeOperands.push_back(DAG.getTargetConstant(
8779       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8780 
8781   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8782   // this, assign virtual and physical registers for inputs and otput.
8783   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8784     // Assign Registers.
8785     SDISelAsmOperandInfo &RefOpInfo =
8786         OpInfo.isMatchingInputConstraint()
8787             ? ConstraintOperands[OpInfo.getMatchedOperand()]
8788             : OpInfo;
8789     const auto RegError =
8790         getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8791     if (RegError) {
8792       const MachineFunction &MF = DAG.getMachineFunction();
8793       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8794       const char *RegName = TRI.getName(RegError.value());
8795       emitInlineAsmError(Call, "register '" + Twine(RegName) +
8796                                    "' allocated for constraint '" +
8797                                    Twine(OpInfo.ConstraintCode) +
8798                                    "' does not match required type");
8799       return;
8800     }
8801 
8802     auto DetectWriteToReservedRegister = [&]() {
8803       const MachineFunction &MF = DAG.getMachineFunction();
8804       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8805       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
8806         if (Register::isPhysicalRegister(Reg) &&
8807             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
8808           const char *RegName = TRI.getName(Reg);
8809           emitInlineAsmError(Call, "write to reserved register '" +
8810                                        Twine(RegName) + "'");
8811           return true;
8812         }
8813       }
8814       return false;
8815     };
8816     assert((OpInfo.ConstraintType != TargetLowering::C_Address ||
8817             (OpInfo.Type == InlineAsm::isInput &&
8818              !OpInfo.isMatchingInputConstraint())) &&
8819            "Only address as input operand is allowed.");
8820 
8821     switch (OpInfo.Type) {
8822     case InlineAsm::isOutput:
8823       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8824         unsigned ConstraintID =
8825             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8826         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8827                "Failed to convert memory constraint code to constraint id.");
8828 
8829         // Add information to the INLINEASM node to know about this output.
8830         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8831         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8832         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8833                                                         MVT::i32));
8834         AsmNodeOperands.push_back(OpInfo.CallOperand);
8835       } else {
8836         // Otherwise, this outputs to a register (directly for C_Register /
8837         // C_RegisterClass, and a target-defined fashion for
8838         // C_Immediate/C_Other). Find a register that we can use.
8839         if (OpInfo.AssignedRegs.Regs.empty()) {
8840           emitInlineAsmError(
8841               Call, "couldn't allocate output register for constraint '" +
8842                         Twine(OpInfo.ConstraintCode) + "'");
8843           return;
8844         }
8845 
8846         if (DetectWriteToReservedRegister())
8847           return;
8848 
8849         // Add information to the INLINEASM node to know that this register is
8850         // set.
8851         OpInfo.AssignedRegs.AddInlineAsmOperands(
8852             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8853                                   : InlineAsm::Kind_RegDef,
8854             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8855       }
8856       break;
8857 
8858     case InlineAsm::isInput: {
8859       SDValue InOperandVal = OpInfo.CallOperand;
8860 
8861       if (OpInfo.isMatchingInputConstraint()) {
8862         // If this is required to match an output register we have already set,
8863         // just use its register.
8864         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8865                                                   AsmNodeOperands);
8866         unsigned OpFlag =
8867           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8868         if (InlineAsm::isRegDefKind(OpFlag) ||
8869             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8870           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8871           if (OpInfo.isIndirect) {
8872             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8873             emitInlineAsmError(Call, "inline asm not supported yet: "
8874                                      "don't know how to handle tied "
8875                                      "indirect register inputs");
8876             return;
8877           }
8878 
8879           SmallVector<unsigned, 4> Regs;
8880           MachineFunction &MF = DAG.getMachineFunction();
8881           MachineRegisterInfo &MRI = MF.getRegInfo();
8882           const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8883           auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
8884           Register TiedReg = R->getReg();
8885           MVT RegVT = R->getSimpleValueType(0);
8886           const TargetRegisterClass *RC =
8887               TiedReg.isVirtual()     ? MRI.getRegClass(TiedReg)
8888               : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
8889                                       : TRI.getMinimalPhysRegClass(TiedReg);
8890           unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8891           for (unsigned i = 0; i != NumRegs; ++i)
8892             Regs.push_back(MRI.createVirtualRegister(RC));
8893 
8894           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8895 
8896           SDLoc dl = getCurSDLoc();
8897           // Use the produced MatchedRegs object to
8898           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call);
8899           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8900                                            true, OpInfo.getMatchedOperand(), dl,
8901                                            DAG, AsmNodeOperands);
8902           break;
8903         }
8904 
8905         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8906         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8907                "Unexpected number of operands");
8908         // Add information to the INLINEASM node to know about this input.
8909         // See InlineAsm.h isUseOperandTiedToDef.
8910         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8911         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8912                                                     OpInfo.getMatchedOperand());
8913         AsmNodeOperands.push_back(DAG.getTargetConstant(
8914             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8915         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8916         break;
8917       }
8918 
8919       // Treat indirect 'X' constraint as memory.
8920       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
8921           OpInfo.isIndirect)
8922         OpInfo.ConstraintType = TargetLowering::C_Memory;
8923 
8924       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8925           OpInfo.ConstraintType == TargetLowering::C_Other) {
8926         std::vector<SDValue> Ops;
8927         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8928                                           Ops, DAG);
8929         if (Ops.empty()) {
8930           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
8931             if (isa<ConstantSDNode>(InOperandVal)) {
8932               emitInlineAsmError(Call, "value out of range for constraint '" +
8933                                            Twine(OpInfo.ConstraintCode) + "'");
8934               return;
8935             }
8936 
8937           emitInlineAsmError(Call,
8938                              "invalid operand for inline asm constraint '" +
8939                                  Twine(OpInfo.ConstraintCode) + "'");
8940           return;
8941         }
8942 
8943         // Add information to the INLINEASM node to know about this input.
8944         unsigned ResOpType =
8945           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8946         AsmNodeOperands.push_back(DAG.getTargetConstant(
8947             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8948         llvm::append_range(AsmNodeOperands, Ops);
8949         break;
8950       }
8951 
8952       if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8953           OpInfo.ConstraintType == TargetLowering::C_Address) {
8954         assert((OpInfo.isIndirect ||
8955                 OpInfo.ConstraintType != TargetLowering::C_Memory) &&
8956                "Operand must be indirect to be a mem!");
8957         assert(InOperandVal.getValueType() ==
8958                    TLI.getPointerTy(DAG.getDataLayout()) &&
8959                "Memory operands expect pointer values");
8960 
8961         unsigned ConstraintID =
8962             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8963         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8964                "Failed to convert memory constraint code to constraint id.");
8965 
8966         // Add information to the INLINEASM node to know about this input.
8967         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8968         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8969         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8970                                                         getCurSDLoc(),
8971                                                         MVT::i32));
8972         AsmNodeOperands.push_back(InOperandVal);
8973         break;
8974       }
8975 
8976       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8977               OpInfo.ConstraintType == TargetLowering::C_Register) &&
8978              "Unknown constraint type!");
8979 
8980       // TODO: Support this.
8981       if (OpInfo.isIndirect) {
8982         emitInlineAsmError(
8983             Call, "Don't know how to handle indirect register inputs yet "
8984                   "for constraint '" +
8985                       Twine(OpInfo.ConstraintCode) + "'");
8986         return;
8987       }
8988 
8989       // Copy the input into the appropriate registers.
8990       if (OpInfo.AssignedRegs.Regs.empty()) {
8991         emitInlineAsmError(Call,
8992                            "couldn't allocate input reg for constraint '" +
8993                                Twine(OpInfo.ConstraintCode) + "'");
8994         return;
8995       }
8996 
8997       if (DetectWriteToReservedRegister())
8998         return;
8999 
9000       SDLoc dl = getCurSDLoc();
9001 
9002       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
9003                                         &Call);
9004 
9005       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
9006                                                dl, DAG, AsmNodeOperands);
9007       break;
9008     }
9009     case InlineAsm::isClobber:
9010       // Add the clobbered value to the operand list, so that the register
9011       // allocator is aware that the physreg got clobbered.
9012       if (!OpInfo.AssignedRegs.Regs.empty())
9013         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
9014                                                  false, 0, getCurSDLoc(), DAG,
9015                                                  AsmNodeOperands);
9016       break;
9017     }
9018   }
9019 
9020   // Finish up input operands.  Set the input chain and add the flag last.
9021   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
9022   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
9023 
9024   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
9025   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
9026                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
9027   Flag = Chain.getValue(1);
9028 
9029   // Do additional work to generate outputs.
9030 
9031   SmallVector<EVT, 1> ResultVTs;
9032   SmallVector<SDValue, 1> ResultValues;
9033   SmallVector<SDValue, 8> OutChains;
9034 
9035   llvm::Type *CallResultType = Call.getType();
9036   ArrayRef<Type *> ResultTypes;
9037   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
9038     ResultTypes = StructResult->elements();
9039   else if (!CallResultType->isVoidTy())
9040     ResultTypes = makeArrayRef(CallResultType);
9041 
9042   auto CurResultType = ResultTypes.begin();
9043   auto handleRegAssign = [&](SDValue V) {
9044     assert(CurResultType != ResultTypes.end() && "Unexpected value");
9045     assert((*CurResultType)->isSized() && "Unexpected unsized type");
9046     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
9047     ++CurResultType;
9048     // If the type of the inline asm call site return value is different but has
9049     // same size as the type of the asm output bitcast it.  One example of this
9050     // is for vectors with different width / number of elements.  This can
9051     // happen for register classes that can contain multiple different value
9052     // types.  The preg or vreg allocated may not have the same VT as was
9053     // expected.
9054     //
9055     // This can also happen for a return value that disagrees with the register
9056     // class it is put in, eg. a double in a general-purpose register on a
9057     // 32-bit machine.
9058     if (ResultVT != V.getValueType() &&
9059         ResultVT.getSizeInBits() == V.getValueSizeInBits())
9060       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
9061     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
9062              V.getValueType().isInteger()) {
9063       // If a result value was tied to an input value, the computed result
9064       // may have a wider width than the expected result.  Extract the
9065       // relevant portion.
9066       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
9067     }
9068     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
9069     ResultVTs.push_back(ResultVT);
9070     ResultValues.push_back(V);
9071   };
9072 
9073   // Deal with output operands.
9074   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9075     if (OpInfo.Type == InlineAsm::isOutput) {
9076       SDValue Val;
9077       // Skip trivial output operands.
9078       if (OpInfo.AssignedRegs.Regs.empty())
9079         continue;
9080 
9081       switch (OpInfo.ConstraintType) {
9082       case TargetLowering::C_Register:
9083       case TargetLowering::C_RegisterClass:
9084         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
9085                                                   Chain, &Flag, &Call);
9086         break;
9087       case TargetLowering::C_Immediate:
9088       case TargetLowering::C_Other:
9089         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
9090                                               OpInfo, DAG);
9091         break;
9092       case TargetLowering::C_Memory:
9093         break; // Already handled.
9094       case TargetLowering::C_Address:
9095         break; // Silence warning.
9096       case TargetLowering::C_Unknown:
9097         assert(false && "Unexpected unknown constraint");
9098       }
9099 
9100       // Indirect output manifest as stores. Record output chains.
9101       if (OpInfo.isIndirect) {
9102         const Value *Ptr = OpInfo.CallOperandVal;
9103         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
9104         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
9105                                      MachinePointerInfo(Ptr));
9106         OutChains.push_back(Store);
9107       } else {
9108         // generate CopyFromRegs to associated registers.
