1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/CodeGenCommonISel.h"
17 #include "llvm/CodeGen/MachineFrameInfo.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineJumpTableInfo.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/SelectionDAG.h"
22 #include "llvm/CodeGen/TargetRegisterInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/DivisionByConstantInfo.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 using namespace llvm;
36 
37 /// NOTE: The TargetMachine owns TLOF.
38 TargetLowering::TargetLowering(const TargetMachine &tm)
39     : TargetLoweringBase(tm) {}
40 
41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42   return nullptr;
43 }
44 
45 bool TargetLowering::isPositionIndependent() const {
46   return getTargetMachine().isPositionIndependent();
47 }
48 
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52                                           SDValue &Chain) const {
53   const Function &F = DAG.getMachineFunction().getFunction();
54 
55   // First, check if tail calls have been disabled in this function.
56   if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
57     return false;
58 
59   // Conservatively require the attributes of the call to match those of
60   // the return. Ignore following attributes because they don't affect the
61   // call sequence.
62   AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs());
63   for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
64                            Attribute::DereferenceableOrNull, Attribute::NoAlias,
65                            Attribute::NonNull, Attribute::NoUndef})
66     CallerAttrs.removeAttribute(Attr);
67 
68   if (CallerAttrs.hasAttributes())
69     return false;
70 
71   // It's not safe to eliminate the sign / zero extension of the return value.
72   if (CallerAttrs.contains(Attribute::ZExt) ||
73       CallerAttrs.contains(Attribute::SExt))
74     return false;
75 
76   // Check if the only use is a function return node.
77   return isUsedByReturnOnly(Node, Chain);
78 }
79 
80 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
81     const uint32_t *CallerPreservedMask,
82     const SmallVectorImpl<CCValAssign> &ArgLocs,
83     const SmallVectorImpl<SDValue> &OutVals) const {
84   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
85     const CCValAssign &ArgLoc = ArgLocs[I];
86     if (!ArgLoc.isRegLoc())
87       continue;
88     MCRegister Reg = ArgLoc.getLocReg();
89     // Only look at callee saved registers.
90     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
91       continue;
92     // Check that we pass the value used for the caller.
93     // (We look for a CopyFromReg reading a virtual register that is used
94     //  for the function live-in value of register Reg)
95     SDValue Value = OutVals[I];
96     if (Value->getOpcode() == ISD::AssertZext)
97       Value = Value.getOperand(0);
98     if (Value->getOpcode() != ISD::CopyFromReg)
99       return false;
100     Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
101     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
102       return false;
103   }
104   return true;
105 }
106 
107 /// Set CallLoweringInfo attribute flags based on a call instruction
108 /// and called function attributes.
109 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
110                                                      unsigned ArgIdx) {
111   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
112   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
113   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
114   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
115   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
116   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
117   IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
118   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
119   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
120   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
121   IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync);
122   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
123   Alignment = Call->getParamStackAlign(ArgIdx);
124   IndirectType = nullptr;
125   assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 &&
126          "multiple ABI attributes?");
127   if (IsByVal) {
128     IndirectType = Call->getParamByValType(ArgIdx);
129     if (!Alignment)
130       Alignment = Call->getParamAlign(ArgIdx);
131   }
132   if (IsPreallocated)
133     IndirectType = Call->getParamPreallocatedType(ArgIdx);
134   if (IsInAlloca)
135     IndirectType = Call->getParamInAllocaType(ArgIdx);
136   if (IsSRet)
137     IndirectType = Call->getParamStructRetType(ArgIdx);
138 }
139 
140 /// Generate a libcall taking the given operands as arguments and returning a
141 /// result of type RetVT.
142 std::pair<SDValue, SDValue>
143 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
144                             ArrayRef<SDValue> Ops,
145                             MakeLibCallOptions CallOptions,
146                             const SDLoc &dl,
147                             SDValue InChain) const {
148   if (!InChain)
149     InChain = DAG.getEntryNode();
150 
151   TargetLowering::ArgListTy Args;
152   Args.reserve(Ops.size());
153 
154   TargetLowering::ArgListEntry Entry;
155   for (unsigned i = 0; i < Ops.size(); ++i) {
156     SDValue NewOp = Ops[i];
157     Entry.Node = NewOp;
158     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
159     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
160                                                  CallOptions.IsSExt);
161     Entry.IsZExt = !Entry.IsSExt;
162 
163     if (CallOptions.IsSoften &&
164         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
165       Entry.IsSExt = Entry.IsZExt = false;
166     }
167     Args.push_back(Entry);
168   }
169 
170   if (LC == RTLIB::UNKNOWN_LIBCALL)
171     report_fatal_error("Unsupported library call operation!");
172   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
173                                          getPointerTy(DAG.getDataLayout()));
174 
175   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
176   TargetLowering::CallLoweringInfo CLI(DAG);
177   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
178   bool zeroExtend = !signExtend;
179 
180   if (CallOptions.IsSoften &&
181       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
182     signExtend = zeroExtend = false;
183   }
184 
185   CLI.setDebugLoc(dl)
186       .setChain(InChain)
187       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
188       .setNoReturn(CallOptions.DoesNotReturn)
189       .setDiscardResult(!CallOptions.IsReturnValueUsed)
190       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
191       .setSExtResult(signExtend)
192       .setZExtResult(zeroExtend);
193   return LowerCallTo(CLI);
194 }
195 
196 bool TargetLowering::findOptimalMemOpLowering(
197     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
198     unsigned SrcAS, const AttributeList &FuncAttributes) const {
199   if (Limit != ~unsigned(0) && Op.isMemcpyWithFixedDstAlign() &&
200       Op.getSrcAlign() < Op.getDstAlign())
201     return false;
202 
203   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
204 
205   if (VT == MVT::Other) {
206     // Use the largest integer type whose alignment constraints are satisfied.
207     // We only need to check DstAlign here as SrcAlign is always greater or
208     // equal to DstAlign (or zero).
209     VT = MVT::i64;
210     if (Op.isFixedDstAlign())
211       while (Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
212              !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign()))
213         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
214     assert(VT.isInteger());
215 
216     // Find the largest legal integer type.
217     MVT LVT = MVT::i64;
218     while (!isTypeLegal(LVT))
219       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
220     assert(LVT.isInteger());
221 
222     // If the type we've chosen is larger than the largest legal integer type
223     // then use that instead.
224     if (VT.bitsGT(LVT))
225       VT = LVT;
226   }
227 
228   unsigned NumMemOps = 0;
229   uint64_t Size = Op.size();
230   while (Size) {
231     unsigned VTSize = VT.getSizeInBits() / 8;
232     while (VTSize > Size) {
233       // For now, only use non-vector load / store's for the left-over pieces.
234       EVT NewVT = VT;
235       unsigned NewVTSize;
236 
237       bool Found = false;
238       if (VT.isVector() || VT.isFloatingPoint()) {
239         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
240         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
241             isSafeMemOpType(NewVT.getSimpleVT()))
242           Found = true;
243         else if (NewVT == MVT::i64 &&
244                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
245                  isSafeMemOpType(MVT::f64)) {
246           // i64 is usually not legal on 32-bit targets, but f64 may be.
247           NewVT = MVT::f64;
248           Found = true;
249         }
250       }
251 
252       if (!Found) {
253         do {
254           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
255           if (NewVT == MVT::i8)
256             break;
257         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
258       }
259       NewVTSize = NewVT.getSizeInBits() / 8;
260 
261       // If the new VT cannot cover all of the remaining bits, then consider
262       // issuing a (or a pair of) unaligned and overlapping load / store.
263       bool Fast;
264       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
265           allowsMisalignedMemoryAccesses(
266               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
267               MachineMemOperand::MONone, &Fast) &&
268           Fast)
269         VTSize = Size;
270       else {
271         VT = NewVT;
272         VTSize = NewVTSize;
273       }
274     }
275 
276     if (++NumMemOps > Limit)
277       return false;
278 
279     MemOps.push_back(VT);
280     Size -= VTSize;
281   }
282 
283   return true;
284 }
285 
286 /// Soften the operands of a comparison. This code is shared among BR_CC,
287 /// SELECT_CC, and SETCC handlers.
288 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
289                                          SDValue &NewLHS, SDValue &NewRHS,
290                                          ISD::CondCode &CCCode,
291                                          const SDLoc &dl, const SDValue OldLHS,
292                                          const SDValue OldRHS) const {
293   SDValue Chain;
294   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
295                              OldRHS, Chain);
296 }
297 
298 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
299                                          SDValue &NewLHS, SDValue &NewRHS,
300                                          ISD::CondCode &CCCode,
301                                          const SDLoc &dl, const SDValue OldLHS,
302                                          const SDValue OldRHS,
303                                          SDValue &Chain,
304                                          bool IsSignaling) const {
305   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
306   // not supporting it. We can update this code when libgcc provides such
307   // functions.
308 
309   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
310          && "Unsupported setcc type!");
311 
312   // Expand into one or more soft-fp libcall(s).
313   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
314   bool ShouldInvertCC = false;
315   switch (CCCode) {
316   case ISD::SETEQ:
317   case ISD::SETOEQ:
318     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
319           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
320           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
321     break;
322   case ISD::SETNE:
323   case ISD::SETUNE:
324     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
325           (VT == MVT::f64) ? RTLIB::UNE_F64 :
326           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
327     break;
328   case ISD::SETGE:
329   case ISD::SETOGE:
330     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
331           (VT == MVT::f64) ? RTLIB::OGE_F64 :
332           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
333     break;
334   case ISD::SETLT:
335   case ISD::SETOLT:
336     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
337           (VT == MVT::f64) ? RTLIB::OLT_F64 :
338           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
339     break;
340   case ISD::SETLE:
341   case ISD::SETOLE:
342     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
343           (VT == MVT::f64) ? RTLIB::OLE_F64 :
344           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
345     break;
346   case ISD::SETGT:
347   case ISD::SETOGT:
348     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
349           (VT == MVT::f64) ? RTLIB::OGT_F64 :
350           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
351     break;
352   case ISD::SETO:
353     ShouldInvertCC = true;
354     LLVM_FALLTHROUGH;
355   case ISD::SETUO:
356     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
357           (VT == MVT::f64) ? RTLIB::UO_F64 :
358           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
359     break;
360   case ISD::SETONE:
361     // SETONE = O && UNE
362     ShouldInvertCC = true;
363     LLVM_FALLTHROUGH;
364   case ISD::SETUEQ:
365     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
366           (VT == MVT::f64) ? RTLIB::UO_F64 :
367           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
368     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
369           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
370           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
371     break;
372   default:
373     // Invert CC for unordered comparisons
374     ShouldInvertCC = true;
375     switch (CCCode) {
376     case ISD::SETULT:
377       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
378             (VT == MVT::f64) ? RTLIB::OGE_F64 :
379             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
380       break;
381     case ISD::SETULE:
382       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
383             (VT == MVT::f64) ? RTLIB::OGT_F64 :
384             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
385       break;
386     case ISD::SETUGT:
387       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
388             (VT == MVT::f64) ? RTLIB::OLE_F64 :
389             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
390       break;
391     case ISD::SETUGE:
392       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
393             (VT == MVT::f64) ? RTLIB::OLT_F64 :
394             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
395       break;
396     default: llvm_unreachable("Do not know how to soften this setcc!");
397     }
398   }
399 
400   // Use the target specific return value for comparions lib calls.
401   EVT RetVT = getCmpLibcallReturnType();
402   SDValue Ops[2] = {NewLHS, NewRHS};
403   TargetLowering::MakeLibCallOptions CallOptions;
404   EVT OpsVT[2] = { OldLHS.getValueType(),
405                    OldRHS.getValueType() };
406   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
407   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
408   NewLHS = Call.first;
409   NewRHS = DAG.getConstant(0, dl, RetVT);
410 
411   CCCode = getCmpLibcallCC(LC1);
412   if (ShouldInvertCC) {
413     assert(RetVT.isInteger());
414     CCCode = getSetCCInverse(CCCode, RetVT);
415   }
416 
417   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
418     // Update Chain.
419     Chain = Call.second;
420   } else {
421     EVT SetCCVT =
422         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
423     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
424     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
425     CCCode = getCmpLibcallCC(LC2);
426     if (ShouldInvertCC)
427       CCCode = getSetCCInverse(CCCode, RetVT);
428     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
429     if (Chain)
430       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
431                           Call2.second);
432     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
433                          Tmp.getValueType(), Tmp, NewLHS);
434     NewRHS = SDValue();
435   }
436 }
437 
438 /// Return the entry encoding for a jump table in the current function. The
439 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
440 unsigned TargetLowering::getJumpTableEncoding() const {
441   // In non-pic modes, just use the address of a block.
442   if (!isPositionIndependent())
443     return MachineJumpTableInfo::EK_BlockAddress;
444 
445   // In PIC mode, if the target supports a GPRel32 directive, use it.
446   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
447     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
448 
449   // Otherwise, use a label difference.
450   return MachineJumpTableInfo::EK_LabelDifference32;
451 }
452 
453 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
454                                                  SelectionDAG &DAG) const {
455   // If our PIC model is GP relative, use the global offset table as the base.
456   unsigned JTEncoding = getJumpTableEncoding();
457 
458   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
459       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
460     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
461 
462   return Table;
463 }
464 
465 /// This returns the relocation base for the given PIC jumptable, the same as
466 /// getPICJumpTableRelocBase, but as an MCExpr.
467 const MCExpr *
468 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
469                                              unsigned JTI,MCContext &Ctx) const{
470   // The normal PIC reloc base is the label at the start of the jump table.
471   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
472 }
473 
474 bool
475 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
476   const TargetMachine &TM = getTargetMachine();
477   const GlobalValue *GV = GA->getGlobal();
478 
479   // If the address is not even local to this DSO we will have to load it from
480   // a got and then add the offset.
481   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
482     return false;
483 
484   // If the code is position independent we will have to add a base register.
485   if (isPositionIndependent())
486     return false;
487 
488   // Otherwise we can do it.
489   return true;
490 }
491 
492 //===----------------------------------------------------------------------===//
493 //  Optimization Methods
494 //===----------------------------------------------------------------------===//
495 
496 /// If the specified instruction has a constant integer operand and there are
497 /// bits set in that constant that are not demanded, then clear those bits and
498 /// return true.
499 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
500                                             const APInt &DemandedBits,
501                                             const APInt &DemandedElts,
502                                             TargetLoweringOpt &TLO) const {
503   SDLoc DL(Op);
504   unsigned Opcode = Op.getOpcode();
505 
506   // Do target-specific constant optimization.
507   if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
508     return TLO.New.getNode();
509 
510   // FIXME: ISD::SELECT, ISD::SELECT_CC
511   switch (Opcode) {
512   default:
513     break;
514   case ISD::XOR:
515   case ISD::AND:
516   case ISD::OR: {
517     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
518     if (!Op1C || Op1C->isOpaque())
519       return false;
520 
521     // If this is a 'not' op, don't touch it because that's a canonical form.
522     const APInt &C = Op1C->getAPIntValue();
523     if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
524       return false;
525 
526     if (!C.isSubsetOf(DemandedBits)) {
527       EVT VT = Op.getValueType();
528       SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
529       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
530       return TLO.CombineTo(Op, NewOp);
531     }
532 
533     break;
534   }
535   }
536 
537   return false;
538 }
539 
540 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
541                                             const APInt &DemandedBits,
542                                             TargetLoweringOpt &TLO) const {
543   EVT VT = Op.getValueType();
544   APInt DemandedElts = VT.isVector()
545                            ? APInt::getAllOnes(VT.getVectorNumElements())
546                            : APInt(1, 1);
547   return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
548 }
549 
550 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
551 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
552 /// generalized for targets with other types of implicit widening casts.
553 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
554                                       const APInt &Demanded,
555                                       TargetLoweringOpt &TLO) const {
556   assert(Op.getNumOperands() == 2 &&
557          "ShrinkDemandedOp only supports binary operators!");
558   assert(Op.getNode()->getNumValues() == 1 &&
559          "ShrinkDemandedOp only supports nodes with one result!");
560 
561   SelectionDAG &DAG = TLO.DAG;
562   SDLoc dl(Op);
563 
564   // Early return, as this function cannot handle vector types.
565   if (Op.getValueType().isVector())
566     return false;
567 
568   // Don't do this if the node has another user, which may require the
569   // full value.
570   if (!Op.getNode()->hasOneUse())
571     return false;
572 
573   // Search for the smallest integer type with free casts to and from
574   // Op's type. For expedience, just check power-of-2 integer types.
575   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
576   unsigned DemandedSize = Demanded.getActiveBits();
577   unsigned SmallVTBits = DemandedSize;
578   if (!isPowerOf2_32(SmallVTBits))
579     SmallVTBits = NextPowerOf2(SmallVTBits);
580   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
581     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
582     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
583         TLI.isZExtFree(SmallVT, Op.getValueType())) {
584       // We found a type with free casts.
585       SDValue X = DAG.getNode(
586           Op.getOpcode(), dl, SmallVT,
587           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
588           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
589       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
590       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
591       return TLO.CombineTo(Op, Z);
592     }
593   }
594   return false;
595 }
596 
597 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
598                                           DAGCombinerInfo &DCI) const {
599   SelectionDAG &DAG = DCI.DAG;
600   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
601                         !DCI.isBeforeLegalizeOps());
602   KnownBits Known;
603 
604   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
605   if (Simplified) {
606     DCI.AddToWorklist(Op.getNode());
607     DCI.CommitTargetLoweringOpt(TLO);
608   }
609   return Simplified;
610 }
611 
612 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
613                                           const APInt &DemandedElts,
614                                           DAGCombinerInfo &DCI) const {
615   SelectionDAG &DAG = DCI.DAG;
616   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
617                         !DCI.isBeforeLegalizeOps());
618   KnownBits Known;
619 
620   bool Simplified =
621       SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO);
622   if (Simplified) {
623     DCI.AddToWorklist(Op.getNode());
624     DCI.CommitTargetLoweringOpt(TLO);
625   }
626   return Simplified;
627 }
628 
629 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
630                                           KnownBits &Known,
631                                           TargetLoweringOpt &TLO,
632                                           unsigned Depth,
633                                           bool AssumeSingleUse) const {
634   EVT VT = Op.getValueType();
635 
636   // TODO: We can probably do more work on calculating the known bits and
637   // simplifying the operations for scalable vectors, but for now we just
638   // bail out.
639   if (VT.isScalableVector()) {
640     // Pretend we don't know anything for now.
641     Known = KnownBits(DemandedBits.getBitWidth());
642     return false;
643   }
644 
645   APInt DemandedElts = VT.isVector()
646                            ? APInt::getAllOnes(VT.getVectorNumElements())
647                            : APInt(1, 1);
648   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
649                               AssumeSingleUse);
650 }
651 
652 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
653 // TODO: Under what circumstances can we create nodes? Constant folding?
654 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
655     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
656     SelectionDAG &DAG, unsigned Depth) const {
657   EVT VT = Op.getValueType();
658 
659   // Pretend we don't know anything about scalable vectors for now.
660   // TODO: We can probably do more work on simplifying the operations for
661   // scalable vectors, but for now we just bail out.
