1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/Loads.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/Analysis/VectorUtils.h"
31 #include "llvm/CodeGen/Analysis.h"
32 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h"
33 #include "llvm/CodeGen/CodeGenCommonISel.h"
34 #include "llvm/CodeGen/FunctionLoweringInfo.h"
35 #include "llvm/CodeGen/GCMetadata.h"
36 #include "llvm/CodeGen/ISDOpcodes.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineFrameInfo.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineInstrBuilder.h"
41 #include "llvm/CodeGen/MachineInstrBundleIterator.h"
42 #include "llvm/CodeGen/MachineMemOperand.h"
43 #include "llvm/CodeGen/MachineModuleInfo.h"
44 #include "llvm/CodeGen/MachineOperand.h"
45 #include "llvm/CodeGen/MachineRegisterInfo.h"
46 #include "llvm/CodeGen/RuntimeLibcalls.h"
47 #include "llvm/CodeGen/SelectionDAG.h"
48 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
49 #include "llvm/CodeGen/StackMaps.h"
50 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
51 #include "llvm/CodeGen/TargetFrameLowering.h"
52 #include "llvm/CodeGen/TargetInstrInfo.h"
53 #include "llvm/CodeGen/TargetOpcodes.h"
54 #include "llvm/CodeGen/TargetRegisterInfo.h"
55 #include "llvm/CodeGen/TargetSubtargetInfo.h"
56 #include "llvm/CodeGen/WinEHFuncInfo.h"
57 #include "llvm/IR/Argument.h"
58 #include "llvm/IR/Attributes.h"
59 #include "llvm/IR/BasicBlock.h"
60 #include "llvm/IR/CFG.h"
61 #include "llvm/IR/CallingConv.h"
62 #include "llvm/IR/Constant.h"
63 #include "llvm/IR/ConstantRange.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/IR/DataLayout.h"
66 #include "llvm/IR/DebugInfo.h"
67 #include "llvm/IR/DebugInfoMetadata.h"
68 #include "llvm/IR/DerivedTypes.h"
69 #include "llvm/IR/DiagnosticInfo.h"
70 #include "llvm/IR/EHPersonalities.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/IR/GetElementPtrTypeIterator.h"
73 #include "llvm/IR/InlineAsm.h"
74 #include "llvm/IR/InstrTypes.h"
75 #include "llvm/IR/Instructions.h"
76 #include "llvm/IR/IntrinsicInst.h"
77 #include "llvm/IR/Intrinsics.h"
78 #include "llvm/IR/IntrinsicsAArch64.h"
79 #include "llvm/IR/IntrinsicsAMDGPU.h"
80 #include "llvm/IR/IntrinsicsWebAssembly.h"
81 #include "llvm/IR/LLVMContext.h"
82 #include "llvm/IR/Metadata.h"
83 #include "llvm/IR/Module.h"
84 #include "llvm/IR/Operator.h"
85 #include "llvm/IR/PatternMatch.h"
86 #include "llvm/IR/Statepoint.h"
87 #include "llvm/IR/Type.h"
88 #include "llvm/IR/User.h"
89 #include "llvm/IR/Value.h"
90 #include "llvm/MC/MCContext.h"
91 #include "llvm/Support/AtomicOrdering.h"
92 #include "llvm/Support/Casting.h"
93 #include "llvm/Support/CommandLine.h"
94 #include "llvm/Support/Compiler.h"
95 #include "llvm/Support/Debug.h"
96 #include "llvm/Support/MathExtras.h"
97 #include "llvm/Support/raw_ostream.h"
98 #include "llvm/Target/TargetIntrinsicInfo.h"
99 #include "llvm/Target/TargetMachine.h"
100 #include "llvm/Target/TargetOptions.h"
101 #include "llvm/TargetParser/Triple.h"
102 #include "llvm/Transforms/Utils/Local.h"
103 #include <cstddef>
104 #include <iterator>
105 #include <limits>
106 #include <optional>
107 #include <tuple>
108 
109 using namespace llvm;
110 using namespace PatternMatch;
111 using namespace SwitchCG;
112 
113 #define DEBUG_TYPE "isel"
114 
115 /// LimitFloatPrecision - Generate low-precision inline sequences for
116 /// some float libcalls (6, 8 or 12 bits).
117 static unsigned LimitFloatPrecision;
118 
119 static cl::opt<bool>
120     InsertAssertAlign("insert-assert-align", cl::init(true),
121                       cl::desc("Insert the experimental `assertalign` node."),
122                       cl::ReallyHidden);
123 
124 static cl::opt<unsigned, true>
125     LimitFPPrecision("limit-float-precision",
126                      cl::desc("Generate low-precision inline sequences "
127                               "for some float libcalls"),
128                      cl::location(LimitFloatPrecision), cl::Hidden,
129                      cl::init(0));
130 
131 static cl::opt<unsigned> SwitchPeelThreshold(
132     "switch-peel-threshold", cl::Hidden, cl::init(66),
133     cl::desc("Set the case probability threshold for peeling the case from a "
134              "switch statement. A value greater than 100 will void this "
135              "optimization"));
136 
137 // Limit the width of DAG chains. This is important in general to prevent
138 // DAG-based analysis from blowing up. For example, alias analysis and
139 // load clustering may not complete in reasonable time. It is difficult to
140 // recognize and avoid this situation within each individual analysis, and
141 // future analyses are likely to have the same behavior. Limiting DAG width is
142 // the safe approach and will be especially important with global DAGs.
143 //
144 // MaxParallelChains default is arbitrarily high to avoid affecting
145 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
146 // sequence over this should have been converted to llvm.memcpy by the
147 // frontend. It is easy to induce this behavior with .ll code such as:
148 // %buffer = alloca [4096 x i8]
149 // %data = load [4096 x i8]* %argPtr
150 // store [4096 x i8] %data, [4096 x i8]* %buffer
151 static const unsigned MaxParallelChains = 64;
152 
153 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
154                                       const SDValue *Parts, unsigned NumParts,
155                                       MVT PartVT, EVT ValueVT, const Value *V,
156                                       std::optional<CallingConv::ID> CC);
157 
158 /// getCopyFromParts - Create a value that contains the specified legal parts
159 /// combined into the value they represent.  If the parts combine to a type
160 /// larger than ValueVT then AssertOp can be used to specify whether the extra
161 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
162 /// (ISD::AssertSext).
163 static SDValue
164 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts,
165                  unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V,
166                  std::optional<CallingConv::ID> CC = std::nullopt,
167                  std::optional<ISD::NodeType> AssertOp = std::nullopt) {
168   // Let the target assemble the parts if it wants to
169   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
170   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
171                                                    PartVT, ValueVT, CC))
172     return Val;
173 
174   if (ValueVT.isVector())
175     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
176                                   CC);
177 
178   assert(NumParts > 0 && "No parts to assemble!");
179   SDValue Val = Parts[0];
180 
181   if (NumParts > 1) {
182     // Assemble the value from multiple parts.
183     if (ValueVT.isInteger()) {
184       unsigned PartBits = PartVT.getSizeInBits();
185       unsigned ValueBits = ValueVT.getSizeInBits();
186 
187       // Assemble the power of 2 part.
188       unsigned RoundParts = llvm::bit_floor(NumParts);
189       unsigned RoundBits = PartBits * RoundParts;
190       EVT RoundVT = RoundBits == ValueBits ?
191         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
192       SDValue Lo, Hi;
193 
194       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
195 
196       if (RoundParts > 2) {
197         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
198                               PartVT, HalfVT, V);
199         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
200                               RoundParts / 2, PartVT, HalfVT, V);
201       } else {
202         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
203         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
204       }
205 
206       if (DAG.getDataLayout().isBigEndian())
207         std::swap(Lo, Hi);
208 
209       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
210 
211       if (RoundParts < NumParts) {
212         // Assemble the trailing non-power-of-2 part.
213         unsigned OddParts = NumParts - RoundParts;
214         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
215         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
216                               OddVT, V, CC);
217 
218         // Combine the round and odd parts.
219         Lo = Val;
220         if (DAG.getDataLayout().isBigEndian())
221           std::swap(Lo, Hi);
222         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
223         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
224         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
225                          DAG.getConstant(Lo.getValueSizeInBits(), DL,
226                                          TLI.getShiftAmountTy(
227                                              TotalVT, DAG.getDataLayout())));
228         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
229         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
230       }
231     } else if (PartVT.isFloatingPoint()) {
232       // FP split into multiple FP parts (for ppcf128)
233       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
234              "Unexpected split");
235       SDValue Lo, Hi;
236       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
237       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
238       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
239         std::swap(Lo, Hi);
240       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
241     } else {
242       // FP split into integer parts (soft fp)
243       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
244              !PartVT.isVector() && "Unexpected split");
245       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
246       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
247     }
248   }
249 
250   // There is now one part, held in Val.  Correct it to match ValueVT.
251   // PartEVT is the type of the register class that holds the value.
252   // ValueVT is the type of the inline asm operation.
253   EVT PartEVT = Val.getValueType();
254 
255   if (PartEVT == ValueVT)
256     return Val;
257 
258   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
259       ValueVT.bitsLT(PartEVT)) {
260     // For an FP value in an integer part, we need to truncate to the right
261     // width first.
262     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
263     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
264   }
265 
266   // Handle types that have the same size.
267   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
268     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
269 
270   // Handle types with different sizes.
271   if (PartEVT.isInteger() && ValueVT.isInteger()) {
272     if (ValueVT.bitsLT(PartEVT)) {
273       // For a truncate, see if we have any information to
274       // indicate whether the truncated bits will always be
275       // zero or sign-extension.
276       if (AssertOp)
277         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
278                           DAG.getValueType(ValueVT));
279       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
280     }
281     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
282   }
283 
284   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
285     // FP_ROUND's are always exact here.
286     if (ValueVT.bitsLT(Val.getValueType()))
287       return DAG.getNode(
288           ISD::FP_ROUND, DL, ValueVT, Val,
289           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
290 
291     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
292   }
293 
294   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
295   // then truncating.
296   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
297       ValueVT.bitsLT(PartEVT)) {
298     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
299     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
300   }
301 
302   report_fatal_error("Unknown mismatch in getCopyFromParts!");
303 }
304 
305 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
306                                               const Twine &ErrMsg) {
307   const Instruction *I = dyn_cast_or_null<Instruction>(V);
308   if (!V)
309     return Ctx.emitError(ErrMsg);
310 
311   const char *AsmError = ", possible invalid constraint for vector type";
312   if (const CallInst *CI = dyn_cast<CallInst>(I))
313     if (CI->isInlineAsm())
314       return Ctx.emitError(I, ErrMsg + AsmError);
315 
316   return Ctx.emitError(I, ErrMsg);
317 }
318 
319 /// getCopyFromPartsVector - Create a value that contains the specified legal
320 /// parts combined into the value they represent.  If the parts combine to a
321 /// type larger than ValueVT then AssertOp can be used to specify whether the
322 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
323 /// ValueVT (ISD::AssertSext).
324 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
325                                       const SDValue *Parts, unsigned NumParts,
326                                       MVT PartVT, EVT ValueVT, const Value *V,
327                                       std::optional<CallingConv::ID> CallConv) {
328   assert(ValueVT.isVector() && "Not a vector value");
329   assert(NumParts > 0 && "No parts to assemble!");
330   const bool IsABIRegCopy = CallConv.has_value();
331 
332   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
333   SDValue Val = Parts[0];
334 
335   // Handle a multi-element vector.
336   if (NumParts > 1) {
337     EVT IntermediateVT;
338     MVT RegisterVT;
339     unsigned NumIntermediates;
340     unsigned NumRegs;
341 
342     if (IsABIRegCopy) {
343       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
344           *DAG.getContext(), *CallConv, ValueVT, IntermediateVT,
345           NumIntermediates, RegisterVT);
346     } else {
347       NumRegs =
348           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
349                                      NumIntermediates, RegisterVT);
350     }
351 
352     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
353     NumParts = NumRegs; // Silence a compiler warning.
354     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
355     assert(RegisterVT.getSizeInBits() ==
356            Parts[0].getSimpleValueType().getSizeInBits() &&
357            "Part type sizes don't match!");
358 
359     // Assemble the parts into intermediate operands.
360     SmallVector<SDValue, 8> Ops(NumIntermediates);
361     if (NumIntermediates == NumParts) {
362       // If the register was not expanded, truncate or copy the value,
363       // as appropriate.
364       for (unsigned i = 0; i != NumParts; ++i)
365         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
366                                   PartVT, IntermediateVT, V, CallConv);
367     } else if (NumParts > 0) {
368       // If the intermediate type was expanded, build the intermediate
369       // operands from the parts.
370       assert(NumParts % NumIntermediates == 0 &&
371              "Must expand into a divisible number of parts!");
372       unsigned Factor = NumParts / NumIntermediates;
373       for (unsigned i = 0; i != NumIntermediates; ++i)
374         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
375                                   PartVT, IntermediateVT, V, CallConv);
376     }
377 
378     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
379     // intermediate operands.
380     EVT BuiltVectorTy =
381         IntermediateVT.isVector()
382             ? EVT::getVectorVT(
383                   *DAG.getContext(), IntermediateVT.getScalarType(),
384                   IntermediateVT.getVectorElementCount() * NumParts)
385             : EVT::getVectorVT(*DAG.getContext(),
386                                IntermediateVT.getScalarType(),
387                                NumIntermediates);
388     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
389                                                 : ISD::BUILD_VECTOR,
390                       DL, BuiltVectorTy, Ops);
391   }
392 
393   // There is now one part, held in Val.  Correct it to match ValueVT.
394   EVT PartEVT = Val.getValueType();
395 
396   if (PartEVT == ValueVT)
397     return Val;
398 
399   if (PartEVT.isVector()) {
400     // Vector/Vector bitcast.
401     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
402       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
403 
404     // If the parts vector has more elements than the value vector, then we
405     // have a vector widening case (e.g. <2 x float> -> <4 x float>).
406     // Extract the elements we want.
407     if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
408       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
409               ValueVT.getVectorElementCount().getKnownMinValue()) &&
410              (PartEVT.getVectorElementCount().isScalable() ==
411               ValueVT.getVectorElementCount().isScalable()) &&
412              "Cannot narrow, it would be a lossy transformation");
413       PartEVT =
414           EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(),
415                            ValueVT.getVectorElementCount());
416       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
417                         DAG.getVectorIdxConstant(0, DL));
418       if (PartEVT == ValueVT)
419         return Val;
420       if (PartEVT.isInteger() && ValueVT.isFloatingPoint())
421         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
422 
423       // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>).
424       if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
425         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
426     }
427 
428     // Promoted vector extract
429     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
430   }
431 
432   // Trivial bitcast if the types are the same size and the destination
433   // vector type is legal.
434   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
435       TLI.isTypeLegal(ValueVT))
436     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
437 
438   if (ValueVT.getVectorNumElements() != 1) {
439      // Certain ABIs require that vectors are passed as integers. For vectors
440      // are the same size, this is an obvious bitcast.
441      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
442        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
443      } else if (ValueVT.bitsLT(PartEVT)) {
444        const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
445        EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
446        // Drop the extra bits.
447        Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
448        return DAG.getBitcast(ValueVT, Val);
449      }
450 
451      diagnosePossiblyInvalidConstraint(
452          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
453      return DAG.getUNDEF(ValueVT);
454   }
455 
456   // Handle cases such as i8 -> <1 x i1>
457   EVT ValueSVT = ValueVT.getVectorElementType();
458   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
459     unsigned ValueSize = ValueSVT.getSizeInBits();
460     if (ValueSize == PartEVT.getSizeInBits()) {
461       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
462     } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) {
463       // It's possible a scalar floating point type gets softened to integer and
464       // then promoted to a larger integer. If PartEVT is the larger integer
465       // we need to truncate it and then bitcast to the FP type.
466       assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types");
467       EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
468       Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
469       Val = DAG.getBitcast(ValueSVT, Val);
470     } else {
471       Val = ValueVT.isFloatingPoint()
472                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
473                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
474     }
475   }
476 
477   return DAG.getBuildVector(ValueVT, DL, Val);
478 }
479 
480 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
481                                  SDValue Val, SDValue *Parts, unsigned NumParts,
482                                  MVT PartVT, const Value *V,
483                                  std::optional<CallingConv::ID> CallConv);
484 
485 /// getCopyToParts - Create a series of nodes that contain the specified value
486 /// split into legal parts.  If the parts contain more bits than Val, then, for
487 /// integers, ExtendKind can be used to specify how to generate the extra bits.
488 static void
489 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
490                unsigned NumParts, MVT PartVT, const Value *V,
491                std::optional<CallingConv::ID> CallConv = std::nullopt,
492                ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
493   // Let the target split the parts if it wants to
494   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
495   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
496                                       CallConv))
497     return;
498   EVT ValueVT = Val.getValueType();
499 
500   // Handle the vector case separately.
501   if (ValueVT.isVector())
502     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
503                                 CallConv);
504 
505   unsigned OrigNumParts = NumParts;
506   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
507          "Copying to an illegal type!");
508 
509   if (NumParts == 0)
510     return;
511 
512   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
513   EVT PartEVT = PartVT;
514   if (PartEVT == ValueVT) {
515     assert(NumParts == 1 && "No-op copy with multiple parts!");
516     Parts[0] = Val;
517     return;
518   }
519 
520   unsigned PartBits = PartVT.getSizeInBits();
521   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
522     // If the parts cover more bits than the value has, promote the value.
523     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
524       assert(NumParts == 1 && "Do not know what to promote to!");
525       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
526     } else {
527       if (ValueVT.isFloatingPoint()) {
528         // FP values need to be bitcast, then extended if they are being put
529         // into a larger container.
530         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
531         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
532       }
533       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
534              ValueVT.isInteger() &&
535              "Unknown mismatch!");
536       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
537       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
538       if (PartVT == MVT::x86mmx)
539         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
540     }
541   } else if (PartBits == ValueVT.getSizeInBits()) {
542     // Different types of the same size.
543     assert(NumParts == 1 && PartEVT != ValueVT);
544     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
545   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
546     // If the parts cover less bits than value has, truncate the value.
547     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
548            ValueVT.isInteger() &&
549            "Unknown mismatch!");
550     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
551     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
552     if (PartVT == MVT::x86mmx)
553       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
554   }
555 
556   // The value may have changed - recompute ValueVT.
557   ValueVT = Val.getValueType();
558   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
559          "Failed to tile the value with PartVT!");
560 
561   if (NumParts == 1) {
562     if (PartEVT != ValueVT) {
563       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
564                                         "scalar-to-vector conversion failed");
565       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
566     }
567 
568     Parts[0] = Val;
569     return;
570   }
571 
572   // Expand the value into multiple parts.
573   if (NumParts & (NumParts - 1)) {
574     // The number of parts is not a power of 2.  Split off and copy the tail.
575     assert(PartVT.isInteger() && ValueVT.isInteger() &&
576            "Do not know what to expand to!");
577     unsigned RoundParts = llvm::bit_floor(NumParts);
578     unsigned RoundBits = RoundParts * PartBits;
579     unsigned OddParts = NumParts - RoundParts;
580     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
581       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL));
582 
583     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
584                    CallConv);
585 
586     if (DAG.getDataLayout().isBigEndian())
587       // The odd parts were reversed by getCopyToParts - unreverse them.
588       std::reverse(Parts + RoundParts, Parts + NumParts);
589 
590     NumParts = RoundParts;
591     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
592     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
593   }
594 
595   // The number of parts is a power of 2.  Repeatedly bisect the value using
596   // EXTRACT_ELEMENT.
597   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
598                          EVT::getIntegerVT(*DAG.getContext(),
599                                            ValueVT.getSizeInBits()),
600                          Val);
601 
602   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
603     for (unsigned i = 0; i < NumParts; i += StepSize) {
604       unsigned ThisBits = StepSize * PartBits / 2;
605       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
606       SDValue &Part0 = Parts[i];
607       SDValue &Part1 = Parts[i+StepSize/2];
608 
609       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
610                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
611       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
612                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
613 
614       if (ThisBits == PartBits && ThisVT != PartVT) {
615         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
616         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
617       }
618     }
619   }
620 
621   if (DAG.getDataLayout().isBigEndian())
622     std::reverse(Parts, Parts + OrigNumParts);
623 }
624 
625 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
626                                      const SDLoc &DL, EVT PartVT) {
627   if (!PartVT.isVector())
628     return SDValue();
629 
630   EVT ValueVT = Val.getValueType();
631   EVT PartEVT = PartVT.getVectorElementType();
632   EVT ValueEVT = ValueVT.getVectorElementType();
633   ElementCount PartNumElts = PartVT.getVectorElementCount();
634   ElementCount ValueNumElts = ValueVT.getVectorElementCount();
635 
636   // We only support widening vectors with equivalent element types and
637   // fixed/scalable properties. If a target needs to widen a fixed-length type
638   // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
639   if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
640       PartNumElts.isScalable() != ValueNumElts.isScalable())
641     return SDValue();
642 
643   // Have a try for bf16 because some targets share its ABI with fp16.
644   if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) {
645     assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
646            "Cannot widen to illegal type");
647     Val = DAG.getNode(ISD::BITCAST, DL,
648                       ValueVT.changeVectorElementType(MVT::f16), Val);
649   } else if (PartEVT != ValueEVT) {
650     return SDValue();
651   }
652 
653   // Widening a scalable vector to another scalable vector is done by inserting
654   // the vector into a larger undef one.
655   if (PartNumElts.isScalable())
656     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
657                        Val, DAG.getVectorIdxConstant(0, DL));
658 
659   // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
660   // undef elements.
661   SmallVector<SDValue, 16> Ops;
662   DAG.ExtractVectorElements(Val, Ops);
663   SDValue EltUndef = DAG.getUNDEF(PartEVT);
664   Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
665 
666   // FIXME: Use CONCAT for 2x -> 4x.
667   return DAG.getBuildVector(PartVT, DL, Ops);
668 }
669 
670 /// getCopyToPartsVector - Create a series of nodes that contain the specified
671 /// value split into legal parts.
672 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
673                                  SDValue Val, SDValue *Parts, unsigned NumParts,
674                                  MVT PartVT, const Value *V,
675                                  std::optional<CallingConv::ID> CallConv) {
676   EVT ValueVT = Val.getValueType();
677   assert(ValueVT.isVector() && "Not a vector");
678   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
679   const bool IsABIRegCopy = CallConv.has_value();
680 
681   if (NumParts == 1) {
682     EVT PartEVT = PartVT;
683     if (PartEVT == ValueVT) {
684       // Nothing to do.
685     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
686       // Bitconvert vector->vector case.
687       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
688     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
689       Val = Widened;
690     } else if (PartVT.isVector() &&
691                PartEVT.getVectorElementType().bitsGE(
692                    ValueVT.getVectorElementType()) &&
693                PartEVT.getVectorElementCount() ==
694                    ValueVT.getVectorElementCount()) {
695 
696       // Promoted vector extract
697       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
698     } else if (PartEVT.isVector() &&
699                PartEVT.getVectorElementType() !=
700                    ValueVT.getVectorElementType() &&
701                TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
702                    TargetLowering::TypeWidenVector) {
703       // Combination of widening and promotion.
704       EVT WidenVT =
705           EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(),
706                            PartVT.getVectorElementCount());
707       SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
708       Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
709     } else {
710       // Don't extract an integer from a float vector. This can happen if the
711       // FP type gets softened to integer and then promoted. The promotion
712       // prevents it from being picked up by the earlier bitcast case.
713       if (ValueVT.getVectorElementCount().isScalar() &&
714           (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) {
715         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
716                           DAG.getVectorIdxConstant(0, DL));
717       } else {
718         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
719         assert(PartVT.getFixedSizeInBits() > ValueSize &&
720                "lossy conversion of vector to scalar type");
721         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
722         Val = DAG.getBitcast(IntermediateType, Val);
723         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
724       }
725     }
726 
727     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
728     Parts[0] = Val;
729     return;
730   }
731 
732   // Handle a multi-element vector.
733   EVT IntermediateVT;
734   MVT RegisterVT;
735   unsigned NumIntermediates;
736   unsigned NumRegs;
737   if (IsABIRegCopy) {
738     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
739         *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates,
740         RegisterVT);
741   } else {
742     NumRegs =
743         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
744                                    NumIntermediates, RegisterVT);
745   }
746 
747   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
748   NumParts = NumRegs; // Silence a compiler warning.
749   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
750 
751   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
752          "Mixing scalable and fixed vectors when copying in parts");
753 
754   std::optional<ElementCount> DestEltCnt;
755 
756   if (IntermediateVT.isVector())
757     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
758   else
759     DestEltCnt = ElementCount::getFixed(NumIntermediates);
760 
761   EVT BuiltVectorTy = EVT::getVectorVT(
762       *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt);
763 
764   if (ValueVT == BuiltVectorTy) {
765     // Nothing to do.
766   } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
767     // Bitconvert vector->vector case.
768     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
769   } else {
770     if (BuiltVectorTy.getVectorElementType().bitsGT(
771             ValueVT.getVectorElementType())) {
772       // Integer promotion.
773       ValueVT = EVT::getVectorVT(*DAG.getContext(),
774                                  BuiltVectorTy.getVectorElementType(),
775                                  ValueVT.getVectorElementCount());
776       Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
777     }
778 
779     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
780       Val = Widened;
781     }
782   }
783 
784   assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
785 
786   // Split the vector into intermediate operands.
787   SmallVector<SDValue, 8> Ops(NumIntermediates);
788   for (unsigned i = 0; i != NumIntermediates; ++i) {
789     if (IntermediateVT.isVector()) {
790       // This does something sensible for scalable vectors - see the
791       // definition of EXTRACT_SUBVECTOR for further details.
792       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
793       Ops[i] =
794           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
795                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
796     } else {
797       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
798                            DAG.getVectorIdxConstant(i, DL));
799     }
800   }
801 
802   // Split the intermediate operands into legal parts.
803   if (NumParts == NumIntermediates) {
804     // If the register was not expanded, promote or copy the value,
805     // as appropriate.
806     for (unsigned i = 0; i != NumParts; ++i)
807       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
808   } else if (NumParts > 0) {
809     // If the intermediate type was expanded, split each the value into
810     // legal parts.
811     assert(NumIntermediates != 0 && "division by zero");
812     assert(NumParts % NumIntermediates == 0 &&
813            "Must expand into a divisible number of parts!");
814     unsigned Factor = NumParts / NumIntermediates;
815     for (unsigned i = 0; i != NumIntermediates; ++i)
816       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
817                      CallConv);
818   }
819 }
820 
821 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
822                            EVT valuevt, std::optional<CallingConv::ID> CC)
823     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
824       RegCount(1, regs.size()), CallConv(CC) {}
825 
826 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
827                            const DataLayout &DL, unsigned Reg, Type *Ty,
828                            std::optional<CallingConv::ID> CC) {
829   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
830 
831   CallConv = CC;
832 
833   for (EVT ValueVT : ValueVTs) {
834     unsigned NumRegs =
835         isABIMangled()
836             ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT)
837             : TLI.getNumRegisters(Context, ValueVT);
838     MVT RegisterVT =
839         isABIMangled()
840             ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT)
841             : TLI.getRegisterType(Context, ValueVT);
842     for (unsigned i = 0; i != NumRegs; ++i)
843       Regs.push_back(Reg + i);
844     RegVTs.push_back(RegisterVT);
845     RegCount.push_back(NumRegs);
846     Reg += NumRegs;
847   }
848 }
849 
850 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
851                                       FunctionLoweringInfo &FuncInfo,
852                                       const SDLoc &dl, SDValue &Chain,
853                                       SDValue *Glue, const Value *V) const {
854   // A Value with type {} or [0 x %t] needs no registers.
855   if (ValueVTs.empty())
856     return SDValue();
857 
858   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
859 
860   // Assemble the legal parts into the final values.
861   SmallVector<SDValue, 4> Values(ValueVTs.size());
862   SmallVector<SDValue, 8> Parts;
863   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
864     // Copy the legal parts from the registers.
865     EVT ValueVT = ValueVTs[Value];
866     unsigned NumRegs = RegCount[Value];
867     MVT RegisterVT = isABIMangled()
868                          ? TLI.getRegisterTypeForCallingConv(
869                                *DAG.getContext(), *CallConv, RegVTs[Value])
870                          : RegVTs[Value];
871 
872     Parts.resize(NumRegs);
873     for (unsigned i = 0; i != NumRegs; ++i) {
874       SDValue P;
875       if (!Glue) {
876         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
877       } else {
878         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue);
879         *Glue = P.getValue(2);
880       }
881 
882       Chain = P.getValue(1);
883       Parts[i] = P;
884 
885       // If the source register was virtual and if we know something about it,
886       // add an assert node.
887       if (!Register::isVirtualRegister(Regs[Part + i]) ||
888           !RegisterVT.isInteger())
889         continue;
890 
891       const FunctionLoweringInfo::LiveOutInfo *LOI =
892         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
893       if (!LOI)
894         continue;
895 
896       unsigned RegSize = RegisterVT.getScalarSizeInBits();
897       unsigned NumSignBits = LOI->NumSignBits;
898       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
899 
900       if (NumZeroBits == RegSize) {
901         // The current value is a zero.
902         // Explicitly express that as it would be easier for
903         // optimizations to kick in.
904         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
905         continue;
906       }
907 
908       // FIXME: We capture more information than the dag can represent.  For
909       // now, just use the tightest assertzext/assertsext possible.
910       bool isSExt;
911       EVT FromVT(MVT::Other);
912       if (NumZeroBits) {
913         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
914         isSExt = false;
915       } else if (NumSignBits > 1) {
916         FromVT =
917             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
918         isSExt = true;
919       } else {
920         continue;
921       }
922       // Add an assertion node.
923       assert(FromVT != MVT::Other);
924       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
925                              RegisterVT, P, DAG.getValueType(FromVT));
926     }
927 
928     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
929                                      RegisterVT, ValueVT, V, CallConv);
930     Part += NumRegs;
931     Parts.clear();
932   }
933 
934   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
935 }
936 
937 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
938                                  const SDLoc &dl, SDValue &Chain, SDValue *Glue,
939                                  const Value *V,
940                                  ISD::NodeType PreferredExtendType) const {
941   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
942   ISD::NodeType ExtendKind = PreferredExtendType;
943 
944   // Get the list of the values's legal parts.
945   unsigned NumRegs = Regs.size();
946   SmallVector<SDValue, 8> Parts(NumRegs);
947   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
948     unsigned NumParts = RegCount[Value];
949 
950     MVT RegisterVT = isABIMangled()
951                          ? TLI.getRegisterTypeForCallingConv(
952                                *DAG.getContext(), *CallConv, RegVTs[Value])
953                          : RegVTs[Value];
954 
955     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
956       ExtendKind = ISD::ZERO_EXTEND;
957 
958     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
959                    NumParts, RegisterVT, V, CallConv, ExtendKind);
960     Part += NumParts;
961   }
962 
963   // Copy the parts into the registers.
964   SmallVector<SDValue, 8> Chains(NumRegs);
965   for (unsigned i = 0; i != NumRegs; ++i) {
966     SDValue Part;
967     if (!Glue) {
968       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
969     } else {
970       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue);
971       *Glue = Part.getValue(1);
972     }
973 
974     Chains[i] = Part.getValue(0);
975   }
976 
977   if (NumRegs == 1 || Glue)
978     // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is
979     // flagged to it. That is the CopyToReg nodes and the user are considered
980     // a single scheduling unit. If we create a TokenFactor and return it as
981     // chain, then the TokenFactor is both a predecessor (operand) of the
982     // user as well as a successor (the TF operands are flagged to the user).
983     // c1, f1 = CopyToReg
984     // c2, f2 = CopyToReg
985     // c3     = TokenFactor c1, c2
986     // ...
987     //        = op c3, ..., f2
988     Chain = Chains[NumRegs-1];
989   else
990     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
991 }
992 
993 void RegsForValue::AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching,
994                                         unsigned MatchingIdx, const SDLoc &dl,
995                                         SelectionDAG &DAG,
996                                         std::vector<SDValue> &Ops) const {
997   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
998 
999   InlineAsm::Flag Flag(Code, Regs.size());
1000   if (HasMatching)
1001     Flag.setMatchingOp(MatchingIdx);
1002   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
1003     // Put the register class of the virtual registers in the flag word.  That
1004     // way, later passes can recompute register class constraints for inline
1005     // assembly as well as normal instructions.
1006     // Don't do this for tied operands that can use the regclass information
1007     // from the def.
1008     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1009     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
1010     Flag.setRegClass(RC->getID());
1011   }
1012 
1013   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
1014   Ops.push_back(Res);
1015 
1016   if (Code == InlineAsm::Kind::Clobber) {
1017     // Clobbers should always have a 1:1 mapping with registers, and may
1018     // reference registers that have illegal (e.g. vector) types. Hence, we
1019     // shouldn't try to apply any sort of splitting logic to them.
1020     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
1021            "No 1:1 mapping from clobbers to regs?");
1022     Register SP = TLI.getStackPointerRegisterToSaveRestore();
1023     (void)SP;
1024     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
1025       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
1026       assert(
1027           (Regs[I] != SP ||
1028            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
1029           "If we clobbered the stack pointer, MFI should know about it.");
1030     }
1031     return;
1032   }
1033 
1034   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1035     MVT RegisterVT = RegVTs[Value];
1036     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
1037                                            RegisterVT);
1038     for (unsigned i = 0; i != NumRegs; ++i) {
1039       assert(Reg < Regs.size() && "Mismatch in # registers expected");
1040       unsigned TheReg = Regs[Reg++];
1041       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1042     }
1043   }
1044 }
1045 
1046 SmallVector<std::pair<unsigned, TypeSize>, 4>
1047 RegsForValue::getRegsAndSizes() const {
1048   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
1049   unsigned I = 0;
1050   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1051     unsigned RegCount = std::get<0>(CountAndVT);
1052     MVT RegisterVT = std::get<1>(CountAndVT);
1053     TypeSize RegisterSize = RegisterVT.getSizeInBits();
1054     for (unsigned E = I + RegCount; I != E; ++I)
1055       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1056   }
1057   return OutVec;
1058 }
1059 
1060 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1061                                AssumptionCache *ac,
1062                                const TargetLibraryInfo *li) {
1063   AA = aa;
1064   AC = ac;
1065   GFI = gfi;
1066   LibInfo = li;
1067   Context = DAG.getContext();
1068   LPadToCallSiteMap.clear();
1069   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1070   AssignmentTrackingEnabled = isAssignmentTrackingEnabled(
1071       *DAG.getMachineFunction().getFunction().getParent());
1072 }
1073 
1074 void SelectionDAGBuilder::clear() {
1075   NodeMap.clear();
1076   UnusedArgNodeMap.clear();
1077   PendingLoads.clear();
1078   PendingExports.clear();
1079   PendingConstrainedFP.clear();
1080   PendingConstrainedFPStrict.clear();
1081   CurInst = nullptr;
1082   HasTailCall = false;
1083   SDNodeOrder = LowestSDNodeOrder;
1084   StatepointLowering.clear();
1085 }
1086 
1087 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1088   DanglingDebugInfoMap.clear();
1089 }
1090 
1091 // Update DAG root to include dependencies on Pending chains.
1092 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1093   SDValue Root = DAG.getRoot();
1094 
1095   if (Pending.empty())
1096     return Root;
1097 
1098   // Add current root to PendingChains, unless we already indirectly
1099   // depend on it.
1100   if (Root.getOpcode() != ISD::EntryToken) {
1101     unsigned i = 0, e = Pending.size();
1102     for (; i != e; ++i) {
1103       assert(Pending[i].getNode()->getNumOperands() > 1);
1104       if (Pending[i].getNode()->getOperand(0) == Root)
1105         break;  // Don't add the root if we already indirectly depend on it.
1106     }
1107 
1108     if (i == e)
1109       Pending.push_back(Root);
1110   }
1111 
1112   if (Pending.size() == 1)
1113     Root = Pending[0];
1114   else
1115     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1116 
1117   DAG.setRoot(Root);
1118   Pending.clear();
1119   return Root;
1120 }
1121 
1122 SDValue SelectionDAGBuilder::getMemoryRoot() {
1123   return updateRoot(PendingLoads);
1124 }
1125 
1126 SDValue SelectionDAGBuilder::getRoot() {
1127   // Chain up all pending constrained intrinsics together with all
1128   // pending loads, by simply appending them to PendingLoads and
1129   // then calling getMemoryRoot().
1130   PendingLoads.reserve(PendingLoads.size() +
1131                        PendingConstrainedFP.size() +
1132                        PendingConstrainedFPStrict.size());
1133   PendingLoads.append(PendingConstrainedFP.begin(),
1134                       PendingConstrainedFP.end());
1135   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1136                       PendingConstrainedFPStrict.end());
1137   PendingConstrainedFP.clear();
1138   PendingConstrainedFPStrict.clear();
1139   return getMemoryRoot();
1140 }
1141 
1142 SDValue SelectionDAGBuilder::getControlRoot() {
1143   // We need to emit pending fpexcept.strict constrained intrinsics,
1144   // so append them to the PendingExports list.
1145   PendingExports.append(PendingConstrainedFPStrict.begin(),
1146                         PendingConstrainedFPStrict.end());
1147   PendingConstrainedFPStrict.clear();
1148   return updateRoot(PendingExports);
1149 }
1150 
1151 void SelectionDAGBuilder::handleDebugDeclare(Value *Address,
1152                                              DILocalVariable *Variable,
1153                                              DIExpression *Expression,
1154                                              DebugLoc DL) {
1155   assert(Variable && "Missing variable");
1156 
1157   // Check if address has undef value.
1158   if (!Address || isa<UndefValue>(Address) ||
1159       (Address->use_empty() && !isa<Argument>(Address))) {
1160     LLVM_DEBUG(
1161         dbgs()
1162         << "dbg_declare: Dropping debug info (bad/undef/unused-arg address)\n");
1163     return;
1164   }
1165 
1166   bool IsParameter = Variable->isParameter() || isa<Argument>(Address);
1167 
1168   SDValue &N = NodeMap[Address];
1169   if (!N.getNode() && isa<Argument>(Address))
1170     // Check unused arguments map.
1171     N = UnusedArgNodeMap[Address];
1172   SDDbgValue *SDV;
1173   if (N.getNode()) {
1174     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
1175       Address = BCI->getOperand(0);
1176     // Parameters are handled specially.
1177     auto *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
1178     if (IsParameter && FINode) {
1179       // Byval parameter. We have a frame index at this point.
1180       SDV = DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
1181                                       /*IsIndirect*/ true, DL, SDNodeOrder);
1182     } else if (isa<Argument>(Address)) {
1183       // Address is an argument, so try to emit its dbg value using
1184       // virtual register info from the FuncInfo.ValueMap.
1185       EmitFuncArgumentDbgValue(Address, Variable, Expression, DL,
1186                                FuncArgumentDbgValueKind::Declare, N);
1187       return;
1188     } else {
1189       SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
1190                             true, DL, SDNodeOrder);
1191     }
1192     DAG.AddDbgValue(SDV, IsParameter);
1193   } else {
1194     // If Address is an argument then try to emit its dbg value using
1195     // virtual register info from the FuncInfo.ValueMap.
1196     if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, DL,
1197                                   FuncArgumentDbgValueKind::Declare, N)) {
1198       LLVM_DEBUG(dbgs() << "dbg_declare: Dropping debug info"
1199                         << " (could not emit func-arg dbg_value)\n");
1200     }
1201   }
1202   return;
1203 }
1204 
1205 void SelectionDAGBuilder::visitDbgInfo(const Instruction &I) {
1206   // Add SDDbgValue nodes for any var locs here. Do so before updating
1207   // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1208   if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) {
1209     // Add SDDbgValue nodes for any var locs here. Do so before updating
1210     // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1211     for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I);
1212          It != End; ++It) {
1213       auto *Var = FnVarLocs->getDILocalVariable(It->VariableID);
1214       dropDanglingDebugInfo(Var, It->Expr);
1215       if (It->Values.isKillLocation(It->Expr)) {
1216         handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder);
1217         continue;
1218       }
1219       SmallVector<Value *> Values(It->Values.location_ops());
1220       if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder,
1221                             It->Values.hasArgList())) {
1222         SmallVector<Value *, 4> Vals;
1223         for (Value *V : It->Values.location_ops())
1224           Vals.push_back(V);
1225         addDanglingDebugInfo(Vals,
1226                              FnVarLocs->getDILocalVariable(It->VariableID),
1227                              It->Expr, Vals.size() > 1, It->DL, SDNodeOrder);
1228       }
1229     }
1230   }
1231 
1232   // Is there is any debug-info attached to this instruction, in the form of
1233   // DPValue non-instruction debug-info records.
1234   for (DPValue &DPV : I.getDbgValueRange()) {
1235     DILocalVariable *Variable = DPV.getVariable();
1236     DIExpression *Expression = DPV.getExpression();
1237     dropDanglingDebugInfo(Variable, Expression);
1238 
1239     if (DPV.getType() == DPValue::LocationType::Declare) {
1240       if (FuncInfo.PreprocessedDPVDeclares.contains(&DPV))
1241         continue;
1242       LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DPV
1243                         << "\n");
1244       handleDebugDeclare(DPV.getVariableLocationOp(0), Variable, Expression,
1245                          DPV.getDebugLoc());
1246       continue;
1247     }
1248 
1249     // A DPValue with no locations is a kill location.
1250     SmallVector<Value *, 4> Values(DPV.location_ops());
1251     if (Values.empty()) {
1252       handleKillDebugValue(Variable, Expression, DPV.getDebugLoc(),
1253                            SDNodeOrder);
1254       continue;
1255     }
1256 
1257     // A DPValue with an undef or absent location is also a kill location.
1258     if (llvm::any_of(Values,
1259                      [](Value *V) { return !V || isa<UndefValue>(V); })) {
1260       handleKillDebugValue(Variable, Expression, DPV.getDebugLoc(),
1261                            SDNodeOrder);
1262       continue;
1263     }
1264 
1265     bool IsVariadic = DPV.hasArgList();
1266     if (!handleDebugValue(Values, Variable, Expression, DPV.getDebugLoc(),
1267                           SDNodeOrder, IsVariadic)) {
1268       addDanglingDebugInfo(Values, Variable, Expression, IsVariadic,
1269                            DPV.getDebugLoc(), SDNodeOrder);
1270     }
1271   }
1272 }
1273 
1274 void SelectionDAGBuilder::visit(const Instruction &I) {
1275   visitDbgInfo(I);
1276 
1277   // Set up outgoing PHI node register values before emitting the terminator.
1278   if (I.isTerminator()) {
1279     HandlePHINodesInSuccessorBlocks(I.getParent());
1280   }
1281 
1282   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1283   if (!isa<DbgInfoIntrinsic>(I))
1284     ++SDNodeOrder;
1285 
1286   CurInst = &I;
1287 
1288   // Set inserted listener only if required.
1289   bool NodeInserted = false;
1290   std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener;
1291   MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections);
1292   if (PCSectionsMD) {
1293     InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>(
1294         DAG, [&](SDNode *) { NodeInserted = true; });
1295   }
1296 
1297   visit(I.getOpcode(), I);
1298 
1299   if (!I.isTerminator() && !HasTailCall &&
1300       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1301     CopyToExportRegsIfNeeded(&I);
1302 
1303   // Handle metadata.
1304   if (PCSectionsMD) {
1305     auto It = NodeMap.find(&I);
1306     if (It != NodeMap.end()) {
1307       DAG.addPCSections(It->second.getNode(), PCSectionsMD);
1308     } else if (NodeInserted) {
1309       // This should not happen; if it does, don't let it go unnoticed so we can
1310       // fix it. Relevant visit*() function is probably missing a setValue().
1311       errs() << "warning: loosing !pcsections metadata ["
1312              << I.getModule()->getName() << "]\n";
1313       LLVM_DEBUG(I.dump());
1314       assert(false);
1315     }
1316   }
1317 
1318   CurInst = nullptr;
1319 }
1320 
1321 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1322   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1323 }
1324 
1325 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1326   // Note: this doesn't use InstVisitor, because it has to work with
1327   // ConstantExpr's in addition to instructions.
1328   switch (Opcode) {
1329   default: llvm_unreachable("Unknown instruction type encountered!");
1330     // Build the switch statement using the Instruction.def file.
1331 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1332     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1333 #include "llvm/IR/Instruction.def"
1334   }
1335 }
1336 
1337 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG,
1338                                             DILocalVariable *Variable,
1339                                             DebugLoc DL, unsigned Order,
1340                                             SmallVectorImpl<Value *> &Values,
1341                                             DIExpression *Expression) {
1342   // For variadic dbg_values we will now insert an undef.
1343   // FIXME: We can potentially recover these!
1344   SmallVector<SDDbgOperand, 2> Locs;
1345   for (const Value *V : Values) {
1346     auto *Undef = UndefValue::get(V->getType());
1347     Locs.push_back(SDDbgOperand::fromConst(Undef));
1348   }
1349   SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {},
1350                                         /*IsIndirect=*/false, DL, Order,
1351                                         /*IsVariadic=*/true);
1352   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1353   return true;
1354 }
1355 
1356 void SelectionDAGBuilder::addDanglingDebugInfo(SmallVectorImpl<Value *> &Values,
1357                                                DILocalVariable *Var,
1358                                                DIExpression *Expr,
1359                                                bool IsVariadic, DebugLoc DL,
1360                                                unsigned Order) {
1361   if (IsVariadic) {
1362     handleDanglingVariadicDebugInfo(DAG, Var, DL, Order, Values, Expr);
1363     return;
1364   }
1365   // TODO: Dangling debug info will eventually either be resolved or produce
1366   // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1367   // between the original dbg.value location and its resolved DBG_VALUE,
1368   // which we should ideally fill with an extra Undef DBG_VALUE.
1369   assert(Values.size() == 1);
1370   DanglingDebugInfoMap[Values[0]].emplace_back(Var, Expr, DL, Order);
1371 }
1372 
1373 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1374                                                 const DIExpression *Expr) {
1375   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1376     DIVariable *DanglingVariable = DDI.getVariable();
1377     DIExpression *DanglingExpr = DDI.getExpression();
1378     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1379       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for "
1380                         << printDDI(nullptr, DDI) << "\n");
1381       return true;
1382     }
1383     return false;
1384   };
1385 
1386   for (auto &DDIMI : DanglingDebugInfoMap) {
1387     DanglingDebugInfoVector &DDIV = DDIMI.second;
1388 
1389     // If debug info is to be dropped, run it through final checks to see
1390     // whether it can be salvaged.
1391     for (auto &DDI : DDIV)
1392       if (isMatchingDbgValue(DDI))
1393         salvageUnresolvedDbgValue(DDIMI.first, DDI);
1394 
1395     erase_if(DDIV, isMatchingDbgValue);
1396   }
1397 }
1398 
1399 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1400 // generate the debug data structures now that we've seen its definition.
1401 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1402                                                    SDValue Val) {
1403   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1404   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1405     return;
1406 
1407   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1408   for (auto &DDI : DDIV) {
1409     DebugLoc DL = DDI.getDebugLoc();
1410     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1411     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1412     DILocalVariable *Variable = DDI.getVariable();
1413     DIExpression *Expr = DDI.getExpression();
1414     assert(Variable->isValidLocationForIntrinsic(DL) &&
1415            "Expected inlined-at fields to agree");
1416     SDDbgValue *SDV;
1417     if (Val.getNode()) {
1418       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1419       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1420       // we couldn't resolve it directly when examining the DbgValue intrinsic
1421       // in the first place we should not be more successful here). Unless we
1422       // have some test case that prove this to be correct we should avoid
1423       // calling EmitFuncArgumentDbgValue here.
1424       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL,
1425                                     FuncArgumentDbgValueKind::Value, Val)) {
1426         LLVM_DEBUG(dbgs() << "Resolve dangling debug info for "
1427                           << printDDI(V, DDI) << "\n");
1428         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1429         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1430         // inserted after the definition of Val when emitting the instructions
1431         // after ISel. An alternative could be to teach
1432         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1433         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1434                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1435                    << ValSDNodeOrder << "\n");
1436         SDV = getDbgValue(Val, Variable, Expr, DL,
1437                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1438         DAG.AddDbgValue(SDV, false);
1439       } else
1440         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for "
1441                           << printDDI(V, DDI)
1442                           << " in EmitFuncArgumentDbgValue\n");
1443     } else {
1444       LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(V, DDI)
1445                         << "\n");
1446       auto Undef = UndefValue::get(V->getType());
1447       auto SDV =
1448           DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder);
1449       DAG.AddDbgValue(SDV, false);
1450     }
1451   }
1452   DDIV.clear();
1453 }
1454 
1455 void SelectionDAGBuilder::salvageUnresolvedDbgValue(const Value *V,
1456                                                     DanglingDebugInfo &DDI) {
1457   // TODO: For the variadic implementation, instead of only checking the fail
1458   // state of `handleDebugValue`, we need know specifically which values were
1459   // invalid, so that we attempt to salvage only those values when processing
1460   // a DIArgList.
1461   const Value *OrigV = V;
1462   DILocalVariable *Var = DDI.getVariable();
1463   DIExpression *Expr = DDI.getExpression();
1464   DebugLoc DL = DDI.getDebugLoc();
1465   unsigned SDOrder = DDI.getSDNodeOrder();
1466 
1467   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1468   // that DW_OP_stack_value is desired.
1469   bool StackValue = true;
1470 
1471   // Can this Value can be encoded without any further work?
1472   if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false))
1473     return;
1474 
1475   // Attempt to salvage back through as many instructions as possible. Bail if
1476   // a non-instruction is seen, such as a constant expression or global
1477   // variable. FIXME: Further work could recover those too.
1478   while (isa<Instruction>(V)) {
1479     const Instruction &VAsInst = *cast<const Instruction>(V);
1480     // Temporary "0", awaiting real implementation.
1481     SmallVector<uint64_t, 16> Ops;
1482     SmallVector<Value *, 4> AdditionalValues;
1483     V = salvageDebugInfoImpl(const_cast<Instruction &>(VAsInst),
1484                              Expr->getNumLocationOperands(), Ops,
1485                              AdditionalValues);
1486     // If we cannot salvage any further, and haven't yet found a suitable debug
1487     // expression, bail out.
1488     if (!V)
1489       break;
1490 
1491     // TODO: If AdditionalValues isn't empty, then the salvage can only be
1492     // represented with a DBG_VALUE_LIST, so we give up. When we have support
1493     // here for variadic dbg_values, remove that condition.
1494     if (!AdditionalValues.empty())
1495       break;
1496 
1497     // New value and expr now represent this debuginfo.
1498     Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1499 
1500     // Some kind of simplification occurred: check whether the operand of the
1501     // salvaged debug expression can be encoded in this DAG.
1502     if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) {
1503       LLVM_DEBUG(
1504           dbgs() << "Salvaged debug location info for:\n  " << *Var << "\n"
1505                  << *OrigV << "\nBy stripping back to:\n  " << *V << "\n");
1506       return;
1507     }
1508   }
1509 
1510   // This was the final opportunity to salvage this debug information, and it
1511   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1512   // any earlier variable location.