9109         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
9110         if (Val.getOpcode() == ISD::MERGE_VALUES) {
9111           for (const SDValue &V : Val->op_values())
9112             handleRegAssign(V);
9113         } else
9114           handleRegAssign(Val);
9115       }
9116     }
9117   }
9118 
9119   // Set results.
9120   if (!ResultValues.empty()) {
9121     assert(CurResultType == ResultTypes.end() &&
9122            "Mismatch in number of ResultTypes");
9123     assert(ResultValues.size() == ResultTypes.size() &&
9124            "Mismatch in number of output operands in asm result");
9125 
9126     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
9127                             DAG.getVTList(ResultVTs), ResultValues);
9128     setValue(&Call, V);
9129   }
9130 
9131   // Collect store chains.
9132   if (!OutChains.empty())
9133     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
9134 
9135   if (EmitEHLabels) {
9136     Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
9137   }
9138 
9139   // Only Update Root if inline assembly has a memory effect.
9140   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
9141       EmitEHLabels)
9142     DAG.setRoot(Chain);
9143 }
9144 
9145 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
9146                                              const Twine &Message) {
9147   LLVMContext &Ctx = *DAG.getContext();
9148   Ctx.emitError(&Call, Message);
9149 
9150   // Make sure we leave the DAG in a valid state
9151   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9152   SmallVector<EVT, 1> ValueVTs;
9153   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
9154 
9155   if (ValueVTs.empty())
9156     return;
9157 
9158   SmallVector<SDValue, 1> Ops;
9159   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
9160     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
9161 
9162   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
9163 }
9164 
9165 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
9166   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
9167                           MVT::Other, getRoot(),
9168                           getValue(I.getArgOperand(0)),
9169                           DAG.getSrcValue(I.getArgOperand(0))));
9170 }
9171 
9172 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
9173   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9174   const DataLayout &DL = DAG.getDataLayout();
9175   SDValue V = DAG.getVAArg(
9176       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
9177       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
9178       DL.getABITypeAlign(I.getType()).value());
9179   DAG.setRoot(V.getValue(1));
9180 
9181   if (I.getType()->isPointerTy())
9182     V = DAG.getPtrExtOrTrunc(
9183         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
9184   setValue(&I, V);
9185 }
9186 
9187 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
9188   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
9189                           MVT::Other, getRoot(),
9190                           getValue(I.getArgOperand(0)),
9191                           DAG.getSrcValue(I.getArgOperand(0))));
9192 }
9193 
9194 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
9195   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
9196                           MVT::Other, getRoot(),
9197                           getValue(I.getArgOperand(0)),
9198                           getValue(I.getArgOperand(1)),
9199                           DAG.getSrcValue(I.getArgOperand(0)),
9200                           DAG.getSrcValue(I.getArgOperand(1))));
9201 }
9202 
9203 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
9204                                                     const Instruction &I,
9205                                                     SDValue Op) {
9206   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
9207   if (!Range)
9208     return Op;
9209 
9210   ConstantRange CR = getConstantRangeFromMetadata(*Range);
9211   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
9212     return Op;
9213 
9214   APInt Lo = CR.getUnsignedMin();
9215   if (!Lo.isMinValue())
9216     return Op;
9217 
9218   APInt Hi = CR.getUnsignedMax();
9219   unsigned Bits = std::max(Hi.getActiveBits(),
9220                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
9221 
9222   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
9223 
9224   SDLoc SL = getCurSDLoc();
9225 
9226   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
9227                              DAG.getValueType(SmallVT));
9228   unsigned NumVals = Op.getNode()->getNumValues();
9229   if (NumVals == 1)
9230     return ZExt;
9231 
9232   SmallVector<SDValue, 4> Ops;
9233 
9234   Ops.push_back(ZExt);
9235   for (unsigned I = 1; I != NumVals; ++I)
9236     Ops.push_back(Op.getValue(I));
9237 
9238   return DAG.getMergeValues(Ops, SL);
9239 }
9240 
9241 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
9242 /// the call being lowered.
9243 ///
9244 /// This is a helper for lowering intrinsics that follow a target calling
9245 /// convention or require stack pointer adjustment. Only a subset of the
9246 /// intrinsic's operands need to participate in the calling convention.
9247 void SelectionDAGBuilder::populateCallLoweringInfo(
9248     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
9249     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
9250     bool IsPatchPoint) {
9251   TargetLowering::ArgListTy Args;
9252   Args.reserve(NumArgs);
9253 
9254   // Populate the argument list.
9255   // Attributes for args start at offset 1, after the return attribute.
9256   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
9257        ArgI != ArgE; ++ArgI) {
9258     const Value *V = Call->getOperand(ArgI);
9259 
9260     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
9261 
9262     TargetLowering::ArgListEntry Entry;
9263     Entry.Node = getValue(V);
9264     Entry.Ty = V->getType();
9265     Entry.setAttributes(Call, ArgI);
9266     Args.push_back(Entry);
9267   }
9268 
9269   CLI.setDebugLoc(getCurSDLoc())
9270       .setChain(getRoot())
9271       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
9272       .setDiscardResult(Call->use_empty())
9273       .setIsPatchPoint(IsPatchPoint)
9274       .setIsPreallocated(
9275           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
9276 }
9277 
9278 /// Add a stack map intrinsic call's live variable operands to a stackmap
9279 /// or patchpoint target node's operand list.
9280 ///
9281 /// Constants are converted to TargetConstants purely as an optimization to
9282 /// avoid constant materialization and register allocation.
9283 ///
9284 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
9285 /// generate addess computation nodes, and so FinalizeISel can convert the
9286 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
9287 /// address materialization and register allocation, but may also be required
9288 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
9289 /// alloca in the entry block, then the runtime may assume that the alloca's
9290 /// StackMap location can be read immediately after compilation and that the
9291 /// location is valid at any point during execution (this is similar to the
9292 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
9293 /// only available in a register, then the runtime would need to trap when
9294 /// execution reaches the StackMap in order to read the alloca's location.
9295 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
9296                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
9297                                 SelectionDAGBuilder &Builder) {
9298   for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) {
9299     SDValue OpVal = Builder.getValue(Call.getArgOperand(i));
9300     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
9301       Ops.push_back(
9302         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
9303       Ops.push_back(
9304         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
9305     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
9306       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
9307       Ops.push_back(Builder.DAG.getTargetFrameIndex(
9308           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
9309     } else
9310       Ops.push_back(OpVal);
9311   }
9312 }
9313 
9314 /// Lower llvm.experimental.stackmap.
9315 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
9316   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
9317   //                                  [live variables...])
9318 
9319   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
9320 
9321   SDValue Chain, InFlag, Callee, NullPtr;
9322   SmallVector<SDValue, 32> Ops;
9323 
9324   SDLoc DL = getCurSDLoc();
9325   Callee = getValue(CI.getCalledOperand());
9326   NullPtr = DAG.getIntPtrConstant(0, DL, true);
9327 
9328   // The stackmap intrinsic only records the live variables (the arguments
9329   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
9330   // intrinsic, this won't be lowered to a function call. This means we don't
9331   // have to worry about calling conventions and target specific lowering code.
9332   // Instead we perform the call lowering right here.
9333   //
9334   // chain, flag = CALLSEQ_START(chain, 0, 0)
9335   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
9336   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
9337   //
9338   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
9339   InFlag = Chain.getValue(1);
9340 
9341   // Add the STACKMAP operands, starting with DAG house-keeping.
9342   Ops.push_back(Chain);
9343   Ops.push_back(InFlag);
9344 
9345   // Add the <id>, <numShadowBytes> operands.
9346   //
9347   // These do not require legalisation, and can be emitted directly to target
9348   // constant nodes.
9349   SDValue ID = getValue(CI.getArgOperand(0));
9350   assert(ID.getValueType() == MVT::i64);
9351   SDValue IDConst = DAG.getTargetConstant(
9352       cast<ConstantSDNode>(ID)->getZExtValue(), DL, ID.getValueType());
9353   Ops.push_back(IDConst);
9354 
9355   SDValue Shad = getValue(CI.getArgOperand(1));
9356   assert(Shad.getValueType() == MVT::i32);
9357   SDValue ShadConst = DAG.getTargetConstant(
9358       cast<ConstantSDNode>(Shad)->getZExtValue(), DL, Shad.getValueType());
9359   Ops.push_back(ShadConst);
9360 
9361   // Add the live variables.
9362   for (unsigned I = 2; I < CI.arg_size(); I++) {
9363     SDValue Op = getValue(CI.getArgOperand(I));
9364 
9365     // Things on the stack are pointer-typed, meaning that they are already
9366     // legal and can be emitted directly to target nodes.
9367     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
9368       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9369       Ops.push_back(DAG.getTargetFrameIndex(
9370           FI->getIndex(), TLI.getFrameIndexTy(DAG.getDataLayout())));
9371     } else {
9372       // Otherwise emit a target independent node to be legalised.
9373       Ops.push_back(getValue(CI.getArgOperand(I)));
9374     }
9375   }
9376 
9377   // Create the STACKMAP node.
9378   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9379   Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops);
9380   InFlag = Chain.getValue(1);
9381 
9382   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
9383 
9384   // Stackmaps don't generate values, so nothing goes into the NodeMap.
9385 
9386   // Set the root to the target-lowered call chain.
9387   DAG.setRoot(Chain);
9388 
9389   // Inform the Frame Information that we have a stackmap in this function.
9390   FuncInfo.MF->getFrameInfo().setHasStackMap();
9391 }
9392 
9393 /// Lower llvm.experimental.patchpoint directly to its target opcode.
9394 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
9395                                           const BasicBlock *EHPadBB) {
9396   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
9397   //                                                 i32 <numBytes>,
9398   //                                                 i8* <target>,
9399   //                                                 i32 <numArgs>,
9400   //                                                 [Args...],
9401   //                                                 [live variables...])
9402 
9403   CallingConv::ID CC = CB.getCallingConv();
9404   bool IsAnyRegCC = CC == CallingConv::AnyReg;
9405   bool HasDef = !CB.getType()->isVoidTy();
9406   SDLoc dl = getCurSDLoc();
9407   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
9408 
9409   // Handle immediate and symbolic callees.
9410   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
9411     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
9412                                    /*isTarget=*/true);
9413   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
9414     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
9415                                          SDLoc(SymbolicCallee),
9416                                          SymbolicCallee->getValueType(0));
9417 
9418   // Get the real number of arguments participating in the call <numArgs>
9419   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
9420   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
9421 
9422   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
9423   // Intrinsics include all meta-operands up to but not including CC.
9424   unsigned NumMetaOpers = PatchPointOpers::CCPos;
9425   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
9426          "Not enough arguments provided to the patchpoint intrinsic");
9427 
9428   // For AnyRegCC the arguments are lowered later on manually.
9429   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
9430   Type *ReturnTy =
9431       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
9432 
9433   TargetLowering::CallLoweringInfo CLI(DAG);
9434   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
9435                            ReturnTy, true);
9436   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
9437 
9438   SDNode *CallEnd = Result.second.getNode();
9439   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
9440     CallEnd = CallEnd->getOperand(0).getNode();
9441 
9442   /// Get a call instruction from the call sequence chain.
9443   /// Tail calls are not allowed.
