1 //===- SelectionDAGISel.cpp - Implement the SelectionDAGISel class --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAGISel class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAGISel.h"
14 #include "ScheduleDAGSDNodes.h"
15 #include "SelectionDAGBuilder.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/PostOrderIterator.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BranchProbabilityInfo.h"
28 #include "llvm/Analysis/CFG.h"
29 #include "llvm/Analysis/EHPersonalities.h"
30 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
31 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
32 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33 #include "llvm/Analysis/ProfileSummaryInfo.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/TargetTransformInfo.h"
36 #include "llvm/CodeGen/FastISel.h"
37 #include "llvm/CodeGen/FunctionLoweringInfo.h"
38 #include "llvm/CodeGen/GCMetadata.h"
39 #include "llvm/CodeGen/ISDOpcodes.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineFrameInfo.h"
42 #include "llvm/CodeGen/MachineFunction.h"
43 #include "llvm/CodeGen/MachineFunctionPass.h"
44 #include "llvm/CodeGen/MachineInstr.h"
45 #include "llvm/CodeGen/MachineInstrBuilder.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachinePassRegistry.h"
50 #include "llvm/CodeGen/MachineRegisterInfo.h"
51 #include "llvm/CodeGen/SchedulerRegistry.h"
52 #include "llvm/CodeGen/SelectionDAG.h"
53 #include "llvm/CodeGen/SelectionDAGNodes.h"
54 #include "llvm/CodeGen/StackProtector.h"
55 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetLowering.h"
58 #include "llvm/CodeGen/TargetRegisterInfo.h"
59 #include "llvm/CodeGen/TargetSubtargetInfo.h"
60 #include "llvm/CodeGen/ValueTypes.h"
61 #include "llvm/IR/BasicBlock.h"
62 #include "llvm/IR/Constants.h"
63 #include "llvm/IR/DataLayout.h"
64 #include "llvm/IR/DebugInfoMetadata.h"
65 #include "llvm/IR/DebugLoc.h"
66 #include "llvm/IR/DiagnosticInfo.h"
67 #include "llvm/IR/Dominators.h"
68 #include "llvm/IR/Function.h"
69 #include "llvm/IR/InlineAsm.h"
70 #include "llvm/IR/InstIterator.h"
71 #include "llvm/IR/InstrTypes.h"
72 #include "llvm/IR/Instruction.h"
73 #include "llvm/IR/Instructions.h"
74 #include "llvm/IR/IntrinsicInst.h"
75 #include "llvm/IR/Intrinsics.h"
76 #include "llvm/IR/IntrinsicsWebAssembly.h"
77 #include "llvm/IR/Metadata.h"
78 #include "llvm/IR/Statepoint.h"
79 #include "llvm/IR/Type.h"
80 #include "llvm/IR/User.h"
81 #include "llvm/IR/Value.h"
82 #include "llvm/InitializePasses.h"
83 #include "llvm/MC/MCInstrDesc.h"
84 #include "llvm/MC/MCRegisterInfo.h"
85 #include "llvm/Pass.h"
86 #include "llvm/Support/BranchProbability.h"
87 #include "llvm/Support/Casting.h"
88 #include "llvm/Support/CodeGen.h"
89 #include "llvm/Support/CommandLine.h"
90 #include "llvm/Support/Compiler.h"
91 #include "llvm/Support/Debug.h"
92 #include "llvm/Support/ErrorHandling.h"
93 #include "llvm/Support/KnownBits.h"
94 #include "llvm/Support/MachineValueType.h"
95 #include "llvm/Support/Timer.h"
96 #include "llvm/Support/raw_ostream.h"
97 #include "llvm/Target/TargetIntrinsicInfo.h"
98 #include "llvm/Target/TargetMachine.h"
99 #include "llvm/Target/TargetOptions.h"
100 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
101 #include <algorithm>
102 #include <cassert>
103 #include <cstdint>
104 #include <iterator>
105 #include <limits>
106 #include <memory>
107 #include <string>
108 #include <utility>
109 #include <vector>
110 
111 using namespace llvm;
112 
113 #define DEBUG_TYPE "isel"
114 
115 STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
116 STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
117 STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
118 STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
119 STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
120 STATISTIC(NumEntryBlocks, "Number of entry blocks encountered");
121 STATISTIC(NumFastIselFailLowerArguments,
122           "Number of entry blocks where fast isel failed to lower arguments");
123 
124 static cl::opt<int> EnableFastISelAbort(
125     "fast-isel-abort", cl::Hidden,
126     cl::desc("Enable abort calls when \"fast\" instruction selection "
127              "fails to lower an instruction: 0 disable the abort, 1 will "
128              "abort but for args, calls and terminators, 2 will also "
129              "abort for argument lowering, and 3 will never fallback "
130              "to SelectionDAG."));
131 
132 static cl::opt<bool> EnableFastISelFallbackReport(
133     "fast-isel-report-on-fallback", cl::Hidden,
134     cl::desc("Emit a diagnostic when \"fast\" instruction selection "
135              "falls back to SelectionDAG."));
136 
137 static cl::opt<bool>
138 UseMBPI("use-mbpi",
139         cl::desc("use Machine Branch Probability Info"),
140         cl::init(true), cl::Hidden);
141 
142 #ifndef NDEBUG
143 static cl::opt<std::string>
144 FilterDAGBasicBlockName("filter-view-dags", cl::Hidden,
145                         cl::desc("Only display the basic block whose name "
146                                  "matches this for all view-*-dags options"));
147 static cl::opt<bool>
148 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
149           cl::desc("Pop up a window to show dags before the first "
150                    "dag combine pass"));
151 static cl::opt<bool>
152 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
153           cl::desc("Pop up a window to show dags before legalize types"));
154 static cl::opt<bool>
155     ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
156                      cl::desc("Pop up a window to show dags before the post "
157                               "legalize types dag combine pass"));
158 static cl::opt<bool>
159     ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
160                      cl::desc("Pop up a window to show dags before legalize"));
161 static cl::opt<bool>
162 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
163           cl::desc("Pop up a window to show dags before the second "
164                    "dag combine pass"));
165 static cl::opt<bool>
166 ViewISelDAGs("view-isel-dags", cl::Hidden,
167           cl::desc("Pop up a window to show isel dags as they are selected"));
168 static cl::opt<bool>
169 ViewSchedDAGs("view-sched-dags", cl::Hidden,
170           cl::desc("Pop up a window to show sched dags as they are processed"));
171 static cl::opt<bool>
172 ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
173       cl::desc("Pop up a window to show SUnit dags after they are processed"));
174 #else
175 static const bool ViewDAGCombine1 = false, ViewLegalizeTypesDAGs = false,
176                   ViewDAGCombineLT = false, ViewLegalizeDAGs = false,
177                   ViewDAGCombine2 = false, ViewISelDAGs = false,
178                   ViewSchedDAGs = false, ViewSUnitDAGs = false;
179 #endif
180 
181 //===---------------------------------------------------------------------===//
182 ///
183 /// RegisterScheduler class - Track the registration of instruction schedulers.
184 ///
185 //===---------------------------------------------------------------------===//
186 MachinePassRegistry<RegisterScheduler::FunctionPassCtor>
187     RegisterScheduler::Registry;
188 
189 //===---------------------------------------------------------------------===//
190 ///
191 /// ISHeuristic command line option for instruction schedulers.
192 ///
193 //===---------------------------------------------------------------------===//
194 static cl::opt<RegisterScheduler::FunctionPassCtor, false,
195                RegisterPassParser<RegisterScheduler>>
196 ISHeuristic("pre-RA-sched",
197             cl::init(&createDefaultScheduler), cl::Hidden,
198             cl::desc("Instruction schedulers available (before register"
199                      " allocation):"));
200 
201 static RegisterScheduler
202 defaultListDAGScheduler("default", "Best scheduler for the target",
203                         createDefaultScheduler);
204 
205 namespace llvm {
206 
207   //===--------------------------------------------------------------------===//
208   /// This class is used by SelectionDAGISel to temporarily override
209   /// the optimization level on a per-function basis.
210   class OptLevelChanger {
211     SelectionDAGISel &IS;
212     CodeGenOpt::Level SavedOptLevel;
213     bool SavedFastISel;
214 
215   public:
216     OptLevelChanger(SelectionDAGISel &ISel,
217                     CodeGenOpt::Level NewOptLevel) : IS(ISel) {
218       SavedOptLevel = IS.OptLevel;
219       SavedFastISel = IS.TM.Options.EnableFastISel;
220       if (NewOptLevel == SavedOptLevel)
221         return;
222       IS.OptLevel = NewOptLevel;
223       IS.TM.setOptLevel(NewOptLevel);
224       LLVM_DEBUG(dbgs() << "\nChanging optimization level for Function "
225                         << IS.MF->getFunction().getName() << "\n");
226       LLVM_DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel << " ; After: -O"
227                         << NewOptLevel << "\n");
228       if (NewOptLevel == CodeGenOpt::None) {
229         IS.TM.setFastISel(IS.TM.getO0WantsFastISel());
230         LLVM_DEBUG(
231             dbgs() << "\tFastISel is "
232                    << (IS.TM.Options.EnableFastISel ? "enabled" : "disabled")
233                    << "\n");
234       }
235     }
236 
237     ~OptLevelChanger() {
238       if (IS.OptLevel == SavedOptLevel)
239         return;
240       LLVM_DEBUG(dbgs() << "\nRestoring optimization level for Function "
241                         << IS.MF->getFunction().getName() << "\n");
242       LLVM_DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel << " ; After: -O"
243                         << SavedOptLevel << "\n");
244       IS.OptLevel = SavedOptLevel;
245       IS.TM.setOptLevel(SavedOptLevel);
246       IS.TM.setFastISel(SavedFastISel);
247     }
248   };
249 
250   //===--------------------------------------------------------------------===//
251   /// createDefaultScheduler - This creates an instruction scheduler appropriate
252   /// for the target.
253   ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
254                                              CodeGenOpt::Level OptLevel) {
255     const TargetLowering *TLI = IS->TLI;
256     const TargetSubtargetInfo &ST = IS->MF->getSubtarget();
257 
258     // Try first to see if the Target has its own way of selecting a scheduler
259     if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) {
260       return SchedulerCtor(IS, OptLevel);
261     }
262 
263     if (OptLevel == CodeGenOpt::None ||
264         (ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) ||
265         TLI->getSchedulingPreference() == Sched::Source)
266       return createSourceListDAGScheduler(IS, OptLevel);
267     if (TLI->getSchedulingPreference() == Sched::RegPressure)
268       return createBURRListDAGScheduler(IS, OptLevel);
269     if (TLI->getSchedulingPreference() == Sched::Hybrid)
270       return createHybridListDAGScheduler(IS, OptLevel);
271     if (TLI->getSchedulingPreference() == Sched::VLIW)
272       return createVLIWDAGScheduler(IS, OptLevel);
273     if (TLI->getSchedulingPreference() == Sched::Fast)
274       return createFastDAGScheduler(IS, OptLevel);
275     if (TLI->getSchedulingPreference() == Sched::Linearize)
276       return createDAGLinearizer(IS, OptLevel);
277     assert(TLI->getSchedulingPreference() == Sched::ILP &&
278            "Unknown sched type!");
279     return createILPListDAGScheduler(IS, OptLevel);
280   }
281 
282 } // end namespace llvm
283 
284 // EmitInstrWithCustomInserter - This method should be implemented by targets
285 // that mark instructions with the 'usesCustomInserter' flag.  These
286 // instructions are special in various ways, which require special support to
287 // insert.  The specified MachineInstr is created but not inserted into any
288 // basic blocks, and this method is called to expand it into a sequence of
289 // instructions, potentially also creating new basic blocks and control flow.
290 // When new basic blocks are inserted and the edges from MBB to its successors
291 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the
292 // DenseMap.
293 MachineBasicBlock *
294 TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
295                                             MachineBasicBlock *MBB) const {
296 #ifndef NDEBUG
297   dbgs() << "If a target marks an instruction with "
298           "'usesCustomInserter', it must implement "
299           "TargetLowering::EmitInstrWithCustomInserter!";
300 #endif
301   llvm_unreachable(nullptr);
302 }
303 
304 void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
305                                                    SDNode *Node) const {
306   assert(!MI.hasPostISelHook() &&
307          "If a target marks an instruction with 'hasPostISelHook', "
308          "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
309 }
310 
311 //===----------------------------------------------------------------------===//
312 // SelectionDAGISel code
313 //===----------------------------------------------------------------------===//
314 
315 SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOpt::Level OL)
316     : MachineFunctionPass(ID), TM(tm), FuncInfo(new FunctionLoweringInfo()),
317       SwiftError(new SwiftErrorValueTracking()),
318       CurDAG(new SelectionDAG(tm, OL)),
319       SDB(std::make_unique<SelectionDAGBuilder>(*CurDAG, *FuncInfo, *SwiftError,
320                                                 OL)),
321       AA(), GFI(), OptLevel(OL), DAGSize(0) {
322   initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
323   initializeBranchProbabilityInfoWrapperPassPass(
324       *PassRegistry::getPassRegistry());
325   initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
326   initializeTargetLibraryInfoWrapperPassPass(*PassRegistry::getPassRegistry());
327 }
328 
329 SelectionDAGISel::~SelectionDAGISel() {
330   delete CurDAG;
331   delete SwiftError;
332 }
333 
334 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
335   if (OptLevel != CodeGenOpt::None)
336     AU.addRequired<AAResultsWrapperPass>();
337   AU.addRequired<GCModuleInfo>();
338   AU.addRequired<StackProtector>();
339   AU.addPreserved<GCModuleInfo>();
340   AU.addRequired<TargetLibraryInfoWrapperPass>();
341   AU.addRequired<TargetTransformInfoWrapperPass>();
342   if (UseMBPI && OptLevel != CodeGenOpt::None)
343     AU.addRequired<BranchProbabilityInfoWrapperPass>();
344   AU.addRequired<ProfileSummaryInfoWrapperPass>();
345   if (OptLevel != CodeGenOpt::None)
346     LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
347   MachineFunctionPass::getAnalysisUsage(AU);
348 }
349 
350 /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
351 /// may trap on it.  In this case we have to split the edge so that the path
352 /// through the predecessor block that doesn't go to the phi block doesn't
353 /// execute the possibly trapping instruction. If available, we pass domtree
354 /// and loop info to be updated when we split critical edges. This is because
355 /// SelectionDAGISel preserves these analyses.
356 /// This is required for correctness, so it must be done at -O0.
357 ///
358 static void SplitCriticalSideEffectEdges(Function &Fn, DominatorTree *DT,
359                                          LoopInfo *LI) {
360   // Loop for blocks with phi nodes.
361   for (BasicBlock &BB : Fn) {
362     PHINode *PN = dyn_cast<PHINode>(BB.begin());
363     if (!PN) continue;
364 
365   ReprocessBlock:
366     // For each block with a PHI node, check to see if any of the input values
367     // are potentially trapping constant expressions.  Constant expressions are
368     // the only potentially trapping value that can occur as the argument to a
369     // PHI.
370     for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I)); ++I)
371       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
372         ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
373         if (!CE || !CE->canTrap()) continue;
374 
375         // The only case we have to worry about is when the edge is critical.
376         // Since this block has a PHI Node, we assume it has multiple input
377         // edges: check to see if the pred has multiple successors.
378         BasicBlock *Pred = PN->getIncomingBlock(i);
379         if (Pred->getTerminator()->getNumSuccessors() == 1)
380           continue;
381 
382         // Okay, we have to split this edge.
383         SplitCriticalEdge(
384             Pred->getTerminator(), GetSuccessorNumber(Pred, &BB),
385             CriticalEdgeSplittingOptions(DT, LI).setMergeIdenticalEdges());
386         goto ReprocessBlock;
387       }
388   }
389 }
390 
391 static void computeUsesMSVCFloatingPoint(const Triple &TT, const Function &F,
392                                          MachineModuleInfo &MMI) {
393   // Only needed for MSVC
394   if (!TT.isWindowsMSVCEnvironment())
395     return;
396 
397   // If it's already set, nothing to do.
398   if (MMI.usesMSVCFloatingPoint())
399     return;
400 
401   for (const Instruction &I : instructions(F)) {
402     if (I.getType()->isFPOrFPVectorTy()) {
403       MMI.setUsesMSVCFloatingPoint(true);
404       return;
405     }
406     for (const auto &Op : I.operands()) {
407       if (Op->getType()->isFPOrFPVectorTy()) {
408         MMI.setUsesMSVCFloatingPoint(true);
409         return;
410       }
411     }
412   }
413 }
414 
415 bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
416   // If we already selected that function, we do not need to run SDISel.
417   if (mf.getProperties().hasProperty(
418           MachineFunctionProperties::Property::Selected))
419     return false;
420   // Do some sanity-checking on the command-line options.
421   assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
422          "-fast-isel-abort > 0 requires -fast-isel");
423 
424   const Function &Fn = mf.getFunction();
425   MF = &mf;
426 
427   // Reset the target options before resetting the optimization
428   // level below.
429   // FIXME: This is a horrible hack and should be processed via
430   // codegen looking at the optimization level explicitly when
431   // it wants to look at it.
432   TM.resetTargetOptions(Fn);
433   // Reset OptLevel to None for optnone functions.
434   CodeGenOpt::Level NewOptLevel = OptLevel;
435   if (OptLevel != CodeGenOpt::None && skipFunction(Fn))
436     NewOptLevel = CodeGenOpt::None;
437   OptLevelChanger OLC(*this, NewOptLevel);
438 
439   TII = MF->getSubtarget().getInstrInfo();
440   TLI = MF->getSubtarget().getTargetLowering();
441   RegInfo = &MF->getRegInfo();
442   LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(Fn);
443   GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : nullptr;
444   ORE = std::make_unique<OptimizationRemarkEmitter>(&Fn);
445   auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
446   DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
447   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
448   LoopInfo *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
449   auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
450   BlockFrequencyInfo *BFI = nullptr;
451   if (PSI && PSI->hasProfileSummary() && OptLevel != CodeGenOpt::None)
452     BFI = &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI();
453 
454   LLVM_DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
455 
456   SplitCriticalSideEffectEdges(const_cast<Function &>(Fn), DT, LI);
457 
458   CurDAG->init(*MF, *ORE, this, LibInfo,
459                getAnalysisIfAvailable<LegacyDivergenceAnalysis>(), PSI, BFI);
460   FuncInfo->set(Fn, *MF, CurDAG);
461   SwiftError->setFunction(*MF);
462 
463   // Now get the optional analyzes if we want to.
464   // This is based on the possibly changed OptLevel (after optnone is taken
465   // into account).  That's unfortunate but OK because it just means we won't
466   // ask for passes that have been required anyway.
467 
468   if (UseMBPI && OptLevel != CodeGenOpt::None)
469     FuncInfo->BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
470   else
471     FuncInfo->BPI = nullptr;
472 
473   if (OptLevel != CodeGenOpt::None)
474     AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
475   else
476     AA = nullptr;
477 
478   SDB->init(GFI, AA, LibInfo);
479 
480   MF->setHasInlineAsm(false);
481 
482   FuncInfo->SplitCSR = false;
483 
484   // We split CSR if the target supports it for the given function
485   // and the function has only return exits.