1513   assert(OrigV && "V shouldn't be null");
1514   auto *Undef = UndefValue::get(OrigV->getType());
1515   auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1516   DAG.AddDbgValue(SDV, false);
1517   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  "
1518                     << printDDI(OrigV, DDI) << "\n");
1519 }
1520 
1521 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var,
1522                                                DIExpression *Expr,
1523                                                DebugLoc DbgLoc,
1524                                                unsigned Order) {
1525   Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context));
1526   DIExpression *NewExpr =
1527       const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr));
1528   handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order,
1529                    /*IsVariadic*/ false);
1530 }
1531 
1532 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1533                                            DILocalVariable *Var,
1534                                            DIExpression *Expr, DebugLoc DbgLoc,
1535                                            unsigned Order, bool IsVariadic) {
1536   if (Values.empty())
1537     return true;
1538   SmallVector<SDDbgOperand> LocationOps;
1539   SmallVector<SDNode *> Dependencies;
1540   for (const Value *V : Values) {
1541     // Constant value.
1542     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1543         isa<ConstantPointerNull>(V)) {
1544       LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1545       continue;
1546     }
1547 
1548     // Look through IntToPtr constants.
1549     if (auto *CE = dyn_cast<ConstantExpr>(V))
1550       if (CE->getOpcode() == Instruction::IntToPtr) {
1551         LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0)));
1552         continue;
1553       }
1554 
1555     // If the Value is a frame index, we can create a FrameIndex debug value
1556     // without relying on the DAG at all.
1557     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1558       auto SI = FuncInfo.StaticAllocaMap.find(AI);
1559       if (SI != FuncInfo.StaticAllocaMap.end()) {
1560         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1561         continue;
1562       }
1563     }
1564 
1565     // Do not use getValue() in here; we don't want to generate code at
1566     // this point if it hasn't been done yet.
1567     SDValue N = NodeMap[V];
1568     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1569       N = UnusedArgNodeMap[V];
1570     if (N.getNode()) {
1571       // Only emit func arg dbg value for non-variadic dbg.values for now.
1572       if (!IsVariadic &&
1573           EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc,
1574                                    FuncArgumentDbgValueKind::Value, N))
1575         return true;
1576       if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1577         // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1578         // describe stack slot locations.
1579         //
1580         // Consider "int x = 0; int *px = &x;". There are two kinds of
1581         // interesting debug values here after optimization:
1582         //
1583         //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
1584         //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1585         //
1586         // Both describe the direct values of their associated variables.
1587         Dependencies.push_back(N.getNode());
1588         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1589         continue;
1590       }
1591       LocationOps.emplace_back(
1592           SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1593       continue;
1594     }
1595 
1596     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1597     // Special rules apply for the first dbg.values of parameter variables in a
1598     // function. Identify them by the fact they reference Argument Values, that
1599     // they're parameters, and they are parameters of the current function. We
1600     // need to let them dangle until they get an SDNode.
1601     bool IsParamOfFunc =
1602         isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt();
1603     if (IsParamOfFunc)
1604       return false;
1605 
1606     // The value is not used in this block yet (or it would have an SDNode).
1607     // We still want the value to appear for the user if possible -- if it has
1608     // an associated VReg, we can refer to that instead.
1609     auto VMI = FuncInfo.ValueMap.find(V);
1610     if (VMI != FuncInfo.ValueMap.end()) {
1611       unsigned Reg = VMI->second;
1612       // If this is a PHI node, it may be split up into several MI PHI nodes
1613       // (in FunctionLoweringInfo::set).
1614       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1615                        V->getType(), std::nullopt);
1616       if (RFV.occupiesMultipleRegs()) {
1617         // FIXME: We could potentially support variadic dbg_values here.
1618         if (IsVariadic)
1619           return false;
1620         unsigned Offset = 0;
1621         unsigned BitsToDescribe = 0;
1622         if (auto VarSize = Var->getSizeInBits())
1623           BitsToDescribe = *VarSize;
1624         if (auto Fragment = Expr->getFragmentInfo())
1625           BitsToDescribe = Fragment->SizeInBits;
1626         for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
1627           // Bail out if all bits are described already.
1628           if (Offset >= BitsToDescribe)
1629             break;
1630           // TODO: handle scalable vectors.
1631           unsigned RegisterSize = RegAndSize.second;
1632           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1633                                       ? BitsToDescribe - Offset
1634                                       : RegisterSize;
1635           auto FragmentExpr = DIExpression::createFragmentExpression(
1636               Expr, Offset, FragmentSize);
1637           if (!FragmentExpr)
1638             continue;
1639           SDDbgValue *SDV = DAG.getVRegDbgValue(
1640               Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, SDNodeOrder);
1641           DAG.AddDbgValue(SDV, false);
1642           Offset += RegisterSize;
1643         }
1644         return true;
1645       }
1646       // We can use simple vreg locations for variadic dbg_values as well.
1647       LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1648       continue;
1649     }
1650     // We failed to create a SDDbgOperand for V.
1651     return false;
1652   }
1653 
1654   // We have created a SDDbgOperand for each Value in Values.
1655   // Should use Order instead of SDNodeOrder?
1656   assert(!LocationOps.empty());
1657   SDDbgValue *SDV = DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1658                                         /*IsIndirect=*/false, DbgLoc,
1659                                         SDNodeOrder, IsVariadic);
1660   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1661   return true;
1662 }
1663 
1664 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1665   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1666   for (auto &Pair : DanglingDebugInfoMap)
1667     for (auto &DDI : Pair.second)
1668       salvageUnresolvedDbgValue(const_cast<Value *>(Pair.first), DDI);
1669   clearDanglingDebugInfo();
1670 }
1671 
1672 /// getCopyFromRegs - If there was virtual register allocated for the value V
1673 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1674 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1675   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1676   SDValue Result;
1677 
1678   if (It != FuncInfo.ValueMap.end()) {
1679     Register InReg = It->second;
1680 
1681     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1682                      DAG.getDataLayout(), InReg, Ty,
1683                      std::nullopt); // This is not an ABI copy.
1684     SDValue Chain = DAG.getEntryNode();
1685     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1686                                  V);
1687     resolveDanglingDebugInfo(V, Result);
1688   }
1689 
1690   return Result;
1691 }
1692 
1693 /// getValue - Return an SDValue for the given Value.
1694 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1695   // If we already have an SDValue for this value, use it. It's important
1696   // to do this first, so that we don't create a CopyFromReg if we already
1697   // have a regular SDValue.
1698   SDValue &N = NodeMap[V];
1699   if (N.getNode()) return N;
1700 
1701   // If there's a virtual register allocated and initialized for this
1702   // value, use it.
1703   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1704     return copyFromReg;
1705 
1706   // Otherwise create a new SDValue and remember it.
1707   SDValue Val = getValueImpl(V);
1708   NodeMap[V] = Val;
1709   resolveDanglingDebugInfo(V, Val);
1710   return Val;
1711 }
1712 
1713 /// getNonRegisterValue - Return an SDValue for the given Value, but
1714 /// don't look in FuncInfo.ValueMap for a virtual register.
1715 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1716   // If we already have an SDValue for this value, use it.
1717   SDValue &N = NodeMap[V];
1718   if (N.getNode()) {
1719     if (isIntOrFPConstant(N)) {
1720       // Remove the debug location from the node as the node is about to be used
1721       // in a location which may differ from the original debug location.  This
1722       // is relevant to Constant and ConstantFP nodes because they can appear
1723       // as constant expressions inside PHI nodes.
1724       N->setDebugLoc(DebugLoc());
1725     }
1726     return N;
1727   }
1728 
1729   // Otherwise create a new SDValue and remember it.
1730   SDValue Val = getValueImpl(V);
1731   NodeMap[V] = Val;
1732   resolveDanglingDebugInfo(V, Val);
1733   return Val;
1734 }
1735 
1736 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1737 /// Create an SDValue for the given value.
1738 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1739   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1740 
1741   if (const Constant *C = dyn_cast<Constant>(V)) {
1742     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1743 
1744     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1745       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1746 
1747     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1748       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1749 
1750     if (isa<ConstantPointerNull>(C)) {
1751       unsigned AS = V->getType()->getPointerAddressSpace();
1752       return DAG.getConstant(0, getCurSDLoc(),
1753                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1754     }
1755 
1756     if (match(C, m_VScale()))
1757       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1758 
1759     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1760       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1761 
1762     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1763       return DAG.getUNDEF(VT);
1764 
1765     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1766       visit(CE->getOpcode(), *CE);
1767       SDValue N1 = NodeMap[V];
1768       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1769       return N1;
1770     }
1771 
1772     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1773       SmallVector<SDValue, 4> Constants;
1774       for (const Use &U : C->operands()) {
1775         SDNode *Val = getValue(U).getNode();
1776         // If the operand is an empty aggregate, there are no values.
1777         if (!Val) continue;
1778         // Add each leaf value from the operand to the Constants list
1779         // to form a flattened list of all the values.
1780         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1781           Constants.push_back(SDValue(Val, i));
1782       }
1783 
1784       return DAG.getMergeValues(Constants, getCurSDLoc());
1785     }
1786 
1787     if (const ConstantDataSequential *CDS =
1788           dyn_cast<ConstantDataSequential>(C)) {
1789       SmallVector<SDValue, 4> Ops;
1790       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1791         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1792         // Add each leaf value from the operand to the Constants list
1793         // to form a flattened list of all the values.
1794         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1795           Ops.push_back(SDValue(Val, i));
1796       }
1797 
1798       if (isa<ArrayType>(CDS->getType()))
1799         return DAG.getMergeValues(Ops, getCurSDLoc());
1800       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1801     }
1802 
1803     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1804       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1805              "Unknown struct or array constant!");
1806 
1807       SmallVector<EVT, 4> ValueVTs;
1808       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1809       unsigned NumElts = ValueVTs.size();
1810       if (NumElts == 0)
1811         return SDValue(); // empty struct
1812       SmallVector<SDValue, 4> Constants(NumElts);
1813       for (unsigned i = 0; i != NumElts; ++i) {
1814         EVT EltVT = ValueVTs[i];
1815         if (isa<UndefValue>(C))
1816           Constants[i] = DAG.getUNDEF(EltVT);
1817         else if (EltVT.isFloatingPoint())
1818           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1819         else
1820           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1821       }
1822 
1823       return DAG.getMergeValues(Constants, getCurSDLoc());
1824     }
1825 
1826     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1827       return DAG.getBlockAddress(BA, VT);
1828 
1829     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1830       return getValue(Equiv->getGlobalValue());
1831 
1832     if (const auto *NC = dyn_cast<NoCFIValue>(C))
1833       return getValue(NC->getGlobalValue());
1834 
1835     if (VT == MVT::aarch64svcount) {
1836       assert(C->isNullValue() && "Can only zero this target type!");
1837       return DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT,
1838                          DAG.getConstant(0, getCurSDLoc(), MVT::nxv16i1));
1839     }
1840 
1841     VectorType *VecTy = cast<VectorType>(V->getType());
1842 
1843     // Now that we know the number and type of the elements, get that number of
1844     // elements into the Ops array based on what kind of constant it is.
1845     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1846       SmallVector<SDValue, 16> Ops;
1847       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1848       for (unsigned i = 0; i != NumElements; ++i)
1849         Ops.push_back(getValue(CV->getOperand(i)));
1850 
1851       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1852     }
1853 
1854     if (isa<ConstantAggregateZero>(C)) {
1855       EVT EltVT =
1856           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1857 
1858       SDValue Op;
1859       if (EltVT.isFloatingPoint())
1860         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1861       else
1862         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1863 
1864       return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op);
1865     }
1866 
1867     llvm_unreachable("Unknown vector constant");
1868   }
1869 
1870   // If this is a static alloca, generate it as the frameindex instead of
1871   // computation.
1872   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1873     DenseMap<const AllocaInst*, int>::iterator SI =
1874       FuncInfo.StaticAllocaMap.find(AI);
1875     if (SI != FuncInfo.StaticAllocaMap.end())
1876       return DAG.getFrameIndex(
1877           SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType()));
1878   }
1879 
1880   // If this is an instruction which fast-isel has deferred, select it now.
1881   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1882     Register InReg = FuncInfo.InitializeRegForValue(Inst);
1883 
1884     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1885                      Inst->getType(), std::nullopt);
1886     SDValue Chain = DAG.getEntryNode();
1887     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1888   }
1889 
1890   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V))
1891     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1892 
1893   if (const auto *BB = dyn_cast<BasicBlock>(V))
1894     return DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
1895 
1896   llvm_unreachable("Can't get register for value!");
1897 }
1898 
1899 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1900   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1901   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1902   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1903   bool IsSEH = isAsynchronousEHPersonality(Pers);
1904   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1905   if (!IsSEH)
1906     CatchPadMBB->setIsEHScopeEntry();
1907   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1908   if (IsMSVCCXX || IsCoreCLR)
1909     CatchPadMBB->setIsEHFuncletEntry();
1910 }
1911 
1912 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1913   // Update machine-CFG edge.
1914   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1915   FuncInfo.MBB->addSuccessor(TargetMBB);
1916   TargetMBB->setIsEHCatchretTarget(true);
1917   DAG.getMachineFunction().setHasEHCatchret(true);
1918 
1919   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1920   bool IsSEH = isAsynchronousEHPersonality(Pers);
1921   if (IsSEH) {
1922     // If this is not a fall-through branch or optimizations are switched off,
1923     // emit the branch.
1924     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1925         TM.getOptLevel() == CodeGenOptLevel::None)
1926       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1927                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1928     return;
1929   }
1930 
1931   // Figure out the funclet membership for the catchret's successor.
1932   // This will be used by the FuncletLayout pass to determine how to order the
1933   // BB's.
1934   // A 'catchret' returns to the outer scope's color.
1935   Value *ParentPad = I.getCatchSwitchParentPad();
1936   const BasicBlock *SuccessorColor;
1937   if (isa<ConstantTokenNone>(ParentPad))
1938     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1939   else
1940     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1941   assert(SuccessorColor && "No parent funclet for catchret!");
1942   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1943   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1944 
1945   // Create the terminator node.
1946   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1947                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1948                             DAG.getBasicBlock(SuccessorColorMBB));
1949   DAG.setRoot(Ret);
1950 }
1951 
1952 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1953   // Don't emit any special code for the cleanuppad instruction. It just marks
1954   // the start of an EH scope/funclet.
1955   FuncInfo.MBB->setIsEHScopeEntry();
1956   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1957   if (Pers != EHPersonality::Wasm_CXX) {
1958     FuncInfo.MBB->setIsEHFuncletEntry();
1959     FuncInfo.MBB->setIsCleanupFuncletEntry();
1960   }
1961 }
1962 
1963 // In wasm EH, even though a catchpad may not catch an exception if a tag does
1964 // not match, it is OK to add only the first unwind destination catchpad to the
1965 // successors, because there will be at least one invoke instruction within the
1966 // catch scope that points to the next unwind destination, if one exists, so
1967 // CFGSort cannot mess up with BB sorting order.
1968 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
1969 // call within them, and catchpads only consisting of 'catch (...)' have a
1970 // '__cxa_end_catch' call within them, both of which generate invokes in case
1971 // the next unwind destination exists, i.e., the next unwind destination is not
1972 // the caller.)
1973 //
1974 // Having at most one EH pad successor is also simpler and helps later
1975 // transformations.
1976 //
1977 // For example,
1978 // current:
1979 //   invoke void @foo to ... unwind label %catch.dispatch
1980 // catch.dispatch:
1981 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
1982 // catch.start:
1983 //   ...
1984 //   ... in this BB or some other child BB dominated by this BB there will be an
1985 //   invoke that points to 'next' BB as an unwind destination
1986 //
1987 // next: ; We don't need to add this to 'current' BB's successor
1988 //   ...
1989 static void findWasmUnwindDestinations(
1990     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1991     BranchProbability Prob,
1992     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1993         &UnwindDests) {
1994   while (EHPadBB) {
1995     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1996     if (isa<CleanupPadInst>(Pad)) {
1997       // Stop on cleanup pads.
1998       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1999       UnwindDests.back().first->setIsEHScopeEntry();
2000       break;
2001     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2002       // Add the catchpad handlers to the possible destinations. We don't
2003       // continue to the unwind destination of the catchswitch for wasm.
2004       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2005         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
2006         UnwindDests.back().first->setIsEHScopeEntry();
2007       }
2008       break;
2009     } else {
2010       continue;
2011     }
2012   }
2013 }
2014 
2015 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
2016 /// many places it could ultimately go. In the IR, we have a single unwind
2017 /// destination, but in the machine CFG, we enumerate all the possible blocks.
2018 /// This function skips over imaginary basic blocks that hold catchswitch
2019 /// instructions, and finds all the "real" machine
2020 /// basic block destinations. As those destinations may not be successors of
2021 /// EHPadBB, here we also calculate the edge probability to those destinations.
2022 /// The passed-in Prob is the edge probability to EHPadBB.
2023 static void findUnwindDestinations(
2024     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
2025     BranchProbability Prob,
2026     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2027         &UnwindDests) {
2028   EHPersonality Personality =
2029     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
2030   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
2031   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
2032   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
2033   bool IsSEH = isAsynchronousEHPersonality(Personality);
2034 
2035   if (IsWasmCXX) {
2036     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
2037     assert(UnwindDests.size() <= 1 &&
2038            "There should be at most one unwind destination for wasm");
2039     return;
2040   }
2041 
2042   while (EHPadBB) {
2043     const Instruction *Pad = EHPadBB->getFirstNonPHI();
2044     BasicBlock *NewEHPadBB = nullptr;
2045     if (isa<LandingPadInst>(Pad)) {
2046       // Stop on landingpads. They are not funclets.
2047       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
2048       break;
2049     } else if (isa<CleanupPadInst>(Pad)) {
2050       // Stop on cleanup pads. Cleanups are always funclet entries for all known
2051       // personalities.
2052       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
2053       UnwindDests.back().first->setIsEHScopeEntry();
2054       UnwindDests.back().first->setIsEHFuncletEntry();
2055       break;
2056     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2057       // Add the catchpad handlers to the possible destinations.
2058       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2059         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
2060         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
2061         if (IsMSVCCXX || IsCoreCLR)
2062           UnwindDests.back().first->setIsEHFuncletEntry();
2063         if (!IsSEH)
2064           UnwindDests.back().first->setIsEHScopeEntry();
2065       }
2066       NewEHPadBB = CatchSwitch->getUnwindDest();
2067     } else {
2068       continue;
2069     }
2070 
2071     BranchProbabilityInfo *BPI = FuncInfo.BPI;
2072     if (BPI && NewEHPadBB)
2073       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
2074     EHPadBB = NewEHPadBB;
2075   }
2076 }
2077 
2078 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
2079   // Update successor info.
2080   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2081   auto UnwindDest = I.getUnwindDest();
2082   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2083   BranchProbability UnwindDestProb =
2084       (BPI && UnwindDest)
2085           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
2086           : BranchProbability::getZero();
2087   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
2088   for (auto &UnwindDest : UnwindDests) {
2089     UnwindDest.first->setIsEHPad();
2090     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
2091   }
2092   FuncInfo.MBB->normalizeSuccProbs();
2093 
2094   // Create the terminator node.
2095   SDValue Ret =
2096       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
2097   DAG.setRoot(Ret);
2098 }
2099 
2100 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
2101   report_fatal_error("visitCatchSwitch not yet implemented!");
2102 }
2103 
2104 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
2105   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2106   auto &DL = DAG.getDataLayout();
2107   SDValue Chain = getControlRoot();
2108   SmallVector<ISD::OutputArg, 8> Outs;
2109   SmallVector<SDValue, 8> OutVals;
2110 
2111   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
2112   // lower
2113   //
2114   //   %val = call <ty> @llvm.experimental.deoptimize()
2115   //   ret <ty> %val
2116   //
2117   // differently.
2118   if (I.getParent()->getTerminatingDeoptimizeCall()) {
2119     LowerDeoptimizingReturn();
2120     return;
2121   }
2122 
2123   if (!FuncInfo.CanLowerReturn) {
2124     unsigned DemoteReg = FuncInfo.DemoteRegister;
2125     const Function *F = I.getParent()->getParent();
2126 
2127     // Emit a store of the return value through the virtual register.
2128     // Leave Outs empty so that LowerReturn won't try to load return
2129     // registers the usual way.
2130     SmallVector<EVT, 1> PtrValueVTs;
2131     ComputeValueVTs(TLI, DL,
2132                     PointerType::get(F->getContext(),
2133                                      DAG.getDataLayout().getAllocaAddrSpace()),
2134                     PtrValueVTs);
2135 
2136     SDValue RetPtr =
2137         DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]);
2138     SDValue RetOp = getValue(I.getOperand(0));
2139 
2140     SmallVector<EVT, 4> ValueVTs, MemVTs;
2141     SmallVector<uint64_t, 4> Offsets;
2142     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
2143                     &Offsets, 0);
2144     unsigned NumValues = ValueVTs.size();
2145 
2146     SmallVector<SDValue, 4> Chains(NumValues);
2147     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
2148     for (unsigned i = 0; i != NumValues; ++i) {
2149       // An aggregate return value cannot wrap around the address space, so
2150       // offsets to its parts don't wrap either.
2151       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
2152                                            TypeSize::getFixed(Offsets[i]));
2153 
2154       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
2155       if (MemVTs[i] != ValueVTs[i])
2156         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
2157       Chains[i] = DAG.getStore(
2158           Chain, getCurSDLoc(), Val,
2159           // FIXME: better loc info would be nice.
2160           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
2161           commonAlignment(BaseAlign, Offsets[i]));
2162     }
2163 
2164     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
2165                         MVT::Other, Chains);
2166   } else if (I.getNumOperands() != 0) {
2167     SmallVector<EVT, 4> ValueVTs;
2168     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
2169     unsigned NumValues = ValueVTs.size();
2170     if (NumValues) {
2171       SDValue RetOp = getValue(I.getOperand(0));
2172 
2173       const Function *F = I.getParent()->getParent();
2174 
2175       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
2176           I.getOperand(0)->getType(), F->getCallingConv(),
2177           /*IsVarArg*/ false, DL);
2178 
2179       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
2180       if (F->getAttributes().hasRetAttr(Attribute::SExt))
2181         ExtendKind = ISD::SIGN_EXTEND;
2182       else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
2183         ExtendKind = ISD::ZERO_EXTEND;
2184 
2185       LLVMContext &Context = F->getContext();
2186       bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
2187 
2188       for (unsigned j = 0; j != NumValues; ++j) {
2189         EVT VT = ValueVTs[j];
2190 
2191         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
2192           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
2193 
2194         CallingConv::ID CC = F->getCallingConv();
2195 
2196         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
2197         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
2198         SmallVector<SDValue, 4> Parts(NumParts);
2199         getCopyToParts(DAG, getCurSDLoc(),
2200                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
2201                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
2202 
2203         // 'inreg' on function refers to return value
2204         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2205         if (RetInReg)
2206           Flags.setInReg();
2207 
2208         if (I.getOperand(0)->getType()->isPointerTy()) {
2209           Flags.setPointer();
2210           Flags.setPointerAddrSpace(
2211               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
2212         }
2213 
2214         if (NeedsRegBlock) {
2215           Flags.setInConsecutiveRegs();
2216           if (j == NumValues - 1)
2217             Flags.setInConsecutiveRegsLast();
2218         }
2219 
2220         // Propagate extension type if any
2221         if (ExtendKind == ISD::SIGN_EXTEND)
2222           Flags.setSExt();
2223         else if (ExtendKind == ISD::ZERO_EXTEND)
2224           Flags.setZExt();
2225 
2226         for (unsigned i = 0; i < NumParts; ++i) {
2227           Outs.push_back(ISD::OutputArg(Flags,
2228                                         Parts[i].getValueType().getSimpleVT(),
2229                                         VT, /*isfixed=*/true, 0, 0));
2230           OutVals.push_back(Parts[i]);
2231         }
2232       }
2233     }
2234   }
2235 
2236   // Push in swifterror virtual register as the last element of Outs. This makes
2237   // sure swifterror virtual register will be returned in the swifterror
2238   // physical register.
2239   const Function *F = I.getParent()->getParent();
2240   if (TLI.supportSwiftError() &&
2241       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2242     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2243     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2244     Flags.setSwiftError();
2245     Outs.push_back(ISD::OutputArg(
2246         Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)),
2247         /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0));
2248     // Create SDNode for the swifterror virtual register.
2249     OutVals.push_back(
2250         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2251                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2252                         EVT(TLI.getPointerTy(DL))));
2253   }
2254 
2255   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2256   CallingConv::ID CallConv =
2257     DAG.getMachineFunction().getFunction().getCallingConv();
2258   Chain = DAG.getTargetLoweringInfo().LowerReturn(
2259       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2260 
2261   // Verify that the target's LowerReturn behaved as expected.
2262   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2263          "LowerReturn didn't return a valid chain!");
2264 
2265   // Update the DAG with the new chain value resulting from return lowering.
2266   DAG.setRoot(Chain);
2267 }
2268 
2269 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2270 /// created for it, emit nodes to copy the value into the virtual
2271 /// registers.
2272 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2273   // Skip empty types
2274   if (V->getType()->isEmptyTy())
2275     return;
2276 
2277   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2278   if (VMI != FuncInfo.ValueMap.end()) {
2279     assert((!V->use_empty() || isa<CallBrInst>(V)) &&
2280            "Unused value assigned virtual registers!");
2281     CopyValueToVirtualRegister(V, VMI->second);
2282   }
2283 }
2284 
2285 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2286 /// the current basic block, add it to ValueMap now so that we'll get a
2287 /// CopyTo/FromReg.
2288 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2289   // No need to export constants.
2290   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2291 
2292   // Already exported?
2293   if (FuncInfo.isExportedInst(V)) return;
2294 
2295   Register Reg = FuncInfo.InitializeRegForValue(V);
2296   CopyValueToVirtualRegister(V, Reg);
2297 }
2298 
2299 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2300                                                      const BasicBlock *FromBB) {
2301   // The operands of the setcc have to be in this block.  We don't know
2302   // how to export them from some other block.
2303   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2304     // Can export from current BB.
2305     if (VI->getParent() == FromBB)
2306       return true;
2307 
2308     // Is already exported, noop.
2309     return FuncInfo.isExportedInst(V);
2310   }
2311 
2312   // If this is an argument, we can export it if the BB is the entry block or
2313   // if it is already exported.
2314   if (isa<Argument>(V)) {
2315     if (FromBB->isEntryBlock())
2316       return true;
2317 
2318     // Otherwise, can only export this if it is already exported.
2319     return FuncInfo.isExportedInst(V);
2320   }
2321 
2322   // Otherwise, constants can always be exported.
2323   return true;
2324 }
2325 
2326 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2327 BranchProbability
2328 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2329                                         const MachineBasicBlock *Dst) const {
2330   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2331   const BasicBlock *SrcBB = Src->getBasicBlock();
2332   const BasicBlock *DstBB = Dst->getBasicBlock();
2333   if (!BPI) {
2334     // If BPI is not available, set the default probability as 1 / N, where N is
2335     // the number of successors.
2336     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2337     return BranchProbability(1, SuccSize);
2338   }
2339   return BPI->getEdgeProbability(SrcBB, DstBB);
2340 }
2341 
2342 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2343                                                MachineBasicBlock *Dst,
2344                                                BranchProbability Prob) {
2345   if (!FuncInfo.BPI)
2346     Src->addSuccessorWithoutProb(Dst);
2347   else {
2348     if (Prob.isUnknown())
2349       Prob = getEdgeProbability(Src, Dst);
2350     Src->addSuccessor(Dst, Prob);
2351   }
2352 }
2353 
2354 static bool InBlock(const Value *V, const BasicBlock *BB) {
2355   if (const Instruction *I = dyn_cast<Instruction>(V))
2356     return I->getParent() == BB;
2357   return true;
2358 }
2359 
2360 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2361 /// This function emits a branch and is used at the leaves of an OR or an
2362 /// AND operator tree.
2363 void
2364 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2365                                                   MachineBasicBlock *TBB,
2366                                                   MachineBasicBlock *FBB,
2367                                                   MachineBasicBlock *CurBB,
2368                                                   MachineBasicBlock *SwitchBB,
2369                                                   BranchProbability TProb,
2370                                                   BranchProbability FProb,
2371                                                   bool InvertCond) {
2372   const BasicBlock *BB = CurBB->getBasicBlock();
2373 
2374   // If the leaf of the tree is a comparison, merge the condition into
2375   // the caseblock.
2376   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2377     // The operands of the cmp have to be in this block.  We don't know
2378     // how to export them from some other block.  If this is the first block
2379     // of the sequence, no exporting is needed.
2380     if (CurBB == SwitchBB ||
2381         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2382          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2383       ISD::CondCode Condition;
2384       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2385         ICmpInst::Predicate Pred =
2386             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2387         Condition = getICmpCondCode(Pred);
2388       } else {
2389         const FCmpInst *FC = cast<FCmpInst>(Cond);
2390         FCmpInst::Predicate Pred =
2391             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2392         Condition = getFCmpCondCode(Pred);
2393         if (TM.Options.NoNaNsFPMath)
2394           Condition = getFCmpCodeWithoutNaN(Condition);
2395       }
2396 
2397       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2398                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2399       SL->SwitchCases.push_back(CB);
2400       return;
2401     }
2402   }
2403 
2404   // Create a CaseBlock record representing this branch.
2405   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2406   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2407                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2408   SL->SwitchCases.push_back(CB);
2409 }
2410 
2411 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2412                                                MachineBasicBlock *TBB,
2413                                                MachineBasicBlock *FBB,
2414                                                MachineBasicBlock *CurBB,
2415                                                MachineBasicBlock *SwitchBB,
2416                                                Instruction::BinaryOps Opc,
2417                                                BranchProbability TProb,
2418                                                BranchProbability FProb,
2419                                                bool InvertCond) {
2420   // Skip over not part of the tree and remember to invert op and operands at
2421   // next level.
2422   Value *NotCond;
2423   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2424       InBlock(NotCond, CurBB->getBasicBlock())) {
2425     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2426                          !InvertCond);
2427     return;
2428   }
2429 
2430   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2431   const Value *BOpOp0, *BOpOp1;
2432   // Compute the effective opcode for Cond, taking into account whether it needs
2433   // to be inverted, e.g.
2434   //   and (not (or A, B)), C
2435   // gets lowered as
2436   //   and (and (not A, not B), C)
2437   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2438   if (BOp) {
2439     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2440                ? Instruction::And
2441                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2442                       ? Instruction::Or
2443                       : (Instruction::BinaryOps)0);
2444     if (InvertCond) {
2445       if (BOpc == Instruction::And)
2446         BOpc = Instruction::Or;
2447       else if (BOpc == Instruction::Or)
2448         BOpc = Instruction::And;
2449     }
2450   }
2451 
2452   // If this node is not part of the or/and tree, emit it as a branch.
2453   // Note that all nodes in the tree should have same opcode.
2454   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2455   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2456       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2457       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2458     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2459                                  TProb, FProb, InvertCond);
2460     return;
2461   }
2462 
2463   //  Create TmpBB after CurBB.
2464   MachineFunction::iterator BBI(CurBB);
2465   MachineFunction &MF = DAG.getMachineFunction();
2466   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2467   CurBB->getParent()->insert(++BBI, TmpBB);
2468 
2469   if (Opc == Instruction::Or) {
2470     // Codegen X | Y as:
2471     // BB1:
2472     //   jmp_if_X TBB
2473     //   jmp TmpBB
2474     // TmpBB:
2475     //   jmp_if_Y TBB
2476     //   jmp FBB
2477     //
2478 
2479     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2480     // The requirement is that
2481     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2482     //     = TrueProb for original BB.
2483     // Assuming the original probabilities are A and B, one choice is to set
2484     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2485     // A/(1+B) and 2B/(1+B). This choice assumes that
2486     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2487     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2488     // TmpBB, but the math is more complicated.
2489 
2490     auto NewTrueProb = TProb / 2;
2491     auto NewFalseProb = TProb / 2 + FProb;
2492     // Emit the LHS condition.
2493     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2494                          NewFalseProb, InvertCond);
2495 
2496     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2497     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2498     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2499     // Emit the RHS condition into TmpBB.
2500     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2501                          Probs[1], InvertCond);
2502   } else {
2503     assert(Opc == Instruction::And && "Unknown merge op!");
2504     // Codegen X & Y as:
2505     // BB1:
2506     //   jmp_if_X TmpBB
2507     //   jmp FBB
2508     // TmpBB:
2509     //   jmp_if_Y TBB
2510     //   jmp FBB
2511     //
2512     //  This requires creation of TmpBB after CurBB.
2513 
2514     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2515     // The requirement is that
2516     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2517     //     = FalseProb for original BB.
2518     // Assuming the original probabilities are A and B, one choice is to set
2519     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2520     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2521     // TrueProb for BB1 * FalseProb for TmpBB.
2522 
2523     auto NewTrueProb = TProb + FProb / 2;
2524     auto NewFalseProb = FProb / 2;
2525     // Emit the LHS condition.
2526     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2527                          NewFalseProb, InvertCond);
2528 
2529     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2530     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2531     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2532     // Emit the RHS condition into TmpBB.
2533     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2534                          Probs[1], InvertCond);
2535   }
2536 }
2537 
2538 /// If the set of cases should be emitted as a series of branches, return true.
2539 /// If we should emit this as a bunch of and/or'd together conditions, return
2540 /// false.
2541 bool
2542 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2543   if (Cases.size() != 2) return true;
2544 
2545   // If this is two comparisons of the same values or'd or and'd together, they
2546   // will get folded into a single comparison, so don't emit two blocks.
2547   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2548        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2549       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2550        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2551     return false;
2552   }
2553 
2554   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2555   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2556   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2557       Cases[0].CC == Cases[1].CC &&
2558       isa<Constant>(Cases[0].CmpRHS) &&
2559       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2560     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2561       return false;
2562     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2563       return false;
2564   }
2565 
2566   return true;
2567 }
2568 
2569 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2570   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2571 
2572   // Update machine-CFG edges.
2573   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2574 
2575   if (I.isUnconditional()) {
2576     // Update machine-CFG edges.
2577     BrMBB->addSuccessor(Succ0MBB);
2578 
2579     // If this is not a fall-through branch or optimizations are switched off,
2580     // emit the branch.
2581     if (Succ0MBB != NextBlock(BrMBB) ||
2582         TM.getOptLevel() == CodeGenOptLevel::None) {
2583       auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
2584                             getControlRoot(), DAG.getBasicBlock(Succ0MBB));
2585       setValue(&I, Br);
2586       DAG.setRoot(Br);
2587     }
2588 
2589     return;
2590   }
2591 
2592   // If this condition is one of the special cases we handle, do special stuff
2593   // now.
2594   const Value *CondVal = I.getCondition();
2595   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2596 
2597   // If this is a series of conditions that are or'd or and'd together, emit
2598   // this as a sequence of branches instead of setcc's with and/or operations.
2599   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2600   // unpredictable branches, and vector extracts because those jumps are likely
2601   // expensive for any target), this should improve performance.
2602   // For example, instead of something like:
2603   //     cmp A, B
2604   //     C = seteq
2605   //     cmp D, E
2606   //     F = setle
2607   //     or C, F
2608   //     jnz foo
2609   // Emit:
2610   //     cmp A, B
2611   //     je foo
2612   //     cmp D, E
2613   //     jle foo
2614   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2615   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2616       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2617     Value *Vec;
2618     const Value *BOp0, *BOp1;
2619     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2620     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2621       Opcode = Instruction::And;
2622     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2623       Opcode = Instruction::Or;
2624 
2625     if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2626                     match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
2627       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2628                            getEdgeProbability(BrMBB, Succ0MBB),
2629                            getEdgeProbability(BrMBB, Succ1MBB),
2630                            /*InvertCond=*/false);
2631       // If the compares in later blocks need to use values not currently
2632       // exported from this block, export them now.  This block should always
2633       // be the first entry.
2634       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2635 
2636       // Allow some cases to be rejected.
2637       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2638         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2639           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2640           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2641         }
2642 
2643         // Emit the branch for this block.
2644         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2645         SL->SwitchCases.erase(SL->SwitchCases.begin());
2646         return;
2647       }
2648 
2649       // Okay, we decided not to do this, remove any inserted MBB's and clear
2650       // SwitchCases.
2651       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2652         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2653 
2654       SL->SwitchCases.clear();
2655     }
2656   }
2657 
2658   // Create a CaseBlock record representing this branch.
2659   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2660                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2661 
2662   // Use visitSwitchCase to actually insert the fast branch sequence for this
2663   // cond branch.
2664   visitSwitchCase(CB, BrMBB);
2665 }
2666 
2667 /// visitSwitchCase - Emits the necessary code to represent a single node in
2668 /// the binary search tree resulting from lowering a switch instruction.
2669 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2670                                           MachineBasicBlock *SwitchBB) {
2671   SDValue Cond;
2672   SDValue CondLHS = getValue(CB.CmpLHS);
2673   SDLoc dl = CB.DL;
2674 
2675   if (CB.CC == ISD::SETTRUE) {
2676     // Branch or fall through to TrueBB.
2677     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2678     SwitchBB->normalizeSuccProbs();
2679     if (CB.TrueBB != NextBlock(SwitchBB)) {
2680       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2681                               DAG.getBasicBlock(CB.TrueBB)));
2682     }
2683     return;
2684   }
2685 
2686   auto &TLI = DAG.getTargetLoweringInfo();
2687   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2688 
2689   // Build the setcc now.
2690   if (!CB.CmpMHS) {
2691     // Fold "(X == true)" to X and "(X == false)" to !X to
2692     // handle common cases produced by branch lowering.
2693     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2694         CB.CC == ISD::SETEQ)
2695       Cond = CondLHS;
2696     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2697              CB.CC == ISD::SETEQ) {
2698       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2699       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2700     } else {
2701       SDValue CondRHS = getValue(CB.CmpRHS);
2702 
2703       // If a pointer's DAG type is larger than its memory type then the DAG
2704       // values are zero-extended. This breaks signed comparisons so truncate
2705       // back to the underlying type before doing the compare.
2706       if (CondLHS.getValueType() != MemVT) {
2707         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2708         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2709       }
2710       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2711     }
2712   } else {
2713     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2714 
2715     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2716     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2717 
2718     SDValue CmpOp = getValue(CB.CmpMHS);
2719     EVT VT = CmpOp.getValueType();
2720 
2721     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2722       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2723                           ISD::SETLE);
2724     } else {
2725       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2726                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2727       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2728                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2729     }
2730   }
2731 
2732   // Update successor info
2733   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2734   // TrueBB and FalseBB are always different unless the incoming IR is
2735   // degenerate. This only happens when running llc on weird IR.
2736   if (CB.TrueBB != CB.FalseBB)
2737     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2738   SwitchBB->normalizeSuccProbs();
2739 
2740   // If the lhs block is the next block, invert the condition so that we can
2741   // fall through to the lhs instead of the rhs block.
2742   if (CB.TrueBB == NextBlock(SwitchBB)) {
2743     std::swap(CB.TrueBB, CB.FalseBB);
2744     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2745     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2746   }
2747 
2748   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2749                                MVT::Other, getControlRoot(), Cond,
2750                                DAG.getBasicBlock(CB.TrueBB));
2751 
2752   setValue(CurInst, BrCond);
2753 
2754   // Insert the false branch. Do this even if it's a fall through branch,
2755   // this makes it easier to do DAG optimizations which require inverting
2756   // the branch condition.
2757   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2758                        DAG.getBasicBlock(CB.FalseBB));
2759 
2760   DAG.setRoot(BrCond);
2761 }
2762 
2763 /// visitJumpTable - Emit JumpTable node in the current MBB
2764 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2765   // Emit the code for the jump table
2766   assert(JT.SL && "Should set SDLoc for SelectionDAG!");
2767   assert(JT.Reg != -1U && "Should lower JT Header first!");
2768   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2769   SDValue Index = DAG.getCopyFromReg(getControlRoot(), *JT.SL, JT.Reg, PTy);
2770   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2771   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, *JT.SL, MVT::Other,
2772                                     Index.getValue(1), Table, Index);
2773   DAG.setRoot(BrJumpTable);
2774 }
2775 
2776 /// visitJumpTableHeader - This function emits necessary code to produce index
2777 /// in the JumpTable from switch case.
2778 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2779                                                JumpTableHeader &JTH,
2780                                                MachineBasicBlock *SwitchBB) {
2781   assert(JT.SL && "Should set SDLoc for SelectionDAG!");
2782   const SDLoc &dl = *JT.SL;
2783 
2784   // Subtract the lowest switch case value from the value being switched on.
2785   SDValue SwitchOp = getValue(JTH.SValue);
2786   EVT VT = SwitchOp.getValueType();
2787   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2788                             DAG.getConstant(JTH.First, dl, VT));
2789 
2790   // The SDNode we just created, which holds the value being switched on minus
2791   // the smallest case value, needs to be copied to a virtual register so it
2792   // can be used as an index into the jump table in a subsequent basic block.
2793   // This value may be smaller or larger than the target's pointer type, and
2794   // therefore require extension or truncating.
2795   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2796   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2797 
2798   unsigned JumpTableReg =
2799       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2800   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2801                                     JumpTableReg, SwitchOp);
2802   JT.Reg = JumpTableReg;
2803 
2804   if (!JTH.FallthroughUnreachable) {
2805     // Emit the range check for the jump table, and branch to the default block
2806     // for the switch statement if the value being switched on exceeds the
2807     // largest case in the switch.
2808     SDValue CMP = DAG.getSetCC(
2809         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2810                                    Sub.getValueType()),
2811         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2812 
2813     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2814                                  MVT::Other, CopyTo, CMP,
2815                                  DAG.getBasicBlock(JT.Default));
2816 
2817     // Avoid emitting unnecessary branches to the next block.
2818     if (JT.MBB != NextBlock(SwitchBB))
2819       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2820                            DAG.getBasicBlock(JT.MBB));
2821 
2822     DAG.setRoot(BrCond);
2823   } else {
2824     // Avoid emitting unnecessary branches to the next block.
2825     if (JT.MBB != NextBlock(SwitchBB))
2826       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2827                               DAG.getBasicBlock(JT.MBB)));
2828     else
2829       DAG.setRoot(CopyTo);
2830   }
2831 }
2832 
2833 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2834 /// variable if there exists one.
2835 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2836                                  SDValue &Chain) {
2837   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2838   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2839   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2840   MachineFunction &MF = DAG.getMachineFunction();
2841   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2842   MachineSDNode *Node =
2843       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2844   if (Global) {
2845     MachinePointerInfo MPInfo(Global);
2846     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2847                  MachineMemOperand::MODereferenceable;
2848     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2849         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2850     DAG.setNodeMemRefs(Node, {MemRef});
2851   }
2852   if (PtrTy != PtrMemTy)
2853     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2854   return SDValue(Node, 0);
2855 }
2856 
2857 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2858 /// tail spliced into a stack protector check success bb.
2859 ///
2860 /// For a high level explanation of how this fits into the stack protector
2861 /// generation see the comment on the declaration of class
2862 /// StackProtectorDescriptor.
2863 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2864                                                   MachineBasicBlock *ParentBB) {
2865 
2866   // First create the loads to the guard/stack slot for the comparison.
2867   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2868   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2869   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2870 
2871   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2872   int FI = MFI.getStackProtectorIndex();
2873 
2874   SDValue Guard;
2875   SDLoc dl = getCurSDLoc();
2876   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2877   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2878   Align Align =
2879       DAG.getDataLayout().getPrefTypeAlign(PointerType::get(M.getContext(), 0));
2880 
2881   // Generate code to load the content of the guard slot.
2882   SDValue GuardVal = DAG.getLoad(
2883       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2884       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2885       MachineMemOperand::MOVolatile);
2886 
2887   if (TLI.useStackGuardXorFP())
2888     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2889 
2890   // Retrieve guard check function, nullptr if instrumentation is inlined.
2891   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2892     // The target provides a guard check function to validate the guard value.
2893     // Generate a call to that function with the content of the guard slot as
2894     // argument.
2895     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2896     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2897 
2898     TargetLowering::ArgListTy Args;
2899     TargetLowering::ArgListEntry Entry;
2900     Entry.Node = GuardVal;
2901     Entry.Ty = FnTy->getParamType(0);
2902     if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
2903       Entry.IsInReg = true;
2904     Args.push_back(Entry);
2905 
2906     TargetLowering::CallLoweringInfo CLI(DAG);
2907     CLI.setDebugLoc(getCurSDLoc())
2908         .setChain(DAG.getEntryNode())
2909         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2910                    getValue(GuardCheckFn), std::move(Args));
2911 
2912     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2913     DAG.setRoot(Result.second);
2914     return;
2915   }
2916 
2917   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2918   // Otherwise, emit a volatile load to retrieve the stack guard value.
2919   SDValue Chain = DAG.getEntryNode();
2920   if (TLI.useLoadStackGuardNode()) {
2921     Guard = getLoadStackGuard(DAG, dl, Chain);
2922   } else {
2923     const Value *IRGuard = TLI.getSDagStackGuard(M);
2924     SDValue GuardPtr = getValue(IRGuard);
2925 
2926     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2927                         MachinePointerInfo(IRGuard, 0), Align,
2928                         MachineMemOperand::MOVolatile);
2929   }
2930 
2931   // Perform the comparison via a getsetcc.
2932   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2933                                                         *DAG.getContext(),
2934                                                         Guard.getValueType()),
2935                              Guard, GuardVal, ISD::SETNE);
2936 
2937   // If the guard/stackslot do not equal, branch to failure MBB.
2938   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2939                                MVT::Other, GuardVal.getOperand(0),
2940                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2941   // Otherwise branch to success MBB.
2942   SDValue Br = DAG.getNode(ISD::BR, dl,
2943                            MVT::Other, BrCond,
2944                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2945 
2946   DAG.setRoot(Br);
2947 }
2948 
2949 /// Codegen the failure basic block for a stack protector check.
2950 ///
2951 /// A failure stack protector machine basic block consists simply of a call to
2952 /// __stack_chk_fail().
2953 ///
2954 /// For a high level explanation of how this fits into the stack protector
2955 /// generation see the comment on the declaration of class
2956 /// StackProtectorDescriptor.
2957 void
2958 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2959   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2960   TargetLowering::MakeLibCallOptions CallOptions;
2961   CallOptions.setDiscardResult(true);
2962   SDValue Chain =
2963       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2964                       std::nullopt, CallOptions, getCurSDLoc())
2965           .second;
2966   // On PS4/PS5, the "return address" must still be within the calling
2967   // function, even if it's at the very end, so emit an explicit TRAP here.
2968   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2969   if (TM.getTargetTriple().isPS())
2970     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2971   // WebAssembly needs an unreachable instruction after a non-returning call,
2972   // because the function return type can be different from __stack_chk_fail's
2973   // return type (void).
2974   if (TM.getTargetTriple().isWasm())
2975     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2976 
2977   DAG.setRoot(Chain);
2978 }
2979 
2980 /// visitBitTestHeader - This function emits necessary code to produce value
2981 /// suitable for "bit tests"
2982 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2983                                              MachineBasicBlock *SwitchBB) {
2984   SDLoc dl = getCurSDLoc();
2985 
2986   // Subtract the minimum value.
2987   SDValue SwitchOp = getValue(B.SValue);
2988   EVT VT = SwitchOp.getValueType();
2989   SDValue RangeSub =
2990       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2991 
2992   // Determine the type of the test operands.
2993   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2994   bool UsePtrType = false;
2995   if (!TLI.isTypeLegal(VT)) {
2996     UsePtrType = true;
2997   } else {
2998     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2999       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
3000         // Switch table case range are encoded into series of masks.
3001         // Just use pointer type, it's guaranteed to fit.
3002         UsePtrType = true;
3003         break;
3004       }
3005   }
3006   SDValue Sub = RangeSub;
3007   if (UsePtrType) {
3008     VT = TLI.getPointerTy(DAG.getDataLayout());
3009     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
3010   }
3011 
3012   B.RegVT = VT.getSimpleVT();
3013   B.Reg = FuncInfo.CreateReg(B.RegVT);
3014   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
3015 
3016   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
3017 
3018   if (!B.FallthroughUnreachable)
3019     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
3020   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
3021   SwitchBB->normalizeSuccProbs();
3022 
3023   SDValue Root = CopyTo;
3024   if (!B.FallthroughUnreachable) {
3025     // Conditional branch to the default block.
3026     SDValue RangeCmp = DAG.getSetCC(dl,
3027         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
3028                                RangeSub.getValueType()),
3029         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
3030         ISD::SETUGT);
3031 
3032     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
3033                        DAG.getBasicBlock(B.Default));
3034   }
3035 
3036   // Avoid emitting unnecessary branches to the next block.
3037   if (MBB != NextBlock(SwitchBB))
3038     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
3039 
3040   DAG.setRoot(Root);
3041 }
3042 
3043 /// visitBitTestCase - this function produces one "bit test"
3044 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
3045                                            MachineBasicBlock* NextMBB,
3046                                            BranchProbability BranchProbToNext,
3047                                            unsigned Reg,
3048                                            BitTestCase &B,
3049                                            MachineBasicBlock *SwitchBB) {
3050   SDLoc dl = getCurSDLoc();
3051   MVT VT = BB.RegVT;
3052   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
3053   SDValue Cmp;
3054   unsigned PopCount = llvm::popcount(B.Mask);
3055   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3056   if (PopCount == 1) {
3057     // Testing for a single bit; just compare the shift count with what it
3058     // would need to be to shift a 1 bit in that position.
3059     Cmp = DAG.getSetCC(
3060         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3061         ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT),
3062         ISD::SETEQ);
3063   } else if (PopCount == BB.Range) {
3064     // There is only one zero bit in the range, test for it directly.
3065     Cmp = DAG.getSetCC(
3066         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3067         ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE);
3068   } else {
3069     // Make desired shift
3070     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
3071                                     DAG.getConstant(1, dl, VT), ShiftOp);
3072 
3073     // Emit bit tests and jumps
3074     SDValue AndOp = DAG.getNode(ISD::AND, dl,
3075                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
3076     Cmp = DAG.getSetCC(
3077         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3078         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
3079   }
3080 
3081   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
3082   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
3083   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
3084   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
3085   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
3086   // one as they are relative probabilities (and thus work more like weights),
3087   // and hence we need to normalize them to let the sum of them become one.
3088   SwitchBB->normalizeSuccProbs();
3089 
3090   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
3091                               MVT::Other, getControlRoot(),
3092                               Cmp, DAG.getBasicBlock(B.TargetBB));
3093 
3094   // Avoid emitting unnecessary branches to the next block.
3095   if (NextMBB != NextBlock(SwitchBB))
3096     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
3097                         DAG.getBasicBlock(NextMBB));
3098 
3099   DAG.setRoot(BrAnd);
3100 }
3101 
3102 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
3103   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
3104 
3105   // Retrieve successors. Look through artificial IR level blocks like
3106   // catchswitch for successors.