9444   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
9445          "Expected a callseq node.");
9446   SDNode *Call = CallEnd->getOperand(0).getNode();
9447   bool HasGlue = Call->getGluedNode();
9448 
9449   // Replace the target specific call node with the patchable intrinsic.
9450   SmallVector<SDValue, 8> Ops;
9451 
9452   // Add the <id> and <numBytes> constants.
9453   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
9454   Ops.push_back(DAG.getTargetConstant(
9455                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
9456   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
9457   Ops.push_back(DAG.getTargetConstant(
9458                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
9459                   MVT::i32));
9460 
9461   // Add the callee.
9462   Ops.push_back(Callee);
9463 
9464   // Adjust <numArgs> to account for any arguments that have been passed on the
9465   // stack instead.
9466   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
9467   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
9468   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
9469   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
9470 
9471   // Add the calling convention
9472   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
9473 
9474   // Add the arguments we omitted previously. The register allocator should
9475   // place these in any free register.
9476   if (IsAnyRegCC)
9477     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
9478       Ops.push_back(getValue(CB.getArgOperand(i)));
9479 
9480   // Push the arguments from the call instruction up to the register mask.
9481   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
9482   Ops.append(Call->op_begin() + 2, e);
9483 
9484   // Push live variables for the stack map.
9485   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
9486 
9487   // Push the register mask info.
9488   if (HasGlue)
9489     Ops.push_back(*(Call->op_end()-2));
9490   else
9491     Ops.push_back(*(Call->op_end()-1));
9492 
9493   // Push the chain (this is originally the first operand of the call, but
9494   // becomes now the last or second to last operand).
9495   Ops.push_back(*(Call->op_begin()));
9496 
9497   // Push the glue flag (last operand).
9498   if (HasGlue)
9499     Ops.push_back(*(Call->op_end()-1));
9500 
9501   SDVTList NodeTys;
9502   if (IsAnyRegCC && HasDef) {
9503     // Create the return types based on the intrinsic definition
9504     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9505     SmallVector<EVT, 3> ValueVTs;
9506     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
9507     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
9508 
9509     // There is always a chain and a glue type at the end
9510     ValueVTs.push_back(MVT::Other);
9511     ValueVTs.push_back(MVT::Glue);
9512     NodeTys = DAG.getVTList(ValueVTs);
9513   } else
9514     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9515 
9516   // Replace the target specific call node with a PATCHPOINT node.
9517   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
9518                                          dl, NodeTys, Ops);
9519 
9520   // Update the NodeMap.
9521   if (HasDef) {
9522     if (IsAnyRegCC)
9523       setValue(&CB, SDValue(MN, 0));
9524     else
9525       setValue(&CB, Result.first);
9526   }
9527 
9528   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
9529   // call sequence. Furthermore the location of the chain and glue can change
9530   // when the AnyReg calling convention is used and the intrinsic returns a
9531   // value.
9532   if (IsAnyRegCC && HasDef) {
9533     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
9534     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
9535     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
9536   } else
9537     DAG.ReplaceAllUsesWith(Call, MN);
9538   DAG.DeleteNode(Call);
9539 
9540   // Inform the Frame Information that we have a patchpoint in this function.
9541   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
9542 }
9543 
9544 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
9545                                             unsigned Intrinsic) {
9546   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9547   SDValue Op1 = getValue(I.getArgOperand(0));
9548   SDValue Op2;
9549   if (I.arg_size() > 1)
9550     Op2 = getValue(I.getArgOperand(1));
9551   SDLoc dl = getCurSDLoc();
9552   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
9553   SDValue Res;
9554   SDNodeFlags SDFlags;
9555   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
9556     SDFlags.copyFMF(*FPMO);
9557 
9558   switch (Intrinsic) {
9559   case Intrinsic::vector_reduce_fadd:
9560     if (SDFlags.hasAllowReassociation())
9561       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
9562                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
9563                         SDFlags);
9564     else
9565       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
9566     break;
9567   case Intrinsic::vector_reduce_fmul:
9568     if (SDFlags.hasAllowReassociation())
9569       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
9570                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
9571                         SDFlags);
9572     else
9573       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
9574     break;
9575   case Intrinsic::vector_reduce_add:
9576     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
9577     break;
9578   case Intrinsic::vector_reduce_mul:
9579     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
9580     break;
9581   case Intrinsic::vector_reduce_and:
9582     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
9583     break;
9584   case Intrinsic::vector_reduce_or:
9585     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
9586     break;
9587   case Intrinsic::vector_reduce_xor:
9588     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
9589     break;
9590   case Intrinsic::vector_reduce_smax:
9591     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
9592     break;
9593   case Intrinsic::vector_reduce_smin:
9594     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
9595     break;
9596   case Intrinsic::vector_reduce_umax:
9597     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
9598     break;
9599   case Intrinsic::vector_reduce_umin:
9600     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
9601     break;
9602   case Intrinsic::vector_reduce_fmax:
9603     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
9604     break;
9605   case Intrinsic::vector_reduce_fmin:
9606     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
9607     break;
9608   default:
9609     llvm_unreachable("Unhandled vector reduce intrinsic");
9610   }
9611   setValue(&I, Res);
9612 }
9613 
9614 /// Returns an AttributeList representing the attributes applied to the return
9615 /// value of the given call.
9616 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
9617   SmallVector<Attribute::AttrKind, 2> Attrs;
9618   if (CLI.RetSExt)
9619     Attrs.push_back(Attribute::SExt);
9620   if (CLI.RetZExt)
9621     Attrs.push_back(Attribute::ZExt);
9622   if (CLI.IsInReg)
9623     Attrs.push_back(Attribute::InReg);
9624 
9625   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
9626                             Attrs);
9627 }
9628 
9629 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
9630 /// implementation, which just calls LowerCall.
9631 /// FIXME: When all targets are
9632 /// migrated to using LowerCall, this hook should be integrated into SDISel.
9633 std::pair<SDValue, SDValue>
9634 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
9635   // Handle the incoming return values from the call.
9636   CLI.Ins.clear();
9637   Type *OrigRetTy = CLI.RetTy;
9638   SmallVector<EVT, 4> RetTys;
9639   SmallVector<uint64_t, 4> Offsets;
9640   auto &DL = CLI.DAG.getDataLayout();
9641   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
9642 
9643   if (CLI.IsPostTypeLegalization) {
9644     // If we are lowering a libcall after legalization, split the return type.
9645     SmallVector<EVT, 4> OldRetTys;
9646     SmallVector<uint64_t, 4> OldOffsets;
9647     RetTys.swap(OldRetTys);
9648     Offsets.swap(OldOffsets);
9649 
9650     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
9651       EVT RetVT = OldRetTys[i];
9652       uint64_t Offset = OldOffsets[i];
9653       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
9654       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
9655       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
9656       RetTys.append(NumRegs, RegisterVT);
9657       for (unsigned j = 0; j != NumRegs; ++j)
9658         Offsets.push_back(Offset + j * RegisterVTByteSZ);
9659     }
9660   }
9661 
9662   SmallVector<ISD::OutputArg, 4> Outs;
9663   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
9664 
9665   bool CanLowerReturn =
9666       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
9667                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
9668 
9669   SDValue DemoteStackSlot;
9670   int DemoteStackIdx = -100;
9671   if (!CanLowerReturn) {
9672     // FIXME: equivalent assert?
9673     // assert(!CS.hasInAllocaArgument() &&
9674     //        "sret demotion is incompatible with inalloca");
9675     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9676     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
9677     MachineFunction &MF = CLI.DAG.getMachineFunction();
9678     DemoteStackIdx =
9679         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
9680     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9681                                               DL.getAllocaAddrSpace());
9682 
9683     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9684     ArgListEntry Entry;
9685     Entry.Node = DemoteStackSlot;
9686     Entry.Ty = StackSlotPtrType;
9687     Entry.IsSExt = false;
9688     Entry.IsZExt = false;
9689     Entry.IsInReg = false;
9690     Entry.IsSRet = true;
9691     Entry.IsNest = false;
9692     Entry.IsByVal = false;
9693     Entry.IsByRef = false;
9694     Entry.IsReturned = false;
9695     Entry.IsSwiftSelf = false;
9696     Entry.IsSwiftAsync = false;
9697     Entry.IsSwiftError = false;
9698     Entry.IsCFGuardTarget = false;
9699     Entry.Alignment = Alignment;
9700     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9701     CLI.NumFixedArgs += 1;
9702     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9703 
9704     // sret demotion isn't compatible with tail-calls, since the sret argument
9705     // points into the callers stack frame.
9706     CLI.IsTailCall = false;
9707   } else {
9708     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9709         CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
9710     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9711       ISD::ArgFlagsTy Flags;
9712       if (NeedsRegBlock) {
9713         Flags.setInConsecutiveRegs();
9714         if (I == RetTys.size() - 1)
9715           Flags.setInConsecutiveRegsLast();
9716       }
9717       EVT VT = RetTys[I];
9718       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9719                                                      CLI.CallConv, VT);
9720       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9721                                                        CLI.CallConv, VT);
9722       for (unsigned i = 0; i != NumRegs; ++i) {
9723         ISD::InputArg MyFlags;
9724         MyFlags.Flags = Flags;
9725         MyFlags.VT = RegisterVT;
9726         MyFlags.ArgVT = VT;
9727         MyFlags.Used = CLI.IsReturnValueUsed;
9728         if (CLI.RetTy->isPointerTy()) {
9729           MyFlags.Flags.setPointer();
9730           MyFlags.Flags.setPointerAddrSpace(
9731               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9732         }
9733         if (CLI.RetSExt)
9734           MyFlags.Flags.setSExt();
9735         if (CLI.RetZExt)
9736           MyFlags.Flags.setZExt();
9737         if (CLI.IsInReg)
9738           MyFlags.Flags.setInReg();
9739         CLI.Ins.push_back(MyFlags);
9740       }
9741     }
9742   }
9743 
9744   // We push in swifterror return as the last element of CLI.Ins.
9745   ArgListTy &Args = CLI.getArgs();
9746   if (supportSwiftError()) {
9747     for (const ArgListEntry &Arg : Args) {
9748       if (Arg.IsSwiftError) {
9749         ISD::InputArg MyFlags;
9750         MyFlags.VT = getPointerTy(DL);
9751         MyFlags.ArgVT = EVT(getPointerTy(DL));
9752         MyFlags.Flags.setSwiftError();
9753         CLI.Ins.push_back(MyFlags);
9754       }
9755     }
9756   }
9757 
9758   // Handle all of the outgoing arguments.
9759   CLI.Outs.clear();
9760   CLI.OutVals.clear();
9761   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9762     SmallVector<EVT, 4> ValueVTs;
9763     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9764     // FIXME: Split arguments if CLI.IsPostTypeLegalization
9765     Type *FinalType = Args[i].Ty;
9766     if (Args[i].IsByVal)
9767       FinalType = Args[i].IndirectType;
9768     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9769         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
9770     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9771          ++Value) {
9772       EVT VT = ValueVTs[Value];
9773       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9774       SDValue Op = SDValue(Args[i].Node.getNode(),
9775                            Args[i].Node.getResNo() + Value);
9776       ISD::ArgFlagsTy Flags;
9777 
9778       // Certain targets (such as MIPS), may have a different ABI alignment
9779       // for a type depending on the context. Give the target a chance to
9780       // specify the alignment it wants.