662   if (VT.isScalableVector())
663     return SDValue();
664 
665   // Limit search depth.
666   if (Depth >= SelectionDAG::MaxRecursionDepth)
667     return SDValue();
668 
669   // Ignore UNDEFs.
670   if (Op.isUndef())
671     return SDValue();
672 
673   // Not demanding any bits/elts from Op.
674   if (DemandedBits == 0 || DemandedElts == 0)
675     return DAG.getUNDEF(VT);
676 
677   bool IsLE = DAG.getDataLayout().isLittleEndian();
678   unsigned NumElts = DemandedElts.getBitWidth();
679   unsigned BitWidth = DemandedBits.getBitWidth();
680   KnownBits LHSKnown, RHSKnown;
681   switch (Op.getOpcode()) {
682   case ISD::BITCAST: {
683     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
684     EVT SrcVT = Src.getValueType();
685     EVT DstVT = Op.getValueType();
686     if (SrcVT == DstVT)
687       return Src;
688 
689     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
690     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
691     if (NumSrcEltBits == NumDstEltBits)
692       if (SDValue V = SimplifyMultipleUseDemandedBits(
693               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
694         return DAG.getBitcast(DstVT, V);
695 
696     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) {
697       unsigned Scale = NumDstEltBits / NumSrcEltBits;
698       unsigned NumSrcElts = SrcVT.getVectorNumElements();
699       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
700       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
701       for (unsigned i = 0; i != Scale; ++i) {
702         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
703         unsigned BitOffset = EltOffset * NumSrcEltBits;
704         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
705         if (!Sub.isZero()) {
706           DemandedSrcBits |= Sub;
707           for (unsigned j = 0; j != NumElts; ++j)
708             if (DemandedElts[j])
709               DemandedSrcElts.setBit((j * Scale) + i);
710         }
711       }
712 
713       if (SDValue V = SimplifyMultipleUseDemandedBits(
714               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
715         return DAG.getBitcast(DstVT, V);
716     }
717 
718     // TODO - bigendian once we have test coverage.
719     if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) {
720       unsigned Scale = NumSrcEltBits / NumDstEltBits;
721       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
722       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
723       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
724       for (unsigned i = 0; i != NumElts; ++i)
725         if (DemandedElts[i]) {
726           unsigned Offset = (i % Scale) * NumDstEltBits;
727           DemandedSrcBits.insertBits(DemandedBits, Offset);
728           DemandedSrcElts.setBit(i / Scale);
729         }
730 
731       if (SDValue V = SimplifyMultipleUseDemandedBits(
732               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
733         return DAG.getBitcast(DstVT, V);
734     }
735 
736     break;
737   }
738   case ISD::AND: {
739     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
740     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
741 
742     // If all of the demanded bits are known 1 on one side, return the other.
743     // These bits cannot contribute to the result of the 'and' in this
744     // context.
745     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
746       return Op.getOperand(0);
747     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
748       return Op.getOperand(1);
749     break;
750   }
751   case ISD::OR: {
752     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
753     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
754 
755     // If all of the demanded bits are known zero on one side, return the
756     // other.  These bits cannot contribute to the result of the 'or' in this
757     // context.
758     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
759       return Op.getOperand(0);
760     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
761       return Op.getOperand(1);
762     break;
763   }
764   case ISD::XOR: {
765     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
766     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
767 
768     // If all of the demanded bits are known zero on one side, return the
769     // other.
770     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
771       return Op.getOperand(0);
772     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
773       return Op.getOperand(1);
774     break;
775   }
776   case ISD::SHL: {
777     // If we are only demanding sign bits then we can use the shift source
778     // directly.
779     if (const APInt *MaxSA =
780             DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
781       SDValue Op0 = Op.getOperand(0);
782       unsigned ShAmt = MaxSA->getZExtValue();
783       unsigned NumSignBits =
784           DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
785       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
786       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
787         return Op0;
788     }
789     break;
790   }
791   case ISD::SETCC: {
792     SDValue Op0 = Op.getOperand(0);
793     SDValue Op1 = Op.getOperand(1);
794     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
795     // If (1) we only need the sign-bit, (2) the setcc operands are the same
796     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
797     // -1, we may be able to bypass the setcc.
798     if (DemandedBits.isSignMask() &&
799         Op0.getScalarValueSizeInBits() == BitWidth &&
800         getBooleanContents(Op0.getValueType()) ==
801             BooleanContent::ZeroOrNegativeOneBooleanContent) {
802       // If we're testing X < 0, then this compare isn't needed - just use X!
803       // FIXME: We're limiting to integer types here, but this should also work
804       // if we don't care about FP signed-zero. The use of SETLT with FP means
805       // that we don't care about NaNs.
806       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
807           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
808         return Op0;
809     }
810     break;
811   }
812   case ISD::SIGN_EXTEND_INREG: {
813     // If none of the extended bits are demanded, eliminate the sextinreg.
814     SDValue Op0 = Op.getOperand(0);
815     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
816     unsigned ExBits = ExVT.getScalarSizeInBits();
817     if (DemandedBits.getActiveBits() <= ExBits)
818       return Op0;
819     // If the input is already sign extended, just drop the extension.
820     unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
821     if (NumSignBits >= (BitWidth - ExBits + 1))
822       return Op0;
823     break;
824   }
825   case ISD::ANY_EXTEND_VECTOR_INREG:
826   case ISD::SIGN_EXTEND_VECTOR_INREG:
827   case ISD::ZERO_EXTEND_VECTOR_INREG: {
828     // If we only want the lowest element and none of extended bits, then we can
829     // return the bitcasted source vector.
830     SDValue Src = Op.getOperand(0);
831     EVT SrcVT = Src.getValueType();
832     EVT DstVT = Op.getValueType();
833     if (IsLE && DemandedElts == 1 &&
834         DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
835         DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
836       return DAG.getBitcast(DstVT, Src);
837     }
838     break;
839   }
840   case ISD::INSERT_VECTOR_ELT: {
841     // If we don't demand the inserted element, return the base vector.
842     SDValue Vec = Op.getOperand(0);
843     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
844     EVT VecVT = Vec.getValueType();
845     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
846         !DemandedElts[CIdx->getZExtValue()])
847       return Vec;
848     break;
849   }
850   case ISD::INSERT_SUBVECTOR: {
851     SDValue Vec = Op.getOperand(0);
852     SDValue Sub = Op.getOperand(1);
853     uint64_t Idx = Op.getConstantOperandVal(2);
854     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
855     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
856     // If we don't demand the inserted subvector, return the base vector.
857     if (DemandedSubElts == 0)
858       return Vec;
859     // If this simply widens the lowest subvector, see if we can do it earlier.
860     if (Idx == 0 && Vec.isUndef()) {
861       if (SDValue NewSub = SimplifyMultipleUseDemandedBits(
862               Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1))
863         return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
864                            Op.getOperand(0), NewSub, Op.getOperand(2));
865     }
866     break;
867   }
868   case ISD::VECTOR_SHUFFLE: {
869     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
870 
871     // If all the demanded elts are from one operand and are inline,
872     // then we can use the operand directly.
873     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
874     for (unsigned i = 0; i != NumElts; ++i) {
875       int M = ShuffleMask[i];
876       if (M < 0 || !DemandedElts[i])
877         continue;
878       AllUndef = false;
879       IdentityLHS &= (M == (int)i);
880       IdentityRHS &= ((M - NumElts) == i);
881     }
882 
883     if (AllUndef)
884       return DAG.getUNDEF(Op.getValueType());
885     if (IdentityLHS)
886       return Op.getOperand(0);
887     if (IdentityRHS)
888       return Op.getOperand(1);
889     break;
890   }
891   default:
892     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
893       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
894               Op, DemandedBits, DemandedElts, DAG, Depth))
895         return V;
896     break;
897   }
898   return SDValue();
899 }
900 
901 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
902     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
903     unsigned Depth) const {
904   EVT VT = Op.getValueType();
905 
906   // Pretend we don't know anything about scalable vectors for now.
907   // TODO: We can probably do more work on simplifying the operations for
908   // scalable vectors, but for now we just bail out.
909   if (VT.isScalableVector())
910     return SDValue();
911 
912   APInt DemandedElts = VT.isVector()
913                            ? APInt::getAllOnes(VT.getVectorNumElements())
914                            : APInt(1, 1);
915   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
916                                          Depth);
917 }
918 
919 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
920     SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
921     unsigned Depth) const {
922   APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits());
923   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
924                                          Depth);
925 }
926 
927 // Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1).
928 //      or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1).
929 static SDValue combineShiftToAVG(SDValue Op, SelectionDAG &DAG,
930                                  const TargetLowering &TLI,
931                                  const APInt &DemandedBits,
932                                  const APInt &DemandedElts,
933                                  unsigned Depth) {
934   assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) &&
935          "SRL or SRA node is required here!");
936   // Is the right shift using an immediate value of 1?
937   ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
938   if (!N1C || !N1C->isOne())
939     return SDValue();
940 
941   // We are looking for an avgfloor
942   // add(ext, ext)
943   // or one of these as a avgceil
944   // add(add(ext, ext), 1)
945   // add(add(ext, 1), ext)
946   // add(ext, add(ext, 1))
947   SDValue Add = Op.getOperand(0);
948   if (Add.getOpcode() != ISD::ADD)
949     return SDValue();
950 
951   SDValue ExtOpA = Add.getOperand(0);
952   SDValue ExtOpB = Add.getOperand(1);
953   auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3) {
954     ConstantSDNode *ConstOp;
955     if ((ConstOp = isConstOrConstSplat(Op1, DemandedElts)) &&
956         ConstOp->isOne()) {
957       ExtOpA = Op2;
958       ExtOpB = Op3;
959       return true;
960     }
961     if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) &&
962         ConstOp->isOne()) {
963       ExtOpA = Op1;
964       ExtOpB = Op3;
965       return true;
966     }
967     if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) &&
968         ConstOp->isOne()) {
969       ExtOpA = Op1;
970       ExtOpB = Op2;
971       return true;
972     }
973     return false;
974   };
975   bool IsCeil =
976       (ExtOpA.getOpcode() == ISD::ADD &&
977        MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB)) ||
978       (ExtOpB.getOpcode() == ISD::ADD &&
979        MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA));
980 
981   // If the shift is signed (sra):
982   //  - Needs >= 2 sign bit for both operands.
983   //  - Needs >= 2 zero bits.
984   // If the shift is unsigned (srl):
985   //  - Needs >= 1 zero bit for both operands.
986   //  - Needs 1 demanded bit zero and >= 2 sign bits.
987   unsigned ShiftOpc = Op.getOpcode();
988   bool IsSigned = false;
989   unsigned KnownBits;
990   unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth);
991   unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth);
992   unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1;
993   unsigned NumZeroA =
994       DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros();
995   unsigned NumZeroB =
996       DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros();
997   unsigned NumZero = std::min(NumZeroA, NumZeroB);
998 
999   switch (ShiftOpc) {
1000   default:
1001     llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG");
1002   case ISD::SRA: {
1003     if (NumZero >= 2 && NumSigned < NumZero) {
1004       IsSigned = false;
1005       KnownBits = NumZero;
1006       break;
1007     }
1008     if (NumSigned >= 1) {
1009       IsSigned = true;
1010       KnownBits = NumSigned;
1011       break;
1012     }
1013     return SDValue();
1014   }
1015   case ISD::SRL: {
1016     if (NumZero >= 1 && NumSigned < NumZero) {
1017       IsSigned = false;
1018       KnownBits = NumZero;
1019       break;
1020     }
1021     if (NumSigned >= 1 && DemandedBits.isSignBitClear()) {
1022       IsSigned = true;
1023       KnownBits = NumSigned;
1024       break;
1025     }
1026     return SDValue();
1027   }
1028   }
1029 
1030   unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU)
1031                            : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU);
1032 
1033   // Find the smallest power-2 type that is legal for this vector size and
1034   // operation, given the original type size and the number of known sign/zero
1035   // bits.
1036   EVT VT = Op.getValueType();
1037   unsigned MinWidth =
1038       std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8);
1039   EVT NVT = EVT::getIntegerVT(*DAG.getContext(), PowerOf2Ceil(MinWidth));
1040   if (VT.isVector())
1041     NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount());
1042   if (!TLI.isOperationLegalOrCustom(AVGOpc, NVT))
1043     return SDValue();
1044 
1045   SDLoc DL(Op);
1046   SDValue ResultAVG =
1047       DAG.getNode(AVGOpc, DL, NVT, DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpA),
1048                   DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpB));
1049   return DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, VT,
1050                      ResultAVG);
1051 }
1052 
1053 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
1054 /// result of Op are ever used downstream. If we can use this information to
1055 /// simplify Op, create a new simplified DAG node and return true, returning the
1056 /// original and new nodes in Old and New. Otherwise, analyze the expression and
1057 /// return a mask of Known bits for the expression (used to simplify the
1058 /// caller).  The Known bits may only be accurate for those bits in the
1059 /// OriginalDemandedBits and OriginalDemandedElts.
1060 bool TargetLowering::SimplifyDemandedBits(
1061     SDValue Op, const APInt &OriginalDemandedBits,
1062     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
1063     unsigned Depth, bool AssumeSingleUse) const {
1064   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
1065   assert(Op.getScalarValueSizeInBits() == BitWidth &&
1066          "Mask size mismatches value type size!");
1067 
1068   // Don't know anything.
1069   Known = KnownBits(BitWidth);
1070 
1071   // TODO: We can probably do more work on calculating the known bits and
1072   // simplifying the operations for scalable vectors, but for now we just
1073   // bail out.
1074   EVT VT = Op.getValueType();
1075   if (VT.isScalableVector())
1076     return false;
1077 
1078   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
1079   unsigned NumElts = OriginalDemandedElts.getBitWidth();
1080   assert((!VT.isVector() || NumElts == VT.getVectorNumElements()) &&
1081          "Unexpected vector size");
1082 
1083   APInt DemandedBits = OriginalDemandedBits;
1084   APInt DemandedElts = OriginalDemandedElts;
1085   SDLoc dl(Op);
1086   auto &DL = TLO.DAG.getDataLayout();
1087 
1088   // Undef operand.
1089   if (Op.isUndef())
1090     return false;
1091 
1092   if (Op.getOpcode() == ISD::Constant) {
1093     // We know all of the bits for a constant!
1094     Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue());
1095     return false;
1096   }
1097 
1098   if (Op.getOpcode() == ISD::ConstantFP) {
1099     // We know all of the bits for a floating point constant!
1100     Known = KnownBits::makeConstant(
1101         cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
1102     return false;
1103   }
1104 
1105   // Other users may use these bits.
1106   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
1107     if (Depth != 0) {
1108       // If not at the root, Just compute the Known bits to
1109       // simplify things downstream.
1110       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1111       return false;
1112     }
1113     // If this is the root being simplified, allow it to have multiple uses,
1114     // just set the DemandedBits/Elts to all bits.
1115     DemandedBits = APInt::getAllOnes(BitWidth);
1116     DemandedElts = APInt::getAllOnes(NumElts);
1117   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
1118     // Not demanding any bits/elts from Op.
1119     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1120   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
1121     // Limit search depth.
1122     return false;
1123   }
1124 
1125   KnownBits Known2;
1126   switch (Op.getOpcode()) {
1127   case ISD::TargetConstant:
1128     llvm_unreachable("Can't simplify this node");
1129   case ISD::SCALAR_TO_VECTOR: {
1130     if (!DemandedElts[0])
1131       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1132 
1133     KnownBits SrcKnown;
1134     SDValue Src = Op.getOperand(0);
1135     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
1136     APInt SrcDemandedBits = DemandedBits.zext(SrcBitWidth);
1137     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
1138       return true;
1139 
1140     // Upper elements are undef, so only get the knownbits if we just demand
1141     // the bottom element.
1142     if (DemandedElts == 1)
1143       Known = SrcKnown.anyextOrTrunc(BitWidth);
1144     break;
1145   }
1146   case ISD::BUILD_VECTOR:
1147     // Collect the known bits that are shared by every demanded element.
1148     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
1149     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1150     return false; // Don't fall through, will infinitely loop.
1151   case ISD::LOAD: {
1152     auto *LD = cast<LoadSDNode>(Op);
1153     if (getTargetConstantFromLoad(LD)) {
1154       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1155       return false; // Don't fall through, will infinitely loop.
1156     }
1157     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
1158       // If this is a ZEXTLoad and we are looking at the loaded value.
1159       EVT MemVT = LD->getMemoryVT();
1160       unsigned MemBits = MemVT.getScalarSizeInBits();
1161       Known.Zero.setBitsFrom(MemBits);
1162       return false; // Don't fall through, will infinitely loop.
1163     }
1164     break;
1165   }
1166   case ISD::INSERT_VECTOR_ELT: {
1167     SDValue Vec = Op.getOperand(0);
1168     SDValue Scl = Op.getOperand(1);
1169     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1170     EVT VecVT = Vec.getValueType();
1171 
1172     // If index isn't constant, assume we need all vector elements AND the
1173     // inserted element.
1174     APInt DemandedVecElts(DemandedElts);
1175     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
1176       unsigned Idx = CIdx->getZExtValue();
1177       DemandedVecElts.clearBit(Idx);
1178 
1179       // Inserted element is not required.
1180       if (!DemandedElts[Idx])
1181         return TLO.CombineTo(Op, Vec);
1182     }
1183 
1184     KnownBits KnownScl;
1185     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1186     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1187     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1188       return true;
1189 
1190     Known = KnownScl.anyextOrTrunc(BitWidth);
1191 
1192     KnownBits KnownVec;
1193     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1194                              Depth + 1))
1195       return true;
1196 
1197     if (!!DemandedVecElts)
1198       Known = KnownBits::commonBits(Known, KnownVec);
1199 
1200     return false;
1201   }
1202   case ISD::INSERT_SUBVECTOR: {
1203     // Demand any elements from the subvector and the remainder from the src its
1204     // inserted into.
1205     SDValue Src = Op.getOperand(0);
1206     SDValue Sub = Op.getOperand(1);
1207     uint64_t Idx = Op.getConstantOperandVal(2);
1208     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1209     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1210     APInt DemandedSrcElts = DemandedElts;
1211     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
1212 
1213     KnownBits KnownSub, KnownSrc;
1214     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1215                              Depth + 1))
1216       return true;
1217     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1218                              Depth + 1))
1219       return true;
1220 
1221     Known.Zero.setAllBits();
1222     Known.One.setAllBits();
1223     if (!!DemandedSubElts)
1224       Known = KnownBits::commonBits(Known, KnownSub);
1225     if (!!DemandedSrcElts)
1226       Known = KnownBits::commonBits(Known, KnownSrc);
1227 
1228     // Attempt to avoid multi-use src if we don't need anything from it.