3107   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
3108   const BasicBlock *EHPadBB = I.getSuccessor(1);
3109   MachineBasicBlock *EHPadMBB = FuncInfo.MBBMap[EHPadBB];
3110 
3111   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3112   // have to do anything here to lower funclet bundles.
3113   assert(!I.hasOperandBundlesOtherThan(
3114              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
3115               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
3116               LLVMContext::OB_cfguardtarget,
3117               LLVMContext::OB_clang_arc_attachedcall}) &&
3118          "Cannot lower invokes with arbitrary operand bundles yet!");
3119 
3120   const Value *Callee(I.getCalledOperand());
3121   const Function *Fn = dyn_cast<Function>(Callee);
3122   if (isa<InlineAsm>(Callee))
3123     visitInlineAsm(I, EHPadBB);
3124   else if (Fn && Fn->isIntrinsic()) {
3125     switch (Fn->getIntrinsicID()) {
3126     default:
3127       llvm_unreachable("Cannot invoke this intrinsic");
3128     case Intrinsic::donothing:
3129       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
3130     case Intrinsic::seh_try_begin:
3131     case Intrinsic::seh_scope_begin:
3132     case Intrinsic::seh_try_end:
3133     case Intrinsic::seh_scope_end:
3134       if (EHPadMBB)
3135           // a block referenced by EH table
3136           // so dtor-funclet not removed by opts
3137           EHPadMBB->setMachineBlockAddressTaken();
3138       break;
3139     case Intrinsic::experimental_patchpoint_void:
3140     case Intrinsic::experimental_patchpoint_i64:
3141       visitPatchpoint(I, EHPadBB);
3142       break;
3143     case Intrinsic::experimental_gc_statepoint:
3144       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
3145       break;
3146     case Intrinsic::wasm_rethrow: {
3147       // This is usually done in visitTargetIntrinsic, but this intrinsic is
3148       // special because it can be invoked, so we manually lower it to a DAG
3149       // node here.
3150       SmallVector<SDValue, 8> Ops;
3151       Ops.push_back(getRoot()); // inchain
3152       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3153       Ops.push_back(
3154           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
3155                                 TLI.getPointerTy(DAG.getDataLayout())));
3156       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
3157       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
3158       break;
3159     }
3160     }
3161   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
3162     // Currently we do not lower any intrinsic calls with deopt operand bundles.
3163     // Eventually we will support lowering the @llvm.experimental.deoptimize
3164     // intrinsic, and right now there are no plans to support other intrinsics
3165     // with deopt state.
3166     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
3167   } else {
3168     LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
3169   }
3170 
3171   // If the value of the invoke is used outside of its defining block, make it
3172   // available as a virtual register.
3173   // We already took care of the exported value for the statepoint instruction
3174   // during call to the LowerStatepoint.
3175   if (!isa<GCStatepointInst>(I)) {
3176     CopyToExportRegsIfNeeded(&I);
3177   }
3178 
3179   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
3180   BranchProbabilityInfo *BPI = FuncInfo.BPI;
3181   BranchProbability EHPadBBProb =
3182       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
3183           : BranchProbability::getZero();
3184   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
3185 
3186   // Update successor info.
3187   addSuccessorWithProb(InvokeMBB, Return);
3188   for (auto &UnwindDest : UnwindDests) {
3189     UnwindDest.first->setIsEHPad();
3190     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
3191   }
3192   InvokeMBB->normalizeSuccProbs();
3193 
3194   // Drop into normal successor.
3195   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
3196                           DAG.getBasicBlock(Return)));
3197 }
3198 
3199 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
3200   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
3201 
3202   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3203   // have to do anything here to lower funclet bundles.
3204   assert(!I.hasOperandBundlesOtherThan(
3205              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
3206          "Cannot lower callbrs with arbitrary operand bundles yet!");
3207 
3208   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
3209   visitInlineAsm(I);
3210   CopyToExportRegsIfNeeded(&I);
3211 
3212   // Retrieve successors.
3213   SmallPtrSet<BasicBlock *, 8> Dests;
3214   Dests.insert(I.getDefaultDest());
3215   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
3216 
3217   // Update successor info.
3218   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
3219   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
3220     BasicBlock *Dest = I.getIndirectDest(i);
3221     MachineBasicBlock *Target = FuncInfo.MBBMap[Dest];
3222     Target->setIsInlineAsmBrIndirectTarget();
3223     Target->setMachineBlockAddressTaken();
3224     Target->setLabelMustBeEmitted();
3225     // Don't add duplicate machine successors.
3226     if (Dests.insert(Dest).second)
3227       addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
3228   }
3229   CallBrMBB->normalizeSuccProbs();
3230 
3231   // Drop into default successor.
3232   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
3233                           MVT::Other, getControlRoot(),
3234                           DAG.getBasicBlock(Return)));
3235 }
3236 
3237 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
3238   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
3239 }
3240 
3241 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3242   assert(FuncInfo.MBB->isEHPad() &&
3243          "Call to landingpad not in landing pad!");
3244 
3245   // If there aren't registers to copy the values into (e.g., during SjLj
3246   // exceptions), then don't bother to create these DAG nodes.
3247   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3248   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3249   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3250       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3251     return;
3252 
3253   // If landingpad's return type is token type, we don't create DAG nodes
3254   // for its exception pointer and selector value. The extraction of exception
3255   // pointer or selector value from token type landingpads is not currently
3256   // supported.
3257   if (LP.getType()->isTokenTy())
3258     return;
3259 
3260   SmallVector<EVT, 2> ValueVTs;
3261   SDLoc dl = getCurSDLoc();
3262   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3263   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3264 
3265   // Get the two live-in registers as SDValues. The physregs have already been
3266   // copied into virtual registers.
3267   SDValue Ops[2];
3268   if (FuncInfo.ExceptionPointerVirtReg) {
3269     Ops[0] = DAG.getZExtOrTrunc(
3270         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3271                            FuncInfo.ExceptionPointerVirtReg,
3272                            TLI.getPointerTy(DAG.getDataLayout())),
3273         dl, ValueVTs[0]);
3274   } else {
3275     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3276   }
3277   Ops[1] = DAG.getZExtOrTrunc(
3278       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3279                          FuncInfo.ExceptionSelectorVirtReg,
3280                          TLI.getPointerTy(DAG.getDataLayout())),
3281       dl, ValueVTs[1]);
3282 
3283   // Merge into one.
3284   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3285                             DAG.getVTList(ValueVTs), Ops);
3286   setValue(&LP, Res);
3287 }
3288 
3289 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3290                                            MachineBasicBlock *Last) {
3291   // Update JTCases.
3292   for (JumpTableBlock &JTB : SL->JTCases)
3293     if (JTB.first.HeaderBB == First)
3294       JTB.first.HeaderBB = Last;
3295 
3296   // Update BitTestCases.
3297   for (BitTestBlock &BTB : SL->BitTestCases)
3298     if (BTB.Parent == First)
3299       BTB.Parent = Last;
3300 }
3301 
3302 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3303   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3304 
3305   // Update machine-CFG edges with unique successors.
3306   SmallSet<BasicBlock*, 32> Done;
3307   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3308     BasicBlock *BB = I.getSuccessor(i);
3309     bool Inserted = Done.insert(BB).second;
3310     if (!Inserted)
3311         continue;
3312 
3313     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
3314     addSuccessorWithProb(IndirectBrMBB, Succ);
3315   }
3316   IndirectBrMBB->normalizeSuccProbs();
3317 
3318   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3319                           MVT::Other, getControlRoot(),
3320                           getValue(I.getAddress())));
3321 }
3322 
3323 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3324   if (!DAG.getTarget().Options.TrapUnreachable)
3325     return;
3326 
3327   // We may be able to ignore unreachable behind a noreturn call.
3328   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
3329     if (const CallInst *Call = dyn_cast_or_null<CallInst>(I.getPrevNode())) {
3330       if (Call->doesNotReturn())
3331         return;
3332     }
3333   }
3334 
3335   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3336 }
3337 
3338 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3339   SDNodeFlags Flags;
3340   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3341     Flags.copyFMF(*FPOp);
3342 
3343   SDValue Op = getValue(I.getOperand(0));
3344   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3345                                     Op, Flags);
3346   setValue(&I, UnNodeValue);
3347 }
3348 
3349 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3350   SDNodeFlags Flags;
3351   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3352     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3353     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3354   }
3355   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3356     Flags.setExact(ExactOp->isExact());
3357   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3358     Flags.copyFMF(*FPOp);
3359 
3360   SDValue Op1 = getValue(I.getOperand(0));
3361   SDValue Op2 = getValue(I.getOperand(1));
3362   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3363                                      Op1, Op2, Flags);
3364   setValue(&I, BinNodeValue);
3365 }
3366 
3367 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3368   SDValue Op1 = getValue(I.getOperand(0));
3369   SDValue Op2 = getValue(I.getOperand(1));
3370 
3371   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3372       Op1.getValueType(), DAG.getDataLayout());
3373 
3374   // Coerce the shift amount to the right type if we can. This exposes the
3375   // truncate or zext to optimization early.
3376   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3377     assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) &&
3378            "Unexpected shift type");
3379     Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
3380   }
3381 
3382   bool nuw = false;
3383   bool nsw = false;
3384   bool exact = false;
3385 
3386   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3387 
3388     if (const OverflowingBinaryOperator *OFBinOp =
3389             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3390       nuw = OFBinOp->hasNoUnsignedWrap();
3391       nsw = OFBinOp->hasNoSignedWrap();
3392     }
3393     if (const PossiblyExactOperator *ExactOp =
3394             dyn_cast<const PossiblyExactOperator>(&I))
3395       exact = ExactOp->isExact();
3396   }
3397   SDNodeFlags Flags;
3398   Flags.setExact(exact);
3399   Flags.setNoSignedWrap(nsw);
3400   Flags.setNoUnsignedWrap(nuw);
3401   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3402                             Flags);
3403   setValue(&I, Res);
3404 }
3405 
3406 void SelectionDAGBuilder::visitSDiv(const User &I) {
3407   SDValue Op1 = getValue(I.getOperand(0));
3408   SDValue Op2 = getValue(I.getOperand(1));
3409 
3410   SDNodeFlags Flags;
3411   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3412                  cast<PossiblyExactOperator>(&I)->isExact());
3413   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3414                            Op2, Flags));
3415 }
3416 
3417 void SelectionDAGBuilder::visitICmp(const User &I) {
3418   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3419   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3420     predicate = IC->getPredicate();
3421   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3422     predicate = ICmpInst::Predicate(IC->getPredicate());
3423   SDValue Op1 = getValue(I.getOperand(0));
3424   SDValue Op2 = getValue(I.getOperand(1));
3425   ISD::CondCode Opcode = getICmpCondCode(predicate);
3426 
3427   auto &TLI = DAG.getTargetLoweringInfo();
3428   EVT MemVT =
3429       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3430 
3431   // If a pointer's DAG type is larger than its memory type then the DAG values
3432   // are zero-extended. This breaks signed comparisons so truncate back to the
3433   // underlying type before doing the compare.
3434   if (Op1.getValueType() != MemVT) {
3435     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3436     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3437   }
3438 
3439   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3440                                                         I.getType());
3441   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3442 }
3443 
3444 void SelectionDAGBuilder::visitFCmp(const User &I) {
3445   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3446   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3447     predicate = FC->getPredicate();
3448   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3449     predicate = FCmpInst::Predicate(FC->getPredicate());
3450   SDValue Op1 = getValue(I.getOperand(0));
3451   SDValue Op2 = getValue(I.getOperand(1));
3452 
3453   ISD::CondCode Condition = getFCmpCondCode(predicate);
3454   auto *FPMO = cast<FPMathOperator>(&I);
3455   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3456     Condition = getFCmpCodeWithoutNaN(Condition);
3457 
3458   SDNodeFlags Flags;
3459   Flags.copyFMF(*FPMO);
3460   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3461 
3462   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3463                                                         I.getType());
3464   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3465 }
3466 
3467 // Check if the condition of the select has one use or two users that are both
3468 // selects with the same condition.
3469 static bool hasOnlySelectUsers(const Value *Cond) {
3470   return llvm::all_of(Cond->users(), [](const Value *V) {
3471     return isa<SelectInst>(V);
3472   });
3473 }
3474 
3475 void SelectionDAGBuilder::visitSelect(const User &I) {
3476   SmallVector<EVT, 4> ValueVTs;
3477   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3478                   ValueVTs);
3479   unsigned NumValues = ValueVTs.size();
3480   if (NumValues == 0) return;
3481 
3482   SmallVector<SDValue, 4> Values(NumValues);
3483   SDValue Cond     = getValue(I.getOperand(0));
3484   SDValue LHSVal   = getValue(I.getOperand(1));
3485   SDValue RHSVal   = getValue(I.getOperand(2));
3486   SmallVector<SDValue, 1> BaseOps(1, Cond);
3487   ISD::NodeType OpCode =
3488       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3489 
3490   bool IsUnaryAbs = false;
3491   bool Negate = false;
3492 
3493   SDNodeFlags Flags;
3494   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3495     Flags.copyFMF(*FPOp);
3496 
3497   Flags.setUnpredictable(
3498       cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable));
3499 
3500   // Min/max matching is only viable if all output VTs are the same.
3501   if (all_equal(ValueVTs)) {
3502     EVT VT = ValueVTs[0];
3503     LLVMContext &Ctx = *DAG.getContext();
3504     auto &TLI = DAG.getTargetLoweringInfo();
3505 
3506     // We care about the legality of the operation after it has been type
3507     // legalized.
3508     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3509       VT = TLI.getTypeToTransformTo(Ctx, VT);
3510 
3511     // If the vselect is legal, assume we want to leave this as a vector setcc +
3512     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3513     // min/max is legal on the scalar type.
3514     bool UseScalarMinMax = VT.isVector() &&
3515       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3516 
3517     // ValueTracking's select pattern matching does not account for -0.0,
3518     // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that
3519     // -0.0 is less than +0.0.
3520     Value *LHS, *RHS;
3521     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3522     ISD::NodeType Opc = ISD::DELETED_NODE;
3523     switch (SPR.Flavor) {
3524     case SPF_UMAX:    Opc = ISD::UMAX; break;
3525     case SPF_UMIN:    Opc = ISD::UMIN; break;
3526     case SPF_SMAX:    Opc = ISD::SMAX; break;
3527     case SPF_SMIN:    Opc = ISD::SMIN; break;
3528     case SPF_FMINNUM:
3529       switch (SPR.NaNBehavior) {
3530       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3531       case SPNB_RETURNS_NAN: break;
3532       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3533       case SPNB_RETURNS_ANY:
3534         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ||
3535             (UseScalarMinMax &&
3536              TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType())))
3537           Opc = ISD::FMINNUM;
3538         break;
3539       }
3540       break;
3541     case SPF_FMAXNUM:
3542       switch (SPR.NaNBehavior) {
3543       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3544       case SPNB_RETURNS_NAN: break;
3545       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3546       case SPNB_RETURNS_ANY:
3547         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ||
3548             (UseScalarMinMax &&
3549              TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType())))
3550           Opc = ISD::FMAXNUM;
3551         break;
3552       }
3553       break;
3554     case SPF_NABS:
3555       Negate = true;
3556       [[fallthrough]];
3557     case SPF_ABS:
3558       IsUnaryAbs = true;
3559       Opc = ISD::ABS;
3560       break;
3561     default: break;
3562     }
3563 
3564     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3565         (TLI.isOperationLegalOrCustomOrPromote(Opc, VT) ||
3566          (UseScalarMinMax &&
3567           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3568         // If the underlying comparison instruction is used by any other
3569         // instruction, the consumed instructions won't be destroyed, so it is
3570         // not profitable to convert to a min/max.
3571         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3572       OpCode = Opc;
3573       LHSVal = getValue(LHS);
3574       RHSVal = getValue(RHS);
3575       BaseOps.clear();
3576     }
3577 
3578     if (IsUnaryAbs) {
3579       OpCode = Opc;
3580       LHSVal = getValue(LHS);
3581       BaseOps.clear();
3582     }
3583   }
3584 
3585   if (IsUnaryAbs) {
3586     for (unsigned i = 0; i != NumValues; ++i) {
3587       SDLoc dl = getCurSDLoc();
3588       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3589       Values[i] =
3590           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3591       if (Negate)
3592         Values[i] = DAG.getNegative(Values[i], dl, VT);
3593     }
3594   } else {
3595     for (unsigned i = 0; i != NumValues; ++i) {
3596       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3597       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3598       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3599       Values[i] = DAG.getNode(
3600           OpCode, getCurSDLoc(),
3601           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3602     }
3603   }
3604 
3605   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3606                            DAG.getVTList(ValueVTs), Values));
3607 }
3608 
3609 void SelectionDAGBuilder::visitTrunc(const User &I) {
3610   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3611   SDValue N = getValue(I.getOperand(0));
3612   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3613                                                         I.getType());
3614   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3615 }
3616 
3617 void SelectionDAGBuilder::visitZExt(const User &I) {
3618   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3619   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3620   SDValue N = getValue(I.getOperand(0));
3621   auto &TLI = DAG.getTargetLoweringInfo();
3622   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3623 
3624   SDNodeFlags Flags;
3625   if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I))
3626     Flags.setNonNeg(PNI->hasNonNeg());
3627 
3628   // Eagerly use nonneg information to canonicalize towards sign_extend if
3629   // that is the target's preference.
3630   // TODO: Let the target do this later.
3631   if (Flags.hasNonNeg() &&
3632       TLI.isSExtCheaperThanZExt(N.getValueType(), DestVT)) {
3633     setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3634     return;
3635   }
3636 
3637   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N, Flags));
3638 }
3639 
3640 void SelectionDAGBuilder::visitSExt(const User &I) {
3641   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3642   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3643   SDValue N = getValue(I.getOperand(0));
3644   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3645                                                         I.getType());
3646   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3647 }
3648 
3649 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3650   // FPTrunc is never a no-op cast, no need to check
3651   SDValue N = getValue(I.getOperand(0));
3652   SDLoc dl = getCurSDLoc();
3653   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3654   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3655   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3656                            DAG.getTargetConstant(
3657                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3658 }
3659 
3660 void SelectionDAGBuilder::visitFPExt(const User &I) {
3661   // FPExt is never a no-op cast, no need to check
3662   SDValue N = getValue(I.getOperand(0));
3663   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3664                                                         I.getType());
3665   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3666 }
3667 
3668 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3669   // FPToUI is never a no-op cast, no need to check
3670   SDValue N = getValue(I.getOperand(0));
3671   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3672                                                         I.getType());
3673   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3674 }
3675 
3676 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3677   // FPToSI is never a no-op cast, no need to check
3678   SDValue N = getValue(I.getOperand(0));
3679   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3680                                                         I.getType());
3681   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3682 }
3683 
3684 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3685   // UIToFP is never a no-op cast, no need to check
3686   SDValue N = getValue(I.getOperand(0));
3687   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3688                                                         I.getType());
3689   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3690 }
3691 
3692 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3693   // SIToFP is never a no-op cast, no need to check
3694   SDValue N = getValue(I.getOperand(0));
3695   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3696                                                         I.getType());
3697   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3698 }
3699 
3700 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3701   // What to do depends on the size of the integer and the size of the pointer.
3702   // We can either truncate, zero extend, or no-op, accordingly.
3703   SDValue N = getValue(I.getOperand(0));
3704   auto &TLI = DAG.getTargetLoweringInfo();
3705   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3706                                                         I.getType());
3707   EVT PtrMemVT =
3708       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3709   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3710   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3711   setValue(&I, N);
3712 }
3713 
3714 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3715   // What to do depends on the size of the integer and the size of the pointer.
3716   // We can either truncate, zero extend, or no-op, accordingly.
3717   SDValue N = getValue(I.getOperand(0));
3718   auto &TLI = DAG.getTargetLoweringInfo();
3719   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3720   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3721   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3722   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3723   setValue(&I, N);
3724 }
3725 
3726 void SelectionDAGBuilder::visitBitCast(const User &I) {
3727   SDValue N = getValue(I.getOperand(0));
3728   SDLoc dl = getCurSDLoc();
3729   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3730                                                         I.getType());
3731 
3732   // BitCast assures us that source and destination are the same size so this is
3733   // either a BITCAST or a no-op.
3734   if (DestVT != N.getValueType())
3735     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3736                              DestVT, N)); // convert types.
3737   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3738   // might fold any kind of constant expression to an integer constant and that
3739   // is not what we are looking for. Only recognize a bitcast of a genuine
3740   // constant integer as an opaque constant.
3741   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3742     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3743                                  /*isOpaque*/true));
3744   else
3745     setValue(&I, N);            // noop cast.
3746 }
3747 
3748 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3749   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3750   const Value *SV = I.getOperand(0);
3751   SDValue N = getValue(SV);
3752   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3753 
3754   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3755   unsigned DestAS = I.getType()->getPointerAddressSpace();
3756 
3757   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3758     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3759 
3760   setValue(&I, N);
3761 }
3762 
3763 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3764   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3765   SDValue InVec = getValue(I.getOperand(0));
3766   SDValue InVal = getValue(I.getOperand(1));
3767   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3768                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3769   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3770                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3771                            InVec, InVal, InIdx));
3772 }
3773 
3774 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3775   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3776   SDValue InVec = getValue(I.getOperand(0));
3777   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3778                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3779   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3780                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3781                            InVec, InIdx));
3782 }
3783 
3784 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3785   SDValue Src1 = getValue(I.getOperand(0));
3786   SDValue Src2 = getValue(I.getOperand(1));
3787   ArrayRef<int> Mask;
3788   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3789     Mask = SVI->getShuffleMask();
3790   else
3791     Mask = cast<ConstantExpr>(I).getShuffleMask();
3792   SDLoc DL = getCurSDLoc();
3793   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3794   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3795   EVT SrcVT = Src1.getValueType();
3796 
3797   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3798       VT.isScalableVector()) {
3799     // Canonical splat form of first element of first input vector.
3800     SDValue FirstElt =
3801         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3802                     DAG.getVectorIdxConstant(0, DL));
3803     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3804     return;
3805   }
3806 
3807   // For now, we only handle splats for scalable vectors.
3808   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3809   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3810   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3811 
3812   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3813   unsigned MaskNumElts = Mask.size();
3814 
3815   if (SrcNumElts == MaskNumElts) {
3816     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3817     return;
3818   }
3819 
3820   // Normalize the shuffle vector since mask and vector length don't match.
3821   if (SrcNumElts < MaskNumElts) {
3822     // Mask is longer than the source vectors. We can use concatenate vector to
3823     // make the mask and vectors lengths match.
3824 
3825     if (MaskNumElts % SrcNumElts == 0) {
3826       // Mask length is a multiple of the source vector length.
3827       // Check if the shuffle is some kind of concatenation of the input
3828       // vectors.
3829       unsigned NumConcat = MaskNumElts / SrcNumElts;
3830       bool IsConcat = true;
3831       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3832       for (unsigned i = 0; i != MaskNumElts; ++i) {
3833         int Idx = Mask[i];
3834         if (Idx < 0)
3835           continue;
3836         // Ensure the indices in each SrcVT sized piece are sequential and that
3837         // the same source is used for the whole piece.
3838         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3839             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3840              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3841           IsConcat = false;
3842           break;
3843         }
3844         // Remember which source this index came from.
3845         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3846       }
3847 
3848       // The shuffle is concatenating multiple vectors together. Just emit
3849       // a CONCAT_VECTORS operation.
3850       if (IsConcat) {
3851         SmallVector<SDValue, 8> ConcatOps;
3852         for (auto Src : ConcatSrcs) {
3853           if (Src < 0)
3854             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3855           else if (Src == 0)
3856             ConcatOps.push_back(Src1);
3857           else
3858             ConcatOps.push_back(Src2);
3859         }
3860         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3861         return;
3862       }
3863     }
3864 
3865     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3866     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3867     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3868                                     PaddedMaskNumElts);
3869 
3870     // Pad both vectors with undefs to make them the same length as the mask.
3871     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3872 
3873     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3874     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3875     MOps1[0] = Src1;
3876     MOps2[0] = Src2;
3877 
3878     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3879     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3880 
3881     // Readjust mask for new input vector length.
3882     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3883     for (unsigned i = 0; i != MaskNumElts; ++i) {
3884       int Idx = Mask[i];
3885       if (Idx >= (int)SrcNumElts)
3886         Idx -= SrcNumElts - PaddedMaskNumElts;
3887       MappedOps[i] = Idx;
3888     }
3889 
3890     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3891 
3892     // If the concatenated vector was padded, extract a subvector with the
3893     // correct number of elements.
3894     if (MaskNumElts != PaddedMaskNumElts)
3895       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3896                            DAG.getVectorIdxConstant(0, DL));
3897 
3898     setValue(&I, Result);
3899     return;
3900   }
3901 
3902   if (SrcNumElts > MaskNumElts) {
3903     // Analyze the access pattern of the vector to see if we can extract
3904     // two subvectors and do the shuffle.
3905     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3906     bool CanExtract = true;
3907     for (int Idx : Mask) {
3908       unsigned Input = 0;
3909       if (Idx < 0)
3910         continue;
3911 
3912       if (Idx >= (int)SrcNumElts) {
3913         Input = 1;
3914         Idx -= SrcNumElts;
3915       }
3916 
3917       // If all the indices come from the same MaskNumElts sized portion of
3918       // the sources we can use extract. Also make sure the extract wouldn't
3919       // extract past the end of the source.
3920       int NewStartIdx = alignDown(Idx, MaskNumElts);
3921       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3922           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3923         CanExtract = false;
3924       // Make sure we always update StartIdx as we use it to track if all
3925       // elements are undef.
3926       StartIdx[Input] = NewStartIdx;
3927     }
3928 
3929     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3930       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3931       return;
3932     }
3933     if (CanExtract) {
3934       // Extract appropriate subvector and generate a vector shuffle
3935       for (unsigned Input = 0; Input < 2; ++Input) {
3936         SDValue &Src = Input == 0 ? Src1 : Src2;
3937         if (StartIdx[Input] < 0)
3938           Src = DAG.getUNDEF(VT);
3939         else {
3940           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3941                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3942         }
3943       }
3944 
3945       // Calculate new mask.
3946       SmallVector<int, 8> MappedOps(Mask);
3947       for (int &Idx : MappedOps) {
3948         if (Idx >= (int)SrcNumElts)
3949           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3950         else if (Idx >= 0)
3951           Idx -= StartIdx[0];
3952       }
3953 
3954       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3955       return;
3956     }
3957   }
3958 
3959   // We can't use either concat vectors or extract subvectors so fall back to
3960   // replacing the shuffle with extract and build vector.
3961   // to insert and build vector.
3962   EVT EltVT = VT.getVectorElementType();
3963   SmallVector<SDValue,8> Ops;
3964   for (int Idx : Mask) {
3965     SDValue Res;
3966 
3967     if (Idx < 0) {
3968       Res = DAG.getUNDEF(EltVT);
3969     } else {
3970       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3971       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3972 
3973       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3974                         DAG.getVectorIdxConstant(Idx, DL));
3975     }
3976 
3977     Ops.push_back(Res);
3978   }
3979 
3980   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3981 }
3982 
3983 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3984   ArrayRef<unsigned> Indices = I.getIndices();
3985   const Value *Op0 = I.getOperand(0);
3986   const Value *Op1 = I.getOperand(1);
3987   Type *AggTy = I.getType();
3988   Type *ValTy = Op1->getType();
3989   bool IntoUndef = isa<UndefValue>(Op0);
3990   bool FromUndef = isa<UndefValue>(Op1);
3991 
3992   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3993 
3994   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3995   SmallVector<EVT, 4> AggValueVTs;
3996   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3997   SmallVector<EVT, 4> ValValueVTs;
3998   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3999 
4000   unsigned NumAggValues = AggValueVTs.size();
4001   unsigned NumValValues = ValValueVTs.size();
4002   SmallVector<SDValue, 4> Values(NumAggValues);
4003 
4004   // Ignore an insertvalue that produces an empty object
4005   if (!NumAggValues) {
4006     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
4007     return;
4008   }
4009 
4010   SDValue Agg = getValue(Op0);
4011   unsigned i = 0;
4012   // Copy the beginning value(s) from the original aggregate.
4013   for (; i != LinearIndex; ++i)
4014     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4015                 SDValue(Agg.getNode(), Agg.getResNo() + i);
4016   // Copy values from the inserted value(s).
4017   if (NumValValues) {
4018     SDValue Val = getValue(Op1);
4019     for (; i != LinearIndex + NumValValues; ++i)
4020       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4021                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
4022   }
4023   // Copy remaining value(s) from the original aggregate.
4024   for (; i != NumAggValues; ++i)
4025     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4026                 SDValue(Agg.getNode(), Agg.getResNo() + i);
4027 
4028   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
4029                            DAG.getVTList(AggValueVTs), Values));
4030 }
4031 
4032 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
4033   ArrayRef<unsigned> Indices = I.getIndices();
4034   const Value *Op0 = I.getOperand(0);
4035   Type *AggTy = Op0->getType();
4036   Type *ValTy = I.getType();
4037   bool OutOfUndef = isa<UndefValue>(Op0);
4038 
4039   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
4040 
4041   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4042   SmallVector<EVT, 4> ValValueVTs;
4043   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
4044 
4045   unsigned NumValValues = ValValueVTs.size();
4046 
4047   // Ignore a extractvalue that produces an empty object
4048   if (!NumValValues) {
4049     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
4050     return;
4051   }
4052 
4053   SmallVector<SDValue, 4> Values(NumValValues);
4054 
4055   SDValue Agg = getValue(Op0);
4056   // Copy out the selected value(s).
4057   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
4058     Values[i - LinearIndex] =
4059       OutOfUndef ?
4060         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
4061         SDValue(Agg.getNode(), Agg.getResNo() + i);
4062 
4063   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
4064                            DAG.getVTList(ValValueVTs), Values));
4065 }
4066 
4067 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
4068   Value *Op0 = I.getOperand(0);
4069   // Note that the pointer operand may be a vector of pointers. Take the scalar
4070   // element which holds a pointer.
4071   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
4072   SDValue N = getValue(Op0);
4073   SDLoc dl = getCurSDLoc();
4074   auto &TLI = DAG.getTargetLoweringInfo();
4075 
4076   // Normalize Vector GEP - all scalar operands should be converted to the
4077   // splat vector.
4078   bool IsVectorGEP = I.getType()->isVectorTy();
4079   ElementCount VectorElementCount =
4080       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
4081                   : ElementCount::getFixed(0);
4082 
4083   if (IsVectorGEP && !N.getValueType().isVector()) {
4084     LLVMContext &Context = *DAG.getContext();
4085     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
4086     N = DAG.getSplat(VT, dl, N);
4087   }
4088 
4089   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
4090        GTI != E; ++GTI) {
4091     const Value *Idx = GTI.getOperand();
4092     if (StructType *StTy = GTI.getStructTypeOrNull()) {
4093       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
4094       if (Field) {
4095         // N = N + Offset
4096         uint64_t Offset =
4097             DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
4098 
4099         // In an inbounds GEP with an offset that is nonnegative even when
4100         // interpreted as signed, assume there is no unsigned overflow.
4101         SDNodeFlags Flags;
4102         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
4103           Flags.setNoUnsignedWrap(true);
4104 
4105         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
4106                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
4107       }
4108     } else {
4109       // IdxSize is the width of the arithmetic according to IR semantics.
4110       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
4111       // (and fix up the result later).
4112       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
4113       MVT IdxTy = MVT::getIntegerVT(IdxSize);
4114       TypeSize ElementSize =
4115           DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType());
4116       // We intentionally mask away the high bits here; ElementSize may not
4117       // fit in IdxTy.
4118       APInt ElementMul(IdxSize, ElementSize.getKnownMinValue());
4119       bool ElementScalable = ElementSize.isScalable();
4120 
4121       // If this is a scalar constant or a splat vector of constants,
4122       // handle it quickly.
4123       const auto *C = dyn_cast<Constant>(Idx);
4124       if (C && isa<VectorType>(C->getType()))
4125         C = C->getSplatValue();
4126 
4127       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
4128       if (CI && CI->isZero())
4129         continue;
4130       if (CI && !ElementScalable) {
4131         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
4132         LLVMContext &Context = *DAG.getContext();
4133         SDValue OffsVal;
4134         if (IsVectorGEP)
4135           OffsVal = DAG.getConstant(
4136               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
4137         else
4138           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
4139 
4140         // In an inbounds GEP with an offset that is nonnegative even when
4141         // interpreted as signed, assume there is no unsigned overflow.
4142         SDNodeFlags Flags;
4143         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
4144           Flags.setNoUnsignedWrap(true);
4145 
4146         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
4147 
4148         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
4149         continue;
4150       }
4151 
4152       // N = N + Idx * ElementMul;
4153       SDValue IdxN = getValue(Idx);
4154 
4155       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
4156         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
4157                                   VectorElementCount);
4158         IdxN = DAG.getSplat(VT, dl, IdxN);
4159       }
4160 
4161       // If the index is smaller or larger than intptr_t, truncate or extend
4162       // it.
4163       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
4164 
4165       if (ElementScalable) {
4166         EVT VScaleTy = N.getValueType().getScalarType();
4167         SDValue VScale = DAG.getNode(
4168             ISD::VSCALE, dl, VScaleTy,
4169             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
4170         if (IsVectorGEP)
4171           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
4172         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
4173       } else {
4174         // If this is a multiply by a power of two, turn it into a shl
4175         // immediately.  This is a very common case.
4176         if (ElementMul != 1) {
4177           if (ElementMul.isPowerOf2()) {
4178             unsigned Amt = ElementMul.logBase2();
4179             IdxN = DAG.getNode(ISD::SHL, dl,
4180                                N.getValueType(), IdxN,
4181                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
4182           } else {
4183             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
4184                                             IdxN.getValueType());
4185             IdxN = DAG.getNode(ISD::MUL, dl,
4186                                N.getValueType(), IdxN, Scale);
4187           }
4188         }
4189       }
4190 
4191       N = DAG.getNode(ISD::ADD, dl,
4192                       N.getValueType(), N, IdxN);
4193     }
4194   }
4195 
4196   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
4197   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
4198   if (IsVectorGEP) {
4199     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
4200     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
4201   }
4202 
4203   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
4204     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
4205 
4206   setValue(&I, N);
4207 }
4208 
4209 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
4210   // If this is a fixed sized alloca in the entry block of the function,
4211   // allocate it statically on the stack.
4212   if (FuncInfo.StaticAllocaMap.count(&I))
4213     return;   // getValue will auto-populate this.
4214 
4215   SDLoc dl = getCurSDLoc();
4216   Type *Ty = I.getAllocatedType();
4217   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4218   auto &DL = DAG.getDataLayout();
4219   TypeSize TySize = DL.getTypeAllocSize(Ty);
4220   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
4221 
4222   SDValue AllocSize = getValue(I.getArraySize());
4223 
4224   EVT IntPtr = TLI.getPointerTy(DL, I.getAddressSpace());
4225   if (AllocSize.getValueType() != IntPtr)
4226     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4227 
4228   if (TySize.isScalable())
4229     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4230                             DAG.getVScale(dl, IntPtr,
4231                                           APInt(IntPtr.getScalarSizeInBits(),
4232                                                 TySize.getKnownMinValue())));
4233   else {
4234     SDValue TySizeValue =
4235         DAG.getConstant(TySize.getFixedValue(), dl, MVT::getIntegerVT(64));
4236     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4237                             DAG.getZExtOrTrunc(TySizeValue, dl, IntPtr));
4238   }
4239 
4240   // Handle alignment.  If the requested alignment is less than or equal to
4241   // the stack alignment, ignore it.  If the size is greater than or equal to
4242   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4243   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4244   if (*Alignment <= StackAlign)
4245     Alignment = std::nullopt;
4246 
4247   const uint64_t StackAlignMask = StackAlign.value() - 1U;
4248   // Round the size of the allocation up to the stack alignment size
4249   // by add SA-1 to the size. This doesn't overflow because we're computing
4250   // an address inside an alloca.
4251   SDNodeFlags Flags;
4252   Flags.setNoUnsignedWrap(true);
4253   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4254                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
4255 
4256   // Mask out the low bits for alignment purposes.
4257   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4258                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
4259 
4260   SDValue Ops[] = {
4261       getRoot(), AllocSize,
4262       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4263   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4264   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4265   setValue(&I, DSA);
4266   DAG.setRoot(DSA.getValue(1));
4267 
4268   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4269 }
4270 
4271 static const MDNode *getRangeMetadata(const Instruction &I) {
4272   // If !noundef is not present, then !range violation results in a poison
4273   // value rather than immediate undefined behavior. In theory, transferring
4274   // these annotations to SDAG is fine, but in practice there are key SDAG
4275   // transforms that are known not to be poison-safe, such as folding logical
4276   // and/or to bitwise and/or. For now, only transfer !range if !noundef is
4277   // also present.
4278   if (!I.hasMetadata(LLVMContext::MD_noundef))
4279     return nullptr;
4280   return I.getMetadata(LLVMContext::MD_range);
4281 }
4282 
4283 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4284   if (I.isAtomic())
4285     return visitAtomicLoad(I);
4286 
4287   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4288   const Value *SV = I.getOperand(0);
4289   if (TLI.supportSwiftError()) {
4290     // Swifterror values can come from either a function parameter with
4291     // swifterror attribute or an alloca with swifterror attribute.
4292     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4293       if (Arg->hasSwiftErrorAttr())
4294         return visitLoadFromSwiftError(I);
4295     }
4296 
4297     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4298       if (Alloca->isSwiftError())
4299         return visitLoadFromSwiftError(I);
4300     }
4301   }
4302 
4303   SDValue Ptr = getValue(SV);
4304 
4305   Type *Ty = I.getType();
4306   SmallVector<EVT, 4> ValueVTs, MemVTs;
4307   SmallVector<TypeSize, 4> Offsets;
4308   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets, 0);
4309   unsigned NumValues = ValueVTs.size();
4310   if (NumValues == 0)
4311     return;
4312 
4313   Align Alignment = I.getAlign();
4314   AAMDNodes AAInfo = I.getAAMetadata();
4315   const MDNode *Ranges = getRangeMetadata(I);
4316   bool isVolatile = I.isVolatile();
4317   MachineMemOperand::Flags MMOFlags =
4318       TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4319 
4320   SDValue Root;
4321   bool ConstantMemory = false;
4322   if (isVolatile)
4323     // Serialize volatile loads with other side effects.
4324     Root = getRoot();
4325   else if (NumValues > MaxParallelChains)
4326     Root = getMemoryRoot();
4327   else if (AA &&
4328            AA->pointsToConstantMemory(MemoryLocation(
4329                SV,
4330                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4331                AAInfo))) {
4332     // Do not serialize (non-volatile) loads of constant memory with anything.
4333     Root = DAG.getEntryNode();
4334     ConstantMemory = true;
4335     MMOFlags |= MachineMemOperand::MOInvariant;
4336   } else {
4337     // Do not serialize non-volatile loads against each other.
4338     Root = DAG.getRoot();
4339   }
4340 
4341   SDLoc dl = getCurSDLoc();
4342 
4343   if (isVolatile)
4344     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4345 
4346   SmallVector<SDValue, 4> Values(NumValues);
4347   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4348 
4349   unsigned ChainI = 0;
4350   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4351     // Serializing loads here may result in excessive register pressure, and
4352     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4353     // could recover a bit by hoisting nodes upward in the chain by recognizing
4354     // they are side-effect free or do not alias. The optimizer should really
4355     // avoid this case by converting large object/array copies to llvm.memcpy
4356     // (MaxParallelChains should always remain as failsafe).
4357     if (ChainI == MaxParallelChains) {
4358       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4359       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4360                                   ArrayRef(Chains.data(), ChainI));
4361       Root = Chain;
4362       ChainI = 0;
4363     }
4364 
4365     // TODO: MachinePointerInfo only supports a fixed length offset.
4366     MachinePointerInfo PtrInfo =
4367         !Offsets[i].isScalable() || Offsets[i].isZero()
4368             ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue())
4369             : MachinePointerInfo();
4370 
4371     SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4372     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment,
4373                             MMOFlags, AAInfo, Ranges);
4374     Chains[ChainI] = L.getValue(1);
4375 
4376     if (MemVTs[i] != ValueVTs[i])
4377       L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]);
4378 
4379     Values[i] = L;
4380   }
4381 
4382   if (!ConstantMemory) {
4383     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4384                                 ArrayRef(Chains.data(), ChainI));
4385     if (isVolatile)
4386       DAG.setRoot(Chain);
4387     else
4388       PendingLoads.push_back(Chain);
4389   }
4390 
4391   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4392                            DAG.getVTList(ValueVTs), Values));
4393 }
4394 
4395 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4396   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4397          "call visitStoreToSwiftError when backend supports swifterror");
4398 
4399   SmallVector<EVT, 4> ValueVTs;
4400   SmallVector<uint64_t, 4> Offsets;
4401   const Value *SrcV = I.getOperand(0);
4402   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4403                   SrcV->getType(), ValueVTs, &Offsets, 0);
4404   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4405          "expect a single EVT for swifterror");
4406 
4407   SDValue Src = getValue(SrcV);
4408   // Create a virtual register, then update the virtual register.
4409   Register VReg =
4410       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4411   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4412   // Chain can be getRoot or getControlRoot.
4413   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4414                                       SDValue(Src.getNode(), Src.getResNo()));
4415   DAG.setRoot(CopyNode);
4416 }
4417 
4418 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4419   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4420          "call visitLoadFromSwiftError when backend supports swifterror");
4421 
4422   assert(!I.isVolatile() &&
4423          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4424          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4425          "Support volatile, non temporal, invariant for load_from_swift_error");
4426 
4427   const Value *SV = I.getOperand(0);
4428   Type *Ty = I.getType();
4429   assert(
4430       (!AA ||
4431        !AA->pointsToConstantMemory(MemoryLocation(
4432            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4433            I.getAAMetadata()))) &&
4434       "load_from_swift_error should not be constant memory");
4435 
4436   SmallVector<EVT, 4> ValueVTs;
4437   SmallVector<uint64_t, 4> Offsets;
4438   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4439                   ValueVTs, &Offsets, 0);
4440   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4441          "expect a single EVT for swifterror");
4442 
4443   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4444   SDValue L = DAG.getCopyFromReg(
4445       getRoot(), getCurSDLoc(),
4446       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4447 
4448   setValue(&I, L);
4449 }
4450 
4451 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4452   if (I.isAtomic())
4453     return visitAtomicStore(I);
4454 
4455   const Value *SrcV = I.getOperand(0);
4456   const Value *PtrV = I.getOperand(1);
4457 
4458   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4459   if (TLI.supportSwiftError()) {
4460     // Swifterror values can come from either a function parameter with
4461     // swifterror attribute or an alloca with swifterror attribute.
4462     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4463       if (Arg->hasSwiftErrorAttr())
4464         return visitStoreToSwiftError(I);
4465     }
4466 
4467     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4468       if (Alloca->isSwiftError())
4469         return visitStoreToSwiftError(I);
4470     }
4471   }
4472 
4473   SmallVector<EVT, 4> ValueVTs, MemVTs;
4474   SmallVector<TypeSize, 4> Offsets;
4475   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4476                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets, 0);
4477   unsigned NumValues = ValueVTs.size();
4478   if (NumValues == 0)
4479     return;
4480 
4481   // Get the lowered operands. Note that we do this after
4482   // checking if NumResults is zero, because with zero results
4483   // the operands won't have values in the map.
4484   SDValue Src = getValue(SrcV);
4485   SDValue Ptr = getValue(PtrV);
4486 
4487   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4488   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4489   SDLoc dl = getCurSDLoc();
4490   Align Alignment = I.getAlign();
4491   AAMDNodes AAInfo = I.getAAMetadata();
4492 
4493   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4494 
4495   unsigned ChainI = 0;
4496   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4497     // See visitLoad comments.
4498     if (ChainI == MaxParallelChains) {
4499       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4500                                   ArrayRef(Chains.data(), ChainI));
4501       Root = Chain;
4502       ChainI = 0;
4503     }
4504 
4505     // TODO: MachinePointerInfo only supports a fixed length offset.
4506     MachinePointerInfo PtrInfo =
4507         !Offsets[i].isScalable() || Offsets[i].isZero()
4508             ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue())
4509             : MachinePointerInfo();
4510 
4511     SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4512     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4513     if (MemVTs[i] != ValueVTs[i])
4514       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4515     SDValue St =
4516         DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo);
4517     Chains[ChainI] = St;
4518   }
4519 
4520   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4521                                   ArrayRef(Chains.data(), ChainI));
4522   setValue(&I, StoreNode);
4523   DAG.setRoot(StoreNode);
4524 }
4525 
4526 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4527                                            bool IsCompressing) {
4528   SDLoc sdl = getCurSDLoc();
4529 
4530   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4531                                MaybeAlign &Alignment) {
4532     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4533     Src0 = I.getArgOperand(0);
4534     Ptr = I.getArgOperand(1);
4535     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
4536     Mask = I.getArgOperand(3);
4537   };
4538   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4539                                     MaybeAlign &Alignment) {
4540     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4541     Src0 = I.getArgOperand(0);
4542     Ptr = I.getArgOperand(1);
4543     Mask = I.getArgOperand(2);
4544     Alignment = std::nullopt;
4545   };
4546 
4547   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4548   MaybeAlign Alignment;
4549   if (IsCompressing)
4550     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4551   else
4552     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4553 
4554   SDValue Ptr = getValue(PtrOperand);
4555   SDValue Src0 = getValue(Src0Operand);
4556   SDValue Mask = getValue(MaskOperand);
4557   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4558 
4559   EVT VT = Src0.getValueType();
4560   if (!Alignment)
4561     Alignment = DAG.getEVTAlign(VT);
4562 
4563   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4564       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4565       MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata());
4566   SDValue StoreNode =
4567       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4568                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4569   DAG.setRoot(StoreNode);
4570   setValue(&I, StoreNode);
4571 }
4572 
4573 // Get a uniform base for the Gather/Scatter intrinsic.
4574 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4575 // We try to represent it as a base pointer + vector of indices.
4576 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4577 // The first operand of the GEP may be a single pointer or a vector of pointers
4578 // Example:
4579 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4580 //  or
4581 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4582 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4583 //
4584 // When the first GEP operand is a single pointer - it is the uniform base we
4585 // are looking for. If first operand of the GEP is a splat vector - we
4586 // extract the splat value and use it as a uniform base.
4587 // In all other cases the function returns 'false'.
4588 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4589                            ISD::MemIndexType &IndexType, SDValue &Scale,
4590                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB,
4591                            uint64_t ElemSize) {
4592   SelectionDAG& DAG = SDB->DAG;
4593   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4594   const DataLayout &DL = DAG.getDataLayout();
4595 
4596   assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
4597 
4598   // Handle splat constant pointer.
4599   if (auto *C = dyn_cast<Constant>(Ptr)) {
4600     C = C->getSplatValue();
4601     if (!C)
4602       return false;
4603 
4604     Base = SDB->getValue(C);
4605 
4606     ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4607     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4608     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4609     IndexType = ISD::SIGNED_SCALED;
4610     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4611     return true;
4612   }
4613 
4614   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4615   if (!GEP || GEP->getParent() != CurBB)
4616     return false;
4617 
4618   if (GEP->getNumOperands() != 2)
4619     return false;
4620 
4621   const Value *BasePtr = GEP->getPointerOperand();
4622   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4623 
4624   // Make sure the base is scalar and the index is a vector.
4625   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4626     return false;
4627 
4628   TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType());
4629   if (ScaleVal.isScalable())
4630     return false;
4631 
4632   // Target may not support the required addressing mode.
4633   if (ScaleVal != 1 &&
4634       !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize))
4635     return false;
4636 
4637   Base = SDB->getValue(BasePtr);
4638   Index = SDB->getValue(IndexVal);
4639   IndexType = ISD::SIGNED_SCALED;
4640 
4641   Scale =
4642       DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4643   return true;
4644 }
4645 
4646 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4647   SDLoc sdl = getCurSDLoc();
4648 
4649   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4650   const Value *Ptr = I.getArgOperand(1);
4651   SDValue Src0 = getValue(I.getArgOperand(0));
4652   SDValue Mask = getValue(I.getArgOperand(3));
4653   EVT VT = Src0.getValueType();
4654   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4655                         ->getMaybeAlignValue()
4656                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4657   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4658 
4659   SDValue Base;
4660   SDValue Index;
4661   ISD::MemIndexType IndexType;
4662   SDValue Scale;
4663   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4664                                     I.getParent(), VT.getScalarStoreSize());
4665 
4666   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4667   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4668       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4669       // TODO: Make MachineMemOperands aware of scalable
4670       // vectors.
4671       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata());
4672   if (!UniformBase) {
4673     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4674     Index = getValue(Ptr);
4675     IndexType = ISD::SIGNED_SCALED;
4676     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4677   }
4678 
4679   EVT IdxVT = Index.getValueType();
4680   EVT EltTy = IdxVT.getVectorElementType();
4681   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4682     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4683     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4684   }
4685 
4686   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4687   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4688                                          Ops, MMO, IndexType, false);
4689   DAG.setRoot(Scatter);
4690   setValue(&I, Scatter);
4691 }
4692 
4693 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4694   SDLoc sdl = getCurSDLoc();
4695 
4696   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4697                               MaybeAlign &Alignment) {
4698     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4699     Ptr = I.getArgOperand(0);
4700     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4701     Mask = I.getArgOperand(2);
4702     Src0 = I.getArgOperand(3);
4703   };
4704   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4705                                  MaybeAlign &Alignment) {
4706     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4707     Ptr = I.getArgOperand(0);
4708     Alignment = std::nullopt;
4709     Mask = I.getArgOperand(1);
4710     Src0 = I.getArgOperand(2);
4711   };
4712 
4713   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4714   MaybeAlign Alignment;
4715   if (IsExpanding)
4716     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4717   else
4718     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4719 
4720   SDValue Ptr = getValue(PtrOperand);
4721   SDValue Src0 = getValue(Src0Operand);
4722   SDValue Mask = getValue(MaskOperand);
4723   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4724 
4725   EVT VT = Src0.getValueType();
4726   if (!Alignment)
4727     Alignment = DAG.getEVTAlign(VT);
4728 
4729   AAMDNodes AAInfo = I.getAAMetadata();
4730   const MDNode *Ranges = getRangeMetadata(I);
4731 
4732   // Do not serialize masked loads of constant memory with anything.
4733   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
4734   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4735 
4736   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4737 
4738   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4739       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4740       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
4741 
4742   SDValue Load =
4743       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4744                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4745   if (AddToChain)
4746     PendingLoads.push_back(Load.getValue(1));
4747   setValue(&I, Load);
4748 }
4749 
4750 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4751   SDLoc sdl = getCurSDLoc();
4752 
4753   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4754   const Value *Ptr = I.getArgOperand(0);
4755   SDValue Src0 = getValue(I.getArgOperand(3));
4756   SDValue Mask = getValue(I.getArgOperand(2));
4757 
4758   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4759   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4760   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4761                         ->getMaybeAlignValue()
4762                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4763 
4764   const MDNode *Ranges = getRangeMetadata(I);
4765 
4766   SDValue Root = DAG.getRoot();
4767   SDValue Base;
4768   SDValue Index;
4769   ISD::MemIndexType IndexType;
4770   SDValue Scale;
4771   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4772                                     I.getParent(), VT.getScalarStoreSize());
4773   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4774   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4775       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4776       // TODO: Make MachineMemOperands aware of scalable
4777       // vectors.