9781       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
9782       Flags.setOrigAlign(OriginalAlignment);
9783 
9784       if (Args[i].Ty->isPointerTy()) {
9785         Flags.setPointer();
9786         Flags.setPointerAddrSpace(
9787             cast<PointerType>(Args[i].Ty)->getAddressSpace());
9788       }
9789       if (Args[i].IsZExt)
9790         Flags.setZExt();
9791       if (Args[i].IsSExt)
9792         Flags.setSExt();
9793       if (Args[i].IsInReg) {
9794         // If we are using vectorcall calling convention, a structure that is
9795         // passed InReg - is surely an HVA
9796         if (CLI.CallConv == CallingConv::X86_VectorCall &&
9797             isa<StructType>(FinalType)) {
9798           // The first value of a structure is marked
9799           if (0 == Value)
9800             Flags.setHvaStart();
9801           Flags.setHva();
9802         }
9803         // Set InReg Flag
9804         Flags.setInReg();
9805       }
9806       if (Args[i].IsSRet)
9807         Flags.setSRet();
9808       if (Args[i].IsSwiftSelf)
9809         Flags.setSwiftSelf();
9810       if (Args[i].IsSwiftAsync)
9811         Flags.setSwiftAsync();
9812       if (Args[i].IsSwiftError)
9813         Flags.setSwiftError();
9814       if (Args[i].IsCFGuardTarget)
9815         Flags.setCFGuardTarget();
9816       if (Args[i].IsByVal)
9817         Flags.setByVal();
9818       if (Args[i].IsByRef)
9819         Flags.setByRef();
9820       if (Args[i].IsPreallocated) {
9821         Flags.setPreallocated();
9822         // Set the byval flag for CCAssignFn callbacks that don't know about
9823         // preallocated.  This way we can know how many bytes we should've
9824         // allocated and how many bytes a callee cleanup function will pop.  If
9825         // we port preallocated to more targets, we'll have to add custom
9826         // preallocated handling in the various CC lowering callbacks.
9827         Flags.setByVal();
9828       }
9829       if (Args[i].IsInAlloca) {
9830         Flags.setInAlloca();
9831         // Set the byval flag for CCAssignFn callbacks that don't know about
9832         // inalloca.  This way we can know how many bytes we should've allocated
9833         // and how many bytes a callee cleanup function will pop.  If we port
9834         // inalloca to more targets, we'll have to add custom inalloca handling
9835         // in the various CC lowering callbacks.
9836         Flags.setByVal();
9837       }
9838       Align MemAlign;
9839       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
9840         unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
9841         Flags.setByValSize(FrameSize);
9842 
9843         // info is not there but there are cases it cannot get right.
9844         if (auto MA = Args[i].Alignment)
9845           MemAlign = *MA;
9846         else
9847           MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL));
9848       } else if (auto MA = Args[i].Alignment) {
9849         MemAlign = *MA;
9850       } else {
9851         MemAlign = OriginalAlignment;
9852       }
9853       Flags.setMemAlign(MemAlign);
9854       if (Args[i].IsNest)
9855         Flags.setNest();
9856       if (NeedsRegBlock)
9857         Flags.setInConsecutiveRegs();
9858 
9859       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9860                                                  CLI.CallConv, VT);
9861       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9862                                                         CLI.CallConv, VT);
9863       SmallVector<SDValue, 4> Parts(NumParts);
9864       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9865 
9866       if (Args[i].IsSExt)
9867         ExtendKind = ISD::SIGN_EXTEND;
9868       else if (Args[i].IsZExt)
9869         ExtendKind = ISD::ZERO_EXTEND;
9870 
9871       // Conservatively only handle 'returned' on non-vectors that can be lowered,
9872       // for now.
9873       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9874           CanLowerReturn) {
9875         assert((CLI.RetTy == Args[i].Ty ||
9876                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
9877                  CLI.RetTy->getPointerAddressSpace() ==
9878                      Args[i].Ty->getPointerAddressSpace())) &&
9879                RetTys.size() == NumValues && "unexpected use of 'returned'");
9880         // Before passing 'returned' to the target lowering code, ensure that
9881         // either the register MVT and the actual EVT are the same size or that
9882         // the return value and argument are extended in the same way; in these
9883         // cases it's safe to pass the argument register value unchanged as the
9884         // return register value (although it's at the target's option whether
9885         // to do so)
9886         // TODO: allow code generation to take advantage of partially preserved
9887         // registers rather than clobbering the entire register when the
9888         // parameter extension method is not compatible with the return
9889         // extension method
9890         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9891             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9892              CLI.RetZExt == Args[i].IsZExt))
9893           Flags.setReturned();
9894       }
9895 
9896       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
9897                      CLI.CallConv, ExtendKind);
9898 
9899       for (unsigned j = 0; j != NumParts; ++j) {
9900         // if it isn't first piece, alignment must be 1
9901         // For scalable vectors the scalable part is currently handled
9902         // by individual targets, so we just use the known minimum size here.
9903         ISD::OutputArg MyFlags(
9904             Flags, Parts[j].getValueType().getSimpleVT(), VT,
9905             i < CLI.NumFixedArgs, i,
9906             j * Parts[j].getValueType().getStoreSize().getKnownMinSize());
9907         if (NumParts > 1 && j == 0)
9908           MyFlags.Flags.setSplit();
9909         else if (j != 0) {
9910           MyFlags.Flags.setOrigAlign(Align(1));
9911           if (j == NumParts - 1)
9912             MyFlags.Flags.setSplitEnd();
9913         }
9914 
9915         CLI.Outs.push_back(MyFlags);
9916         CLI.OutVals.push_back(Parts[j]);
9917       }
9918 
9919       if (NeedsRegBlock && Value == NumValues - 1)
9920         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9921     }
9922   }
9923 
9924   SmallVector<SDValue, 4> InVals;
9925   CLI.Chain = LowerCall(CLI, InVals);
9926 
9927   // Update CLI.InVals to use outside of this function.
9928   CLI.InVals = InVals;
9929 
9930   // Verify that the target's LowerCall behaved as expected.
9931   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9932          "LowerCall didn't return a valid chain!");
9933   assert((!CLI.IsTailCall || InVals.empty()) &&
9934          "LowerCall emitted a return value for a tail call!");
9935   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9936          "LowerCall didn't emit the correct number of values!");
9937 
9938   // For a tail call, the return value is merely live-out and there aren't
9939   // any nodes in the DAG representing it. Return a special value to
9940   // indicate that a tail call has been emitted and no more Instructions
9941   // should be processed in the current block.
9942   if (CLI.IsTailCall) {
9943     CLI.DAG.setRoot(CLI.Chain);
9944     return std::make_pair(SDValue(), SDValue());
9945   }
9946 
9947 #ifndef NDEBUG
9948   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9949     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9950     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
9951            "LowerCall emitted a value with the wrong type!");
9952   }
9953 #endif
9954 
9955   SmallVector<SDValue, 4> ReturnValues;
9956   if (!CanLowerReturn) {
9957     // The instruction result is the result of loading from the
9958     // hidden sret parameter.
9959     SmallVector<EVT, 1> PVTs;
9960     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
9961 
9962     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
9963     assert(PVTs.size() == 1 && "Pointers should fit in one register");
9964     EVT PtrVT = PVTs[0];
9965 
9966     unsigned NumValues = RetTys.size();
9967     ReturnValues.resize(NumValues);
9968     SmallVector<SDValue, 4> Chains(NumValues);
9969 
9970     // An aggregate return value cannot wrap around the address space, so
9971     // offsets to its parts don't wrap either.
9972     SDNodeFlags Flags;
9973     Flags.setNoUnsignedWrap(true);
9974 
9975     MachineFunction &MF = CLI.DAG.getMachineFunction();
9976     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
9977     for (unsigned i = 0; i < NumValues; ++i) {
9978       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9979                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
9980                                                         PtrVT), Flags);
9981       SDValue L = CLI.DAG.getLoad(
9982           RetTys[i], CLI.DL, CLI.Chain, Add,
9983           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9984                                             DemoteStackIdx, Offsets[i]),
9985           HiddenSRetAlign);
9986       ReturnValues[i] = L;
9987       Chains[i] = L.getValue(1);
9988     }
9989 
9990     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9991   } else {
9992     // Collect the legal value parts into potentially illegal values
9993     // that correspond to the original function's return values.
9994     Optional<ISD::NodeType> AssertOp;
9995     if (CLI.RetSExt)
9996       AssertOp = ISD::AssertSext;
9997     else if (CLI.RetZExt)
9998       AssertOp = ISD::AssertZext;
9999     unsigned CurReg = 0;
10000     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
10001       EVT VT = RetTys[I];
10002       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10003                                                      CLI.CallConv, VT);
10004       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10005                                                        CLI.CallConv, VT);
10006 
10007       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
10008                                               NumRegs, RegisterVT, VT, nullptr,
10009                                               CLI.CallConv, AssertOp));
10010       CurReg += NumRegs;
10011     }
10012 
10013     // For a function returning void, there is no return value. We can't create
10014     // such a node, so we just return a null return value in that case. In
10015     // that case, nothing will actually look at the value.
10016     if (ReturnValues.empty())
10017       return std::make_pair(SDValue(), CLI.Chain);
10018   }
10019 
10020   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
10021                                 CLI.DAG.getVTList(RetTys), ReturnValues);
10022   return std::make_pair(Res, CLI.Chain);
10023 }
10024 
10025 /// Places new result values for the node in Results (their number
10026 /// and types must exactly match those of the original return values of
10027 /// the node), or leaves Results empty, which indicates that the node is not
10028 /// to be custom lowered after all.
10029 void TargetLowering::LowerOperationWrapper(SDNode *N,
10030                                            SmallVectorImpl<SDValue> &Results,
10031                                            SelectionDAG &DAG) const {
10032   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
10033 
10034   if (!Res.getNode())
10035     return;
10036 
10037   // If the original node has one result, take the return value from
10038   // LowerOperation as is. It might not be result number 0.
10039   if (N->getNumValues() == 1) {
10040     Results.push_back(Res);
10041     return;
10042   }
10043 
10044   // If the original node has multiple results, then the return node should
10045   // have the same number of results.
10046   assert((N->getNumValues() == Res->getNumValues()) &&
10047       "Lowering returned the wrong number of results!");
10048 
10049   // Places new result values base on N result number.
10050   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
10051     Results.push_back(Res.getValue(I));
10052 }
10053 
10054 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10055   llvm_unreachable("LowerOperation not implemented for this target!");
10056 }
10057 
10058 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V,
10059                                                      unsigned Reg,
10060                                                      ISD::NodeType ExtendType) {
10061   SDValue Op = getNonRegisterValue(V);
10062   assert((Op.getOpcode() != ISD::CopyFromReg ||
10063           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
10064          "Copy from a reg to the same reg!");
10065   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
10066 
10067   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10068   // If this is an InlineAsm we have to match the registers required, not the
10069   // notional registers required by the type.
10070 
10071   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
10072                    None); // This is not an ABI copy.
10073   SDValue Chain = DAG.getEntryNode();
10074 
10075   if (ExtendType == ISD::ANY_EXTEND) {
10076     auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
10077     if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
10078       ExtendType = PreferredExtendIt->second;
10079   }
10080   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
10081   PendingExports.push_back(Chain);
10082 }
10083 
10084 #include "llvm/CodeGen/SelectionDAGISel.h"
10085 
10086 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
10087 /// entry block, return true.  This includes arguments used by switches, since
10088 /// the switch may expand into multiple basic blocks.