1229     if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() ||
1230         !DemandedSrcElts.isAllOnes()) {
1231       SDValue NewSub = SimplifyMultipleUseDemandedBits(
1232           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1233       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1234           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1235       if (NewSub || NewSrc) {
1236         NewSub = NewSub ? NewSub : Sub;
1237         NewSrc = NewSrc ? NewSrc : Src;
1238         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1239                                         Op.getOperand(2));
1240         return TLO.CombineTo(Op, NewOp);
1241       }
1242     }
1243     break;
1244   }
1245   case ISD::EXTRACT_SUBVECTOR: {
1246     // Offset the demanded elts by the subvector index.
1247     SDValue Src = Op.getOperand(0);
1248     if (Src.getValueType().isScalableVector())
1249       break;
1250     uint64_t Idx = Op.getConstantOperandVal(1);
1251     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1252     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
1253 
1254     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1255                              Depth + 1))
1256       return true;
1257 
1258     // Attempt to avoid multi-use src if we don't need anything from it.
1259     if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
1260       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1261           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1262       if (DemandedSrc) {
1263         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1264                                         Op.getOperand(1));
1265         return TLO.CombineTo(Op, NewOp);
1266       }
1267     }
1268     break;
1269   }
1270   case ISD::CONCAT_VECTORS: {
1271     Known.Zero.setAllBits();
1272     Known.One.setAllBits();
1273     EVT SubVT = Op.getOperand(0).getValueType();
1274     unsigned NumSubVecs = Op.getNumOperands();
1275     unsigned NumSubElts = SubVT.getVectorNumElements();
1276     for (unsigned i = 0; i != NumSubVecs; ++i) {
1277       APInt DemandedSubElts =
1278           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1279       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1280                                Known2, TLO, Depth + 1))
1281         return true;
1282       // Known bits are shared by every demanded subvector element.
1283       if (!!DemandedSubElts)
1284         Known = KnownBits::commonBits(Known, Known2);
1285     }
1286     break;
1287   }
1288   case ISD::VECTOR_SHUFFLE: {
1289     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1290 
1291     // Collect demanded elements from shuffle operands..
1292     APInt DemandedLHS(NumElts, 0);
1293     APInt DemandedRHS(NumElts, 0);
1294     for (unsigned i = 0; i != NumElts; ++i) {
1295       if (!DemandedElts[i])
1296         continue;
1297       int M = ShuffleMask[i];
1298       if (M < 0) {
1299         // For UNDEF elements, we don't know anything about the common state of
1300         // the shuffle result.
1301         DemandedLHS.clearAllBits();
1302         DemandedRHS.clearAllBits();
1303         break;
1304       }
1305       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1306       if (M < (int)NumElts)
1307         DemandedLHS.setBit(M);
1308       else
1309         DemandedRHS.setBit(M - NumElts);
1310     }
1311 
1312     if (!!DemandedLHS || !!DemandedRHS) {
1313       SDValue Op0 = Op.getOperand(0);
1314       SDValue Op1 = Op.getOperand(1);
1315 
1316       Known.Zero.setAllBits();
1317       Known.One.setAllBits();
1318       if (!!DemandedLHS) {
1319         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1320                                  Depth + 1))
1321           return true;
1322         Known = KnownBits::commonBits(Known, Known2);
1323       }
1324       if (!!DemandedRHS) {
1325         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1326                                  Depth + 1))
1327           return true;
1328         Known = KnownBits::commonBits(Known, Known2);
1329       }
1330 
1331       // Attempt to avoid multi-use ops if we don't need anything from them.
1332       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1333           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1334       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1335           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1336       if (DemandedOp0 || DemandedOp1) {
1337         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1338         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1339         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1340         return TLO.CombineTo(Op, NewOp);
1341       }
1342     }
1343     break;
1344   }
1345   case ISD::AND: {
1346     SDValue Op0 = Op.getOperand(0);
1347     SDValue Op1 = Op.getOperand(1);
1348 
1349     // If the RHS is a constant, check to see if the LHS would be zero without
1350     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1351     // simplify the LHS, here we're using information from the LHS to simplify
1352     // the RHS.
1353     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1354       // Do not increment Depth here; that can cause an infinite loop.
1355       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1356       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1357       if ((LHSKnown.Zero & DemandedBits) ==
1358           (~RHSC->getAPIntValue() & DemandedBits))
1359         return TLO.CombineTo(Op, Op0);
1360 
1361       // If any of the set bits in the RHS are known zero on the LHS, shrink
1362       // the constant.
1363       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1364                                  DemandedElts, TLO))
1365         return true;
1366 
1367       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1368       // constant, but if this 'and' is only clearing bits that were just set by
1369       // the xor, then this 'and' can be eliminated by shrinking the mask of
1370       // the xor. For example, for a 32-bit X:
1371       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1372       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1373           LHSKnown.One == ~RHSC->getAPIntValue()) {
1374         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1375         return TLO.CombineTo(Op, Xor);
1376       }
1377     }
1378 
1379     // AND(INSERT_SUBVECTOR(C,X,I),M) -> INSERT_SUBVECTOR(AND(C,M),X,I)
1380     // iff 'C' is Undef/Constant and AND(X,M) == X (for DemandedBits).
1381     if (Op0.getOpcode() == ISD::INSERT_SUBVECTOR &&
1382         (Op0.getOperand(0).isUndef() ||
1383          ISD::isBuildVectorOfConstantSDNodes(Op0.getOperand(0).getNode())) &&
1384         Op0->hasOneUse()) {
1385       unsigned NumSubElts =
1386           Op0.getOperand(1).getValueType().getVectorNumElements();
1387       unsigned SubIdx = Op0.getConstantOperandVal(2);
1388       APInt DemandedSub =
1389           APInt::getBitsSet(NumElts, SubIdx, SubIdx + NumSubElts);
1390       KnownBits KnownSubMask =
1391           TLO.DAG.computeKnownBits(Op1, DemandedSub & DemandedElts, Depth + 1);
1392       if (DemandedBits.isSubsetOf(KnownSubMask.One)) {
1393         SDValue NewAnd =
1394             TLO.DAG.getNode(ISD::AND, dl, VT, Op0.getOperand(0), Op1);
1395         SDValue NewInsert =
1396             TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, dl, VT, NewAnd,
1397                             Op0.getOperand(1), Op0.getOperand(2));
1398         return TLO.CombineTo(Op, NewInsert);
1399       }
1400     }
1401 
1402     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1403                              Depth + 1))
1404       return true;
1405     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1406     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1407                              Known2, TLO, Depth + 1))
1408       return true;
1409     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1410 
1411     // If all of the demanded bits are known one on one side, return the other.
1412     // These bits cannot contribute to the result of the 'and'.
1413     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1414       return TLO.CombineTo(Op, Op0);
1415     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1416       return TLO.CombineTo(Op, Op1);
1417     // If all of the demanded bits in the inputs are known zeros, return zero.
1418     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1419       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1420     // If the RHS is a constant, see if we can simplify it.
1421     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1422                                TLO))
1423       return true;
1424     // If the operation can be done in a smaller type, do so.
1425     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1426       return true;
1427 
1428     // Attempt to avoid multi-use ops if we don't need anything from them.
1429     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1430       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1431           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1432       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1433           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1434       if (DemandedOp0 || DemandedOp1) {
1435         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1436         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1437         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1438         return TLO.CombineTo(Op, NewOp);
1439       }
1440     }
1441 
1442     Known &= Known2;
1443     break;
1444   }
1445   case ISD::OR: {
1446     SDValue Op0 = Op.getOperand(0);
1447     SDValue Op1 = Op.getOperand(1);
1448 
1449     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1450                              Depth + 1))
1451       return true;
1452     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1453     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1454                              Known2, TLO, Depth + 1))
1455       return true;
1456     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1457 
1458     // If all of the demanded bits are known zero on one side, return the other.
1459     // These bits cannot contribute to the result of the 'or'.
1460     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1461       return TLO.CombineTo(Op, Op0);
1462     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1463       return TLO.CombineTo(Op, Op1);
1464     // If the RHS is a constant, see if we can simplify it.
1465     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1466       return true;
1467     // If the operation can be done in a smaller type, do so.
1468     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1469       return true;
1470 
1471     // Attempt to avoid multi-use ops if we don't need anything from them.
1472     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1473       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1474           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1475       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1476           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1477       if (DemandedOp0 || DemandedOp1) {
1478         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1479         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1480         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1481         return TLO.CombineTo(Op, NewOp);
1482       }
1483     }
1484 
1485     // (or (and X, C1), (and (or X, Y), C2)) -> (or (and X, C1|C2), (and Y, C2))
1486     // TODO: Use SimplifyMultipleUseDemandedBits to peek through masks.
1487     if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::AND &&
1488         Op0->hasOneUse() && Op1->hasOneUse()) {
1489       // Attempt to match all commutations - m_c_Or would've been useful!
1490       for (int I = 0; I != 2; ++I) {
1491         SDValue X = Op.getOperand(I).getOperand(0);
1492         SDValue C1 = Op.getOperand(I).getOperand(1);
1493         SDValue Alt = Op.getOperand(1 - I).getOperand(0);
1494         SDValue C2 = Op.getOperand(1 - I).getOperand(1);
1495         if (Alt.getOpcode() == ISD::OR) {
1496           for (int J = 0; J != 2; ++J) {
1497             if (X == Alt.getOperand(J)) {
1498               SDValue Y = Alt.getOperand(1 - J);
1499               if (SDValue C12 = TLO.DAG.FoldConstantArithmetic(ISD::OR, dl, VT,
1500                                                                {C1, C2})) {
1501                 SDValue MaskX = TLO.DAG.getNode(ISD::AND, dl, VT, X, C12);
1502                 SDValue MaskY = TLO.DAG.getNode(ISD::AND, dl, VT, Y, C2);
1503                 return TLO.CombineTo(
1504                     Op, TLO.DAG.getNode(ISD::OR, dl, VT, MaskX, MaskY));
1505               }
1506             }
1507           }
1508         }
1509       }
1510     }
1511 
1512     Known |= Known2;
1513     break;
1514   }
1515   case ISD::XOR: {
1516     SDValue Op0 = Op.getOperand(0);
1517     SDValue Op1 = Op.getOperand(1);
1518 
1519     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1520                              Depth + 1))
1521       return true;
1522     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1523     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1524                              Depth + 1))
1525       return true;
1526     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1527 
1528     // If all of the demanded bits are known zero on one side, return the other.
1529     // These bits cannot contribute to the result of the 'xor'.
1530     if (DemandedBits.isSubsetOf(Known.Zero))
1531       return TLO.CombineTo(Op, Op0);
1532     if (DemandedBits.isSubsetOf(Known2.Zero))
1533       return TLO.CombineTo(Op, Op1);
1534     // If the operation can be done in a smaller type, do so.
1535     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1536       return true;
1537 
1538     // If all of the unknown bits are known to be zero on one side or the other
1539     // turn this into an *inclusive* or.
1540     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1541     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1542       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1543 
1544     ConstantSDNode *C = isConstOrConstSplat(Op1, DemandedElts);
1545     if (C) {
1546       // If one side is a constant, and all of the set bits in the constant are
1547       // also known set on the other side, turn this into an AND, as we know
1548       // the bits will be cleared.
1549       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1550       // NB: it is okay if more bits are known than are requested
1551       if (C->getAPIntValue() == Known2.One) {
1552         SDValue ANDC =
1553             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1554         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1555       }
1556 
1557       // If the RHS is a constant, see if we can change it. Don't alter a -1
1558       // constant because that's a 'not' op, and that is better for combining
1559       // and codegen.
1560       if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) {
1561         // We're flipping all demanded bits. Flip the undemanded bits too.
1562         SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1563         return TLO.CombineTo(Op, New);
1564       }
1565 
1566       unsigned Op0Opcode = Op0.getOpcode();
1567       if ((Op0Opcode == ISD::SRL || Op0Opcode == ISD::SHL) && Op0.hasOneUse()) {
1568         if (ConstantSDNode *ShiftC =
1569                 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
1570           // Don't crash on an oversized shift. We can not guarantee that a
1571           // bogus shift has been simplified to undef.
1572           if (ShiftC->getAPIntValue().ult(BitWidth)) {
1573             uint64_t ShiftAmt = ShiftC->getZExtValue();
1574             APInt Ones = APInt::getAllOnes(BitWidth);
1575             Ones = Op0Opcode == ISD::SHL ? Ones.shl(ShiftAmt)
1576                                          : Ones.lshr(ShiftAmt);
1577             const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo();
1578             if ((DemandedBits & C->getAPIntValue()) == (DemandedBits & Ones) &&
1579                 TLI.isDesirableToCommuteXorWithShift(Op.getNode())) {
1580               // If the xor constant is a demanded mask, do a 'not' before the
1581               // shift:
1582               // xor (X << ShiftC), XorC --> (not X) << ShiftC
1583               // xor (X >> ShiftC), XorC --> (not X) >> ShiftC
1584               SDValue Not = TLO.DAG.getNOT(dl, Op0.getOperand(0), VT);
1585               return TLO.CombineTo(Op, TLO.DAG.getNode(Op0Opcode, dl, VT, Not,
1586                                                        Op0.getOperand(1)));
1587             }
1588           }
1589         }
1590       }
1591     }
1592 
1593     // If we can't turn this into a 'not', try to shrink the constant.
1594     if (!C || !C->isAllOnes())
1595       if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1596         return true;
1597 
1598     // Attempt to avoid multi-use ops if we don't need anything from them.
1599     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1600       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1601           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1602       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1603           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1604       if (DemandedOp0 || DemandedOp1) {
1605         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1606         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1607         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1608         return TLO.CombineTo(Op, NewOp);
1609       }
1610     }
1611 
1612     Known ^= Known2;
1613     break;
1614   }
1615   case ISD::SELECT:
1616     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1617                              Depth + 1))
1618       return true;
1619     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1620                              Depth + 1))
1621       return true;
1622     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1623     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1624 
1625     // If the operands are constants, see if we can simplify them.
1626     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1627       return true;
1628 
1629     // Only known if known in both the LHS and RHS.
1630     Known = KnownBits::commonBits(Known, Known2);
1631     break;
1632   case ISD::VSELECT:
1633     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts,
1634                              Known, TLO, Depth + 1))
1635       return true;
1636     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts,
1637                              Known2, TLO, Depth + 1))
1638       return true;
1639     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1640     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1641 
1642     // Only known if known in both the LHS and RHS.
1643     Known = KnownBits::commonBits(Known, Known2);
1644     break;
1645   case ISD::SELECT_CC:
1646     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1647                              Depth + 1))
1648       return true;
1649     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1650                              Depth + 1))
1651       return true;
1652     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1653     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1654 
1655     // If the operands are constants, see if we can simplify them.
1656     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1657       return true;
1658 
1659     // Only known if known in both the LHS and RHS.
1660     Known = KnownBits::commonBits(Known, Known2);
1661     break;
1662   case ISD::SETCC: {
1663     SDValue Op0 = Op.getOperand(0);
1664     SDValue Op1 = Op.getOperand(1);
1665     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1666     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1667     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1668     // -1, we may be able to bypass the setcc.
1669     if (DemandedBits.isSignMask() &&
1670         Op0.getScalarValueSizeInBits() == BitWidth &&
1671         getBooleanContents(Op0.getValueType()) ==
1672             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1673       // If we're testing X < 0, then this compare isn't needed - just use X!
1674       // FIXME: We're limiting to integer types here, but this should also work
1675       // if we don't care about FP signed-zero. The use of SETLT with FP means
1676       // that we don't care about NaNs.
1677       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1678           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1679         return TLO.CombineTo(Op, Op0);
1680 
1681       // TODO: Should we check for other forms of sign-bit comparisons?
1682       // Examples: X <= -1, X >= 0
1683     }
1684     if (getBooleanContents(Op0.getValueType()) ==
1685             TargetLowering::ZeroOrOneBooleanContent &&
1686         BitWidth > 1)
1687       Known.Zero.setBitsFrom(1);
1688     break;
1689   }
1690   case ISD::SHL: {
1691     SDValue Op0 = Op.getOperand(0);
1692     SDValue Op1 = Op.getOperand(1);
1693     EVT ShiftVT = Op1.getValueType();
1694 
1695     if (const APInt *SA =
1696             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1697       unsigned ShAmt = SA->getZExtValue();
1698       if (ShAmt == 0)
1699         return TLO.CombineTo(Op, Op0);
1700 
1701       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1702       // single shift.  We can do this if the bottom bits (which are shifted
1703       // out) are never demanded.
1704       // TODO - support non-uniform vector amounts.
1705       if (Op0.getOpcode() == ISD::SRL) {
1706         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1707           if (const APInt *SA2 =
1708                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1709             unsigned C1 = SA2->getZExtValue();
1710             unsigned Opc = ISD::SHL;
1711             int Diff = ShAmt - C1;
1712             if (Diff < 0) {
1713               Diff = -Diff;
1714               Opc = ISD::SRL;
1715             }
1716             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1717             return TLO.CombineTo(
1718                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1719           }
1720         }
1721       }
1722 
1723       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1724       // are not demanded. This will likely allow the anyext to be folded away.
1725       // TODO - support non-uniform vector amounts.
1726       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1727         SDValue InnerOp = Op0.getOperand(0);
1728         EVT InnerVT = InnerOp.getValueType();
1729         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1730         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1731             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1732           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1733           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1734             ShTy = InnerVT;
1735           SDValue NarrowShl =
1736               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1737                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1738           return TLO.CombineTo(
1739               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1740         }
1741 
1742         // Repeat the SHL optimization above in cases where an extension
1743         // intervenes: (shl (anyext (shr x, c1)), c2) to
1744         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1745         // aren't demanded (as above) and that the shifted upper c1 bits of
1746         // x aren't demanded.
1747         // TODO - support non-uniform vector amounts.
1748         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1749             InnerOp.hasOneUse()) {
1750           if (const APInt *SA2 =
1751                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1752             unsigned InnerShAmt = SA2->getZExtValue();
1753             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1754                 DemandedBits.getActiveBits() <=
1755                     (InnerBits - InnerShAmt + ShAmt) &&
1756                 DemandedBits.countTrailingZeros() >= ShAmt) {
1757               SDValue NewSA =
1758                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1759               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1760                                                InnerOp.getOperand(0));
1761               return TLO.CombineTo(
1762                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1763             }
1764           }
1765         }
1766       }
1767 
1768       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1769       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1770                                Depth + 1))
1771         return true;
1772       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1773       Known.Zero <<= ShAmt;
1774       Known.One <<= ShAmt;
1775       // low bits known zero.
1776       Known.Zero.setLowBits(ShAmt);
1777 
1778       // Attempt to avoid multi-use ops if we don't need anything from them.
1779       if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1780         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1781             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1782         if (DemandedOp0) {
1783           SDValue NewOp = TLO.DAG.getNode(ISD::SHL, dl, VT, DemandedOp0, Op1);
1784           return TLO.CombineTo(Op, NewOp);
1785         }
1786       }
1787 
1788       // Try shrinking the operation as long as the shift amount will still be
1789       // in range.
1790       if ((ShAmt < DemandedBits.getActiveBits()) &&
1791           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1792         return true;
1793     } else {
1794       // This is a variable shift, so we can't shift the demand mask by a known
1795       // amount. But if we are not demanding high bits, then we are not
1796       // demanding those bits from the pre-shifted operand either.