486   if (OptLevel != CodeGenOpt::None && TLI->supportSplitCSR(MF)) {
487     FuncInfo->SplitCSR = true;
488 
489     // Collect all the return blocks.
490     for (const BasicBlock &BB : Fn) {
491       if (!succ_empty(&BB))
492         continue;
493 
494       const Instruction *Term = BB.getTerminator();
495       if (isa<UnreachableInst>(Term) || isa<ReturnInst>(Term))
496         continue;
497 
498       // Bail out if the exit block is not Return nor Unreachable.
499       FuncInfo->SplitCSR = false;
500       break;
501     }
502   }
503 
504   MachineBasicBlock *EntryMBB = &MF->front();
505   if (FuncInfo->SplitCSR)
506     // This performs initialization so lowering for SplitCSR will be correct.
507     TLI->initializeSplitCSR(EntryMBB);
508 
509   SelectAllBasicBlocks(Fn);
510   if (FastISelFailed && EnableFastISelFallbackReport) {
511     DiagnosticInfoISelFallback DiagFallback(Fn);
512     Fn.getContext().diagnose(DiagFallback);
513   }
514 
515   // Replace forward-declared registers with the registers containing
516   // the desired value.
517   // Note: it is important that this happens **before** the call to
518   // EmitLiveInCopies, since implementations can skip copies of unused
519   // registers. If we don't apply the reg fixups before, some registers may
520   // appear as unused and will be skipped, resulting in bad MI.
521   MachineRegisterInfo &MRI = MF->getRegInfo();
522   for (DenseMap<Register, Register>::iterator I = FuncInfo->RegFixups.begin(),
523                                               E = FuncInfo->RegFixups.end();
524        I != E; ++I) {
525     Register From = I->first;
526     Register To = I->second;
527     // If To is also scheduled to be replaced, find what its ultimate
528     // replacement is.
529     while (true) {
530       DenseMap<Register, Register>::iterator J = FuncInfo->RegFixups.find(To);
531       if (J == E)
532         break;
533       To = J->second;
534     }
535     // Make sure the new register has a sufficiently constrained register class.
536     if (Register::isVirtualRegister(From) && Register::isVirtualRegister(To))
537       MRI.constrainRegClass(To, MRI.getRegClass(From));
538     // Replace it.
539 
540     // Replacing one register with another won't touch the kill flags.
541     // We need to conservatively clear the kill flags as a kill on the old
542     // register might dominate existing uses of the new register.
543     if (!MRI.use_empty(To))
544       MRI.clearKillFlags(From);
545     MRI.replaceRegWith(From, To);
546   }
547 
548   // If the first basic block in the function has live ins that need to be
549   // copied into vregs, emit the copies into the top of the block before
550   // emitting the code for the block.
551   const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
552   RegInfo->EmitLiveInCopies(EntryMBB, TRI, *TII);
553 
554   // Insert copies in the entry block and the return blocks.
555   if (FuncInfo->SplitCSR) {
556     SmallVector<MachineBasicBlock*, 4> Returns;
557     // Collect all the return blocks.
558     for (MachineBasicBlock &MBB : mf) {
559       if (!MBB.succ_empty())
560         continue;
561 
562       MachineBasicBlock::iterator Term = MBB.getFirstTerminator();
563       if (Term != MBB.end() && Term->isReturn()) {
564         Returns.push_back(&MBB);
565         continue;
566       }
567     }
568     TLI->insertCopiesSplitCSR(EntryMBB, Returns);
569   }
570 
571   DenseMap<unsigned, unsigned> LiveInMap;
572   if (!FuncInfo->ArgDbgValues.empty())
573     for (std::pair<unsigned, unsigned> LI : RegInfo->liveins())
574       if (LI.second)
575         LiveInMap.insert(LI);
576 
577   // Insert DBG_VALUE instructions for function arguments to the entry block.
578   bool InstrRef = TM.Options.ValueTrackingVariableLocations;
579   for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
580     MachineInstr *MI = FuncInfo->ArgDbgValues[e - i - 1];
581     assert(MI->getOpcode() != TargetOpcode::DBG_VALUE_LIST &&
582            "Function parameters should not be described by DBG_VALUE_LIST.");
583     bool hasFI = MI->getOperand(0).isFI();
584     Register Reg =
585         hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg();
586     if (Register::isPhysicalRegister(Reg))
587       EntryMBB->insert(EntryMBB->begin(), MI);
588     else {
589       MachineInstr *Def = RegInfo->getVRegDef(Reg);
590       if (Def) {
591         MachineBasicBlock::iterator InsertPos = Def;
592         // FIXME: VR def may not be in entry block.
593         Def->getParent()->insert(std::next(InsertPos), MI);
594       } else
595         LLVM_DEBUG(dbgs() << "Dropping debug info for dead vreg"
596                           << Register::virtReg2Index(Reg) << "\n");
597     }
598 
599     // Don't try and extend through copies in instruction referencing mode.
600     if (InstrRef)
601       continue;
602 
603     // If Reg is live-in then update debug info to track its copy in a vreg.
604     DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
605     if (LDI != LiveInMap.end()) {
606       assert(!hasFI && "There's no handling of frame pointer updating here yet "
607                        "- add if needed");
608       MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
609       MachineBasicBlock::iterator InsertPos = Def;
610       const MDNode *Variable = MI->getDebugVariable();
611       const MDNode *Expr = MI->getDebugExpression();
612       DebugLoc DL = MI->getDebugLoc();
613       bool IsIndirect = MI->isIndirectDebugValue();
614       if (IsIndirect)
615         assert(MI->getOperand(1).getImm() == 0 &&
616                "DBG_VALUE with nonzero offset");
617       assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
618              "Expected inlined-at fields to agree");
619       assert(MI->getOpcode() != TargetOpcode::DBG_VALUE_LIST &&
620              "Didn't expect to see a DBG_VALUE_LIST here");
621       // Def is never a terminator here, so it is ok to increment InsertPos.
622       BuildMI(*EntryMBB, ++InsertPos, DL, TII->get(TargetOpcode::DBG_VALUE),
623               IsIndirect, LDI->second, Variable, Expr);
624 
625       // If this vreg is directly copied into an exported register then
626       // that COPY instructions also need DBG_VALUE, if it is the only
627       // user of LDI->second.
628       MachineInstr *CopyUseMI = nullptr;
629       for (MachineRegisterInfo::use_instr_iterator
630            UI = RegInfo->use_instr_begin(LDI->second),
631            E = RegInfo->use_instr_end(); UI != E; ) {
632         MachineInstr *UseMI = &*(UI++);
633         if (UseMI->isDebugValue()) continue;
634         if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
635           CopyUseMI = UseMI; continue;
636         }
637         // Otherwise this is another use or second copy use.
638         CopyUseMI = nullptr; break;
639       }
640       if (CopyUseMI &&
641           TRI.getRegSizeInBits(LDI->second, MRI) ==
642               TRI.getRegSizeInBits(CopyUseMI->getOperand(0).getReg(), MRI)) {
643         // Use MI's debug location, which describes where Variable was
644         // declared, rather than whatever is attached to CopyUseMI.
645         MachineInstr *NewMI =
646             BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
647                     CopyUseMI->getOperand(0).getReg(), Variable, Expr);
648         MachineBasicBlock::iterator Pos = CopyUseMI;
649         EntryMBB->insertAfter(Pos, NewMI);
650       }
651     }
652   }
653 
654   // For debug-info, in instruction referencing mode, we need to perform some
655   // post-isel maintenence.
656   MF->finalizeDebugInstrRefs();
657 
658   // Determine if there are any calls in this machine function.
659   MachineFrameInfo &MFI = MF->getFrameInfo();
660   for (const auto &MBB : *MF) {
661     if (MFI.hasCalls() && MF->hasInlineAsm())
662       break;
663 
664     for (const auto &MI : MBB) {
665       const MCInstrDesc &MCID = TII->get(MI.getOpcode());
666       if ((MCID.isCall() && !MCID.isReturn()) ||
667           MI.isStackAligningInlineAsm()) {
668         MFI.setHasCalls(true);
669       }
670       if (MI.isInlineAsm()) {
671         MF->setHasInlineAsm(true);
672       }
673     }
674   }
675 
676   // Determine if there is a call to setjmp in the machine function.
677   MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
678 
679   // Determine if floating point is used for msvc
680   computeUsesMSVCFloatingPoint(TM.getTargetTriple(), Fn, MF->getMMI());
681 
682   // Release function-specific state. SDB and CurDAG are already cleared
683   // at this point.
684   FuncInfo->clear();
685 
686   LLVM_DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n");
687   LLVM_DEBUG(MF->print(dbgs()));
688 
689   return true;
690 }
691 
692 static void reportFastISelFailure(MachineFunction &MF,
693                                   OptimizationRemarkEmitter &ORE,
694                                   OptimizationRemarkMissed &R,
695                                   bool ShouldAbort) {
696   // Print the function name explicitly if we don't have a debug location (which
697   // makes the diagnostic less useful) or if we're going to emit a raw error.
698   if (!R.getLocation().isValid() || ShouldAbort)
699     R << (" (in function: " + MF.getName() + ")").str();
700 
701   if (ShouldAbort)
702     report_fatal_error(R.getMsg());
703 
704   ORE.emit(R);
705 }
706 
707 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
708                                         BasicBlock::const_iterator End,
709                                         bool &HadTailCall) {
710   // Allow creating illegal types during DAG building for the basic block.
711   CurDAG->NewNodesMustHaveLegalTypes = false;
712 
713   // Lower the instructions. If a call is emitted as a tail call, cease emitting
714   // nodes for this block.
715   for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) {
716     if (!ElidedArgCopyInstrs.count(&*I))
717       SDB->visit(*I);
718   }
719 
720   // Make sure the root of the DAG is up-to-date.
721   CurDAG->setRoot(SDB->getControlRoot());
722   HadTailCall = SDB->HasTailCall;
723   SDB->resolveOrClearDbgInfo();
724   SDB->clear();
725 
726   // Final step, emit the lowered DAG as machine code.
727   CodeGenAndEmitDAG();
728 }
729 
730 void SelectionDAGISel::ComputeLiveOutVRegInfo() {
731   SmallPtrSet<SDNode *, 16> Added;
732   SmallVector<SDNode*, 128> Worklist;
733 
734   Worklist.push_back(CurDAG->getRoot().getNode());
735   Added.insert(CurDAG->getRoot().getNode());
736 
737   KnownBits Known;
738 
739   do {
740     SDNode *N = Worklist.pop_back_val();
741 
742     // Otherwise, add all chain operands to the worklist.
743     for (const SDValue &Op : N->op_values())
744       if (Op.getValueType() == MVT::Other && Added.insert(Op.getNode()).second)
745         Worklist.push_back(Op.getNode());
746 
747     // If this is a CopyToReg with a vreg dest, process it.
748     if (N->getOpcode() != ISD::CopyToReg)
749       continue;
750 
751     unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
752     if (!Register::isVirtualRegister(DestReg))
753       continue;
754 
755     // Ignore non-integer values.
756     SDValue Src = N->getOperand(2);
757     EVT SrcVT = Src.getValueType();
758     if (!SrcVT.isInteger())
759       continue;
760 
761     unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
762     Known = CurDAG->computeKnownBits(Src);
763     FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, Known);
764   } while (!Worklist.empty());
765 }
766 
767 void SelectionDAGISel::CodeGenAndEmitDAG() {
768   StringRef GroupName = "sdag";
769   StringRef GroupDescription = "Instruction Selection and Scheduling";
770   std::string BlockName;
771   bool MatchFilterBB = false; (void)MatchFilterBB;
772 #ifndef NDEBUG
773   TargetTransformInfo &TTI =
774       getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*FuncInfo->Fn);
775 #endif
776 
777   // Pre-type legalization allow creation of any node types.
778   CurDAG->NewNodesMustHaveLegalTypes = false;
779 
780 #ifndef NDEBUG
781   MatchFilterBB = (FilterDAGBasicBlockName.empty() ||
782                    FilterDAGBasicBlockName ==
783                        FuncInfo->MBB->getBasicBlock()->getName());
784 #endif
785 #ifdef NDEBUG
786   if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewDAGCombineLT ||
787       ViewLegalizeDAGs || ViewDAGCombine2 || ViewISelDAGs || ViewSchedDAGs ||
788       ViewSUnitDAGs)
789 #endif
790   {
791     BlockName =
792         (MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str();
793   }
794   LLVM_DEBUG(dbgs() << "Initial selection DAG: "
795                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
796                     << "'\n";
797              CurDAG->dump());
798 
799 #ifndef NDEBUG
800   if (TTI.hasBranchDivergence())
801     CurDAG->VerifyDAGDiverence();
802 #endif
803 
804   if (ViewDAGCombine1 && MatchFilterBB)
805     CurDAG->viewGraph("dag-combine1 input for " + BlockName);
806 
807   // Run the DAG combiner in pre-legalize mode.
808   {
809     NamedRegionTimer T("combine1", "DAG Combining 1", GroupName,
810                        GroupDescription, TimePassesIsEnabled);
811     CurDAG->Combine(BeforeLegalizeTypes, AA, OptLevel);
812   }
813 
814   LLVM_DEBUG(dbgs() << "Optimized lowered selection DAG: "
815                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
816                     << "'\n";
817              CurDAG->dump());
818 
819 #ifndef NDEBUG
820   if (TTI.hasBranchDivergence())
821     CurDAG->VerifyDAGDiverence();
822 #endif
823 
824   // Second step, hack on the DAG until it only uses operations and types that
825   // the target supports.
826   if (ViewLegalizeTypesDAGs && MatchFilterBB)
827     CurDAG->viewGraph("legalize-types input for " + BlockName);
828 
829   bool Changed;
830   {
831     NamedRegionTimer T("legalize_types", "Type Legalization", GroupName,
832                        GroupDescription, TimePassesIsEnabled);
833     Changed = CurDAG->LegalizeTypes();
834   }
835 
836   LLVM_DEBUG(dbgs() << "Type-legalized selection DAG: "
837                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
838                     << "'\n";
839              CurDAG->dump());
840 
841 #ifndef NDEBUG
842   if (TTI.hasBranchDivergence())
843     CurDAG->VerifyDAGDiverence();
844 #endif
845 
846   // Only allow creation of legal node types.
847   CurDAG->NewNodesMustHaveLegalTypes = true;
848 
849   if (Changed) {
850     if (ViewDAGCombineLT && MatchFilterBB)
851       CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
852 
853     // Run the DAG combiner in post-type-legalize mode.
854     {
855       NamedRegionTimer T("combine_lt", "DAG Combining after legalize types",
856                          GroupName, GroupDescription, TimePassesIsEnabled);
857       CurDAG->Combine(AfterLegalizeTypes, AA, OptLevel);
858     }
859 
860     LLVM_DEBUG(dbgs() << "Optimized type-legalized selection DAG: "
861                       << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
862                       << "'\n";
863                CurDAG->dump());
864 
865 #ifndef NDEBUG
866     if (TTI.hasBranchDivergence())
867       CurDAG->VerifyDAGDiverence();
868 #endif
869   }
870 
871   {
872     NamedRegionTimer T("legalize_vec", "Vector Legalization", GroupName,
873                        GroupDescription, TimePassesIsEnabled);
874     Changed = CurDAG->LegalizeVectors();
875   }
876 
877   if (Changed) {
878     LLVM_DEBUG(dbgs() << "Vector-legalized selection DAG: "
879                       << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
880                       << "'\n";
881                CurDAG->dump());
882 
883 #ifndef NDEBUG
884     if (TTI.hasBranchDivergence())
885       CurDAG->VerifyDAGDiverence();
886 #endif
887 
888     {
889       NamedRegionTimer T("legalize_types2", "Type Legalization 2", GroupName,
890                          GroupDescription, TimePassesIsEnabled);
891       CurDAG->LegalizeTypes();
892     }
893 
894     LLVM_DEBUG(dbgs() << "Vector/type-legalized selection DAG: "
895                       << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
896                       << "'\n";
897                CurDAG->dump());
898 
899 #ifndef NDEBUG
900     if (TTI.hasBranchDivergence())
901       CurDAG->VerifyDAGDiverence();
902 #endif
903 
904     if (ViewDAGCombineLT && MatchFilterBB)
905       CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
906 
907     // Run the DAG combiner in post-type-legalize mode.
908     {
909       NamedRegionTimer T("combine_lv", "DAG Combining after legalize vectors",
910                          GroupName, GroupDescription, TimePassesIsEnabled);
911       CurDAG->Combine(AfterLegalizeVectorOps, AA, OptLevel);
912     }
913 
914     LLVM_DEBUG(dbgs() << "Optimized vector-legalized selection DAG: "
915                       << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
916                       << "'\n";
917                CurDAG->dump());
918 
919 #ifndef NDEBUG
920     if (TTI.hasBranchDivergence())
921       CurDAG->VerifyDAGDiverence();
922 #endif
923   }
924 
925   if (ViewLegalizeDAGs && MatchFilterBB)
926     CurDAG->viewGraph("legalize input for " + BlockName);
927 
928   {
929     NamedRegionTimer T("legalize", "DAG Legalization", GroupName,
930                        GroupDescription, TimePassesIsEnabled);
931     CurDAG->Legalize();
932   }
933 
934   LLVM_DEBUG(dbgs() << "Legalized selection DAG: "
935                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
936                     << "'\n";
937              CurDAG->dump());
938 
939 #ifndef NDEBUG
940   if (TTI.hasBranchDivergence())
941     CurDAG->VerifyDAGDiverence();
942 #endif
943 
944   if (ViewDAGCombine2 && MatchFilterBB)
945     CurDAG->viewGraph("dag-combine2 input for " + BlockName);
946 
947   // Run the DAG combiner in post-legalize mode.
948   {
949     NamedRegionTimer T("combine2", "DAG Combining 2", GroupName,
950                        GroupDescription, TimePassesIsEnabled);
951     CurDAG->Combine(AfterLegalizeDAG, AA, OptLevel);
952   }
953 
954   LLVM_DEBUG(dbgs() << "Optimized legalized selection DAG: "
955                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
956                     << "'\n";
957              CurDAG->dump());
958 
959 #ifndef NDEBUG
960   if (TTI.hasBranchDivergence())
961     CurDAG->VerifyDAGDiverence();
962 #endif
963 
964   if (OptLevel != CodeGenOpt::None)
965     ComputeLiveOutVRegInfo();
966 
967   if (ViewISelDAGs && MatchFilterBB)
968     CurDAG->viewGraph("isel input for " + BlockName);
969 
970   // Third, instruction select all of the operations to machine code, adding the
971   // code to the MachineBasicBlock.
972   {
973     NamedRegionTimer T("isel", "Instruction Selection", GroupName,
974                        GroupDescription, TimePassesIsEnabled);
975     DoInstructionSelection();
976   }
977 
978   LLVM_DEBUG(dbgs() << "Selected selection DAG: "
979                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
980                     << "'\n";
981              CurDAG->dump());
982 
983   if (ViewSchedDAGs && MatchFilterBB)
984     CurDAG->viewGraph("scheduler input for " + BlockName);
985 
986   // Schedule machine code.