4778       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges);
4779 
4780   if (!UniformBase) {
4781     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4782     Index = getValue(Ptr);
4783     IndexType = ISD::SIGNED_SCALED;
4784     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4785   }
4786 
4787   EVT IdxVT = Index.getValueType();
4788   EVT EltTy = IdxVT.getVectorElementType();
4789   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4790     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4791     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4792   }
4793 
4794   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4795   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4796                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
4797 
4798   PendingLoads.push_back(Gather.getValue(1));
4799   setValue(&I, Gather);
4800 }
4801 
4802 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4803   SDLoc dl = getCurSDLoc();
4804   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4805   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4806   SyncScope::ID SSID = I.getSyncScopeID();
4807 
4808   SDValue InChain = getRoot();
4809 
4810   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4811   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4812 
4813   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4814   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4815 
4816   MachineFunction &MF = DAG.getMachineFunction();
4817   MachineMemOperand *MMO = MF.getMachineMemOperand(
4818       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4819       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4820       FailureOrdering);
4821 
4822   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4823                                    dl, MemVT, VTs, InChain,
4824                                    getValue(I.getPointerOperand()),
4825                                    getValue(I.getCompareOperand()),
4826                                    getValue(I.getNewValOperand()), MMO);
4827 
4828   SDValue OutChain = L.getValue(2);
4829 
4830   setValue(&I, L);
4831   DAG.setRoot(OutChain);
4832 }
4833 
4834 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4835   SDLoc dl = getCurSDLoc();
4836   ISD::NodeType NT;
4837   switch (I.getOperation()) {
4838   default: llvm_unreachable("Unknown atomicrmw operation");
4839   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4840   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4841   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4842   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4843   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4844   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4845   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4846   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4847   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4848   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4849   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4850   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4851   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4852   case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break;
4853   case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break;
4854   case AtomicRMWInst::UIncWrap:
4855     NT = ISD::ATOMIC_LOAD_UINC_WRAP;
4856     break;
4857   case AtomicRMWInst::UDecWrap:
4858     NT = ISD::ATOMIC_LOAD_UDEC_WRAP;
4859     break;
4860   }
4861   AtomicOrdering Ordering = I.getOrdering();
4862   SyncScope::ID SSID = I.getSyncScopeID();
4863 
4864   SDValue InChain = getRoot();
4865 
4866   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4867   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4868   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4869 
4870   MachineFunction &MF = DAG.getMachineFunction();
4871   MachineMemOperand *MMO = MF.getMachineMemOperand(
4872       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4873       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4874 
4875   SDValue L =
4876     DAG.getAtomic(NT, dl, MemVT, InChain,
4877                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4878                   MMO);
4879 
4880   SDValue OutChain = L.getValue(1);
4881 
4882   setValue(&I, L);
4883   DAG.setRoot(OutChain);
4884 }
4885 
4886 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4887   SDLoc dl = getCurSDLoc();
4888   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4889   SDValue Ops[3];
4890   Ops[0] = getRoot();
4891   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4892                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4893   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4894                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4895   SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops);
4896   setValue(&I, N);
4897   DAG.setRoot(N);
4898 }
4899 
4900 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4901   SDLoc dl = getCurSDLoc();
4902   AtomicOrdering Order = I.getOrdering();
4903   SyncScope::ID SSID = I.getSyncScopeID();
4904 
4905   SDValue InChain = getRoot();
4906 
4907   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4908   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4909   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4910 
4911   if (!TLI.supportsUnalignedAtomics() &&
4912       I.getAlign().value() < MemVT.getSizeInBits() / 8)
4913     report_fatal_error("Cannot generate unaligned atomic load");
4914 
4915   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4916 
4917   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4918       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4919       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4920 
4921   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4922 
4923   SDValue Ptr = getValue(I.getPointerOperand());
4924   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4925                             Ptr, MMO);
4926 
4927   SDValue OutChain = L.getValue(1);
4928   if (MemVT != VT)
4929     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4930 
4931   setValue(&I, L);
4932   DAG.setRoot(OutChain);
4933 }
4934 
4935 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4936   SDLoc dl = getCurSDLoc();
4937 
4938   AtomicOrdering Ordering = I.getOrdering();
4939   SyncScope::ID SSID = I.getSyncScopeID();
4940 
4941   SDValue InChain = getRoot();
4942 
4943   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4944   EVT MemVT =
4945       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4946 
4947   if (!TLI.supportsUnalignedAtomics() &&
4948       I.getAlign().value() < MemVT.getSizeInBits() / 8)
4949     report_fatal_error("Cannot generate unaligned atomic store");
4950 
4951   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4952 
4953   MachineFunction &MF = DAG.getMachineFunction();
4954   MachineMemOperand *MMO = MF.getMachineMemOperand(
4955       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4956       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4957 
4958   SDValue Val = getValue(I.getValueOperand());
4959   if (Val.getValueType() != MemVT)
4960     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4961   SDValue Ptr = getValue(I.getPointerOperand());
4962 
4963   SDValue OutChain =
4964       DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val, Ptr, MMO);
4965 
4966   setValue(&I, OutChain);
4967   DAG.setRoot(OutChain);
4968 }
4969 
4970 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4971 /// node.
4972 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4973                                                unsigned Intrinsic) {
4974   // Ignore the callsite's attributes. A specific call site may be marked with
4975   // readnone, but the lowering code will expect the chain based on the
4976   // definition.
4977   const Function *F = I.getCalledFunction();
4978   bool HasChain = !F->doesNotAccessMemory();
4979   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4980 
4981   // Build the operand list.
4982   SmallVector<SDValue, 8> Ops;
4983   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4984     if (OnlyLoad) {
4985       // We don't need to serialize loads against other loads.
4986       Ops.push_back(DAG.getRoot());
4987     } else {
4988       Ops.push_back(getRoot());
4989     }
4990   }
4991 
4992   // Info is set by getTgtMemIntrinsic
4993   TargetLowering::IntrinsicInfo Info;
4994   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4995   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4996                                                DAG.getMachineFunction(),
4997                                                Intrinsic);
4998 
4999   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
5000   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
5001       Info.opc == ISD::INTRINSIC_W_CHAIN)
5002     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
5003                                         TLI.getPointerTy(DAG.getDataLayout())));
5004 
5005   // Add all operands of the call to the operand list.
5006   for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
5007     const Value *Arg = I.getArgOperand(i);
5008     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
5009       Ops.push_back(getValue(Arg));
5010       continue;
5011     }
5012 
5013     // Use TargetConstant instead of a regular constant for immarg.
5014     EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
5015     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
5016       assert(CI->getBitWidth() <= 64 &&
5017              "large intrinsic immediates not handled");
5018       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
5019     } else {
5020       Ops.push_back(
5021           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
5022     }
5023   }
5024 
5025   SmallVector<EVT, 4> ValueVTs;
5026   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
5027 
5028   if (HasChain)
5029     ValueVTs.push_back(MVT::Other);
5030 
5031   SDVTList VTs = DAG.getVTList(ValueVTs);
5032 
5033   // Propagate fast-math-flags from IR to node(s).
5034   SDNodeFlags Flags;
5035   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
5036     Flags.copyFMF(*FPMO);
5037   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
5038 
5039   // Create the node.
5040   SDValue Result;
5041   // In some cases, custom collection of operands from CallInst I may be needed.
5042   TLI.CollectTargetIntrinsicOperands(I, Ops, DAG);
5043   if (IsTgtIntrinsic) {
5044     // This is target intrinsic that touches memory
5045     //
5046     // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic
5047     //       didn't yield anything useful.
5048     MachinePointerInfo MPI;
5049     if (Info.ptrVal)
5050       MPI = MachinePointerInfo(Info.ptrVal, Info.offset);
5051     else if (Info.fallbackAddressSpace)
5052       MPI = MachinePointerInfo(*Info.fallbackAddressSpace);
5053     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops,
5054                                      Info.memVT, MPI, Info.align, Info.flags,
5055                                      Info.size, I.getAAMetadata());
5056   } else if (!HasChain) {
5057     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
5058   } else if (!I.getType()->isVoidTy()) {
5059     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
5060   } else {
5061     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
5062   }
5063 
5064   if (HasChain) {
5065     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
5066     if (OnlyLoad)
5067       PendingLoads.push_back(Chain);
5068     else
5069       DAG.setRoot(Chain);
5070   }
5071 
5072   if (!I.getType()->isVoidTy()) {
5073     if (!isa<VectorType>(I.getType()))
5074       Result = lowerRangeToAssertZExt(DAG, I, Result);
5075 
5076     MaybeAlign Alignment = I.getRetAlign();
5077 
5078     // Insert `assertalign` node if there's an alignment.
5079     if (InsertAssertAlign && Alignment) {
5080       Result =
5081           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
5082     }
5083 
5084     setValue(&I, Result);
5085   }
5086 }
5087 
5088 /// GetSignificand - Get the significand and build it into a floating-point
5089 /// number with exponent of 1:
5090 ///
5091 ///   Op = (Op & 0x007fffff) | 0x3f800000;
5092 ///
5093 /// where Op is the hexadecimal representation of floating point value.
5094 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
5095   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5096                            DAG.getConstant(0x007fffff, dl, MVT::i32));
5097   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
5098                            DAG.getConstant(0x3f800000, dl, MVT::i32));
5099   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
5100 }
5101 
5102 /// GetExponent - Get the exponent:
5103 ///
5104 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
5105 ///
5106 /// where Op is the hexadecimal representation of floating point value.
5107 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
5108                            const TargetLowering &TLI, const SDLoc &dl) {
5109   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5110                            DAG.getConstant(0x7f800000, dl, MVT::i32));
5111   SDValue t1 = DAG.getNode(
5112       ISD::SRL, dl, MVT::i32, t0,
5113       DAG.getConstant(23, dl,
5114                       TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout())));
5115   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
5116                            DAG.getConstant(127, dl, MVT::i32));
5117   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
5118 }
5119 
5120 /// getF32Constant - Get 32-bit floating point constant.
5121 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
5122                               const SDLoc &dl) {
5123   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
5124                            MVT::f32);
5125 }
5126 
5127 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
5128                                        SelectionDAG &DAG) {
5129   // TODO: What fast-math-flags should be set on the floating-point nodes?
5130 
5131   //   IntegerPartOfX = ((int32_t)(t0);
5132   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
5133 
5134   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
5135   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
5136   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
5137 
5138   //   IntegerPartOfX <<= 23;
5139   IntegerPartOfX =
5140       DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
5141                   DAG.getConstant(23, dl,
5142                                   DAG.getTargetLoweringInfo().getShiftAmountTy(
5143                                       MVT::i32, DAG.getDataLayout())));
5144 
5145   SDValue TwoToFractionalPartOfX;
5146   if (LimitFloatPrecision <= 6) {
5147     // For floating-point precision of 6:
5148     //
5149     //   TwoToFractionalPartOfX =
5150     //     0.997535578f +
5151     //       (0.735607626f + 0.252464424f * x) * x;
5152     //
5153     // error 0.0144103317, which is 6 bits
5154     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5155                              getF32Constant(DAG, 0x3e814304, dl));
5156     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5157                              getF32Constant(DAG, 0x3f3c50c8, dl));
5158     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5159     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5160                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
5161   } else if (LimitFloatPrecision <= 12) {
5162     // For floating-point precision of 12:
5163     //
5164     //   TwoToFractionalPartOfX =
5165     //     0.999892986f +
5166     //       (0.696457318f +
5167     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
5168     //
5169     // error 0.000107046256, which is 13 to 14 bits
5170     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5171                              getF32Constant(DAG, 0x3da235e3, dl));
5172     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5173                              getF32Constant(DAG, 0x3e65b8f3, dl));
5174     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5175     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5176                              getF32Constant(DAG, 0x3f324b07, dl));
5177     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5178     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5179                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
5180   } else { // LimitFloatPrecision <= 18
5181     // For floating-point precision of 18:
5182     //
5183     //   TwoToFractionalPartOfX =
5184     //     0.999999982f +
5185     //       (0.693148872f +
5186     //         (0.240227044f +
5187     //           (0.554906021e-1f +
5188     //             (0.961591928e-2f +
5189     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
5190     // error 2.47208000*10^(-7), which is better than 18 bits
5191     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5192                              getF32Constant(DAG, 0x3924b03e, dl));
5193     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5194                              getF32Constant(DAG, 0x3ab24b87, dl));
5195     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5196     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5197                              getF32Constant(DAG, 0x3c1d8c17, dl));
5198     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5199     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5200                              getF32Constant(DAG, 0x3d634a1d, dl));
5201     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5202     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5203                              getF32Constant(DAG, 0x3e75fe14, dl));
5204     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5205     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
5206                               getF32Constant(DAG, 0x3f317234, dl));
5207     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
5208     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
5209                                          getF32Constant(DAG, 0x3f800000, dl));
5210   }
5211 
5212   // Add the exponent into the result in integer domain.
5213   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5214   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5215                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5216 }
5217 
5218 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
5219 /// limited-precision mode.
5220 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5221                          const TargetLowering &TLI, SDNodeFlags Flags) {
5222   if (Op.getValueType() == MVT::f32 &&
5223       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5224 
5225     // Put the exponent in the right bit position for later addition to the
5226     // final result:
5227     //
5228     // t0 = Op * log2(e)
5229 
5230     // TODO: What fast-math-flags should be set here?
5231     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5232                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5233     return getLimitedPrecisionExp2(t0, dl, DAG);
5234   }
5235 
5236   // No special expansion.
5237   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5238 }
5239 
5240 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5241 /// limited-precision mode.
5242 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5243                          const TargetLowering &TLI, SDNodeFlags Flags) {
5244   // TODO: What fast-math-flags should be set on the floating-point nodes?
5245 
5246   if (Op.getValueType() == MVT::f32 &&
5247       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5248     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5249 
5250     // Scale the exponent by log(2).
5251     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5252     SDValue LogOfExponent =
5253         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5254                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5255 
5256     // Get the significand and build it into a floating-point number with
5257     // exponent of 1.
5258     SDValue X = GetSignificand(DAG, Op1, dl);
5259 
5260     SDValue LogOfMantissa;
5261     if (LimitFloatPrecision <= 6) {
5262       // For floating-point precision of 6:
5263       //
5264       //   LogofMantissa =
5265       //     -1.1609546f +
5266       //       (1.4034025f - 0.23903021f * x) * x;
5267       //
5268       // error 0.0034276066, which is better than 8 bits
5269       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5270                                getF32Constant(DAG, 0xbe74c456, dl));
5271       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5272                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5273       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5274       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5275                                   getF32Constant(DAG, 0x3f949a29, dl));
5276     } else if (LimitFloatPrecision <= 12) {
5277       // For floating-point precision of 12:
5278       //
5279       //   LogOfMantissa =
5280       //     -1.7417939f +
5281       //       (2.8212026f +
5282       //         (-1.4699568f +
5283       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5284       //
5285       // error 0.000061011436, which is 14 bits
5286       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5287                                getF32Constant(DAG, 0xbd67b6d6, dl));
5288       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5289                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5290       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5291       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5292                                getF32Constant(DAG, 0x3fbc278b, dl));
5293       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5294       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5295                                getF32Constant(DAG, 0x40348e95, dl));
5296       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5297       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5298                                   getF32Constant(DAG, 0x3fdef31a, dl));
5299     } else { // LimitFloatPrecision <= 18
5300       // For floating-point precision of 18:
5301       //
5302       //   LogOfMantissa =
5303       //     -2.1072184f +
5304       //       (4.2372794f +
5305       //         (-3.7029485f +
5306       //           (2.2781945f +
5307       //             (-0.87823314f +
5308       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5309       //
5310       // error 0.0000023660568, which is better than 18 bits
5311       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5312                                getF32Constant(DAG, 0xbc91e5ac, dl));
5313       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5314                                getF32Constant(DAG, 0x3e4350aa, dl));
5315       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5316       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5317                                getF32Constant(DAG, 0x3f60d3e3, dl));
5318       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5319       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5320                                getF32Constant(DAG, 0x4011cdf0, dl));
5321       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5322       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5323                                getF32Constant(DAG, 0x406cfd1c, dl));
5324       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5325       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5326                                getF32Constant(DAG, 0x408797cb, dl));
5327       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5328       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5329                                   getF32Constant(DAG, 0x4006dcab, dl));
5330     }
5331 
5332     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5333   }
5334 
5335   // No special expansion.
5336   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5337 }
5338 
5339 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5340 /// limited-precision mode.
5341 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5342                           const TargetLowering &TLI, SDNodeFlags Flags) {
5343   // TODO: What fast-math-flags should be set on the floating-point nodes?
5344 
5345   if (Op.getValueType() == MVT::f32 &&
5346       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5347     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5348 
5349     // Get the exponent.
5350     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5351 
5352     // Get the significand and build it into a floating-point number with
5353     // exponent of 1.
5354     SDValue X = GetSignificand(DAG, Op1, dl);
5355 
5356     // Different possible minimax approximations of significand in
5357     // floating-point for various degrees of accuracy over [1,2].
5358     SDValue Log2ofMantissa;
5359     if (LimitFloatPrecision <= 6) {
5360       // For floating-point precision of 6:
5361       //
5362       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5363       //
5364       // error 0.0049451742, which is more than 7 bits
5365       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5366                                getF32Constant(DAG, 0xbeb08fe0, dl));
5367       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5368                                getF32Constant(DAG, 0x40019463, dl));
5369       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5370       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5371                                    getF32Constant(DAG, 0x3fd6633d, dl));
5372     } else if (LimitFloatPrecision <= 12) {
5373       // For floating-point precision of 12:
5374       //
5375       //   Log2ofMantissa =
5376       //     -2.51285454f +
5377       //       (4.07009056f +
5378       //         (-2.12067489f +
5379       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5380       //
5381       // error 0.0000876136000, which is better than 13 bits
5382       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5383                                getF32Constant(DAG, 0xbda7262e, dl));
5384       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5385                                getF32Constant(DAG, 0x3f25280b, dl));
5386       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5387       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5388                                getF32Constant(DAG, 0x4007b923, dl));
5389       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5390       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5391                                getF32Constant(DAG, 0x40823e2f, dl));
5392       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5393       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5394                                    getF32Constant(DAG, 0x4020d29c, dl));
5395     } else { // LimitFloatPrecision <= 18
5396       // For floating-point precision of 18:
5397       //
5398       //   Log2ofMantissa =
5399       //     -3.0400495f +
5400       //       (6.1129976f +
5401       //         (-5.3420409f +
5402       //           (3.2865683f +
5403       //             (-1.2669343f +
5404       //               (0.27515199f -
5405       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5406       //
5407       // error 0.0000018516, which is better than 18 bits
5408       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5409                                getF32Constant(DAG, 0xbcd2769e, dl));
5410       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5411                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5412       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5413       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5414                                getF32Constant(DAG, 0x3fa22ae7, dl));
5415       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5416       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5417                                getF32Constant(DAG, 0x40525723, dl));
5418       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5419       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5420                                getF32Constant(DAG, 0x40aaf200, dl));
5421       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5422       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5423                                getF32Constant(DAG, 0x40c39dad, dl));
5424       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5425       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5426                                    getF32Constant(DAG, 0x4042902c, dl));
5427     }
5428 
5429     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5430   }
5431 
5432   // No special expansion.
5433   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5434 }
5435 
5436 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5437 /// limited-precision mode.
5438 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5439                            const TargetLowering &TLI, SDNodeFlags Flags) {
5440   // TODO: What fast-math-flags should be set on the floating-point nodes?
5441 
5442   if (Op.getValueType() == MVT::f32 &&
5443       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5444     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5445 
5446     // Scale the exponent by log10(2) [0.30102999f].
5447     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5448     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5449                                         getF32Constant(DAG, 0x3e9a209a, dl));
5450 
5451     // Get the significand and build it into a floating-point number with
5452     // exponent of 1.
5453     SDValue X = GetSignificand(DAG, Op1, dl);
5454 
5455     SDValue Log10ofMantissa;
5456     if (LimitFloatPrecision <= 6) {
5457       // For floating-point precision of 6:
5458       //
5459       //   Log10ofMantissa =
5460       //     -0.50419619f +
5461       //       (0.60948995f - 0.10380950f * x) * x;
5462       //
5463       // error 0.0014886165, which is 6 bits
5464       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5465                                getF32Constant(DAG, 0xbdd49a13, dl));
5466       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5467                                getF32Constant(DAG, 0x3f1c0789, dl));
5468       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5469       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5470                                     getF32Constant(DAG, 0x3f011300, dl));
5471     } else if (LimitFloatPrecision <= 12) {
5472       // For floating-point precision of 12:
5473       //
5474       //   Log10ofMantissa =
5475       //     -0.64831180f +
5476       //       (0.91751397f +
5477       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5478       //
5479       // error 0.00019228036, which is better than 12 bits
5480       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5481                                getF32Constant(DAG, 0x3d431f31, dl));
5482       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5483                                getF32Constant(DAG, 0x3ea21fb2, dl));
5484       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5485       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5486                                getF32Constant(DAG, 0x3f6ae232, dl));
5487       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5488       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5489                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5490     } else { // LimitFloatPrecision <= 18
5491       // For floating-point precision of 18:
5492       //
5493       //   Log10ofMantissa =
5494       //     -0.84299375f +
5495       //       (1.5327582f +
5496       //         (-1.0688956f +
5497       //           (0.49102474f +
5498       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5499       //
5500       // error 0.0000037995730, which is better than 18 bits
5501       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5502                                getF32Constant(DAG, 0x3c5d51ce, dl));
5503       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5504                                getF32Constant(DAG, 0x3e00685a, dl));
5505       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5506       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5507                                getF32Constant(DAG, 0x3efb6798, dl));
5508       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5509       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5510                                getF32Constant(DAG, 0x3f88d192, dl));
5511       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5512       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5513                                getF32Constant(DAG, 0x3fc4316c, dl));
5514       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5515       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5516                                     getF32Constant(DAG, 0x3f57ce70, dl));
5517     }
5518 
5519     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5520   }
5521 
5522   // No special expansion.
5523   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5524 }
5525 
5526 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5527 /// limited-precision mode.
5528 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5529                           const TargetLowering &TLI, SDNodeFlags Flags) {
5530   if (Op.getValueType() == MVT::f32 &&
5531       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5532     return getLimitedPrecisionExp2(Op, dl, DAG);
5533 
5534   // No special expansion.
5535   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5536 }
5537 
5538 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5539 /// limited-precision mode with x == 10.0f.
5540 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5541                          SelectionDAG &DAG, const TargetLowering &TLI,
5542                          SDNodeFlags Flags) {
5543   bool IsExp10 = false;
5544   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5545       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5546     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5547       APFloat Ten(10.0f);
5548       IsExp10 = LHSC->isExactlyValue(Ten);
5549     }
5550   }
5551 
5552   // TODO: What fast-math-flags should be set on the FMUL node?
5553   if (IsExp10) {
5554     // Put the exponent in the right bit position for later addition to the
5555     // final result:
5556     //
5557     //   #define LOG2OF10 3.3219281f
5558     //   t0 = Op * LOG2OF10;
5559     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5560                              getF32Constant(DAG, 0x40549a78, dl));
5561     return getLimitedPrecisionExp2(t0, dl, DAG);
5562   }
5563 
5564   // No special expansion.
5565   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5566 }
5567 
5568 /// ExpandPowI - Expand a llvm.powi intrinsic.
5569 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5570                           SelectionDAG &DAG) {
5571   // If RHS is a constant, we can expand this out to a multiplication tree if
5572   // it's beneficial on the target, otherwise we end up lowering to a call to
5573   // __powidf2 (for example).
5574   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5575     unsigned Val = RHSC->getSExtValue();
5576 
5577     // powi(x, 0) -> 1.0
5578     if (Val == 0)
5579       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5580 
5581     if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI(
5582             Val, DAG.shouldOptForSize())) {
5583       // Get the exponent as a positive value.
5584       if ((int)Val < 0)
5585         Val = -Val;
5586       // We use the simple binary decomposition method to generate the multiply
5587       // sequence.  There are more optimal ways to do this (for example,
5588       // powi(x,15) generates one more multiply than it should), but this has
5589       // the benefit of being both really simple and much better than a libcall.
5590       SDValue Res; // Logically starts equal to 1.0
5591       SDValue CurSquare = LHS;
5592       // TODO: Intrinsics should have fast-math-flags that propagate to these
5593       // nodes.
5594       while (Val) {
5595         if (Val & 1) {
5596           if (Res.getNode())
5597             Res =
5598                 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare);
5599           else
5600             Res = CurSquare; // 1.0*CurSquare.
5601         }
5602 
5603         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5604                                 CurSquare, CurSquare);
5605         Val >>= 1;
5606       }
5607 
5608       // If the original was negative, invert the result, producing 1/(x*x*x).
5609       if (RHSC->getSExtValue() < 0)
5610         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5611                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5612       return Res;
5613     }
5614   }
5615 
5616   // Otherwise, expand to a libcall.
5617   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5618 }
5619 
5620 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5621                             SDValue LHS, SDValue RHS, SDValue Scale,
5622                             SelectionDAG &DAG, const TargetLowering &TLI) {
5623   EVT VT = LHS.getValueType();
5624   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5625   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5626   LLVMContext &Ctx = *DAG.getContext();
5627 
5628   // If the type is legal but the operation isn't, this node might survive all
5629   // the way to operation legalization. If we end up there and we do not have
5630   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5631   // node.
5632 
5633   // Coax the legalizer into expanding the node during type legalization instead
5634   // by bumping the size by one bit. This will force it to Promote, enabling the
5635   // early expansion and avoiding the need to expand later.
5636 
5637   // We don't have to do this if Scale is 0; that can always be expanded, unless
5638   // it's a saturating signed operation. Those can experience true integer
5639   // division overflow, a case which we must avoid.
5640 
5641   // FIXME: We wouldn't have to do this (or any of the early
5642   // expansion/promotion) if it was possible to expand a libcall of an
5643   // illegal type during operation legalization. But it's not, so things
5644   // get a bit hacky.
5645   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5646   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5647       (TLI.isTypeLegal(VT) ||
5648        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5649     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5650         Opcode, VT, ScaleInt);
5651     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5652       EVT PromVT;
5653       if (VT.isScalarInteger())
5654         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5655       else if (VT.isVector()) {
5656         PromVT = VT.getVectorElementType();
5657         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5658         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5659       } else
5660         llvm_unreachable("Wrong VT for DIVFIX?");
5661       LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT);
5662       RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT);
5663       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5664       // For saturating operations, we need to shift up the LHS to get the
5665       // proper saturation width, and then shift down again afterwards.
5666       if (Saturating)
5667         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5668                           DAG.getConstant(1, DL, ShiftTy));
5669       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5670       if (Saturating)
5671         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5672                           DAG.getConstant(1, DL, ShiftTy));
5673       return DAG.getZExtOrTrunc(Res, DL, VT);
5674     }
5675   }
5676 
5677   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5678 }
5679 
5680 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5681 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5682 static void
5683 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5684                      const SDValue &N) {
5685   switch (N.getOpcode()) {
5686   case ISD::CopyFromReg: {
5687     SDValue Op = N.getOperand(1);
5688     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5689                       Op.getValueType().getSizeInBits());
5690     return;
5691   }
5692   case ISD::BITCAST:
5693   case ISD::AssertZext:
5694   case ISD::AssertSext:
5695   case ISD::TRUNCATE:
5696     getUnderlyingArgRegs(Regs, N.getOperand(0));
5697     return;
5698   case ISD::BUILD_PAIR:
5699   case ISD::BUILD_VECTOR:
5700   case ISD::CONCAT_VECTORS:
5701     for (SDValue Op : N->op_values())
5702       getUnderlyingArgRegs(Regs, Op);
5703     return;
5704   default:
5705     return;
5706   }
5707 }
5708 
5709 /// If the DbgValueInst is a dbg_value of a function argument, create the
5710 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5711 /// instruction selection, they will be inserted to the entry BB.
5712 /// We don't currently support this for variadic dbg_values, as they shouldn't
5713 /// appear for function arguments or in the prologue.
5714 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5715     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5716     DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) {
5717   const Argument *Arg = dyn_cast<Argument>(V);
5718   if (!Arg)
5719     return false;
5720 
5721   MachineFunction &MF = DAG.getMachineFunction();
5722   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5723 
5724   // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
5725   // we've been asked to pursue.
5726   auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
5727                               bool Indirect) {
5728     if (Reg.isVirtual() && MF.useDebugInstrRef()) {
5729       // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
5730       // pointing at the VReg, which will be patched up later.
5731       auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
5732       SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg(
5733           /* Reg */ Reg, /* isDef */ false, /* isImp */ false,
5734           /* isKill */ false, /* isDead */ false,
5735           /* isUndef */ false, /* isEarlyClobber */ false,
5736           /* SubReg */ 0, /* isDebug */ true)});
5737 
5738       auto *NewDIExpr = FragExpr;
5739       // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
5740       // the DIExpression.
5741       if (Indirect)
5742         NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
5743       SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0});
5744       NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops);
5745       return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr);
5746     } else {
5747       // Create a completely standard DBG_VALUE.
5748       auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
5749       return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
5750     }
5751   };
5752 
5753   if (Kind == FuncArgumentDbgValueKind::Value) {
5754     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5755     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5756     // the entry block.
5757     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5758     if (!IsInEntryBlock)
5759       return false;
5760 
5761     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5762     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5763     // variable that also is a param.
5764     //
5765     // Although, if we are at the top of the entry block already, we can still
5766     // emit using ArgDbgValue. This might catch some situations when the
5767     // dbg.value refers to an argument that isn't used in the entry block, so
5768     // any CopyToReg node would be optimized out and the only way to express
5769     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5770     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5771     // we should only emit as ArgDbgValue if the Variable is an argument to the
5772     // current function, and the dbg.value intrinsic is found in the entry
5773     // block.
5774     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5775         !DL->getInlinedAt();
5776     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5777     if (!IsInPrologue && !VariableIsFunctionInputArg)
5778       return false;
5779 
5780     // Here we assume that a function argument on IR level only can be used to
5781     // describe one input parameter on source level. If we for example have
5782     // source code like this
5783     //
5784     //    struct A { long x, y; };
5785     //    void foo(struct A a, long b) {
5786     //      ...
5787     //      b = a.x;
5788     //      ...
5789     //    }
5790     //
5791     // and IR like this
5792     //
5793     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5794     //  entry:
5795     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5796     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5797     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5798     //    ...
5799     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5800     //    ...
5801     //
5802     // then the last dbg.value is describing a parameter "b" using a value that
5803     // is an argument. But since we already has used %a1 to describe a parameter
5804     // we should not handle that last dbg.value here (that would result in an
5805     // incorrect hoisting of the DBG_VALUE to the function entry).
5806     // Notice that we allow one dbg.value per IR level argument, to accommodate
5807     // for the situation with fragments above.
5808     if (VariableIsFunctionInputArg) {
5809       unsigned ArgNo = Arg->getArgNo();
5810       if (ArgNo >= FuncInfo.DescribedArgs.size())
5811         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5812       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5813         return false;
5814       FuncInfo.DescribedArgs.set(ArgNo);
5815     }
5816   }
5817 
5818   bool IsIndirect = false;
5819   std::optional<MachineOperand> Op;
5820   // Some arguments' frame index is recorded during argument lowering.
5821   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5822   if (FI != std::numeric_limits<int>::max())
5823     Op = MachineOperand::CreateFI(FI);
5824 
5825   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
5826   if (!Op && N.getNode()) {
5827     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5828     Register Reg;
5829     if (ArgRegsAndSizes.size() == 1)
5830       Reg = ArgRegsAndSizes.front().first;
5831 
5832     if (Reg && Reg.isVirtual()) {
5833       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5834       Register PR = RegInfo.getLiveInPhysReg(Reg);
5835       if (PR)
5836         Reg = PR;
5837     }
5838     if (Reg) {
5839       Op = MachineOperand::CreateReg(Reg, false);
5840       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5841     }
5842   }
5843 
5844   if (!Op && N.getNode()) {
5845     // Check if frame index is available.
5846     SDValue LCandidate = peekThroughBitcasts(N);
5847     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5848       if (FrameIndexSDNode *FINode =
5849           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5850         Op = MachineOperand::CreateFI(FINode->getIndex());
5851   }
5852 
5853   if (!Op) {
5854     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5855     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
5856                                          SplitRegs) {
5857       unsigned Offset = 0;
5858       for (const auto &RegAndSize : SplitRegs) {
5859         // If the expression is already a fragment, the current register
5860         // offset+size might extend beyond the fragment. In this case, only
5861         // the register bits that are inside the fragment are relevant.
5862         int RegFragmentSizeInBits = RegAndSize.second;
5863         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5864           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5865           // The register is entirely outside the expression fragment,
5866           // so is irrelevant for debug info.
5867           if (Offset >= ExprFragmentSizeInBits)
5868             break;
5869           // The register is partially outside the expression fragment, only
5870           // the low bits within the fragment are relevant for debug info.
5871           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5872             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5873           }
5874         }
5875 
5876         auto FragmentExpr = DIExpression::createFragmentExpression(
5877             Expr, Offset, RegFragmentSizeInBits);
5878         Offset += RegAndSize.second;
5879         // If a valid fragment expression cannot be created, the variable's
5880         // correct value cannot be determined and so it is set as Undef.
5881         if (!FragmentExpr) {
5882           SDDbgValue *SDV = DAG.getConstantDbgValue(
5883               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5884           DAG.AddDbgValue(SDV, false);
5885           continue;
5886         }
5887         MachineInstr *NewMI =
5888             MakeVRegDbgValue(RegAndSize.first, *FragmentExpr,
5889                              Kind != FuncArgumentDbgValueKind::Value);
5890         FuncInfo.ArgDbgValues.push_back(NewMI);
5891       }
5892     };
5893 
5894     // Check if ValueMap has reg number.
5895     DenseMap<const Value *, Register>::const_iterator
5896       VMI = FuncInfo.ValueMap.find(V);
5897     if (VMI != FuncInfo.ValueMap.end()) {
5898       const auto &TLI = DAG.getTargetLoweringInfo();
5899       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5900                        V->getType(), std::nullopt);
5901       if (RFV.occupiesMultipleRegs()) {
5902         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5903         return true;
5904       }
5905 
5906       Op = MachineOperand::CreateReg(VMI->second, false);
5907       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5908     } else if (ArgRegsAndSizes.size() > 1) {
5909       // This was split due to the calling convention, and no virtual register
5910       // mapping exists for the value.
5911       splitMultiRegDbgValue(ArgRegsAndSizes);
5912       return true;
5913     }
5914   }
5915 
5916   if (!Op)
5917     return false;
5918 
5919   assert(Variable->isValidLocationForIntrinsic(DL) &&
5920          "Expected inlined-at fields to agree");
5921   MachineInstr *NewMI = nullptr;
5922 
5923   if (Op->isReg())
5924     NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
5925   else
5926     NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
5927                     Variable, Expr);
5928 
5929   // Otherwise, use ArgDbgValues.
5930   FuncInfo.ArgDbgValues.push_back(NewMI);
5931   return true;
5932 }
5933 
5934 /// Return the appropriate SDDbgValue based on N.
5935 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5936                                              DILocalVariable *Variable,
5937                                              DIExpression *Expr,
5938                                              const DebugLoc &dl,
5939                                              unsigned DbgSDNodeOrder) {
5940   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5941     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5942     // stack slot locations.
5943     //
5944     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5945     // debug values here after optimization:
5946     //
5947     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5948     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5949     //
5950     // Both describe the direct values of their associated variables.
5951     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5952                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5953   }
5954   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5955                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5956 }
5957 
5958 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5959   switch (Intrinsic) {
5960   case Intrinsic::smul_fix:
5961     return ISD::SMULFIX;
5962   case Intrinsic::umul_fix:
5963     return ISD::UMULFIX;
5964   case Intrinsic::smul_fix_sat:
5965     return ISD::SMULFIXSAT;
5966   case Intrinsic::umul_fix_sat:
5967     return ISD::UMULFIXSAT;
5968   case Intrinsic::sdiv_fix:
5969     return ISD::SDIVFIX;
5970   case Intrinsic::udiv_fix:
5971     return ISD::UDIVFIX;
5972   case Intrinsic::sdiv_fix_sat:
5973     return ISD::SDIVFIXSAT;
5974   case Intrinsic::udiv_fix_sat:
5975     return ISD::UDIVFIXSAT;
5976   default:
5977     llvm_unreachable("Unhandled fixed point intrinsic");
5978   }
5979 }
5980 
5981 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5982                                            const char *FunctionName) {
5983   assert(FunctionName && "FunctionName must not be nullptr");
5984   SDValue Callee = DAG.getExternalSymbol(
5985       FunctionName,
5986       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5987   LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
5988 }
5989 
5990 /// Given a @llvm.call.preallocated.setup, return the corresponding
5991 /// preallocated call.
5992 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
5993   assert(cast<CallBase>(PreallocatedSetup)
5994                  ->getCalledFunction()
5995                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
5996          "expected call_preallocated_setup Value");
5997   for (const auto *U : PreallocatedSetup->users()) {
5998     auto *UseCall = cast<CallBase>(U);
5999     const Function *Fn = UseCall->getCalledFunction();
6000     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
6001       return UseCall;
6002     }
6003   }
6004   llvm_unreachable("expected corresponding call to preallocated setup/arg");
6005 }
6006 
6007 /// If DI is a debug value with an EntryValue expression, lower it using the
6008 /// corresponding physical register of the associated Argument value
6009 /// (guaranteed to exist by the verifier).
6010 bool SelectionDAGBuilder::visitEntryValueDbgValue(const DbgValueInst &DI) {
6011   DILocalVariable *Variable = DI.getVariable();
6012   DIExpression *Expr = DI.getExpression();
6013   if (!Expr->isEntryValue() || !hasSingleElement(DI.getValues()))
6014     return false;
6015 
6016   // These properties are guaranteed by the verifier.
6017   Argument *Arg = cast<Argument>(DI.getValue(0));
6018   assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync));
6019 
6020   auto ArgIt = FuncInfo.ValueMap.find(Arg);
6021   if (ArgIt == FuncInfo.ValueMap.end()) {
6022     LLVM_DEBUG(
6023         dbgs() << "Dropping dbg.value: expression is entry_value but "
6024                   "couldn't find an associated register for the Argument\n");
6025     return true;
6026   }
6027   Register ArgVReg = ArgIt->getSecond();
6028 
6029   for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins())
6030     if (ArgVReg == VirtReg || ArgVReg == PhysReg) {
6031       SDDbgValue *SDV =
6032           DAG.getVRegDbgValue(Variable, Expr, PhysReg, false /*IsIndidrect*/,
6033                               DI.getDebugLoc(), SDNodeOrder);
6034       DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/);
6035       return true;
6036     }
6037   LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but "
6038                        "couldn't find a physical register\n");
6039   return true;
6040 }
6041 
6042 /// Lower the call to the specified intrinsic function.
6043 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
6044                                              unsigned Intrinsic) {
6045   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6046   SDLoc sdl = getCurSDLoc();
6047   DebugLoc dl = getCurDebugLoc();
6048   SDValue Res;
6049 
6050   SDNodeFlags Flags;
6051   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
6052     Flags.copyFMF(*FPOp);
6053 
6054   switch (Intrinsic) {
6055   default:
6056     // By default, turn this into a target intrinsic node.
6057     visitTargetIntrinsic(I, Intrinsic);
6058     return;
6059   case Intrinsic::vscale: {
6060     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6061     setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
6062     return;
6063   }
6064   case Intrinsic::vastart:  visitVAStart(I); return;
6065   case Intrinsic::vaend:    visitVAEnd(I); return;
6066   case Intrinsic::vacopy:   visitVACopy(I); return;
6067   case Intrinsic::returnaddress:
6068     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
6069                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6070                              getValue(I.getArgOperand(0))));
6071     return;
6072   case Intrinsic::addressofreturnaddress:
6073     setValue(&I,
6074              DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
6075                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
6076     return;
6077   case Intrinsic::sponentry:
6078     setValue(&I,
6079              DAG.getNode(ISD::SPONENTRY, sdl,
6080                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
6081     return;
6082   case Intrinsic::frameaddress:
6083     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
6084                              TLI.getFrameIndexTy(DAG.getDataLayout()),
6085                              getValue(I.getArgOperand(0))));
6086     return;
6087   case Intrinsic::read_volatile_register:
6088   case Intrinsic::read_register: {
6089     Value *Reg = I.getArgOperand(0);
6090     SDValue Chain = getRoot();
6091     SDValue RegName =
6092         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
6093     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6094     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
6095       DAG.getVTList(VT, MVT::Other), Chain, RegName);
6096     setValue(&I, Res);
6097     DAG.setRoot(Res.getValue(1));
6098     return;
6099   }
6100   case Intrinsic::write_register: {
6101     Value *Reg = I.getArgOperand(0);
6102     Value *RegValue = I.getArgOperand(1);
6103     SDValue Chain = getRoot();
6104     SDValue RegName =
6105         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
6106     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
6107                             RegName, getValue(RegValue)));
6108     return;
6109   }
6110   case Intrinsic::memcpy: {
6111     const auto &MCI = cast<MemCpyInst>(I);
6112     SDValue Op1 = getValue(I.getArgOperand(0));
6113     SDValue Op2 = getValue(I.getArgOperand(1));
6114     SDValue Op3 = getValue(I.getArgOperand(2));
6115     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
6116     Align DstAlign = MCI.getDestAlign().valueOrOne();
6117     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6118     Align Alignment = std::min(DstAlign, SrcAlign);
6119     bool isVol = MCI.isVolatile();
6120     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6121     // FIXME: Support passing different dest/src alignments to the memcpy DAG
6122     // node.
6123     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6124     SDValue MC = DAG.getMemcpy(
6125         Root, sdl, Op1, Op2, Op3, Alignment, isVol,
6126         /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)),
6127         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
6128     updateDAGForMaybeTailCall(MC);
6129     return;
6130   }
6131   case Intrinsic::memcpy_inline: {
6132     const auto &MCI = cast<MemCpyInlineInst>(I);
6133     SDValue Dst = getValue(I.getArgOperand(0));
6134     SDValue Src = getValue(I.getArgOperand(1));
6135     SDValue Size = getValue(I.getArgOperand(2));
6136     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
6137     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
6138     Align DstAlign = MCI.getDestAlign().valueOrOne();
6139     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6140     Align Alignment = std::min(DstAlign, SrcAlign);
6141     bool isVol = MCI.isVolatile();
6142     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6143     // FIXME: Support passing different dest/src alignments to the memcpy DAG
6144     // node.
6145     SDValue MC = DAG.getMemcpy(
6146         getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
6147         /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)),
6148         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
6149     updateDAGForMaybeTailCall(MC);
6150     return;
6151   }
6152   case Intrinsic::memset: {
6153     const auto &MSI = cast<MemSetInst>(I);
6154     SDValue Op1 = getValue(I.getArgOperand(0));
6155     SDValue Op2 = getValue(I.getArgOperand(1));
6156     SDValue Op3 = getValue(I.getArgOperand(2));
6157     // @llvm.memset defines 0 and 1 to both mean no alignment.
6158     Align Alignment = MSI.getDestAlign().valueOrOne();
6159     bool isVol = MSI.isVolatile();
6160     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6161     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6162     SDValue MS = DAG.getMemset(
6163         Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false,
6164         isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata());
6165     updateDAGForMaybeTailCall(MS);
6166     return;
6167   }
6168   case Intrinsic::memset_inline: {
6169     const auto &MSII = cast<MemSetInlineInst>(I);
6170     SDValue Dst = getValue(I.getArgOperand(0));
6171     SDValue Value = getValue(I.getArgOperand(1));
6172     SDValue Size = getValue(I.getArgOperand(2));
6173     assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size");
6174     // @llvm.memset defines 0 and 1 to both mean no alignment.
6175     Align DstAlign = MSII.getDestAlign().valueOrOne();
6176     bool isVol = MSII.isVolatile();
6177     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6178     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6179     SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol,
6180                                /* AlwaysInline */ true, isTC,
6181                                MachinePointerInfo(I.getArgOperand(0)),
6182                                I.getAAMetadata());
6183     updateDAGForMaybeTailCall(MC);
6184     return;
6185   }
6186   case Intrinsic::memmove: {
6187     const auto &MMI = cast<MemMoveInst>(I);
6188     SDValue Op1 = getValue(I.getArgOperand(0));
6189     SDValue Op2 = getValue(I.getArgOperand(1));
6190     SDValue Op3 = getValue(I.getArgOperand(2));
6191     // @llvm.memmove defines 0 and 1 to both mean no alignment.
6192     Align DstAlign = MMI.getDestAlign().valueOrOne();
6193     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
6194     Align Alignment = std::min(DstAlign, SrcAlign);
6195     bool isVol = MMI.isVolatile();
6196     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6197     // FIXME: Support passing different dest/src alignments to the memmove DAG
6198     // node.
6199     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6200     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
6201                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
6202                                 MachinePointerInfo(I.getArgOperand(1)),
6203                                 I.getAAMetadata(), AA);
6204     updateDAGForMaybeTailCall(MM);
6205     return;
6206   }
6207   case Intrinsic::memcpy_element_unordered_atomic: {
6208     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
6209     SDValue Dst = getValue(MI.getRawDest());
6210     SDValue Src = getValue(MI.getRawSource());
6211     SDValue Length = getValue(MI.getLength());
6212 
6213     Type *LengthTy = MI.getLength()->getType();
6214     unsigned ElemSz = MI.getElementSizeInBytes();
6215     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6216     SDValue MC =
6217         DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6218                             isTC, MachinePointerInfo(MI.getRawDest()),
6219                             MachinePointerInfo(MI.getRawSource()));
6220     updateDAGForMaybeTailCall(MC);
6221     return;
6222   }
6223   case Intrinsic::memmove_element_unordered_atomic: {
6224     auto &MI = cast<AtomicMemMoveInst>(I);
6225     SDValue Dst = getValue(MI.getRawDest());
6226     SDValue Src = getValue(MI.getRawSource());
6227     SDValue Length = getValue(MI.getLength());
6228 
6229     Type *LengthTy = MI.getLength()->getType();
6230     unsigned ElemSz = MI.getElementSizeInBytes();
6231     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6232     SDValue MC =
6233         DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6234                              isTC, MachinePointerInfo(MI.getRawDest()),
6235                              MachinePointerInfo(MI.getRawSource()));
6236     updateDAGForMaybeTailCall(MC);
6237     return;
6238   }
6239   case Intrinsic::memset_element_unordered_atomic: {
6240     auto &MI = cast<AtomicMemSetInst>(I);
6241     SDValue Dst = getValue(MI.getRawDest());
6242     SDValue Val = getValue(MI.getValue());
6243     SDValue Length = getValue(MI.getLength());
6244 
6245     Type *LengthTy = MI.getLength()->getType();
6246     unsigned ElemSz = MI.getElementSizeInBytes();
6247     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6248     SDValue MC =
6249         DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz,
6250                             isTC, MachinePointerInfo(MI.getRawDest()));
6251     updateDAGForMaybeTailCall(MC);
6252     return;
6253   }
6254   case Intrinsic::call_preallocated_setup: {
6255     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
6256     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6257     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
6258                               getRoot(), SrcValue);
6259     setValue(&I, Res);
6260     DAG.setRoot(Res);
6261     return;
6262   }
6263   case Intrinsic::call_preallocated_arg: {
6264     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
6265     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6266     SDValue Ops[3];
6267     Ops[0] = getRoot();
6268     Ops[1] = SrcValue;
6269     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
6270                                    MVT::i32); // arg index
6271     SDValue Res = DAG.getNode(
6272         ISD::PREALLOCATED_ARG, sdl,
6273         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6274     setValue(&I, Res);
6275     DAG.setRoot(Res.getValue(1));
6276     return;
6277   }
6278   case Intrinsic::dbg_declare: {
6279     const auto &DI = cast<DbgDeclareInst>(I);
6280     // Debug intrinsics are handled separately in assignment tracking mode.
6281     // Some intrinsics are handled right after Argument lowering.
6282     if (AssignmentTrackingEnabled ||
6283         FuncInfo.PreprocessedDbgDeclares.count(&DI))
6284       return;
6285     LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DI << "\n");
6286     DILocalVariable *Variable = DI.getVariable();
6287     DIExpression *Expression = DI.getExpression();
6288     dropDanglingDebugInfo(Variable, Expression);
6289     // Assume dbg.declare can not currently use DIArgList, i.e.
6290     // it is non-variadic.
6291     assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
6292     handleDebugDeclare(DI.getVariableLocationOp(0), Variable, Expression,
6293                        DI.getDebugLoc());
6294     return;
6295   }
6296   case Intrinsic::dbg_label: {
6297     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6298     DILabel *Label = DI.getLabel();
6299     assert(Label && "Missing label");
6300 
6301     SDDbgLabel *SDV;
6302     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6303     DAG.AddDbgLabel(SDV);
6304     return;
6305   }
6306   case Intrinsic::dbg_assign: {
6307     // Debug intrinsics are handled seperately in assignment tracking mode.
6308     if (AssignmentTrackingEnabled)
6309       return;
6310     // If assignment tracking hasn't been enabled then fall through and treat
6311     // the dbg.assign as a dbg.value.
6312     [[fallthrough]];
6313   }
6314   case Intrinsic::dbg_value: {
6315     // Debug intrinsics are handled seperately in assignment tracking mode.
6316     if (AssignmentTrackingEnabled)
6317       return;
6318     const DbgValueInst &DI = cast<DbgValueInst>(I);
6319     assert(DI.getVariable() && "Missing variable");
6320 
6321     DILocalVariable *Variable = DI.getVariable();
6322     DIExpression *Expression = DI.getExpression();
6323     dropDanglingDebugInfo(Variable, Expression);
6324 
6325     if (visitEntryValueDbgValue(DI))
6326       return;
6327 
6328     if (DI.isKillLocation()) {
6329       handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder);
6330       return;
6331     }
6332 
6333     SmallVector<Value *, 4> Values(DI.getValues());
6334     if (Values.empty())
6335       return;
6336 
6337     bool IsVariadic = DI.hasArgList();
6338     if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(),
6339                           SDNodeOrder, IsVariadic))
6340       addDanglingDebugInfo(Values, Variable, Expression, IsVariadic,
6341                            DI.getDebugLoc(), SDNodeOrder);
6342     return;
6343   }
6344 
6345   case Intrinsic::eh_typeid_for: {
6346     // Find the type id for the given typeinfo.