1797       if (unsigned CTLZ = DemandedBits.countLeadingZeros()) {
1798         APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ));
1799         if (SimplifyDemandedBits(Op0, DemandedFromOp, DemandedElts, Known, TLO,
1800                                  Depth + 1)) {
1801           SDNodeFlags Flags = Op.getNode()->getFlags();
1802           if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
1803             // Disable the nsw and nuw flags. We can no longer guarantee that we
1804             // won't wrap after simplification.
1805             Flags.setNoSignedWrap(false);
1806             Flags.setNoUnsignedWrap(false);
1807             Op->setFlags(Flags);
1808           }
1809           return true;
1810         }
1811         Known.resetAll();
1812       }
1813     }
1814 
1815     // If we are only demanding sign bits then we can use the shift source
1816     // directly.
1817     if (const APInt *MaxSA =
1818             TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
1819       unsigned ShAmt = MaxSA->getZExtValue();
1820       unsigned NumSignBits =
1821           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1822       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1823       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1824         return TLO.CombineTo(Op, Op0);
1825     }
1826     break;
1827   }
1828   case ISD::SRL: {
1829     SDValue Op0 = Op.getOperand(0);
1830     SDValue Op1 = Op.getOperand(1);
1831     EVT ShiftVT = Op1.getValueType();
1832 
1833     // Try to match AVG patterns.
1834     if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits,
1835                                         DemandedElts, Depth + 1))
1836       return TLO.CombineTo(Op, AVG);
1837 
1838     if (const APInt *SA =
1839             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1840       unsigned ShAmt = SA->getZExtValue();
1841       if (ShAmt == 0)
1842         return TLO.CombineTo(Op, Op0);
1843 
1844       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1845       // single shift.  We can do this if the top bits (which are shifted out)
1846       // are never demanded.
1847       // TODO - support non-uniform vector amounts.
1848       if (Op0.getOpcode() == ISD::SHL) {
1849         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1850           if (const APInt *SA2 =
1851                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1852             unsigned C1 = SA2->getZExtValue();
1853             unsigned Opc = ISD::SRL;
1854             int Diff = ShAmt - C1;
1855             if (Diff < 0) {
1856               Diff = -Diff;
1857               Opc = ISD::SHL;
1858             }
1859             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1860             return TLO.CombineTo(
1861                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1862           }
1863         }
1864       }
1865 
1866       APInt InDemandedMask = (DemandedBits << ShAmt);
1867 
1868       // If the shift is exact, then it does demand the low bits (and knows that
1869       // they are zero).
1870       if (Op->getFlags().hasExact())
1871         InDemandedMask.setLowBits(ShAmt);
1872 
1873       // Compute the new bits that are at the top now.
1874       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1875                                Depth + 1))
1876         return true;
1877       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1878       Known.Zero.lshrInPlace(ShAmt);
1879       Known.One.lshrInPlace(ShAmt);
1880       // High bits known zero.
1881       Known.Zero.setHighBits(ShAmt);
1882     }
1883     break;
1884   }
1885   case ISD::SRA: {
1886     SDValue Op0 = Op.getOperand(0);
1887     SDValue Op1 = Op.getOperand(1);
1888     EVT ShiftVT = Op1.getValueType();
1889 
1890     // If we only want bits that already match the signbit then we don't need
1891     // to shift.
1892     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1893     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1894         NumHiDemandedBits)
1895       return TLO.CombineTo(Op, Op0);
1896 
1897     // If this is an arithmetic shift right and only the low-bit is set, we can
1898     // always convert this into a logical shr, even if the shift amount is
1899     // variable.  The low bit of the shift cannot be an input sign bit unless
1900     // the shift amount is >= the size of the datatype, which is undefined.
1901     if (DemandedBits.isOne())
1902       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1903 
1904     // Try to match AVG patterns.
1905     if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits,
1906                                         DemandedElts, Depth + 1))
1907       return TLO.CombineTo(Op, AVG);
1908 
1909     if (const APInt *SA =
1910             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1911       unsigned ShAmt = SA->getZExtValue();
1912       if (ShAmt == 0)
1913         return TLO.CombineTo(Op, Op0);
1914 
1915       APInt InDemandedMask = (DemandedBits << ShAmt);
1916 
1917       // If the shift is exact, then it does demand the low bits (and knows that
1918       // they are zero).
1919       if (Op->getFlags().hasExact())
1920         InDemandedMask.setLowBits(ShAmt);
1921 
1922       // If any of the demanded bits are produced by the sign extension, we also
1923       // demand the input sign bit.
1924       if (DemandedBits.countLeadingZeros() < ShAmt)
1925         InDemandedMask.setSignBit();
1926 
1927       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1928                                Depth + 1))
1929         return true;
1930       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1931       Known.Zero.lshrInPlace(ShAmt);
1932       Known.One.lshrInPlace(ShAmt);
1933 
1934       // If the input sign bit is known to be zero, or if none of the top bits
1935       // are demanded, turn this into an unsigned shift right.
1936       if (Known.Zero[BitWidth - ShAmt - 1] ||
1937           DemandedBits.countLeadingZeros() >= ShAmt) {
1938         SDNodeFlags Flags;
1939         Flags.setExact(Op->getFlags().hasExact());
1940         return TLO.CombineTo(
1941             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1942       }
1943 
1944       int Log2 = DemandedBits.exactLogBase2();
1945       if (Log2 >= 0) {
1946         // The bit must come from the sign.
1947         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1948         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1949       }
1950 
1951       if (Known.One[BitWidth - ShAmt - 1])
1952         // New bits are known one.
1953         Known.One.setHighBits(ShAmt);
1954 
1955       // Attempt to avoid multi-use ops if we don't need anything from them.
1956       if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
1957         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1958             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1959         if (DemandedOp0) {
1960           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1961           return TLO.CombineTo(Op, NewOp);
1962         }
1963       }
1964     }
1965     break;
1966   }
1967   case ISD::FSHL:
1968   case ISD::FSHR: {
1969     SDValue Op0 = Op.getOperand(0);
1970     SDValue Op1 = Op.getOperand(1);
1971     SDValue Op2 = Op.getOperand(2);
1972     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1973 
1974     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1975       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1976 
1977       // For fshl, 0-shift returns the 1st arg.
1978       // For fshr, 0-shift returns the 2nd arg.
1979       if (Amt == 0) {
1980         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1981                                  Known, TLO, Depth + 1))
1982           return true;
1983         break;
1984       }
1985 
1986       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1987       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1988       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1989       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1990       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1991                                Depth + 1))
1992         return true;
1993       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1994                                Depth + 1))
1995         return true;
1996 
1997       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1998       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1999       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
2000       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
2001       Known.One |= Known2.One;
2002       Known.Zero |= Known2.Zero;
2003 
2004       // Attempt to avoid multi-use ops if we don't need anything from them.
2005       if (!Demanded0.isAllOnes() || !Demanded1.isAllOnes() ||
2006           !DemandedElts.isAllOnes()) {
2007         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2008             Op0, Demanded0, DemandedElts, TLO.DAG, Depth + 1);
2009         SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2010             Op1, Demanded1, DemandedElts, TLO.DAG, Depth + 1);
2011         if (DemandedOp0 || DemandedOp1) {
2012           DemandedOp0 = DemandedOp0 ? DemandedOp0 : Op0;
2013           DemandedOp1 = DemandedOp1 ? DemandedOp1 : Op1;
2014           SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedOp0,
2015                                           DemandedOp1, Op2);
2016           return TLO.CombineTo(Op, NewOp);
2017         }
2018       }
2019     }
2020 
2021     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
2022     if (isPowerOf2_32(BitWidth)) {
2023       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
2024       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
2025                                Known2, TLO, Depth + 1))
2026         return true;
2027     }
2028     break;
2029   }
2030   case ISD::ROTL:
2031   case ISD::ROTR: {
2032     SDValue Op0 = Op.getOperand(0);
2033     SDValue Op1 = Op.getOperand(1);
2034     bool IsROTL = (Op.getOpcode() == ISD::ROTL);
2035 
2036     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
2037     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
2038       return TLO.CombineTo(Op, Op0);
2039 
2040     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
2041       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
2042       unsigned RevAmt = BitWidth - Amt;
2043 
2044       // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt))
2045       // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt)
2046       APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt);
2047       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
2048                                Depth + 1))
2049         return true;
2050 
2051       // rot*(x, 0) --> x
2052       if (Amt == 0)
2053         return TLO.CombineTo(Op, Op0);
2054 
2055       // See if we don't demand either half of the rotated bits.
2056       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) &&
2057           DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) {
2058         Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType());
2059         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1));
2060       }
2061       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) &&
2062           DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) {
2063         Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType());
2064         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
2065       }
2066     }
2067 
2068     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
2069     if (isPowerOf2_32(BitWidth)) {
2070       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
2071       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
2072                                Depth + 1))
2073         return true;
2074     }
2075     break;
2076   }
2077   case ISD::UMIN: {
2078     // Check if one arg is always less than (or equal) to the other arg.
2079     SDValue Op0 = Op.getOperand(0);
2080     SDValue Op1 = Op.getOperand(1);
2081     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
2082     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
2083     Known = KnownBits::umin(Known0, Known1);
2084     if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1))
2085       return TLO.CombineTo(Op, IsULE.value() ? Op0 : Op1);
2086     if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1))
2087       return TLO.CombineTo(Op, IsULT.value() ? Op0 : Op1);
2088     break;
2089   }
2090   case ISD::UMAX: {
2091     // Check if one arg is always greater than (or equal) to the other arg.
2092     SDValue Op0 = Op.getOperand(0);
2093     SDValue Op1 = Op.getOperand(1);
2094     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
2095     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
2096     Known = KnownBits::umax(Known0, Known1);
2097     if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
2098       return TLO.CombineTo(Op, IsUGE.value() ? Op0 : Op1);
2099     if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
2100       return TLO.CombineTo(Op, IsUGT.value() ? Op0 : Op1);
2101     break;
2102   }
2103   case ISD::BITREVERSE: {
2104     SDValue Src = Op.getOperand(0);
2105     APInt DemandedSrcBits = DemandedBits.reverseBits();
2106     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
2107                              Depth + 1))
2108       return true;
2109     Known.One = Known2.One.reverseBits();
2110     Known.Zero = Known2.Zero.reverseBits();
2111     break;
2112   }
2113   case ISD::BSWAP: {
2114     SDValue Src = Op.getOperand(0);
2115 
2116     // If the only bits demanded come from one byte of the bswap result,
2117     // just shift the input byte into position to eliminate the bswap.
2118     unsigned NLZ = DemandedBits.countLeadingZeros();
2119     unsigned NTZ = DemandedBits.countTrailingZeros();
2120 
2121     // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
2122     // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
2123     // have 14 leading zeros, round to 8.
2124     NLZ = alignDown(NLZ, 8);
2125     NTZ = alignDown(NTZ, 8);
2126     // If we need exactly one byte, we can do this transformation.
2127     if (BitWidth - NLZ - NTZ == 8) {
2128       // Replace this with either a left or right shift to get the byte into
2129       // the right place.
2130       unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL;
2131       if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) {
2132         EVT ShiftAmtTy = getShiftAmountTy(VT, DL);
2133         unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ;
2134         SDValue ShAmt = TLO.DAG.getConstant(ShiftAmount, dl, ShiftAmtTy);
2135         SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt);
2136         return TLO.CombineTo(Op, NewOp);
2137       }
2138     }
2139 
2140     APInt DemandedSrcBits = DemandedBits.byteSwap();
2141     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
2142                              Depth + 1))
2143       return true;
2144     Known.One = Known2.One.byteSwap();
2145     Known.Zero = Known2.Zero.byteSwap();
2146     break;
2147   }
2148   case ISD::CTPOP: {
2149     // If only 1 bit is demanded, replace with PARITY as long as we're before
2150     // op legalization.
2151     // FIXME: Limit to scalars for now.
2152     if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector())
2153       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
2154                                                Op.getOperand(0)));
2155 
2156     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2157     break;
2158   }
2159   case ISD::SIGN_EXTEND_INREG: {
2160     SDValue Op0 = Op.getOperand(0);
2161     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2162     unsigned ExVTBits = ExVT.getScalarSizeInBits();
2163 
2164     // If we only care about the highest bit, don't bother shifting right.
2165     if (DemandedBits.isSignMask()) {
2166       unsigned MinSignedBits =
2167           TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1);
2168       bool AlreadySignExtended = ExVTBits >= MinSignedBits;
2169       // However if the input is already sign extended we expect the sign
2170       // extension to be dropped altogether later and do not simplify.
2171       if (!AlreadySignExtended) {
2172         // Compute the correct shift amount type, which must be getShiftAmountTy
2173         // for scalar types after legalization.
2174         SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl,
2175                                                getShiftAmountTy(VT, DL));
2176         return TLO.CombineTo(Op,
2177                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
2178       }
2179     }
2180 
2181     // If none of the extended bits are demanded, eliminate the sextinreg.
2182     if (DemandedBits.getActiveBits() <= ExVTBits)
2183       return TLO.CombineTo(Op, Op0);
2184 
2185     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
2186 
2187     // Since the sign extended bits are demanded, we know that the sign
2188     // bit is demanded.
2189     InputDemandedBits.setBit(ExVTBits - 1);
2190 
2191     if (SimplifyDemandedBits(Op0, InputDemandedBits, DemandedElts, Known, TLO,
2192                              Depth + 1))
2193       return true;
2194     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2195 
2196     // If the sign bit of the input is known set or clear, then we know the
2197     // top bits of the result.
2198 
2199     // If the input sign bit is known zero, convert this into a zero extension.
2200     if (Known.Zero[ExVTBits - 1])
2201       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
2202 
2203     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
2204     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
2205       Known.One.setBitsFrom(ExVTBits);
2206       Known.Zero &= Mask;
2207     } else { // Input sign bit unknown
2208       Known.Zero &= Mask;
2209       Known.One &= Mask;
2210     }
2211     break;
2212   }
2213   case ISD::BUILD_PAIR: {
2214     EVT HalfVT = Op.getOperand(0).getValueType();
2215     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
2216 
2217     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
2218     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
2219 
2220     KnownBits KnownLo, KnownHi;
2221 
2222     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
2223       return true;
2224 
2225     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
2226       return true;
2227 
2228     Known.Zero = KnownLo.Zero.zext(BitWidth) |
2229                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
2230 
2231     Known.One = KnownLo.One.zext(BitWidth) |
2232                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
2233     break;
2234   }
2235   case ISD::ZERO_EXTEND:
2236   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2237     SDValue Src = Op.getOperand(0);
2238     EVT SrcVT = Src.getValueType();
2239     unsigned InBits = SrcVT.getScalarSizeInBits();
2240     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2241     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
2242 
2243     // If none of the top bits are demanded, convert this into an any_extend.
2244     if (DemandedBits.getActiveBits() <= InBits) {
2245       // If we only need the non-extended bits of the bottom element
2246       // then we can just bitcast to the result.
2247       if (IsLE && IsVecInReg && DemandedElts == 1 &&
2248           VT.getSizeInBits() == SrcVT.getSizeInBits())
2249         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2250 
2251       unsigned Opc =
2252           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2253       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2254         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2255     }
2256 
2257     APInt InDemandedBits = DemandedBits.trunc(InBits);
2258     APInt InDemandedElts = DemandedElts.zext(InElts);
2259     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2260                              Depth + 1))
2261       return true;
2262     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2263     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2264     Known = Known.zext(BitWidth);
2265 
2266     // Attempt to avoid multi-use ops if we don't need anything from them.
2267     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2268             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2269       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2270     break;
2271   }
2272   case ISD::SIGN_EXTEND:
2273   case ISD::SIGN_EXTEND_VECTOR_INREG: {
2274     SDValue Src = Op.getOperand(0);
2275     EVT SrcVT = Src.getValueType();
2276     unsigned InBits = SrcVT.getScalarSizeInBits();
2277     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2278     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
2279 
2280     // If none of the top bits are demanded, convert this into an any_extend.
2281     if (DemandedBits.getActiveBits() <= InBits) {
2282       // If we only need the non-extended bits of the bottom element
2283       // then we can just bitcast to the result.
2284       if (IsLE && IsVecInReg && DemandedElts == 1 &&
2285           VT.getSizeInBits() == SrcVT.getSizeInBits())
2286         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2287 
2288       unsigned Opc =
2289           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2290       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2291         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2292     }
2293 
2294     APInt InDemandedBits = DemandedBits.trunc(InBits);
2295     APInt InDemandedElts = DemandedElts.zext(InElts);
2296 
2297     // Since some of the sign extended bits are demanded, we know that the sign
2298     // bit is demanded.
2299     InDemandedBits.setBit(InBits - 1);
2300 
2301     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2302                              Depth + 1))
2303       return true;
2304     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2305     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2306 
2307     // If the sign bit is known one, the top bits match.
2308     Known = Known.sext(BitWidth);
2309 
2310     // If the sign bit is known zero, convert this to a zero extend.
2311     if (Known.isNonNegative()) {
2312       unsigned Opc =
2313           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
2314       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2315         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2316     }
2317 
2318     // Attempt to avoid multi-use ops if we don't need anything from them.
2319     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2320             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2321       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2322     break;
2323   }
2324   case ISD::ANY_EXTEND:
2325   case ISD::ANY_EXTEND_VECTOR_INREG: {
2326     SDValue Src = Op.getOperand(0);
2327     EVT SrcVT = Src.getValueType();
2328     unsigned InBits = SrcVT.getScalarSizeInBits();
2329     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2330     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
2331 
2332     // If we only need the bottom element then we can just bitcast.
2333     // TODO: Handle ANY_EXTEND?
2334     if (IsLE && IsVecInReg && DemandedElts == 1 &&
2335         VT.getSizeInBits() == SrcVT.getSizeInBits())
2336       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2337 
2338     APInt InDemandedBits = DemandedBits.trunc(InBits);
2339     APInt InDemandedElts = DemandedElts.zext(InElts);
2340     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2341                              Depth + 1))
2342       return true;
2343     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2344     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2345     Known = Known.anyext(BitWidth);
2346 
2347     // Attempt to avoid multi-use ops if we don't need anything from them.
2348     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2349             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2350       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2351     break;
2352   }
2353   case ISD::TRUNCATE: {
2354     SDValue Src = Op.getOperand(0);
2355 
2356     // Simplify the input, using demanded bit information, and compute the known
2357     // zero/one bits live out.
2358     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
2359     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
2360     if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
2361                              Depth + 1))
2362       return true;
2363     Known = Known.trunc(BitWidth);
2364 
2365     // Attempt to avoid multi-use ops if we don't need anything from them.
2366     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2367             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
2368       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
2369 
2370     // If the input is only used by this truncate, see if we can shrink it based
2371     // on the known demanded bits.
2372     if (Src.getNode()->hasOneUse()) {
2373       switch (Src.getOpcode()) {
2374       default:
2375         break;
2376       case ISD::SRL:
2377         // Shrink SRL by a constant if none of the high bits shifted in are
2378         // demanded.
2379         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
2380           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
2381           // undesirable.