10089 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
10090   // With FastISel active, we may be splitting blocks, so force creation
10091   // of virtual registers for all non-dead arguments.
10092   if (FastISel)
10093     return A->use_empty();
10094 
10095   const BasicBlock &Entry = A->getParent()->front();
10096   for (const User *U : A->users())
10097     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
10098       return false;  // Use not in entry block.
10099 
10100   return true;
10101 }
10102 
10103 using ArgCopyElisionMapTy =
10104     DenseMap<const Argument *,
10105              std::pair<const AllocaInst *, const StoreInst *>>;
10106 
10107 /// Scan the entry block of the function in FuncInfo for arguments that look
10108 /// like copies into a local alloca. Record any copied arguments in
10109 /// ArgCopyElisionCandidates.
10110 static void
10111 findArgumentCopyElisionCandidates(const DataLayout &DL,
10112                                   FunctionLoweringInfo *FuncInfo,
10113                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
10114   // Record the state of every static alloca used in the entry block. Argument
10115   // allocas are all used in the entry block, so we need approximately as many
10116   // entries as we have arguments.
10117   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
10118   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
10119   unsigned NumArgs = FuncInfo->Fn->arg_size();
10120   StaticAllocas.reserve(NumArgs * 2);
10121 
10122   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
10123     if (!V)
10124       return nullptr;
10125     V = V->stripPointerCasts();
10126     const auto *AI = dyn_cast<AllocaInst>(V);
10127     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
10128       return nullptr;
10129     auto Iter = StaticAllocas.insert({AI, Unknown});
10130     return &Iter.first->second;
10131   };
10132 
10133   // Look for stores of arguments to static allocas. Look through bitcasts and
10134   // GEPs to handle type coercions, as long as the alloca is fully initialized
10135   // by the store. Any non-store use of an alloca escapes it and any subsequent
10136   // unanalyzed store might write it.
10137   // FIXME: Handle structs initialized with multiple stores.
10138   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
10139     // Look for stores, and handle non-store uses conservatively.
10140     const auto *SI = dyn_cast<StoreInst>(&I);
10141     if (!SI) {
10142       // We will look through cast uses, so ignore them completely.
10143       if (I.isCast())
10144         continue;
10145       // Ignore debug info and pseudo op intrinsics, they don't escape or store
10146       // to allocas.
10147       if (I.isDebugOrPseudoInst())
10148         continue;
10149       // This is an unknown instruction. Assume it escapes or writes to all
10150       // static alloca operands.
10151       for (const Use &U : I.operands()) {
10152         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
10153           *Info = StaticAllocaInfo::Clobbered;
10154       }
10155       continue;
10156     }
10157 
10158     // If the stored value is a static alloca, mark it as escaped.
10159     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
10160       *Info = StaticAllocaInfo::Clobbered;
10161 
10162     // Check if the destination is a static alloca.
10163     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
10164     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
10165     if (!Info)
10166       continue;
10167     const AllocaInst *AI = cast<AllocaInst>(Dst);
10168 
10169     // Skip allocas that have been initialized or clobbered.
10170     if (*Info != StaticAllocaInfo::Unknown)
10171       continue;
10172 
10173     // Check if the stored value is an argument, and that this store fully
10174     // initializes the alloca.
10175     // If the argument type has padding bits we can't directly forward a pointer
10176     // as the upper bits may contain garbage.
10177     // Don't elide copies from the same argument twice.
10178     const Value *Val = SI->getValueOperand()->stripPointerCasts();
10179     const auto *Arg = dyn_cast<Argument>(Val);
10180     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
10181         Arg->getType()->isEmptyTy() ||
10182         DL.getTypeStoreSize(Arg->getType()) !=
10183             DL.getTypeAllocSize(AI->getAllocatedType()) ||
10184         !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
10185         ArgCopyElisionCandidates.count(Arg)) {
10186       *Info = StaticAllocaInfo::Clobbered;
10187       continue;
10188     }
10189 
10190     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
10191                       << '\n');
10192 
10193     // Mark this alloca and store for argument copy elision.
10194     *Info = StaticAllocaInfo::Elidable;
10195     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
10196 
10197     // Stop scanning if we've seen all arguments. This will happen early in -O0
10198     // builds, which is useful, because -O0 builds have large entry blocks and
10199     // many allocas.
10200     if (ArgCopyElisionCandidates.size() == NumArgs)
10201       break;
10202   }
10203 }
10204 
10205 /// Try to elide argument copies from memory into a local alloca. Succeeds if
10206 /// ArgVal is a load from a suitable fixed stack object.
10207 static void tryToElideArgumentCopy(
10208     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
10209     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
10210     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
10211     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
10212     SDValue ArgVal, bool &ArgHasUses) {
10213   // Check if this is a load from a fixed stack object.
10214   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
10215   if (!LNode)
10216     return;
10217   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
10218   if (!FINode)
10219     return;
10220 
10221   // Check that the fixed stack object is the right size and alignment.
10222   // Look at the alignment that the user wrote on the alloca instead of looking
10223   // at the stack object.
10224   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
10225   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
10226   const AllocaInst *AI = ArgCopyIter->second.first;
10227   int FixedIndex = FINode->getIndex();
10228   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
10229   int OldIndex = AllocaIndex;
10230   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
10231   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
10232     LLVM_DEBUG(
10233         dbgs() << "  argument copy elision failed due to bad fixed stack "
10234                   "object size\n");
10235     return;
10236   }
10237   Align RequiredAlignment = AI->getAlign();
10238   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
10239     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
10240                          "greater than stack argument alignment ("
10241                       << DebugStr(RequiredAlignment) << " vs "
10242                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
10243     return;
10244   }
10245 
10246   // Perform the elision. Delete the old stack object and replace its only use
10247   // in the variable info map. Mark the stack object as mutable.
10248   LLVM_DEBUG({
10249     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
10250            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
10251            << '\n';
10252   });
10253   MFI.RemoveStackObject(OldIndex);
10254   MFI.setIsImmutableObjectIndex(FixedIndex, false);
10255   AllocaIndex = FixedIndex;
10256   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
10257   Chains.push_back(ArgVal.getValue(1));
10258 
10259   // Avoid emitting code for the store implementing the copy.
10260   const StoreInst *SI = ArgCopyIter->second.second;
10261   ElidedArgCopyInstrs.insert(SI);
10262 
10263   // Check for uses of the argument again so that we can avoid exporting ArgVal
10264   // if it is't used by anything other than the store.
10265   for (const Value *U : Arg.users()) {
10266     if (U != SI) {
10267       ArgHasUses = true;
10268       break;
10269     }
10270   }
10271 }
10272 
10273 void SelectionDAGISel::LowerArguments(const Function &F) {
10274   SelectionDAG &DAG = SDB->DAG;
10275   SDLoc dl = SDB->getCurSDLoc();
10276   const DataLayout &DL = DAG.getDataLayout();
10277   SmallVector<ISD::InputArg, 16> Ins;
10278 
10279   // In Naked functions we aren't going to save any registers.
10280   if (F.hasFnAttribute(Attribute::Naked))
10281     return;
10282 
10283   if (!FuncInfo->CanLowerReturn) {
10284     // Put in an sret pointer parameter before all the other parameters.
10285     SmallVector<EVT, 1> ValueVTs;
10286     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10287                     F.getReturnType()->getPointerTo(
10288                         DAG.getDataLayout().getAllocaAddrSpace()),
10289                     ValueVTs);
10290 
10291     // NOTE: Assuming that a pointer will never break down to more than one VT
10292     // or one register.
10293     ISD::ArgFlagsTy Flags;
10294     Flags.setSRet();
10295     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
10296     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
10297                          ISD::InputArg::NoArgIndex, 0);
10298     Ins.push_back(RetArg);
10299   }
10300 
10301   // Look for stores of arguments to static allocas. Mark such arguments with a
10302   // flag to ask the target to give us the memory location of that argument if
10303   // available.
10304   ArgCopyElisionMapTy ArgCopyElisionCandidates;
10305   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
10306                                     ArgCopyElisionCandidates);
10307 
10308   // Set up the incoming argument description vector.
10309   for (const Argument &Arg : F.args()) {
10310     unsigned ArgNo = Arg.getArgNo();
10311     SmallVector<EVT, 4> ValueVTs;
10312     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10313     bool isArgValueUsed = !Arg.use_empty();
10314     unsigned PartBase = 0;
10315     Type *FinalType = Arg.getType();
10316     if (Arg.hasAttribute(Attribute::ByVal))
10317       FinalType = Arg.getParamByValType();
10318     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
10319         FinalType, F.getCallingConv(), F.isVarArg(), DL);
10320     for (unsigned Value = 0, NumValues = ValueVTs.size();
10321          Value != NumValues; ++Value) {
10322       EVT VT = ValueVTs[Value];
10323       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
10324       ISD::ArgFlagsTy Flags;
10325 
10326 
10327       if (Arg.getType()->isPointerTy()) {
10328         Flags.setPointer();
10329         Flags.setPointerAddrSpace(
10330             cast<PointerType>(Arg.getType())->getAddressSpace());
10331       }
10332       if (Arg.hasAttribute(Attribute::ZExt))
10333         Flags.setZExt();
10334       if (Arg.hasAttribute(Attribute::SExt))
10335         Flags.setSExt();
10336       if (Arg.hasAttribute(Attribute::InReg)) {
10337         // If we are using vectorcall calling convention, a structure that is
10338         // passed InReg - is surely an HVA
10339         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
10340             isa<StructType>(Arg.getType())) {
10341           // The first value of a structure is marked
10342           if (0 == Value)
10343             Flags.setHvaStart();
10344           Flags.setHva();
10345         }
10346         // Set InReg Flag
10347         Flags.setInReg();
10348       }
10349       if (Arg.hasAttribute(Attribute::StructRet))
10350         Flags.setSRet();
10351       if (Arg.hasAttribute(Attribute::SwiftSelf))
10352         Flags.setSwiftSelf();
10353       if (Arg.hasAttribute(Attribute::SwiftAsync))
10354         Flags.setSwiftAsync();
10355       if (Arg.hasAttribute(Attribute::SwiftError))
10356         Flags.setSwiftError();
10357       if (Arg.hasAttribute(Attribute::ByVal))
10358         Flags.setByVal();
10359       if (Arg.hasAttribute(Attribute::ByRef))
10360         Flags.setByRef();
10361       if (Arg.hasAttribute(Attribute::InAlloca)) {
10362         Flags.setInAlloca();
10363         // Set the byval flag for CCAssignFn callbacks that don't know about
10364         // inalloca.  This way we can know how many bytes we should've allocated
10365         // and how many bytes a callee cleanup function will pop.  If we port
10366         // inalloca to more targets, we'll have to add custom inalloca handling
10367         // in the various CC lowering callbacks.
10368         Flags.setByVal();
10369       }
10370       if (Arg.hasAttribute(Attribute::Preallocated)) {
10371         Flags.setPreallocated();
10372         // Set the byval flag for CCAssignFn callbacks that don't know about
10373         // preallocated.  This way we can know how many bytes we should've
10374         // allocated and how many bytes a callee cleanup function will pop.  If
10375         // we port preallocated to more targets, we'll have to add custom
10376         // preallocated handling in the various CC lowering callbacks.
10377         Flags.setByVal();
10378       }
10379 
10380       // Certain targets (such as MIPS), may have a different ABI alignment
10381       // for a type depending on the context. Give the target a chance to
10382       // specify the alignment it wants.