6347     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6348     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6349     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6350     setValue(&I, Res);
6351     return;
6352   }
6353 
6354   case Intrinsic::eh_return_i32:
6355   case Intrinsic::eh_return_i64:
6356     DAG.getMachineFunction().setCallsEHReturn(true);
6357     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6358                             MVT::Other,
6359                             getControlRoot(),
6360                             getValue(I.getArgOperand(0)),
6361                             getValue(I.getArgOperand(1))));
6362     return;
6363   case Intrinsic::eh_unwind_init:
6364     DAG.getMachineFunction().setCallsUnwindInit(true);
6365     return;
6366   case Intrinsic::eh_dwarf_cfa:
6367     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6368                              TLI.getPointerTy(DAG.getDataLayout()),
6369                              getValue(I.getArgOperand(0))));
6370     return;
6371   case Intrinsic::eh_sjlj_callsite: {
6372     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6373     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0));
6374     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6375 
6376     MMI.setCurrentCallSite(CI->getZExtValue());
6377     return;
6378   }
6379   case Intrinsic::eh_sjlj_functioncontext: {
6380     // Get and store the index of the function context.
6381     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6382     AllocaInst *FnCtx =
6383       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6384     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6385     MFI.setFunctionContextIndex(FI);
6386     return;
6387   }
6388   case Intrinsic::eh_sjlj_setjmp: {
6389     SDValue Ops[2];
6390     Ops[0] = getRoot();
6391     Ops[1] = getValue(I.getArgOperand(0));
6392     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6393                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6394     setValue(&I, Op.getValue(0));
6395     DAG.setRoot(Op.getValue(1));
6396     return;
6397   }
6398   case Intrinsic::eh_sjlj_longjmp:
6399     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6400                             getRoot(), getValue(I.getArgOperand(0))));
6401     return;
6402   case Intrinsic::eh_sjlj_setup_dispatch:
6403     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6404                             getRoot()));
6405     return;
6406   case Intrinsic::masked_gather:
6407     visitMaskedGather(I);
6408     return;
6409   case Intrinsic::masked_load:
6410     visitMaskedLoad(I);
6411     return;
6412   case Intrinsic::masked_scatter:
6413     visitMaskedScatter(I);
6414     return;
6415   case Intrinsic::masked_store:
6416     visitMaskedStore(I);
6417     return;
6418   case Intrinsic::masked_expandload:
6419     visitMaskedLoad(I, true /* IsExpanding */);
6420     return;
6421   case Intrinsic::masked_compressstore:
6422     visitMaskedStore(I, true /* IsCompressing */);
6423     return;
6424   case Intrinsic::powi:
6425     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6426                             getValue(I.getArgOperand(1)), DAG));
6427     return;
6428   case Intrinsic::log:
6429     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6430     return;
6431   case Intrinsic::log2:
6432     setValue(&I,
6433              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6434     return;
6435   case Intrinsic::log10:
6436     setValue(&I,
6437              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6438     return;
6439   case Intrinsic::exp:
6440     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6441     return;
6442   case Intrinsic::exp2:
6443     setValue(&I,
6444              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6445     return;
6446   case Intrinsic::pow:
6447     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6448                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6449     return;
6450   case Intrinsic::sqrt:
6451   case Intrinsic::fabs:
6452   case Intrinsic::sin:
6453   case Intrinsic::cos:
6454   case Intrinsic::exp10:
6455   case Intrinsic::floor:
6456   case Intrinsic::ceil:
6457   case Intrinsic::trunc:
6458   case Intrinsic::rint:
6459   case Intrinsic::nearbyint:
6460   case Intrinsic::round:
6461   case Intrinsic::roundeven:
6462   case Intrinsic::canonicalize: {
6463     unsigned Opcode;
6464     switch (Intrinsic) {
6465     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6466     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6467     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6468     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6469     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6470     case Intrinsic::exp10:     Opcode = ISD::FEXP10;     break;
6471     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6472     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6473     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6474     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6475     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6476     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6477     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6478     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6479     }
6480 
6481     setValue(&I, DAG.getNode(Opcode, sdl,
6482                              getValue(I.getArgOperand(0)).getValueType(),
6483                              getValue(I.getArgOperand(0)), Flags));
6484     return;
6485   }
6486   case Intrinsic::lround:
6487   case Intrinsic::llround:
6488   case Intrinsic::lrint:
6489   case Intrinsic::llrint: {
6490     unsigned Opcode;
6491     switch (Intrinsic) {
6492     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6493     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6494     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6495     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6496     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6497     }
6498 
6499     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6500     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6501                              getValue(I.getArgOperand(0))));
6502     return;
6503   }
6504   case Intrinsic::minnum:
6505     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6506                              getValue(I.getArgOperand(0)).getValueType(),
6507                              getValue(I.getArgOperand(0)),
6508                              getValue(I.getArgOperand(1)), Flags));
6509     return;
6510   case Intrinsic::maxnum:
6511     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6512                              getValue(I.getArgOperand(0)).getValueType(),
6513                              getValue(I.getArgOperand(0)),
6514                              getValue(I.getArgOperand(1)), Flags));
6515     return;
6516   case Intrinsic::minimum:
6517     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6518                              getValue(I.getArgOperand(0)).getValueType(),
6519                              getValue(I.getArgOperand(0)),
6520                              getValue(I.getArgOperand(1)), Flags));
6521     return;
6522   case Intrinsic::maximum:
6523     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6524                              getValue(I.getArgOperand(0)).getValueType(),
6525                              getValue(I.getArgOperand(0)),
6526                              getValue(I.getArgOperand(1)), Flags));
6527     return;
6528   case Intrinsic::copysign:
6529     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6530                              getValue(I.getArgOperand(0)).getValueType(),
6531                              getValue(I.getArgOperand(0)),
6532                              getValue(I.getArgOperand(1)), Flags));
6533     return;
6534   case Intrinsic::ldexp:
6535     setValue(&I, DAG.getNode(ISD::FLDEXP, sdl,
6536                              getValue(I.getArgOperand(0)).getValueType(),
6537                              getValue(I.getArgOperand(0)),
6538                              getValue(I.getArgOperand(1)), Flags));
6539     return;
6540   case Intrinsic::frexp: {
6541     SmallVector<EVT, 2> ValueVTs;
6542     ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
6543     SDVTList VTs = DAG.getVTList(ValueVTs);
6544     setValue(&I,
6545              DAG.getNode(ISD::FFREXP, sdl, VTs, getValue(I.getArgOperand(0))));
6546     return;
6547   }
6548   case Intrinsic::arithmetic_fence: {
6549     setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
6550                              getValue(I.getArgOperand(0)).getValueType(),
6551                              getValue(I.getArgOperand(0)), Flags));
6552     return;
6553   }
6554   case Intrinsic::fma:
6555     setValue(&I, DAG.getNode(
6556                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6557                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6558                      getValue(I.getArgOperand(2)), Flags));
6559     return;
6560 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6561   case Intrinsic::INTRINSIC:
6562 #include "llvm/IR/ConstrainedOps.def"
6563     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6564     return;
6565 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6566 #include "llvm/IR/VPIntrinsics.def"
6567     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6568     return;
6569   case Intrinsic::fptrunc_round: {
6570     // Get the last argument, the metadata and convert it to an integer in the
6571     // call
6572     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata();
6573     std::optional<RoundingMode> RoundMode =
6574         convertStrToRoundingMode(cast<MDString>(MD)->getString());
6575 
6576     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6577 
6578     // Propagate fast-math-flags from IR to node(s).
6579     SDNodeFlags Flags;
6580     Flags.copyFMF(*cast<FPMathOperator>(&I));
6581     SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
6582 
6583     SDValue Result;
6584     Result = DAG.getNode(
6585         ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)),
6586         DAG.getTargetConstant((int)*RoundMode, sdl,
6587                               TLI.getPointerTy(DAG.getDataLayout())));
6588     setValue(&I, Result);
6589 
6590     return;
6591   }
6592   case Intrinsic::fmuladd: {
6593     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6594     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6595         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6596       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6597                                getValue(I.getArgOperand(0)).getValueType(),
6598                                getValue(I.getArgOperand(0)),
6599                                getValue(I.getArgOperand(1)),
6600                                getValue(I.getArgOperand(2)), Flags));
6601     } else {
6602       // TODO: Intrinsic calls should have fast-math-flags.
6603       SDValue Mul = DAG.getNode(
6604           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6605           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6606       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6607                                 getValue(I.getArgOperand(0)).getValueType(),
6608                                 Mul, getValue(I.getArgOperand(2)), Flags);
6609       setValue(&I, Add);
6610     }
6611     return;
6612   }
6613   case Intrinsic::convert_to_fp16:
6614     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6615                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6616                                          getValue(I.getArgOperand(0)),
6617                                          DAG.getTargetConstant(0, sdl,
6618                                                                MVT::i32))));
6619     return;
6620   case Intrinsic::convert_from_fp16:
6621     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6622                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6623                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6624                                          getValue(I.getArgOperand(0)))));
6625     return;
6626   case Intrinsic::fptosi_sat: {
6627     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6628     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
6629                              getValue(I.getArgOperand(0)),
6630                              DAG.getValueType(VT.getScalarType())));
6631     return;
6632   }
6633   case Intrinsic::fptoui_sat: {
6634     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6635     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
6636                              getValue(I.getArgOperand(0)),
6637                              DAG.getValueType(VT.getScalarType())));
6638     return;
6639   }
6640   case Intrinsic::set_rounding:
6641     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
6642                       {getRoot(), getValue(I.getArgOperand(0))});
6643     setValue(&I, Res);
6644     DAG.setRoot(Res.getValue(0));
6645     return;
6646   case Intrinsic::is_fpclass: {
6647     const DataLayout DLayout = DAG.getDataLayout();
6648     EVT DestVT = TLI.getValueType(DLayout, I.getType());
6649     EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType());
6650     FPClassTest Test = static_cast<FPClassTest>(
6651         cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
6652     MachineFunction &MF = DAG.getMachineFunction();
6653     const Function &F = MF.getFunction();
6654     SDValue Op = getValue(I.getArgOperand(0));
6655     SDNodeFlags Flags;
6656     Flags.setNoFPExcept(
6657         !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
6658     // If ISD::IS_FPCLASS should be expanded, do it right now, because the
6659     // expansion can use illegal types. Making expansion early allows
6660     // legalizing these types prior to selection.
6661     if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) {
6662       SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG);
6663       setValue(&I, Result);
6664       return;
6665     }
6666 
6667     SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32);
6668     SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags);
6669     setValue(&I, V);
6670     return;
6671   }
6672   case Intrinsic::get_fpenv: {
6673     const DataLayout DLayout = DAG.getDataLayout();
6674     EVT EnvVT = TLI.getValueType(DLayout, I.getType());
6675     Align TempAlign = DAG.getEVTAlign(EnvVT);
6676     SDValue Chain = getRoot();
6677     // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node
6678     // and temporary storage in stack.
6679     if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) {
6680       Res = DAG.getNode(
6681           ISD::GET_FPENV, sdl,
6682           DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
6683                         MVT::Other),
6684           Chain);
6685     } else {
6686       SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
6687       int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
6688       auto MPI =
6689           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
6690       MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
6691           MPI, MachineMemOperand::MOStore, MemoryLocation::UnknownSize,
6692           TempAlign);
6693       Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
6694       Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI);
6695     }
6696     setValue(&I, Res);
6697     DAG.setRoot(Res.getValue(1));
6698     return;
6699   }
6700   case Intrinsic::set_fpenv: {
6701     const DataLayout DLayout = DAG.getDataLayout();
6702     SDValue Env = getValue(I.getArgOperand(0));
6703     EVT EnvVT = Env.getValueType();
6704     Align TempAlign = DAG.getEVTAlign(EnvVT);
6705     SDValue Chain = getRoot();
6706     // If SET_FPENV is custom or legal, use it. Otherwise use loading
6707     // environment from memory.
6708     if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) {
6709       Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env);
6710     } else {
6711       // Allocate space in stack, copy environment bits into it and use this
6712       // memory in SET_FPENV_MEM.
6713       SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
6714       int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
6715       auto MPI =
6716           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
6717       Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign,
6718                            MachineMemOperand::MOStore);
6719       MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
6720           MPI, MachineMemOperand::MOLoad, MemoryLocation::UnknownSize,
6721           TempAlign);
6722       Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
6723     }
6724     DAG.setRoot(Chain);
6725     return;
6726   }
6727   case Intrinsic::reset_fpenv:
6728     DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot()));
6729     return;
6730   case Intrinsic::get_fpmode:
6731     Res = DAG.getNode(
6732         ISD::GET_FPMODE, sdl,
6733         DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
6734                       MVT::Other),
6735         DAG.getRoot());
6736     setValue(&I, Res);
6737     DAG.setRoot(Res.getValue(1));
6738     return;
6739   case Intrinsic::set_fpmode:
6740     Res = DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {DAG.getRoot()},
6741                       getValue(I.getArgOperand(0)));
6742     DAG.setRoot(Res);
6743     return;
6744   case Intrinsic::reset_fpmode: {
6745     Res = DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other, getRoot());
6746     DAG.setRoot(Res);
6747     return;
6748   }
6749   case Intrinsic::pcmarker: {
6750     SDValue Tmp = getValue(I.getArgOperand(0));
6751     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6752     return;
6753   }
6754   case Intrinsic::readcyclecounter: {
6755     SDValue Op = getRoot();
6756     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6757                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6758     setValue(&I, Res);
6759     DAG.setRoot(Res.getValue(1));
6760     return;
6761   }
6762   case Intrinsic::bitreverse:
6763     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6764                              getValue(I.getArgOperand(0)).getValueType(),
6765                              getValue(I.getArgOperand(0))));
6766     return;
6767   case Intrinsic::bswap:
6768     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6769                              getValue(I.getArgOperand(0)).getValueType(),
6770                              getValue(I.getArgOperand(0))));
6771     return;
6772   case Intrinsic::cttz: {
6773     SDValue Arg = getValue(I.getArgOperand(0));
6774     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6775     EVT Ty = Arg.getValueType();
6776     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6777                              sdl, Ty, Arg));
6778     return;
6779   }
6780   case Intrinsic::ctlz: {
6781     SDValue Arg = getValue(I.getArgOperand(0));
6782     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6783     EVT Ty = Arg.getValueType();
6784     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6785                              sdl, Ty, Arg));
6786     return;
6787   }
6788   case Intrinsic::ctpop: {
6789     SDValue Arg = getValue(I.getArgOperand(0));
6790     EVT Ty = Arg.getValueType();
6791     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6792     return;
6793   }
6794   case Intrinsic::fshl:
6795   case Intrinsic::fshr: {
6796     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6797     SDValue X = getValue(I.getArgOperand(0));
6798     SDValue Y = getValue(I.getArgOperand(1));
6799     SDValue Z = getValue(I.getArgOperand(2));
6800     EVT VT = X.getValueType();
6801 
6802     if (X == Y) {
6803       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6804       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6805     } else {
6806       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6807       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6808     }
6809     return;
6810   }
6811   case Intrinsic::sadd_sat: {
6812     SDValue Op1 = getValue(I.getArgOperand(0));
6813     SDValue Op2 = getValue(I.getArgOperand(1));
6814     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6815     return;
6816   }
6817   case Intrinsic::uadd_sat: {
6818     SDValue Op1 = getValue(I.getArgOperand(0));
6819     SDValue Op2 = getValue(I.getArgOperand(1));
6820     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6821     return;
6822   }
6823   case Intrinsic::ssub_sat: {
6824     SDValue Op1 = getValue(I.getArgOperand(0));
6825     SDValue Op2 = getValue(I.getArgOperand(1));
6826     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6827     return;
6828   }
6829   case Intrinsic::usub_sat: {
6830     SDValue Op1 = getValue(I.getArgOperand(0));
6831     SDValue Op2 = getValue(I.getArgOperand(1));
6832     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6833     return;
6834   }
6835   case Intrinsic::sshl_sat: {
6836     SDValue Op1 = getValue(I.getArgOperand(0));
6837     SDValue Op2 = getValue(I.getArgOperand(1));
6838     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6839     return;
6840   }
6841   case Intrinsic::ushl_sat: {
6842     SDValue Op1 = getValue(I.getArgOperand(0));
6843     SDValue Op2 = getValue(I.getArgOperand(1));
6844     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6845     return;
6846   }
6847   case Intrinsic::smul_fix:
6848   case Intrinsic::umul_fix:
6849   case Intrinsic::smul_fix_sat:
6850   case Intrinsic::umul_fix_sat: {
6851     SDValue Op1 = getValue(I.getArgOperand(0));
6852     SDValue Op2 = getValue(I.getArgOperand(1));
6853     SDValue Op3 = getValue(I.getArgOperand(2));
6854     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6855                              Op1.getValueType(), Op1, Op2, Op3));
6856     return;
6857   }
6858   case Intrinsic::sdiv_fix:
6859   case Intrinsic::udiv_fix:
6860   case Intrinsic::sdiv_fix_sat:
6861   case Intrinsic::udiv_fix_sat: {
6862     SDValue Op1 = getValue(I.getArgOperand(0));
6863     SDValue Op2 = getValue(I.getArgOperand(1));
6864     SDValue Op3 = getValue(I.getArgOperand(2));
6865     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6866                               Op1, Op2, Op3, DAG, TLI));
6867     return;
6868   }
6869   case Intrinsic::smax: {
6870     SDValue Op1 = getValue(I.getArgOperand(0));
6871     SDValue Op2 = getValue(I.getArgOperand(1));
6872     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
6873     return;
6874   }
6875   case Intrinsic::smin: {
6876     SDValue Op1 = getValue(I.getArgOperand(0));
6877     SDValue Op2 = getValue(I.getArgOperand(1));
6878     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
6879     return;
6880   }
6881   case Intrinsic::umax: {
6882     SDValue Op1 = getValue(I.getArgOperand(0));
6883     SDValue Op2 = getValue(I.getArgOperand(1));
6884     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
6885     return;
6886   }
6887   case Intrinsic::umin: {
6888     SDValue Op1 = getValue(I.getArgOperand(0));
6889     SDValue Op2 = getValue(I.getArgOperand(1));
6890     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
6891     return;
6892   }
6893   case Intrinsic::abs: {
6894     // TODO: Preserve "int min is poison" arg in SDAG?
6895     SDValue Op1 = getValue(I.getArgOperand(0));
6896     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
6897     return;
6898   }
6899   case Intrinsic::stacksave: {
6900     SDValue Op = getRoot();
6901     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6902     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6903     setValue(&I, Res);
6904     DAG.setRoot(Res.getValue(1));
6905     return;
6906   }
6907   case Intrinsic::stackrestore:
6908     Res = getValue(I.getArgOperand(0));
6909     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6910     return;
6911   case Intrinsic::get_dynamic_area_offset: {
6912     SDValue Op = getRoot();
6913     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6914     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6915     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6916     // target.
6917     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
6918       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6919                          " intrinsic!");
6920     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6921                       Op);
6922     DAG.setRoot(Op);
6923     setValue(&I, Res);
6924     return;
6925   }
6926   case Intrinsic::stackguard: {
6927     MachineFunction &MF = DAG.getMachineFunction();
6928     const Module &M = *MF.getFunction().getParent();
6929     SDValue Chain = getRoot();
6930     if (TLI.useLoadStackGuardNode()) {
6931       Res = getLoadStackGuard(DAG, sdl, Chain);
6932     } else {
6933       EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6934       const Value *Global = TLI.getSDagStackGuard(M);
6935       Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
6936       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6937                         MachinePointerInfo(Global, 0), Align,
6938                         MachineMemOperand::MOVolatile);
6939     }
6940     if (TLI.useStackGuardXorFP())
6941       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6942     DAG.setRoot(Chain);
6943     setValue(&I, Res);
6944     return;
6945   }
6946   case Intrinsic::stackprotector: {
6947     // Emit code into the DAG to store the stack guard onto the stack.
6948     MachineFunction &MF = DAG.getMachineFunction();
6949     MachineFrameInfo &MFI = MF.getFrameInfo();
6950     SDValue Src, Chain = getRoot();
6951 
6952     if (TLI.useLoadStackGuardNode())
6953       Src = getLoadStackGuard(DAG, sdl, Chain);
6954     else
6955       Src = getValue(I.getArgOperand(0));   // The guard's value.
6956 
6957     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6958 
6959     int FI = FuncInfo.StaticAllocaMap[Slot];
6960     MFI.setStackProtectorIndex(FI);
6961     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6962 
6963     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6964 
6965     // Store the stack protector onto the stack.
6966     Res = DAG.getStore(
6967         Chain, sdl, Src, FIN,
6968         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
6969         MaybeAlign(), MachineMemOperand::MOVolatile);
6970     setValue(&I, Res);
6971     DAG.setRoot(Res);
6972     return;
6973   }
6974   case Intrinsic::objectsize:
6975     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6976 
6977   case Intrinsic::is_constant:
6978     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6979 
6980   case Intrinsic::annotation:
6981   case Intrinsic::ptr_annotation:
6982   case Intrinsic::launder_invariant_group:
6983   case Intrinsic::strip_invariant_group:
6984     // Drop the intrinsic, but forward the value
6985     setValue(&I, getValue(I.getOperand(0)));
6986     return;
6987 
6988   case Intrinsic::assume:
6989   case Intrinsic::experimental_noalias_scope_decl:
6990   case Intrinsic::var_annotation:
6991   case Intrinsic::sideeffect:
6992     // Discard annotate attributes, noalias scope declarations, assumptions, and
6993     // artificial side-effects.
6994     return;
6995 
6996   case Intrinsic::codeview_annotation: {
6997     // Emit a label associated with this metadata.
6998     MachineFunction &MF = DAG.getMachineFunction();
6999     MCSymbol *Label =
7000         MF.getMMI().getContext().createTempSymbol("annotation", true);
7001     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
7002     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
7003     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
7004     DAG.setRoot(Res);
7005     return;
7006   }
7007 
7008   case Intrinsic::init_trampoline: {
7009     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
7010 
7011     SDValue Ops[6];
7012     Ops[0] = getRoot();
7013     Ops[1] = getValue(I.getArgOperand(0));
7014     Ops[2] = getValue(I.getArgOperand(1));
7015     Ops[3] = getValue(I.getArgOperand(2));
7016     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
7017     Ops[5] = DAG.getSrcValue(F);
7018 
7019     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
7020 
7021     DAG.setRoot(Res);
7022     return;
7023   }
7024   case Intrinsic::adjust_trampoline:
7025     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
7026                              TLI.getPointerTy(DAG.getDataLayout()),
7027                              getValue(I.getArgOperand(0))));
7028     return;
7029   case Intrinsic::gcroot: {
7030     assert(DAG.getMachineFunction().getFunction().hasGC() &&
7031            "only valid in functions with gc specified, enforced by Verifier");
7032     assert(GFI && "implied by previous");
7033     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
7034     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
7035 
7036     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
7037     GFI->addStackRoot(FI->getIndex(), TypeMap);
7038     return;
7039   }
7040   case Intrinsic::gcread:
7041   case Intrinsic::gcwrite:
7042     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
7043   case Intrinsic::get_rounding:
7044     Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot());
7045     setValue(&I, Res);
7046     DAG.setRoot(Res.getValue(1));
7047     return;
7048 
7049   case Intrinsic::expect:
7050     // Just replace __builtin_expect(exp, c) with EXP.
7051     setValue(&I, getValue(I.getArgOperand(0)));
7052     return;
7053 
7054   case Intrinsic::ubsantrap:
7055   case Intrinsic::debugtrap:
7056   case Intrinsic::trap: {
7057     StringRef TrapFuncName =
7058         I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
7059     if (TrapFuncName.empty()) {
7060       switch (Intrinsic) {
7061       case Intrinsic::trap:
7062         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
7063         break;
7064       case Intrinsic::debugtrap:
7065         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
7066         break;
7067       case Intrinsic::ubsantrap:
7068         DAG.setRoot(DAG.getNode(
7069             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
7070             DAG.getTargetConstant(
7071                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
7072                 MVT::i32)));
7073         break;
7074       default: llvm_unreachable("unknown trap intrinsic");
7075       }
7076       return;
7077     }
7078     TargetLowering::ArgListTy Args;
7079     if (Intrinsic == Intrinsic::ubsantrap) {
7080       Args.push_back(TargetLoweringBase::ArgListEntry());
7081       Args[0].Val = I.getArgOperand(0);
7082       Args[0].Node = getValue(Args[0].Val);
7083       Args[0].Ty = Args[0].Val->getType();
7084     }
7085 
7086     TargetLowering::CallLoweringInfo CLI(DAG);
7087     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
7088         CallingConv::C, I.getType(),
7089         DAG.getExternalSymbol(TrapFuncName.data(),
7090                               TLI.getPointerTy(DAG.getDataLayout())),
7091         std::move(Args));
7092 
7093     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7094     DAG.setRoot(Result.second);
7095     return;
7096   }
7097 
7098   case Intrinsic::uadd_with_overflow:
7099   case Intrinsic::sadd_with_overflow:
7100   case Intrinsic::usub_with_overflow:
7101   case Intrinsic::ssub_with_overflow:
7102   case Intrinsic::umul_with_overflow:
7103   case Intrinsic::smul_with_overflow: {
7104     ISD::NodeType Op;
7105     switch (Intrinsic) {
7106     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7107     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
7108     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
7109     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
7110     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
7111     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
7112     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
7113     }
7114     SDValue Op1 = getValue(I.getArgOperand(0));
7115     SDValue Op2 = getValue(I.getArgOperand(1));
7116 
7117     EVT ResultVT = Op1.getValueType();
7118     EVT OverflowVT = MVT::i1;
7119     if (ResultVT.isVector())
7120       OverflowVT = EVT::getVectorVT(
7121           *Context, OverflowVT, ResultVT.getVectorElementCount());
7122 
7123     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
7124     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
7125     return;
7126   }
7127   case Intrinsic::prefetch: {
7128     SDValue Ops[5];
7129     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7130     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
7131     Ops[0] = DAG.getRoot();
7132     Ops[1] = getValue(I.getArgOperand(0));
7133     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
7134                                    MVT::i32);
7135     Ops[3] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(2)), sdl,
7136                                    MVT::i32);
7137     Ops[4] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(3)), sdl,
7138                                    MVT::i32);
7139     SDValue Result = DAG.getMemIntrinsicNode(
7140         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
7141         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
7142         /* align */ std::nullopt, Flags);
7143 
7144     // Chain the prefetch in parallel with any pending loads, to stay out of
7145     // the way of later optimizations.
7146     PendingLoads.push_back(Result);
7147     Result = getRoot();
7148     DAG.setRoot(Result);
7149     return;
7150   }
7151   case Intrinsic::lifetime_start:
7152   case Intrinsic::lifetime_end: {
7153     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
7154     // Stack coloring is not enabled in O0, discard region information.
7155     if (TM.getOptLevel() == CodeGenOptLevel::None)
7156       return;
7157 
7158     const int64_t ObjectSize =
7159         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
7160     Value *const ObjectPtr = I.getArgOperand(1);
7161     SmallVector<const Value *, 4> Allocas;
7162     getUnderlyingObjects(ObjectPtr, Allocas);
7163 
7164     for (const Value *Alloca : Allocas) {
7165       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
7166 
7167       // Could not find an Alloca.
7168       if (!LifetimeObject)
7169         continue;
7170 
7171       // First check that the Alloca is static, otherwise it won't have a
7172       // valid frame index.
7173       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
7174       if (SI == FuncInfo.StaticAllocaMap.end())
7175         return;
7176 
7177       const int FrameIndex = SI->second;
7178       int64_t Offset;
7179       if (GetPointerBaseWithConstantOffset(
7180               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
7181         Offset = -1; // Cannot determine offset from alloca to lifetime object.
7182       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
7183                                 Offset);
7184       DAG.setRoot(Res);
7185     }
7186     return;
7187   }
7188   case Intrinsic::pseudoprobe: {
7189     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
7190     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7191     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
7192     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
7193     DAG.setRoot(Res);
7194     return;
7195   }
7196   case Intrinsic::invariant_start:
7197     // Discard region information.
7198     setValue(&I,
7199              DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType())));
7200     return;
7201   case Intrinsic::invariant_end:
7202     // Discard region information.
7203     return;
7204   case Intrinsic::clear_cache:
7205     /// FunctionName may be null.
7206     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
7207       lowerCallToExternalSymbol(I, FunctionName);
7208     return;
7209   case Intrinsic::donothing:
7210   case Intrinsic::seh_try_begin:
7211   case Intrinsic::seh_scope_begin:
7212   case Intrinsic::seh_try_end:
7213   case Intrinsic::seh_scope_end:
7214     // ignore
7215     return;
7216   case Intrinsic::experimental_stackmap:
7217     visitStackmap(I);
7218     return;
7219   case Intrinsic::experimental_patchpoint_void:
7220   case Intrinsic::experimental_patchpoint_i64:
7221     visitPatchpoint(I);
7222     return;
7223   case Intrinsic::experimental_gc_statepoint:
7224     LowerStatepoint(cast<GCStatepointInst>(I));
7225     return;
7226   case Intrinsic::experimental_gc_result:
7227     visitGCResult(cast<GCResultInst>(I));
7228     return;
7229   case Intrinsic::experimental_gc_relocate:
7230     visitGCRelocate(cast<GCRelocateInst>(I));
7231     return;
7232   case Intrinsic::instrprof_cover:
7233     llvm_unreachable("instrprof failed to lower a cover");
7234   case Intrinsic::instrprof_increment:
7235     llvm_unreachable("instrprof failed to lower an increment");
7236   case Intrinsic::instrprof_timestamp:
7237     llvm_unreachable("instrprof failed to lower a timestamp");
7238   case Intrinsic::instrprof_value_profile:
7239     llvm_unreachable("instrprof failed to lower a value profiling call");
7240   case Intrinsic::instrprof_mcdc_parameters:
7241     llvm_unreachable("instrprof failed to lower mcdc parameters");
7242   case Intrinsic::instrprof_mcdc_tvbitmap_update:
7243     llvm_unreachable("instrprof failed to lower an mcdc tvbitmap update");
7244   case Intrinsic::instrprof_mcdc_condbitmap_update:
7245     llvm_unreachable("instrprof failed to lower an mcdc condbitmap update");
7246   case Intrinsic::localescape: {
7247     MachineFunction &MF = DAG.getMachineFunction();
7248     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
7249 
7250     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
7251     // is the same on all targets.
7252     for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
7253       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
7254       if (isa<ConstantPointerNull>(Arg))
7255         continue; // Skip null pointers. They represent a hole in index space.
7256       AllocaInst *Slot = cast<AllocaInst>(Arg);
7257       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
7258              "can only escape static allocas");
7259       int FI = FuncInfo.StaticAllocaMap[Slot];
7260       MCSymbol *FrameAllocSym =
7261           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7262               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
7263       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
7264               TII->get(TargetOpcode::LOCAL_ESCAPE))
7265           .addSym(FrameAllocSym)
7266           .addFrameIndex(FI);
7267     }
7268 
7269     return;
7270   }
7271 
7272   case Intrinsic::localrecover: {
7273     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
7274     MachineFunction &MF = DAG.getMachineFunction();
7275 
7276     // Get the symbol that defines the frame offset.
7277     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
7278     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
7279     unsigned IdxVal =
7280         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
7281     MCSymbol *FrameAllocSym =
7282         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7283             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
7284 
7285     Value *FP = I.getArgOperand(1);
7286     SDValue FPVal = getValue(FP);
7287     EVT PtrVT = FPVal.getValueType();
7288 
7289     // Create a MCSymbol for the label to avoid any target lowering
7290     // that would make this PC relative.
7291     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
7292     SDValue OffsetVal =
7293         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
7294 
7295     // Add the offset to the FP.
7296     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
7297     setValue(&I, Add);
7298 
7299     return;
7300   }
7301 
7302   case Intrinsic::eh_exceptionpointer:
7303   case Intrinsic::eh_exceptioncode: {
7304     // Get the exception pointer vreg, copy from it, and resize it to fit.
7305     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
7306     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
7307     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
7308     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
7309     SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
7310     if (Intrinsic == Intrinsic::eh_exceptioncode)
7311       N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
7312     setValue(&I, N);
7313     return;
7314   }
7315   case Intrinsic::xray_customevent: {
7316     // Here we want to make sure that the intrinsic behaves as if it has a
7317     // specific calling convention.
7318     const auto &Triple = DAG.getTarget().getTargetTriple();
7319     if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7320       return;
7321 
7322     SmallVector<SDValue, 8> Ops;
7323 
7324     // We want to say that we always want the arguments in registers.
7325     SDValue LogEntryVal = getValue(I.getArgOperand(0));
7326     SDValue StrSizeVal = getValue(I.getArgOperand(1));
7327     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7328     SDValue Chain = getRoot();
7329     Ops.push_back(LogEntryVal);
7330     Ops.push_back(StrSizeVal);
7331     Ops.push_back(Chain);
7332 
7333     // We need to enforce the calling convention for the callsite, so that
7334     // argument ordering is enforced correctly, and that register allocation can
7335     // see that some registers may be assumed clobbered and have to preserve
7336     // them across calls to the intrinsic.
7337     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7338                                            sdl, NodeTys, Ops);
7339     SDValue patchableNode = SDValue(MN, 0);
7340     DAG.setRoot(patchableNode);
7341     setValue(&I, patchableNode);
7342     return;
7343   }
7344   case Intrinsic::xray_typedevent: {
7345     // Here we want to make sure that the intrinsic behaves as if it has a
7346     // specific calling convention.
7347     const auto &Triple = DAG.getTarget().getTargetTriple();
7348     if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7349       return;
7350 
7351     SmallVector<SDValue, 8> Ops;
7352 
7353     // We want to say that we always want the arguments in registers.
7354     // It's unclear to me how manipulating the selection DAG here forces callers
7355     // to provide arguments in registers instead of on the stack.
7356     SDValue LogTypeId = getValue(I.getArgOperand(0));
7357     SDValue LogEntryVal = getValue(I.getArgOperand(1));
7358     SDValue StrSizeVal = getValue(I.getArgOperand(2));
7359     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7360     SDValue Chain = getRoot();
7361     Ops.push_back(LogTypeId);
7362     Ops.push_back(LogEntryVal);
7363     Ops.push_back(StrSizeVal);
7364     Ops.push_back(Chain);
7365 
7366     // We need to enforce the calling convention for the callsite, so that
7367     // argument ordering is enforced correctly, and that register allocation can
7368     // see that some registers may be assumed clobbered and have to preserve
7369     // them across calls to the intrinsic.
7370     MachineSDNode *MN = DAG.getMachineNode(
7371         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
7372     SDValue patchableNode = SDValue(MN, 0);
7373     DAG.setRoot(patchableNode);
7374     setValue(&I, patchableNode);
7375     return;
7376   }
7377   case Intrinsic::experimental_deoptimize:
7378     LowerDeoptimizeCall(&I);
7379     return;
7380   case Intrinsic::experimental_stepvector:
7381     visitStepVector(I);
7382     return;
7383   case Intrinsic::vector_reduce_fadd:
7384   case Intrinsic::vector_reduce_fmul:
7385   case Intrinsic::vector_reduce_add:
7386   case Intrinsic::vector_reduce_mul:
7387   case Intrinsic::vector_reduce_and:
7388   case Intrinsic::vector_reduce_or:
7389   case Intrinsic::vector_reduce_xor:
7390   case Intrinsic::vector_reduce_smax:
7391   case Intrinsic::vector_reduce_smin:
7392   case Intrinsic::vector_reduce_umax:
7393   case Intrinsic::vector_reduce_umin:
7394   case Intrinsic::vector_reduce_fmax:
7395   case Intrinsic::vector_reduce_fmin:
7396   case Intrinsic::vector_reduce_fmaximum:
7397   case Intrinsic::vector_reduce_fminimum:
7398     visitVectorReduce(I, Intrinsic);
7399     return;
7400 
7401   case Intrinsic::icall_branch_funnel: {
7402     SmallVector<SDValue, 16> Ops;
7403     Ops.push_back(getValue(I.getArgOperand(0)));
7404 
7405     int64_t Offset;
7406     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7407         I.getArgOperand(1), Offset, DAG.getDataLayout()));
7408     if (!Base)
7409       report_fatal_error(
7410           "llvm.icall.branch.funnel operand must be a GlobalValue");
7411     Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
7412 
7413     struct BranchFunnelTarget {
7414       int64_t Offset;
7415       SDValue Target;
7416     };
7417     SmallVector<BranchFunnelTarget, 8> Targets;
7418 
7419     for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
7420       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7421           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7422       if (ElemBase != Base)
7423         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7424                            "to the same GlobalValue");
7425 
7426       SDValue Val = getValue(I.getArgOperand(Op + 1));
7427       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7428       if (!GA)
7429         report_fatal_error(
7430             "llvm.icall.branch.funnel operand must be a GlobalValue");
7431       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7432                                      GA->getGlobal(), sdl, Val.getValueType(),
7433                                      GA->getOffset())});
7434     }
7435     llvm::sort(Targets,
7436                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7437                  return T1.Offset < T2.Offset;
7438                });
7439 
7440     for (auto &T : Targets) {
7441       Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
7442       Ops.push_back(T.Target);
7443     }
7444 
7445     Ops.push_back(DAG.getRoot()); // Chain
7446     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
7447                                  MVT::Other, Ops),
7448               0);
7449     DAG.setRoot(N);
7450     setValue(&I, N);
7451     HasTailCall = true;
7452     return;
7453   }
7454 
7455   case Intrinsic::wasm_landingpad_index:
7456     // Information this intrinsic contained has been transferred to
7457     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7458     // delete it now.
7459     return;
7460 
7461   case Intrinsic::aarch64_settag:
7462   case Intrinsic::aarch64_settag_zero: {
7463     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7464     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7465     SDValue Val = TSI.EmitTargetCodeForSetTag(
7466         DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
7467         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7468         ZeroMemory);
7469     DAG.setRoot(Val);
7470     setValue(&I, Val);
7471     return;
7472   }
7473   case Intrinsic::amdgcn_cs_chain: {
7474     assert(I.arg_size() == 5 && "Additional args not supported yet");
7475     assert(cast<ConstantInt>(I.getOperand(4))->isZero() &&
7476            "Non-zero flags not supported yet");
7477 
7478     // At this point we don't care if it's amdgpu_cs_chain or
7479     // amdgpu_cs_chain_preserve.
7480     CallingConv::ID CC = CallingConv::AMDGPU_CS_Chain;
7481 
7482     Type *RetTy = I.getType();
7483     assert(RetTy->isVoidTy() && "Should not return");
7484 
7485     SDValue Callee = getValue(I.getOperand(0));
7486 
7487     // We only have 2 actual args: one for the SGPRs and one for the VGPRs.
7488     // We'll also tack the value of the EXEC mask at the end.
7489     TargetLowering::ArgListTy Args;
7490     Args.reserve(3);
7491 
7492     for (unsigned Idx : {2, 3, 1}) {
7493       TargetLowering::ArgListEntry Arg;
7494       Arg.Node = getValue(I.getOperand(Idx));
7495       Arg.Ty = I.getOperand(Idx)->getType();
7496       Arg.setAttributes(&I, Idx);
7497       Args.push_back(Arg);
7498     }
7499 
7500     assert(Args[0].IsInReg && "SGPR args should be marked inreg");
7501     assert(!Args[1].IsInReg && "VGPR args should not be marked inreg");
7502     Args[2].IsInReg = true; // EXEC should be inreg
7503 
7504     TargetLowering::CallLoweringInfo CLI(DAG);
7505     CLI.setDebugLoc(getCurSDLoc())
7506         .setChain(getRoot())
7507         .setCallee(CC, RetTy, Callee, std::move(Args))
7508         .setNoReturn(true)
7509         .setTailCall(true)
7510         .setConvergent(I.isConvergent());
7511     CLI.CB = &I;
7512     std::pair<SDValue, SDValue> Result =
7513         lowerInvokable(CLI, /*EHPadBB*/ nullptr);
7514     (void)Result;
7515     assert(!Result.first.getNode() && !Result.second.getNode() &&
7516            "Should've lowered as tail call");
7517 
7518     HasTailCall = true;
7519     return;
7520   }
7521   case Intrinsic::ptrmask: {
7522     SDValue Ptr = getValue(I.getOperand(0));
7523     SDValue Mask = getValue(I.getOperand(1));
7524 
7525     EVT PtrVT = Ptr.getValueType();
7526     assert(PtrVT == Mask.getValueType() &&
7527            "Pointers with different index type are not supported by SDAG");
7528     setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, Mask));
7529     return;
7530   }
7531   case Intrinsic::threadlocal_address: {
7532     setValue(&I, getValue(I.getOperand(0)));
7533     return;
7534   }
7535   case Intrinsic::get_active_lane_mask: {
7536     EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7537     SDValue Index = getValue(I.getOperand(0));
7538     EVT ElementVT = Index.getValueType();
7539 
7540     if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
7541       visitTargetIntrinsic(I, Intrinsic);
7542       return;
7543     }
7544 
7545     SDValue TripCount = getValue(I.getOperand(1));
7546     EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT,
7547                                  CCVT.getVectorElementCount());
7548 
7549     SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index);
7550     SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount);
7551     SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
7552     SDValue VectorInduction = DAG.getNode(
7553         ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
7554     SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
7555                                  VectorTripCount, ISD::CondCode::SETULT);
7556     setValue(&I, SetCC);
7557     return;
7558   }
7559   case Intrinsic::experimental_get_vector_length: {
7560     assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 &&
7561            "Expected positive VF");
7562     unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue();
7563     bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne();
7564 
7565     SDValue Count = getValue(I.getOperand(0));
7566     EVT CountVT = Count.getValueType();
7567 
7568     if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) {
7569       visitTargetIntrinsic(I, Intrinsic);
7570       return;
7571     }
7572 
7573     // Expand to a umin between the trip count and the maximum elements the type
7574     // can hold.
7575     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7576 
7577     // Extend the trip count to at least the result VT.
7578     if (CountVT.bitsLT(VT)) {
7579       Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count);
7580       CountVT = VT;
7581     }
7582 
7583     SDValue MaxEVL = DAG.getElementCount(sdl, CountVT,
7584                                          ElementCount::get(VF, IsScalable));
7585 
7586     SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL);
7587     // Clip to the result type if needed.
7588     SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin);
7589 
7590     setValue(&I, Trunc);
7591     return;
7592   }
7593   case Intrinsic::experimental_cttz_elts: {
7594     auto DL = getCurSDLoc();
7595     SDValue Op = getValue(I.getOperand(0));
7596     EVT OpVT = Op.getValueType();
7597 
7598     if (!TLI.shouldExpandCttzElements(OpVT)) {
7599       visitTargetIntrinsic(I, Intrinsic);
7600       return;
7601     }
7602 
7603     if (OpVT.getScalarType() != MVT::i1) {
7604       // Compare the input vector elements to zero & use to count trailing zeros
7605       SDValue AllZero = DAG.getConstant(0, DL, OpVT);
7606       OpVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
7607                               OpVT.getVectorElementCount());
7608       Op = DAG.getSetCC(DL, OpVT, Op, AllZero, ISD::SETNE);
7609     }
7610 
7611     // Find the smallest "sensible" element type to use for the expansion.
7612     ConstantRange CR(
7613         APInt(64, OpVT.getVectorElementCount().getKnownMinValue()));
7614     if (OpVT.isScalableVT())
7615       CR = CR.umul_sat(getVScaleRange(I.getCaller(), 64));
7616 
7617     // If the zero-is-poison flag is set, we can assume the upper limit
7618     // of the result is VF-1.
7619     if (!cast<ConstantSDNode>(getValue(I.getOperand(1)))->isZero())
7620       CR = CR.subtract(APInt(64, 1));
7621 
7622     unsigned EltWidth = I.getType()->getScalarSizeInBits();
7623     EltWidth = std::min(EltWidth, (unsigned)CR.getActiveBits());
7624     EltWidth = std::max(llvm::bit_ceil(EltWidth), (unsigned)8);
7625 
7626     MVT NewEltTy = MVT::getIntegerVT(EltWidth);
7627 
7628     // Create the new vector type & get the vector length
7629     EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltTy,
7630                                  OpVT.getVectorElementCount());
7631 
7632     SDValue VL =
7633         DAG.getElementCount(DL, NewEltTy, OpVT.getVectorElementCount());
7634 
7635     SDValue StepVec = DAG.getStepVector(DL, NewVT);
7636     SDValue SplatVL = DAG.getSplat(NewVT, DL, VL);
7637     SDValue StepVL = DAG.getNode(ISD::SUB, DL, NewVT, SplatVL, StepVec);
7638     SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, Op);
7639     SDValue And = DAG.getNode(ISD::AND, DL, NewVT, StepVL, Ext);
7640     SDValue Max = DAG.getNode(ISD::VECREDUCE_UMAX, DL, NewEltTy, And);
7641     SDValue Sub = DAG.getNode(ISD::SUB, DL, NewEltTy, VL, Max);
7642 
7643     EVT RetTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
7644     SDValue Ret = DAG.getZExtOrTrunc(Sub, DL, RetTy);
7645 
7646     setValue(&I, Ret);
7647     return;
7648   }
7649   case Intrinsic::vector_insert: {
7650     SDValue Vec = getValue(I.getOperand(0));
7651     SDValue SubVec = getValue(I.getOperand(1));
7652     SDValue Index = getValue(I.getOperand(2));
7653 
7654     // The intrinsic's index type is i64, but the SDNode requires an index type
7655     // suitable for the target. Convert the index as required.
7656     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7657     if (Index.getValueType() != VectorIdxTy)
7658       Index = DAG.getVectorIdxConstant(
7659           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7660 
7661     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7662     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
7663                              Index));
7664     return;
7665   }
7666   case Intrinsic::vector_extract: {
7667     SDValue Vec = getValue(I.getOperand(0));
7668     SDValue Index = getValue(I.getOperand(1));
7669     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7670 
7671     // The intrinsic's index type is i64, but the SDNode requires an index type
7672     // suitable for the target. Convert the index as required.
7673     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7674     if (Index.getValueType() != VectorIdxTy)
7675       Index = DAG.getVectorIdxConstant(
7676           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7677 
7678     setValue(&I,
7679              DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
7680     return;
7681   }
7682   case Intrinsic::experimental_vector_reverse:
7683     visitVectorReverse(I);
7684     return;
7685   case Intrinsic::experimental_vector_splice:
7686     visitVectorSplice(I);
7687     return;
7688   case Intrinsic::callbr_landingpad:
7689     visitCallBrLandingPad(I);
7690     return;
7691   case Intrinsic::experimental_vector_interleave2:
7692     visitVectorInterleave(I);
7693     return;
7694   case Intrinsic::experimental_vector_deinterleave2:
7695     visitVectorDeinterleave(I);
7696     return;
7697   }
7698 }
7699 
7700 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
7701     const ConstrainedFPIntrinsic &FPI) {
7702   SDLoc sdl = getCurSDLoc();
7703 
7704   // We do not need to serialize constrained FP intrinsics against
7705   // each other or against (nonvolatile) loads, so they can be
7706   // chained like loads.
7707   SDValue Chain = DAG.getRoot();
7708   SmallVector<SDValue, 4> Opers;
7709   Opers.push_back(Chain);
7710   if (FPI.isUnaryOp()) {
7711     Opers.push_back(getValue(FPI.getArgOperand(0)));
7712   } else if (FPI.isTernaryOp()) {
7713     Opers.push_back(getValue(FPI.getArgOperand(0)));
7714     Opers.push_back(getValue(FPI.getArgOperand(1)));
7715     Opers.push_back(getValue(FPI.getArgOperand(2)));
7716   } else {
7717     Opers.push_back(getValue(FPI.getArgOperand(0)));
7718     Opers.push_back(getValue(FPI.getArgOperand(1)));
7719   }
7720 
7721   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
7722     assert(Result.getNode()->getNumValues() == 2);
7723 
7724     // Push node to the appropriate list so that future instructions can be
7725     // chained up correctly.
7726     SDValue OutChain = Result.getValue(1);
7727     switch (EB) {
7728     case fp::ExceptionBehavior::ebIgnore:
7729       // The only reason why ebIgnore nodes still need to be chained is that
7730       // they might depend on the current rounding mode, and therefore must
7731       // not be moved across instruction that may change that mode.
7732       [[fallthrough]];
7733     case fp::ExceptionBehavior::ebMayTrap:
7734       // These must not be moved across calls or instructions that may change
7735       // floating-point exception masks.
7736       PendingConstrainedFP.push_back(OutChain);
7737       break;
7738     case fp::ExceptionBehavior::ebStrict:
7739       // These must not be moved across calls or instructions that may change
7740       // floating-point exception masks or read floating-point exception flags.
7741       // In addition, they cannot be optimized out even if unused.
7742       PendingConstrainedFPStrict.push_back(OutChain);
7743       break;
7744     }
7745   };
7746 
7747   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7748   EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType());
7749   SDVTList VTs = DAG.getVTList(VT, MVT::Other);
7750   fp::ExceptionBehavior EB = *FPI.getExceptionBehavior();
7751 
7752   SDNodeFlags Flags;
7753   if (EB == fp::ExceptionBehavior::ebIgnore)
7754     Flags.setNoFPExcept(true);
7755 
7756   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
7757     Flags.copyFMF(*FPOp);
7758 
7759   unsigned Opcode;
7760   switch (FPI.getIntrinsicID()) {
7761   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7762 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7763   case Intrinsic::INTRINSIC:                                                   \
7764     Opcode = ISD::STRICT_##DAGN;                                               \
7765     break;
7766 #include "llvm/IR/ConstrainedOps.def"
7767   case Intrinsic::experimental_constrained_fmuladd: {
7768     Opcode = ISD::STRICT_FMA;
7769     // Break fmuladd into fmul and fadd.
7770     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
7771         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
7772       Opers.pop_back();
7773       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
7774       pushOutChain(Mul, EB);
7775       Opcode = ISD::STRICT_FADD;
7776       Opers.clear();
7777       Opers.push_back(Mul.getValue(1));
7778       Opers.push_back(Mul.getValue(0));
7779       Opers.push_back(getValue(FPI.getArgOperand(2)));
7780     }
7781     break;
7782   }
7783   }
7784 
7785   // A few strict DAG nodes carry additional operands that are not
7786   // set up by the default code above.