2382           break;
2383 
2384         const APInt *ShAmtC =
2385             TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts);
2386         if (!ShAmtC || ShAmtC->uge(BitWidth))
2387           break;
2388         uint64_t ShVal = ShAmtC->getZExtValue();
2389 
2390         APInt HighBits =
2391             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2392         HighBits.lshrInPlace(ShVal);
2393         HighBits = HighBits.trunc(BitWidth);
2394 
2395         if (!(HighBits & DemandedBits)) {
2396           // None of the shifted in bits are needed.  Add a truncate of the
2397           // shift input, then shift it.
2398           SDValue NewShAmt = TLO.DAG.getConstant(
2399               ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes()));
2400           SDValue NewTrunc =
2401               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2402           return TLO.CombineTo(
2403               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
2404         }
2405         break;
2406       }
2407     }
2408 
2409     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2410     break;
2411   }
2412   case ISD::AssertZext: {
2413     // AssertZext demands all of the high bits, plus any of the low bits
2414     // demanded by its users.
2415     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2416     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
2417     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2418                              TLO, Depth + 1))
2419       return true;
2420     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2421 
2422     Known.Zero |= ~InMask;
2423     break;
2424   }
2425   case ISD::EXTRACT_VECTOR_ELT: {
2426     SDValue Src = Op.getOperand(0);
2427     SDValue Idx = Op.getOperand(1);
2428     ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2429     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2430 
2431     if (SrcEltCnt.isScalable())
2432       return false;
2433 
2434     // Demand the bits from every vector element without a constant index.
2435     unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2436     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
2437     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2438       if (CIdx->getAPIntValue().ult(NumSrcElts))
2439         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2440 
2441     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2442     // anything about the extended bits.
2443     APInt DemandedSrcBits = DemandedBits;
2444     if (BitWidth > EltBitWidth)
2445       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2446 
2447     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2448                              Depth + 1))
2449       return true;
2450 
2451     // Attempt to avoid multi-use ops if we don't need anything from them.
2452     if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
2453       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2454               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2455         SDValue NewOp =
2456             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2457         return TLO.CombineTo(Op, NewOp);
2458       }
2459     }
2460 
2461     Known = Known2;
2462     if (BitWidth > EltBitWidth)
2463       Known = Known.anyext(BitWidth);
2464     break;
2465   }
2466   case ISD::BITCAST: {
2467     SDValue Src = Op.getOperand(0);
2468     EVT SrcVT = Src.getValueType();
2469     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2470 
2471     // If this is an FP->Int bitcast and if the sign bit is the only
2472     // thing demanded, turn this into a FGETSIGN.
2473     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2474         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2475         SrcVT.isFloatingPoint()) {
2476       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2477       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2478       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2479           SrcVT != MVT::f128) {
2480         // Cannot eliminate/lower SHL for f128 yet.
2481         EVT Ty = OpVTLegal ? VT : MVT::i32;
2482         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2483         // place.  We expect the SHL to be eliminated by other optimizations.
2484         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2485         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2486         if (!OpVTLegal && OpVTSizeInBits > 32)
2487           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2488         unsigned ShVal = Op.getValueSizeInBits() - 1;
2489         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2490         return TLO.CombineTo(Op,
2491                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2492       }
2493     }
2494 
2495     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2496     // Demand the elt/bit if any of the original elts/bits are demanded.
2497     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) {
2498       unsigned Scale = BitWidth / NumSrcEltBits;
2499       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2500       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2501       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2502       for (unsigned i = 0; i != Scale; ++i) {
2503         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
2504         unsigned BitOffset = EltOffset * NumSrcEltBits;
2505         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
2506         if (!Sub.isZero()) {
2507           DemandedSrcBits |= Sub;
2508           for (unsigned j = 0; j != NumElts; ++j)
2509             if (DemandedElts[j])
2510               DemandedSrcElts.setBit((j * Scale) + i);
2511         }
2512       }
2513 
2514       APInt KnownSrcUndef, KnownSrcZero;
2515       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2516                                      KnownSrcZero, TLO, Depth + 1))
2517         return true;
2518 
2519       KnownBits KnownSrcBits;
2520       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2521                                KnownSrcBits, TLO, Depth + 1))
2522         return true;
2523     } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) {
2524       // TODO - bigendian once we have test coverage.
2525       unsigned Scale = NumSrcEltBits / BitWidth;
2526       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2527       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2528       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2529       for (unsigned i = 0; i != NumElts; ++i)
2530         if (DemandedElts[i]) {
2531           unsigned Offset = (i % Scale) * BitWidth;
2532           DemandedSrcBits.insertBits(DemandedBits, Offset);
2533           DemandedSrcElts.setBit(i / Scale);
2534         }
2535 
2536       if (SrcVT.isVector()) {
2537         APInt KnownSrcUndef, KnownSrcZero;
2538         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2539                                        KnownSrcZero, TLO, Depth + 1))
2540           return true;
2541       }
2542 
2543       KnownBits KnownSrcBits;
2544       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2545                                KnownSrcBits, TLO, Depth + 1))
2546         return true;
2547     }
2548 
2549     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2550     // recursive call where Known may be useful to the caller.
2551     if (Depth > 0) {
2552       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2553       return false;
2554     }
2555     break;
2556   }
2557   case ISD::MUL:
2558     if (DemandedBits.isPowerOf2()) {
2559       // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1.
2560       // If we demand exactly one bit N and we have "X * (C' << N)" where C' is
2561       // odd (has LSB set), then the left-shifted low bit of X is the answer.
2562       unsigned CTZ = DemandedBits.countTrailingZeros();
2563       ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
2564       if (C && C->getAPIntValue().countTrailingZeros() == CTZ) {
2565         EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout());
2566         SDValue AmtC = TLO.DAG.getConstant(CTZ, dl, ShiftAmtTy);
2567         SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC);
2568         return TLO.CombineTo(Op, Shl);
2569       }
2570     }
2571     // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because:
2572     // X * X is odd iff X is odd.
2573     // 'Quadratic Reciprocity': X * X -> 0 for bit[1]
2574     if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) {
2575       SDValue One = TLO.DAG.getConstant(1, dl, VT);
2576       SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One);
2577       return TLO.CombineTo(Op, And1);
2578     }
2579     LLVM_FALLTHROUGH;
2580   case ISD::ADD:
2581   case ISD::SUB: {
2582     // Add, Sub, and Mul don't demand any bits in positions beyond that
2583     // of the highest bit demanded of them.
2584     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2585     SDNodeFlags Flags = Op.getNode()->getFlags();
2586     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2587     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2588     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2589                              Depth + 1) ||
2590         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2591                              Depth + 1) ||
2592         // See if the operation should be performed at a smaller bit width.
2593         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2594       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2595         // Disable the nsw and nuw flags. We can no longer guarantee that we
2596         // won't wrap after simplification.
2597         Flags.setNoSignedWrap(false);
2598         Flags.setNoUnsignedWrap(false);
2599         Op->setFlags(Flags);
2600       }
2601       return true;
2602     }
2603 
2604     // Attempt to avoid multi-use ops if we don't need anything from them.
2605     if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2606       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2607           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2608       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2609           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2610       if (DemandedOp0 || DemandedOp1) {
2611         Flags.setNoSignedWrap(false);
2612         Flags.setNoUnsignedWrap(false);
2613         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2614         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2615         SDValue NewOp =
2616             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2617         return TLO.CombineTo(Op, NewOp);
2618       }
2619     }
2620 
2621     // If we have a constant operand, we may be able to turn it into -1 if we
2622     // do not demand the high bits. This can make the constant smaller to
2623     // encode, allow more general folding, or match specialized instruction
2624     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2625     // is probably not useful (and could be detrimental).
2626     ConstantSDNode *C = isConstOrConstSplat(Op1);
2627     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2628     if (C && !C->isAllOnes() && !C->isOne() &&
2629         (C->getAPIntValue() | HighMask).isAllOnes()) {
2630       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2631       // Disable the nsw and nuw flags. We can no longer guarantee that we
2632       // won't wrap after simplification.
2633       Flags.setNoSignedWrap(false);
2634       Flags.setNoUnsignedWrap(false);
2635       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2636       return TLO.CombineTo(Op, NewOp);
2637     }
2638 
2639     // Match a multiply with a disguised negated-power-of-2 and convert to a
2640     // an equivalent shift-left amount.
2641     // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2642     auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned {
2643       if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse())
2644         return 0;
2645 
2646       // Don't touch opaque constants. Also, ignore zero and power-of-2
2647       // multiplies. Those will get folded later.
2648       ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1));
2649       if (MulC && !MulC->isOpaque() && !MulC->isZero() &&
2650           !MulC->getAPIntValue().isPowerOf2()) {
2651         APInt UnmaskedC = MulC->getAPIntValue() | HighMask;
2652         if (UnmaskedC.isNegatedPowerOf2())
2653           return (-UnmaskedC).logBase2();
2654       }
2655       return 0;
2656     };
2657 
2658     auto foldMul = [&](ISD::NodeType NT, SDValue X, SDValue Y, unsigned ShlAmt) {
2659       EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout());
2660       SDValue ShlAmtC = TLO.DAG.getConstant(ShlAmt, dl, ShiftAmtTy);
2661       SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC);
2662       SDValue Res = TLO.DAG.getNode(NT, dl, VT, Y, Shl);
2663       return TLO.CombineTo(Op, Res);
2664     };
2665 
2666     if (isOperationLegalOrCustom(ISD::SHL, VT)) {
2667       if (Op.getOpcode() == ISD::ADD) {
2668         // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2669         if (unsigned ShAmt = getShiftLeftAmt(Op0))
2670           return foldMul(ISD::SUB, Op0.getOperand(0), Op1, ShAmt);
2671         // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC))
2672         if (unsigned ShAmt = getShiftLeftAmt(Op1))
2673           return foldMul(ISD::SUB, Op1.getOperand(0), Op0, ShAmt);
2674       }
2675       if (Op.getOpcode() == ISD::SUB) {
2676         // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC))
2677         if (unsigned ShAmt = getShiftLeftAmt(Op1))
2678           return foldMul(ISD::ADD, Op1.getOperand(0), Op0, ShAmt);
2679       }
2680     }
2681 
2682     LLVM_FALLTHROUGH;
2683   }
2684   default:
2685     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2686       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2687                                             Known, TLO, Depth))
2688         return true;
2689       break;
2690     }
2691 
2692     // Just use computeKnownBits to compute output bits.
2693     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2694     break;
2695   }
2696 
2697   // If we know the value of all of the demanded bits, return this as a
2698   // constant.
2699   if (!isTargetCanonicalConstantNode(Op) &&
2700       DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2701     // Avoid folding to a constant if any OpaqueConstant is involved.
2702     const SDNode *N = Op.getNode();
2703     for (SDNode *Op :
2704          llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) {
2705       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2706         if (C->isOpaque())
2707           return false;
2708     }
2709     if (VT.isInteger())
2710       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2711     if (VT.isFloatingPoint())
2712       return TLO.CombineTo(
2713           Op,
2714           TLO.DAG.getConstantFP(
2715               APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT));
2716   }
2717 
2718   return false;
2719 }
2720 
2721 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2722                                                 const APInt &DemandedElts,
2723                                                 DAGCombinerInfo &DCI) const {
2724   SelectionDAG &DAG = DCI.DAG;
2725   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2726                         !DCI.isBeforeLegalizeOps());
2727 
2728   APInt KnownUndef, KnownZero;
2729   bool Simplified =
2730       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2731   if (Simplified) {
2732     DCI.AddToWorklist(Op.getNode());
2733     DCI.CommitTargetLoweringOpt(TLO);
2734   }
2735 
2736   return Simplified;
2737 }
2738 
2739 /// Given a vector binary operation and known undefined elements for each input
2740 /// operand, compute whether each element of the output is undefined.
2741 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2742                                          const APInt &UndefOp0,
2743                                          const APInt &UndefOp1) {
2744   EVT VT = BO.getValueType();
2745   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2746          "Vector binop only");
2747 
2748   EVT EltVT = VT.getVectorElementType();
2749   unsigned NumElts = VT.getVectorNumElements();
2750   assert(UndefOp0.getBitWidth() == NumElts &&
2751          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2752 
2753   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2754                                    const APInt &UndefVals) {
2755     if (UndefVals[Index])
2756       return DAG.getUNDEF(EltVT);
2757 
2758     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2759       // Try hard to make sure that the getNode() call is not creating temporary
2760       // nodes. Ignore opaque integers because they do not constant fold.
2761       SDValue Elt = BV->getOperand(Index);
2762       auto *C = dyn_cast<ConstantSDNode>(Elt);
2763       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2764         return Elt;
2765     }
2766 
2767     return SDValue();
2768   };
2769 
2770   APInt KnownUndef = APInt::getZero(NumElts);
2771   for (unsigned i = 0; i != NumElts; ++i) {
2772     // If both inputs for this element are either constant or undef and match
2773     // the element type, compute the constant/undef result for this element of
2774     // the vector.
2775     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2776     // not handle FP constants. The code within getNode() should be refactored
2777     // to avoid the danger of creating a bogus temporary node here.
2778     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2779     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2780     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2781       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2782         KnownUndef.setBit(i);
2783   }
2784   return KnownUndef;
2785 }
2786 
2787 bool TargetLowering::SimplifyDemandedVectorElts(
2788     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2789     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2790     bool AssumeSingleUse) const {
2791   EVT VT = Op.getValueType();
2792   unsigned Opcode = Op.getOpcode();
2793   APInt DemandedElts = OriginalDemandedElts;
2794   unsigned NumElts = DemandedElts.getBitWidth();
2795   assert(VT.isVector() && "Expected vector op");
2796 
2797   KnownUndef = KnownZero = APInt::getZero(NumElts);
2798 
2799   const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo();
2800   if (!TLI.shouldSimplifyDemandedVectorElts(Op, TLO))
2801     return false;
2802 
2803   // TODO: For now we assume we know nothing about scalable vectors.
2804   if (VT.isScalableVector())
2805     return false;
2806 
2807   assert(VT.getVectorNumElements() == NumElts &&
2808          "Mask size mismatches value type element count!");
2809 
2810   // Undef operand.
2811   if (Op.isUndef()) {
2812     KnownUndef.setAllBits();
2813     return false;
2814   }
2815 
2816   // If Op has other users, assume that all elements are needed.
2817   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2818     DemandedElts.setAllBits();
2819 
2820   // Not demanding any elements from Op.
2821   if (DemandedElts == 0) {
2822     KnownUndef.setAllBits();
2823     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2824   }
2825 
2826   // Limit search depth.
2827   if (Depth >= SelectionDAG::MaxRecursionDepth)
2828     return false;
2829 
2830   SDLoc DL(Op);
2831   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2832   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
2833 
2834   // Helper for demanding the specified elements and all the bits of both binary
2835   // operands.
2836   auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
2837     SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
2838                                                            TLO.DAG, Depth + 1);
2839     SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
2840                                                            TLO.DAG, Depth + 1);
2841     if (NewOp0 || NewOp1) {
2842       SDValue NewOp = TLO.DAG.getNode(
2843           Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1);
2844       return TLO.CombineTo(Op, NewOp);
2845     }
2846     return false;
2847   };
2848 
2849   switch (Opcode) {
2850   case ISD::SCALAR_TO_VECTOR: {
2851     if (!DemandedElts[0]) {
2852       KnownUndef.setAllBits();
2853       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2854     }
2855     SDValue ScalarSrc = Op.getOperand(0);
2856     if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
2857       SDValue Src = ScalarSrc.getOperand(0);
2858       SDValue Idx = ScalarSrc.getOperand(1);
2859       EVT SrcVT = Src.getValueType();
2860 
2861       ElementCount SrcEltCnt = SrcVT.getVectorElementCount();
2862 
2863       if (SrcEltCnt.isScalable())
2864         return false;
2865 
2866       unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2867       if (isNullConstant(Idx)) {
2868         APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0);
2869         APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts);
2870         APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts);
2871         if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2872                                        TLO, Depth + 1))
2873           return true;
2874       }
2875     }
2876     KnownUndef.setHighBits(NumElts - 1);
2877     break;
2878   }
2879   case ISD::BITCAST: {
2880     SDValue Src = Op.getOperand(0);
2881     EVT SrcVT = Src.getValueType();
2882 
2883     // We only handle vectors here.
2884     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2885     if (!SrcVT.isVector())
2886       break;
2887 
2888     // Fast handling of 'identity' bitcasts.
2889     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2890     if (NumSrcElts == NumElts)
2891       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2892                                         KnownZero, TLO, Depth + 1);
2893 
2894     APInt SrcDemandedElts, SrcZero, SrcUndef;
2895 
2896     // Bitcast from 'large element' src vector to 'small element' vector, we
2897     // must demand a source element if any DemandedElt maps to it.
2898     if ((NumElts % NumSrcElts) == 0) {
2899       unsigned Scale = NumElts / NumSrcElts;
2900       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2901       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2902                                      TLO, Depth + 1))
2903         return true;
2904 
2905       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2906       // of the large element.
2907       // TODO - bigendian once we have test coverage.
2908       if (IsLE) {
2909         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2910         APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits);
2911         for (unsigned i = 0; i != NumElts; ++i)
2912           if (DemandedElts[i]) {
2913             unsigned Ofs = (i % Scale) * EltSizeInBits;
2914             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2915           }
2916 
2917         KnownBits Known;
2918         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2919                                  TLO, Depth + 1))
2920           return true;
2921 
2922         // The bitcast has split each wide element into a number of
2923         // narrow subelements. We have just computed the Known bits
2924         // for wide elements. See if element splitting results in
2925         // some subelements being zero. Only for demanded elements!
2926         for (unsigned SubElt = 0; SubElt != Scale; ++SubElt) {
2927           if (!Known.Zero.extractBits(EltSizeInBits, SubElt * EltSizeInBits)
2928                    .isAllOnes())
2929             continue;
2930           for (unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) {
2931             unsigned Elt = Scale * SrcElt + SubElt;
2932             if (DemandedElts[Elt])
2933               KnownZero.setBit(Elt);
2934           }
2935         }
2936       }
2937 
2938       // If the src element is zero/undef then all the output elements will be -
2939       // only demanded elements are guaranteed to be correct.
2940       for (unsigned i = 0; i != NumSrcElts; ++i) {
2941         if (SrcDemandedElts[i]) {
2942           if (SrcZero[i])
2943             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2944           if (SrcUndef[i])
2945             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2946         }
2947       }
2948     }
2949 
2950     // Bitcast from 'small element' src vector to 'large element' vector, we
2951     // demand all smaller source elements covered by the larger demanded element
2952     // of this vector.
2953     if ((NumSrcElts % NumElts) == 0) {
2954       unsigned Scale = NumSrcElts / NumElts;
2955       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2956       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2957                                      TLO, Depth + 1))
2958         return true;
2959 
2960       // If all the src elements covering an output element are zero/undef, then
2961       // the output element will be as well, assuming it was demanded.