987   ScheduleDAGSDNodes *Scheduler = CreateScheduler();
988   {
989     NamedRegionTimer T("sched", "Instruction Scheduling", GroupName,
990                        GroupDescription, TimePassesIsEnabled);
991     Scheduler->Run(CurDAG, FuncInfo->MBB);
992   }
993 
994   if (ViewSUnitDAGs && MatchFilterBB)
995     Scheduler->viewGraph();
996 
997   // Emit machine code to BB.  This can change 'BB' to the last block being
998   // inserted into.
999   MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
1000   {
1001     NamedRegionTimer T("emit", "Instruction Creation", GroupName,
1002                        GroupDescription, TimePassesIsEnabled);
1003 
1004     // FuncInfo->InsertPt is passed by reference and set to the end of the
1005     // scheduled instructions.
1006     LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
1007   }
1008 
1009   // If the block was split, make sure we update any references that are used to
1010   // update PHI nodes later on.
1011   if (FirstMBB != LastMBB)
1012     SDB->UpdateSplitBlock(FirstMBB, LastMBB);
1013 
1014   // Free the scheduler state.
1015   {
1016     NamedRegionTimer T("cleanup", "Instruction Scheduling Cleanup", GroupName,
1017                        GroupDescription, TimePassesIsEnabled);
1018     delete Scheduler;
1019   }
1020 
1021   // Free the SelectionDAG state, now that we're finished with it.
1022   CurDAG->clear();
1023 }
1024 
1025 namespace {
1026 
1027 /// ISelUpdater - helper class to handle updates of the instruction selection
1028 /// graph.
1029 class ISelUpdater : public SelectionDAG::DAGUpdateListener {
1030   SelectionDAG::allnodes_iterator &ISelPosition;
1031 
1032 public:
1033   ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
1034     : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
1035 
1036   /// NodeDeleted - Handle nodes deleted from the graph. If the node being
1037   /// deleted is the current ISelPosition node, update ISelPosition.
1038   ///
1039   void NodeDeleted(SDNode *N, SDNode *E) override {
1040     if (ISelPosition == SelectionDAG::allnodes_iterator(N))
1041       ++ISelPosition;
1042   }
1043 };
1044 
1045 } // end anonymous namespace
1046 
1047 // This function is used to enforce the topological node id property
1048 // property leveraged during Instruction selection. Before selection all
1049 // nodes are given a non-negative id such that all nodes have a larger id than
1050 // their operands. As this holds transitively we can prune checks that a node N
1051 // is a predecessor of M another by not recursively checking through M's
1052 // operands if N's ID is larger than M's ID. This is significantly improves
1053 // performance of for various legality checks (e.g. IsLegalToFold /
1054 // UpdateChains).
1055 
1056 // However, when we fuse multiple nodes into a single node
1057 // during selection we may induce a predecessor relationship between inputs and
1058 // outputs of distinct nodes being merged violating the topological property.
1059 // Should a fused node have a successor which has yet to be selected, our
1060 // legality checks would be incorrect. To avoid this we mark all unselected
1061 // sucessor nodes, i.e. id != -1 as invalid for pruning by bit-negating (x =>
1062 // (-(x+1))) the ids and modify our pruning check to ignore negative Ids of M.
1063 // We use bit-negation to more clearly enforce that node id -1 can only be
1064 // achieved by selected nodes). As the conversion is reversable the original Id,
1065 // topological pruning can still be leveraged when looking for unselected nodes.
1066 // This method is call internally in all ISel replacement calls.
1067 void SelectionDAGISel::EnforceNodeIdInvariant(SDNode *Node) {
1068   SmallVector<SDNode *, 4> Nodes;
1069   Nodes.push_back(Node);
1070 
1071   while (!Nodes.empty()) {
1072     SDNode *N = Nodes.pop_back_val();
1073     for (auto *U : N->uses()) {
1074       auto UId = U->getNodeId();
1075       if (UId > 0) {
1076         InvalidateNodeId(U);
1077         Nodes.push_back(U);
1078       }
1079     }
1080   }
1081 }
1082 
1083 // InvalidateNodeId - As discusses in EnforceNodeIdInvariant, mark a
1084 // NodeId with the equivalent node id which is invalid for topological
1085 // pruning.
1086 void SelectionDAGISel::InvalidateNodeId(SDNode *N) {
1087   int InvalidId = -(N->getNodeId() + 1);
1088   N->setNodeId(InvalidId);
1089 }
1090 
1091 // getUninvalidatedNodeId - get original uninvalidated node id.
1092 int SelectionDAGISel::getUninvalidatedNodeId(SDNode *N) {
1093   int Id = N->getNodeId();
1094   if (Id < -1)
1095     return -(Id + 1);
1096   return Id;
1097 }
1098 
1099 void SelectionDAGISel::DoInstructionSelection() {
1100   LLVM_DEBUG(dbgs() << "===== Instruction selection begins: "
1101                     << printMBBReference(*FuncInfo->MBB) << " '"
1102                     << FuncInfo->MBB->getName() << "'\n");
1103 
1104   PreprocessISelDAG();
1105 
1106   // Select target instructions for the DAG.
1107   {
1108     // Number all nodes with a topological order and set DAGSize.
1109     DAGSize = CurDAG->AssignTopologicalOrder();
1110 
1111     // Create a dummy node (which is not added to allnodes), that adds
1112     // a reference to the root node, preventing it from being deleted,
1113     // and tracking any changes of the root.
1114     HandleSDNode Dummy(CurDAG->getRoot());
1115     SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
1116     ++ISelPosition;
1117 
1118     // Make sure that ISelPosition gets properly updated when nodes are deleted
1119     // in calls made from this function.
1120     ISelUpdater ISU(*CurDAG, ISelPosition);
1121 
1122     // The AllNodes list is now topological-sorted. Visit the
1123     // nodes by starting at the end of the list (the root of the
1124     // graph) and preceding back toward the beginning (the entry
1125     // node).
1126     while (ISelPosition != CurDAG->allnodes_begin()) {
1127       SDNode *Node = &*--ISelPosition;
1128       // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
1129       // but there are currently some corner cases that it misses. Also, this
1130       // makes it theoretically possible to disable the DAGCombiner.
1131       if (Node->use_empty())
1132         continue;
1133 
1134 #ifndef NDEBUG
1135       SmallVector<SDNode *, 4> Nodes;
1136       Nodes.push_back(Node);
1137 
1138       while (!Nodes.empty()) {
1139         auto N = Nodes.pop_back_val();
1140         if (N->getOpcode() == ISD::TokenFactor || N->getNodeId() < 0)
1141           continue;
1142         for (const SDValue &Op : N->op_values()) {
1143           if (Op->getOpcode() == ISD::TokenFactor)
1144             Nodes.push_back(Op.getNode());
1145           else {
1146             // We rely on topological ordering of node ids for checking for
1147             // cycles when fusing nodes during selection. All unselected nodes
1148             // successors of an already selected node should have a negative id.
1149             // This assertion will catch such cases. If this assertion triggers
1150             // it is likely you using DAG-level Value/Node replacement functions
1151             // (versus equivalent ISEL replacement) in backend-specific
1152             // selections. See comment in EnforceNodeIdInvariant for more
1153             // details.
1154             assert(Op->getNodeId() != -1 &&
1155                    "Node has already selected predecessor node");
1156           }
1157         }
1158       }
1159 #endif
1160 
1161       // When we are using non-default rounding modes or FP exception behavior
1162       // FP operations are represented by StrictFP pseudo-operations.  For
1163       // targets that do not (yet) understand strict FP operations directly,
1164       // we convert them to normal FP opcodes instead at this point.  This
1165       // will allow them to be handled by existing target-specific instruction
1166       // selectors.
1167       if (!TLI->isStrictFPEnabled() && Node->isStrictFPOpcode()) {
1168         // For some opcodes, we need to call TLI->getOperationAction using
1169         // the first operand type instead of the result type.  Note that this
1170         // must match what SelectionDAGLegalize::LegalizeOp is doing.
1171         EVT ActionVT;
1172         switch (Node->getOpcode()) {
1173         case ISD::STRICT_SINT_TO_FP:
1174         case ISD::STRICT_UINT_TO_FP:
1175         case ISD::STRICT_LRINT:
1176         case ISD::STRICT_LLRINT:
1177         case ISD::STRICT_LROUND:
1178         case ISD::STRICT_LLROUND:
1179         case ISD::STRICT_FSETCC:
1180         case ISD::STRICT_FSETCCS:
1181           ActionVT = Node->getOperand(1).getValueType();
1182           break;
1183         default:
1184           ActionVT = Node->getValueType(0);
1185           break;
1186         }
1187         if (TLI->getOperationAction(Node->getOpcode(), ActionVT)
1188             == TargetLowering::Expand)
1189           Node = CurDAG->mutateStrictFPToFP(Node);
1190       }
1191 
1192       LLVM_DEBUG(dbgs() << "\nISEL: Starting selection on root node: ";
1193                  Node->dump(CurDAG));
1194 
1195       Select(Node);
1196     }
1197 
1198     CurDAG->setRoot(Dummy.getValue());
1199   }
1200 
1201   LLVM_DEBUG(dbgs() << "\n===== Instruction selection ends:\n");
1202 
1203   PostprocessISelDAG();
1204 }
1205 
1206 static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI) {
1207   for (const User *U : CPI->users()) {
1208     if (const IntrinsicInst *EHPtrCall = dyn_cast<IntrinsicInst>(U)) {
1209       Intrinsic::ID IID = EHPtrCall->getIntrinsicID();
1210       if (IID == Intrinsic::eh_exceptionpointer ||
1211           IID == Intrinsic::eh_exceptioncode)
1212         return true;
1213     }
1214   }
1215   return false;
1216 }
1217 
1218 // wasm.landingpad.index intrinsic is for associating a landing pad index number
1219 // with a catchpad instruction. Retrieve the landing pad index in the intrinsic
1220 // and store the mapping in the function.
1221 static void mapWasmLandingPadIndex(MachineBasicBlock *MBB,
1222                                    const CatchPadInst *CPI) {
1223   MachineFunction *MF = MBB->getParent();
1224   // In case of single catch (...), we don't emit LSDA, so we don't need
1225   // this information.
1226   bool IsSingleCatchAllClause =
1227       CPI->getNumArgOperands() == 1 &&
1228       cast<Constant>(CPI->getArgOperand(0))->isNullValue();
1229   if (!IsSingleCatchAllClause) {
1230     // Create a mapping from landing pad label to landing pad index.
1231     bool IntrFound = false;
1232     for (const User *U : CPI->users()) {
1233       if (const auto *Call = dyn_cast<IntrinsicInst>(U)) {
1234         Intrinsic::ID IID = Call->getIntrinsicID();
1235         if (IID == Intrinsic::wasm_landingpad_index) {
1236           Value *IndexArg = Call->getArgOperand(1);
1237           int Index = cast<ConstantInt>(IndexArg)->getZExtValue();
1238           MF->setWasmLandingPadIndex(MBB, Index);
1239           IntrFound = true;
1240           break;
1241         }
1242       }
1243     }
1244     assert(IntrFound && "wasm.landingpad.index intrinsic not found!");
1245     (void)IntrFound;
1246   }
1247 }
1248 
1249 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
1250 /// do other setup for EH landing-pad blocks.
1251 bool SelectionDAGISel::PrepareEHLandingPad() {
1252   MachineBasicBlock *MBB = FuncInfo->MBB;
1253   const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn();
1254   const BasicBlock *LLVMBB = MBB->getBasicBlock();
1255   const TargetRegisterClass *PtrRC =
1256       TLI->getRegClassFor(TLI->getPointerTy(CurDAG->getDataLayout()));
1257 
1258   auto Pers = classifyEHPersonality(PersonalityFn);
1259 
1260   // Catchpads have one live-in register, which typically holds the exception
1261   // pointer or code.
1262   if (isFuncletEHPersonality(Pers)) {
1263     if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) {
1264       if (hasExceptionPointerOrCodeUser(CPI)) {
1265         // Get or create the virtual register to hold the pointer or code.  Mark
1266         // the live in physreg and copy into the vreg.
1267         MCPhysReg EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn);
1268         assert(EHPhysReg && "target lacks exception pointer register");
1269         MBB->addLiveIn(EHPhysReg);
1270         unsigned VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, PtrRC);
1271         BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(),
1272                 TII->get(TargetOpcode::COPY), VReg)
1273             .addReg(EHPhysReg, RegState::Kill);
1274       }
1275     }
1276     return true;
1277   }
1278 
1279   // Add a label to mark the beginning of the landing pad.  Deletion of the
1280   // landing pad can thus be detected via the MachineModuleInfo.
1281   MCSymbol *Label = MF->addLandingPad(MBB);
1282 
1283   const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL);
1284   BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
1285     .addSym(Label);
1286 
1287   // If the unwinder does not preserve all registers, ensure that the
1288   // function marks the clobbered registers as used.
1289   const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
1290   if (auto *RegMask = TRI.getCustomEHPadPreservedMask(*MF))
1291     MF->getRegInfo().addPhysRegsUsedFromRegMask(RegMask);
1292 
1293   if (Pers == EHPersonality::Wasm_CXX) {
1294     if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI()))
1295       mapWasmLandingPadIndex(MBB, CPI);
1296   } else {
1297     // Assign the call site to the landing pad's begin label.
1298     MF->setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
1299     // Mark exception register as live in.
1300     if (unsigned Reg = TLI->getExceptionPointerRegister(PersonalityFn))
1301       FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC);
1302     // Mark exception selector register as live in.
1303     if (unsigned Reg = TLI->getExceptionSelectorRegister(PersonalityFn))
1304       FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC);
1305   }
1306 
1307   return true;
1308 }
1309 
1310 /// isFoldedOrDeadInstruction - Return true if the specified instruction is
1311 /// side-effect free and is either dead or folded into a generated instruction.
1312 /// Return false if it needs to be emitted.
1313 static bool isFoldedOrDeadInstruction(const Instruction *I,
1314                                       const FunctionLoweringInfo &FuncInfo) {
1315   return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
1316          !I->isTerminator() &&     // Terminators aren't folded.
1317          !isa<DbgInfoIntrinsic>(I) && // Debug instructions aren't folded.
1318          !I->isEHPad() &&             // EH pad instructions aren't folded.
1319          !FuncInfo.isExportedInst(I); // Exported instrs must be computed.
1320 }
1321 
1322 /// Collect llvm.dbg.declare information. This is done after argument lowering
1323 /// in case the declarations refer to arguments.
1324 static void processDbgDeclares(FunctionLoweringInfo &FuncInfo) {
1325   MachineFunction *MF = FuncInfo.MF;
1326   const DataLayout &DL = MF->getDataLayout();
1327   for (const BasicBlock &BB : *FuncInfo.Fn) {
1328     for (const Instruction &I : BB) {
1329       const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(&I);
1330       if (!DI)
1331         continue;
1332 
1333       assert(DI->getVariable() && "Missing variable");
1334       assert(DI->getDebugLoc() && "Missing location");
1335       const Value *Address = DI->getAddress();
1336       if (!Address) {
1337         LLVM_DEBUG(dbgs() << "processDbgDeclares skipping " << *DI
1338                           << " (bad address)\n");
1339         continue;
1340       }
1341 
1342       // Look through casts and constant offset GEPs. These mostly come from
1343       // inalloca.
1344       APInt Offset(DL.getTypeSizeInBits(Address->getType()), 0);
1345       Address = Address->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
1346 
1347       // Check if the variable is a static alloca or a byval or inalloca
1348       // argument passed in memory. If it is not, then we will ignore this
1349       // intrinsic and handle this during isel like dbg.value.
1350       int FI = std::numeric_limits<int>::max();
1351       if (const auto *AI = dyn_cast<AllocaInst>(Address)) {
1352         auto SI = FuncInfo.StaticAllocaMap.find(AI);
1353         if (SI != FuncInfo.StaticAllocaMap.end())
1354           FI = SI->second;
1355       } else if (const auto *Arg = dyn_cast<Argument>(Address))
1356         FI = FuncInfo.getArgumentFrameIndex(Arg);
1357 
1358       if (FI == std::numeric_limits<int>::max())
1359         continue;
1360 
1361       DIExpression *Expr = DI->getExpression();
1362       if (Offset.getBoolValue())
1363         Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset,
1364                                      Offset.getZExtValue());
1365       LLVM_DEBUG(dbgs() << "processDbgDeclares: setVariableDbgInfo FI=" << FI
1366                         << ", " << *DI << "\n");
1367       MF->setVariableDbgInfo(DI->getVariable(), Expr, FI, DI->getDebugLoc());
1368     }
1369   }
1370 }
1371 
1372 void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
1373   FastISelFailed = false;
1374   // Initialize the Fast-ISel state, if needed.
1375   FastISel *FastIS = nullptr;
1376   if (TM.Options.EnableFastISel) {
1377     LLVM_DEBUG(dbgs() << "Enabling fast-isel\n");
1378     FastIS = TLI->createFastISel(*FuncInfo, LibInfo);
1379   }
1380 
1381   ReversePostOrderTraversal<const Function*> RPOT(&Fn);
1382 
1383   // Lower arguments up front. An RPO iteration always visits the entry block
1384   // first.
1385   assert(*RPOT.begin() == &Fn.getEntryBlock());
1386   ++NumEntryBlocks;
1387 
1388   // Set up FuncInfo for ISel. Entry blocks never have PHIs.
1389   FuncInfo->MBB = FuncInfo->MBBMap[&Fn.getEntryBlock()];
1390   FuncInfo->InsertPt = FuncInfo->MBB->begin();
1391 
1392   CurDAG->setFunctionLoweringInfo(FuncInfo.get());
1393 
1394   if (!FastIS) {
1395     LowerArguments(Fn);
1396   } else {
1397     // See if fast isel can lower the arguments.
1398     FastIS->startNewBlock();
1399     if (!FastIS->lowerArguments()) {
1400       FastISelFailed = true;
1401       // Fast isel failed to lower these arguments
1402       ++NumFastIselFailLowerArguments;
1403 
1404       OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1405                                  Fn.getSubprogram(),
1406                                  &Fn.getEntryBlock());
1407       R << "FastISel didn't lower all arguments: "
1408         << ore::NV("Prototype", Fn.getType());
1409       reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 1);
1410 
1411       // Use SelectionDAG argument lowering
1412       LowerArguments(Fn);
1413       CurDAG->setRoot(SDB->getControlRoot());
1414       SDB->clear();
1415       CodeGenAndEmitDAG();
1416     }
1417 
1418     // If we inserted any instructions at the beginning, make a note of
1419     // where they are, so we can be sure to emit subsequent instructions
1420     // after them.
1421     if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
1422       FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
1423     else
1424       FastIS->setLastLocalValue(nullptr);
1425   }
1426 
1427   bool Inserted = SwiftError->createEntriesInEntryBlock(SDB->getCurDebugLoc());
1428 
1429   if (FastIS && Inserted)
1430     FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
1431 
1432   processDbgDeclares(*FuncInfo);
1433 
1434   // Iterate over all basic blocks in the function.