7787   switch (Opcode) {
7788   default: break;
7789   case ISD::STRICT_FP_ROUND:
7790     Opers.push_back(
7791         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7792     break;
7793   case ISD::STRICT_FSETCC:
7794   case ISD::STRICT_FSETCCS: {
7795     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7796     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
7797     if (TM.Options.NoNaNsFPMath)
7798       Condition = getFCmpCodeWithoutNaN(Condition);
7799     Opers.push_back(DAG.getCondCode(Condition));
7800     break;
7801   }
7802   }
7803 
7804   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7805   pushOutChain(Result, EB);
7806 
7807   SDValue FPResult = Result.getValue(0);
7808   setValue(&FPI, FPResult);
7809 }
7810 
7811 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
7812   std::optional<unsigned> ResOPC;
7813   switch (VPIntrin.getIntrinsicID()) {
7814   case Intrinsic::vp_ctlz: {
7815     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
7816     ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ;
7817     break;
7818   }
7819   case Intrinsic::vp_cttz: {
7820     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
7821     ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ;
7822     break;
7823   }
7824 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD)                                    \
7825   case Intrinsic::VPID:                                                        \
7826     ResOPC = ISD::VPSD;                                                        \
7827     break;
7828 #include "llvm/IR/VPIntrinsics.def"
7829   }
7830 
7831   if (!ResOPC)
7832     llvm_unreachable(
7833         "Inconsistency: no SDNode available for this VPIntrinsic!");
7834 
7835   if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
7836       *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
7837     if (VPIntrin.getFastMathFlags().allowReassoc())
7838       return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
7839                                                 : ISD::VP_REDUCE_FMUL;
7840   }
7841 
7842   return *ResOPC;
7843 }
7844 
7845 void SelectionDAGBuilder::visitVPLoad(
7846     const VPIntrinsic &VPIntrin, EVT VT,
7847     const SmallVectorImpl<SDValue> &OpValues) {
7848   SDLoc DL = getCurSDLoc();
7849   Value *PtrOperand = VPIntrin.getArgOperand(0);
7850   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7851   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7852   const MDNode *Ranges = getRangeMetadata(VPIntrin);
7853   SDValue LD;
7854   // Do not serialize variable-length loads of constant memory with
7855   // anything.
7856   if (!Alignment)
7857     Alignment = DAG.getEVTAlign(VT);
7858   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7859   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7860   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7861   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7862       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7863       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7864   LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
7865                      MMO, false /*IsExpanding */);
7866   if (AddToChain)
7867     PendingLoads.push_back(LD.getValue(1));
7868   setValue(&VPIntrin, LD);
7869 }
7870 
7871 void SelectionDAGBuilder::visitVPGather(
7872     const VPIntrinsic &VPIntrin, EVT VT,
7873     const SmallVectorImpl<SDValue> &OpValues) {
7874   SDLoc DL = getCurSDLoc();
7875   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7876   Value *PtrOperand = VPIntrin.getArgOperand(0);
7877   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7878   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7879   const MDNode *Ranges = getRangeMetadata(VPIntrin);
7880   SDValue LD;
7881   if (!Alignment)
7882     Alignment = DAG.getEVTAlign(VT.getScalarType());
7883   unsigned AS =
7884     PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7885   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7886      MachinePointerInfo(AS), MachineMemOperand::MOLoad,
7887      MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7888   SDValue Base, Index, Scale;
7889   ISD::MemIndexType IndexType;
7890   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7891                                     this, VPIntrin.getParent(),
7892                                     VT.getScalarStoreSize());
7893   if (!UniformBase) {
7894     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7895     Index = getValue(PtrOperand);
7896     IndexType = ISD::SIGNED_SCALED;
7897     Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7898   }
7899   EVT IdxVT = Index.getValueType();
7900   EVT EltTy = IdxVT.getVectorElementType();
7901   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7902     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7903     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7904   }
7905   LD = DAG.getGatherVP(
7906       DAG.getVTList(VT, MVT::Other), VT, DL,
7907       {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
7908       IndexType);
7909   PendingLoads.push_back(LD.getValue(1));
7910   setValue(&VPIntrin, LD);
7911 }
7912 
7913 void SelectionDAGBuilder::visitVPStore(
7914     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
7915   SDLoc DL = getCurSDLoc();
7916   Value *PtrOperand = VPIntrin.getArgOperand(1);
7917   EVT VT = OpValues[0].getValueType();
7918   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7919   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7920   SDValue ST;
7921   if (!Alignment)
7922     Alignment = DAG.getEVTAlign(VT);
7923   SDValue Ptr = OpValues[1];
7924   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
7925   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7926       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7927       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7928   ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
7929                       OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
7930                       /* IsTruncating */ false, /*IsCompressing*/ false);
7931   DAG.setRoot(ST);
7932   setValue(&VPIntrin, ST);
7933 }
7934 
7935 void SelectionDAGBuilder::visitVPScatter(
7936     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
7937   SDLoc DL = getCurSDLoc();
7938   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7939   Value *PtrOperand = VPIntrin.getArgOperand(1);
7940   EVT VT = OpValues[0].getValueType();
7941   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7942   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7943   SDValue ST;
7944   if (!Alignment)
7945     Alignment = DAG.getEVTAlign(VT.getScalarType());
7946   unsigned AS =
7947       PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7948   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7949       MachinePointerInfo(AS), MachineMemOperand::MOStore,
7950       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7951   SDValue Base, Index, Scale;
7952   ISD::MemIndexType IndexType;
7953   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7954                                     this, VPIntrin.getParent(),
7955                                     VT.getScalarStoreSize());
7956   if (!UniformBase) {
7957     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7958     Index = getValue(PtrOperand);
7959     IndexType = ISD::SIGNED_SCALED;
7960     Scale =
7961       DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7962   }
7963   EVT IdxVT = Index.getValueType();
7964   EVT EltTy = IdxVT.getVectorElementType();
7965   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7966     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7967     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7968   }
7969   ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
7970                         {getMemoryRoot(), OpValues[0], Base, Index, Scale,
7971                          OpValues[2], OpValues[3]},
7972                         MMO, IndexType);
7973   DAG.setRoot(ST);
7974   setValue(&VPIntrin, ST);
7975 }
7976 
7977 void SelectionDAGBuilder::visitVPStridedLoad(
7978     const VPIntrinsic &VPIntrin, EVT VT,
7979     const SmallVectorImpl<SDValue> &OpValues) {
7980   SDLoc DL = getCurSDLoc();
7981   Value *PtrOperand = VPIntrin.getArgOperand(0);
7982   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7983   if (!Alignment)
7984     Alignment = DAG.getEVTAlign(VT.getScalarType());
7985   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7986   const MDNode *Ranges = getRangeMetadata(VPIntrin);
7987   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7988   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7989   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7990   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7991       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7992       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7993 
7994   SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1],
7995                                     OpValues[2], OpValues[3], MMO,
7996                                     false /*IsExpanding*/);
7997 
7998   if (AddToChain)
7999     PendingLoads.push_back(LD.getValue(1));
8000   setValue(&VPIntrin, LD);
8001 }
8002 
8003 void SelectionDAGBuilder::visitVPStridedStore(
8004     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8005   SDLoc DL = getCurSDLoc();
8006   Value *PtrOperand = VPIntrin.getArgOperand(1);
8007   EVT VT = OpValues[0].getValueType();
8008   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8009   if (!Alignment)
8010     Alignment = DAG.getEVTAlign(VT.getScalarType());
8011   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8012   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8013       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
8014       MemoryLocation::UnknownSize, *Alignment, AAInfo);
8015 
8016   SDValue ST = DAG.getStridedStoreVP(
8017       getMemoryRoot(), DL, OpValues[0], OpValues[1],
8018       DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
8019       OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false,
8020       /*IsCompressing*/ false);
8021 
8022   DAG.setRoot(ST);
8023   setValue(&VPIntrin, ST);
8024 }
8025 
8026 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) {
8027   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8028   SDLoc DL = getCurSDLoc();
8029 
8030   ISD::CondCode Condition;
8031   CmpInst::Predicate CondCode = VPIntrin.getPredicate();
8032   bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy();
8033   if (IsFP) {
8034     // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan)
8035     // flags, but calls that don't return floating-point types can't be
8036     // FPMathOperators, like vp.fcmp. This affects constrained fcmp too.
8037     Condition = getFCmpCondCode(CondCode);
8038     if (TM.Options.NoNaNsFPMath)
8039       Condition = getFCmpCodeWithoutNaN(Condition);
8040   } else {
8041     Condition = getICmpCondCode(CondCode);
8042   }
8043 
8044   SDValue Op1 = getValue(VPIntrin.getOperand(0));
8045   SDValue Op2 = getValue(VPIntrin.getOperand(1));
8046   // #2 is the condition code
8047   SDValue MaskOp = getValue(VPIntrin.getOperand(3));
8048   SDValue EVL = getValue(VPIntrin.getOperand(4));
8049   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
8050   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
8051          "Unexpected target EVL type");
8052   EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL);
8053 
8054   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8055                                                         VPIntrin.getType());
8056   setValue(&VPIntrin,
8057            DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
8058 }
8059 
8060 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
8061     const VPIntrinsic &VPIntrin) {
8062   SDLoc DL = getCurSDLoc();
8063   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
8064 
8065   auto IID = VPIntrin.getIntrinsicID();
8066 
8067   if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin))
8068     return visitVPCmp(*CmpI);
8069 
8070   SmallVector<EVT, 4> ValueVTs;
8071   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8072   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
8073   SDVTList VTs = DAG.getVTList(ValueVTs);
8074 
8075   auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID);
8076 
8077   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
8078   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
8079          "Unexpected target EVL type");
8080 
8081   // Request operands.
8082   SmallVector<SDValue, 7> OpValues;
8083   for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
8084     auto Op = getValue(VPIntrin.getArgOperand(I));
8085     if (I == EVLParamPos)
8086       Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
8087     OpValues.push_back(Op);
8088   }
8089 
8090   switch (Opcode) {
8091   default: {
8092     SDNodeFlags SDFlags;
8093     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
8094       SDFlags.copyFMF(*FPMO);
8095     SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags);
8096     setValue(&VPIntrin, Result);
8097     break;
8098   }
8099   case ISD::VP_LOAD:
8100     visitVPLoad(VPIntrin, ValueVTs[0], OpValues);
8101     break;
8102   case ISD::VP_GATHER:
8103     visitVPGather(VPIntrin, ValueVTs[0], OpValues);
8104     break;
8105   case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
8106     visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
8107     break;
8108   case ISD::VP_STORE:
8109     visitVPStore(VPIntrin, OpValues);
8110     break;
8111   case ISD::VP_SCATTER:
8112     visitVPScatter(VPIntrin, OpValues);
8113     break;
8114   case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
8115     visitVPStridedStore(VPIntrin, OpValues);
8116     break;
8117   case ISD::VP_FMULADD: {
8118     assert(OpValues.size() == 5 && "Unexpected number of operands");
8119     SDNodeFlags SDFlags;
8120     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
8121       SDFlags.copyFMF(*FPMO);
8122     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
8123         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) {
8124       setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags));
8125     } else {
8126       SDValue Mul = DAG.getNode(
8127           ISD::VP_FMUL, DL, VTs,
8128           {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags);
8129       SDValue Add =
8130           DAG.getNode(ISD::VP_FADD, DL, VTs,
8131                       {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags);
8132       setValue(&VPIntrin, Add);
8133     }
8134     break;
8135   }
8136   case ISD::VP_IS_FPCLASS: {
8137     const DataLayout DLayout = DAG.getDataLayout();
8138     EVT DestVT = TLI.getValueType(DLayout, VPIntrin.getType());
8139     auto Constant = cast<ConstantSDNode>(OpValues[1])->getZExtValue();
8140     SDValue Check = DAG.getTargetConstant(Constant, DL, MVT::i32);
8141     SDValue V = DAG.getNode(ISD::VP_IS_FPCLASS, DL, DestVT,
8142                             {OpValues[0], Check, OpValues[2], OpValues[3]});
8143     setValue(&VPIntrin, V);
8144     return;
8145   }
8146   case ISD::VP_INTTOPTR: {
8147     SDValue N = OpValues[0];
8148     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType());
8149     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType());
8150     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
8151                                OpValues[2]);
8152     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
8153                              OpValues[2]);
8154     setValue(&VPIntrin, N);
8155     break;
8156   }
8157   case ISD::VP_PTRTOINT: {
8158     SDValue N = OpValues[0];
8159     EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8160                                                           VPIntrin.getType());
8161     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(),
8162                                        VPIntrin.getOperand(0)->getType());
8163     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
8164                                OpValues[2]);
8165     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
8166                              OpValues[2]);
8167     setValue(&VPIntrin, N);
8168     break;
8169   }
8170   case ISD::VP_ABS:
8171   case ISD::VP_CTLZ:
8172   case ISD::VP_CTLZ_ZERO_UNDEF:
8173   case ISD::VP_CTTZ:
8174   case ISD::VP_CTTZ_ZERO_UNDEF: {
8175     SDValue Result =
8176         DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]});
8177     setValue(&VPIntrin, Result);
8178     break;
8179   }
8180   }
8181 }
8182 
8183 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
8184                                           const BasicBlock *EHPadBB,
8185                                           MCSymbol *&BeginLabel) {
8186   MachineFunction &MF = DAG.getMachineFunction();
8187   MachineModuleInfo &MMI = MF.getMMI();
8188 
8189   // Insert a label before the invoke call to mark the try range.  This can be
8190   // used to detect deletion of the invoke via the MachineModuleInfo.
8191   BeginLabel = MMI.getContext().createTempSymbol();
8192 
8193   // For SjLj, keep track of which landing pads go with which invokes
8194   // so as to maintain the ordering of pads in the LSDA.
8195   unsigned CallSiteIndex = MMI.getCurrentCallSite();
8196   if (CallSiteIndex) {
8197     MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
8198     LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
8199 
8200     // Now that the call site is handled, stop tracking it.
8201     MMI.setCurrentCallSite(0);
8202   }
8203 
8204   return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
8205 }
8206 
8207 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
8208                                         const BasicBlock *EHPadBB,
8209                                         MCSymbol *BeginLabel) {
8210   assert(BeginLabel && "BeginLabel should've been set");
8211 
8212   MachineFunction &MF = DAG.getMachineFunction();
8213   MachineModuleInfo &MMI = MF.getMMI();
8214 
8215   // Insert a label at the end of the invoke call to mark the try range.  This
8216   // can be used to detect deletion of the invoke via the MachineModuleInfo.
8217   MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
8218   Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
8219 
8220   // Inform MachineModuleInfo of range.
8221   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
8222   // There is a platform (e.g. wasm) that uses funclet style IR but does not
8223   // actually use outlined funclets and their LSDA info style.
8224   if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
8225     assert(II && "II should've been set");
8226     WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
8227     EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
8228   } else if (!isScopedEHPersonality(Pers)) {
8229     assert(EHPadBB);
8230     MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
8231   }
8232 
8233   return Chain;
8234 }
8235 
8236 std::pair<SDValue, SDValue>
8237 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
8238                                     const BasicBlock *EHPadBB) {
8239   MCSymbol *BeginLabel = nullptr;
8240 
8241   if (EHPadBB) {
8242     // Both PendingLoads and PendingExports must be flushed here;
8243     // this call might not return.
8244     (void)getRoot();
8245     DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
8246     CLI.setChain(getRoot());
8247   }
8248 
8249   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8250   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
8251 
8252   assert((CLI.IsTailCall || Result.second.getNode()) &&
8253          "Non-null chain expected with non-tail call!");
8254   assert((Result.second.getNode() || !Result.first.getNode()) &&
8255          "Null value expected with tail call!");
8256 
8257   if (!Result.second.getNode()) {
8258     // As a special case, a null chain means that a tail call has been emitted
8259     // and the DAG root is already updated.
8260     HasTailCall = true;
8261 
8262     // Since there's no actual continuation from this block, nothing can be
8263     // relying on us setting vregs for them.
8264     PendingExports.clear();
8265   } else {
8266     DAG.setRoot(Result.second);
8267   }
8268 
8269   if (EHPadBB) {
8270     DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
8271                            BeginLabel));
8272   }
8273 
8274   return Result;
8275 }
8276 
8277 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
8278                                       bool isTailCall,
8279                                       bool isMustTailCall,
8280                                       const BasicBlock *EHPadBB) {
8281   auto &DL = DAG.getDataLayout();
8282   FunctionType *FTy = CB.getFunctionType();
8283   Type *RetTy = CB.getType();
8284 
8285   TargetLowering::ArgListTy Args;
8286   Args.reserve(CB.arg_size());
8287 
8288   const Value *SwiftErrorVal = nullptr;
8289   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8290 
8291   if (isTailCall) {
8292     // Avoid emitting tail calls in functions with the disable-tail-calls
8293     // attribute.
8294     auto *Caller = CB.getParent()->getParent();
8295     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
8296         "true" && !isMustTailCall)
8297       isTailCall = false;
8298 
8299     // We can't tail call inside a function with a swifterror argument. Lowering
8300     // does not support this yet. It would have to move into the swifterror
8301     // register before the call.
8302     if (TLI.supportSwiftError() &&
8303         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
8304       isTailCall = false;
8305   }
8306 
8307   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
8308     TargetLowering::ArgListEntry Entry;
8309     const Value *V = *I;
8310 
8311     // Skip empty types
8312     if (V->getType()->isEmptyTy())
8313       continue;
8314 
8315     SDValue ArgNode = getValue(V);
8316     Entry.Node = ArgNode; Entry.Ty = V->getType();
8317 
8318     Entry.setAttributes(&CB, I - CB.arg_begin());
8319 
8320     // Use swifterror virtual register as input to the call.
8321     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
8322       SwiftErrorVal = V;
8323       // We find the virtual register for the actual swifterror argument.
8324       // Instead of using the Value, we use the virtual register instead.
8325       Entry.Node =
8326           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
8327                           EVT(TLI.getPointerTy(DL)));
8328     }
8329 
8330     Args.push_back(Entry);
8331 
8332     // If we have an explicit sret argument that is an Instruction, (i.e., it
8333     // might point to function-local memory), we can't meaningfully tail-call.
8334     if (Entry.IsSRet && isa<Instruction>(V))
8335       isTailCall = false;
8336   }
8337 
8338   // If call site has a cfguardtarget operand bundle, create and add an
8339   // additional ArgListEntry.
8340   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
8341     TargetLowering::ArgListEntry Entry;
8342     Value *V = Bundle->Inputs[0];
8343     SDValue ArgNode = getValue(V);
8344     Entry.Node = ArgNode;
8345     Entry.Ty = V->getType();
8346     Entry.IsCFGuardTarget = true;
8347     Args.push_back(Entry);
8348   }
8349 
8350   // Check if target-independent constraints permit a tail call here.
8351   // Target-dependent constraints are checked within TLI->LowerCallTo.
8352   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
8353     isTailCall = false;
8354 
8355   // Disable tail calls if there is an swifterror argument. Targets have not
8356   // been updated to support tail calls.
8357   if (TLI.supportSwiftError() && SwiftErrorVal)
8358     isTailCall = false;
8359 
8360   ConstantInt *CFIType = nullptr;
8361   if (CB.isIndirectCall()) {
8362     if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) {
8363       if (!TLI.supportKCFIBundles())
8364         report_fatal_error(
8365             "Target doesn't support calls with kcfi operand bundles.");
8366       CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
8367       assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
8368     }
8369   }
8370 
8371   TargetLowering::CallLoweringInfo CLI(DAG);
8372   CLI.setDebugLoc(getCurSDLoc())
8373       .setChain(getRoot())
8374       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
8375       .setTailCall(isTailCall)
8376       .setConvergent(CB.isConvergent())
8377       .setIsPreallocated(
8378           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0)
8379       .setCFIType(CFIType);
8380   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8381 
8382   if (Result.first.getNode()) {
8383     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
8384     setValue(&CB, Result.first);
8385   }
8386 
8387   // The last element of CLI.InVals has the SDValue for swifterror return.
8388   // Here we copy it to a virtual register and update SwiftErrorMap for
8389   // book-keeping.
8390   if (SwiftErrorVal && TLI.supportSwiftError()) {
8391     // Get the last element of InVals.
8392     SDValue Src = CLI.InVals.back();
8393     Register VReg =
8394         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
8395     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
8396     DAG.setRoot(CopyNode);
8397   }
8398 }
8399 
8400 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
8401                              SelectionDAGBuilder &Builder) {
8402   // Check to see if this load can be trivially constant folded, e.g. if the
8403   // input is from a string literal.
8404   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
8405     // Cast pointer to the type we really want to load.
8406     Type *LoadTy =
8407         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
8408     if (LoadVT.isVector())
8409       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
8410 
8411     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
8412                                          PointerType::getUnqual(LoadTy));
8413 
8414     if (const Constant *LoadCst =
8415             ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
8416                                          LoadTy, Builder.DAG.getDataLayout()))
8417       return Builder.getValue(LoadCst);
8418   }
8419 
8420   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
8421   // still constant memory, the input chain can be the entry node.
8422   SDValue Root;
8423   bool ConstantMemory = false;
8424 
8425   // Do not serialize (non-volatile) loads of constant memory with anything.
8426   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
8427     Root = Builder.DAG.getEntryNode();
8428     ConstantMemory = true;
8429   } else {
8430     // Do not serialize non-volatile loads against each other.
8431     Root = Builder.DAG.getRoot();
8432   }
8433 
8434   SDValue Ptr = Builder.getValue(PtrVal);
8435   SDValue LoadVal =
8436       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
8437                           MachinePointerInfo(PtrVal), Align(1));
8438 
8439   if (!ConstantMemory)
8440     Builder.PendingLoads.push_back(LoadVal.getValue(1));
8441   return LoadVal;
8442 }
8443 
8444 /// Record the value for an instruction that produces an integer result,
8445 /// converting the type where necessary.
8446 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
8447                                                   SDValue Value,
8448                                                   bool IsSigned) {
8449   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8450                                                     I.getType(), true);
8451   Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT);
8452   setValue(&I, Value);
8453 }
8454 
8455 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
8456 /// true and lower it. Otherwise return false, and it will be lowered like a
8457 /// normal call.
8458 /// The caller already checked that \p I calls the appropriate LibFunc with a
8459 /// correct prototype.
8460 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
8461   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
8462   const Value *Size = I.getArgOperand(2);
8463   const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size));
8464   if (CSize && CSize->getZExtValue() == 0) {
8465     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8466                                                           I.getType(), true);
8467     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
8468     return true;
8469   }
8470 
8471   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8472   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
8473       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
8474       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
8475   if (Res.first.getNode()) {
8476     processIntegerCallValue(I, Res.first, true);
8477     PendingLoads.push_back(Res.second);
8478     return true;
8479   }
8480 
8481   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
8482   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
8483   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
8484     return false;
8485 
8486   // If the target has a fast compare for the given size, it will return a
8487   // preferred load type for that size. Require that the load VT is legal and
8488   // that the target supports unaligned loads of that type. Otherwise, return
8489   // INVALID.
8490   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
8491     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8492     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
8493     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
8494       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
8495       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
8496       // TODO: Check alignment of src and dest ptrs.
8497       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
8498       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
8499       if (!TLI.isTypeLegal(LVT) ||
8500           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
8501           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
8502         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
8503     }
8504 
8505     return LVT;
8506   };
8507 
8508   // This turns into unaligned loads. We only do this if the target natively
8509   // supports the MVT we'll be loading or if it is small enough (<= 4) that
8510   // we'll only produce a small number of byte loads.
8511   MVT LoadVT;
8512   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
8513   switch (NumBitsToCompare) {
8514   default:
8515     return false;
8516   case 16:
8517     LoadVT = MVT::i16;
8518     break;
8519   case 32:
8520     LoadVT = MVT::i32;
8521     break;
8522   case 64:
8523   case 128:
8524   case 256:
8525     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
8526     break;
8527   }
8528 
8529   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
8530     return false;
8531 
8532   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
8533   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
8534 
8535   // Bitcast to a wide integer type if the loads are vectors.
8536   if (LoadVT.isVector()) {
8537     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
8538     LoadL = DAG.getBitcast(CmpVT, LoadL);
8539     LoadR = DAG.getBitcast(CmpVT, LoadR);
8540   }
8541 
8542   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
8543   processIntegerCallValue(I, Cmp, false);
8544   return true;
8545 }
8546 
8547 /// See if we can lower a memchr call into an optimized form. If so, return
8548 /// true and lower it. Otherwise return false, and it will be lowered like a
8549 /// normal call.
8550 /// The caller already checked that \p I calls the appropriate LibFunc with a
8551 /// correct prototype.
8552 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
8553   const Value *Src = I.getArgOperand(0);
8554   const Value *Char = I.getArgOperand(1);
8555   const Value *Length = I.getArgOperand(2);
8556 
8557   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8558   std::pair<SDValue, SDValue> Res =
8559     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
8560                                 getValue(Src), getValue(Char), getValue(Length),
8561                                 MachinePointerInfo(Src));
8562   if (Res.first.getNode()) {
8563     setValue(&I, Res.first);
8564     PendingLoads.push_back(Res.second);
8565     return true;
8566   }
8567 
8568   return false;
8569 }
8570 
8571 /// See if we can lower a mempcpy call into an optimized form. If so, return
8572 /// true and lower it. Otherwise return false, and it will be lowered like a
8573 /// normal call.
8574 /// The caller already checked that \p I calls the appropriate LibFunc with a
8575 /// correct prototype.
8576 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
8577   SDValue Dst = getValue(I.getArgOperand(0));
8578   SDValue Src = getValue(I.getArgOperand(1));
8579   SDValue Size = getValue(I.getArgOperand(2));
8580 
8581   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
8582   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
8583   // DAG::getMemcpy needs Alignment to be defined.
8584   Align Alignment = std::min(DstAlign, SrcAlign);
8585 
8586   SDLoc sdl = getCurSDLoc();
8587 
8588   // In the mempcpy context we need to pass in a false value for isTailCall
8589   // because the return pointer needs to be adjusted by the size of
8590   // the copied memory.
8591   SDValue Root = getMemoryRoot();
8592   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, false, false,
8593                              /*isTailCall=*/false,
8594                              MachinePointerInfo(I.getArgOperand(0)),
8595                              MachinePointerInfo(I.getArgOperand(1)),
8596                              I.getAAMetadata());
8597   assert(MC.getNode() != nullptr &&
8598          "** memcpy should not be lowered as TailCall in mempcpy context **");
8599   DAG.setRoot(MC);
8600 
8601   // Check if Size needs to be truncated or extended.
8602   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
8603 
8604   // Adjust return pointer to point just past the last dst byte.
8605   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
8606                                     Dst, Size);
8607   setValue(&I, DstPlusSize);
8608   return true;
8609 }
8610 
8611 /// See if we can lower a strcpy call into an optimized form.  If so, return
8612 /// true and lower it, otherwise return false and it will be lowered like a
8613 /// normal call.
8614 /// The caller already checked that \p I calls the appropriate LibFunc with a
8615 /// correct prototype.
8616 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
8617   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8618 
8619   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8620   std::pair<SDValue, SDValue> Res =
8621     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
8622                                 getValue(Arg0), getValue(Arg1),
8623                                 MachinePointerInfo(Arg0),
8624                                 MachinePointerInfo(Arg1), isStpcpy);
8625   if (Res.first.getNode()) {
8626     setValue(&I, Res.first);
8627     DAG.setRoot(Res.second);
8628     return true;
8629   }
8630 
8631   return false;
8632 }
8633 
8634 /// See if we can lower a strcmp call into an optimized form.  If so, return
8635 /// true and lower it, otherwise return false and it will be lowered like a
8636 /// normal call.
8637 /// The caller already checked that \p I calls the appropriate LibFunc with a
8638 /// correct prototype.
8639 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
8640   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8641 
8642   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8643   std::pair<SDValue, SDValue> Res =
8644     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
8645                                 getValue(Arg0), getValue(Arg1),
8646                                 MachinePointerInfo(Arg0),
8647                                 MachinePointerInfo(Arg1));
8648   if (Res.first.getNode()) {
8649     processIntegerCallValue(I, Res.first, true);
8650     PendingLoads.push_back(Res.second);
8651     return true;
8652   }
8653 
8654   return false;
8655 }
8656 
8657 /// See if we can lower a strlen call into an optimized form.  If so, return
8658 /// true and lower it, otherwise return false and it will be lowered like a
8659 /// normal call.
8660 /// The caller already checked that \p I calls the appropriate LibFunc with a
8661 /// correct prototype.
8662 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
8663   const Value *Arg0 = I.getArgOperand(0);
8664 
8665   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8666   std::pair<SDValue, SDValue> Res =
8667     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
8668                                 getValue(Arg0), MachinePointerInfo(Arg0));
8669   if (Res.first.getNode()) {
8670     processIntegerCallValue(I, Res.first, false);
8671     PendingLoads.push_back(Res.second);
8672     return true;
8673   }
8674 
8675   return false;
8676 }
8677 
8678 /// See if we can lower a strnlen call into an optimized form.  If so, return
8679 /// true and lower it, otherwise return false and it will be lowered like a
8680 /// normal call.
8681 /// The caller already checked that \p I calls the appropriate LibFunc with a
8682 /// correct prototype.
8683 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
8684   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8685 
8686   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8687   std::pair<SDValue, SDValue> Res =
8688     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
8689                                  getValue(Arg0), getValue(Arg1),
8690                                  MachinePointerInfo(Arg0));
8691   if (Res.first.getNode()) {
8692     processIntegerCallValue(I, Res.first, false);
8693     PendingLoads.push_back(Res.second);
8694     return true;
8695   }
8696 
8697   return false;
8698 }
8699 
8700 /// See if we can lower a unary floating-point operation into an SDNode with
8701 /// the specified Opcode.  If so, return true and lower it, otherwise return
8702 /// false and it will be lowered like a normal call.
8703 /// The caller already checked that \p I calls the appropriate LibFunc with a
8704 /// correct prototype.
8705 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
8706                                               unsigned Opcode) {
8707   // We already checked this call's prototype; verify it doesn't modify errno.
8708   if (!I.onlyReadsMemory())
8709     return false;
8710 
8711   SDNodeFlags Flags;
8712   Flags.copyFMF(cast<FPMathOperator>(I));
8713 
8714   SDValue Tmp = getValue(I.getArgOperand(0));
8715   setValue(&I,
8716            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
8717   return true;
8718 }
8719 
8720 /// See if we can lower a binary floating-point operation into an SDNode with
8721 /// the specified Opcode. If so, return true and lower it. Otherwise return
8722 /// false, and it will be lowered like a normal call.
8723 /// The caller already checked that \p I calls the appropriate LibFunc with a
8724 /// correct prototype.
8725 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
8726                                                unsigned Opcode) {
8727   // We already checked this call's prototype; verify it doesn't modify errno.
8728   if (!I.onlyReadsMemory())
8729     return false;
8730 
8731   SDNodeFlags Flags;
8732   Flags.copyFMF(cast<FPMathOperator>(I));
8733 
8734   SDValue Tmp0 = getValue(I.getArgOperand(0));
8735   SDValue Tmp1 = getValue(I.getArgOperand(1));
8736   EVT VT = Tmp0.getValueType();
8737   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
8738   return true;
8739 }
8740 
8741 void SelectionDAGBuilder::visitCall(const CallInst &I) {
8742   // Handle inline assembly differently.
8743   if (I.isInlineAsm()) {
8744     visitInlineAsm(I);
8745     return;
8746   }
8747 
8748   diagnoseDontCall(I);
8749 
8750   if (Function *F = I.getCalledFunction()) {
8751     if (F->isDeclaration()) {
8752       // Is this an LLVM intrinsic or a target-specific intrinsic?
8753       unsigned IID = F->getIntrinsicID();
8754       if (!IID)
8755         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
8756           IID = II->getIntrinsicID(F);
8757 
8758       if (IID) {
8759         visitIntrinsicCall(I, IID);
8760         return;
8761       }
8762     }
8763 
8764     // Check for well-known libc/libm calls.  If the function is internal, it
8765     // can't be a library call.  Don't do the check if marked as nobuiltin for
8766     // some reason or the call site requires strict floating point semantics.
8767     LibFunc Func;
8768     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
8769         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
8770         LibInfo->hasOptimizedCodeGen(Func)) {
8771       switch (Func) {
8772       default: break;
8773       case LibFunc_bcmp:
8774         if (visitMemCmpBCmpCall(I))
8775           return;
8776         break;
8777       case LibFunc_copysign:
8778       case LibFunc_copysignf:
8779       case LibFunc_copysignl:
8780         // We already checked this call's prototype; verify it doesn't modify
8781         // errno.
8782         if (I.onlyReadsMemory()) {
8783           SDValue LHS = getValue(I.getArgOperand(0));
8784           SDValue RHS = getValue(I.getArgOperand(1));
8785           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
8786                                    LHS.getValueType(), LHS, RHS));
8787           return;
8788         }
8789         break;
8790       case LibFunc_fabs:
8791       case LibFunc_fabsf:
8792       case LibFunc_fabsl:
8793         if (visitUnaryFloatCall(I, ISD::FABS))
8794           return;
8795         break;
8796       case LibFunc_fmin:
8797       case LibFunc_fminf:
8798       case LibFunc_fminl:
8799         if (visitBinaryFloatCall(I, ISD::FMINNUM))
8800           return;
8801         break;
8802       case LibFunc_fmax:
8803       case LibFunc_fmaxf:
8804       case LibFunc_fmaxl:
8805         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
8806           return;
8807         break;
8808       case LibFunc_sin:
8809       case LibFunc_sinf:
8810       case LibFunc_sinl:
8811         if (visitUnaryFloatCall(I, ISD::FSIN))
8812           return;
8813         break;
8814       case LibFunc_cos:
8815       case LibFunc_cosf:
8816       case LibFunc_cosl:
8817         if (visitUnaryFloatCall(I, ISD::FCOS))
8818           return;
8819         break;
8820       case LibFunc_sqrt:
8821       case LibFunc_sqrtf:
8822       case LibFunc_sqrtl:
8823       case LibFunc_sqrt_finite:
8824       case LibFunc_sqrtf_finite:
8825       case LibFunc_sqrtl_finite:
8826         if (visitUnaryFloatCall(I, ISD::FSQRT))
8827           return;
8828         break;
8829       case LibFunc_floor:
8830       case LibFunc_floorf:
8831       case LibFunc_floorl:
8832         if (visitUnaryFloatCall(I, ISD::FFLOOR))
8833           return;
8834         break;
8835       case LibFunc_nearbyint:
8836       case LibFunc_nearbyintf:
8837       case LibFunc_nearbyintl:
8838         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
8839           return;
8840         break;
8841       case LibFunc_ceil:
8842       case LibFunc_ceilf:
8843       case LibFunc_ceill:
8844         if (visitUnaryFloatCall(I, ISD::FCEIL))
8845           return;
8846         break;
8847       case LibFunc_rint:
8848       case LibFunc_rintf:
8849       case LibFunc_rintl:
8850         if (visitUnaryFloatCall(I, ISD::FRINT))
8851           return;
8852         break;
8853       case LibFunc_round:
8854       case LibFunc_roundf:
8855       case LibFunc_roundl:
8856         if (visitUnaryFloatCall(I, ISD::FROUND))
8857           return;
8858         break;
8859       case LibFunc_trunc:
8860       case LibFunc_truncf:
8861       case LibFunc_truncl:
8862         if (visitUnaryFloatCall(I, ISD::FTRUNC))
8863           return;
8864         break;
8865       case LibFunc_log2:
8866       case LibFunc_log2f:
8867       case LibFunc_log2l:
8868         if (visitUnaryFloatCall(I, ISD::FLOG2))
8869           return;
8870         break;
8871       case LibFunc_exp2:
8872       case LibFunc_exp2f:
8873       case LibFunc_exp2l:
8874         if (visitUnaryFloatCall(I, ISD::FEXP2))
8875           return;
8876         break;
8877       case LibFunc_exp10:
8878       case LibFunc_exp10f:
8879       case LibFunc_exp10l:
8880         if (visitUnaryFloatCall(I, ISD::FEXP10))
8881           return;
8882         break;
8883       case LibFunc_ldexp:
8884       case LibFunc_ldexpf:
8885       case LibFunc_ldexpl:
8886         if (visitBinaryFloatCall(I, ISD::FLDEXP))
8887           return;
8888         break;
8889       case LibFunc_memcmp:
8890         if (visitMemCmpBCmpCall(I))
8891           return;
8892         break;
8893       case LibFunc_mempcpy:
8894         if (visitMemPCpyCall(I))
8895           return;
8896         break;
8897       case LibFunc_memchr:
8898         if (visitMemChrCall(I))
8899           return;
8900         break;
8901       case LibFunc_strcpy:
8902         if (visitStrCpyCall(I, false))
8903           return;
8904         break;
8905       case LibFunc_stpcpy:
8906         if (visitStrCpyCall(I, true))
8907           return;
8908         break;
8909       case LibFunc_strcmp:
8910         if (visitStrCmpCall(I))
8911           return;
8912         break;
8913       case LibFunc_strlen:
8914         if (visitStrLenCall(I))
8915           return;
8916         break;
8917       case LibFunc_strnlen:
8918         if (visitStrNLenCall(I))
8919           return;
8920         break;
8921       }
8922     }
8923   }
8924 
8925   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
8926   // have to do anything here to lower funclet bundles.
8927   // CFGuardTarget bundles are lowered in LowerCallTo.
8928   assert(!I.hasOperandBundlesOtherThan(
8929              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
8930               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
8931               LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi}) &&
8932          "Cannot lower calls with arbitrary operand bundles!");
8933 
8934   SDValue Callee = getValue(I.getCalledOperand());
8935 
8936   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
8937     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
8938   else
8939     // Check if we can potentially perform a tail call. More detailed checking
8940     // is be done within LowerCallTo, after more information about the call is
8941     // known.
8942     LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
8943 }
8944 
8945 namespace {
8946 
8947 /// AsmOperandInfo - This contains information for each constraint that we are
8948 /// lowering.
8949 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
8950 public:
8951   /// CallOperand - If this is the result output operand or a clobber
8952   /// this is null, otherwise it is the incoming operand to the CallInst.
8953   /// This gets modified as the asm is processed.
8954   SDValue CallOperand;
8955 
8956   /// AssignedRegs - If this is a register or register class operand, this
8957   /// contains the set of register corresponding to the operand.
8958   RegsForValue AssignedRegs;
8959 
8960   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
8961     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
8962   }
8963 
8964   /// Whether or not this operand accesses memory
8965   bool hasMemory(const TargetLowering &TLI) const {
8966     // Indirect operand accesses access memory.
8967     if (isIndirect)
8968       return true;
8969 
8970     for (const auto &Code : Codes)
8971       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
8972         return true;
8973 
8974     return false;
8975   }
8976 };
8977 
8978 
8979 } // end anonymous namespace
8980 
8981 /// Make sure that the output operand \p OpInfo and its corresponding input
8982 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
8983 /// out).
8984 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
8985                                SDISelAsmOperandInfo &MatchingOpInfo,
8986                                SelectionDAG &DAG) {
8987   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
8988     return;
8989 
8990   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
8991   const auto &TLI = DAG.getTargetLoweringInfo();
8992 
8993   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
8994       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
8995                                        OpInfo.ConstraintVT);
8996   std::pair<unsigned, const TargetRegisterClass *> InputRC =
8997       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
8998                                        MatchingOpInfo.ConstraintVT);
8999   if ((OpInfo.ConstraintVT.isInteger() !=
9000        MatchingOpInfo.ConstraintVT.isInteger()) ||
9001       (MatchRC.second != InputRC.second)) {
9002     // FIXME: error out in a more elegant fashion
9003     report_fatal_error("Unsupported asm: input constraint"
9004                        " with a matching output constraint of"
9005                        " incompatible type!");
9006   }
9007   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
9008 }
9009 
9010 /// Get a direct memory input to behave well as an indirect operand.
9011 /// This may introduce stores, hence the need for a \p Chain.
9012 /// \return The (possibly updated) chain.
9013 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
9014                                         SDISelAsmOperandInfo &OpInfo,
9015                                         SelectionDAG &DAG) {
9016   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9017 
9018   // If we don't have an indirect input, put it in the constpool if we can,
9019   // otherwise spill it to a stack slot.
9020   // TODO: This isn't quite right. We need to handle these according to
9021   // the addressing mode that the constraint wants. Also, this may take
9022   // an additional register for the computation and we don't want that
9023   // either.
9024 
9025   // If the operand is a float, integer, or vector constant, spill to a
9026   // constant pool entry to get its address.
9027   const Value *OpVal = OpInfo.CallOperandVal;
9028   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
9029       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
9030     OpInfo.CallOperand = DAG.getConstantPool(
9031         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
9032     return Chain;
9033   }
9034 
9035   // Otherwise, create a stack slot and emit a store to it before the asm.
9036   Type *Ty = OpVal->getType();
9037   auto &DL = DAG.getDataLayout();
9038   uint64_t TySize = DL.getTypeAllocSize(Ty);
9039   MachineFunction &MF = DAG.getMachineFunction();
9040   int SSFI = MF.getFrameInfo().CreateStackObject(
9041       TySize, DL.getPrefTypeAlign(Ty), false);
9042   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
9043   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
9044                             MachinePointerInfo::getFixedStack(MF, SSFI),
9045                             TLI.getMemValueType(DL, Ty));
9046   OpInfo.CallOperand = StackSlot;
9047 
9048   return Chain;
9049 }
9050 
9051 /// GetRegistersForValue - Assign registers (virtual or physical) for the
9052 /// specified operand.  We prefer to assign virtual registers, to allow the
9053 /// register allocator to handle the assignment process.  However, if the asm
9054 /// uses features that we can't model on machineinstrs, we have SDISel do the
9055 /// allocation.  This produces generally horrible, but correct, code.
9056 ///
9057 ///   OpInfo describes the operand
9058 ///   RefOpInfo describes the matching operand if any, the operand otherwise
9059 static std::optional<unsigned>
9060 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
9061                      SDISelAsmOperandInfo &OpInfo,
9062                      SDISelAsmOperandInfo &RefOpInfo) {
9063   LLVMContext &Context = *DAG.getContext();
9064   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9065 
9066   MachineFunction &MF = DAG.getMachineFunction();
9067   SmallVector<unsigned, 4> Regs;
9068   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9069 
9070   // No work to do for memory/address operands.
9071   if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
9072       OpInfo.ConstraintType == TargetLowering::C_Address)
9073     return std::nullopt;
9074 
9075   // If this is a constraint for a single physreg, or a constraint for a
9076   // register class, find it.
9077   unsigned AssignedReg;
9078   const TargetRegisterClass *RC;
9079   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
9080       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
9081   // RC is unset only on failure. Return immediately.
9082   if (!RC)
9083     return std::nullopt;
9084 
9085   // Get the actual register value type.  This is important, because the user
9086   // may have asked for (e.g.) the AX register in i32 type.  We need to
9087   // remember that AX is actually i16 to get the right extension.
9088   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
9089 
9090   if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
9091     // If this is an FP operand in an integer register (or visa versa), or more
9092     // generally if the operand value disagrees with the register class we plan
9093     // to stick it in, fix the operand type.
9094     //
9095     // If this is an input value, the bitcast to the new type is done now.
9096     // Bitcast for output value is done at the end of visitInlineAsm().
9097     if ((OpInfo.Type == InlineAsm::isOutput ||
9098          OpInfo.Type == InlineAsm::isInput) &&
9099         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
9100       // Try to convert to the first EVT that the reg class contains.  If the
9101       // types are identical size, use a bitcast to convert (e.g. two differing
9102       // vector types).  Note: output bitcast is done at the end of
9103       // visitInlineAsm().
9104       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
9105         // Exclude indirect inputs while they are unsupported because the code
9106         // to perform the load is missing and thus OpInfo.CallOperand still
9107         // refers to the input address rather than the pointed-to value.
9108         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
9109           OpInfo.CallOperand =
9110               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
9111         OpInfo.ConstraintVT = RegVT;
9112         // If the operand is an FP value and we want it in integer registers,
9113         // use the corresponding integer type. This turns an f64 value into
9114         // i64, which can be passed with two i32 values on a 32-bit machine.
9115       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
9116         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
9117         if (OpInfo.Type == InlineAsm::isInput)
9118           OpInfo.CallOperand =
9119               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
9120         OpInfo.ConstraintVT = VT;
9121       }
9122     }
9123   }
9124 
9125   // No need to allocate a matching input constraint since the constraint it's
9126   // matching to has already been allocated.
9127   if (OpInfo.isMatchingInputConstraint())
9128     return std::nullopt;
9129 
9130   EVT ValueVT = OpInfo.ConstraintVT;
9131   if (OpInfo.ConstraintVT == MVT::Other)
9132     ValueVT = RegVT;
9133 
9134   // Initialize NumRegs.
9135   unsigned NumRegs = 1;
9136   if (OpInfo.ConstraintVT != MVT::Other)
9137     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
9138 
9139   // If this is a constraint for a specific physical register, like {r17},
9140   // assign it now.
9141 
9142   // If this associated to a specific register, initialize iterator to correct
9143   // place. If virtual, make sure we have enough registers
9144 
9145   // Initialize iterator if necessary
9146   TargetRegisterClass::iterator I = RC->begin();
9147   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9148 
9149   // Do not check for single registers.
9150   if (AssignedReg) {
9151     I = std::find(I, RC->end(), AssignedReg);
9152     if (I == RC->end()) {
9153       // RC does not contain the selected register, which indicates a
9154       // mismatch between the register and the required type/bitwidth.
9155       return {AssignedReg};
9156     }
9157   }
9158 
9159   for (; NumRegs; --NumRegs, ++I) {
9160     assert(I != RC->end() && "Ran out of registers to allocate!");
9161     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
9162     Regs.push_back(R);
9163   }
9164 
9165   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
9166   return std::nullopt;
9167 }
9168 
9169 static unsigned
9170 findMatchingInlineAsmOperand(unsigned OperandNo,
9171                              const std::vector<SDValue> &AsmNodeOperands) {
9172   // Scan until we find the definition we already emitted of this operand.
9173   unsigned CurOp = InlineAsm::Op_FirstOperand;
9174   for (; OperandNo; --OperandNo) {
9175     // Advance to the next operand.
9176     unsigned OpFlag =
9177         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
9178     const InlineAsm::Flag F(OpFlag);
9179     assert(
9180         (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isMemKind()) &&
9181         "Skipped past definitions?");
9182     CurOp += F.getNumOperandRegisters() + 1;
9183   }
9184   return CurOp;
9185 }
9186 
9187 namespace {
9188 
9189 class ExtraFlags {
9190   unsigned Flags = 0;
9191 
9192 public:
9193   explicit ExtraFlags(const CallBase &Call) {
9194     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
9195     if (IA->hasSideEffects())
9196       Flags |= InlineAsm::Extra_HasSideEffects;
9197     if (IA->isAlignStack())
9198       Flags |= InlineAsm::Extra_IsAlignStack;
9199     if (Call.isConvergent())
9200       Flags |= InlineAsm::Extra_IsConvergent;
9201     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
9202   }
9203 
9204   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
9205     // Ideally, we would only check against memory constraints.  However, the
9206     // meaning of an Other constraint can be target-specific and we can't easily
9207     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
9208     // for Other constraints as well.
9209     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
9210         OpInfo.ConstraintType == TargetLowering::C_Other) {
9211       if (OpInfo.Type == InlineAsm::isInput)
9212         Flags |= InlineAsm::Extra_MayLoad;
9213       else if (OpInfo.Type == InlineAsm::isOutput)
9214         Flags |= InlineAsm::Extra_MayStore;
9215       else if (OpInfo.Type == InlineAsm::isClobber)
9216         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
9217     }
9218   }
9219 
9220   unsigned get() const { return Flags; }
9221 };
9222 
9223 } // end anonymous namespace
9224 
9225 static bool isFunction(SDValue Op) {
9226   if (Op && Op.getOpcode() == ISD::GlobalAddress) {
9227     if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
9228       auto Fn = dyn_cast_or_null<Function>(GA->getGlobal());
9229 
9230       // In normal "call dllimport func" instruction (non-inlineasm) it force
9231       // indirect access by specifing call opcode. And usually specially print
9232       // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can
9233       // not do in this way now. (In fact, this is similar with "Data Access"
9234       // action). So here we ignore dllimport function.
9235       if (Fn && !Fn->hasDLLImportStorageClass())
9236         return true;
9237     }
9238   }
9239   return false;
9240 }
9241 
9242 /// visitInlineAsm - Handle a call to an InlineAsm object.
9243 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
9244                                          const BasicBlock *EHPadBB) {
9245   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
9246 
9247   /// ConstraintOperands - Information about all of the constraints.
9248   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
9249 
9250   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9251   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
9252       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
9253 
9254   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
9255   // AsmDialect, MayLoad, MayStore).
9256   bool HasSideEffect = IA->hasSideEffects();
9257   ExtraFlags ExtraInfo(Call);
9258 
9259   for (auto &T : TargetConstraints) {
9260     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
9261     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
9262 
9263     if (OpInfo.CallOperandVal)
9264       OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
9265 
9266     if (!HasSideEffect)
9267       HasSideEffect = OpInfo.hasMemory(TLI);
9268 
9269     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
9270     // FIXME: Could we compute this on OpInfo rather than T?
9271 
9272     // Compute the constraint code and ConstraintType to use.
9273     TLI.ComputeConstraintToUse(T, SDValue());
9274 
9275     if (T.ConstraintType == TargetLowering::C_Immediate &&
9276         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
9277       // We've delayed emitting a diagnostic like the "n" constraint because
9278       // inlining could cause an integer showing up.
9279       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
9280                                           "' expects an integer constant "
9281                                           "expression");
9282 
9283     ExtraInfo.update(T);
9284   }
9285 
9286   // We won't need to flush pending loads if this asm doesn't touch
9287   // memory and is nonvolatile.
9288   SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
9289 
9290   bool EmitEHLabels = isa<InvokeInst>(Call);
9291   if (EmitEHLabels) {
9292     assert(EHPadBB && "InvokeInst must have an EHPadBB");
9293   }
9294   bool IsCallBr = isa<CallBrInst>(Call);
9295 
9296   if (IsCallBr || EmitEHLabels) {
9297     // If this is a callbr or invoke we need to flush pending exports since
9298     // inlineasm_br and invoke are terminators.
9299     // We need to do this before nodes are glued to the inlineasm_br node.
9300     Chain = getControlRoot();
9301   }
9302 
9303   MCSymbol *BeginLabel = nullptr;
9304   if (EmitEHLabels) {
9305     Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
9306   }
9307 
9308   int OpNo = -1;
9309   SmallVector<StringRef> AsmStrs;
9310   IA->collectAsmStrs(AsmStrs);
9311 
9312   // Second pass over the constraints: compute which constraint option to use.
9313   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9314     if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput)
9315       OpNo++;
9316 
9317     // If this is an output operand with a matching input operand, look up the
9318     // matching input. If their types mismatch, e.g. one is an integer, the
9319     // other is floating point, or their sizes are different, flag it as an
9320     // error.
9321     if (OpInfo.hasMatchingInput()) {
9322       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
9323       patchMatchingInput(OpInfo, Input, DAG);
9324     }
9325 
9326     // Compute the constraint code and ConstraintType to use.
9327     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
9328 
9329     if ((OpInfo.ConstraintType == TargetLowering::C_Memory &&
9330          OpInfo.Type == InlineAsm::isClobber) ||
9331         OpInfo.ConstraintType == TargetLowering::C_Address)
9332       continue;
9333 
9334     // In Linux PIC model, there are 4 cases about value/label addressing:
9335     //
9336     // 1: Function call or Label jmp inside the module.
9337     // 2: Data access (such as global variable, static variable) inside module.
9338     // 3: Function call or Label jmp outside the module.
9339     // 4: Data access (such as global variable) outside the module.
9340     //
9341     // Due to current llvm inline asm architecture designed to not "recognize"
9342     // the asm code, there are quite troubles for us to treat mem addressing
9343     // differently for same value/adress used in different instuctions.