10383       const Align OriginalAlignment(
10384           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
10385       Flags.setOrigAlign(OriginalAlignment);
10386 
10387       Align MemAlign;
10388       Type *ArgMemTy = nullptr;
10389       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
10390           Flags.isByRef()) {
10391         if (!ArgMemTy)
10392           ArgMemTy = Arg.getPointeeInMemoryValueType();
10393 
10394         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
10395 
10396         // For in-memory arguments, size and alignment should be passed from FE.
10397         // BE will guess if this info is not there but there are cases it cannot
10398         // get right.
10399         if (auto ParamAlign = Arg.getParamStackAlign())
10400           MemAlign = *ParamAlign;
10401         else if ((ParamAlign = Arg.getParamAlign()))
10402           MemAlign = *ParamAlign;
10403         else
10404           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
10405         if (Flags.isByRef())
10406           Flags.setByRefSize(MemSize);
10407         else
10408           Flags.setByValSize(MemSize);
10409       } else if (auto ParamAlign = Arg.getParamStackAlign()) {
10410         MemAlign = *ParamAlign;
10411       } else {
10412         MemAlign = OriginalAlignment;
10413       }
10414       Flags.setMemAlign(MemAlign);
10415 
10416       if (Arg.hasAttribute(Attribute::Nest))
10417         Flags.setNest();
10418       if (NeedsRegBlock)
10419         Flags.setInConsecutiveRegs();
10420       if (ArgCopyElisionCandidates.count(&Arg))
10421         Flags.setCopyElisionCandidate();
10422       if (Arg.hasAttribute(Attribute::Returned))
10423         Flags.setReturned();
10424 
10425       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
10426           *CurDAG->getContext(), F.getCallingConv(), VT);
10427       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
10428           *CurDAG->getContext(), F.getCallingConv(), VT);
10429       for (unsigned i = 0; i != NumRegs; ++i) {
10430         // For scalable vectors, use the minimum size; individual targets
10431         // are responsible for handling scalable vector arguments and
10432         // return values.
10433         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
10434                  ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize());
10435         if (NumRegs > 1 && i == 0)
10436           MyFlags.Flags.setSplit();
10437         // if it isn't first piece, alignment must be 1
10438         else if (i > 0) {
10439           MyFlags.Flags.setOrigAlign(Align(1));
10440           if (i == NumRegs - 1)
10441             MyFlags.Flags.setSplitEnd();
10442         }
10443         Ins.push_back(MyFlags);
10444       }
10445       if (NeedsRegBlock && Value == NumValues - 1)
10446         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
10447       PartBase += VT.getStoreSize().getKnownMinSize();
10448     }
10449   }
10450 
10451   // Call the target to set up the argument values.
10452   SmallVector<SDValue, 8> InVals;
10453   SDValue NewRoot = TLI->LowerFormalArguments(
10454       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
10455 
10456   // Verify that the target's LowerFormalArguments behaved as expected.
10457   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
10458          "LowerFormalArguments didn't return a valid chain!");
10459   assert(InVals.size() == Ins.size() &&
10460          "LowerFormalArguments didn't emit the correct number of values!");
10461   LLVM_DEBUG({
10462     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
10463       assert(InVals[i].getNode() &&
10464              "LowerFormalArguments emitted a null value!");
10465       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
10466              "LowerFormalArguments emitted a value with the wrong type!");
10467     }
10468   });
10469 
10470   // Update the DAG with the new chain value resulting from argument lowering.
10471   DAG.setRoot(NewRoot);
10472 
10473   // Set up the argument values.
10474   unsigned i = 0;
10475   if (!FuncInfo->CanLowerReturn) {
10476     // Create a virtual register for the sret pointer, and put in a copy
10477     // from the sret argument into it.
10478     SmallVector<EVT, 1> ValueVTs;
10479     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10480                     F.getReturnType()->getPointerTo(
10481                         DAG.getDataLayout().getAllocaAddrSpace()),
10482                     ValueVTs);
10483     MVT VT = ValueVTs[0].getSimpleVT();
10484     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
10485     Optional<ISD::NodeType> AssertOp = None;
10486     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
10487                                         nullptr, F.getCallingConv(), AssertOp);
10488 
10489     MachineFunction& MF = SDB->DAG.getMachineFunction();
10490     MachineRegisterInfo& RegInfo = MF.getRegInfo();
10491     Register SRetReg =
10492         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
10493     FuncInfo->DemoteRegister = SRetReg;
10494     NewRoot =
10495         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
10496     DAG.setRoot(NewRoot);
10497 
10498     // i indexes lowered arguments.  Bump it past the hidden sret argument.
10499     ++i;
10500   }
10501 
10502   SmallVector<SDValue, 4> Chains;
10503   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
10504   for (const Argument &Arg : F.args()) {
10505     SmallVector<SDValue, 4> ArgValues;
10506     SmallVector<EVT, 4> ValueVTs;
10507     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10508     unsigned NumValues = ValueVTs.size();
10509     if (NumValues == 0)
10510       continue;
10511 
10512     bool ArgHasUses = !Arg.use_empty();
10513 
10514     // Elide the copying store if the target loaded this argument from a
10515     // suitable fixed stack object.
10516     if (Ins[i].Flags.isCopyElisionCandidate()) {
10517       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
10518                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
10519                              InVals[i], ArgHasUses);
10520     }
10521 
10522     // If this argument is unused then remember its value. It is used to generate
10523     // debugging information.
10524     bool isSwiftErrorArg =
10525         TLI->supportSwiftError() &&
10526         Arg.hasAttribute(Attribute::SwiftError);
10527     if (!ArgHasUses && !isSwiftErrorArg) {
10528       SDB->setUnusedArgValue(&Arg, InVals[i]);
10529 
10530       // Also remember any frame index for use in FastISel.
10531       if (FrameIndexSDNode *FI =
10532           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
10533         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10534     }
10535 
10536     for (unsigned Val = 0; Val != NumValues; ++Val) {
10537       EVT VT = ValueVTs[Val];
10538       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
10539                                                       F.getCallingConv(), VT);
10540       unsigned NumParts = TLI->getNumRegistersForCallingConv(
10541           *CurDAG->getContext(), F.getCallingConv(), VT);
10542 
10543       // Even an apparent 'unused' swifterror argument needs to be returned. So
10544       // we do generate a copy for it that can be used on return from the
10545       // function.
10546       if (ArgHasUses || isSwiftErrorArg) {
10547         Optional<ISD::NodeType> AssertOp;
10548         if (Arg.hasAttribute(Attribute::SExt))
10549           AssertOp = ISD::AssertSext;
10550         else if (Arg.hasAttribute(Attribute::ZExt))
10551           AssertOp = ISD::AssertZext;
10552 
10553         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
10554                                              PartVT, VT, nullptr,
10555                                              F.getCallingConv(), AssertOp));
10556       }
10557 
10558       i += NumParts;
10559     }
10560 
10561     // We don't need to do anything else for unused arguments.
10562     if (ArgValues.empty())
10563       continue;
10564 
10565     // Note down frame index.
10566     if (FrameIndexSDNode *FI =
10567         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
10568       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10569 
10570     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
10571                                      SDB->getCurSDLoc());
10572 
10573     SDB->setValue(&Arg, Res);
10574     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
10575       // We want to associate the argument with the frame index, among
10576       // involved operands, that correspond to the lowest address. The
10577       // getCopyFromParts function, called earlier, is swapping the order of
10578       // the operands to BUILD_PAIR depending on endianness. The result of
10579       // that swapping is that the least significant bits of the argument will
10580       // be in the first operand of the BUILD_PAIR node, and the most
10581       // significant bits will be in the second operand.
10582       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
10583       if (LoadSDNode *LNode =
10584           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
10585         if (FrameIndexSDNode *FI =
10586             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
10587           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10588     }
10589 
10590     // Analyses past this point are naive and don't expect an assertion.
10591     if (Res.getOpcode() == ISD::AssertZext)
10592       Res = Res.getOperand(0);
10593 
10594     // Update the SwiftErrorVRegDefMap.
10595     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
10596       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10597       if (Register::isVirtualRegister(Reg))
10598         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
10599                                    Reg);
10600     }
10601 
10602     // If this argument is live outside of the entry block, insert a copy from
10603     // wherever we got it to the vreg that other BB's will reference it as.
10604     if (Res.getOpcode() == ISD::CopyFromReg) {
10605       // If we can, though, try to skip creating an unnecessary vreg.
10606       // FIXME: This isn't very clean... it would be nice to make this more
10607       // general.
10608       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10609       if (Register::isVirtualRegister(Reg)) {
10610         FuncInfo->ValueMap[&Arg] = Reg;
10611         continue;
10612       }
10613     }
10614     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
10615       FuncInfo->InitializeRegForValue(&Arg);
10616       SDB->CopyToExportRegsIfNeeded(&Arg);
10617     }
10618   }
10619 
10620   if (!Chains.empty()) {
10621     Chains.push_back(NewRoot);
10622     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
10623   }
10624 
10625   DAG.setRoot(NewRoot);
10626 
10627   assert(i == InVals.size() && "Argument register count mismatch!");
10628 
10629   // If any argument copy elisions occurred and we have debug info, update the
10630   // stale frame indices used in the dbg.declare variable info table.
10631   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
10632   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
10633     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
10634       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
10635       if (I != ArgCopyElisionFrameIndexMap.end())
10636         VI.Slot = I->second;
10637     }
10638   }
10639 
10640   // Finally, if the target has anything special to do, allow it to do so.
10641   emitFunctionEntryCode();
10642 }
10643 
10644 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
10645 /// ensure constants are generated when needed.  Remember the virtual registers
10646 /// that need to be added to the Machine PHI nodes as input.  We cannot just
10647 /// directly add them, because expansion might result in multiple MBB's for one
10648 /// BB.  As such, the start of the BB might correspond to a different MBB than
10649 /// the end.
10650 void
10651 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
10652   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10653   const Instruction *TI = LLVMBB->getTerminator();
10654 
10655   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
10656 
10657   // Check PHI nodes in successors that expect a value to be available from this
10658   // block.
10659   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
10660     const BasicBlock *SuccBB = TI->getSuccessor(succ);
10661     if (!isa<PHINode>(SuccBB->begin())) continue;
10662     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
10663 
10664     // If this terminator has multiple identical successors (common for
10665     // switches), only handle each succ once.
10666     if (!SuccsHandled.insert(SuccMBB).second)
10667       continue;
10668 
10669     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
10670 
10671     // At this point we know that there is a 1-1 correspondence between LLVM PHI
10672     // nodes and Machine PHI nodes, but the incoming operands have not been
10673     // emitted yet.
10674     for (const PHINode &PN : SuccBB->phis()) {
10675       // Ignore dead phi's.
10676       if (PN.use_empty())
10677         continue;
10678 
10679       // Skip empty types
10680       if (PN.getType()->isEmptyTy())
10681         continue;
10682 
10683       unsigned Reg;
10684       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
10685 
10686       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
10687         unsigned &RegOut = ConstantsOut[C];
10688         if (RegOut == 0) {
10689           RegOut = FuncInfo.CreateRegs(C);
10690           // We need to zero/sign extend ConstantInt phi operands to match
10691           // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo.