2962       for (unsigned i = 0; i != NumElts; ++i) {
2963         if (DemandedElts[i]) {
2964           if (SrcZero.extractBits(Scale, i * Scale).isAllOnes())
2965             KnownZero.setBit(i);
2966           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes())
2967             KnownUndef.setBit(i);
2968         }
2969       }
2970     }
2971     break;
2972   }
2973   case ISD::BUILD_VECTOR: {
2974     // Check all elements and simplify any unused elements with UNDEF.
2975     if (!DemandedElts.isAllOnes()) {
2976       // Don't simplify BROADCASTS.
2977       if (llvm::any_of(Op->op_values(),
2978                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2979         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2980         bool Updated = false;
2981         for (unsigned i = 0; i != NumElts; ++i) {
2982           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2983             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2984             KnownUndef.setBit(i);
2985             Updated = true;
2986           }
2987         }
2988         if (Updated)
2989           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2990       }
2991     }
2992     for (unsigned i = 0; i != NumElts; ++i) {
2993       SDValue SrcOp = Op.getOperand(i);
2994       if (SrcOp.isUndef()) {
2995         KnownUndef.setBit(i);
2996       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2997                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2998         KnownZero.setBit(i);
2999       }
3000     }
3001     break;
3002   }
3003   case ISD::CONCAT_VECTORS: {
3004     EVT SubVT = Op.getOperand(0).getValueType();
3005     unsigned NumSubVecs = Op.getNumOperands();
3006     unsigned NumSubElts = SubVT.getVectorNumElements();
3007     for (unsigned i = 0; i != NumSubVecs; ++i) {
3008       SDValue SubOp = Op.getOperand(i);
3009       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
3010       APInt SubUndef, SubZero;
3011       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
3012                                      Depth + 1))
3013         return true;
3014       KnownUndef.insertBits(SubUndef, i * NumSubElts);
3015       KnownZero.insertBits(SubZero, i * NumSubElts);
3016     }
3017 
3018     // Attempt to avoid multi-use ops if we don't need anything from them.
3019     if (!DemandedElts.isAllOnes()) {
3020       bool FoundNewSub = false;
3021       SmallVector<SDValue, 2> DemandedSubOps;
3022       for (unsigned i = 0; i != NumSubVecs; ++i) {
3023         SDValue SubOp = Op.getOperand(i);
3024         APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
3025         SDValue NewSubOp = SimplifyMultipleUseDemandedVectorElts(
3026             SubOp, SubElts, TLO.DAG, Depth + 1);
3027         DemandedSubOps.push_back(NewSubOp ? NewSubOp : SubOp);
3028         FoundNewSub = NewSubOp ? true : FoundNewSub;
3029       }
3030       if (FoundNewSub) {
3031         SDValue NewOp =
3032             TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, DemandedSubOps);
3033         return TLO.CombineTo(Op, NewOp);
3034       }
3035     }
3036     break;
3037   }
3038   case ISD::INSERT_SUBVECTOR: {
3039     // Demand any elements from the subvector and the remainder from the src its
3040     // inserted into.
3041     SDValue Src = Op.getOperand(0);
3042     SDValue Sub = Op.getOperand(1);
3043     uint64_t Idx = Op.getConstantOperandVal(2);
3044     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3045     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3046     APInt DemandedSrcElts = DemandedElts;
3047     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
3048 
3049     APInt SubUndef, SubZero;
3050     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
3051                                    Depth + 1))
3052       return true;
3053 
3054     // If none of the src operand elements are demanded, replace it with undef.
3055     if (!DemandedSrcElts && !Src.isUndef())
3056       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
3057                                                TLO.DAG.getUNDEF(VT), Sub,
3058                                                Op.getOperand(2)));
3059 
3060     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
3061                                    TLO, Depth + 1))
3062       return true;
3063     KnownUndef.insertBits(SubUndef, Idx);
3064     KnownZero.insertBits(SubZero, Idx);
3065 
3066     // Attempt to avoid multi-use ops if we don't need anything from them.
3067     if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) {
3068       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
3069           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
3070       SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
3071           Sub, DemandedSubElts, TLO.DAG, Depth + 1);
3072       if (NewSrc || NewSub) {
3073         NewSrc = NewSrc ? NewSrc : Src;
3074         NewSub = NewSub ? NewSub : Sub;
3075         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
3076                                         NewSub, Op.getOperand(2));
3077         return TLO.CombineTo(Op, NewOp);
3078       }
3079     }
3080     break;
3081   }
3082   case ISD::EXTRACT_SUBVECTOR: {
3083     // Offset the demanded elts by the subvector index.
3084     SDValue Src = Op.getOperand(0);
3085     if (Src.getValueType().isScalableVector())
3086       break;
3087     uint64_t Idx = Op.getConstantOperandVal(1);
3088     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3089     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
3090 
3091     APInt SrcUndef, SrcZero;
3092     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
3093                                    Depth + 1))
3094       return true;
3095     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
3096     KnownZero = SrcZero.extractBits(NumElts, Idx);
3097 
3098     // Attempt to avoid multi-use ops if we don't need anything from them.
3099     if (!DemandedElts.isAllOnes()) {
3100       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
3101           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
3102       if (NewSrc) {
3103         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
3104                                         Op.getOperand(1));
3105         return TLO.CombineTo(Op, NewOp);
3106       }
3107     }
3108     break;
3109   }
3110   case ISD::INSERT_VECTOR_ELT: {
3111     SDValue Vec = Op.getOperand(0);
3112     SDValue Scl = Op.getOperand(1);
3113     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3114 
3115     // For a legal, constant insertion index, if we don't need this insertion
3116     // then strip it, else remove it from the demanded elts.
3117     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
3118       unsigned Idx = CIdx->getZExtValue();
3119       if (!DemandedElts[Idx])
3120         return TLO.CombineTo(Op, Vec);
3121 
3122       APInt DemandedVecElts(DemandedElts);
3123       DemandedVecElts.clearBit(Idx);
3124       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
3125                                      KnownZero, TLO, Depth + 1))
3126         return true;
3127 
3128       KnownUndef.setBitVal(Idx, Scl.isUndef());
3129 
3130       KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
3131       break;
3132     }
3133 
3134     APInt VecUndef, VecZero;
3135     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
3136                                    Depth + 1))
3137       return true;
3138     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
3139     break;
3140   }
3141   case ISD::VSELECT: {
3142     SDValue Sel = Op.getOperand(0);
3143     SDValue LHS = Op.getOperand(1);
3144     SDValue RHS = Op.getOperand(2);
3145 
3146     // Try to transform the select condition based on the current demanded
3147     // elements.
3148     APInt UndefSel, UndefZero;
3149     if (SimplifyDemandedVectorElts(Sel, DemandedElts, UndefSel, UndefZero, TLO,
3150                                    Depth + 1))
3151       return true;
3152 
3153     // See if we can simplify either vselect operand.
3154     APInt DemandedLHS(DemandedElts);
3155     APInt DemandedRHS(DemandedElts);
3156     APInt UndefLHS, ZeroLHS;
3157     APInt UndefRHS, ZeroRHS;
3158     if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO,
3159                                    Depth + 1))
3160       return true;
3161     if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO,
3162                                    Depth + 1))
3163       return true;
3164 
3165     KnownUndef = UndefLHS & UndefRHS;
3166     KnownZero = ZeroLHS & ZeroRHS;
3167 
3168     // If we know that the selected element is always zero, we don't need the
3169     // select value element.
3170     APInt DemandedSel = DemandedElts & ~KnownZero;
3171     if (DemandedSel != DemandedElts)
3172       if (SimplifyDemandedVectorElts(Sel, DemandedSel, UndefSel, UndefZero, TLO,
3173                                      Depth + 1))
3174         return true;
3175 
3176     break;
3177   }
3178   case ISD::VECTOR_SHUFFLE: {
3179     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
3180 
3181     // Collect demanded elements from shuffle operands..
3182     APInt DemandedLHS(NumElts, 0);
3183     APInt DemandedRHS(NumElts, 0);
3184     for (unsigned i = 0; i != NumElts; ++i) {
3185       int M = ShuffleMask[i];
3186       if (M < 0 || !DemandedElts[i])
3187         continue;
3188       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
3189       if (M < (int)NumElts)
3190         DemandedLHS.setBit(M);
3191       else
3192         DemandedRHS.setBit(M - NumElts);
3193     }
3194 
3195     // See if we can simplify either shuffle operand.
3196     APInt UndefLHS, ZeroLHS;
3197     APInt UndefRHS, ZeroRHS;
3198     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
3199                                    ZeroLHS, TLO, Depth + 1))
3200       return true;
3201     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
3202                                    ZeroRHS, TLO, Depth + 1))
3203       return true;
3204 
3205     // Simplify mask using undef elements from LHS/RHS.
3206     bool Updated = false;
3207     bool IdentityLHS = true, IdentityRHS = true;
3208     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
3209     for (unsigned i = 0; i != NumElts; ++i) {
3210       int &M = NewMask[i];
3211       if (M < 0)
3212         continue;
3213       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
3214           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
3215         Updated = true;
3216         M = -1;
3217       }
3218       IdentityLHS &= (M < 0) || (M == (int)i);
3219       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
3220     }
3221 
3222     // Update legal shuffle masks based on demanded elements if it won't reduce
3223     // to Identity which can cause premature removal of the shuffle mask.
3224     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
3225       SDValue LegalShuffle =
3226           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
3227                                   NewMask, TLO.DAG);
3228       if (LegalShuffle)
3229         return TLO.CombineTo(Op, LegalShuffle);
3230     }
3231 
3232     // Propagate undef/zero elements from LHS/RHS.
3233     for (unsigned i = 0; i != NumElts; ++i) {
3234       int M = ShuffleMask[i];
3235       if (M < 0) {
3236         KnownUndef.setBit(i);
3237       } else if (M < (int)NumElts) {
3238         if (UndefLHS[M])
3239           KnownUndef.setBit(i);
3240         if (ZeroLHS[M])
3241           KnownZero.setBit(i);
3242       } else {
3243         if (UndefRHS[M - NumElts])
3244           KnownUndef.setBit(i);
3245         if (ZeroRHS[M - NumElts])
3246           KnownZero.setBit(i);
3247       }
3248     }
3249     break;
3250   }
3251   case ISD::ANY_EXTEND_VECTOR_INREG:
3252   case ISD::SIGN_EXTEND_VECTOR_INREG:
3253   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3254     APInt SrcUndef, SrcZero;
3255     SDValue Src = Op.getOperand(0);
3256     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3257     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts);
3258     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
3259                                    Depth + 1))
3260       return true;
3261     KnownZero = SrcZero.zextOrTrunc(NumElts);
3262     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
3263 
3264     if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
3265         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
3266         DemandedSrcElts == 1) {
3267       // aext - if we just need the bottom element then we can bitcast.
3268       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
3269     }
3270 
3271     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
3272       // zext(undef) upper bits are guaranteed to be zero.
3273       if (DemandedElts.isSubsetOf(KnownUndef))
3274         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3275       KnownUndef.clearAllBits();
3276 
3277       // zext - if we just need the bottom element then we can mask:
3278       // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and.
3279       if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND &&
3280           Op->isOnlyUserOf(Src.getNode()) &&
3281           Op.getValueSizeInBits() == Src.getValueSizeInBits()) {
3282         SDLoc DL(Op);
3283         EVT SrcVT = Src.getValueType();
3284         EVT SrcSVT = SrcVT.getScalarType();
3285         SmallVector<SDValue> MaskElts;
3286         MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT));
3287         MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT));
3288         SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts);
3289         if (SDValue Fold = TLO.DAG.FoldConstantArithmetic(
3290                 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) {
3291           Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold);
3292           return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold));
3293         }
3294       }
3295     }
3296     break;
3297   }
3298 
3299   // TODO: There are more binop opcodes that could be handled here - MIN,
3300   // MAX, saturated math, etc.
3301   case ISD::ADD: {
3302     SDValue Op0 = Op.getOperand(0);
3303     SDValue Op1 = Op.getOperand(1);
3304     if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) {
3305       APInt UndefLHS, ZeroLHS;
3306       if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3307                                      Depth + 1, /*AssumeSingleUse*/ true))
3308         return true;
3309     }
3310     LLVM_FALLTHROUGH;
3311   }
3312   case ISD::OR:
3313   case ISD::XOR:
3314   case ISD::SUB:
3315   case ISD::FADD:
3316   case ISD::FSUB:
3317   case ISD::FMUL:
3318   case ISD::FDIV:
3319   case ISD::FREM: {
3320     SDValue Op0 = Op.getOperand(0);
3321     SDValue Op1 = Op.getOperand(1);
3322 
3323     APInt UndefRHS, ZeroRHS;
3324     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3325                                    Depth + 1))
3326       return true;
3327     APInt UndefLHS, ZeroLHS;
3328     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3329                                    Depth + 1))
3330       return true;
3331 
3332     KnownZero = ZeroLHS & ZeroRHS;
3333     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
3334 
3335     // Attempt to avoid multi-use ops if we don't need anything from them.
3336     // TODO - use KnownUndef to relax the demandedelts?
3337     if (!DemandedElts.isAllOnes())
3338       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3339         return true;
3340     break;
3341   }
3342   case ISD::SHL:
3343   case ISD::SRL:
3344   case ISD::SRA:
3345   case ISD::ROTL:
3346   case ISD::ROTR: {
3347     SDValue Op0 = Op.getOperand(0);
3348     SDValue Op1 = Op.getOperand(1);
3349 
3350     APInt UndefRHS, ZeroRHS;
3351     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3352                                    Depth + 1))
3353       return true;
3354     APInt UndefLHS, ZeroLHS;
3355     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3356                                    Depth + 1))
3357       return true;
3358 
3359     KnownZero = ZeroLHS;
3360     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
3361 
3362     // Attempt to avoid multi-use ops if we don't need anything from them.
3363     // TODO - use KnownUndef to relax the demandedelts?
3364     if (!DemandedElts.isAllOnes())
3365       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3366         return true;
3367     break;
3368   }
3369   case ISD::MUL:
3370   case ISD::AND: {
3371     SDValue Op0 = Op.getOperand(0);
3372     SDValue Op1 = Op.getOperand(1);
3373 
3374     APInt SrcUndef, SrcZero;
3375     if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
3376                                    Depth + 1))
3377       return true;
3378     if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero,
3379                                    TLO, Depth + 1))
3380       return true;
3381 
3382     // If every element pair has a zero/undef then just fold to zero.
3383     // fold (and x, undef) -> 0  /  (and x, 0) -> 0
3384     // fold (mul x, undef) -> 0  /  (mul x, 0) -> 0
3385     if (DemandedElts.isSubsetOf(SrcZero | KnownZero | SrcUndef | KnownUndef))
3386       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3387 
3388     // If either side has a zero element, then the result element is zero, even
3389     // if the other is an UNDEF.
3390     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
3391     // and then handle 'and' nodes with the rest of the binop opcodes.
3392     KnownZero |= SrcZero;
3393     KnownUndef &= SrcUndef;
3394     KnownUndef &= ~KnownZero;
3395 
3396     // Attempt to avoid multi-use ops if we don't need anything from them.
3397     if (!DemandedElts.isAllOnes())
3398       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3399         return true;
3400     break;
3401   }
3402   case ISD::TRUNCATE:
3403   case ISD::SIGN_EXTEND:
3404   case ISD::ZERO_EXTEND:
3405     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
3406                                    KnownZero, TLO, Depth + 1))
3407       return true;
3408 
3409     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
3410       // zext(undef) upper bits are guaranteed to be zero.
3411       if (DemandedElts.isSubsetOf(KnownUndef))
3412         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3413       KnownUndef.clearAllBits();
3414     }
3415     break;
3416   default: {
3417     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
3418       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
3419                                                   KnownZero, TLO, Depth))
3420         return true;
3421     } else {
3422       KnownBits Known;
3423       APInt DemandedBits = APInt::getAllOnes(EltSizeInBits);
3424       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
3425                                TLO, Depth, AssumeSingleUse))
3426         return true;
3427     }
3428     break;
3429   }
3430   }
3431   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
3432 
3433   // Constant fold all undef cases.
3434   // TODO: Handle zero cases as well.
3435   if (DemandedElts.isSubsetOf(KnownUndef))
3436     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
3437 
3438   return false;
3439 }
3440 
3441 /// Determine which of the bits specified in Mask are known to be either zero or
3442 /// one and return them in the Known.
3443 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
3444                                                    KnownBits &Known,
3445                                                    const APInt &DemandedElts,
3446                                                    const SelectionDAG &DAG,
3447                                                    unsigned Depth) const {
3448   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3449           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3450           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3451           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3452          "Should use MaskedValueIsZero if you don't know whether Op"
3453          " is a target node!");
3454   Known.resetAll();
3455 }
3456 
3457 void TargetLowering::computeKnownBitsForTargetInstr(
3458     GISelKnownBits &Analysis, Register R, KnownBits &Known,
3459     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
3460     unsigned Depth) const {
3461   Known.resetAll();
3462 }
3463 
3464 void TargetLowering::computeKnownBitsForFrameIndex(
3465   const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
3466   // The low bits are known zero if the pointer is aligned.
3467   Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
3468 }
3469 
3470 Align TargetLowering::computeKnownAlignForTargetInstr(
3471   GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
3472   unsigned Depth) const {
3473   return Align(1);
3474 }
3475 
3476 /// This method can be implemented by targets that want to expose additional
3477 /// information about sign bits to the DAG Combiner.
3478 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
3479                                                          const APInt &,
3480                                                          const SelectionDAG &,
3481                                                          unsigned Depth) const {
3482   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3483           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3484           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3485           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3486          "Should use ComputeNumSignBits if you don't know whether Op"
3487          " is a target node!");
3488   return 1;
3489 }
3490 
3491 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
3492   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
3493   const MachineRegisterInfo &MRI, unsigned Depth) const {
3494   return 1;
3495 }
3496 
3497 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
3498     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
3499     TargetLoweringOpt &TLO, unsigned Depth) const {
3500   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3501           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3502           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3503           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3504          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
3505          " is a target node!");
3506   return false;
3507 }
3508 
3509 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
3510     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3511     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
3512   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3513           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3514           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3515           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3516          "Should use SimplifyDemandedBits if you don't know whether Op"
3517          " is a target node!");
3518   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
3519   return false;
3520 }
3521 
3522 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
3523     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3524     SelectionDAG &DAG, unsigned Depth) const {
3525   assert(
3526       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3527        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3528        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3529        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3530       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3531       " is a target node!");
3532   return SDValue();
3533 }
3534 
3535 SDValue
3536 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3537                                         SDValue N1, MutableArrayRef<int> Mask,
3538                                         SelectionDAG &DAG) const {
3539   bool LegalMask = isShuffleMaskLegal(Mask, VT);
3540   if (!LegalMask) {
3541     std::swap(N0, N1);
3542     ShuffleVectorSDNode::commuteMask(Mask);
3543     LegalMask = isShuffleMaskLegal(Mask, VT);
3544   }
3545 
3546   if (!LegalMask)
3547     return SDValue();
3548 
3549   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3550 }
3551 
3552 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
3553   return nullptr;
3554 }
3555 
3556 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode(
3557     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
3558     bool PoisonOnly, unsigned Depth) const {
3559   assert(
3560       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3561        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3562        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3563        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3564       "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
3565       " is a target node!");
3566   return false;
3567 }
3568 
3569 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
3570                                                   const SelectionDAG &DAG,
3571                                                   bool SNaN,
3572                                                   unsigned Depth) const {
3573   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3574           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3575           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3576           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3577          "Should use isKnownNeverNaN if you don't know whether Op"
3578          " is a target node!");
3579   return false;
3580 }
3581 
3582 bool TargetLowering::isSplatValueForTargetNode(SDValue Op,
3583                                                const APInt &DemandedElts,
3584                                                APInt &UndefElts,
3585                                                unsigned Depth) const {
3586   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3587           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3588           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3589           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3590          "Should use isSplatValue if you don't know whether Op"
3591          " is a target node!");
3592   return false;
3593 }
3594 
3595 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
3596 // work with truncating build vectors and vectors with elements of less than
3597 // 8 bits.