1435   StackProtector &SP = getAnalysis<StackProtector>();
1436   for (const BasicBlock *LLVMBB : RPOT) {
1437     if (OptLevel != CodeGenOpt::None) {
1438       bool AllPredsVisited = true;
1439       for (const BasicBlock *Pred : predecessors(LLVMBB)) {
1440         if (!FuncInfo->VisitedBBs.count(Pred)) {
1441           AllPredsVisited = false;
1442           break;
1443         }
1444       }
1445 
1446       if (AllPredsVisited) {
1447         for (const PHINode &PN : LLVMBB->phis())
1448           FuncInfo->ComputePHILiveOutRegInfo(&PN);
1449       } else {
1450         for (const PHINode &PN : LLVMBB->phis())
1451           FuncInfo->InvalidatePHILiveOutRegInfo(&PN);
1452       }
1453 
1454       FuncInfo->VisitedBBs.insert(LLVMBB);
1455     }
1456 
1457     BasicBlock::const_iterator const Begin =
1458         LLVMBB->getFirstNonPHI()->getIterator();
1459     BasicBlock::const_iterator const End = LLVMBB->end();
1460     BasicBlock::const_iterator BI = End;
1461 
1462     FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
1463     if (!FuncInfo->MBB)
1464       continue; // Some blocks like catchpads have no code or MBB.
1465 
1466     // Insert new instructions after any phi or argument setup code.
1467     FuncInfo->InsertPt = FuncInfo->MBB->end();
1468 
1469     // Setup an EH landing-pad block.
1470     FuncInfo->ExceptionPointerVirtReg = 0;
1471     FuncInfo->ExceptionSelectorVirtReg = 0;
1472     if (LLVMBB->isEHPad())
1473       if (!PrepareEHLandingPad())
1474         continue;
1475 
1476     // Before doing SelectionDAG ISel, see if FastISel has been requested.
1477     if (FastIS) {
1478       if (LLVMBB != &Fn.getEntryBlock())
1479         FastIS->startNewBlock();
1480 
1481       unsigned NumFastIselRemaining = std::distance(Begin, End);
1482 
1483       // Pre-assign swifterror vregs.
1484       SwiftError->preassignVRegs(FuncInfo->MBB, Begin, End);
1485 
1486       // Do FastISel on as many instructions as possible.
1487       for (; BI != Begin; --BI) {
1488         const Instruction *Inst = &*std::prev(BI);
1489 
1490         // If we no longer require this instruction, skip it.
1491         if (isFoldedOrDeadInstruction(Inst, *FuncInfo) ||
1492             ElidedArgCopyInstrs.count(Inst)) {
1493           --NumFastIselRemaining;
1494           continue;
1495         }
1496 
1497         // Bottom-up: reset the insert pos at the top, after any local-value
1498         // instructions.
1499         FastIS->recomputeInsertPt();
1500 
1501         // Try to select the instruction with FastISel.
1502         if (FastIS->selectInstruction(Inst)) {
1503           --NumFastIselRemaining;
1504           ++NumFastIselSuccess;
1505           // If fast isel succeeded, skip over all the folded instructions, and
1506           // then see if there is a load right before the selected instructions.
1507           // Try to fold the load if so.
1508           const Instruction *BeforeInst = Inst;
1509           while (BeforeInst != &*Begin) {
1510             BeforeInst = &*std::prev(BasicBlock::const_iterator(BeforeInst));
1511             if (!isFoldedOrDeadInstruction(BeforeInst, *FuncInfo))
1512               break;
1513           }
1514           if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
1515               BeforeInst->hasOneUse() &&
1516               FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) {
1517             // If we succeeded, don't re-select the load.
1518             BI = std::next(BasicBlock::const_iterator(BeforeInst));
1519             --NumFastIselRemaining;
1520             ++NumFastIselSuccess;
1521           }
1522           continue;
1523         }
1524 
1525         FastISelFailed = true;
1526 
1527         // Then handle certain instructions as single-LLVM-Instruction blocks.
1528         // We cannot separate out GCrelocates to their own blocks since we need
1529         // to keep track of gc-relocates for a particular gc-statepoint. This is
1530         // done by SelectionDAGBuilder::LowerAsSTATEPOINT, called before
1531         // visitGCRelocate.
1532         if (isa<CallInst>(Inst) && !isa<GCStatepointInst>(Inst) &&
1533             !isa<GCRelocateInst>(Inst) && !isa<GCResultInst>(Inst)) {
1534           OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1535                                      Inst->getDebugLoc(), LLVMBB);
1536 
1537           R << "FastISel missed call";
1538 
1539           if (R.isEnabled() || EnableFastISelAbort) {
1540             std::string InstStrStorage;
1541             raw_string_ostream InstStr(InstStrStorage);
1542             InstStr << *Inst;
1543 
1544             R << ": " << InstStr.str();
1545           }
1546 
1547           reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 2);
1548 
1549           if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() &&
1550               !Inst->use_empty()) {
1551             Register &R = FuncInfo->ValueMap[Inst];
1552             if (!R)
1553               R = FuncInfo->CreateRegs(Inst);
1554           }
1555 
1556           bool HadTailCall = false;
1557           MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
1558           SelectBasicBlock(Inst->getIterator(), BI, HadTailCall);
1559 
1560           // If the call was emitted as a tail call, we're done with the block.
1561           // We also need to delete any previously emitted instructions.
1562           if (HadTailCall) {
1563             FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
1564             --BI;
1565             break;
1566           }
1567 
1568           // Recompute NumFastIselRemaining as Selection DAG instruction
1569           // selection may have handled the call, input args, etc.
1570           unsigned RemainingNow = std::distance(Begin, BI);
1571           NumFastIselFailures += NumFastIselRemaining - RemainingNow;
1572           NumFastIselRemaining = RemainingNow;
1573           continue;
1574         }
1575 
1576         OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1577                                    Inst->getDebugLoc(), LLVMBB);
1578 
1579         bool ShouldAbort = EnableFastISelAbort;
1580         if (Inst->isTerminator()) {
1581           // Use a different message for terminator misses.
1582           R << "FastISel missed terminator";
1583           // Don't abort for terminator unless the level is really high
1584           ShouldAbort = (EnableFastISelAbort > 2);
1585         } else {
1586           R << "FastISel missed";
1587         }
1588 
1589         if (R.isEnabled() || EnableFastISelAbort) {
1590           std::string InstStrStorage;
1591           raw_string_ostream InstStr(InstStrStorage);
1592           InstStr << *Inst;
1593           R << ": " << InstStr.str();
1594         }
1595 
1596         reportFastISelFailure(*MF, *ORE, R, ShouldAbort);
1597 
1598         NumFastIselFailures += NumFastIselRemaining;
1599         break;
1600       }
1601 
1602       FastIS->recomputeInsertPt();
1603     }
1604 
1605     if (SP.shouldEmitSDCheck(*LLVMBB)) {
1606       bool FunctionBasedInstrumentation =
1607           TLI->getSSPStackGuardCheck(*Fn.getParent());
1608       SDB->SPDescriptor.initialize(LLVMBB, FuncInfo->MBBMap[LLVMBB],
1609                                    FunctionBasedInstrumentation);
1610     }
1611 
1612     if (Begin != BI)
1613       ++NumDAGBlocks;
1614     else
1615       ++NumFastIselBlocks;
1616 
1617     if (Begin != BI) {
1618       // Run SelectionDAG instruction selection on the remainder of the block
1619       // not handled by FastISel. If FastISel is not run, this is the entire
1620       // block.
1621       bool HadTailCall;
1622       SelectBasicBlock(Begin, BI, HadTailCall);
1623 
1624       // But if FastISel was run, we already selected some of the block.
1625       // If we emitted a tail-call, we need to delete any previously emitted
1626       // instruction that follows it.
1627       if (FastIS && HadTailCall && FuncInfo->InsertPt != FuncInfo->MBB->end())
1628         FastIS->removeDeadCode(FuncInfo->InsertPt, FuncInfo->MBB->end());
1629     }
1630 
1631     if (FastIS)
1632       FastIS->finishBasicBlock();
1633     FinishBasicBlock();
1634     FuncInfo->PHINodesToUpdate.clear();
1635     ElidedArgCopyInstrs.clear();
1636   }
1637 
1638   SP.copyToMachineFrameInfo(MF->getFrameInfo());
1639 
1640   SwiftError->propagateVRegs();
1641 
1642   delete FastIS;
1643   SDB->clearDanglingDebugInfo();
1644   SDB->SPDescriptor.resetPerFunctionState();
1645 }
1646 
1647 /// Given that the input MI is before a partial terminator sequence TSeq, return
1648 /// true if M + TSeq also a partial terminator sequence.
1649 ///
1650 /// A Terminator sequence is a sequence of MachineInstrs which at this point in
1651 /// lowering copy vregs into physical registers, which are then passed into
1652 /// terminator instructors so we can satisfy ABI constraints. A partial
1653 /// terminator sequence is an improper subset of a terminator sequence (i.e. it
1654 /// may be the whole terminator sequence).
1655 static bool MIIsInTerminatorSequence(const MachineInstr &MI) {
1656   // If we do not have a copy or an implicit def, we return true if and only if
1657   // MI is a debug value.
1658   if (!MI.isCopy() && !MI.isImplicitDef())
1659     // Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the
1660     // physical registers if there is debug info associated with the terminator
1661     // of our mbb. We want to include said debug info in our terminator
1662     // sequence, so we return true in that case.
1663     return MI.isDebugInstr();
1664 
1665   // We have left the terminator sequence if we are not doing one of the
1666   // following:
1667   //
1668   // 1. Copying a vreg into a physical register.
1669   // 2. Copying a vreg into a vreg.
1670   // 3. Defining a register via an implicit def.
1671 
1672   // OPI should always be a register definition...
1673   MachineInstr::const_mop_iterator OPI = MI.operands_begin();
1674   if (!OPI->isReg() || !OPI->isDef())
1675     return false;
1676 
1677   // Defining any register via an implicit def is always ok.
1678   if (MI.isImplicitDef())
1679     return true;
1680 
1681   // Grab the copy source...
1682   MachineInstr::const_mop_iterator OPI2 = OPI;
1683   ++OPI2;
1684   assert(OPI2 != MI.operands_end()
1685          && "Should have a copy implying we should have 2 arguments.");
1686 
1687   // Make sure that the copy dest is not a vreg when the copy source is a
1688   // physical register.
1689   if (!OPI2->isReg() || (!Register::isPhysicalRegister(OPI->getReg()) &&
1690                          Register::isPhysicalRegister(OPI2->getReg())))
1691     return false;
1692 
1693   return true;
1694 }
1695 
1696 /// Find the split point at which to splice the end of BB into its success stack
1697 /// protector check machine basic block.
1698 ///
1699 /// On many platforms, due to ABI constraints, terminators, even before register
1700 /// allocation, use physical registers. This creates an issue for us since
1701 /// physical registers at this point can not travel across basic
1702 /// blocks. Luckily, selectiondag always moves physical registers into vregs
1703 /// when they enter functions and moves them through a sequence of copies back
1704 /// into the physical registers right before the terminator creating a
1705 /// ``Terminator Sequence''. This function is searching for the beginning of the
1706 /// terminator sequence so that we can ensure that we splice off not just the
1707 /// terminator, but additionally the copies that move the vregs into the
1708 /// physical registers.
1709 static MachineBasicBlock::iterator
1710 FindSplitPointForStackProtector(MachineBasicBlock *BB,
1711                                 const TargetInstrInfo &TII) {
1712   MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator();
1713   if (SplitPoint == BB->begin())
1714     return SplitPoint;
1715 
1716   MachineBasicBlock::iterator Start = BB->begin();
1717   MachineBasicBlock::iterator Previous = SplitPoint;
1718   --Previous;
1719 
1720   if (TII.isTailCall(*SplitPoint) &&
1721       Previous->getOpcode() == TII.getCallFrameDestroyOpcode()) {
1722     // call itself, then we must insert before the sequence even starts. For
1723     // example:
1724     //     <split point>
1725     //     ADJCALLSTACKDOWN ...
1726     //     <Moves>
1727     //     ADJCALLSTACKUP ...
1728     //     TAILJMP somewhere
1729     // On the other hand, it could be an unrelated call in which case this tail call
1730     // has to register moves of its own and should be the split point. For example:
1731     //     ADJCALLSTACKDOWN
1732     //     CALL something_else
1733     //     ADJCALLSTACKUP
1734     //     <split point>
1735     //     TAILJMP somewhere
1736     do {
1737       --Previous;
1738       if (Previous->isCall())
1739         return SplitPoint;
1740     } while(Previous->getOpcode() != TII.getCallFrameSetupOpcode());
1741 
1742     return Previous;
1743   }
1744 
1745   while (MIIsInTerminatorSequence(*Previous)) {
1746     SplitPoint = Previous;
1747     if (Previous == Start)
1748       break;
1749     --Previous;
1750   }
1751 
1752   return SplitPoint;
1753 }
1754 
1755 void
1756 SelectionDAGISel::FinishBasicBlock() {
1757   LLVM_DEBUG(dbgs() << "Total amount of phi nodes to update: "
1758                     << FuncInfo->PHINodesToUpdate.size() << "\n";
1759              for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e;
1760                   ++i) dbgs()
1761              << "Node " << i << " : (" << FuncInfo->PHINodesToUpdate[i].first
1762              << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1763 
1764   // Next, now that we know what the last MBB the LLVM BB expanded is, update
1765   // PHI nodes in successors.
1766   for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1767     MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1768     assert(PHI->isPHI() &&
1769            "This is not a machine PHI node that we are updating!");
1770     if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1771       continue;
1772     PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1773   }
1774 
1775   // Handle stack protector.
1776   if (SDB->SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) {
1777     // The target provides a guard check function. There is no need to
1778     // generate error handling code or to split current basic block.
1779     MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1780 
1781     // Add load and check to the basicblock.
1782     FuncInfo->MBB = ParentMBB;
1783     FuncInfo->InsertPt =
1784         FindSplitPointForStackProtector(ParentMBB, *TII);
1785     SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1786     CurDAG->setRoot(SDB->getRoot());
1787     SDB->clear();
1788     CodeGenAndEmitDAG();
1789 
1790     // Clear the Per-BB State.
1791     SDB->SPDescriptor.resetPerBBState();
1792   } else if (SDB->SPDescriptor.shouldEmitStackProtector()) {
1793     MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1794     MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB();
1795 
1796     // Find the split point to split the parent mbb. At the same time copy all
1797     // physical registers used in the tail of parent mbb into virtual registers
1798     // before the split point and back into physical registers after the split
1799     // point. This prevents us needing to deal with Live-ins and many other
1800     // register allocation issues caused by us splitting the parent mbb. The
1801     // register allocator will clean up said virtual copies later on.
1802     MachineBasicBlock::iterator SplitPoint =
1803         FindSplitPointForStackProtector(ParentMBB, *TII);
1804 
1805     // Splice the terminator of ParentMBB into SuccessMBB.
1806     SuccessMBB->splice(SuccessMBB->end(), ParentMBB,
1807                        SplitPoint,
1808                        ParentMBB->end());
1809 
1810     // Add compare/jump on neq/jump to the parent BB.
1811     FuncInfo->MBB = ParentMBB;
1812     FuncInfo->InsertPt = ParentMBB->end();
1813     SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1814     CurDAG->setRoot(SDB->getRoot());
1815     SDB->clear();
1816     CodeGenAndEmitDAG();
1817 
1818     // CodeGen Failure MBB if we have not codegened it yet.
1819     MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB();
1820     if (FailureMBB->empty()) {
1821       FuncInfo->MBB = FailureMBB;
1822       FuncInfo->InsertPt = FailureMBB->end();
1823       SDB->visitSPDescriptorFailure(SDB->SPDescriptor);
1824       CurDAG->setRoot(SDB->getRoot());
1825       SDB->clear();
1826       CodeGenAndEmitDAG();
1827     }
1828 
1829     // Clear the Per-BB State.
1830     SDB->SPDescriptor.resetPerBBState();
1831   }
1832 
1833   // Lower each BitTestBlock.
1834   for (auto &BTB : SDB->SL->BitTestCases) {
1835     // Lower header first, if it wasn't already lowered
1836     if (!BTB.Emitted) {
1837       // Set the current basic block to the mbb we wish to insert the code into
1838       FuncInfo->MBB = BTB.Parent;
1839       FuncInfo->InsertPt = FuncInfo->MBB->end();
1840       // Emit the code
1841       SDB->visitBitTestHeader(BTB, FuncInfo->MBB);
1842       CurDAG->setRoot(SDB->getRoot());
1843       SDB->clear();
1844       CodeGenAndEmitDAG();
1845     }
1846 
1847     BranchProbability UnhandledProb = BTB.Prob;
1848     for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) {
1849       UnhandledProb -= BTB.Cases[j].ExtraProb;
1850       // Set the current basic block to the mbb we wish to insert the code into
1851       FuncInfo->MBB = BTB.Cases[j].ThisBB;
1852       FuncInfo->InsertPt = FuncInfo->MBB->end();
1853       // Emit the code
1854 
1855       // If all cases cover a contiguous range, it is not necessary to jump to
1856       // the default block after the last bit test fails. This is because the
1857       // range check during bit test header creation has guaranteed that every
1858       // case here doesn't go outside the range. In this case, there is no need
1859       // to perform the last bit test, as it will always be true. Instead, make
1860       // the second-to-last bit-test fall through to the target of the last bit
1861       // test, and delete the last bit test.
1862 
1863       MachineBasicBlock *NextMBB;
1864       if (BTB.ContiguousRange && j + 2 == ej) {
1865         // Second-to-last bit-test with contiguous range: fall through to the
1866         // target of the final bit test.
1867         NextMBB = BTB.Cases[j + 1].TargetBB;
1868       } else if (j + 1 == ej) {
1869         // For the last bit test, fall through to Default.
1870         NextMBB = BTB.Default;
1871       } else {
1872         // Otherwise, fall through to the next bit test.
1873         NextMBB = BTB.Cases[j + 1].ThisBB;
1874       }
1875 
1876       SDB->visitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j],
1877                             FuncInfo->MBB);
1878 
1879       CurDAG->setRoot(SDB->getRoot());
1880       SDB->clear();
1881       CodeGenAndEmitDAG();
1882 
1883       if (BTB.ContiguousRange && j + 2 == ej) {
1884         // Since we're not going to use the final bit test, remove it.
1885         BTB.Cases.pop_back();
1886         break;
1887       }
1888     }
1889 
1890     // Update PHI Nodes
1891     for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1892          pi != pe; ++pi) {
1893       MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1894       MachineBasicBlock *PHIBB = PHI->getParent();
1895       assert(PHI->isPHI() &&
1896              "This is not a machine PHI node that we are updating!");
1897       // This is "default" BB. We have two jumps to it. From "header" BB and
1898       // from last "case" BB, unless the latter was skipped.