10692           ISD::NodeType ExtendType = ISD::ANY_EXTEND;
10693           if (auto *CI = dyn_cast<ConstantInt>(C))
10694             ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND
10695                                                     : ISD::ZERO_EXTEND;
10696           CopyValueToVirtualRegister(C, RegOut, ExtendType);
10697         }
10698         Reg = RegOut;
10699       } else {
10700         DenseMap<const Value *, Register>::iterator I =
10701           FuncInfo.ValueMap.find(PHIOp);
10702         if (I != FuncInfo.ValueMap.end())
10703           Reg = I->second;
10704         else {
10705           assert(isa<AllocaInst>(PHIOp) &&
10706                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
10707                  "Didn't codegen value into a register!??");
10708           Reg = FuncInfo.CreateRegs(PHIOp);
10709           CopyValueToVirtualRegister(PHIOp, Reg);
10710         }
10711       }
10712 
10713       // Remember that this register needs to added to the machine PHI node as
10714       // the input for this MBB.
10715       SmallVector<EVT, 4> ValueVTs;
10716       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
10717       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
10718         EVT VT = ValueVTs[vti];
10719         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
10720         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
10721           FuncInfo.PHINodesToUpdate.push_back(
10722               std::make_pair(&*MBBI++, Reg + i));
10723         Reg += NumRegisters;
10724       }
10725     }
10726   }
10727 
10728   ConstantsOut.clear();
10729 }
10730 
10731 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10732   MachineFunction::iterator I(MBB);
10733   if (++I == FuncInfo.MF->end())
10734     return nullptr;
10735   return &*I;
10736 }
10737 
10738 /// During lowering new call nodes can be created (such as memset, etc.).
10739 /// Those will become new roots of the current DAG, but complications arise
10740 /// when they are tail calls. In such cases, the call lowering will update
10741 /// the root, but the builder still needs to know that a tail call has been
10742 /// lowered in order to avoid generating an additional return.
10743 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10744   // If the node is null, we do have a tail call.
10745   if (MaybeTC.getNode() != nullptr)
10746     DAG.setRoot(MaybeTC);
10747   else
10748     HasTailCall = true;
10749 }
10750 
10751 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10752                                         MachineBasicBlock *SwitchMBB,
10753                                         MachineBasicBlock *DefaultMBB) {
10754   MachineFunction *CurMF = FuncInfo.MF;
10755   MachineBasicBlock *NextMBB = nullptr;
10756   MachineFunction::iterator BBI(W.MBB);
10757   if (++BBI != FuncInfo.MF->end())
10758     NextMBB = &*BBI;
10759 
10760   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10761 
10762   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10763 
10764   if (Size == 2 && W.MBB == SwitchMBB) {
10765     // If any two of the cases has the same destination, and if one value
10766     // is the same as the other, but has one bit unset that the other has set,
10767     // use bit manipulation to do two compares at once.  For example:
10768     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10769     // TODO: This could be extended to merge any 2 cases in switches with 3
10770     // cases.
10771     // TODO: Handle cases where W.CaseBB != SwitchBB.
10772     CaseCluster &Small = *W.FirstCluster;
10773     CaseCluster &Big = *W.LastCluster;
10774 
10775     if (Small.Low == Small.High && Big.Low == Big.High &&
10776         Small.MBB == Big.MBB) {
10777       const APInt &SmallValue = Small.Low->getValue();
10778       const APInt &BigValue = Big.Low->getValue();
10779 
10780       // Check that there is only one bit different.
10781       APInt CommonBit = BigValue ^ SmallValue;
10782       if (CommonBit.isPowerOf2()) {
10783         SDValue CondLHS = getValue(Cond);
10784         EVT VT = CondLHS.getValueType();
10785         SDLoc DL = getCurSDLoc();
10786 
10787         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10788                                  DAG.getConstant(CommonBit, DL, VT));
10789         SDValue Cond = DAG.getSetCC(
10790             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10791             ISD::SETEQ);
10792 
10793         // Update successor info.
10794         // Both Small and Big will jump to Small.BB, so we sum up the
10795         // probabilities.
10796         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10797         if (BPI)
10798           addSuccessorWithProb(
10799               SwitchMBB, DefaultMBB,
10800               // The default destination is the first successor in IR.
10801               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10802         else
10803           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10804 
10805         // Insert the true branch.
10806         SDValue BrCond =
10807             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10808                         DAG.getBasicBlock(Small.MBB));
10809         // Insert the false branch.
10810         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10811                              DAG.getBasicBlock(DefaultMBB));
10812 
10813         DAG.setRoot(BrCond);
10814         return;
10815       }
10816     }
10817   }
10818 
10819   if (TM.getOptLevel() != CodeGenOpt::None) {
10820     // Here, we order cases by probability so the most likely case will be
10821     // checked first. However, two clusters can have the same probability in
10822     // which case their relative ordering is non-deterministic. So we use Low
10823     // as a tie-breaker as clusters are guaranteed to never overlap.
10824     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10825                [](const CaseCluster &a, const CaseCluster &b) {
10826       return a.Prob != b.Prob ?
10827              a.Prob > b.Prob :
10828              a.Low->getValue().slt(b.Low->getValue());
10829     });
10830 
10831     // Rearrange the case blocks so that the last one falls through if possible
10832     // without changing the order of probabilities.
10833     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10834       --I;
10835       if (I->Prob > W.LastCluster->Prob)
10836         break;
10837       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10838         std::swap(*I, *W.LastCluster);
10839         break;
10840       }
10841     }
10842   }
10843 
10844   // Compute total probability.
10845   BranchProbability DefaultProb = W.DefaultProb;
10846   BranchProbability UnhandledProbs = DefaultProb;
10847   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10848     UnhandledProbs += I->Prob;
10849 
10850   MachineBasicBlock *CurMBB = W.MBB;
10851   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10852     bool FallthroughUnreachable = false;
10853     MachineBasicBlock *Fallthrough;
10854     if (I == W.LastCluster) {
10855       // For the last cluster, fall through to the default destination.
10856       Fallthrough = DefaultMBB;
10857       FallthroughUnreachable = isa<UnreachableInst>(
10858           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10859     } else {
10860       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10861       CurMF->insert(BBI, Fallthrough);
10862       // Put Cond in a virtual register to make it available from the new blocks.
10863       ExportFromCurrentBlock(Cond);
10864     }
10865     UnhandledProbs -= I->Prob;
10866 
10867     switch (I->Kind) {
10868       case CC_JumpTable: {
10869         // FIXME: Optimize away range check based on pivot comparisons.
10870         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
10871         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
10872 
10873         // The jump block hasn't been inserted yet; insert it here.
10874         MachineBasicBlock *JumpMBB = JT->MBB;
10875         CurMF->insert(BBI, JumpMBB);
10876 
10877         auto JumpProb = I->Prob;
10878         auto FallthroughProb = UnhandledProbs;
10879 
10880         // If the default statement is a target of the jump table, we evenly
10881         // distribute the default probability to successors of CurMBB. Also
10882         // update the probability on the edge from JumpMBB to Fallthrough.
10883         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10884                                               SE = JumpMBB->succ_end();
10885              SI != SE; ++SI) {
10886           if (*SI == DefaultMBB) {
10887             JumpProb += DefaultProb / 2;
10888             FallthroughProb -= DefaultProb / 2;
10889             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10890             JumpMBB->normalizeSuccProbs();
10891             break;
10892           }
10893         }
10894 
10895         if (FallthroughUnreachable)
10896           JTH->FallthroughUnreachable = true;
10897 
10898         if (!JTH->FallthroughUnreachable)
10899           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10900         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10901         CurMBB->normalizeSuccProbs();
10902 
10903         // The jump table header will be inserted in our current block, do the
10904         // range check, and fall through to our fallthrough block.
10905         JTH->HeaderBB = CurMBB;
10906         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10907 
10908         // If we're in the right place, emit the jump table header right now.
10909         if (CurMBB == SwitchMBB) {
10910           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10911           JTH->Emitted = true;
10912         }
10913         break;
10914       }
10915       case CC_BitTests: {
10916         // FIXME: Optimize away range check based on pivot comparisons.
10917         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
10918 
10919         // The bit test blocks haven't been inserted yet; insert them here.
10920         for (BitTestCase &BTC : BTB->Cases)
10921           CurMF->insert(BBI, BTC.ThisBB);
10922 
10923         // Fill in fields of the BitTestBlock.
10924         BTB->Parent = CurMBB;
10925         BTB->Default = Fallthrough;
10926 
10927         BTB->DefaultProb = UnhandledProbs;
10928         // If the cases in bit test don't form a contiguous range, we evenly
10929         // distribute the probability on the edge to Fallthrough to two
10930         // successors of CurMBB.
10931         if (!BTB->ContiguousRange) {
10932           BTB->Prob += DefaultProb / 2;
10933           BTB->DefaultProb -= DefaultProb / 2;
10934         }
10935 
10936         if (FallthroughUnreachable)
10937           BTB->FallthroughUnreachable = true;
10938 
10939         // If we're in the right place, emit the bit test header right now.
10940         if (CurMBB == SwitchMBB) {
10941           visitBitTestHeader(*BTB, SwitchMBB);
10942           BTB->Emitted = true;
10943         }
10944         break;
10945       }
10946       case CC_Range: {
10947         const Value *RHS, *LHS, *MHS;
10948         ISD::CondCode CC;
10949         if (I->Low == I->High) {
10950           // Check Cond == I->Low.
10951           CC = ISD::SETEQ;
10952           LHS = Cond;
10953           RHS=I->Low;
10954           MHS = nullptr;
10955         } else {
10956           // Check I->Low <= Cond <= I->High.
10957           CC = ISD::SETLE;
10958           LHS = I->Low;
10959           MHS = Cond;
10960           RHS = I->High;
10961         }
10962 
10963         // If Fallthrough is unreachable, fold away the comparison.
10964         if (FallthroughUnreachable)
10965           CC = ISD::SETTRUE;
10966 
10967         // The false probability is the sum of all unhandled cases.
10968         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10969                      getCurSDLoc(), I->Prob, UnhandledProbs);
10970 
10971         if (CurMBB == SwitchMBB)
10972           visitSwitchCase(CB, SwitchMBB);
10973         else
10974           SL->SwitchCases.push_back(CB);
10975 
10976         break;
10977       }
10978     }
10979     CurMBB = Fallthrough;
10980   }
10981 }
10982 
10983 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10984                                               CaseClusterIt First,
10985                                               CaseClusterIt Last) {
10986   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10987     if (X.Prob != CC.Prob)
10988       return X.Prob > CC.Prob;
10989 
10990     // Ties are broken by comparing the case value.
10991     return X.Low->getValue().slt(CC.Low->getValue());
10992   });
10993 }
10994 
10995 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10996                                         const SwitchWorkListItem &W,
10997                                         Value *Cond,
10998                                         MachineBasicBlock *SwitchMBB) {
10999   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
11000          "Clusters not sorted?");
11001 
11002   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
11003 
11004   // Balance the tree based on branch probabilities to create a near-optimal (in
11005   // terms of search time given key frequency) binary search tree. See e.g. Kurt
11006   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
11007   CaseClusterIt LastLeft = W.FirstCluster;
11008   CaseClusterIt FirstRight = W.LastCluster;
11009   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
11010   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
11011 
11012   // Move LastLeft and FirstRight towards each other from opposite directions to
11013   // find a partitioning of the clusters which balances the probability on both
11014   // sides. If LeftProb and RightProb are equal, alternate which side is
11015   // taken to ensure 0-probability nodes are distributed evenly.