3598 bool TargetLowering::isConstTrueVal(SDValue N) const {
3599   if (!N)
3600     return false;
3601 
3602   unsigned EltWidth;
3603   APInt CVal;
3604   if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false,
3605                                                /*AllowTruncation=*/true)) {
3606     CVal = CN->getAPIntValue();
3607     EltWidth = N.getValueType().getScalarSizeInBits();
3608   } else
3609     return false;
3610 
3611   // If this is a truncating splat, truncate the splat value.
3612   // Otherwise, we may fail to match the expected values below.
3613   if (EltWidth < CVal.getBitWidth())
3614     CVal = CVal.trunc(EltWidth);
3615 
3616   switch (getBooleanContents(N.getValueType())) {
3617   case UndefinedBooleanContent:
3618     return CVal[0];
3619   case ZeroOrOneBooleanContent:
3620     return CVal.isOne();
3621   case ZeroOrNegativeOneBooleanContent:
3622     return CVal.isAllOnes();
3623   }
3624 
3625   llvm_unreachable("Invalid boolean contents");
3626 }
3627 
3628 bool TargetLowering::isConstFalseVal(SDValue N) const {
3629   if (!N)
3630     return false;
3631 
3632   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3633   if (!CN) {
3634     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
3635     if (!BV)
3636       return false;
3637 
3638     // Only interested in constant splats, we don't care about undef
3639     // elements in identifying boolean constants and getConstantSplatNode
3640     // returns NULL if all ops are undef;
3641     CN = BV->getConstantSplatNode();
3642     if (!CN)
3643       return false;
3644   }
3645 
3646   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
3647     return !CN->getAPIntValue()[0];
3648 
3649   return CN->isZero();
3650 }
3651 
3652 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
3653                                        bool SExt) const {
3654   if (VT == MVT::i1)
3655     return N->isOne();
3656 
3657   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
3658   switch (Cnt) {
3659   case TargetLowering::ZeroOrOneBooleanContent:
3660     // An extended value of 1 is always true, unless its original type is i1,
3661     // in which case it will be sign extended to -1.
3662     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
3663   case TargetLowering::UndefinedBooleanContent:
3664   case TargetLowering::ZeroOrNegativeOneBooleanContent:
3665     return N->isAllOnes() && SExt;
3666   }
3667   llvm_unreachable("Unexpected enumeration.");
3668 }
3669 
3670 /// This helper function of SimplifySetCC tries to optimize the comparison when
3671 /// either operand of the SetCC node is a bitwise-and instruction.
3672 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
3673                                          ISD::CondCode Cond, const SDLoc &DL,
3674                                          DAGCombinerInfo &DCI) const {
3675   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
3676     std::swap(N0, N1);
3677 
3678   SelectionDAG &DAG = DCI.DAG;
3679   EVT OpVT = N0.getValueType();
3680   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
3681       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
3682     return SDValue();
3683 
3684   // (X & Y) != 0 --> zextOrTrunc(X & Y)
3685   // iff everything but LSB is known zero:
3686   if (Cond == ISD::SETNE && isNullConstant(N1) &&
3687       (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent ||
3688        getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) {
3689     unsigned NumEltBits = OpVT.getScalarSizeInBits();
3690     APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1);
3691     if (DAG.MaskedValueIsZero(N0, UpperBits))
3692       return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT);
3693   }
3694 
3695   // Match these patterns in any of their permutations:
3696   // (X & Y) == Y
3697   // (X & Y) != Y
3698   SDValue X, Y;
3699   if (N0.getOperand(0) == N1) {
3700     X = N0.getOperand(1);
3701     Y = N0.getOperand(0);
3702   } else if (N0.getOperand(1) == N1) {
3703     X = N0.getOperand(0);
3704     Y = N0.getOperand(1);
3705   } else {
3706     return SDValue();
3707   }
3708 
3709   SDValue Zero = DAG.getConstant(0, DL, OpVT);
3710   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
3711     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
3712     // Note that where Y is variable and is known to have at most one bit set
3713     // (for example, if it is Z & 1) we cannot do this; the expressions are not
3714     // equivalent when Y == 0.
3715     assert(OpVT.isInteger());
3716     Cond = ISD::getSetCCInverse(Cond, OpVT);
3717     if (DCI.isBeforeLegalizeOps() ||
3718         isCondCodeLegal(Cond, N0.getSimpleValueType()))
3719       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
3720   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
3721     // If the target supports an 'and-not' or 'and-complement' logic operation,
3722     // try to use that to make a comparison operation more efficient.
3723     // But don't do this transform if the mask is a single bit because there are
3724     // more efficient ways to deal with that case (for example, 'bt' on x86 or
3725     // 'rlwinm' on PPC).
3726 
3727     // Bail out if the compare operand that we want to turn into a zero is
3728     // already a zero (otherwise, infinite loop).
3729     auto *YConst = dyn_cast<ConstantSDNode>(Y);
3730     if (YConst && YConst->isZero())
3731       return SDValue();
3732 
3733     // Transform this into: ~X & Y == 0.
3734     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
3735     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
3736     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
3737   }
3738 
3739   return SDValue();
3740 }
3741 
3742 /// There are multiple IR patterns that could be checking whether certain
3743 /// truncation of a signed number would be lossy or not. The pattern which is
3744 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
3745 /// We are looking for the following pattern: (KeptBits is a constant)
3746 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3747 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3748 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
3749 /// We will unfold it into the natural trunc+sext pattern:
3750 ///   ((%x << C) a>> C) dstcond %x
3751 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
3752 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3753     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3754     const SDLoc &DL) const {
3755   // We must be comparing with a constant.
3756   ConstantSDNode *C1;
3757   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3758     return SDValue();
3759 
3760   // N0 should be:  add %x, (1 << (KeptBits-1))
3761   if (N0->getOpcode() != ISD::ADD)
3762     return SDValue();
3763 
3764   // And we must be 'add'ing a constant.
3765   ConstantSDNode *C01;
3766   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3767     return SDValue();
3768 
3769   SDValue X = N0->getOperand(0);
3770   EVT XVT = X.getValueType();
3771 
3772   // Validate constants ...
3773 
3774   APInt I1 = C1->getAPIntValue();
3775 
3776   ISD::CondCode NewCond;
3777   if (Cond == ISD::CondCode::SETULT) {
3778     NewCond = ISD::CondCode::SETEQ;
3779   } else if (Cond == ISD::CondCode::SETULE) {
3780     NewCond = ISD::CondCode::SETEQ;
3781     // But need to 'canonicalize' the constant.
3782     I1 += 1;
3783   } else if (Cond == ISD::CondCode::SETUGT) {
3784     NewCond = ISD::CondCode::SETNE;
3785     // But need to 'canonicalize' the constant.
3786     I1 += 1;
3787   } else if (Cond == ISD::CondCode::SETUGE) {
3788     NewCond = ISD::CondCode::SETNE;
3789   } else
3790     return SDValue();
3791 
3792   APInt I01 = C01->getAPIntValue();
3793 
3794   auto checkConstants = [&I1, &I01]() -> bool {
3795     // Both of them must be power-of-two, and the constant from setcc is bigger.
3796     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3797   };
3798 
3799   if (checkConstants()) {
3800     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3801   } else {
3802     // What if we invert constants? (and the target predicate)
3803     I1.negate();
3804     I01.negate();
3805     assert(XVT.isInteger());
3806     NewCond = getSetCCInverse(NewCond, XVT);
3807     if (!checkConstants())
3808       return SDValue();
3809     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3810   }
3811 
3812   // They are power-of-two, so which bit is set?
3813   const unsigned KeptBits = I1.logBase2();
3814   const unsigned KeptBitsMinusOne = I01.logBase2();
3815 
3816   // Magic!
3817   if (KeptBits != (KeptBitsMinusOne + 1))
3818     return SDValue();
3819   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3820 
3821   // We don't want to do this in every single case.
3822   SelectionDAG &DAG = DCI.DAG;
3823   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3824           XVT, KeptBits))
3825     return SDValue();
3826 
3827   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3828   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3829 
3830   // Unfold into:  ((%x << C) a>> C) cond %x
3831   // Where 'cond' will be either 'eq' or 'ne'.
3832   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3833   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3834   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3835   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3836 
3837   return T2;
3838 }
3839 
3840 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3841 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3842     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3843     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3844   assert(isConstOrConstSplat(N1C) &&
3845          isConstOrConstSplat(N1C)->getAPIntValue().isZero() &&
3846          "Should be a comparison with 0.");
3847   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3848          "Valid only for [in]equality comparisons.");
3849 
3850   unsigned NewShiftOpcode;
3851   SDValue X, C, Y;
3852 
3853   SelectionDAG &DAG = DCI.DAG;
3854   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3855 
3856   // Look for '(C l>>/<< Y)'.
3857   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3858     // The shift should be one-use.
3859     if (!V.hasOneUse())
3860       return false;
3861     unsigned OldShiftOpcode = V.getOpcode();
3862     switch (OldShiftOpcode) {
3863     case ISD::SHL:
3864       NewShiftOpcode = ISD::SRL;
3865       break;
3866     case ISD::SRL:
3867       NewShiftOpcode = ISD::SHL;
3868       break;
3869     default:
3870       return false; // must be a logical shift.
3871     }
3872     // We should be shifting a constant.
3873     // FIXME: best to use isConstantOrConstantVector().
3874     C = V.getOperand(0);
3875     ConstantSDNode *CC =
3876         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3877     if (!CC)
3878       return false;
3879     Y = V.getOperand(1);
3880 
3881     ConstantSDNode *XC =
3882         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3883     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3884         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3885   };
3886 
3887   // LHS of comparison should be an one-use 'and'.
3888   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3889     return SDValue();
3890 
3891   X = N0.getOperand(0);
3892   SDValue Mask = N0.getOperand(1);
3893 
3894   // 'and' is commutative!
3895   if (!Match(Mask)) {
3896     std::swap(X, Mask);
3897     if (!Match(Mask))
3898       return SDValue();
3899   }
3900 
3901   EVT VT = X.getValueType();
3902 
3903   // Produce:
3904   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3905   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3906   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3907   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3908   return T2;
3909 }
3910 
3911 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3912 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3913 /// handle the commuted versions of these patterns.
3914 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3915                                            ISD::CondCode Cond, const SDLoc &DL,
3916                                            DAGCombinerInfo &DCI) const {
3917   unsigned BOpcode = N0.getOpcode();
3918   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3919          "Unexpected binop");
3920   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3921 
3922   // (X + Y) == X --> Y == 0
3923   // (X - Y) == X --> Y == 0
3924   // (X ^ Y) == X --> Y == 0
3925   SelectionDAG &DAG = DCI.DAG;
3926   EVT OpVT = N0.getValueType();
3927   SDValue X = N0.getOperand(0);
3928   SDValue Y = N0.getOperand(1);
3929   if (X == N1)
3930     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3931 
3932   if (Y != N1)
3933     return SDValue();
3934 
3935   // (X + Y) == Y --> X == 0
3936   // (X ^ Y) == Y --> X == 0
3937   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3938     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3939 
3940   // The shift would not be valid if the operands are boolean (i1).
3941   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3942     return SDValue();
3943 
3944   // (X - Y) == Y --> X == Y << 1
3945   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3946                                  !DCI.isBeforeLegalize());
3947   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3948   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3949   if (!DCI.isCalledByLegalizer())
3950     DCI.AddToWorklist(YShl1.getNode());
3951   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3952 }
3953 
3954 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
3955                                       SDValue N0, const APInt &C1,
3956                                       ISD::CondCode Cond, const SDLoc &dl,
3957                                       SelectionDAG &DAG) {
3958   // Look through truncs that don't change the value of a ctpop.
3959   // FIXME: Add vector support? Need to be careful with setcc result type below.
3960   SDValue CTPOP = N0;
3961   if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
3962       N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
3963     CTPOP = N0.getOperand(0);
3964 
3965   if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
3966     return SDValue();
3967 
3968   EVT CTVT = CTPOP.getValueType();
3969   SDValue CTOp = CTPOP.getOperand(0);
3970 
3971   // If this is a vector CTPOP, keep the CTPOP if it is legal.
3972   // TODO: Should we check if CTPOP is legal(or custom) for scalars?
3973   if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT))
3974     return SDValue();
3975 
3976   // (ctpop x) u< 2 -> (x & x-1) == 0
3977   // (ctpop x) u> 1 -> (x & x-1) != 0
3978   if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
3979     unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
3980     if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
3981       return SDValue();
3982     if (C1 == 0 && (Cond == ISD::SETULT))
3983       return SDValue(); // This is handled elsewhere.
3984 
3985     unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
3986 
3987     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3988     SDValue Result = CTOp;
3989     for (unsigned i = 0; i < Passes; i++) {
3990       SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
3991       Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
3992     }
3993     ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3994     return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
3995   }
3996 
3997   // If ctpop is not supported, expand a power-of-2 comparison based on it.
3998   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
3999     // For scalars, keep CTPOP if it is legal or custom.
4000     if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT))
4001       return SDValue();
4002     // This is based on X86's custom lowering for CTPOP which produces more
4003     // instructions than the expansion here.
4004 
4005     // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
4006     // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
4007     SDValue Zero = DAG.getConstant(0, dl, CTVT);
4008     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
4009     assert(CTVT.isInteger());
4010     ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
4011     SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
4012     SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
4013     SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
4014     SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
4015     unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
4016     return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
4017   }
4018 
4019   return SDValue();
4020 }
4021 
4022 static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1,
4023                                    ISD::CondCode Cond, const SDLoc &dl,
4024                                    SelectionDAG &DAG) {
4025   if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
4026     return SDValue();
4027 
4028   auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
4029   if (!C1 || !(C1->isZero() || C1->isAllOnes()))
4030     return SDValue();
4031 
4032   auto getRotateSource = [](SDValue X) {
4033     if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR)
4034       return X.getOperand(0);
4035     return SDValue();
4036   };
4037 
4038   // Peek through a rotated value compared against 0 or -1:
4039   // (rot X, Y) == 0/-1 --> X == 0/-1
4040   // (rot X, Y) != 0/-1 --> X != 0/-1
4041   if (SDValue R = getRotateSource(N0))
4042     return DAG.getSetCC(dl, VT, R, N1, Cond);
4043 
4044   // Peek through an 'or' of a rotated value compared against 0:
4045   // or (rot X, Y), Z ==/!= 0 --> (or X, Z) ==/!= 0
4046   // or Z, (rot X, Y) ==/!= 0 --> (or X, Z) ==/!= 0
4047   //
4048   // TODO: Add the 'and' with -1 sibling.
4049   // TODO: Recurse through a series of 'or' ops to find the rotate.
4050   EVT OpVT = N0.getValueType();
4051   if (N0.hasOneUse() && N0.getOpcode() == ISD::OR && C1->isZero()) {
4052     if (SDValue R = getRotateSource(N0.getOperand(0))) {
4053       SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(1));
4054       return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4055     }
4056     if (SDValue R = getRotateSource(N0.getOperand(1))) {
4057       SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(0));
4058       return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4059     }
4060   }
4061 
4062   return SDValue();
4063 }
4064 
4065 static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1,
4066                                         ISD::CondCode Cond, const SDLoc &dl,
4067                                         SelectionDAG &DAG) {
4068   // If we are testing for all-bits-clear, we might be able to do that with
4069   // less shifting since bit-order does not matter.
4070   if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
4071     return SDValue();
4072 
4073   auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
4074   if (!C1 || !C1->isZero())
4075     return SDValue();
4076 
4077   if (!N0.hasOneUse() ||
4078       (N0.getOpcode() != ISD::FSHL && N0.getOpcode() != ISD::FSHR))
4079     return SDValue();
4080 
4081   unsigned BitWidth = N0.getScalarValueSizeInBits();
4082   auto *ShAmtC = isConstOrConstSplat(N0.getOperand(2));
4083   if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth))
4084     return SDValue();
4085 
4086   // Canonicalize fshr as fshl to reduce pattern-matching.
4087   unsigned ShAmt = ShAmtC->getZExtValue();
4088   if (N0.getOpcode() == ISD::FSHR)
4089     ShAmt = BitWidth - ShAmt;
4090 
4091   // Match an 'or' with a specific operand 'Other' in either commuted variant.
4092   SDValue X, Y;
4093   auto matchOr = [&X, &Y](SDValue Or, SDValue Other) {
4094     if (Or.getOpcode() != ISD::OR || !Or.hasOneUse())
4095       return false;
4096     if (Or.getOperand(0) == Other) {
4097       X = Or.getOperand(0);
4098       Y = Or.getOperand(1);
4099       return true;
4100     }
4101     if (Or.getOperand(1) == Other) {
4102       X = Or.getOperand(1);
4103       Y = Or.getOperand(0);
4104       return true;
4105     }
4106     return false;
4107   };
4108 
4109   EVT OpVT = N0.getValueType();
4110   EVT ShAmtVT = N0.getOperand(2).getValueType();
4111   SDValue F0 = N0.getOperand(0);
4112   SDValue F1 = N0.getOperand(1);
4113   if (matchOr(F0, F1)) {
4114     // fshl (or X, Y), X, C ==/!= 0 --> or (shl Y, C), X ==/!= 0
4115     SDValue NewShAmt = DAG.getConstant(ShAmt, dl, ShAmtVT);
4116     SDValue Shift = DAG.getNode(ISD::SHL, dl, OpVT, Y, NewShAmt);
4117     SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
4118     return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4119   }
4120   if (matchOr(F1, F0)) {
4121     // fshl X, (or X, Y), C ==/!= 0 --> or (srl Y, BW-C), X ==/!= 0
4122     SDValue NewShAmt = DAG.getConstant(BitWidth - ShAmt, dl, ShAmtVT);
4123     SDValue Shift = DAG.getNode(ISD::SRL, dl, OpVT, Y, NewShAmt);
4124     SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
4125     return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4126   }
4127 
4128   return SDValue();
4129 }
4130 
4131 /// Try to simplify a setcc built with the specified operands and cc. If it is
4132 /// unable to simplify it, return a null SDValue.