1899       if (PHIBB == BTB.Default) {
1900         PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(BTB.Parent);
1901         if (!BTB.ContiguousRange) {
1902           PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1903               .addMBB(BTB.Cases.back().ThisBB);
1904          }
1905       }
1906       // One of "cases" BB.
1907       for (unsigned j = 0, ej = BTB.Cases.size();
1908            j != ej; ++j) {
1909         MachineBasicBlock* cBB = BTB.Cases[j].ThisBB;
1910         if (cBB->isSuccessor(PHIBB))
1911           PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB);
1912       }
1913     }
1914   }
1915   SDB->SL->BitTestCases.clear();
1916 
1917   // If the JumpTable record is filled in, then we need to emit a jump table.
1918   // Updating the PHI nodes is tricky in this case, since we need to determine
1919   // whether the PHI is a successor of the range check MBB or the jump table MBB
1920   for (unsigned i = 0, e = SDB->SL->JTCases.size(); i != e; ++i) {
1921     // Lower header first, if it wasn't already lowered
1922     if (!SDB->SL->JTCases[i].first.Emitted) {
1923       // Set the current basic block to the mbb we wish to insert the code into
1924       FuncInfo->MBB = SDB->SL->JTCases[i].first.HeaderBB;
1925       FuncInfo->InsertPt = FuncInfo->MBB->end();
1926       // Emit the code
1927       SDB->visitJumpTableHeader(SDB->SL->JTCases[i].second,
1928                                 SDB->SL->JTCases[i].first, FuncInfo->MBB);
1929       CurDAG->setRoot(SDB->getRoot());
1930       SDB->clear();
1931       CodeGenAndEmitDAG();
1932     }
1933 
1934     // Set the current basic block to the mbb we wish to insert the code into
1935     FuncInfo->MBB = SDB->SL->JTCases[i].second.MBB;
1936     FuncInfo->InsertPt = FuncInfo->MBB->end();
1937     // Emit the code
1938     SDB->visitJumpTable(SDB->SL->JTCases[i].second);
1939     CurDAG->setRoot(SDB->getRoot());
1940     SDB->clear();
1941     CodeGenAndEmitDAG();
1942 
1943     // Update PHI Nodes
1944     for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1945          pi != pe; ++pi) {
1946       MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1947       MachineBasicBlock *PHIBB = PHI->getParent();
1948       assert(PHI->isPHI() &&
1949              "This is not a machine PHI node that we are updating!");
1950       // "default" BB. We can go there only from header BB.
1951       if (PHIBB == SDB->SL->JTCases[i].second.Default)
1952         PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1953            .addMBB(SDB->SL->JTCases[i].first.HeaderBB);
1954       // JT BB. Just iterate over successors here
1955       if (FuncInfo->MBB->isSuccessor(PHIBB))
1956         PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
1957     }
1958   }
1959   SDB->SL->JTCases.clear();
1960 
1961   // If we generated any switch lowering information, build and codegen any
1962   // additional DAGs necessary.
1963   for (unsigned i = 0, e = SDB->SL->SwitchCases.size(); i != e; ++i) {
1964     // Set the current basic block to the mbb we wish to insert the code into
1965     FuncInfo->MBB = SDB->SL->SwitchCases[i].ThisBB;
1966     FuncInfo->InsertPt = FuncInfo->MBB->end();
1967 
1968     // Determine the unique successors.
1969     SmallVector<MachineBasicBlock *, 2> Succs;
1970     Succs.push_back(SDB->SL->SwitchCases[i].TrueBB);
1971     if (SDB->SL->SwitchCases[i].TrueBB != SDB->SL->SwitchCases[i].FalseBB)
1972       Succs.push_back(SDB->SL->SwitchCases[i].FalseBB);
1973 
1974     // Emit the code. Note that this could result in FuncInfo->MBB being split.
1975     SDB->visitSwitchCase(SDB->SL->SwitchCases[i], FuncInfo->MBB);
1976     CurDAG->setRoot(SDB->getRoot());
1977     SDB->clear();
1978     CodeGenAndEmitDAG();
1979 
1980     // Remember the last block, now that any splitting is done, for use in
1981     // populating PHI nodes in successors.
1982     MachineBasicBlock *ThisBB = FuncInfo->MBB;
1983 
1984     // Handle any PHI nodes in successors of this chunk, as if we were coming
1985     // from the original BB before switch expansion.  Note that PHI nodes can
1986     // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1987     // handle them the right number of times.
1988     for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1989       FuncInfo->MBB = Succs[i];
1990       FuncInfo->InsertPt = FuncInfo->MBB->end();
1991       // FuncInfo->MBB may have been removed from the CFG if a branch was
1992       // constant folded.
1993       if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1994         for (MachineBasicBlock::iterator
1995              MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
1996              MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
1997           MachineInstrBuilder PHI(*MF, MBBI);
1998           // This value for this PHI node is recorded in PHINodesToUpdate.
1999           for (unsigned pn = 0; ; ++pn) {
2000             assert(pn != FuncInfo->PHINodesToUpdate.size() &&
2001                    "Didn't find PHI entry!");
2002             if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
2003               PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
2004               break;
2005             }
2006           }
2007         }
2008       }
2009     }
2010   }
2011   SDB->SL->SwitchCases.clear();
2012 }
2013 
2014 /// Create the scheduler. If a specific scheduler was specified
2015 /// via the SchedulerRegistry, use it, otherwise select the
2016 /// one preferred by the target.
2017 ///
2018 ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
2019   return ISHeuristic(this, OptLevel);
2020 }
2021 
2022 //===----------------------------------------------------------------------===//
2023 // Helper functions used by the generated instruction selector.
2024 //===----------------------------------------------------------------------===//
2025 // Calls to these methods are generated by tblgen.
2026 
2027 /// CheckAndMask - The isel is trying to match something like (and X, 255).  If
2028 /// the dag combiner simplified the 255, we still want to match.  RHS is the
2029 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
2030 /// specified in the .td file (e.g. 255).
2031 bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
2032                                     int64_t DesiredMaskS) const {
2033   const APInt &ActualMask = RHS->getAPIntValue();
2034   const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
2035 
2036   // If the actual mask exactly matches, success!
2037   if (ActualMask == DesiredMask)
2038     return true;
2039 
2040   // If the actual AND mask is allowing unallowed bits, this doesn't match.
2041   if (!ActualMask.isSubsetOf(DesiredMask))
2042     return false;
2043 
2044   // Otherwise, the DAG Combiner may have proven that the value coming in is
2045   // either already zero or is not demanded.  Check for known zero input bits.
2046   APInt NeededMask = DesiredMask & ~ActualMask;
2047   if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
2048     return true;
2049 
2050   // TODO: check to see if missing bits are just not demanded.
2051 
2052   // Otherwise, this pattern doesn't match.
2053   return false;
2054 }
2055 
2056 /// CheckOrMask - The isel is trying to match something like (or X, 255).  If
2057 /// the dag combiner simplified the 255, we still want to match.  RHS is the
2058 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
2059 /// specified in the .td file (e.g. 255).
2060 bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
2061                                    int64_t DesiredMaskS) const {
2062   const APInt &ActualMask = RHS->getAPIntValue();
2063   const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
2064 
2065   // If the actual mask exactly matches, success!
2066   if (ActualMask == DesiredMask)
2067     return true;
2068 
2069   // If the actual AND mask is allowing unallowed bits, this doesn't match.
2070   if (!ActualMask.isSubsetOf(DesiredMask))
2071     return false;
2072 
2073   // Otherwise, the DAG Combiner may have proven that the value coming in is
2074   // either already zero or is not demanded.  Check for known zero input bits.
2075   APInt NeededMask = DesiredMask & ~ActualMask;
2076   KnownBits Known = CurDAG->computeKnownBits(LHS);
2077 
2078   // If all the missing bits in the or are already known to be set, match!
2079   if (NeededMask.isSubsetOf(Known.One))
2080     return true;
2081 
2082   // TODO: check to see if missing bits are just not demanded.
2083 
2084   // Otherwise, this pattern doesn't match.
2085   return false;
2086 }
2087 
2088 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
2089 /// by tblgen.  Others should not call it.
2090 void SelectionDAGISel::SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops,
2091                                                      const SDLoc &DL) {
2092   std::vector<SDValue> InOps;
2093   std::swap(InOps, Ops);
2094 
2095   Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
2096   Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
2097   Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
2098   Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack)
2099 
2100   unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
2101   if (InOps[e-1].getValueType() == MVT::Glue)
2102     --e;  // Don't process a glue operand if it is here.
2103 
2104   while (i != e) {
2105     unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
2106     if (!InlineAsm::isMemKind(Flags)) {
2107       // Just skip over this operand, copying the operands verbatim.
2108       Ops.insert(Ops.end(), InOps.begin()+i,
2109                  InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
2110       i += InlineAsm::getNumOperandRegisters(Flags) + 1;
2111     } else {
2112       assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
2113              "Memory operand with multiple values?");
2114 
2115       unsigned TiedToOperand;
2116       if (InlineAsm::isUseOperandTiedToDef(Flags, TiedToOperand)) {
2117         // We need the constraint ID from the operand this is tied to.
2118         unsigned CurOp = InlineAsm::Op_FirstOperand;
2119         Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
2120         for (; TiedToOperand; --TiedToOperand) {
2121           CurOp += InlineAsm::getNumOperandRegisters(Flags)+1;
2122           Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
2123         }
2124       }
2125 
2126       // Otherwise, this is a memory operand.  Ask the target to select it.
2127       std::vector<SDValue> SelOps;
2128       unsigned ConstraintID = InlineAsm::getMemoryConstraintID(Flags);
2129       if (SelectInlineAsmMemoryOperand(InOps[i+1], ConstraintID, SelOps))
2130         report_fatal_error("Could not match memory address.  Inline asm"
2131                            " failure!");
2132 
2133       // Add this to the output node.
2134       unsigned NewFlags =
2135         InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
2136       NewFlags = InlineAsm::getFlagWordForMem(NewFlags, ConstraintID);
2137       Ops.push_back(CurDAG->getTargetConstant(NewFlags, DL, MVT::i32));
2138       llvm::append_range(Ops, SelOps);
2139       i += 2;
2140     }
2141   }
2142 
2143   // Add the glue input back if present.
2144   if (e != InOps.size())
2145     Ops.push_back(InOps.back());
2146 }
2147 
2148 /// findGlueUse - Return use of MVT::Glue value produced by the specified
2149 /// SDNode.
2150 ///
2151 static SDNode *findGlueUse(SDNode *N) {
2152   unsigned FlagResNo = N->getNumValues()-1;
2153   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
2154     SDUse &Use = I.getUse();
2155     if (Use.getResNo() == FlagResNo)
2156       return Use.getUser();
2157   }
2158   return nullptr;
2159 }
2160 
2161 /// findNonImmUse - Return true if "Def" is a predecessor of "Root" via a path
2162 /// beyond "ImmedUse".  We may ignore chains as they are checked separately.
2163 static bool findNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse,
2164                           bool IgnoreChains) {
2165   SmallPtrSet<const SDNode *, 16> Visited;
2166   SmallVector<const SDNode *, 16> WorkList;
2167   // Only check if we have non-immediate uses of Def.
2168   if (ImmedUse->isOnlyUserOf(Def))
2169     return false;
2170 
2171   // We don't care about paths to Def that go through ImmedUse so mark it
2172   // visited and mark non-def operands as used.
2173   Visited.insert(ImmedUse);
2174   for (const SDValue &Op : ImmedUse->op_values()) {
2175     SDNode *N = Op.getNode();
2176     // Ignore chain deps (they are validated by
2177     // HandleMergeInputChains) and immediate uses
2178     if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def)
2179       continue;
2180     if (!Visited.insert(N).second)
2181       continue;
2182     WorkList.push_back(N);
2183   }
2184 
2185   // Initialize worklist to operands of Root.
2186   if (Root != ImmedUse) {
2187     for (const SDValue &Op : Root->op_values()) {
2188       SDNode *N = Op.getNode();
2189       // Ignore chains (they are validated by HandleMergeInputChains)
2190       if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def)
2191         continue;
2192       if (!Visited.insert(N).second)
2193         continue;
2194       WorkList.push_back(N);
2195     }
2196   }
2197 
2198   return SDNode::hasPredecessorHelper(Def, Visited, WorkList, 0, true);
2199 }
2200 
2201 /// IsProfitableToFold - Returns true if it's profitable to fold the specific
2202 /// operand node N of U during instruction selection that starts at Root.
2203 bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
2204                                           SDNode *Root) const {
2205   if (OptLevel == CodeGenOpt::None) return false;
2206   return N.hasOneUse();
2207 }
2208 
2209 /// IsLegalToFold - Returns true if the specific operand node N of
2210 /// U can be folded during instruction selection that starts at Root.
2211 bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
2212                                      CodeGenOpt::Level OptLevel,
2213                                      bool IgnoreChains) {
2214   if (OptLevel == CodeGenOpt::None) return false;
2215 
2216   // If Root use can somehow reach N through a path that that doesn't contain
2217   // U then folding N would create a cycle. e.g. In the following
2218   // diagram, Root can reach N through X. If N is folded into Root, then
2219   // X is both a predecessor and a successor of U.
2220   //
2221   //          [N*]           //
2222   //         ^   ^           //
2223   //        /     \          //
2224   //      [U*]    [X]?       //
2225   //        ^     ^          //
2226   //         \   /           //
2227   //          \ /            //
2228   //         [Root*]         //
2229   //
2230   // * indicates nodes to be folded together.
2231   //
2232   // If Root produces glue, then it gets (even more) interesting. Since it
2233   // will be "glued" together with its glue use in the scheduler, we need to
2234   // check if it might reach N.
2235   //
2236   //          [N*]           //
2237   //         ^   ^           //
2238   //        /     \          //
2239   //      [U*]    [X]?       //
2240   //        ^       ^        //
2241   //         \       \       //
2242   //          \      |       //
2243   //         [Root*] |       //
2244   //          ^      |       //
2245   //          f      |       //
2246   //          |      /       //
2247   //         [Y]    /        //
2248   //           ^   /         //
2249   //           f  /          //
2250   //           | /           //
2251   //          [GU]           //
2252   //
2253   // If GU (glue use) indirectly reaches N (the load), and Root folds N
2254   // (call it Fold), then X is a predecessor of GU and a successor of
2255   // Fold. But since Fold and GU are glued together, this will create
2256   // a cycle in the scheduling graph.
2257 
2258   // If the node has glue, walk down the graph to the "lowest" node in the
2259   // glueged set.
2260   EVT VT = Root->getValueType(Root->getNumValues()-1);
2261   while (VT == MVT::Glue) {
2262     SDNode *GU = findGlueUse(Root);
2263     if (!GU)
2264       break;
2265     Root = GU;
2266     VT = Root->getValueType(Root->getNumValues()-1);
2267 
2268     // If our query node has a glue result with a use, we've walked up it.  If
2269     // the user (which has already been selected) has a chain or indirectly uses
2270     // the chain, HandleMergeInputChains will not consider it.  Because of
2271     // this, we cannot ignore chains in this predicate.
2272     IgnoreChains = false;
2273   }
2274 
2275   return !findNonImmUse(Root, N.getNode(), U, IgnoreChains);
2276 }
2277 
2278 void SelectionDAGISel::Select_INLINEASM(SDNode *N) {
2279   SDLoc DL(N);
2280 
2281   std::vector<SDValue> Ops(N->op_begin(), N->op_end());
2282   SelectInlineAsmMemoryOperands(Ops, DL);
2283 
2284   const EVT VTs[] = {MVT::Other, MVT::Glue};
2285   SDValue New = CurDAG->getNode(N->getOpcode(), DL, VTs, Ops);
2286   New->setNodeId(-1);
2287   ReplaceUses(N, New.getNode());
2288   CurDAG->RemoveDeadNode(N);
2289 }
2290 
2291 void SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) {
2292   SDLoc dl(Op);
2293   MDNodeSDNode *MD = cast<MDNodeSDNode>(Op->getOperand(1));
2294   const MDString *RegStr = cast<MDString>(MD->getMD()->getOperand(0));
2295 
2296   EVT VT = Op->getValueType(0);
2297   LLT Ty = VT.isSimple() ? getLLTForMVT(VT.getSimpleVT()) : LLT();
2298   Register Reg =
2299       TLI->getRegisterByName(RegStr->getString().data(), Ty,
2300                              CurDAG->getMachineFunction());
2301   SDValue New = CurDAG->getCopyFromReg(
2302                         Op->getOperand(0), dl, Reg, Op->getValueType(0));
2303   New->setNodeId(-1);
2304   ReplaceUses(Op, New.getNode());
2305   CurDAG->RemoveDeadNode(Op);
2306 }
2307 
2308 void SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) {
2309   SDLoc dl(Op);
2310   MDNodeSDNode *MD = cast<MDNodeSDNode>(Op->getOperand(1));
2311   const MDString *RegStr = cast<MDString>(MD->getMD()->getOperand(0));
2312 
2313   EVT VT = Op->getOperand(2).getValueType();
2314   LLT Ty = VT.isSimple() ? getLLTForMVT(VT.getSimpleVT()) : LLT();
2315 
2316   Register Reg = TLI->getRegisterByName(RegStr->getString().data(), Ty,
2317                                         CurDAG->getMachineFunction());
2318   SDValue New = CurDAG->getCopyToReg(
2319                         Op->getOperand(0), dl, Reg, Op->getOperand(2));
2320   New->setNodeId(-1);
2321   ReplaceUses(Op, New.getNode());
2322   CurDAG->RemoveDeadNode(Op);
2323 }
2324 
2325 void SelectionDAGISel::Select_UNDEF(SDNode *N) {
2326   CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0));
2327 }
2328 
2329 void SelectionDAGISel::Select_FREEZE(SDNode *N) {
2330   // TODO: We don't have FREEZE pseudo-instruction in MachineInstr-level now.
2331   // If FREEZE instruction is added later, the code below must be changed as
2332   // well.
2333   CurDAG->SelectNodeTo(N, TargetOpcode::COPY, N->getValueType(0),
2334                        N->getOperand(0));
2335 }
2336 
2337 void SelectionDAGISel::Select_ARITH_FENCE(SDNode *N) {
2338   CurDAG->SelectNodeTo(N, TargetOpcode::ARITH_FENCE, N->getValueType(0),
2339                        N->getOperand(0));
2340 }
2341 
2342 /// GetVBR - decode a vbr encoding whose top bit is set.
2343 LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
2344 GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
2345   assert(Val >= 128 && "Not a VBR");
2346   Val &= 127;  // Remove first vbr bit.
2347 
2348   unsigned Shift = 7;
2349   uint64_t NextBits;
2350   do {
2351     NextBits = MatcherTable[Idx++];
2352     Val |= (NextBits&127) << Shift;
2353     Shift += 7;
2354   } while (NextBits & 128);
2355 
2356   return Val;
2357 }
2358 
2359 /// When a match is complete, this method updates uses of interior chain results
2360 /// to use the new results.