11016   unsigned I = 0;
11017   while (LastLeft + 1 < FirstRight) {
11018     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
11019       LeftProb += (++LastLeft)->Prob;
11020     else
11021       RightProb += (--FirstRight)->Prob;
11022     I++;
11023   }
11024 
11025   while (true) {
11026     // Our binary search tree differs from a typical BST in that ours can have up
11027     // to three values in each leaf. The pivot selection above doesn't take that
11028     // into account, which means the tree might require more nodes and be less
11029     // efficient. We compensate for this here.
11030 
11031     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
11032     unsigned NumRight = W.LastCluster - FirstRight + 1;
11033 
11034     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
11035       // If one side has less than 3 clusters, and the other has more than 3,
11036       // consider taking a cluster from the other side.
11037 
11038       if (NumLeft < NumRight) {
11039         // Consider moving the first cluster on the right to the left side.
11040         CaseCluster &CC = *FirstRight;
11041         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
11042         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
11043         if (LeftSideRank <= RightSideRank) {
11044           // Moving the cluster to the left does not demote it.
11045           ++LastLeft;
11046           ++FirstRight;
11047           continue;
11048         }
11049       } else {
11050         assert(NumRight < NumLeft);
11051         // Consider moving the last element on the left to the right side.
11052         CaseCluster &CC = *LastLeft;
11053         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
11054         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
11055         if (RightSideRank <= LeftSideRank) {
11056           // Moving the cluster to the right does not demot it.
11057           --LastLeft;
11058           --FirstRight;
11059           continue;
11060         }
11061       }
11062     }
11063     break;
11064   }
11065 
11066   assert(LastLeft + 1 == FirstRight);
11067   assert(LastLeft >= W.FirstCluster);
11068   assert(FirstRight <= W.LastCluster);
11069 
11070   // Use the first element on the right as pivot since we will make less-than
11071   // comparisons against it.
11072   CaseClusterIt PivotCluster = FirstRight;
11073   assert(PivotCluster > W.FirstCluster);
11074   assert(PivotCluster <= W.LastCluster);
11075 
11076   CaseClusterIt FirstLeft = W.FirstCluster;
11077   CaseClusterIt LastRight = W.LastCluster;
11078 
11079   const ConstantInt *Pivot = PivotCluster->Low;
11080 
11081   // New blocks will be inserted immediately after the current one.
11082   MachineFunction::iterator BBI(W.MBB);
11083   ++BBI;
11084 
11085   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
11086   // we can branch to its destination directly if it's squeezed exactly in
11087   // between the known lower bound and Pivot - 1.
11088   MachineBasicBlock *LeftMBB;
11089   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
11090       FirstLeft->Low == W.GE &&
11091       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
11092     LeftMBB = FirstLeft->MBB;
11093   } else {
11094     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11095     FuncInfo.MF->insert(BBI, LeftMBB);
11096     WorkList.push_back(
11097         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
11098     // Put Cond in a virtual register to make it available from the new blocks.
11099     ExportFromCurrentBlock(Cond);
11100   }
11101 
11102   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
11103   // single cluster, RHS.Low == Pivot, and we can branch to its destination
11104   // directly if RHS.High equals the current upper bound.
11105   MachineBasicBlock *RightMBB;
11106   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
11107       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
11108     RightMBB = FirstRight->MBB;
11109   } else {
11110     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11111     FuncInfo.MF->insert(BBI, RightMBB);
11112     WorkList.push_back(
11113         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
11114     // Put Cond in a virtual register to make it available from the new blocks.
11115     ExportFromCurrentBlock(Cond);
11116   }
11117 
11118   // Create the CaseBlock record that will be used to lower the branch.
11119   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
11120                getCurSDLoc(), LeftProb, RightProb);
11121 
11122   if (W.MBB == SwitchMBB)
11123     visitSwitchCase(CB, SwitchMBB);
11124   else
11125     SL->SwitchCases.push_back(CB);
11126 }
11127 
11128 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
11129 // from the swith statement.
11130 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
11131                                             BranchProbability PeeledCaseProb) {
11132   if (PeeledCaseProb == BranchProbability::getOne())
11133     return BranchProbability::getZero();
11134   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
11135 
11136   uint32_t Numerator = CaseProb.getNumerator();
11137   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
11138   return BranchProbability(Numerator, std::max(Numerator, Denominator));
11139 }
11140 
11141 // Try to peel the top probability case if it exceeds the threshold.
11142 // Return current MachineBasicBlock for the switch statement if the peeling
11143 // does not occur.
11144 // If the peeling is performed, return the newly created MachineBasicBlock
11145 // for the peeled switch statement. Also update Clusters to remove the peeled
11146 // case. PeeledCaseProb is the BranchProbability for the peeled case.
11147 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
11148     const SwitchInst &SI, CaseClusterVector &Clusters,
11149     BranchProbability &PeeledCaseProb) {
11150   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11151   // Don't perform if there is only one cluster or optimizing for size.
11152   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
11153       TM.getOptLevel() == CodeGenOpt::None ||
11154       SwitchMBB->getParent()->getFunction().hasMinSize())
11155     return SwitchMBB;
11156 
11157   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
11158   unsigned PeeledCaseIndex = 0;
11159   bool SwitchPeeled = false;
11160   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
11161     CaseCluster &CC = Clusters[Index];
11162     if (CC.Prob < TopCaseProb)
11163       continue;
11164     TopCaseProb = CC.Prob;
11165     PeeledCaseIndex = Index;
11166     SwitchPeeled = true;
11167   }
11168   if (!SwitchPeeled)
11169     return SwitchMBB;
11170 
11171   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
11172                     << TopCaseProb << "\n");
11173 
11174   // Record the MBB for the peeled switch statement.
11175   MachineFunction::iterator BBI(SwitchMBB);
11176   ++BBI;
11177   MachineBasicBlock *PeeledSwitchMBB =
11178       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
11179   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
11180 
11181   ExportFromCurrentBlock(SI.getCondition());
11182   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
11183   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
11184                           nullptr,   nullptr,      TopCaseProb.getCompl()};
11185   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
11186 
11187   Clusters.erase(PeeledCaseIt);
11188   for (CaseCluster &CC : Clusters) {
11189     LLVM_DEBUG(
11190         dbgs() << "Scale the probablity for one cluster, before scaling: "
11191                << CC.Prob << "\n");
11192     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
11193     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
11194   }
11195   PeeledCaseProb = TopCaseProb;
11196   return PeeledSwitchMBB;
11197 }
11198 
11199 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
11200   // Extract cases from the switch.
11201   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11202   CaseClusterVector Clusters;
11203   Clusters.reserve(SI.getNumCases());
11204   for (auto I : SI.cases()) {
11205     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
11206     const ConstantInt *CaseVal = I.getCaseValue();
11207     BranchProbability Prob =
11208         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
11209             : BranchProbability(1, SI.getNumCases() + 1);
11210     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
11211   }
11212 
11213   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
11214 
11215   // Cluster adjacent cases with the same destination. We do this at all
11216   // optimization levels because it's cheap to do and will make codegen faster
11217   // if there are many clusters.
11218   sortAndRangeify(Clusters);
11219 
11220   // The branch probablity of the peeled case.
11221   BranchProbability PeeledCaseProb = BranchProbability::getZero();
11222   MachineBasicBlock *PeeledSwitchMBB =
11223       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
11224 
11225   // If there is only the default destination, jump there directly.
11226   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11227   if (Clusters.empty()) {
11228     assert(PeeledSwitchMBB == SwitchMBB);
11229     SwitchMBB->addSuccessor(DefaultMBB);
11230     if (DefaultMBB != NextBlock(SwitchMBB)) {
11231       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
11232                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
11233     }
11234     return;
11235   }
11236 
11237   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
11238   SL->findBitTestClusters(Clusters, &SI);
11239 
11240   LLVM_DEBUG({
11241     dbgs() << "Case clusters: ";
11242     for (const CaseCluster &C : Clusters) {
11243       if (C.Kind == CC_JumpTable)
11244         dbgs() << "JT:";
11245       if (C.Kind == CC_BitTests)
11246         dbgs() << "BT:";
11247 
11248       C.Low->getValue().print(dbgs(), true);
11249       if (C.Low != C.High) {
11250         dbgs() << '-';
11251         C.High->getValue().print(dbgs(), true);
11252       }
11253       dbgs() << ' ';
11254     }
11255     dbgs() << '\n';
11256   });
11257 
11258   assert(!Clusters.empty());
11259   SwitchWorkList WorkList;
11260   CaseClusterIt First = Clusters.begin();
11261   CaseClusterIt Last = Clusters.end() - 1;
11262   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
11263   // Scale the branchprobability for DefaultMBB if the peel occurs and
11264   // DefaultMBB is not replaced.
11265   if (PeeledCaseProb != BranchProbability::getZero() &&
11266       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
11267     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
11268   WorkList.push_back(
11269       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
11270 
11271   while (!WorkList.empty()) {
11272     SwitchWorkListItem W = WorkList.pop_back_val();
11273     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
11274 
11275     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
11276         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
11277       // For optimized builds, lower large range as a balanced binary tree.
11278       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
11279       continue;
11280     }
11281 
11282     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
11283   }
11284 }
11285 
11286 void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
11287   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11288   auto DL = getCurSDLoc();
11289   EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11290   setValue(&I, DAG.getStepVector(DL, ResultVT));
11291 }
11292 
11293 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
11294   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11295   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11296 
11297   SDLoc DL = getCurSDLoc();
11298   SDValue V = getValue(I.getOperand(0));
11299   assert(VT == V.getValueType() && "Malformed vector.reverse!");
11300 
11301   if (VT.isScalableVector()) {
11302     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
11303     return;
11304   }
11305 
11306   // Use VECTOR_SHUFFLE for the fixed-length vector
11307   // to maintain existing behavior.
11308   SmallVector<int, 8> Mask;
11309   unsigned NumElts = VT.getVectorMinNumElements();
11310   for (unsigned i = 0; i != NumElts; ++i)
11311     Mask.push_back(NumElts - 1 - i);
11312 
11313   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
11314 }
11315 
11316 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
11317   SmallVector<EVT, 4> ValueVTs;
11318   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
11319                   ValueVTs);
11320   unsigned NumValues = ValueVTs.size();
11321   if (NumValues == 0) return;
11322 
11323   SmallVector<SDValue, 4> Values(NumValues);
11324   SDValue Op = getValue(I.getOperand(0));
11325 
11326   for (unsigned i = 0; i != NumValues; ++i)
11327     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
11328                             SDValue(Op.getNode(), Op.getResNo() + i));
11329 
11330   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
11331                            DAG.getVTList(ValueVTs), Values));
11332 }
11333 
11334 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
11335   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11336   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11337 
11338   SDLoc DL = getCurSDLoc();
11339   SDValue V1 = getValue(I.getOperand(0));
11340   SDValue V2 = getValue(I.getOperand(1));
11341   int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
11342 
11343   // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
11344   if (VT.isScalableVector()) {
11345     MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
11346     setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
11347                              DAG.getConstant(Imm, DL, IdxVT)));
11348     return;
11349   }
11350 
11351   unsigned NumElts = VT.getVectorNumElements();
11352 
11353   uint64_t Idx = (NumElts + Imm) % NumElts;
11354 
11355   // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
11356   SmallVector<int, 8> Mask;
11357   for (unsigned i = 0; i < NumElts; ++i)
11358     Mask.push_back(Idx + i);
11359   setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
11360 }
11361