9344     // For example, in pic model, call a func may in plt way or direclty
9345     // pc-related, but lea/mov a function adress may use got.
9346     //
9347     // Here we try to "recognize" function call for the case 1 and case 3 in
9348     // inline asm. And try to adjust the constraint for them.
9349     //
9350     // TODO: Due to current inline asm didn't encourage to jmp to the outsider
9351     // label, so here we don't handle jmp function label now, but we need to
9352     // enhance it (especilly in PIC model) if we meet meaningful requirements.
9353     if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) &&
9354         TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) &&
9355         TM.getCodeModel() != CodeModel::Large) {
9356       OpInfo.isIndirect = false;
9357       OpInfo.ConstraintType = TargetLowering::C_Address;
9358     }
9359 
9360     // If this is a memory input, and if the operand is not indirect, do what we
9361     // need to provide an address for the memory input.
9362     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
9363         !OpInfo.isIndirect) {
9364       assert((OpInfo.isMultipleAlternative ||
9365               (OpInfo.Type == InlineAsm::isInput)) &&
9366              "Can only indirectify direct input operands!");
9367 
9368       // Memory operands really want the address of the value.
9369       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
9370 
9371       // There is no longer a Value* corresponding to this operand.
9372       OpInfo.CallOperandVal = nullptr;
9373 
9374       // It is now an indirect operand.
9375       OpInfo.isIndirect = true;
9376     }
9377 
9378   }
9379 
9380   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
9381   std::vector<SDValue> AsmNodeOperands;
9382   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
9383   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
9384       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
9385 
9386   // If we have a !srcloc metadata node associated with it, we want to attach
9387   // this to the ultimately generated inline asm machineinstr.  To do this, we
9388   // pass in the third operand as this (potentially null) inline asm MDNode.
9389   const MDNode *SrcLoc = Call.getMetadata("srcloc");
9390   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
9391 
9392   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
9393   // bits as operand 3.
9394   AsmNodeOperands.push_back(DAG.getTargetConstant(
9395       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9396 
9397   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
9398   // this, assign virtual and physical registers for inputs and otput.
9399   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9400     // Assign Registers.
9401     SDISelAsmOperandInfo &RefOpInfo =
9402         OpInfo.isMatchingInputConstraint()
9403             ? ConstraintOperands[OpInfo.getMatchedOperand()]
9404             : OpInfo;
9405     const auto RegError =
9406         getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
9407     if (RegError) {
9408       const MachineFunction &MF = DAG.getMachineFunction();
9409       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9410       const char *RegName = TRI.getName(*RegError);
9411       emitInlineAsmError(Call, "register '" + Twine(RegName) +
9412                                    "' allocated for constraint '" +
9413                                    Twine(OpInfo.ConstraintCode) +
9414                                    "' does not match required type");
9415       return;
9416     }
9417 
9418     auto DetectWriteToReservedRegister = [&]() {
9419       const MachineFunction &MF = DAG.getMachineFunction();
9420       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9421       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
9422         if (Register::isPhysicalRegister(Reg) &&
9423             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
9424           const char *RegName = TRI.getName(Reg);
9425           emitInlineAsmError(Call, "write to reserved register '" +
9426                                        Twine(RegName) + "'");
9427           return true;
9428         }
9429       }
9430       return false;
9431     };
9432     assert((OpInfo.ConstraintType != TargetLowering::C_Address ||
9433             (OpInfo.Type == InlineAsm::isInput &&
9434              !OpInfo.isMatchingInputConstraint())) &&
9435            "Only address as input operand is allowed.");
9436 
9437     switch (OpInfo.Type) {
9438     case InlineAsm::isOutput:
9439       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9440         const InlineAsm::ConstraintCode ConstraintID =
9441             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9442         assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
9443                "Failed to convert memory constraint code to constraint id.");
9444 
9445         // Add information to the INLINEASM node to know about this output.
9446         InlineAsm::Flag OpFlags(InlineAsm::Kind::Mem, 1);
9447         OpFlags.setMemConstraint(ConstraintID);
9448         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
9449                                                         MVT::i32));
9450         AsmNodeOperands.push_back(OpInfo.CallOperand);
9451       } else {
9452         // Otherwise, this outputs to a register (directly for C_Register /
9453         // C_RegisterClass, and a target-defined fashion for
9454         // C_Immediate/C_Other). Find a register that we can use.
9455         if (OpInfo.AssignedRegs.Regs.empty()) {
9456           emitInlineAsmError(
9457               Call, "couldn't allocate output register for constraint '" +
9458                         Twine(OpInfo.ConstraintCode) + "'");
9459           return;
9460         }
9461 
9462         if (DetectWriteToReservedRegister())
9463           return;
9464 
9465         // Add information to the INLINEASM node to know that this register is
9466         // set.
9467         OpInfo.AssignedRegs.AddInlineAsmOperands(
9468             OpInfo.isEarlyClobber ? InlineAsm::Kind::RegDefEarlyClobber
9469                                   : InlineAsm::Kind::RegDef,
9470             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
9471       }
9472       break;
9473 
9474     case InlineAsm::isInput:
9475     case InlineAsm::isLabel: {
9476       SDValue InOperandVal = OpInfo.CallOperand;
9477 
9478       if (OpInfo.isMatchingInputConstraint()) {
9479         // If this is required to match an output register we have already set,
9480         // just use its register.
9481         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
9482                                                   AsmNodeOperands);
9483         InlineAsm::Flag Flag(
9484             cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue());
9485         if (Flag.isRegDefKind() || Flag.isRegDefEarlyClobberKind()) {
9486           if (OpInfo.isIndirect) {
9487             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
9488             emitInlineAsmError(Call, "inline asm not supported yet: "
9489                                      "don't know how to handle tied "
9490                                      "indirect register inputs");
9491             return;
9492           }
9493 
9494           SmallVector<unsigned, 4> Regs;
9495           MachineFunction &MF = DAG.getMachineFunction();
9496           MachineRegisterInfo &MRI = MF.getRegInfo();
9497           const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9498           auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
9499           Register TiedReg = R->getReg();
9500           MVT RegVT = R->getSimpleValueType(0);
9501           const TargetRegisterClass *RC =
9502               TiedReg.isVirtual()     ? MRI.getRegClass(TiedReg)
9503               : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
9504                                       : TRI.getMinimalPhysRegClass(TiedReg);
9505           for (unsigned i = 0, e = Flag.getNumOperandRegisters(); i != e; ++i)
9506             Regs.push_back(MRI.createVirtualRegister(RC));
9507 
9508           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
9509 
9510           SDLoc dl = getCurSDLoc();
9511           // Use the produced MatchedRegs object to
9512           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call);
9513           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, true,
9514                                            OpInfo.getMatchedOperand(), dl, DAG,
9515                                            AsmNodeOperands);
9516           break;
9517         }
9518 
9519         assert(Flag.isMemKind() && "Unknown matching constraint!");
9520         assert(Flag.getNumOperandRegisters() == 1 &&
9521                "Unexpected number of operands");
9522         // Add information to the INLINEASM node to know about this input.
9523         // See InlineAsm.h isUseOperandTiedToDef.
9524         Flag.clearMemConstraint();
9525         Flag.setMatchingOp(OpInfo.getMatchedOperand());
9526         AsmNodeOperands.push_back(DAG.getTargetConstant(
9527             Flag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9528         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
9529         break;
9530       }
9531 
9532       // Treat indirect 'X' constraint as memory.
9533       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
9534           OpInfo.isIndirect)
9535         OpInfo.ConstraintType = TargetLowering::C_Memory;
9536 
9537       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
9538           OpInfo.ConstraintType == TargetLowering::C_Other) {
9539         std::vector<SDValue> Ops;
9540         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
9541                                           Ops, DAG);
9542         if (Ops.empty()) {
9543           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
9544             if (isa<ConstantSDNode>(InOperandVal)) {
9545               emitInlineAsmError(Call, "value out of range for constraint '" +
9546                                            Twine(OpInfo.ConstraintCode) + "'");
9547               return;
9548             }
9549 
9550           emitInlineAsmError(Call,
9551                              "invalid operand for inline asm constraint '" +
9552                                  Twine(OpInfo.ConstraintCode) + "'");
9553           return;
9554         }
9555 
9556         // Add information to the INLINEASM node to know about this input.
9557         InlineAsm::Flag ResOpType(InlineAsm::Kind::Imm, Ops.size());
9558         AsmNodeOperands.push_back(DAG.getTargetConstant(
9559             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9560         llvm::append_range(AsmNodeOperands, Ops);
9561         break;
9562       }
9563 
9564       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9565         assert((OpInfo.isIndirect ||
9566                 OpInfo.ConstraintType != TargetLowering::C_Memory) &&
9567                "Operand must be indirect to be a mem!");
9568         assert(InOperandVal.getValueType() ==
9569                    TLI.getPointerTy(DAG.getDataLayout()) &&
9570                "Memory operands expect pointer values");
9571 
9572         const InlineAsm::ConstraintCode ConstraintID =
9573             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9574         assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
9575                "Failed to convert memory constraint code to constraint id.");
9576 
9577         // Add information to the INLINEASM node to know about this input.
9578         InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1);
9579         ResOpType.setMemConstraint(ConstraintID);
9580         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
9581                                                         getCurSDLoc(),
9582                                                         MVT::i32));
9583         AsmNodeOperands.push_back(InOperandVal);
9584         break;
9585       }
9586 
9587       if (OpInfo.ConstraintType == TargetLowering::C_Address) {
9588         const InlineAsm::ConstraintCode ConstraintID =
9589             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9590         assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
9591                "Failed to convert memory constraint code to constraint id.");
9592 
9593         InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1);
9594 
9595         SDValue AsmOp = InOperandVal;
9596         if (isFunction(InOperandVal)) {
9597           auto *GA = cast<GlobalAddressSDNode>(InOperandVal);
9598           ResOpType = InlineAsm::Flag(InlineAsm::Kind::Func, 1);
9599           AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(),
9600                                              InOperandVal.getValueType(),
9601                                              GA->getOffset());
9602         }
9603 
9604         // Add information to the INLINEASM node to know about this input.
9605         ResOpType.setMemConstraint(ConstraintID);
9606 
9607         AsmNodeOperands.push_back(
9608             DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32));
9609 
9610         AsmNodeOperands.push_back(AsmOp);
9611         break;
9612       }
9613 
9614       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
9615               OpInfo.ConstraintType == TargetLowering::C_Register) &&
9616              "Unknown constraint type!");
9617 
9618       // TODO: Support this.
9619       if (OpInfo.isIndirect) {
9620         emitInlineAsmError(
9621             Call, "Don't know how to handle indirect register inputs yet "
9622                   "for constraint '" +
9623                       Twine(OpInfo.ConstraintCode) + "'");
9624         return;
9625       }
9626 
9627       // Copy the input into the appropriate registers.
9628       if (OpInfo.AssignedRegs.Regs.empty()) {
9629         emitInlineAsmError(Call,
9630                            "couldn't allocate input reg for constraint '" +
9631                                Twine(OpInfo.ConstraintCode) + "'");
9632         return;
9633       }
9634 
9635       if (DetectWriteToReservedRegister())
9636         return;
9637 
9638       SDLoc dl = getCurSDLoc();
9639 
9640       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue,
9641                                         &Call);
9642 
9643       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, false,
9644                                                0, dl, DAG, AsmNodeOperands);
9645       break;
9646     }
9647     case InlineAsm::isClobber:
9648       // Add the clobbered value to the operand list, so that the register
9649       // allocator is aware that the physreg got clobbered.
9650       if (!OpInfo.AssignedRegs.Regs.empty())
9651         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::Clobber,
9652                                                  false, 0, getCurSDLoc(), DAG,
9653                                                  AsmNodeOperands);
9654       break;
9655     }
9656   }
9657 
9658   // Finish up input operands.  Set the input chain and add the flag last.
9659   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
9660   if (Glue.getNode()) AsmNodeOperands.push_back(Glue);
9661 
9662   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
9663   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
9664                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
9665   Glue = Chain.getValue(1);
9666 
9667   // Do additional work to generate outputs.
9668 
9669   SmallVector<EVT, 1> ResultVTs;
9670   SmallVector<SDValue, 1> ResultValues;
9671   SmallVector<SDValue, 8> OutChains;
9672 
9673   llvm::Type *CallResultType = Call.getType();
9674   ArrayRef<Type *> ResultTypes;
9675   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
9676     ResultTypes = StructResult->elements();
9677   else if (!CallResultType->isVoidTy())
9678     ResultTypes = ArrayRef(CallResultType);
9679 
9680   auto CurResultType = ResultTypes.begin();
9681   auto handleRegAssign = [&](SDValue V) {
9682     assert(CurResultType != ResultTypes.end() && "Unexpected value");
9683     assert((*CurResultType)->isSized() && "Unexpected unsized type");
9684     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
9685     ++CurResultType;
9686     // If the type of the inline asm call site return value is different but has
9687     // same size as the type of the asm output bitcast it.  One example of this
9688     // is for vectors with different width / number of elements.  This can
9689     // happen for register classes that can contain multiple different value
9690     // types.  The preg or vreg allocated may not have the same VT as was
9691     // expected.
9692     //
9693     // This can also happen for a return value that disagrees with the register
9694     // class it is put in, eg. a double in a general-purpose register on a
9695     // 32-bit machine.
9696     if (ResultVT != V.getValueType() &&
9697         ResultVT.getSizeInBits() == V.getValueSizeInBits())
9698       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
9699     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
9700              V.getValueType().isInteger()) {
9701       // If a result value was tied to an input value, the computed result
9702       // may have a wider width than the expected result.  Extract the
9703       // relevant portion.
9704       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
9705     }
9706     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
9707     ResultVTs.push_back(ResultVT);
9708     ResultValues.push_back(V);
9709   };
9710 
9711   // Deal with output operands.
9712   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9713     if (OpInfo.Type == InlineAsm::isOutput) {
9714       SDValue Val;
9715       // Skip trivial output operands.
9716       if (OpInfo.AssignedRegs.Regs.empty())
9717         continue;
9718 
9719       switch (OpInfo.ConstraintType) {
9720       case TargetLowering::C_Register:
9721       case TargetLowering::C_RegisterClass:
9722         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
9723                                                   Chain, &Glue, &Call);
9724         break;
9725       case TargetLowering::C_Immediate:
9726       case TargetLowering::C_Other:
9727         Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(),
9728                                               OpInfo, DAG);
9729         break;
9730       case TargetLowering::C_Memory:
9731         break; // Already handled.
9732       case TargetLowering::C_Address:
9733         break; // Silence warning.
9734       case TargetLowering::C_Unknown:
9735         assert(false && "Unexpected unknown constraint");
9736       }
9737 
9738       // Indirect output manifest as stores. Record output chains.
9739       if (OpInfo.isIndirect) {
9740         const Value *Ptr = OpInfo.CallOperandVal;
9741         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
9742         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
9743                                      MachinePointerInfo(Ptr));
9744         OutChains.push_back(Store);
9745       } else {
9746         // generate CopyFromRegs to associated registers.
9747         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
9748         if (Val.getOpcode() == ISD::MERGE_VALUES) {
9749           for (const SDValue &V : Val->op_values())
9750             handleRegAssign(V);
9751         } else
9752           handleRegAssign(Val);
9753       }
9754     }
9755   }
9756 
9757   // Set results.
9758   if (!ResultValues.empty()) {
9759     assert(CurResultType == ResultTypes.end() &&
9760            "Mismatch in number of ResultTypes");
9761     assert(ResultValues.size() == ResultTypes.size() &&
9762            "Mismatch in number of output operands in asm result");
9763 
9764     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
9765                             DAG.getVTList(ResultVTs), ResultValues);
9766     setValue(&Call, V);
9767   }
9768 
9769   // Collect store chains.
9770   if (!OutChains.empty())
9771     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
9772 
9773   if (EmitEHLabels) {
9774     Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
9775   }
9776 
9777   // Only Update Root if inline assembly has a memory effect.
9778   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
9779       EmitEHLabels)
9780     DAG.setRoot(Chain);
9781 }
9782 
9783 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
9784                                              const Twine &Message) {
9785   LLVMContext &Ctx = *DAG.getContext();
9786   Ctx.emitError(&Call, Message);
9787 
9788   // Make sure we leave the DAG in a valid state
9789   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9790   SmallVector<EVT, 1> ValueVTs;
9791   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
9792 
9793   if (ValueVTs.empty())
9794     return;
9795 
9796   SmallVector<SDValue, 1> Ops;
9797   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
9798     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
9799 
9800   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
9801 }
9802 
9803 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
9804   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
9805                           MVT::Other, getRoot(),
9806                           getValue(I.getArgOperand(0)),
9807                           DAG.getSrcValue(I.getArgOperand(0))));
9808 }
9809 
9810 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
9811   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9812   const DataLayout &DL = DAG.getDataLayout();
9813   SDValue V = DAG.getVAArg(
9814       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
9815       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
9816       DL.getABITypeAlign(I.getType()).value());
9817   DAG.setRoot(V.getValue(1));
9818 
9819   if (I.getType()->isPointerTy())
9820     V = DAG.getPtrExtOrTrunc(
9821         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
9822   setValue(&I, V);
9823 }
9824 
9825 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
9826   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
9827                           MVT::Other, getRoot(),
9828                           getValue(I.getArgOperand(0)),
9829                           DAG.getSrcValue(I.getArgOperand(0))));
9830 }
9831 
9832 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
9833   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
9834                           MVT::Other, getRoot(),
9835                           getValue(I.getArgOperand(0)),
9836                           getValue(I.getArgOperand(1)),
9837                           DAG.getSrcValue(I.getArgOperand(0)),
9838                           DAG.getSrcValue(I.getArgOperand(1))));
9839 }
9840 
9841 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
9842                                                     const Instruction &I,
9843                                                     SDValue Op) {
9844   const MDNode *Range = getRangeMetadata(I);
9845   if (!Range)
9846     return Op;
9847 
9848   ConstantRange CR = getConstantRangeFromMetadata(*Range);
9849   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
9850     return Op;
9851 
9852   APInt Lo = CR.getUnsignedMin();
9853   if (!Lo.isMinValue())
9854     return Op;
9855 
9856   APInt Hi = CR.getUnsignedMax();
9857   unsigned Bits = std::max(Hi.getActiveBits(),
9858                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
9859 
9860   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
9861 
9862   SDLoc SL = getCurSDLoc();
9863 
9864   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
9865                              DAG.getValueType(SmallVT));
9866   unsigned NumVals = Op.getNode()->getNumValues();
9867   if (NumVals == 1)
9868     return ZExt;
9869 
9870   SmallVector<SDValue, 4> Ops;
9871 
9872   Ops.push_back(ZExt);
9873   for (unsigned I = 1; I != NumVals; ++I)
9874     Ops.push_back(Op.getValue(I));
9875 
9876   return DAG.getMergeValues(Ops, SL);
9877 }
9878 
9879 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
9880 /// the call being lowered.
9881 ///
9882 /// This is a helper for lowering intrinsics that follow a target calling
9883 /// convention or require stack pointer adjustment. Only a subset of the
9884 /// intrinsic's operands need to participate in the calling convention.
9885 void SelectionDAGBuilder::populateCallLoweringInfo(
9886     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
9887     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
9888     AttributeSet RetAttrs, bool IsPatchPoint) {
9889   TargetLowering::ArgListTy Args;
9890   Args.reserve(NumArgs);
9891 
9892   // Populate the argument list.
9893   // Attributes for args start at offset 1, after the return attribute.
9894   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
9895        ArgI != ArgE; ++ArgI) {
9896     const Value *V = Call->getOperand(ArgI);
9897 
9898     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
9899 
9900     TargetLowering::ArgListEntry Entry;
9901     Entry.Node = getValue(V);
9902     Entry.Ty = V->getType();
9903     Entry.setAttributes(Call, ArgI);
9904     Args.push_back(Entry);
9905   }
9906 
9907   CLI.setDebugLoc(getCurSDLoc())
9908       .setChain(getRoot())
9909       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args),
9910                  RetAttrs)
9911       .setDiscardResult(Call->use_empty())
9912       .setIsPatchPoint(IsPatchPoint)
9913       .setIsPreallocated(
9914           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
9915 }
9916 
9917 /// Add a stack map intrinsic call's live variable operands to a stackmap
9918 /// or patchpoint target node's operand list.
9919 ///
9920 /// Constants are converted to TargetConstants purely as an optimization to
9921 /// avoid constant materialization and register allocation.
9922 ///
9923 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
9924 /// generate addess computation nodes, and so FinalizeISel can convert the
9925 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
9926 /// address materialization and register allocation, but may also be required
9927 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
9928 /// alloca in the entry block, then the runtime may assume that the alloca's
9929 /// StackMap location can be read immediately after compilation and that the
9930 /// location is valid at any point during execution (this is similar to the
9931 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
9932 /// only available in a register, then the runtime would need to trap when
9933 /// execution reaches the StackMap in order to read the alloca's location.
9934 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
9935                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
9936                                 SelectionDAGBuilder &Builder) {
9937   SelectionDAG &DAG = Builder.DAG;
9938   for (unsigned I = StartIdx; I < Call.arg_size(); I++) {
9939     SDValue Op = Builder.getValue(Call.getArgOperand(I));
9940 
9941     // Things on the stack are pointer-typed, meaning that they are already
9942     // legal and can be emitted directly to target nodes.
9943     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
9944       Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType()));
9945     } else {
9946       // Otherwise emit a target independent node to be legalised.
9947       Ops.push_back(Builder.getValue(Call.getArgOperand(I)));
9948     }
9949   }
9950 }
9951 
9952 /// Lower llvm.experimental.stackmap.
9953 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
9954   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
9955   //                                  [live variables...])
9956 
9957   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
9958 
9959   SDValue Chain, InGlue, Callee;
9960   SmallVector<SDValue, 32> Ops;
9961 
9962   SDLoc DL = getCurSDLoc();
9963   Callee = getValue(CI.getCalledOperand());
9964 
9965   // The stackmap intrinsic only records the live variables (the arguments
9966   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
9967   // intrinsic, this won't be lowered to a function call. This means we don't
9968   // have to worry about calling conventions and target specific lowering code.
9969   // Instead we perform the call lowering right here.
9970   //
9971   // chain, flag = CALLSEQ_START(chain, 0, 0)
9972   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
9973   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
9974   //
9975   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
9976   InGlue = Chain.getValue(1);
9977 
9978   // Add the STACKMAP operands, starting with DAG house-keeping.
9979   Ops.push_back(Chain);
9980   Ops.push_back(InGlue);
9981 
9982   // Add the <id>, <numShadowBytes> operands.
9983   //
9984   // These do not require legalisation, and can be emitted directly to target
9985   // constant nodes.
9986   SDValue ID = getValue(CI.getArgOperand(0));
9987   assert(ID.getValueType() == MVT::i64);
9988   SDValue IDConst = DAG.getTargetConstant(
9989       cast<ConstantSDNode>(ID)->getZExtValue(), DL, ID.getValueType());
9990   Ops.push_back(IDConst);
9991 
9992   SDValue Shad = getValue(CI.getArgOperand(1));
9993   assert(Shad.getValueType() == MVT::i32);
9994   SDValue ShadConst = DAG.getTargetConstant(
9995       cast<ConstantSDNode>(Shad)->getZExtValue(), DL, Shad.getValueType());
9996   Ops.push_back(ShadConst);
9997 
9998   // Add the live variables.
9999   addStackMapLiveVars(CI, 2, DL, Ops, *this);
10000 
10001   // Create the STACKMAP node.
10002   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10003   Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops);
10004   InGlue = Chain.getValue(1);
10005 
10006   Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL);
10007 
10008   // Stackmaps don't generate values, so nothing goes into the NodeMap.
10009 
10010   // Set the root to the target-lowered call chain.
10011   DAG.setRoot(Chain);
10012 
10013   // Inform the Frame Information that we have a stackmap in this function.
10014   FuncInfo.MF->getFrameInfo().setHasStackMap();
10015 }
10016 
10017 /// Lower llvm.experimental.patchpoint directly to its target opcode.
10018 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
10019                                           const BasicBlock *EHPadBB) {
10020   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
10021   //                                                 i32 <numBytes>,
10022   //                                                 i8* <target>,
10023   //                                                 i32 <numArgs>,
10024   //                                                 [Args...],
10025   //                                                 [live variables...])
10026 
10027   CallingConv::ID CC = CB.getCallingConv();
10028   bool IsAnyRegCC = CC == CallingConv::AnyReg;
10029   bool HasDef = !CB.getType()->isVoidTy();
10030   SDLoc dl = getCurSDLoc();
10031   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
10032 
10033   // Handle immediate and symbolic callees.
10034   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
10035     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
10036                                    /*isTarget=*/true);
10037   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
10038     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
10039                                          SDLoc(SymbolicCallee),
10040                                          SymbolicCallee->getValueType(0));
10041 
10042   // Get the real number of arguments participating in the call <numArgs>
10043   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
10044   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
10045 
10046   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
10047   // Intrinsics include all meta-operands up to but not including CC.
10048   unsigned NumMetaOpers = PatchPointOpers::CCPos;
10049   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
10050          "Not enough arguments provided to the patchpoint intrinsic");
10051 
10052   // For AnyRegCC the arguments are lowered later on manually.
10053   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
10054   Type *ReturnTy =
10055       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
10056 
10057   TargetLowering::CallLoweringInfo CLI(DAG);
10058   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
10059                            ReturnTy, CB.getAttributes().getRetAttrs(), true);
10060   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
10061 
10062   SDNode *CallEnd = Result.second.getNode();
10063   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
10064     CallEnd = CallEnd->getOperand(0).getNode();
10065 
10066   /// Get a call instruction from the call sequence chain.
10067   /// Tail calls are not allowed.
10068   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
10069          "Expected a callseq node.");
10070   SDNode *Call = CallEnd->getOperand(0).getNode();
10071   bool HasGlue = Call->getGluedNode();
10072 
10073   // Replace the target specific call node with the patchable intrinsic.
10074   SmallVector<SDValue, 8> Ops;
10075 
10076   // Push the chain.
10077   Ops.push_back(*(Call->op_begin()));
10078 
10079   // Optionally, push the glue (if any).
10080   if (HasGlue)
10081     Ops.push_back(*(Call->op_end() - 1));
10082 
10083   // Push the register mask info.
10084   if (HasGlue)
10085     Ops.push_back(*(Call->op_end() - 2));
10086   else
10087     Ops.push_back(*(Call->op_end() - 1));
10088 
10089   // Add the <id> and <numBytes> constants.
10090   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
10091   Ops.push_back(DAG.getTargetConstant(
10092                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
10093   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
10094   Ops.push_back(DAG.getTargetConstant(
10095                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
10096                   MVT::i32));
10097 
10098   // Add the callee.
10099   Ops.push_back(Callee);
10100 
10101   // Adjust <numArgs> to account for any arguments that have been passed on the
10102   // stack instead.
10103   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
10104   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
10105   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
10106   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
10107 
10108   // Add the calling convention
10109   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
10110 
10111   // Add the arguments we omitted previously. The register allocator should
10112   // place these in any free register.
10113   if (IsAnyRegCC)
10114     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
10115       Ops.push_back(getValue(CB.getArgOperand(i)));
10116 
10117   // Push the arguments from the call instruction.
10118   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
10119   Ops.append(Call->op_begin() + 2, e);
10120 
10121   // Push live variables for the stack map.
10122   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
10123 
10124   SDVTList NodeTys;
10125   if (IsAnyRegCC && HasDef) {
10126     // Create the return types based on the intrinsic definition
10127     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10128     SmallVector<EVT, 3> ValueVTs;
10129     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
10130     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
10131 
10132     // There is always a chain and a glue type at the end
10133     ValueVTs.push_back(MVT::Other);
10134     ValueVTs.push_back(MVT::Glue);
10135     NodeTys = DAG.getVTList(ValueVTs);
10136   } else
10137     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10138 
10139   // Replace the target specific call node with a PATCHPOINT node.
10140   SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops);
10141 
10142   // Update the NodeMap.
10143   if (HasDef) {
10144     if (IsAnyRegCC)
10145       setValue(&CB, SDValue(PPV.getNode(), 0));
10146     else
10147       setValue(&CB, Result.first);
10148   }
10149 
10150   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
10151   // call sequence. Furthermore the location of the chain and glue can change
10152   // when the AnyReg calling convention is used and the intrinsic returns a
10153   // value.
10154   if (IsAnyRegCC && HasDef) {
10155     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
10156     SDValue To[] = {PPV.getValue(1), PPV.getValue(2)};
10157     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
10158   } else
10159     DAG.ReplaceAllUsesWith(Call, PPV.getNode());
10160   DAG.DeleteNode(Call);
10161 
10162   // Inform the Frame Information that we have a patchpoint in this function.
10163   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
10164 }
10165 
10166 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
10167                                             unsigned Intrinsic) {
10168   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10169   SDValue Op1 = getValue(I.getArgOperand(0));
10170   SDValue Op2;
10171   if (I.arg_size() > 1)
10172     Op2 = getValue(I.getArgOperand(1));
10173   SDLoc dl = getCurSDLoc();
10174   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
10175   SDValue Res;
10176   SDNodeFlags SDFlags;
10177   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
10178     SDFlags.copyFMF(*FPMO);
10179 
10180   switch (Intrinsic) {
10181   case Intrinsic::vector_reduce_fadd:
10182     if (SDFlags.hasAllowReassociation())
10183       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
10184                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
10185                         SDFlags);
10186     else
10187       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
10188     break;
10189   case Intrinsic::vector_reduce_fmul:
10190     if (SDFlags.hasAllowReassociation())
10191       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
10192                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
10193                         SDFlags);
10194     else
10195       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
10196     break;
10197   case Intrinsic::vector_reduce_add:
10198     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
10199     break;
10200   case Intrinsic::vector_reduce_mul:
10201     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
10202     break;
10203   case Intrinsic::vector_reduce_and:
10204     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
10205     break;
10206   case Intrinsic::vector_reduce_or:
10207     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
10208     break;
10209   case Intrinsic::vector_reduce_xor:
10210     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
10211     break;
10212   case Intrinsic::vector_reduce_smax:
10213     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
10214     break;
10215   case Intrinsic::vector_reduce_smin:
10216     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
10217     break;
10218   case Intrinsic::vector_reduce_umax:
10219     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
10220     break;
10221   case Intrinsic::vector_reduce_umin:
10222     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
10223     break;
10224   case Intrinsic::vector_reduce_fmax:
10225     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
10226     break;
10227   case Intrinsic::vector_reduce_fmin:
10228     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
10229     break;
10230   case Intrinsic::vector_reduce_fmaximum:
10231     Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags);
10232     break;
10233   case Intrinsic::vector_reduce_fminimum:
10234     Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags);
10235     break;
10236   default:
10237     llvm_unreachable("Unhandled vector reduce intrinsic");
10238   }
10239   setValue(&I, Res);
10240 }
10241 
10242 /// Returns an AttributeList representing the attributes applied to the return
10243 /// value of the given call.
10244 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
10245   SmallVector<Attribute::AttrKind, 2> Attrs;
10246   if (CLI.RetSExt)
10247     Attrs.push_back(Attribute::SExt);
10248   if (CLI.RetZExt)
10249     Attrs.push_back(Attribute::ZExt);
10250   if (CLI.IsInReg)
10251     Attrs.push_back(Attribute::InReg);
10252 
10253   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
10254                             Attrs);
10255 }
10256 
10257 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
10258 /// implementation, which just calls LowerCall.
10259 /// FIXME: When all targets are
10260 /// migrated to using LowerCall, this hook should be integrated into SDISel.
10261 std::pair<SDValue, SDValue>
10262 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
10263   // Handle the incoming return values from the call.
10264   CLI.Ins.clear();
10265   Type *OrigRetTy = CLI.RetTy;
10266   SmallVector<EVT, 4> RetTys;
10267   SmallVector<uint64_t, 4> Offsets;
10268   auto &DL = CLI.DAG.getDataLayout();
10269   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets, 0);
10270 
10271   if (CLI.IsPostTypeLegalization) {
10272     // If we are lowering a libcall after legalization, split the return type.
10273     SmallVector<EVT, 4> OldRetTys;
10274     SmallVector<uint64_t, 4> OldOffsets;
10275     RetTys.swap(OldRetTys);
10276     Offsets.swap(OldOffsets);
10277 
10278     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
10279       EVT RetVT = OldRetTys[i];
10280       uint64_t Offset = OldOffsets[i];
10281       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
10282       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
10283       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
10284       RetTys.append(NumRegs, RegisterVT);
10285       for (unsigned j = 0; j != NumRegs; ++j)
10286         Offsets.push_back(Offset + j * RegisterVTByteSZ);
10287     }
10288   }
10289 
10290   SmallVector<ISD::OutputArg, 4> Outs;
10291   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
10292 
10293   bool CanLowerReturn =
10294       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
10295                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
10296 
10297   SDValue DemoteStackSlot;
10298   int DemoteStackIdx = -100;
10299   if (!CanLowerReturn) {
10300     // FIXME: equivalent assert?
10301     // assert(!CS.hasInAllocaArgument() &&
10302     //        "sret demotion is incompatible with inalloca");
10303     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
10304     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
10305     MachineFunction &MF = CLI.DAG.getMachineFunction();
10306     DemoteStackIdx =
10307         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
10308     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
10309                                               DL.getAllocaAddrSpace());
10310 
10311     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
10312     ArgListEntry Entry;
10313     Entry.Node = DemoteStackSlot;
10314     Entry.Ty = StackSlotPtrType;
10315     Entry.IsSExt = false;
10316     Entry.IsZExt = false;
10317     Entry.IsInReg = false;
10318     Entry.IsSRet = true;
10319     Entry.IsNest = false;
10320     Entry.IsByVal = false;
10321     Entry.IsByRef = false;
10322     Entry.IsReturned = false;
10323     Entry.IsSwiftSelf = false;
10324     Entry.IsSwiftAsync = false;
10325     Entry.IsSwiftError = false;
10326     Entry.IsCFGuardTarget = false;
10327     Entry.Alignment = Alignment;
10328     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
10329     CLI.NumFixedArgs += 1;
10330     CLI.getArgs()[0].IndirectType = CLI.RetTy;
10331     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
10332 
10333     // sret demotion isn't compatible with tail-calls, since the sret argument
10334     // points into the callers stack frame.
10335     CLI.IsTailCall = false;
10336   } else {
10337     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10338         CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
10339     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
10340       ISD::ArgFlagsTy Flags;
10341       if (NeedsRegBlock) {
10342         Flags.setInConsecutiveRegs();
10343         if (I == RetTys.size() - 1)
10344           Flags.setInConsecutiveRegsLast();
10345       }
10346       EVT VT = RetTys[I];
10347       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10348                                                      CLI.CallConv, VT);
10349       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10350                                                        CLI.CallConv, VT);
10351       for (unsigned i = 0; i != NumRegs; ++i) {
10352         ISD::InputArg MyFlags;
10353         MyFlags.Flags = Flags;
10354         MyFlags.VT = RegisterVT;
10355         MyFlags.ArgVT = VT;
10356         MyFlags.Used = CLI.IsReturnValueUsed;
10357         if (CLI.RetTy->isPointerTy()) {
10358           MyFlags.Flags.setPointer();
10359           MyFlags.Flags.setPointerAddrSpace(
10360               cast<PointerType>(CLI.RetTy)->getAddressSpace());
10361         }
10362         if (CLI.RetSExt)
10363           MyFlags.Flags.setSExt();
10364         if (CLI.RetZExt)
10365           MyFlags.Flags.setZExt();
10366         if (CLI.IsInReg)
10367           MyFlags.Flags.setInReg();
10368         CLI.Ins.push_back(MyFlags);
10369       }
10370     }
10371   }
10372 
10373   // We push in swifterror return as the last element of CLI.Ins.
10374   ArgListTy &Args = CLI.getArgs();
10375   if (supportSwiftError()) {
10376     for (const ArgListEntry &Arg : Args) {
10377       if (Arg.IsSwiftError) {
10378         ISD::InputArg MyFlags;
10379         MyFlags.VT = getPointerTy(DL);
10380         MyFlags.ArgVT = EVT(getPointerTy(DL));
10381         MyFlags.Flags.setSwiftError();
10382         CLI.Ins.push_back(MyFlags);
10383       }
10384     }
10385   }
10386 
10387   // Handle all of the outgoing arguments.
10388   CLI.Outs.clear();
10389   CLI.OutVals.clear();
10390   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
10391     SmallVector<EVT, 4> ValueVTs;
10392     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
10393     // FIXME: Split arguments if CLI.IsPostTypeLegalization
10394     Type *FinalType = Args[i].Ty;
10395     if (Args[i].IsByVal)
10396       FinalType = Args[i].IndirectType;
10397     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10398         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
10399     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
10400          ++Value) {
10401       EVT VT = ValueVTs[Value];
10402       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
10403       SDValue Op = SDValue(Args[i].Node.getNode(),
10404                            Args[i].Node.getResNo() + Value);
10405       ISD::ArgFlagsTy Flags;
10406 
10407       // Certain targets (such as MIPS), may have a different ABI alignment
10408       // for a type depending on the context. Give the target a chance to
10409       // specify the alignment it wants.
10410       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
10411       Flags.setOrigAlign(OriginalAlignment);
10412 
10413       if (Args[i].Ty->isPointerTy()) {
10414         Flags.setPointer();
10415         Flags.setPointerAddrSpace(
10416             cast<PointerType>(Args[i].Ty)->getAddressSpace());
10417       }
10418       if (Args[i].IsZExt)
10419         Flags.setZExt();
10420       if (Args[i].IsSExt)
10421         Flags.setSExt();
10422       if (Args[i].IsInReg) {
10423         // If we are using vectorcall calling convention, a structure that is
10424         // passed InReg - is surely an HVA
10425         if (CLI.CallConv == CallingConv::X86_VectorCall &&
10426             isa<StructType>(FinalType)) {
10427           // The first value of a structure is marked
10428           if (0 == Value)
10429             Flags.setHvaStart();
10430           Flags.setHva();
10431         }
10432         // Set InReg Flag
10433         Flags.setInReg();
10434       }
10435       if (Args[i].IsSRet)
10436         Flags.setSRet();
10437       if (Args[i].IsSwiftSelf)
10438         Flags.setSwiftSelf();
10439       if (Args[i].IsSwiftAsync)
10440         Flags.setSwiftAsync();
10441       if (Args[i].IsSwiftError)
10442         Flags.setSwiftError();
10443       if (Args[i].IsCFGuardTarget)
10444         Flags.setCFGuardTarget();
10445       if (Args[i].IsByVal)
10446         Flags.setByVal();
10447       if (Args[i].IsByRef)
10448         Flags.setByRef();
10449       if (Args[i].IsPreallocated) {
10450         Flags.setPreallocated();
10451         // Set the byval flag for CCAssignFn callbacks that don't know about
10452         // preallocated.  This way we can know how many bytes we should've
10453         // allocated and how many bytes a callee cleanup function will pop.  If
10454         // we port preallocated to more targets, we'll have to add custom
10455         // preallocated handling in the various CC lowering callbacks.
10456         Flags.setByVal();
10457       }
10458       if (Args[i].IsInAlloca) {
10459         Flags.setInAlloca();
10460         // Set the byval flag for CCAssignFn callbacks that don't know about
10461         // inalloca.  This way we can know how many bytes we should've allocated
10462         // and how many bytes a callee cleanup function will pop.  If we port
10463         // inalloca to more targets, we'll have to add custom inalloca handling
10464         // in the various CC lowering callbacks.
10465         Flags.setByVal();
10466       }
10467       Align MemAlign;
10468       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
10469         unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
10470         Flags.setByValSize(FrameSize);
10471 
10472         // info is not there but there are cases it cannot get right.
10473         if (auto MA = Args[i].Alignment)
10474           MemAlign = *MA;
10475         else
10476           MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL));
10477       } else if (auto MA = Args[i].Alignment) {
10478         MemAlign = *MA;
10479       } else {
10480         MemAlign = OriginalAlignment;
10481       }
10482       Flags.setMemAlign(MemAlign);
10483       if (Args[i].IsNest)
10484         Flags.setNest();
10485       if (NeedsRegBlock)
10486         Flags.setInConsecutiveRegs();
10487 
10488       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10489                                                  CLI.CallConv, VT);
10490       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10491                                                         CLI.CallConv, VT);
10492       SmallVector<SDValue, 4> Parts(NumParts);
10493       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
10494 
10495       if (Args[i].IsSExt)
10496         ExtendKind = ISD::SIGN_EXTEND;
10497       else if (Args[i].IsZExt)
10498         ExtendKind = ISD::ZERO_EXTEND;
10499 
10500       // Conservatively only handle 'returned' on non-vectors that can be lowered,
10501       // for now.
10502       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
10503           CanLowerReturn) {
10504         assert((CLI.RetTy == Args[i].Ty ||
10505                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
10506                  CLI.RetTy->getPointerAddressSpace() ==
10507                      Args[i].Ty->getPointerAddressSpace())) &&
10508                RetTys.size() == NumValues && "unexpected use of 'returned'");
10509         // Before passing 'returned' to the target lowering code, ensure that
10510         // either the register MVT and the actual EVT are the same size or that
10511         // the return value and argument are extended in the same way; in these
10512         // cases it's safe to pass the argument register value unchanged as the
10513         // return register value (although it's at the target's option whether
10514         // to do so)
10515         // TODO: allow code generation to take advantage of partially preserved
10516         // registers rather than clobbering the entire register when the
10517         // parameter extension method is not compatible with the return
10518         // extension method
10519         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
10520             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
10521              CLI.RetZExt == Args[i].IsZExt))
10522           Flags.setReturned();
10523       }
10524 
10525       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
10526                      CLI.CallConv, ExtendKind);
10527 
10528       for (unsigned j = 0; j != NumParts; ++j) {
10529         // if it isn't first piece, alignment must be 1
10530         // For scalable vectors the scalable part is currently handled
10531         // by individual targets, so we just use the known minimum size here.
10532         ISD::OutputArg MyFlags(
10533             Flags, Parts[j].getValueType().getSimpleVT(), VT,
10534             i < CLI.NumFixedArgs, i,
10535             j * Parts[j].getValueType().getStoreSize().getKnownMinValue());
10536         if (NumParts > 1 && j == 0)
10537           MyFlags.Flags.setSplit();
10538         else if (j != 0) {
10539           MyFlags.Flags.setOrigAlign(Align(1));
10540           if (j == NumParts - 1)
10541             MyFlags.Flags.setSplitEnd();
10542         }
10543 
10544         CLI.Outs.push_back(MyFlags);
10545         CLI.OutVals.push_back(Parts[j]);
10546       }
10547 
10548       if (NeedsRegBlock && Value == NumValues - 1)
10549         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
10550     }
10551   }
10552 
10553   SmallVector<SDValue, 4> InVals;
10554   CLI.Chain = LowerCall(CLI, InVals);
10555 
10556   // Update CLI.InVals to use outside of this function.
10557   CLI.InVals = InVals;
10558 
10559   // Verify that the target's LowerCall behaved as expected.
10560   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
10561          "LowerCall didn't return a valid chain!");
10562   assert((!CLI.IsTailCall || InVals.empty()) &&
10563          "LowerCall emitted a return value for a tail call!");
10564   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
10565          "LowerCall didn't emit the correct number of values!");
10566 
10567   // For a tail call, the return value is merely live-out and there aren't
10568   // any nodes in the DAG representing it. Return a special value to
10569   // indicate that a tail call has been emitted and no more Instructions
10570   // should be processed in the current block.
10571   if (CLI.IsTailCall) {
10572     CLI.DAG.setRoot(CLI.Chain);
10573     return std::make_pair(SDValue(), SDValue());
10574   }
10575 
10576 #ifndef NDEBUG
10577   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
10578     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
10579     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
10580            "LowerCall emitted a value with the wrong type!");
10581   }
10582 #endif
10583 
10584   SmallVector<SDValue, 4> ReturnValues;
10585   if (!CanLowerReturn) {
10586     // The instruction result is the result of loading from the
10587     // hidden sret parameter.
10588     SmallVector<EVT, 1> PVTs;
10589     Type *PtrRetTy =
10590         PointerType::get(OrigRetTy->getContext(), DL.getAllocaAddrSpace());
10591 
10592     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
10593     assert(PVTs.size() == 1 && "Pointers should fit in one register");
10594     EVT PtrVT = PVTs[0];
10595 
10596     unsigned NumValues = RetTys.size();
10597     ReturnValues.resize(NumValues);
10598     SmallVector<SDValue, 4> Chains(NumValues);
10599 
10600     // An aggregate return value cannot wrap around the address space, so
10601     // offsets to its parts don't wrap either.
10602     SDNodeFlags Flags;
10603     Flags.setNoUnsignedWrap(true);
10604 
10605     MachineFunction &MF = CLI.DAG.getMachineFunction();
10606     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
10607     for (unsigned i = 0; i < NumValues; ++i) {
10608       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
10609                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
10610                                                         PtrVT), Flags);
10611       SDValue L = CLI.DAG.getLoad(
10612           RetTys[i], CLI.DL, CLI.Chain, Add,
10613           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
10614                                             DemoteStackIdx, Offsets[i]),
10615           HiddenSRetAlign);
10616       ReturnValues[i] = L;
10617       Chains[i] = L.getValue(1);
10618     }
10619 
10620     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
10621   } else {
10622     // Collect the legal value parts into potentially illegal values
10623     // that correspond to the original function's return values.
10624     std::optional<ISD::NodeType> AssertOp;
10625     if (CLI.RetSExt)
10626       AssertOp = ISD::AssertSext;
10627     else if (CLI.RetZExt)
10628       AssertOp = ISD::AssertZext;
10629     unsigned CurReg = 0;
10630     for (EVT VT : RetTys) {
10631       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10632                                                      CLI.CallConv, VT);
10633       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10634                                                        CLI.CallConv, VT);
10635 
10636       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
10637                                               NumRegs, RegisterVT, VT, nullptr,
10638                                               CLI.CallConv, AssertOp));
10639       CurReg += NumRegs;
10640     }
10641 
10642     // For a function returning void, there is no return value. We can't create
10643     // such a node, so we just return a null return value in that case. In
10644     // that case, nothing will actually look at the value.
10645     if (ReturnValues.empty())
10646       return std::make_pair(SDValue(), CLI.Chain);
10647   }
10648 
10649   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
10650                                 CLI.DAG.getVTList(RetTys), ReturnValues);
10651   return std::make_pair(Res, CLI.Chain);
10652 }
10653 
10654 /// Places new result values for the node in Results (their number
10655 /// and types must exactly match those of the original return values of
10656 /// the node), or leaves Results empty, which indicates that the node is not
10657 /// to be custom lowered after all.
10658 void TargetLowering::LowerOperationWrapper(SDNode *N,
10659                                            SmallVectorImpl<SDValue> &Results,
10660                                            SelectionDAG &DAG) const {
10661   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
10662 
10663   if (!Res.getNode())
10664     return;
10665 
10666   // If the original node has one result, take the return value from
10667   // LowerOperation as is. It might not be result number 0.
10668   if (N->getNumValues() == 1) {
10669     Results.push_back(Res);
10670     return;
10671   }
10672 
10673   // If the original node has multiple results, then the return node should
10674   // have the same number of results.
10675   assert((N->getNumValues() == Res->getNumValues()) &&
10676       "Lowering returned the wrong number of results!");
10677 
10678   // Places new result values base on N result number.
10679   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
10680     Results.push_back(Res.getValue(I));
10681 }
10682 
10683 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10684   llvm_unreachable("LowerOperation not implemented for this target!");
10685 }
10686 
10687 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V,
10688                                                      unsigned Reg,
10689                                                      ISD::NodeType ExtendType) {
10690   SDValue Op = getNonRegisterValue(V);
10691   assert((Op.getOpcode() != ISD::CopyFromReg ||
10692           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
10693          "Copy from a reg to the same reg!");
10694   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
10695 
10696   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10697   // If this is an InlineAsm we have to match the registers required, not the
10698   // notional registers required by the type.
10699 
10700   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
10701                    std::nullopt); // This is not an ABI copy.
10702   SDValue Chain = DAG.getEntryNode();
10703 
10704   if (ExtendType == ISD::ANY_EXTEND) {
10705     auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
10706     if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
10707       ExtendType = PreferredExtendIt->second;
10708   }
10709   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
10710   PendingExports.push_back(Chain);
10711 }
10712 
10713 #include "llvm/CodeGen/SelectionDAGISel.h"
10714 
10715 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
10716 /// entry block, return true.  This includes arguments used by switches, since
10717 /// the switch may expand into multiple basic blocks.
10718 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
10719   // With FastISel active, we may be splitting blocks, so force creation
10720   // of virtual registers for all non-dead arguments.
10721   if (FastISel)
10722     return A->use_empty();
10723 
10724   const BasicBlock &Entry = A->getParent()->front();
10725   for (const User *U : A->users())
10726     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
10727       return false;  // Use not in entry block.
10728 
10729   return true;
10730 }
10731 
10732 using ArgCopyElisionMapTy =
10733     DenseMap<const Argument *,
10734              std::pair<const AllocaInst *, const StoreInst *>>;
10735 
10736 /// Scan the entry block of the function in FuncInfo for arguments that look
10737 /// like copies into a local alloca. Record any copied arguments in
10738 /// ArgCopyElisionCandidates.
10739 static void
10740 findArgumentCopyElisionCandidates(const DataLayout &DL,
10741                                   FunctionLoweringInfo *FuncInfo,
10742                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
10743   // Record the state of every static alloca used in the entry block. Argument
10744   // allocas are all used in the entry block, so we need approximately as many
10745   // entries as we have arguments.
10746   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
10747   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
10748   unsigned NumArgs = FuncInfo->Fn->arg_size();
10749   StaticAllocas.reserve(NumArgs * 2);
10750 
10751   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
10752     if (!V)
10753       return nullptr;
10754     V = V->stripPointerCasts();
10755     const auto *AI = dyn_cast<AllocaInst>(V);
10756     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
10757       return nullptr;
10758     auto Iter = StaticAllocas.insert({AI, Unknown});
10759     return &Iter.first->second;
10760   };
10761 
10762   // Look for stores of arguments to static allocas. Look through bitcasts and
10763   // GEPs to handle type coercions, as long as the alloca is fully initialized
10764   // by the store. Any non-store use of an alloca escapes it and any subsequent
10765   // unanalyzed store might write it.
10766   // FIXME: Handle structs initialized with multiple stores.
10767   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
10768     // Look for stores, and handle non-store uses conservatively.
10769     const auto *SI = dyn_cast<StoreInst>(&I);
10770     if (!SI) {
10771       // We will look through cast uses, so ignore them completely.
10772       if (I.isCast())
10773         continue;
10774       // Ignore debug info and pseudo op intrinsics, they don't escape or store
10775       // to allocas.
10776       if (I.isDebugOrPseudoInst())
10777         continue;
10778       // This is an unknown instruction. Assume it escapes or writes to all
10779       // static alloca operands.