2361 void SelectionDAGISel::UpdateChains(
2362     SDNode *NodeToMatch, SDValue InputChain,
2363     SmallVectorImpl<SDNode *> &ChainNodesMatched, bool isMorphNodeTo) {
2364   SmallVector<SDNode*, 4> NowDeadNodes;
2365 
2366   // Now that all the normal results are replaced, we replace the chain and
2367   // glue results if present.
2368   if (!ChainNodesMatched.empty()) {
2369     assert(InputChain.getNode() &&
2370            "Matched input chains but didn't produce a chain");
2371     // Loop over all of the nodes we matched that produced a chain result.
2372     // Replace all the chain results with the final chain we ended up with.
2373     for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
2374       SDNode *ChainNode = ChainNodesMatched[i];
2375       // If ChainNode is null, it's because we replaced it on a previous
2376       // iteration and we cleared it out of the map. Just skip it.
2377       if (!ChainNode)
2378         continue;
2379 
2380       assert(ChainNode->getOpcode() != ISD::DELETED_NODE &&
2381              "Deleted node left in chain");
2382 
2383       // Don't replace the results of the root node if we're doing a
2384       // MorphNodeTo.
2385       if (ChainNode == NodeToMatch && isMorphNodeTo)
2386         continue;
2387 
2388       SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
2389       if (ChainVal.getValueType() == MVT::Glue)
2390         ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
2391       assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
2392       SelectionDAG::DAGNodeDeletedListener NDL(
2393           *CurDAG, [&](SDNode *N, SDNode *E) {
2394             std::replace(ChainNodesMatched.begin(), ChainNodesMatched.end(), N,
2395                          static_cast<SDNode *>(nullptr));
2396           });
2397       if (ChainNode->getOpcode() != ISD::TokenFactor)
2398         ReplaceUses(ChainVal, InputChain);
2399 
2400       // If the node became dead and we haven't already seen it, delete it.
2401       if (ChainNode != NodeToMatch && ChainNode->use_empty() &&
2402           !llvm::is_contained(NowDeadNodes, ChainNode))
2403         NowDeadNodes.push_back(ChainNode);
2404     }
2405   }
2406 
2407   if (!NowDeadNodes.empty())
2408     CurDAG->RemoveDeadNodes(NowDeadNodes);
2409 
2410   LLVM_DEBUG(dbgs() << "ISEL: Match complete!\n");
2411 }
2412 
2413 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
2414 /// operation for when the pattern matched at least one node with a chains.  The
2415 /// input vector contains a list of all of the chained nodes that we match.  We
2416 /// must determine if this is a valid thing to cover (i.e. matching it won't
2417 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
2418 /// be used as the input node chain for the generated nodes.
2419 static SDValue
2420 HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
2421                        SelectionDAG *CurDAG) {
2422 
2423   SmallPtrSet<const SDNode *, 16> Visited;
2424   SmallVector<const SDNode *, 8> Worklist;
2425   SmallVector<SDValue, 3> InputChains;
2426   unsigned int Max = 8192;
2427 
2428   // Quick exit on trivial merge.
2429   if (ChainNodesMatched.size() == 1)
2430     return ChainNodesMatched[0]->getOperand(0);
2431 
2432   // Add chains that aren't already added (internal). Peek through
2433   // token factors.
2434   std::function<void(const SDValue)> AddChains = [&](const SDValue V) {
2435     if (V.getValueType() != MVT::Other)
2436       return;
2437     if (V->getOpcode() == ISD::EntryToken)
2438       return;
2439     if (!Visited.insert(V.getNode()).second)
2440       return;
2441     if (V->getOpcode() == ISD::TokenFactor) {
2442       for (const SDValue &Op : V->op_values())
2443         AddChains(Op);
2444     } else
2445       InputChains.push_back(V);
2446   };
2447 
2448   for (auto *N : ChainNodesMatched) {
2449     Worklist.push_back(N);
2450     Visited.insert(N);
2451   }
2452 
2453   while (!Worklist.empty())
2454     AddChains(Worklist.pop_back_val()->getOperand(0));
2455 
2456   // Skip the search if there are no chain dependencies.
2457   if (InputChains.size() == 0)
2458     return CurDAG->getEntryNode();
2459 
2460   // If one of these chains is a successor of input, we must have a
2461   // node that is both the predecessor and successor of the
2462   // to-be-merged nodes. Fail.
2463   Visited.clear();
2464   for (SDValue V : InputChains)
2465     Worklist.push_back(V.getNode());
2466 
2467   for (auto *N : ChainNodesMatched)
2468     if (SDNode::hasPredecessorHelper(N, Visited, Worklist, Max, true))
2469       return SDValue();
2470 
2471   // Return merged chain.
2472   if (InputChains.size() == 1)
2473     return InputChains[0];
2474   return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]),
2475                          MVT::Other, InputChains);
2476 }
2477 
2478 /// MorphNode - Handle morphing a node in place for the selector.
2479 SDNode *SelectionDAGISel::
2480 MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
2481           ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) {
2482   // It is possible we're using MorphNodeTo to replace a node with no
2483   // normal results with one that has a normal result (or we could be
2484   // adding a chain) and the input could have glue and chains as well.
2485   // In this case we need to shift the operands down.
2486   // FIXME: This is a horrible hack and broken in obscure cases, no worse
2487   // than the old isel though.
2488   int OldGlueResultNo = -1, OldChainResultNo = -1;
2489 
2490   unsigned NTMNumResults = Node->getNumValues();
2491   if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
2492     OldGlueResultNo = NTMNumResults-1;
2493     if (NTMNumResults != 1 &&
2494         Node->getValueType(NTMNumResults-2) == MVT::Other)
2495       OldChainResultNo = NTMNumResults-2;
2496   } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
2497     OldChainResultNo = NTMNumResults-1;
2498 
2499   // Call the underlying SelectionDAG routine to do the transmogrification. Note
2500   // that this deletes operands of the old node that become dead.
2501   SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops);
2502 
2503   // MorphNodeTo can operate in two ways: if an existing node with the
2504   // specified operands exists, it can just return it.  Otherwise, it
2505   // updates the node in place to have the requested operands.
2506   if (Res == Node) {
2507     // If we updated the node in place, reset the node ID.  To the isel,
2508     // this should be just like a newly allocated machine node.
2509     Res->setNodeId(-1);
2510   }
2511 
2512   unsigned ResNumResults = Res->getNumValues();
2513   // Move the glue if needed.
2514   if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
2515       (unsigned)OldGlueResultNo != ResNumResults-1)
2516     ReplaceUses(SDValue(Node, OldGlueResultNo),
2517                 SDValue(Res, ResNumResults - 1));
2518 
2519   if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
2520     --ResNumResults;
2521 
2522   // Move the chain reference if needed.
2523   if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
2524       (unsigned)OldChainResultNo != ResNumResults-1)
2525     ReplaceUses(SDValue(Node, OldChainResultNo),
2526                 SDValue(Res, ResNumResults - 1));
2527 
2528   // Otherwise, no replacement happened because the node already exists. Replace
2529   // Uses of the old node with the new one.
2530   if (Res != Node) {
2531     ReplaceNode(Node, Res);
2532   } else {
2533     EnforceNodeIdInvariant(Res);
2534   }
2535 
2536   return Res;
2537 }
2538 
2539 /// CheckSame - Implements OP_CheckSame.
2540 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2541 CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
2542           const SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes) {
2543   // Accept if it is exactly the same as a previously recorded node.
2544   unsigned RecNo = MatcherTable[MatcherIndex++];
2545   assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2546   return N == RecordedNodes[RecNo].first;
2547 }
2548 
2549 /// CheckChildSame - Implements OP_CheckChildXSame.
2550 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool CheckChildSame(
2551     const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
2552     const SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes,
2553     unsigned ChildNo) {
2554   if (ChildNo >= N.getNumOperands())
2555     return false;  // Match fails if out of range child #.
2556   return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo),
2557                      RecordedNodes);
2558 }
2559 
2560 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
2561 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2562 CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2563                       const SelectionDAGISel &SDISel) {
2564   return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
2565 }
2566 
2567 /// CheckNodePredicate - Implements OP_CheckNodePredicate.
2568 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2569 CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2570                    const SelectionDAGISel &SDISel, SDNode *N) {
2571   return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
2572 }
2573 
2574 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2575 CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2576             SDNode *N) {
2577   uint16_t Opc = MatcherTable[MatcherIndex++];
2578   Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2579   return N->getOpcode() == Opc;
2580 }
2581 
2582 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2583 CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
2584           const TargetLowering *TLI, const DataLayout &DL) {
2585   MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2586   if (N.getValueType() == VT) return true;
2587 
2588   // Handle the case when VT is iPTR.
2589   return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL);
2590 }
2591 
2592 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2593 CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2594                SDValue N, const TargetLowering *TLI, const DataLayout &DL,
2595                unsigned ChildNo) {
2596   if (ChildNo >= N.getNumOperands())
2597     return false;  // Match fails if out of range child #.
2598   return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI,
2599                      DL);
2600 }
2601 
2602 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2603 CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2604               SDValue N) {
2605   return cast<CondCodeSDNode>(N)->get() ==
2606       (ISD::CondCode)MatcherTable[MatcherIndex++];
2607 }
2608 
2609 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2610 CheckChild2CondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2611                     SDValue N) {
2612   if (2 >= N.getNumOperands())
2613     return false;
2614   return ::CheckCondCode(MatcherTable, MatcherIndex, N.getOperand(2));
2615 }
2616 
2617 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2618 CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2619                SDValue N, const TargetLowering *TLI, const DataLayout &DL) {
2620   MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2621   if (cast<VTSDNode>(N)->getVT() == VT)
2622     return true;
2623 
2624   // Handle the case when VT is iPTR.
2625   return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy(DL);
2626 }
2627 
2628 // Bit 0 stores the sign of the immediate. The upper bits contain the magnitude
2629 // shifted left by 1.
2630 static uint64_t decodeSignRotatedValue(uint64_t V) {
2631   if ((V & 1) == 0)
2632     return V >> 1;
2633   if (V != 1)
2634     return -(V >> 1);
2635   // There is no such thing as -0 with integers.  "-0" really means MININT.
2636   return 1ULL << 63;
2637 }
2638 
2639 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2640 CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2641              SDValue N) {
2642   int64_t Val = MatcherTable[MatcherIndex++];
2643   if (Val & 128)
2644     Val = GetVBR(Val, MatcherTable, MatcherIndex);
2645 
2646   Val = decodeSignRotatedValue(Val);
2647 
2648   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
2649   return C && C->getSExtValue() == Val;
2650 }
2651 
2652 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2653 CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2654                   SDValue N, unsigned ChildNo) {
2655   if (ChildNo >= N.getNumOperands())
2656     return false;  // Match fails if out of range child #.
2657   return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo));
2658 }
2659 
2660 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2661 CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2662             SDValue N, const SelectionDAGISel &SDISel) {
2663   int64_t Val = MatcherTable[MatcherIndex++];
2664   if (Val & 128)
2665     Val = GetVBR(Val, MatcherTable, MatcherIndex);
2666 
2667   if (N->getOpcode() != ISD::AND) return false;
2668 
2669   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2670   return C && SDISel.CheckAndMask(N.getOperand(0), C, Val);
2671 }
2672 
2673 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2674 CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
2675            const SelectionDAGISel &SDISel) {
2676   int64_t Val = MatcherTable[MatcherIndex++];
2677   if (Val & 128)
2678     Val = GetVBR(Val, MatcherTable, MatcherIndex);
2679 
2680   if (N->getOpcode() != ISD::OR) return false;
2681 
2682   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2683   return C && SDISel.CheckOrMask(N.getOperand(0), C, Val);
2684 }
2685 
2686 /// IsPredicateKnownToFail - If we know how and can do so without pushing a
2687 /// scope, evaluate the current node.  If the current predicate is known to
2688 /// fail, set Result=true and return anything.  If the current predicate is
2689 /// known to pass, set Result=false and return the MatcherIndex to continue
2690 /// with.  If the current predicate is unknown, set Result=false and return the
2691 /// MatcherIndex to continue with.
2692 static unsigned IsPredicateKnownToFail(const unsigned char *Table,
2693                                        unsigned Index, SDValue N,
2694                                        bool &Result,
2695                                        const SelectionDAGISel &SDISel,
2696                   SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) {
2697   switch (Table[Index++]) {
2698   default:
2699     Result = false;
2700     return Index-1;  // Could not evaluate this predicate.
2701   case SelectionDAGISel::OPC_CheckSame:
2702     Result = !::CheckSame(Table, Index, N, RecordedNodes);
2703     return Index;
2704   case SelectionDAGISel::OPC_CheckChild0Same:
2705   case SelectionDAGISel::OPC_CheckChild1Same:
2706   case SelectionDAGISel::OPC_CheckChild2Same:
2707   case SelectionDAGISel::OPC_CheckChild3Same:
2708     Result = !::CheckChildSame(Table, Index, N, RecordedNodes,
2709                         Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same);
2710     return Index;
2711   case SelectionDAGISel::OPC_CheckPatternPredicate:
2712     Result = !::CheckPatternPredicate(Table, Index, SDISel);
2713     return Index;
2714   case SelectionDAGISel::OPC_CheckPredicate:
2715     Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
2716     return Index;
2717   case SelectionDAGISel::OPC_CheckOpcode:
2718     Result = !::CheckOpcode(Table, Index, N.getNode());
2719     return Index;
2720   case SelectionDAGISel::OPC_CheckType:
2721     Result = !::CheckType(Table, Index, N, SDISel.TLI,
2722                           SDISel.CurDAG->getDataLayout());
2723     return Index;
2724   case SelectionDAGISel::OPC_CheckTypeRes: {
2725     unsigned Res = Table[Index++];
2726     Result = !::CheckType(Table, Index, N.getValue(Res), SDISel.TLI,
2727                           SDISel.CurDAG->getDataLayout());
2728     return Index;
2729   }
2730   case SelectionDAGISel::OPC_CheckChild0Type:
2731   case SelectionDAGISel::OPC_CheckChild1Type:
2732   case SelectionDAGISel::OPC_CheckChild2Type:
2733   case SelectionDAGISel::OPC_CheckChild3Type:
2734   case SelectionDAGISel::OPC_CheckChild4Type:
2735   case SelectionDAGISel::OPC_CheckChild5Type:
2736   case SelectionDAGISel::OPC_CheckChild6Type:
2737   case SelectionDAGISel::OPC_CheckChild7Type:
2738     Result = !::CheckChildType(
2739                  Table, Index, N, SDISel.TLI, SDISel.CurDAG->getDataLayout(),
2740                  Table[Index - 1] - SelectionDAGISel::OPC_CheckChild0Type);
2741     return Index;
2742   case SelectionDAGISel::OPC_CheckCondCode:
2743     Result = !::CheckCondCode(Table, Index, N);
2744     return Index;
2745   case SelectionDAGISel::OPC_CheckChild2CondCode:
2746     Result = !::CheckChild2CondCode(Table, Index, N);
2747     return Index;
2748   case SelectionDAGISel::OPC_CheckValueType:
2749     Result = !::CheckValueType(Table, Index, N, SDISel.TLI,
2750                                SDISel.CurDAG->getDataLayout());
2751     return Index;
2752   case SelectionDAGISel::OPC_CheckInteger:
2753     Result = !::CheckInteger(Table, Index, N);
2754     return Index;
2755   case SelectionDAGISel::OPC_CheckChild0Integer:
2756   case SelectionDAGISel::OPC_CheckChild1Integer:
2757   case SelectionDAGISel::OPC_CheckChild2Integer:
2758   case SelectionDAGISel::OPC_CheckChild3Integer:
2759   case SelectionDAGISel::OPC_CheckChild4Integer:
2760     Result = !::CheckChildInteger(Table, Index, N,
2761                      Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer);
2762     return Index;
2763   case SelectionDAGISel::OPC_CheckAndImm:
2764     Result = !::CheckAndImm(Table, Index, N, SDISel);
2765     return Index;
2766   case SelectionDAGISel::OPC_CheckOrImm:
2767     Result = !::CheckOrImm(Table, Index, N, SDISel);
2768     return Index;
2769   }
2770 }
2771 
2772 namespace {
2773 
2774 struct MatchScope {
2775   /// FailIndex - If this match fails, this is the index to continue with.
2776   unsigned FailIndex;
2777 
2778   /// NodeStack - The node stack when the scope was formed.
2779   SmallVector<SDValue, 4> NodeStack;
2780 
2781   /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2782   unsigned NumRecordedNodes;
2783 
2784   /// NumMatchedMemRefs - The number of matched memref entries.
2785   unsigned NumMatchedMemRefs;
2786 
2787   /// InputChain/InputGlue - The current chain/glue
2788   SDValue InputChain, InputGlue;
2789 
2790   /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2791   bool HasChainNodesMatched;
2792 };
2793 
2794 /// \A DAG update listener to keep the matching state
2795 /// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to
2796 /// change the DAG while matching.  X86 addressing mode matcher is an example
2797 /// for this.
2798 class MatchStateUpdater : public SelectionDAG::DAGUpdateListener
2799 {
2800   SDNode **NodeToMatch;
2801   SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes;
2802   SmallVectorImpl<MatchScope> &MatchScopes;
2803 
2804 public:
2805   MatchStateUpdater(SelectionDAG &DAG, SDNode **NodeToMatch,
2806                     SmallVectorImpl<std::pair<SDValue, SDNode *>> &RN,
2807                     SmallVectorImpl<MatchScope> &MS)
2808       : SelectionDAG::DAGUpdateListener(DAG), NodeToMatch(NodeToMatch),
2809         RecordedNodes(RN), MatchScopes(MS) {}
2810 
2811   void NodeDeleted(SDNode *N, SDNode *E) override {
2812     // Some early-returns here to avoid the search if we deleted the node or
2813     // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we
2814     // do, so it's unnecessary to update matching state at that point).
2815     // Neither of these can occur currently because we only install this
2816     // update listener during matching a complex patterns.
2817     if (!E || E->isMachineOpcode())
2818       return;
2819     // Check if NodeToMatch was updated.
2820     if (N == *NodeToMatch)
2821       *NodeToMatch = E;
2822     // Performing linear search here does not matter because we almost never
2823     // run this code.  You'd have to have a CSE during complex pattern
2824     // matching.
2825     for (auto &I : RecordedNodes)
2826       if (I.first.getNode() == N)
2827         I.first.setNode(E);
2828 
2829     for (auto &I : MatchScopes)
2830       for (auto &J : I.NodeStack)
2831         if (J.getNode() == N)
2832           J.setNode(E);
2833   }
2834 };
2835 
2836 } // end anonymous namespace
2837 
2838 void SelectionDAGISel::SelectCodeCommon(SDNode *NodeToMatch,
2839                                         const unsigned char *MatcherTable,
2840                                         unsigned TableSize) {
2841   // FIXME: Should these even be selected?  Handle these cases in the caller?
2842   switch (NodeToMatch->getOpcode()) {
2843   default:
2844     break;
2845   case ISD::EntryToken:       // These nodes remain the same.
2846   case ISD::BasicBlock:
2847   case ISD::Register:
2848   case ISD::RegisterMask:
2849   case ISD::HANDLENODE:
2850   case ISD::MDNODE_SDNODE:
2851   case ISD::TargetConstant:
2852   case ISD::TargetConstantFP:
2853   case ISD::TargetConstantPool:
2854   case ISD::TargetFrameIndex:
2855   case ISD::TargetExternalSymbol:
2856   case ISD::MCSymbol:
2857   case ISD::TargetBlockAddress:
2858   case ISD::TargetJumpTable:
2859   case ISD::TargetGlobalTLSAddress:
2860   case ISD::TargetGlobalAddress:
2861   case ISD::TokenFactor:
2862   case ISD::CopyFromReg:
2863   case ISD::CopyToReg:
2864   case ISD::EH_LABEL:
2865   case ISD::ANNOTATION_LABEL:
2866   case ISD::LIFETIME_START:
2867   case ISD::LIFETIME_END:
2868   case ISD::PSEUDO_PROBE:
2869     NodeToMatch->setNodeId(-1); // Mark selected.
2870     return;
2871   case ISD::AssertSext:
2872   case ISD::AssertZext:
2873   case ISD::AssertAlign:
2874     ReplaceUses(SDValue(NodeToMatch, 0), NodeToMatch->getOperand(0));
2875     CurDAG->RemoveDeadNode(NodeToMatch);
2876     return;
2877   case ISD::INLINEASM:
2878   case ISD::INLINEASM_BR:
2879     Select_INLINEASM(NodeToMatch);
2880     return;
2881   case ISD::READ_REGISTER:
2882     Select_READ_REGISTER(NodeToMatch);
2883     return;
2884   case ISD::WRITE_REGISTER:
2885     Select_WRITE_REGISTER(NodeToMatch);
2886     return;
2887   case ISD::UNDEF:
2888     Select_UNDEF(NodeToMatch);
2889     return;
2890   case ISD::FREEZE:
2891     Select_FREEZE(NodeToMatch);
2892     return;
2893   case ISD::ARITH_FENCE:
2894     Select_ARITH_FENCE(NodeToMatch);
2895     return;
2896   }
2897 
2898   assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2899 
2900   // Set up the node stack with NodeToMatch as the only node on the stack.
2901   SmallVector<SDValue, 8> NodeStack;
2902   SDValue N = SDValue(NodeToMatch, 0);
2903   NodeStack.push_back(N);
2904 
2905   // MatchScopes - Scopes used when matching, if a match failure happens, this
2906   // indicates where to continue checking.
2907   SmallVector<MatchScope, 8> MatchScopes;
2908 
2909   // RecordedNodes - This is the set of nodes that have been recorded by the
2910   // state machine.  The second value is the parent of the node, or null if the
2911   // root is recorded.
2912   SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2913 
2914   // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2915   // pattern.
2916   SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2917 
2918   // These are the current input chain and glue for use when generating nodes.
2919   // Various Emit operations change these.  For example, emitting a copytoreg
2920   // uses and updates these.
2921   SDValue InputChain, InputGlue;
2922 
2923   // ChainNodesMatched - If a pattern matches nodes that have input/output
2924   // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2925   // which ones they are.  The result is captured into this list so that we can
2926   // update the chain results when the pattern is complete.
2927   SmallVector<SDNode*, 3> ChainNodesMatched;
2928 
2929   LLVM_DEBUG(dbgs() << "ISEL: Starting pattern match\n");
2930 
2931   // Determine where to start the interpreter.  Normally we start at opcode #0,
2932   // but if the state machine starts with an OPC_SwitchOpcode, then we
2933   // accelerate the first lookup (which is guaranteed to be hot) with the
2934   // OpcodeOffset table.
2935   unsigned MatcherIndex = 0;
2936 
2937   if (!OpcodeOffset.empty()) {
2938     // Already computed the OpcodeOffset table, just index into it.
2939     if (N.getOpcode() < OpcodeOffset.size())
2940       MatcherIndex = OpcodeOffset[N.getOpcode()];
2941     LLVM_DEBUG(dbgs() << "  Initial Opcode index to " << MatcherIndex << "\n");
2942 
2943   } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2944     // Otherwise, the table isn't computed, but the state machine does start
2945     // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
2946     // is the first time we're selecting an instruction.
2947     unsigned Idx = 1;
2948     while (true) {
2949       // Get the size of this case.
2950       unsigned CaseSize = MatcherTable[Idx++];
2951       if (CaseSize & 128)
2952         CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2953       if (CaseSize == 0) break;
2954 
2955       // Get the opcode, add the index to the table.
2956       uint16_t Opc = MatcherTable[Idx++];
2957       Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2958       if (Opc >= OpcodeOffset.size())
2959         OpcodeOffset.resize((Opc+1)*2);
2960       OpcodeOffset[Opc] = Idx;
2961       Idx += CaseSize;
2962     }
2963 
2964     // Okay, do the lookup for the first opcode.
2965     if (N.getOpcode() < OpcodeOffset.size())
2966       MatcherIndex = OpcodeOffset[N.getOpcode()];
2967   }
2968 
2969   while (true) {
2970     assert(MatcherIndex < TableSize && "Invalid index");
2971 #ifndef NDEBUG
2972     unsigned CurrentOpcodeIndex = MatcherIndex;
2973 #endif
2974     BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2975     switch (Opcode) {
2976     case OPC_Scope: {
2977       // Okay, the semantics of this operation are that we should push a scope
2978       // then evaluate the first child.  However, pushing a scope only to have
2979       // the first check fail (which then pops it) is inefficient.  If we can
2980       // determine immediately that the first check (or first several) will
2981       // immediately fail, don't even bother pushing a scope for them.
2982       unsigned FailIndex;
2983 
2984       while (true) {
2985         unsigned NumToSkip = MatcherTable[MatcherIndex++];
2986         if (NumToSkip & 128)
2987           NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2988         // Found the end of the scope with no match.
2989         if (NumToSkip == 0) {
2990           FailIndex = 0;
2991           break;
2992         }
2993 
2994         FailIndex = MatcherIndex+NumToSkip;
2995 
2996         unsigned MatcherIndexOfPredicate = MatcherIndex;
2997         (void)MatcherIndexOfPredicate; // silence warning.
2998 
2999         // If we can't evaluate this predicate without pushing a scope (e.g. if
3000         // it is a 'MoveParent') or if the predicate succeeds on this node, we
3001         // push the scope and evaluate the full predicate chain.
3002         bool Result;
3003         MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
3004                                               Result, *this, RecordedNodes);
3005         if (!Result)
3006           break;
3007 
3008         LLVM_DEBUG(
3009             dbgs() << "  Skipped scope entry (due to false predicate) at "
3010                    << "index " << MatcherIndexOfPredicate << ", continuing at "
3011                    << FailIndex << "\n");
3012         ++NumDAGIselRetries;
3013 
3014         // Otherwise, we know that this case of the Scope is guaranteed to fail,
3015         // move to the next case.
3016         MatcherIndex = FailIndex;
3017       }
3018 
3019       // If the whole scope failed to match, bail.
3020       if (FailIndex == 0) break;
3021 
3022       // Push a MatchScope which indicates where to go if the first child fails
3023       // to match.
3024       MatchScope NewEntry;
3025       NewEntry.FailIndex = FailIndex;
3026       NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
3027       NewEntry.NumRecordedNodes = RecordedNodes.size();
3028       NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
3029       NewEntry.InputChain = InputChain;
3030       NewEntry.InputGlue = InputGlue;
3031       NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
3032       MatchScopes.push_back(NewEntry);
3033       continue;
3034     }
3035     case OPC_RecordNode: {
3036       // Remember this node, it may end up being an operand in the pattern.
3037       SDNode *Parent = nullptr;
3038       if (NodeStack.size() > 1)
3039         Parent = NodeStack[NodeStack.size()-2].getNode();
3040       RecordedNodes.push_back(std::make_pair(N, Parent));
3041       continue;
3042     }
3043 
3044     case OPC_RecordChild0: case OPC_RecordChild1:
3045     case OPC_RecordChild2: case OPC_RecordChild3:
3046     case OPC_RecordChild4: case OPC_RecordChild5:
3047     case OPC_RecordChild6: case OPC_RecordChild7: {
3048       unsigned ChildNo = Opcode-OPC_RecordChild0;
3049       if (ChildNo >= N.getNumOperands())
3050         break;  // Match fails if out of range child #.
3051 
3052       RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
3053                                              N.getNode()));
3054       continue;
3055     }
3056     case OPC_RecordMemRef:
3057       if (auto *MN = dyn_cast<MemSDNode>(N))
3058         MatchedMemRefs.push_back(MN->getMemOperand());
3059       else {
3060         LLVM_DEBUG(dbgs() << "Expected MemSDNode "; N->dump(CurDAG);
3061                    dbgs() << '\n');
3062       }
3063 
3064       continue;
3065 
3066     case OPC_CaptureGlueInput:
3067       // If the current node has an input glue, capture it in InputGlue.
3068       if (N->getNumOperands() != 0 &&
3069           N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
3070         InputGlue = N->getOperand(N->getNumOperands()-1);
3071       continue;
3072 
3073     case OPC_MoveChild: {
3074       unsigned ChildNo = MatcherTable[MatcherIndex++];
3075       if (ChildNo >= N.getNumOperands())
3076         break;  // Match fails if out of range child #.
3077       N = N.getOperand(ChildNo);
3078       NodeStack.push_back(N);
3079       continue;
3080     }
3081 
3082     case OPC_MoveChild0: case OPC_MoveChild1:
3083     case OPC_MoveChild2: case OPC_MoveChild3:
3084     case OPC_MoveChild4: case OPC_MoveChild5:
3085     case OPC_MoveChild6: case OPC_MoveChild7: {
3086       unsigned ChildNo = Opcode-OPC_MoveChild0;
3087       if (ChildNo >= N.getNumOperands())
3088         break;  // Match fails if out of range child #.
3089       N = N.getOperand(ChildNo);
3090       NodeStack.push_back(N);
3091       continue;
3092     }
3093 
3094     case OPC_MoveParent:
3095       // Pop the current node off the NodeStack.
3096       NodeStack.pop_back();
3097       assert(!NodeStack.empty() && "Node stack imbalance!");
3098       N = NodeStack.back();
3099       continue;
3100 
3101     case OPC_CheckSame:
3102       if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
3103       continue;
3104 
3105     case OPC_CheckChild0Same: case OPC_CheckChild1Same:
3106     case OPC_CheckChild2Same: case OPC_CheckChild3Same:
3107       if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes,
3108                             Opcode-OPC_CheckChild0Same))
3109         break;
3110       continue;
3111 
3112     case OPC_CheckPatternPredicate:
3113       if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
3114       continue;
3115     case OPC_CheckPredicate:
3116       if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
3117                                 N.getNode()))
3118         break;
3119       continue;
3120     case OPC_CheckPredicateWithOperands: {
3121       unsigned OpNum = MatcherTable[MatcherIndex++];
3122       SmallVector<SDValue, 8> Operands;
3123 
3124       for (unsigned i = 0; i < OpNum; ++i)
3125         Operands.push_back(RecordedNodes[MatcherTable[MatcherIndex++]].first);
3126 
3127       unsigned PredNo = MatcherTable[MatcherIndex++];
3128       if (!CheckNodePredicateWithOperands(N.getNode(), PredNo, Operands))
3129         break;
3130       continue;
3131     }
3132     case OPC_CheckComplexPat: {
3133       unsigned CPNum = MatcherTable[MatcherIndex++];
3134       unsigned RecNo = MatcherTable[MatcherIndex++];
3135       assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
3136 
3137       // If target can modify DAG during matching, keep the matching state
3138       // consistent.
3139       std::unique_ptr<MatchStateUpdater> MSU;
3140       if (ComplexPatternFuncMutatesDAG())
3141         MSU.reset(new MatchStateUpdater(*CurDAG, &NodeToMatch, RecordedNodes,
3142                                         MatchScopes));
3143 
3144       if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
3145                                RecordedNodes[RecNo].first, CPNum,
3146                                RecordedNodes))
3147         break;
3148       continue;
3149     }
3150     case OPC_CheckOpcode:
3151       if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
3152       continue;
3153 
3154     case OPC_CheckType:
3155       if (!::CheckType(MatcherTable, MatcherIndex, N, TLI,
3156                        CurDAG->getDataLayout()))
3157         break;
3158       continue;
3159 
3160     case OPC_CheckTypeRes: {
3161       unsigned Res = MatcherTable[MatcherIndex++];
3162       if (!::CheckType(MatcherTable, MatcherIndex, N.getValue(Res), TLI,
3163                        CurDAG->getDataLayout()))
3164         break;
3165       continue;
3166     }
3167 
3168     case OPC_SwitchOpcode: {
3169       unsigned CurNodeOpcode = N.getOpcode();
3170       unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
3171       unsigned CaseSize;
3172       while (true) {
3173         // Get the size of this case.
3174         CaseSize = MatcherTable[MatcherIndex++];
3175         if (CaseSize & 128)
3176           CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
3177         if (CaseSize == 0) break;
3178 
3179         uint16_t Opc = MatcherTable[MatcherIndex++];
3180         Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
3181 
3182         // If the opcode matches, then we will execute this case.
3183         if (CurNodeOpcode == Opc)
3184           break;
3185 
3186         // Otherwise, skip over this case.
3187         MatcherIndex += CaseSize;
3188       }
3189 
3190       // If no cases matched, bail out.
3191       if (CaseSize == 0) break;
3192 
3193       // Otherwise, execute the case we found.
3194       LLVM_DEBUG(dbgs() << "  OpcodeSwitch from " << SwitchStart << " to "
3195                         << MatcherIndex << "\n");
3196       continue;
3197     }
3198 
3199     case OPC_SwitchType: {
3200       MVT CurNodeVT = N.getSimpleValueType();
3201       unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
3202       unsigned CaseSize;
3203       while (true) {
3204         // Get the size of this case.
3205         CaseSize = MatcherTable[MatcherIndex++];
3206         if (CaseSize & 128)
3207           CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
3208         if (CaseSize == 0) break;
3209 
3210         MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3211         if (CaseVT == MVT::iPTR)
3212           CaseVT = TLI->getPointerTy(CurDAG->getDataLayout());
3213 
3214         // If the VT matches, then we will execute this case.
3215         if (CurNodeVT == CaseVT)
3216           break;
3217 
3218         // Otherwise, skip over this case.
3219         MatcherIndex += CaseSize;
3220       }
3221 
3222       // If no cases matched, bail out.
3223       if (CaseSize == 0) break;
3224 
3225       // Otherwise, execute the case we found.
3226       LLVM_DEBUG(dbgs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
3227                         << "] from " << SwitchStart << " to " << MatcherIndex
3228                         << '\n');
3229       continue;
3230     }
3231     case OPC_CheckChild0Type: case OPC_CheckChild1Type:
3232     case OPC_CheckChild2Type: case OPC_CheckChild3Type:
3233     case OPC_CheckChild4Type: case OPC_CheckChild5Type:
3234     case OPC_CheckChild6Type: case OPC_CheckChild7Type:
3235       if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
3236                             CurDAG->getDataLayout(),
3237                             Opcode - OPC_CheckChild0Type))
3238         break;
3239       continue;
3240     case OPC_CheckCondCode:
3241       if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
3242       continue;
3243     case OPC_CheckChild2CondCode:
3244       if (!::CheckChild2CondCode(MatcherTable, MatcherIndex, N)) break;
3245       continue;
3246     case OPC_CheckValueType:
3247       if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI,
3248                             CurDAG->getDataLayout()))
3249         break;
3250       continue;
3251     case OPC_CheckInteger:
3252       if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
3253       continue;
3254     case OPC_CheckChild0Integer: case OPC_CheckChild1Integer:
3255     case OPC_CheckChild2Integer: case OPC_CheckChild3Integer:
3256     case OPC_CheckChild4Integer:
3257       if (!::CheckChildInteger(MatcherTable, MatcherIndex, N,
3258                                Opcode-OPC_CheckChild0Integer)) break;
3259       continue;
3260     case OPC_CheckAndImm:
3261       if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
3262       continue;
3263     case OPC_CheckOrImm:
3264       if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
3265       continue;
3266     case OPC_CheckImmAllOnesV:
3267       if (!ISD::isConstantSplatVectorAllOnes(N.getNode()))
3268         break;
3269       continue;
3270     case OPC_CheckImmAllZerosV:
3271       if (!ISD::isConstantSplatVectorAllZeros(N.getNode()))
3272         break;
3273       continue;
3274 
3275     case OPC_CheckFoldableChainNode: {
3276       assert(NodeStack.size() != 1 && "No parent node");
3277       // Verify that all intermediate nodes between the root and this one have
3278       // a single use (ignoring chains, which are handled in UpdateChains).
3279       bool HasMultipleUses = false;
3280       for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i) {
3281         unsigned NNonChainUses = 0;
3282         SDNode *NS = NodeStack[i].getNode();
3283         for (auto UI = NS->use_begin(), UE = NS->use_end(); UI != UE; ++UI)
3284           if (UI.getUse().getValueType() != MVT::Other)
3285             if (++NNonChainUses > 1) {
3286               HasMultipleUses = true;
3287               break;
3288             }
3289         if (HasMultipleUses) break;
3290       }
3291       if (HasMultipleUses) break;
3292 
3293       // Check to see that the target thinks this is profitable to fold and that
3294       // we can fold it without inducing cycles in the graph.
3295       if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
3296                               NodeToMatch) ||
3297           !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
3298                          NodeToMatch, OptLevel,
3299                          true/*We validate our own chains*/))
3300         break;
3301 
3302       continue;
3303     }
3304     case OPC_EmitInteger:
3305     case OPC_EmitStringInteger: {
3306       MVT::SimpleValueType VT =
3307         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3308       int64_t Val = MatcherTable[MatcherIndex++];
3309       if (Val & 128)
3310         Val = GetVBR(Val, MatcherTable, MatcherIndex);
3311       if (Opcode == OPC_EmitInteger)
3312         Val = decodeSignRotatedValue(Val);
3313       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3314                               CurDAG->getTargetConstant(Val, SDLoc(NodeToMatch),
3315                                                         VT), nullptr));
3316       continue;
3317     }
3318     case OPC_EmitRegister: {
3319       MVT::SimpleValueType VT =
3320         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3321       unsigned RegNo = MatcherTable[MatcherIndex++];
3322       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3323                               CurDAG->getRegister(RegNo, VT), nullptr));
3324       continue;
3325     }
3326     case OPC_EmitRegister2: {
3327       // For targets w/ more than 256 register names, the register enum
3328       // values are stored in two bytes in the matcher table (just like
3329       // opcodes).
3330       MVT::SimpleValueType VT =
3331         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3332       unsigned RegNo = MatcherTable[MatcherIndex++];
3333       RegNo |= MatcherTable[MatcherIndex++] << 8;
3334       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3335                               CurDAG->getRegister(RegNo, VT), nullptr));
3336       continue;
3337     }
3338 
3339     case OPC_EmitConvertToTarget:  {
3340       // Convert from IMM/FPIMM to target version.