10780       for (const Use &U : I.operands()) {
10781         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
10782           *Info = StaticAllocaInfo::Clobbered;
10783       }
10784       continue;
10785     }
10786 
10787     // If the stored value is a static alloca, mark it as escaped.
10788     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
10789       *Info = StaticAllocaInfo::Clobbered;
10790 
10791     // Check if the destination is a static alloca.
10792     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
10793     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
10794     if (!Info)
10795       continue;
10796     const AllocaInst *AI = cast<AllocaInst>(Dst);
10797 
10798     // Skip allocas that have been initialized or clobbered.
10799     if (*Info != StaticAllocaInfo::Unknown)
10800       continue;
10801 
10802     // Check if the stored value is an argument, and that this store fully
10803     // initializes the alloca.
10804     // If the argument type has padding bits we can't directly forward a pointer
10805     // as the upper bits may contain garbage.
10806     // Don't elide copies from the same argument twice.
10807     const Value *Val = SI->getValueOperand()->stripPointerCasts();
10808     const auto *Arg = dyn_cast<Argument>(Val);
10809     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
10810         Arg->getType()->isEmptyTy() ||
10811         DL.getTypeStoreSize(Arg->getType()) !=
10812             DL.getTypeAllocSize(AI->getAllocatedType()) ||
10813         !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
10814         ArgCopyElisionCandidates.count(Arg)) {
10815       *Info = StaticAllocaInfo::Clobbered;
10816       continue;
10817     }
10818 
10819     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
10820                       << '\n');
10821 
10822     // Mark this alloca and store for argument copy elision.
10823     *Info = StaticAllocaInfo::Elidable;
10824     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
10825 
10826     // Stop scanning if we've seen all arguments. This will happen early in -O0
10827     // builds, which is useful, because -O0 builds have large entry blocks and
10828     // many allocas.
10829     if (ArgCopyElisionCandidates.size() == NumArgs)
10830       break;
10831   }
10832 }
10833 
10834 /// Try to elide argument copies from memory into a local alloca. Succeeds if
10835 /// ArgVal is a load from a suitable fixed stack object.
10836 static void tryToElideArgumentCopy(
10837     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
10838     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
10839     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
10840     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
10841     ArrayRef<SDValue> ArgVals, bool &ArgHasUses) {
10842   // Check if this is a load from a fixed stack object.
10843   auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]);
10844   if (!LNode)
10845     return;
10846   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
10847   if (!FINode)
10848     return;
10849 
10850   // Check that the fixed stack object is the right size and alignment.
10851   // Look at the alignment that the user wrote on the alloca instead of looking
10852   // at the stack object.
10853   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
10854   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
10855   const AllocaInst *AI = ArgCopyIter->second.first;
10856   int FixedIndex = FINode->getIndex();
10857   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
10858   int OldIndex = AllocaIndex;
10859   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
10860   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
10861     LLVM_DEBUG(
10862         dbgs() << "  argument copy elision failed due to bad fixed stack "
10863                   "object size\n");
10864     return;
10865   }
10866   Align RequiredAlignment = AI->getAlign();
10867   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
10868     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
10869                          "greater than stack argument alignment ("
10870                       << DebugStr(RequiredAlignment) << " vs "
10871                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
10872     return;
10873   }
10874 
10875   // Perform the elision. Delete the old stack object and replace its only use
10876   // in the variable info map. Mark the stack object as mutable.
10877   LLVM_DEBUG({
10878     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
10879            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
10880            << '\n';
10881   });
10882   MFI.RemoveStackObject(OldIndex);
10883   MFI.setIsImmutableObjectIndex(FixedIndex, false);
10884   AllocaIndex = FixedIndex;
10885   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
10886   for (SDValue ArgVal : ArgVals)
10887     Chains.push_back(ArgVal.getValue(1));
10888 
10889   // Avoid emitting code for the store implementing the copy.
10890   const StoreInst *SI = ArgCopyIter->second.second;
10891   ElidedArgCopyInstrs.insert(SI);
10892 
10893   // Check for uses of the argument again so that we can avoid exporting ArgVal
10894   // if it is't used by anything other than the store.
10895   for (const Value *U : Arg.users()) {
10896     if (U != SI) {
10897       ArgHasUses = true;
10898       break;
10899     }
10900   }
10901 }
10902 
10903 void SelectionDAGISel::LowerArguments(const Function &F) {
10904   SelectionDAG &DAG = SDB->DAG;
10905   SDLoc dl = SDB->getCurSDLoc();
10906   const DataLayout &DL = DAG.getDataLayout();
10907   SmallVector<ISD::InputArg, 16> Ins;
10908 
10909   // In Naked functions we aren't going to save any registers.
10910   if (F.hasFnAttribute(Attribute::Naked))
10911     return;
10912 
10913   if (!FuncInfo->CanLowerReturn) {
10914     // Put in an sret pointer parameter before all the other parameters.
10915     SmallVector<EVT, 1> ValueVTs;
10916     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10917                     PointerType::get(F.getContext(),
10918                                      DAG.getDataLayout().getAllocaAddrSpace()),
10919                     ValueVTs);
10920 
10921     // NOTE: Assuming that a pointer will never break down to more than one VT
10922     // or one register.
10923     ISD::ArgFlagsTy Flags;
10924     Flags.setSRet();
10925     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
10926     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
10927                          ISD::InputArg::NoArgIndex, 0);
10928     Ins.push_back(RetArg);
10929   }
10930 
10931   // Look for stores of arguments to static allocas. Mark such arguments with a
10932   // flag to ask the target to give us the memory location of that argument if
10933   // available.
10934   ArgCopyElisionMapTy ArgCopyElisionCandidates;
10935   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
10936                                     ArgCopyElisionCandidates);
10937 
10938   // Set up the incoming argument description vector.
10939   for (const Argument &Arg : F.args()) {
10940     unsigned ArgNo = Arg.getArgNo();
10941     SmallVector<EVT, 4> ValueVTs;
10942     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10943     bool isArgValueUsed = !Arg.use_empty();
10944     unsigned PartBase = 0;
10945     Type *FinalType = Arg.getType();
10946     if (Arg.hasAttribute(Attribute::ByVal))
10947       FinalType = Arg.getParamByValType();
10948     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
10949         FinalType, F.getCallingConv(), F.isVarArg(), DL);
10950     for (unsigned Value = 0, NumValues = ValueVTs.size();
10951          Value != NumValues; ++Value) {
10952       EVT VT = ValueVTs[Value];
10953       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
10954       ISD::ArgFlagsTy Flags;
10955 
10956 
10957       if (Arg.getType()->isPointerTy()) {
10958         Flags.setPointer();
10959         Flags.setPointerAddrSpace(
10960             cast<PointerType>(Arg.getType())->getAddressSpace());
10961       }
10962       if (Arg.hasAttribute(Attribute::ZExt))
10963         Flags.setZExt();
10964       if (Arg.hasAttribute(Attribute::SExt))
10965         Flags.setSExt();
10966       if (Arg.hasAttribute(Attribute::InReg)) {
10967         // If we are using vectorcall calling convention, a structure that is
10968         // passed InReg - is surely an HVA
10969         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
10970             isa<StructType>(Arg.getType())) {
10971           // The first value of a structure is marked
10972           if (0 == Value)
10973             Flags.setHvaStart();
10974           Flags.setHva();
10975         }
10976         // Set InReg Flag
10977         Flags.setInReg();
10978       }
10979       if (Arg.hasAttribute(Attribute::StructRet))
10980         Flags.setSRet();
10981       if (Arg.hasAttribute(Attribute::SwiftSelf))
10982         Flags.setSwiftSelf();
10983       if (Arg.hasAttribute(Attribute::SwiftAsync))
10984         Flags.setSwiftAsync();
10985       if (Arg.hasAttribute(Attribute::SwiftError))
10986         Flags.setSwiftError();
10987       if (Arg.hasAttribute(Attribute::ByVal))
10988         Flags.setByVal();
10989       if (Arg.hasAttribute(Attribute::ByRef))
10990         Flags.setByRef();
10991       if (Arg.hasAttribute(Attribute::InAlloca)) {
10992         Flags.setInAlloca();
10993         // Set the byval flag for CCAssignFn callbacks that don't know about
10994         // inalloca.  This way we can know how many bytes we should've allocated
10995         // and how many bytes a callee cleanup function will pop.  If we port
10996         // inalloca to more targets, we'll have to add custom inalloca handling
10997         // in the various CC lowering callbacks.
10998         Flags.setByVal();
10999       }
11000       if (Arg.hasAttribute(Attribute::Preallocated)) {
11001         Flags.setPreallocated();
11002         // Set the byval flag for CCAssignFn callbacks that don't know about
11003         // preallocated.  This way we can know how many bytes we should've
11004         // allocated and how many bytes a callee cleanup function will pop.  If
11005         // we port preallocated to more targets, we'll have to add custom
11006         // preallocated handling in the various CC lowering callbacks.
11007         Flags.setByVal();
11008       }
11009 
11010       // Certain targets (such as MIPS), may have a different ABI alignment
11011       // for a type depending on the context. Give the target a chance to
11012       // specify the alignment it wants.
11013       const Align OriginalAlignment(
11014           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
11015       Flags.setOrigAlign(OriginalAlignment);
11016 
11017       Align MemAlign;
11018       Type *ArgMemTy = nullptr;
11019       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
11020           Flags.isByRef()) {
11021         if (!ArgMemTy)
11022           ArgMemTy = Arg.getPointeeInMemoryValueType();
11023 
11024         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
11025 
11026         // For in-memory arguments, size and alignment should be passed from FE.
11027         // BE will guess if this info is not there but there are cases it cannot
11028         // get right.
11029         if (auto ParamAlign = Arg.getParamStackAlign())
11030           MemAlign = *ParamAlign;
11031         else if ((ParamAlign = Arg.getParamAlign()))
11032           MemAlign = *ParamAlign;
11033         else
11034           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
11035         if (Flags.isByRef())
11036           Flags.setByRefSize(MemSize);
11037         else
11038           Flags.setByValSize(MemSize);
11039       } else if (auto ParamAlign = Arg.getParamStackAlign()) {
11040         MemAlign = *ParamAlign;
11041       } else {
11042         MemAlign = OriginalAlignment;
11043       }
11044       Flags.setMemAlign(MemAlign);
11045 
11046       if (Arg.hasAttribute(Attribute::Nest))
11047         Flags.setNest();
11048       if (NeedsRegBlock)
11049         Flags.setInConsecutiveRegs();
11050       if (ArgCopyElisionCandidates.count(&Arg))
11051         Flags.setCopyElisionCandidate();
11052       if (Arg.hasAttribute(Attribute::Returned))
11053         Flags.setReturned();
11054 
11055       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
11056           *CurDAG->getContext(), F.getCallingConv(), VT);
11057       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
11058           *CurDAG->getContext(), F.getCallingConv(), VT);
11059       for (unsigned i = 0; i != NumRegs; ++i) {
11060         // For scalable vectors, use the minimum size; individual targets
11061         // are responsible for handling scalable vector arguments and
11062         // return values.
11063         ISD::InputArg MyFlags(
11064             Flags, RegisterVT, VT, isArgValueUsed, ArgNo,
11065             PartBase + i * RegisterVT.getStoreSize().getKnownMinValue());
11066         if (NumRegs > 1 && i == 0)
11067           MyFlags.Flags.setSplit();
11068         // if it isn't first piece, alignment must be 1
11069         else if (i > 0) {
11070           MyFlags.Flags.setOrigAlign(Align(1));
11071           if (i == NumRegs - 1)
11072             MyFlags.Flags.setSplitEnd();
11073         }
11074         Ins.push_back(MyFlags);
11075       }
11076       if (NeedsRegBlock && Value == NumValues - 1)
11077         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
11078       PartBase += VT.getStoreSize().getKnownMinValue();
11079     }
11080   }
11081 
11082   // Call the target to set up the argument values.
11083   SmallVector<SDValue, 8> InVals;
11084   SDValue NewRoot = TLI->LowerFormalArguments(
11085       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
11086 
11087   // Verify that the target's LowerFormalArguments behaved as expected.
11088   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
11089          "LowerFormalArguments didn't return a valid chain!");
11090   assert(InVals.size() == Ins.size() &&
11091          "LowerFormalArguments didn't emit the correct number of values!");
11092   LLVM_DEBUG({
11093     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
11094       assert(InVals[i].getNode() &&
11095              "LowerFormalArguments emitted a null value!");
11096       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
11097              "LowerFormalArguments emitted a value with the wrong type!");
11098     }
11099   });
11100 
11101   // Update the DAG with the new chain value resulting from argument lowering.
11102   DAG.setRoot(NewRoot);
11103 
11104   // Set up the argument values.
11105   unsigned i = 0;
11106   if (!FuncInfo->CanLowerReturn) {
11107     // Create a virtual register for the sret pointer, and put in a copy
11108     // from the sret argument into it.
11109     SmallVector<EVT, 1> ValueVTs;
11110     ComputeValueVTs(*TLI, DAG.getDataLayout(),
11111                     PointerType::get(F.getContext(),
11112                                      DAG.getDataLayout().getAllocaAddrSpace()),
11113                     ValueVTs);
11114     MVT VT = ValueVTs[0].getSimpleVT();
11115     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
11116     std::optional<ISD::NodeType> AssertOp;
11117     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
11118                                         nullptr, F.getCallingConv(), AssertOp);
11119 
11120     MachineFunction& MF = SDB->DAG.getMachineFunction();
11121     MachineRegisterInfo& RegInfo = MF.getRegInfo();
11122     Register SRetReg =
11123         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
11124     FuncInfo->DemoteRegister = SRetReg;
11125     NewRoot =
11126         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
11127     DAG.setRoot(NewRoot);
11128 
11129     // i indexes lowered arguments.  Bump it past the hidden sret argument.
11130     ++i;
11131   }
11132 
11133   SmallVector<SDValue, 4> Chains;
11134   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
11135   for (const Argument &Arg : F.args()) {
11136     SmallVector<SDValue, 4> ArgValues;
11137     SmallVector<EVT, 4> ValueVTs;
11138     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
11139     unsigned NumValues = ValueVTs.size();
11140     if (NumValues == 0)
11141       continue;
11142 
11143     bool ArgHasUses = !Arg.use_empty();
11144 
11145     // Elide the copying store if the target loaded this argument from a
11146     // suitable fixed stack object.
11147     if (Ins[i].Flags.isCopyElisionCandidate()) {
11148       unsigned NumParts = 0;
11149       for (EVT VT : ValueVTs)
11150         NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(),
11151                                                        F.getCallingConv(), VT);
11152 
11153       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
11154                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
11155                              ArrayRef(&InVals[i], NumParts), ArgHasUses);
11156     }
11157 
11158     // If this argument is unused then remember its value. It is used to generate
11159     // debugging information.
11160     bool isSwiftErrorArg =
11161         TLI->supportSwiftError() &&
11162         Arg.hasAttribute(Attribute::SwiftError);
11163     if (!ArgHasUses && !isSwiftErrorArg) {
11164       SDB->setUnusedArgValue(&Arg, InVals[i]);
11165 
11166       // Also remember any frame index for use in FastISel.
11167       if (FrameIndexSDNode *FI =
11168           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
11169         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11170     }
11171 
11172     for (unsigned Val = 0; Val != NumValues; ++Val) {
11173       EVT VT = ValueVTs[Val];
11174       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
11175                                                       F.getCallingConv(), VT);
11176       unsigned NumParts = TLI->getNumRegistersForCallingConv(
11177           *CurDAG->getContext(), F.getCallingConv(), VT);
11178 
11179       // Even an apparent 'unused' swifterror argument needs to be returned. So
11180       // we do generate a copy for it that can be used on return from the
11181       // function.
11182       if (ArgHasUses || isSwiftErrorArg) {
11183         std::optional<ISD::NodeType> AssertOp;
11184         if (Arg.hasAttribute(Attribute::SExt))
11185           AssertOp = ISD::AssertSext;
11186         else if (Arg.hasAttribute(Attribute::ZExt))
11187           AssertOp = ISD::AssertZext;
11188 
11189         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
11190                                              PartVT, VT, nullptr,
11191                                              F.getCallingConv(), AssertOp));
11192       }
11193 
11194       i += NumParts;
11195     }
11196 
11197     // We don't need to do anything else for unused arguments.
11198     if (ArgValues.empty())
11199       continue;
11200 
11201     // Note down frame index.
11202     if (FrameIndexSDNode *FI =
11203         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
11204       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11205 
11206     SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues),
11207                                      SDB->getCurSDLoc());
11208 
11209     SDB->setValue(&Arg, Res);
11210     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
11211       // We want to associate the argument with the frame index, among
11212       // involved operands, that correspond to the lowest address. The
11213       // getCopyFromParts function, called earlier, is swapping the order of
11214       // the operands to BUILD_PAIR depending on endianness. The result of
11215       // that swapping is that the least significant bits of the argument will
11216       // be in the first operand of the BUILD_PAIR node, and the most
11217       // significant bits will be in the second operand.
11218       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
11219       if (LoadSDNode *LNode =
11220           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
11221         if (FrameIndexSDNode *FI =
11222             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
11223           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11224     }
11225 
11226     // Analyses past this point are naive and don't expect an assertion.
11227     if (Res.getOpcode() == ISD::AssertZext)
11228       Res = Res.getOperand(0);
11229 
11230     // Update the SwiftErrorVRegDefMap.
11231     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
11232       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
11233       if (Register::isVirtualRegister(Reg))
11234         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
11235                                    Reg);
11236     }
11237 
11238     // If this argument is live outside of the entry block, insert a copy from
11239     // wherever we got it to the vreg that other BB's will reference it as.
11240     if (Res.getOpcode() == ISD::CopyFromReg) {
11241       // If we can, though, try to skip creating an unnecessary vreg.
11242       // FIXME: This isn't very clean... it would be nice to make this more
11243       // general.
11244       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
11245       if (Register::isVirtualRegister(Reg)) {
11246         FuncInfo->ValueMap[&Arg] = Reg;
11247         continue;
11248       }
11249     }
11250     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
11251       FuncInfo->InitializeRegForValue(&Arg);
11252       SDB->CopyToExportRegsIfNeeded(&Arg);
11253     }
11254   }
11255 
11256   if (!Chains.empty()) {
11257     Chains.push_back(NewRoot);
11258     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
11259   }
11260 
11261   DAG.setRoot(NewRoot);
11262 
11263   assert(i == InVals.size() && "Argument register count mismatch!");
11264 
11265   // If any argument copy elisions occurred and we have debug info, update the
11266   // stale frame indices used in the dbg.declare variable info table.
11267   if (!ArgCopyElisionFrameIndexMap.empty()) {
11268     for (MachineFunction::VariableDbgInfo &VI :
11269          MF->getInStackSlotVariableDbgInfo()) {
11270       auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot());
11271       if (I != ArgCopyElisionFrameIndexMap.end())
11272         VI.updateStackSlot(I->second);
11273     }
11274   }
11275 
11276   // Finally, if the target has anything special to do, allow it to do so.
11277   emitFunctionEntryCode();
11278 }
11279 
11280 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
11281 /// ensure constants are generated when needed.  Remember the virtual registers
11282 /// that need to be added to the Machine PHI nodes as input.  We cannot just
11283 /// directly add them, because expansion might result in multiple MBB's for one
11284 /// BB.  As such, the start of the BB might correspond to a different MBB than
11285 /// the end.
11286 void
11287 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
11288   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11289 
11290   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
11291 
11292   // Check PHI nodes in successors that expect a value to be available from this
11293   // block.
11294   for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) {
11295     if (!isa<PHINode>(SuccBB->begin())) continue;
11296     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
11297 
11298     // If this terminator has multiple identical successors (common for
11299     // switches), only handle each succ once.
11300     if (!SuccsHandled.insert(SuccMBB).second)
11301       continue;
11302 
11303     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
11304 
11305     // At this point we know that there is a 1-1 correspondence between LLVM PHI
11306     // nodes and Machine PHI nodes, but the incoming operands have not been
11307     // emitted yet.
11308     for (const PHINode &PN : SuccBB->phis()) {
11309       // Ignore dead phi's.
11310       if (PN.use_empty())
11311         continue;
11312 
11313       // Skip empty types
11314       if (PN.getType()->isEmptyTy())
11315         continue;
11316 
11317       unsigned Reg;
11318       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
11319 
11320       if (const auto *C = dyn_cast<Constant>(PHIOp)) {
11321         unsigned &RegOut = ConstantsOut[C];
11322         if (RegOut == 0) {
11323           RegOut = FuncInfo.CreateRegs(C);
11324           // We need to zero/sign extend ConstantInt phi operands to match
11325           // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo.
11326           ISD::NodeType ExtendType = ISD::ANY_EXTEND;
11327           if (auto *CI = dyn_cast<ConstantInt>(C))
11328             ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND
11329                                                     : ISD::ZERO_EXTEND;
11330           CopyValueToVirtualRegister(C, RegOut, ExtendType);
11331         }
11332         Reg = RegOut;
11333       } else {
11334         DenseMap<const Value *, Register>::iterator I =
11335           FuncInfo.ValueMap.find(PHIOp);
11336         if (I != FuncInfo.ValueMap.end())
11337           Reg = I->second;
11338         else {
11339           assert(isa<AllocaInst>(PHIOp) &&
11340                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
11341                  "Didn't codegen value into a register!??");
11342           Reg = FuncInfo.CreateRegs(PHIOp);
11343           CopyValueToVirtualRegister(PHIOp, Reg);
11344         }
11345       }
11346 
11347       // Remember that this register needs to added to the machine PHI node as
11348       // the input for this MBB.
11349       SmallVector<EVT, 4> ValueVTs;
11350       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
11351       for (EVT VT : ValueVTs) {
11352         const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
11353         for (unsigned i = 0; i != NumRegisters; ++i)
11354           FuncInfo.PHINodesToUpdate.push_back(
11355               std::make_pair(&*MBBI++, Reg + i));
11356         Reg += NumRegisters;
11357       }
11358     }
11359   }
11360 
11361   ConstantsOut.clear();
11362 }
11363 
11364 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
11365   MachineFunction::iterator I(MBB);
11366   if (++I == FuncInfo.MF->end())
11367     return nullptr;
11368   return &*I;
11369 }
11370 
11371 /// During lowering new call nodes can be created (such as memset, etc.).
11372 /// Those will become new roots of the current DAG, but complications arise
11373 /// when they are tail calls. In such cases, the call lowering will update
11374 /// the root, but the builder still needs to know that a tail call has been
11375 /// lowered in order to avoid generating an additional return.
11376 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
11377   // If the node is null, we do have a tail call.
11378   if (MaybeTC.getNode() != nullptr)
11379     DAG.setRoot(MaybeTC);
11380   else
11381     HasTailCall = true;
11382 }
11383 
11384 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
11385                                         MachineBasicBlock *SwitchMBB,
11386                                         MachineBasicBlock *DefaultMBB) {
11387   MachineFunction *CurMF = FuncInfo.MF;
11388   MachineBasicBlock *NextMBB = nullptr;
11389   MachineFunction::iterator BBI(W.MBB);
11390   if (++BBI != FuncInfo.MF->end())
11391     NextMBB = &*BBI;
11392 
11393   unsigned Size = W.LastCluster - W.FirstCluster + 1;
11394 
11395   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11396 
11397   if (Size == 2 && W.MBB == SwitchMBB) {
11398     // If any two of the cases has the same destination, and if one value
11399     // is the same as the other, but has one bit unset that the other has set,
11400     // use bit manipulation to do two compares at once.  For example:
11401     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
11402     // TODO: This could be extended to merge any 2 cases in switches with 3
11403     // cases.
11404     // TODO: Handle cases where W.CaseBB != SwitchBB.
11405     CaseCluster &Small = *W.FirstCluster;
11406     CaseCluster &Big = *W.LastCluster;
11407 
11408     if (Small.Low == Small.High && Big.Low == Big.High &&
11409         Small.MBB == Big.MBB) {
11410       const APInt &SmallValue = Small.Low->getValue();
11411       const APInt &BigValue = Big.Low->getValue();
11412 
11413       // Check that there is only one bit different.
11414       APInt CommonBit = BigValue ^ SmallValue;
11415       if (CommonBit.isPowerOf2()) {
11416         SDValue CondLHS = getValue(Cond);
11417         EVT VT = CondLHS.getValueType();
11418         SDLoc DL = getCurSDLoc();
11419 
11420         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
11421                                  DAG.getConstant(CommonBit, DL, VT));
11422         SDValue Cond = DAG.getSetCC(
11423             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
11424             ISD::SETEQ);
11425 
11426         // Update successor info.
11427         // Both Small and Big will jump to Small.BB, so we sum up the
11428         // probabilities.
11429         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
11430         if (BPI)
11431           addSuccessorWithProb(
11432               SwitchMBB, DefaultMBB,
11433               // The default destination is the first successor in IR.
11434               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
11435         else
11436           addSuccessorWithProb(SwitchMBB, DefaultMBB);
11437 
11438         // Insert the true branch.
11439         SDValue BrCond =
11440             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
11441                         DAG.getBasicBlock(Small.MBB));
11442         // Insert the false branch.
11443         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
11444                              DAG.getBasicBlock(DefaultMBB));
11445 
11446         DAG.setRoot(BrCond);
11447         return;
11448       }
11449     }
11450   }
11451 
11452   if (TM.getOptLevel() != CodeGenOptLevel::None) {
11453     // Here, we order cases by probability so the most likely case will be
11454     // checked first. However, two clusters can have the same probability in
11455     // which case their relative ordering is non-deterministic. So we use Low
11456     // as a tie-breaker as clusters are guaranteed to never overlap.
11457     llvm::sort(W.FirstCluster, W.LastCluster + 1,
11458                [](const CaseCluster &a, const CaseCluster &b) {
11459       return a.Prob != b.Prob ?
11460              a.Prob > b.Prob :
11461              a.Low->getValue().slt(b.Low->getValue());
11462     });
11463 
11464     // Rearrange the case blocks so that the last one falls through if possible
11465     // without changing the order of probabilities.
11466     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
11467       --I;
11468       if (I->Prob > W.LastCluster->Prob)
11469         break;
11470       if (I->Kind == CC_Range && I->MBB == NextMBB) {
11471         std::swap(*I, *W.LastCluster);
11472         break;
11473       }
11474     }
11475   }
11476 
11477   // Compute total probability.
11478   BranchProbability DefaultProb = W.DefaultProb;
11479   BranchProbability UnhandledProbs = DefaultProb;
11480   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
11481     UnhandledProbs += I->Prob;
11482 
11483   MachineBasicBlock *CurMBB = W.MBB;
11484   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
11485     bool FallthroughUnreachable = false;
11486     MachineBasicBlock *Fallthrough;
11487     if (I == W.LastCluster) {
11488       // For the last cluster, fall through to the default destination.
11489       Fallthrough = DefaultMBB;
11490       FallthroughUnreachable = isa<UnreachableInst>(
11491           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
11492     } else {
11493       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
11494       CurMF->insert(BBI, Fallthrough);
11495       // Put Cond in a virtual register to make it available from the new blocks.
11496       ExportFromCurrentBlock(Cond);
11497     }
11498     UnhandledProbs -= I->Prob;
11499 
11500     switch (I->Kind) {
11501       case CC_JumpTable: {
11502         // FIXME: Optimize away range check based on pivot comparisons.
11503         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
11504         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
11505 
11506         // The jump block hasn't been inserted yet; insert it here.
11507         MachineBasicBlock *JumpMBB = JT->MBB;
11508         CurMF->insert(BBI, JumpMBB);
11509 
11510         auto JumpProb = I->Prob;
11511         auto FallthroughProb = UnhandledProbs;
11512 
11513         // If the default statement is a target of the jump table, we evenly
11514         // distribute the default probability to successors of CurMBB. Also
11515         // update the probability on the edge from JumpMBB to Fallthrough.
11516         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
11517                                               SE = JumpMBB->succ_end();
11518              SI != SE; ++SI) {
11519           if (*SI == DefaultMBB) {
11520             JumpProb += DefaultProb / 2;
11521             FallthroughProb -= DefaultProb / 2;
11522             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
11523             JumpMBB->normalizeSuccProbs();
11524             break;
11525           }
11526         }
11527 
11528         // If the default clause is unreachable, propagate that knowledge into
11529         // JTH->FallthroughUnreachable which will use it to suppress the range
11530         // check.
11531         //
11532         // However, don't do this if we're doing branch target enforcement,
11533         // because a table branch _without_ a range check can be a tempting JOP
11534         // gadget - out-of-bounds inputs that are impossible in correct
11535         // execution become possible again if an attacker can influence the
11536         // control flow. So if an attacker doesn't already have a BTI bypass
11537         // available, we don't want them to be able to get one out of this
11538         // table branch.
11539         if (FallthroughUnreachable) {
11540           Function &CurFunc = CurMF->getFunction();
11541           bool HasBranchTargetEnforcement = false;
11542           if (CurFunc.hasFnAttribute("branch-target-enforcement")) {
11543             HasBranchTargetEnforcement =
11544                 CurFunc.getFnAttribute("branch-target-enforcement")
11545                     .getValueAsBool();
11546           } else {
11547             HasBranchTargetEnforcement =
11548                 CurMF->getMMI().getModule()->getModuleFlag(
11549                     "branch-target-enforcement");
11550           }
11551           if (!HasBranchTargetEnforcement)
11552             JTH->FallthroughUnreachable = true;
11553         }
11554 
11555         if (!JTH->FallthroughUnreachable)
11556           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
11557         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
11558         CurMBB->normalizeSuccProbs();
11559 
11560         // The jump table header will be inserted in our current block, do the
11561         // range check, and fall through to our fallthrough block.
11562         JTH->HeaderBB = CurMBB;
11563         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
11564 
11565         // If we're in the right place, emit the jump table header right now.
11566         if (CurMBB == SwitchMBB) {
11567           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
11568           JTH->Emitted = true;
11569         }
11570         break;
11571       }
11572       case CC_BitTests: {
11573         // FIXME: Optimize away range check based on pivot comparisons.
11574         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
11575 
11576         // The bit test blocks haven't been inserted yet; insert them here.
11577         for (BitTestCase &BTC : BTB->Cases)
11578           CurMF->insert(BBI, BTC.ThisBB);
11579 
11580         // Fill in fields of the BitTestBlock.
11581         BTB->Parent = CurMBB;
11582         BTB->Default = Fallthrough;
11583 
11584         BTB->DefaultProb = UnhandledProbs;
11585         // If the cases in bit test don't form a contiguous range, we evenly
11586         // distribute the probability on the edge to Fallthrough to two
11587         // successors of CurMBB.
11588         if (!BTB->ContiguousRange) {
11589           BTB->Prob += DefaultProb / 2;
11590           BTB->DefaultProb -= DefaultProb / 2;
11591         }
11592 
11593         if (FallthroughUnreachable)
11594           BTB->FallthroughUnreachable = true;
11595 
11596         // If we're in the right place, emit the bit test header right now.
11597         if (CurMBB == SwitchMBB) {
11598           visitBitTestHeader(*BTB, SwitchMBB);
11599           BTB->Emitted = true;
11600         }
11601         break;
11602       }
11603       case CC_Range: {
11604         const Value *RHS, *LHS, *MHS;
11605         ISD::CondCode CC;
11606         if (I->Low == I->High) {
11607           // Check Cond == I->Low.
11608           CC = ISD::SETEQ;
11609           LHS = Cond;
11610           RHS=I->Low;
11611           MHS = nullptr;
11612         } else {
11613           // Check I->Low <= Cond <= I->High.
11614           CC = ISD::SETLE;
11615           LHS = I->Low;
11616           MHS = Cond;
11617           RHS = I->High;
11618         }
11619 
11620         // If Fallthrough is unreachable, fold away the comparison.
11621         if (FallthroughUnreachable)
11622           CC = ISD::SETTRUE;
11623 
11624         // The false probability is the sum of all unhandled cases.
11625         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
11626                      getCurSDLoc(), I->Prob, UnhandledProbs);
11627 
11628         if (CurMBB == SwitchMBB)
11629           visitSwitchCase(CB, SwitchMBB);
11630         else
11631           SL->SwitchCases.push_back(CB);
11632 
11633         break;
11634       }
11635     }
11636     CurMBB = Fallthrough;
11637   }
11638 }
11639 
11640 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
11641                                               CaseClusterIt First,
11642                                               CaseClusterIt Last) {
11643   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
11644     if (X.Prob != CC.Prob)
11645       return X.Prob > CC.Prob;
11646 
11647     // Ties are broken by comparing the case value.
11648     return X.Low->getValue().slt(CC.Low->getValue());
11649   });
11650 }
11651 
11652 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
11653                                         const SwitchWorkListItem &W,
11654                                         Value *Cond,
11655                                         MachineBasicBlock *SwitchMBB) {
11656   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
11657          "Clusters not sorted?");
11658 
11659   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
11660 
11661   // Balance the tree based on branch probabilities to create a near-optimal (in
11662   // terms of search time given key frequency) binary search tree. See e.g. Kurt
11663   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
11664   CaseClusterIt LastLeft = W.FirstCluster;
11665   CaseClusterIt FirstRight = W.LastCluster;
11666   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
11667   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
11668 
11669   // Move LastLeft and FirstRight towards each other from opposite directions to
11670   // find a partitioning of the clusters which balances the probability on both
11671   // sides. If LeftProb and RightProb are equal, alternate which side is
11672   // taken to ensure 0-probability nodes are distributed evenly.
11673   unsigned I = 0;
11674   while (LastLeft + 1 < FirstRight) {
11675     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
11676       LeftProb += (++LastLeft)->Prob;
11677     else
11678       RightProb += (--FirstRight)->Prob;
11679     I++;
11680   }
11681 
11682   while (true) {
11683     // Our binary search tree differs from a typical BST in that ours can have up
11684     // to three values in each leaf. The pivot selection above doesn't take that
11685     // into account, which means the tree might require more nodes and be less
11686     // efficient. We compensate for this here.
11687 
11688     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
11689     unsigned NumRight = W.LastCluster - FirstRight + 1;
11690 
11691     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
11692       // If one side has less than 3 clusters, and the other has more than 3,
11693       // consider taking a cluster from the other side.
11694 
11695       if (NumLeft < NumRight) {
11696         // Consider moving the first cluster on the right to the left side.
11697         CaseCluster &CC = *FirstRight;
11698         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
11699         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
11700         if (LeftSideRank <= RightSideRank) {
11701           // Moving the cluster to the left does not demote it.
11702           ++LastLeft;
11703           ++FirstRight;
11704           continue;
11705         }
11706       } else {
11707         assert(NumRight < NumLeft);
11708         // Consider moving the last element on the left to the right side.
11709         CaseCluster &CC = *LastLeft;
11710         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
11711         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
11712         if (RightSideRank <= LeftSideRank) {
11713           // Moving the cluster to the right does not demot it.
11714           --LastLeft;
11715           --FirstRight;
11716           continue;
11717         }
11718       }
11719     }
11720     break;
11721   }
11722 
11723   assert(LastLeft + 1 == FirstRight);
11724   assert(LastLeft >= W.FirstCluster);
11725   assert(FirstRight <= W.LastCluster);
11726 
11727   // Use the first element on the right as pivot since we will make less-than
11728   // comparisons against it.
11729   CaseClusterIt PivotCluster = FirstRight;
11730   assert(PivotCluster > W.FirstCluster);
11731   assert(PivotCluster <= W.LastCluster);
11732 
11733   CaseClusterIt FirstLeft = W.FirstCluster;
11734   CaseClusterIt LastRight = W.LastCluster;
11735 
11736   const ConstantInt *Pivot = PivotCluster->Low;
11737 
11738   // New blocks will be inserted immediately after the current one.
11739   MachineFunction::iterator BBI(W.MBB);
11740   ++BBI;
11741 
11742   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
11743   // we can branch to its destination directly if it's squeezed exactly in
11744   // between the known lower bound and Pivot - 1.
11745   MachineBasicBlock *LeftMBB;
11746   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
11747       FirstLeft->Low == W.GE &&
11748       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
11749     LeftMBB = FirstLeft->MBB;
11750   } else {
11751     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11752     FuncInfo.MF->insert(BBI, LeftMBB);
11753     WorkList.push_back(
11754         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
11755     // Put Cond in a virtual register to make it available from the new blocks.
11756     ExportFromCurrentBlock(Cond);
11757   }
11758 
11759   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
11760   // single cluster, RHS.Low == Pivot, and we can branch to its destination
11761   // directly if RHS.High equals the current upper bound.
11762   MachineBasicBlock *RightMBB;
11763   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
11764       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
11765     RightMBB = FirstRight->MBB;
11766   } else {
11767     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11768     FuncInfo.MF->insert(BBI, RightMBB);
11769     WorkList.push_back(
11770         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
11771     // Put Cond in a virtual register to make it available from the new blocks.
11772     ExportFromCurrentBlock(Cond);
11773   }
11774 
11775   // Create the CaseBlock record that will be used to lower the branch.
11776   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
11777                getCurSDLoc(), LeftProb, RightProb);
11778 
11779   if (W.MBB == SwitchMBB)
11780     visitSwitchCase(CB, SwitchMBB);
11781   else
11782     SL->SwitchCases.push_back(CB);
11783 }
11784 
11785 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
11786 // from the swith statement.
11787 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
11788                                             BranchProbability PeeledCaseProb) {
11789   if (PeeledCaseProb == BranchProbability::getOne())
11790     return BranchProbability::getZero();
11791   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
11792 
11793   uint32_t Numerator = CaseProb.getNumerator();
11794   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
11795   return BranchProbability(Numerator, std::max(Numerator, Denominator));
11796 }
11797 
11798 // Try to peel the top probability case if it exceeds the threshold.
11799 // Return current MachineBasicBlock for the switch statement if the peeling
11800 // does not occur.
11801 // If the peeling is performed, return the newly created MachineBasicBlock
11802 // for the peeled switch statement. Also update Clusters to remove the peeled
11803 // case. PeeledCaseProb is the BranchProbability for the peeled case.
11804 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
11805     const SwitchInst &SI, CaseClusterVector &Clusters,
11806     BranchProbability &PeeledCaseProb) {
11807   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11808   // Don't perform if there is only one cluster or optimizing for size.
11809   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
11810       TM.getOptLevel() == CodeGenOptLevel::None ||
11811       SwitchMBB->getParent()->getFunction().hasMinSize())
11812     return SwitchMBB;
11813 
11814   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
11815   unsigned PeeledCaseIndex = 0;
11816   bool SwitchPeeled = false;
11817   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
11818     CaseCluster &CC = Clusters[Index];
11819     if (CC.Prob < TopCaseProb)
11820       continue;
11821     TopCaseProb = CC.Prob;
11822     PeeledCaseIndex = Index;
11823     SwitchPeeled = true;
11824   }
11825   if (!SwitchPeeled)
11826     return SwitchMBB;
11827 
11828   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
11829                     << TopCaseProb << "\n");
11830 
11831   // Record the MBB for the peeled switch statement.
11832   MachineFunction::iterator BBI(SwitchMBB);
11833   ++BBI;
11834   MachineBasicBlock *PeeledSwitchMBB =
11835       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
11836   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
11837 
11838   ExportFromCurrentBlock(SI.getCondition());
11839   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
11840   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
11841                           nullptr,   nullptr,      TopCaseProb.getCompl()};
11842   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
11843 
11844   Clusters.erase(PeeledCaseIt);
11845   for (CaseCluster &CC : Clusters) {
11846     LLVM_DEBUG(
11847         dbgs() << "Scale the probablity for one cluster, before scaling: "
11848                << CC.Prob << "\n");
11849     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
11850     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
11851   }
11852   PeeledCaseProb = TopCaseProb;
11853   return PeeledSwitchMBB;
11854 }
11855 
11856 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
11857   // Extract cases from the switch.
11858   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11859   CaseClusterVector Clusters;
11860   Clusters.reserve(SI.getNumCases());
11861   for (auto I : SI.cases()) {
11862     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
11863     const ConstantInt *CaseVal = I.getCaseValue();
11864     BranchProbability Prob =
11865         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
11866             : BranchProbability(1, SI.getNumCases() + 1);
11867     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
11868   }
11869 
11870   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
11871 
11872   // Cluster adjacent cases with the same destination. We do this at all
11873   // optimization levels because it's cheap to do and will make codegen faster
11874   // if there are many clusters.
11875   sortAndRangeify(Clusters);
11876 
11877   // The branch probablity of the peeled case.
11878   BranchProbability PeeledCaseProb = BranchProbability::getZero();
11879   MachineBasicBlock *PeeledSwitchMBB =
11880       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
11881 
11882   // If there is only the default destination, jump there directly.
11883   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11884   if (Clusters.empty()) {
11885     assert(PeeledSwitchMBB == SwitchMBB);
11886     SwitchMBB->addSuccessor(DefaultMBB);
11887     if (DefaultMBB != NextBlock(SwitchMBB)) {
11888       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
11889                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
11890     }
11891     return;
11892   }
11893 
11894   SL->findJumpTables(Clusters, &SI, getCurSDLoc(), DefaultMBB, DAG.getPSI(),
11895                      DAG.getBFI());
11896   SL->findBitTestClusters(Clusters, &SI);
11897 
11898   LLVM_DEBUG({
11899     dbgs() << "Case clusters: ";
11900     for (const CaseCluster &C : Clusters) {
11901       if (C.Kind == CC_JumpTable)
11902         dbgs() << "JT:";
11903       if (C.Kind == CC_BitTests)
11904         dbgs() << "BT:";
11905 
11906       C.Low->getValue().print(dbgs(), true);
11907       if (C.Low != C.High) {
11908         dbgs() << '-';
11909         C.High->getValue().print(dbgs(), true);
11910       }
11911       dbgs() << ' ';
11912     }
11913     dbgs() << '\n';
11914   });
11915 
11916   assert(!Clusters.empty());
11917   SwitchWorkList WorkList;
11918   CaseClusterIt First = Clusters.begin();
11919   CaseClusterIt Last = Clusters.end() - 1;
11920   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
11921   // Scale the branchprobability for DefaultMBB if the peel occurs and
11922   // DefaultMBB is not replaced.
11923   if (PeeledCaseProb != BranchProbability::getZero() &&
11924       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
11925     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
11926   WorkList.push_back(
11927       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
11928 
11929   while (!WorkList.empty()) {
11930     SwitchWorkListItem W = WorkList.pop_back_val();
11931     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
11932 
11933     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOptLevel::None &&
11934         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
11935       // For optimized builds, lower large range as a balanced binary tree.
11936       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
11937       continue;
11938     }
11939 
11940     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
11941   }
11942 }
11943 
11944 void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
11945   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11946   auto DL = getCurSDLoc();
11947   EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11948   setValue(&I, DAG.getStepVector(DL, ResultVT));
11949 }
11950 
11951 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
11952   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11953   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11954 
11955   SDLoc DL = getCurSDLoc();
11956   SDValue V = getValue(I.getOperand(0));
11957   assert(VT == V.getValueType() && "Malformed vector.reverse!");
11958 
11959   if (VT.isScalableVector()) {
11960     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
11961     return;
11962   }
11963 
11964   // Use VECTOR_SHUFFLE for the fixed-length vector
11965   // to maintain existing behavior.
11966   SmallVector<int, 8> Mask;
11967   unsigned NumElts = VT.getVectorMinNumElements();
11968   for (unsigned i = 0; i != NumElts; ++i)
11969     Mask.push_back(NumElts - 1 - i);
11970 
11971   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
11972 }
11973 
11974 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) {
11975   auto DL = getCurSDLoc();
11976   SDValue InVec = getValue(I.getOperand(0));
11977   EVT OutVT =
11978       InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext());
11979 
11980   unsigned OutNumElts = OutVT.getVectorMinNumElements();
11981 
11982   // ISD Node needs the input vectors split into two equal parts
11983   SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
11984                            DAG.getVectorIdxConstant(0, DL));
11985   SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
11986                            DAG.getVectorIdxConstant(OutNumElts, DL));
11987 
11988   // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
11989   // legalisation and combines.
11990   if (OutVT.isFixedLengthVector()) {
11991     SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
11992                                         createStrideMask(0, 2, OutNumElts));
11993     SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
11994                                        createStrideMask(1, 2, OutNumElts));
11995     SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc());
11996     setValue(&I, Res);
11997     return;
11998   }
11999 
12000   SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL,
12001                             DAG.getVTList(OutVT, OutVT), Lo, Hi);
12002   setValue(&I, Res);
12003 }
12004 
12005 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) {
12006   auto DL = getCurSDLoc();
12007   EVT InVT = getValue(I.getOperand(0)).getValueType();
12008   SDValue InVec0 = getValue(I.getOperand(0));
12009   SDValue InVec1 = getValue(I.getOperand(1));
12010   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12011   EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12012 
12013   // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
12014   // legalisation and combines.
12015   if (OutVT.isFixedLengthVector()) {
12016     unsigned NumElts = InVT.getVectorMinNumElements();
12017     SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1);
12018     setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT),
12019                                       createInterleaveMask(NumElts, 2)));
12020     return;
12021   }
12022 
12023   SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL,
12024                             DAG.getVTList(InVT, InVT), InVec0, InVec1);
12025   Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0),
12026                     Res.getValue(1));
12027   setValue(&I, Res);
12028 }
12029 
12030 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
12031   SmallVector<EVT, 4> ValueVTs;
12032   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
12033                   ValueVTs);
12034   unsigned NumValues = ValueVTs.size();
12035   if (NumValues == 0) return;
12036 
12037   SmallVector<SDValue, 4> Values(NumValues);
12038   SDValue Op = getValue(I.getOperand(0));
12039 
12040   for (unsigned i = 0; i != NumValues; ++i)
12041     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
12042                             SDValue(Op.getNode(), Op.getResNo() + i));
12043 
12044   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
12045                            DAG.getVTList(ValueVTs), Values));
12046 }
12047 
12048 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
12049   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12050   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12051 
12052   SDLoc DL = getCurSDLoc();
12053   SDValue V1 = getValue(I.getOperand(0));
12054   SDValue V2 = getValue(I.getOperand(1));
12055   int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
12056 
12057   // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
12058   if (VT.isScalableVector()) {
12059     MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
12060     setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
12061                              DAG.getConstant(Imm, DL, IdxVT)));
12062     return;
12063   }
12064 
12065   unsigned NumElts = VT.getVectorNumElements();
12066 
12067   uint64_t Idx = (NumElts + Imm) % NumElts;
12068 
12069   // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
12070   SmallVector<int, 8> Mask;
12071   for (unsigned i = 0; i < NumElts; ++i)
12072     Mask.push_back(Idx + i);
12073   setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
12074 }
12075 
12076 // Consider the following MIR after SelectionDAG, which produces output in
12077 // phyregs in the first case or virtregs in the second case.
12078 //
12079 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx
12080 // %5:gr32 = COPY $ebx
12081 // %6:gr32 = COPY $edx
12082 // %1:gr32 = COPY %6:gr32
12083 // %0:gr32 = COPY %5:gr32
12084 //
12085 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32
12086 // %1:gr32 = COPY %6:gr32
12087 // %0:gr32 = COPY %5:gr32
12088 //
12089 // Given %0, we'd like to return $ebx in the first case and %5 in the second.
12090 // Given %1, we'd like to return $edx in the first case and %6 in the second.
12091 //
12092 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap
12093 // to a single virtreg (such as %0). The remaining outputs monotonically
12094 // increase in virtreg number from there. If a callbr has no outputs, then it
12095 // should not have a corresponding callbr landingpad; in fact, the callbr
12096 // landingpad would not even be able to refer to such a callbr.
12097 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) {
12098   MachineInstr *MI = MRI.def_begin(Reg)->getParent();
12099   // There is definitely at least one copy.
12100   assert(MI->getOpcode() == TargetOpcode::COPY &&
12101          "start of copy chain MUST be COPY");
12102   Reg = MI->getOperand(1).getReg();
12103   MI = MRI.def_begin(Reg)->getParent();
12104   // There may be an optional second copy.
12105   if (MI->getOpcode() == TargetOpcode::COPY) {
12106     assert(Reg.isVirtual() && "expected COPY of virtual register");
12107     Reg = MI->getOperand(1).getReg();
12108     assert(Reg.isPhysical() && "expected COPY of physical register");
12109     MI = MRI.def_begin(Reg)->getParent();
12110   }
12111   // The start of the chain must be an INLINEASM_BR.
12112   assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR &&
12113          "end of copy chain MUST be INLINEASM_BR");
12114   return Reg;
12115 }
12116 
12117 // We must do this walk rather than the simpler
12118 //   setValue(&I, getCopyFromRegs(CBR, CBR->getType()));
12119 // otherwise we will end up with copies of virtregs only valid along direct
12120 // edges.
12121 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) {
12122   SmallVector<EVT, 8> ResultVTs;
12123   SmallVector<SDValue, 8> ResultValues;
12124   const auto *CBR =
12125       cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator());
12126 
12127   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12128   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
12129   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
12130 
12131   unsigned InitialDef = FuncInfo.ValueMap[CBR];
12132   SDValue Chain = DAG.getRoot();
12133 
12134   // Re-parse the asm constraints string.
12135   TargetLowering::AsmOperandInfoVector TargetConstraints =
12136       TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR);
12137   for (auto &T : TargetConstraints) {
12138     SDISelAsmOperandInfo OpInfo(T);
12139     if (OpInfo.Type != InlineAsm::isOutput)
12140       continue;
12141 
12142     // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the
12143     // individual constraint.
12144     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
12145 
12146     switch (OpInfo.ConstraintType) {
12147     case TargetLowering::C_Register:
12148     case TargetLowering::C_RegisterClass: {
12149       // Fill in OpInfo.AssignedRegs.Regs.
12150       getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo);
12151 
12152       // getRegistersForValue may produce 1 to many registers based on whether
12153       // the OpInfo.ConstraintVT is legal on the target or not.
12154       for (size_t i = 0, e = OpInfo.AssignedRegs.Regs.size(); i != e; ++i) {
12155         Register OriginalDef = FollowCopyChain(MRI, InitialDef++);
12156         if (Register::isPhysicalRegister(OriginalDef))
12157           FuncInfo.MBB->addLiveIn(OriginalDef);
12158         // Update the assigned registers to use the original defs.
12159         OpInfo.AssignedRegs.Regs[i] = OriginalDef;
12160       }
12161 
12162       SDValue V = OpInfo.AssignedRegs.getCopyFromRegs(
12163           DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR);
12164       ResultValues.push_back(V);
12165       ResultVTs.push_back(OpInfo.ConstraintVT);
12166       break;
12167     }
12168     case TargetLowering::C_Other: {
12169       SDValue Flag;
12170       SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
12171                                                   OpInfo, DAG);
12172       ++InitialDef;
12173       ResultValues.push_back(V);
12174       ResultVTs.push_back(OpInfo.ConstraintVT);
12175       break;
12176     }
12177     default:
12178       break;
12179     }
12180   }
12181   SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
12182                           DAG.getVTList(ResultVTs), ResultValues);
12183   setValue(&I, V);
12184 }
12185