3341       unsigned RecNo = MatcherTable[MatcherIndex++];
3342       assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget");
3343       SDValue Imm = RecordedNodes[RecNo].first;
3344 
3345       if (Imm->getOpcode() == ISD::Constant) {
3346         const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue();
3347         Imm = CurDAG->getTargetConstant(*Val, SDLoc(NodeToMatch),
3348                                         Imm.getValueType());
3349       } else if (Imm->getOpcode() == ISD::ConstantFP) {
3350         const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
3351         Imm = CurDAG->getTargetConstantFP(*Val, SDLoc(NodeToMatch),
3352                                           Imm.getValueType());
3353       }
3354 
3355       RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
3356       continue;
3357     }
3358 
3359     case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
3360     case OPC_EmitMergeInputChains1_1:    // OPC_EmitMergeInputChains, 1, 1
3361     case OPC_EmitMergeInputChains1_2: {  // OPC_EmitMergeInputChains, 1, 2
3362       // These are space-optimized forms of OPC_EmitMergeInputChains.
3363       assert(!InputChain.getNode() &&
3364              "EmitMergeInputChains should be the first chain producing node");
3365       assert(ChainNodesMatched.empty() &&
3366              "Should only have one EmitMergeInputChains per match");
3367 
3368       // Read all of the chained nodes.
3369       unsigned RecNo = Opcode - OPC_EmitMergeInputChains1_0;
3370       assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3371       ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3372 
3373       // FIXME: What if other value results of the node have uses not matched
3374       // by this pattern?
3375       if (ChainNodesMatched.back() != NodeToMatch &&
3376           !RecordedNodes[RecNo].first.hasOneUse()) {
3377         ChainNodesMatched.clear();
3378         break;
3379       }
3380 
3381       // Merge the input chains if they are not intra-pattern references.
3382       InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3383 
3384       if (!InputChain.getNode())
3385         break;  // Failed to merge.
3386       continue;
3387     }
3388 
3389     case OPC_EmitMergeInputChains: {
3390       assert(!InputChain.getNode() &&
3391              "EmitMergeInputChains should be the first chain producing node");
3392       // This node gets a list of nodes we matched in the input that have
3393       // chains.  We want to token factor all of the input chains to these nodes
3394       // together.  However, if any of the input chains is actually one of the
3395       // nodes matched in this pattern, then we have an intra-match reference.
3396       // Ignore these because the newly token factored chain should not refer to
3397       // the old nodes.
3398       unsigned NumChains = MatcherTable[MatcherIndex++];
3399       assert(NumChains != 0 && "Can't TF zero chains");
3400 
3401       assert(ChainNodesMatched.empty() &&
3402              "Should only have one EmitMergeInputChains per match");
3403 
3404       // Read all of the chained nodes.
3405       for (unsigned i = 0; i != NumChains; ++i) {
3406         unsigned RecNo = MatcherTable[MatcherIndex++];
3407         assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3408         ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3409 
3410         // FIXME: What if other value results of the node have uses not matched
3411         // by this pattern?
3412         if (ChainNodesMatched.back() != NodeToMatch &&
3413             !RecordedNodes[RecNo].first.hasOneUse()) {
3414           ChainNodesMatched.clear();
3415           break;
3416         }
3417       }
3418 
3419       // If the inner loop broke out, the match fails.
3420       if (ChainNodesMatched.empty())
3421         break;
3422 
3423       // Merge the input chains if they are not intra-pattern references.
3424       InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3425 
3426       if (!InputChain.getNode())
3427         break;  // Failed to merge.
3428 
3429       continue;
3430     }
3431 
3432     case OPC_EmitCopyToReg:
3433     case OPC_EmitCopyToReg2: {
3434       unsigned RecNo = MatcherTable[MatcherIndex++];
3435       assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg");
3436       unsigned DestPhysReg = MatcherTable[MatcherIndex++];
3437       if (Opcode == OPC_EmitCopyToReg2)
3438         DestPhysReg |= MatcherTable[MatcherIndex++] << 8;
3439 
3440       if (!InputChain.getNode())
3441         InputChain = CurDAG->getEntryNode();
3442 
3443       InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch),
3444                                         DestPhysReg, RecordedNodes[RecNo].first,
3445                                         InputGlue);
3446 
3447       InputGlue = InputChain.getValue(1);
3448       continue;
3449     }
3450 
3451     case OPC_EmitNodeXForm: {
3452       unsigned XFormNo = MatcherTable[MatcherIndex++];
3453       unsigned RecNo = MatcherTable[MatcherIndex++];
3454       assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm");
3455       SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
3456       RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, nullptr));
3457       continue;
3458     }
3459     case OPC_Coverage: {
3460       // This is emitted right before MorphNode/EmitNode.
3461       // So it should be safe to assume that this node has been selected
3462       unsigned index = MatcherTable[MatcherIndex++];
3463       index |= (MatcherTable[MatcherIndex++] << 8);
3464       dbgs() << "COVERED: " << getPatternForIndex(index) << "\n";
3465       dbgs() << "INCLUDED: " << getIncludePathForIndex(index) << "\n";
3466       continue;
3467     }
3468 
3469     case OPC_EmitNode:     case OPC_MorphNodeTo:
3470     case OPC_EmitNode0:    case OPC_EmitNode1:    case OPC_EmitNode2:
3471     case OPC_MorphNodeTo0: case OPC_MorphNodeTo1: case OPC_MorphNodeTo2: {
3472       uint16_t TargetOpc = MatcherTable[MatcherIndex++];
3473       TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
3474       unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
3475       // Get the result VT list.
3476       unsigned NumVTs;
3477       // If this is one of the compressed forms, get the number of VTs based
3478       // on the Opcode. Otherwise read the next byte from the table.
3479       if (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2)
3480         NumVTs = Opcode - OPC_MorphNodeTo0;
3481       else if (Opcode >= OPC_EmitNode0 && Opcode <= OPC_EmitNode2)
3482         NumVTs = Opcode - OPC_EmitNode0;
3483       else
3484         NumVTs = MatcherTable[MatcherIndex++];
3485       SmallVector<EVT, 4> VTs;
3486       for (unsigned i = 0; i != NumVTs; ++i) {
3487         MVT::SimpleValueType VT =
3488           (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3489         if (VT == MVT::iPTR)
3490           VT = TLI->getPointerTy(CurDAG->getDataLayout()).SimpleTy;
3491         VTs.push_back(VT);
3492       }
3493 
3494       if (EmitNodeInfo & OPFL_Chain)
3495         VTs.push_back(MVT::Other);
3496       if (EmitNodeInfo & OPFL_GlueOutput)
3497         VTs.push_back(MVT::Glue);
3498 
3499       // This is hot code, so optimize the two most common cases of 1 and 2
3500       // results.
3501       SDVTList VTList;
3502       if (VTs.size() == 1)
3503         VTList = CurDAG->getVTList(VTs[0]);
3504       else if (VTs.size() == 2)
3505         VTList = CurDAG->getVTList(VTs[0], VTs[1]);
3506       else
3507         VTList = CurDAG->getVTList(VTs);
3508 
3509       // Get the operand list.
3510       unsigned NumOps = MatcherTable[MatcherIndex++];
3511       SmallVector<SDValue, 8> Ops;
3512       for (unsigned i = 0; i != NumOps; ++i) {
3513         unsigned RecNo = MatcherTable[MatcherIndex++];
3514         if (RecNo & 128)
3515           RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
3516 
3517         assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
3518         Ops.push_back(RecordedNodes[RecNo].first);
3519       }
3520 
3521       // If there are variadic operands to add, handle them now.
3522       if (EmitNodeInfo & OPFL_VariadicInfo) {
3523         // Determine the start index to copy from.
3524         unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
3525         FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
3526         assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
3527                "Invalid variadic node");
3528         // Copy all of the variadic operands, not including a potential glue
3529         // input.
3530         for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
3531              i != e; ++i) {
3532           SDValue V = NodeToMatch->getOperand(i);
3533           if (V.getValueType() == MVT::Glue) break;
3534           Ops.push_back(V);
3535         }
3536       }
3537 
3538       // If this has chain/glue inputs, add them.
3539       if (EmitNodeInfo & OPFL_Chain)
3540         Ops.push_back(InputChain);
3541       if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr)
3542         Ops.push_back(InputGlue);
3543 
3544       // Check whether any matched node could raise an FP exception.  Since all
3545       // such nodes must have a chain, it suffices to check ChainNodesMatched.
3546       // We need to perform this check before potentially modifying one of the
3547       // nodes via MorphNode.
3548       bool MayRaiseFPException = false;
3549       for (auto *N : ChainNodesMatched)
3550         if (mayRaiseFPException(N) && !N->getFlags().hasNoFPExcept()) {
3551           MayRaiseFPException = true;
3552           break;
3553         }
3554 
3555       // Create the node.
3556       MachineSDNode *Res = nullptr;
3557       bool IsMorphNodeTo = Opcode == OPC_MorphNodeTo ||
3558                      (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2);
3559       if (!IsMorphNodeTo) {
3560         // If this is a normal EmitNode command, just create the new node and
3561         // add the results to the RecordedNodes list.
3562         Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch),
3563                                      VTList, Ops);
3564 
3565         // Add all the non-glue/non-chain results to the RecordedNodes list.
3566         for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
3567           if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
3568           RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
3569                                                              nullptr));
3570         }
3571       } else {
3572         assert(NodeToMatch->getOpcode() != ISD::DELETED_NODE &&
3573                "NodeToMatch was removed partway through selection");
3574         SelectionDAG::DAGNodeDeletedListener NDL(*CurDAG, [&](SDNode *N,
3575                                                               SDNode *E) {
3576           CurDAG->salvageDebugInfo(*N);
3577           auto &Chain = ChainNodesMatched;
3578           assert((!E || !is_contained(Chain, N)) &&
3579                  "Chain node replaced during MorphNode");
3580           llvm::erase_value(Chain, N);
3581         });
3582         Res = cast<MachineSDNode>(MorphNode(NodeToMatch, TargetOpc, VTList,
3583                                             Ops, EmitNodeInfo));
3584       }
3585 
3586       // Set the NoFPExcept flag when no original matched node could
3587       // raise an FP exception, but the new node potentially might.
3588       if (!MayRaiseFPException && mayRaiseFPException(Res)) {
3589         SDNodeFlags Flags = Res->getFlags();
3590         Flags.setNoFPExcept(true);
3591         Res->setFlags(Flags);
3592       }
3593 
3594       // If the node had chain/glue results, update our notion of the current
3595       // chain and glue.
3596       if (EmitNodeInfo & OPFL_GlueOutput) {
3597         InputGlue = SDValue(Res, VTs.size()-1);
3598         if (EmitNodeInfo & OPFL_Chain)
3599           InputChain = SDValue(Res, VTs.size()-2);
3600       } else if (EmitNodeInfo & OPFL_Chain)
3601         InputChain = SDValue(Res, VTs.size()-1);
3602 
3603       // If the OPFL_MemRefs glue is set on this node, slap all of the
3604       // accumulated memrefs onto it.
3605       //
3606       // FIXME: This is vastly incorrect for patterns with multiple outputs
3607       // instructions that access memory and for ComplexPatterns that match
3608       // loads.
3609       if (EmitNodeInfo & OPFL_MemRefs) {
3610         // Only attach load or store memory operands if the generated
3611         // instruction may load or store.
3612         const MCInstrDesc &MCID = TII->get(TargetOpc);
3613         bool mayLoad = MCID.mayLoad();
3614         bool mayStore = MCID.mayStore();
3615 
3616         // We expect to have relatively few of these so just filter them into a
3617         // temporary buffer so that we can easily add them to the instruction.
3618         SmallVector<MachineMemOperand *, 4> FilteredMemRefs;
3619         for (MachineMemOperand *MMO : MatchedMemRefs) {
3620           if (MMO->isLoad()) {
3621             if (mayLoad)
3622               FilteredMemRefs.push_back(MMO);
3623           } else if (MMO->isStore()) {
3624             if (mayStore)
3625               FilteredMemRefs.push_back(MMO);
3626           } else {
3627             FilteredMemRefs.push_back(MMO);
3628           }
3629         }
3630 
3631         CurDAG->setNodeMemRefs(Res, FilteredMemRefs);
3632       }
3633 
3634       LLVM_DEBUG(if (!MatchedMemRefs.empty() && Res->memoperands_empty()) dbgs()
3635                      << "  Dropping mem operands\n";
3636                  dbgs() << "  " << (IsMorphNodeTo ? "Morphed" : "Created")
3637                         << " node: ";
3638                  Res->dump(CurDAG););
3639 
3640       // If this was a MorphNodeTo then we're completely done!
3641       if (IsMorphNodeTo) {
3642         // Update chain uses.
3643         UpdateChains(Res, InputChain, ChainNodesMatched, true);
3644         return;
3645       }
3646       continue;
3647     }
3648 
3649     case OPC_CompleteMatch: {
3650       // The match has been completed, and any new nodes (if any) have been
3651       // created.  Patch up references to the matched dag to use the newly
3652       // created nodes.
3653       unsigned NumResults = MatcherTable[MatcherIndex++];
3654 
3655       for (unsigned i = 0; i != NumResults; ++i) {
3656         unsigned ResSlot = MatcherTable[MatcherIndex++];
3657         if (ResSlot & 128)
3658           ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
3659 
3660         assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch");
3661         SDValue Res = RecordedNodes[ResSlot].first;
3662 
3663         assert(i < NodeToMatch->getNumValues() &&
3664                NodeToMatch->getValueType(i) != MVT::Other &&
3665                NodeToMatch->getValueType(i) != MVT::Glue &&
3666                "Invalid number of results to complete!");
3667         assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
3668                 NodeToMatch->getValueType(i) == MVT::iPTR ||
3669                 Res.getValueType() == MVT::iPTR ||
3670                 NodeToMatch->getValueType(i).getSizeInBits() ==
3671                     Res.getValueSizeInBits()) &&
3672                "invalid replacement");
3673         ReplaceUses(SDValue(NodeToMatch, i), Res);
3674       }
3675 
3676       // Update chain uses.
3677       UpdateChains(NodeToMatch, InputChain, ChainNodesMatched, false);
3678 
3679       // If the root node defines glue, we need to update it to the glue result.
3680       // TODO: This never happens in our tests and I think it can be removed /
3681       // replaced with an assert, but if we do it this the way the change is
3682       // NFC.
3683       if (NodeToMatch->getValueType(NodeToMatch->getNumValues() - 1) ==
3684               MVT::Glue &&
3685           InputGlue.getNode())
3686         ReplaceUses(SDValue(NodeToMatch, NodeToMatch->getNumValues() - 1),
3687                     InputGlue);
3688 
3689       assert(NodeToMatch->use_empty() &&
3690              "Didn't replace all uses of the node?");
3691       CurDAG->RemoveDeadNode(NodeToMatch);
3692 
3693       return;
3694     }
3695     }
3696 
3697     // If the code reached this point, then the match failed.  See if there is
3698     // another child to try in the current 'Scope', otherwise pop it until we
3699     // find a case to check.
3700     LLVM_DEBUG(dbgs() << "  Match failed at index " << CurrentOpcodeIndex
3701                       << "\n");
3702     ++NumDAGIselRetries;
3703     while (true) {
3704       if (MatchScopes.empty()) {
3705         CannotYetSelect(NodeToMatch);
3706         return;
3707       }
3708 
3709       // Restore the interpreter state back to the point where the scope was
3710       // formed.
3711       MatchScope &LastScope = MatchScopes.back();
3712       RecordedNodes.resize(LastScope.NumRecordedNodes);
3713       NodeStack.clear();
3714       NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
3715       N = NodeStack.back();
3716 
3717       if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
3718         MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
3719       MatcherIndex = LastScope.FailIndex;
3720 
3721       LLVM_DEBUG(dbgs() << "  Continuing at " << MatcherIndex << "\n");
3722 
3723       InputChain = LastScope.InputChain;
3724       InputGlue = LastScope.InputGlue;
3725       if (!LastScope.HasChainNodesMatched)
3726         ChainNodesMatched.clear();
3727 
3728       // Check to see what the offset is at the new MatcherIndex.  If it is zero
3729       // we have reached the end of this scope, otherwise we have another child
3730       // in the current scope to try.
3731       unsigned NumToSkip = MatcherTable[MatcherIndex++];
3732       if (NumToSkip & 128)
3733         NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
3734 
3735       // If we have another child in this scope to match, update FailIndex and
3736       // try it.
3737       if (NumToSkip != 0) {
3738         LastScope.FailIndex = MatcherIndex+NumToSkip;
3739         break;
3740       }
3741 
3742       // End of this scope, pop it and try the next child in the containing
3743       // scope.
3744       MatchScopes.pop_back();
3745     }
3746   }
3747 }
3748 
3749 /// Return whether the node may raise an FP exception.
3750 bool SelectionDAGISel::mayRaiseFPException(SDNode *N) const {
3751   // For machine opcodes, consult the MCID flag.
3752   if (N->isMachineOpcode()) {
3753     const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
3754     return MCID.mayRaiseFPException();
3755   }
3756 
3757   // For ISD opcodes, only StrictFP opcodes may raise an FP
3758   // exception.
3759   if (N->isTargetOpcode())
3760     return N->isTargetStrictFPOpcode();
3761   return N->isStrictFPOpcode();
3762 }
3763 
3764 bool SelectionDAGISel::isOrEquivalentToAdd(const SDNode *N) const {
3765   assert(N->getOpcode() == ISD::OR && "Unexpected opcode");
3766   auto *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
3767   if (!C)
3768     return false;
3769 
3770   // Detect when "or" is used to add an offset to a stack object.
3771   if (auto *FN = dyn_cast<FrameIndexSDNode>(N->getOperand(0))) {
3772     MachineFrameInfo &MFI = MF->getFrameInfo();
3773     Align A = MFI.getObjectAlign(FN->getIndex());
3774     int32_t Off = C->getSExtValue();
3775     // If the alleged offset fits in the zero bits guaranteed by
3776     // the alignment, then this or is really an add.
3777     return (Off >= 0) && (((A.value() - 1) & Off) == unsigned(Off));
3778   }
3779   return false;
3780 }
3781 
3782 void SelectionDAGISel::CannotYetSelect(SDNode *N) {
3783   std::string msg;
3784   raw_string_ostream Msg(msg);
3785   Msg << "Cannot select: ";
3786 
3787   if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
3788       N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
3789       N->getOpcode() != ISD::INTRINSIC_VOID) {
3790     N->printrFull(Msg, CurDAG);
3791     Msg << "\nIn function: " << MF->getName();
3792   } else {
3793     bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
3794     unsigned iid =
3795       cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
3796     if (iid < Intrinsic::num_intrinsics)
3797       Msg << "intrinsic %" << Intrinsic::getBaseName((Intrinsic::ID)iid);
3798     else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
3799       Msg << "target intrinsic %" << TII->getName(iid);
3800     else
3801       Msg << "unknown intrinsic #" << iid;
3802   }
3803   report_fatal_error(Msg.str());
3804 }
3805 
3806 char SelectionDAGISel::ID = 0;
3807