4133 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
4134                                       ISD::CondCode Cond, bool foldBooleans,
4135                                       DAGCombinerInfo &DCI,
4136                                       const SDLoc &dl) const {
4137   SelectionDAG &DAG = DCI.DAG;
4138   const DataLayout &Layout = DAG.getDataLayout();
4139   EVT OpVT = N0.getValueType();
4140 
4141   // Constant fold or commute setcc.
4142   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
4143     return Fold;
4144 
4145   bool N0ConstOrSplat =
4146       isConstOrConstSplat(N0, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
4147   bool N1ConstOrSplat =
4148       isConstOrConstSplat(N1, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
4149 
4150   // Ensure that the constant occurs on the RHS and fold constant comparisons.
4151   // TODO: Handle non-splat vector constants. All undef causes trouble.
4152   // FIXME: We can't yet fold constant scalable vector splats, so avoid an
4153   // infinite loop here when we encounter one.
4154   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
4155   if (N0ConstOrSplat && (!OpVT.isScalableVector() || !N1ConstOrSplat) &&
4156       (DCI.isBeforeLegalizeOps() ||
4157        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
4158     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
4159 
4160   // If we have a subtract with the same 2 non-constant operands as this setcc
4161   // -- but in reverse order -- then try to commute the operands of this setcc
4162   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
4163   // instruction on some targets.
4164   if (!N0ConstOrSplat && !N1ConstOrSplat &&
4165       (DCI.isBeforeLegalizeOps() ||
4166        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
4167       DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
4168       !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
4169     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
4170 
4171   if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG))
4172     return V;
4173 
4174   if (SDValue V = foldSetCCWithFunnelShift(VT, N0, N1, Cond, dl, DAG))
4175     return V;
4176 
4177   if (auto *N1C = isConstOrConstSplat(N1)) {
4178     const APInt &C1 = N1C->getAPIntValue();
4179 
4180     // Optimize some CTPOP cases.
4181     if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
4182       return V;
4183 
4184     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
4185     // equality comparison, then we're just comparing whether X itself is
4186     // zero.
4187     if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) &&
4188         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
4189         isPowerOf2_32(N0.getScalarValueSizeInBits())) {
4190       if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
4191         if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4192             ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
4193           if ((C1 == 0) == (Cond == ISD::SETEQ)) {
4194             // (srl (ctlz x), 5) == 0  -> X != 0
4195             // (srl (ctlz x), 5) != 1  -> X != 0
4196             Cond = ISD::SETNE;
4197           } else {
4198             // (srl (ctlz x), 5) != 0  -> X == 0
4199             // (srl (ctlz x), 5) == 1  -> X == 0
4200             Cond = ISD::SETEQ;
4201           }
4202           SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
4203           return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
4204                               Cond);
4205         }
4206       }
4207     }
4208   }
4209 
4210   // FIXME: Support vectors.
4211   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4212     const APInt &C1 = N1C->getAPIntValue();
4213 
4214     // (zext x) == C --> x == (trunc C)
4215     // (sext x) == C --> x == (trunc C)
4216     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4217         DCI.isBeforeLegalize() && N0->hasOneUse()) {
4218       unsigned MinBits = N0.getValueSizeInBits();
4219       SDValue PreExt;
4220       bool Signed = false;
4221       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
4222         // ZExt
4223         MinBits = N0->getOperand(0).getValueSizeInBits();
4224         PreExt = N0->getOperand(0);
4225       } else if (N0->getOpcode() == ISD::AND) {
4226         // DAGCombine turns costly ZExts into ANDs
4227         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
4228           if ((C->getAPIntValue()+1).isPowerOf2()) {
4229             MinBits = C->getAPIntValue().countTrailingOnes();
4230             PreExt = N0->getOperand(0);
4231           }
4232       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
4233         // SExt
4234         MinBits = N0->getOperand(0).getValueSizeInBits();
4235         PreExt = N0->getOperand(0);
4236         Signed = true;
4237       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
4238         // ZEXTLOAD / SEXTLOAD
4239         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
4240           MinBits = LN0->getMemoryVT().getSizeInBits();
4241           PreExt = N0;
4242         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
4243           Signed = true;
4244           MinBits = LN0->getMemoryVT().getSizeInBits();
4245           PreExt = N0;
4246         }
4247       }
4248 
4249       // Figure out how many bits we need to preserve this constant.
4250       unsigned ReqdBits = Signed ? C1.getMinSignedBits() : C1.getActiveBits();
4251 
4252       // Make sure we're not losing bits from the constant.
4253       if (MinBits > 0 &&
4254           MinBits < C1.getBitWidth() &&
4255           MinBits >= ReqdBits) {
4256         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
4257         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
4258           // Will get folded away.
4259           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
4260           if (MinBits == 1 && C1 == 1)
4261             // Invert the condition.
4262             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
4263                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4264           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
4265           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
4266         }
4267 
4268         // If truncating the setcc operands is not desirable, we can still
4269         // simplify the expression in some cases:
4270         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
4271         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
4272         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
4273         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
4274         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
4275         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
4276         SDValue TopSetCC = N0->getOperand(0);
4277         unsigned N0Opc = N0->getOpcode();
4278         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
4279         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
4280             TopSetCC.getOpcode() == ISD::SETCC &&
4281             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
4282             (isConstFalseVal(N1) ||
4283              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
4284 
4285           bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) ||
4286                          (!N1C->isZero() && Cond == ISD::SETNE);
4287 
4288           if (!Inverse)
4289             return TopSetCC;
4290 
4291           ISD::CondCode InvCond = ISD::getSetCCInverse(
4292               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
4293               TopSetCC.getOperand(0).getValueType());
4294           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
4295                                       TopSetCC.getOperand(1),
4296                                       InvCond);
4297         }
4298       }
4299     }
4300 
4301     // If the LHS is '(and load, const)', the RHS is 0, the test is for
4302     // equality or unsigned, and all 1 bits of the const are in the same
4303     // partial word, see if we can shorten the load.
4304     if (DCI.isBeforeLegalize() &&
4305         !ISD::isSignedIntSetCC(Cond) &&
4306         N0.getOpcode() == ISD::AND && C1 == 0 &&
4307         N0.getNode()->hasOneUse() &&
4308         isa<LoadSDNode>(N0.getOperand(0)) &&
4309         N0.getOperand(0).getNode()->hasOneUse() &&
4310         isa<ConstantSDNode>(N0.getOperand(1))) {
4311       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
4312       APInt bestMask;
4313       unsigned bestWidth = 0, bestOffset = 0;
4314       if (Lod->isSimple() && Lod->isUnindexed()) {
4315         unsigned origWidth = N0.getValueSizeInBits();
4316         unsigned maskWidth = origWidth;
4317         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
4318         // 8 bits, but have to be careful...
4319         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
4320           origWidth = Lod->getMemoryVT().getSizeInBits();
4321         const APInt &Mask = N0.getConstantOperandAPInt(1);
4322         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
4323           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
4324           for (unsigned offset=0; offset<origWidth/width; offset++) {
4325             if (Mask.isSubsetOf(newMask)) {
4326               if (Layout.isLittleEndian())
4327                 bestOffset = (uint64_t)offset * (width/8);
4328               else
4329                 bestOffset = (origWidth/width - offset - 1) * (width/8);
4330               bestMask = Mask.lshr(offset * (width/8) * 8);
4331               bestWidth = width;
4332               break;
4333             }
4334             newMask <<= width;
4335           }
4336         }
4337       }
4338       if (bestWidth) {
4339         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
4340         if (newVT.isRound() &&
4341             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
4342           SDValue Ptr = Lod->getBasePtr();
4343           if (bestOffset != 0)
4344             Ptr =
4345                 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl);
4346           SDValue NewLoad =
4347               DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
4348                           Lod->getPointerInfo().getWithOffset(bestOffset),
4349                           Lod->getOriginalAlign());
4350           return DAG.getSetCC(dl, VT,
4351                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
4352                                       DAG.getConstant(bestMask.trunc(bestWidth),
4353                                                       dl, newVT)),
4354                               DAG.getConstant(0LL, dl, newVT), Cond);
4355         }
4356       }
4357     }
4358 
4359     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
4360     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
4361       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
4362 
4363       // If the comparison constant has bits in the upper part, the
4364       // zero-extended value could never match.
4365       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
4366                                               C1.getBitWidth() - InSize))) {
4367         switch (Cond) {
4368         case ISD::SETUGT:
4369         case ISD::SETUGE:
4370         case ISD::SETEQ:
4371           return DAG.getConstant(0, dl, VT);
4372         case ISD::SETULT:
4373         case ISD::SETULE:
4374         case ISD::SETNE:
4375           return DAG.getConstant(1, dl, VT);
4376         case ISD::SETGT:
4377         case ISD::SETGE:
4378           // True if the sign bit of C1 is set.
4379           return DAG.getConstant(C1.isNegative(), dl, VT);
4380         case ISD::SETLT:
4381         case ISD::SETLE:
4382           // True if the sign bit of C1 isn't set.
4383           return DAG.getConstant(C1.isNonNegative(), dl, VT);
4384         default:
4385           break;
4386         }
4387       }
4388 
4389       // Otherwise, we can perform the comparison with the low bits.
4390       switch (Cond) {
4391       case ISD::SETEQ:
4392       case ISD::SETNE:
4393       case ISD::SETUGT:
4394       case ISD::SETUGE:
4395       case ISD::SETULT:
4396       case ISD::SETULE: {
4397         EVT newVT = N0.getOperand(0).getValueType();
4398         if (DCI.isBeforeLegalizeOps() ||
4399             (isOperationLegal(ISD::SETCC, newVT) &&
4400              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
4401           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
4402           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
4403 
4404           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
4405                                           NewConst, Cond);
4406           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
4407         }
4408         break;
4409       }
4410       default:
4411         break; // todo, be more careful with signed comparisons
4412       }
4413     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4414                (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4415                !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(),
4416                                       OpVT)) {
4417       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
4418       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
4419       EVT ExtDstTy = N0.getValueType();
4420       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
4421 
4422       // If the constant doesn't fit into the number of bits for the source of
4423       // the sign extension, it is impossible for both sides to be equal.
4424       if (C1.getMinSignedBits() > ExtSrcTyBits)
4425         return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
4426 
4427       assert(ExtDstTy == N0.getOperand(0).getValueType() &&
4428              ExtDstTy != ExtSrcTy && "Unexpected types!");
4429       APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
4430       SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
4431                                    DAG.getConstant(Imm, dl, ExtDstTy));
4432       if (!DCI.isCalledByLegalizer())
4433         DCI.AddToWorklist(ZextOp.getNode());
4434       // Otherwise, make this a use of a zext.
4435       return DAG.getSetCC(dl, VT, ZextOp,
4436                           DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
4437     } else if ((N1C->isZero() || N1C->isOne()) &&
4438                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4439       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
4440       if (N0.getOpcode() == ISD::SETCC &&
4441           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
4442           (N0.getValueType() == MVT::i1 ||
4443            getBooleanContents(N0.getOperand(0).getValueType()) ==
4444                        ZeroOrOneBooleanContent)) {
4445         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
4446         if (TrueWhenTrue)
4447           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
4448         // Invert the condition.
4449         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
4450         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
4451         if (DCI.isBeforeLegalizeOps() ||
4452             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
4453           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
4454       }
4455 
4456       if ((N0.getOpcode() == ISD::XOR ||
4457            (N0.getOpcode() == ISD::AND &&
4458             N0.getOperand(0).getOpcode() == ISD::XOR &&
4459             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
4460           isOneConstant(N0.getOperand(1))) {
4461         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
4462         // can only do this if the top bits are known zero.
4463         unsigned BitWidth = N0.getValueSizeInBits();
4464         if (DAG.MaskedValueIsZero(N0,
4465                                   APInt::getHighBitsSet(BitWidth,
4466                                                         BitWidth-1))) {
4467           // Okay, get the un-inverted input value.
4468           SDValue Val;
4469           if (N0.getOpcode() == ISD::XOR) {
4470             Val = N0.getOperand(0);
4471           } else {
4472             assert(N0.getOpcode() == ISD::AND &&
4473                     N0.getOperand(0).getOpcode() == ISD::XOR);
4474             // ((X^1)&1)^1 -> X & 1
4475             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
4476                               N0.getOperand(0).getOperand(0),
4477                               N0.getOperand(1));
4478           }
4479 
4480           return DAG.getSetCC(dl, VT, Val, N1,
4481                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4482         }
4483       } else if (N1C->isOne()) {
4484         SDValue Op0 = N0;
4485         if (Op0.getOpcode() == ISD::TRUNCATE)
4486           Op0 = Op0.getOperand(0);
4487 
4488         if ((Op0.getOpcode() == ISD::XOR) &&
4489             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
4490             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
4491           SDValue XorLHS = Op0.getOperand(0);
4492           SDValue XorRHS = Op0.getOperand(1);
4493           // Ensure that the input setccs return an i1 type or 0/1 value.
4494           if (Op0.getValueType() == MVT::i1 ||
4495               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
4496                       ZeroOrOneBooleanContent &&
4497                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
4498                         ZeroOrOneBooleanContent)) {
4499             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
4500             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
4501             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
4502           }
4503         }
4504         if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
4505           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
4506           if (Op0.getValueType().bitsGT(VT))
4507             Op0 = DAG.getNode(ISD::AND, dl, VT,
4508                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
4509                           DAG.getConstant(1, dl, VT));
4510           else if (Op0.getValueType().bitsLT(VT))
4511             Op0 = DAG.getNode(ISD::AND, dl, VT,
4512                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
4513                         DAG.getConstant(1, dl, VT));
4514 
4515           return DAG.getSetCC(dl, VT, Op0,
4516                               DAG.getConstant(0, dl, Op0.getValueType()),
4517                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4518         }
4519         if (Op0.getOpcode() == ISD::AssertZext &&
4520             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
4521           return DAG.getSetCC(dl, VT, Op0,
4522                               DAG.getConstant(0, dl, Op0.getValueType()),
4523                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4524       }
4525     }
4526 
4527     // Given:
4528     //   icmp eq/ne (urem %x, %y), 0
4529     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
4530     //   icmp eq/ne %x, 0
4531     if (N0.getOpcode() == ISD::UREM && N1C->isZero() &&
4532         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4533       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
4534       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
4535       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
4536         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
4537     }
4538 
4539     // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0
4540     //  and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0
4541     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4542         N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) &&
4543         N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 &&
4544         N1C && N1C->isAllOnes()) {
4545       return DAG.getSetCC(dl, VT, N0.getOperand(0),
4546                           DAG.getConstant(0, dl, OpVT),
4547                           Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE);
4548     }
4549 
4550     if (SDValue V =
4551             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
4552       return V;
4553   }
4554 
4555   // These simplifications apply to splat vectors as well.
4556   // TODO: Handle more splat vector cases.
4557   if (auto *N1C = isConstOrConstSplat(N1)) {
4558     const APInt &C1 = N1C->getAPIntValue();
4559 
4560     APInt MinVal, MaxVal;
4561     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
4562     if (ISD::isSignedIntSetCC(Cond)) {
4563       MinVal = APInt::getSignedMinValue(OperandBitSize);
4564       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
4565     } else {
4566       MinVal = APInt::getMinValue(OperandBitSize);
4567       MaxVal = APInt::getMaxValue(OperandBitSize);
4568     }
4569 
4570     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
4571     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
4572       // X >= MIN --> true
4573       if (C1 == MinVal)
4574         return DAG.getBoolConstant(true, dl, VT, OpVT);
4575 
4576       if (!VT.isVector()) { // TODO: Support this for vectors.
4577         // X >= C0 --> X > (C0 - 1)
4578         APInt C = C1 - 1;
4579         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
4580         if ((DCI.isBeforeLegalizeOps() ||
4581              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4582             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4583                                   isLegalICmpImmediate(C.getSExtValue())))) {
4584           return DAG.getSetCC(dl, VT, N0,
4585                               DAG.getConstant(C, dl, N1.getValueType()),
4586                               NewCC);
4587         }
4588       }
4589     }
4590 
4591     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
4592       // X <= MAX --> true
4593       if (C1 == MaxVal)
4594         return DAG.getBoolConstant(true, dl, VT, OpVT);
4595 
4596       // X <= C0 --> X < (C0 + 1)
4597       if (!VT.isVector()) { // TODO: Support this for vectors.
4598         APInt C = C1 + 1;
4599         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
4600         if ((DCI.isBeforeLegalizeOps() ||
4601              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4602             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4603                                   isLegalICmpImmediate(C.getSExtValue())))) {
4604           return DAG.getSetCC(dl, VT, N0,
4605                               DAG.getConstant(C, dl, N1.getValueType()),
4606                               NewCC);
4607         }
4608       }
4609     }
4610 
4611     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
4612       if (C1 == MinVal)
4613         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
4614 
4615       // TODO: Support this for vectors after legalize ops.
4616       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4617         // Canonicalize setlt X, Max --> setne X, Max
4618         if (C1 == MaxVal)
4619           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4620 
4621         // If we have setult X, 1, turn it into seteq X, 0
4622         if (C1 == MinVal+1)
4623           return DAG.getSetCC(dl, VT, N0,
4624                               DAG.getConstant(MinVal, dl, N0.getValueType()),
4625                               ISD::SETEQ);
4626       }
4627     }
4628 
4629     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
4630       if (C1 == MaxVal)
4631         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
4632 
4633       // TODO: Support this for vectors after legalize ops.
4634       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4635         // Canonicalize setgt X, Min --> setne X, Min
4636         if (C1 == MinVal)
4637           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4638 
4639         // If we have setugt X, Max-1, turn it into seteq X, Max
4640         if (C1 == MaxVal-1)
4641           return DAG.getSetCC(dl, VT, N0,
4642                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
4643                               ISD::SETEQ);
4644       }
4645     }
4646 
4647     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
4648       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
4649       if (C1.isZero())
4650         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
4651                 VT, N0, N1, Cond, DCI, dl))
4652           return CC;
4653 
4654       // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
4655       // For example, when high 32-bits of i64 X are known clear:
4656       // all bits clear: (X | (Y<<32)) ==  0 --> (X | Y) ==  0
4657       // all bits set:   (X | (Y<<32)) == -1 --> (X & Y) == -1
4658       bool CmpZero = N1C->getAPIntValue().isZero();
4659       bool CmpNegOne = N1C->getAPIntValue().isAllOnes();
4660       if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
4661         // Match or(lo,shl(hi,bw/2)) pattern.
4662         auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
4663           unsigned EltBits = V.getScalarValueSizeInBits();
4664           if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
4665             return false;
4666           SDValue LHS = V.getOperand(0);
4667           SDValue RHS = V.getOperand(1);
4668           APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
4669           // Unshifted element must have zero upperbits.
4670           if (RHS.getOpcode() == ISD::SHL &&
4671               isa<ConstantSDNode>(RHS.getOperand(1)) &&
4672               RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4673               DAG.MaskedValueIsZero(LHS, HiBits)) {
4674             Lo = LHS;
4675             Hi = RHS.getOperand(0);
4676             return true;
4677           }
4678           if (LHS.getOpcode() == ISD::SHL &&
4679               isa<ConstantSDNode>(LHS.getOperand(1)) &&
4680               LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4681               DAG.MaskedValueIsZero(RHS, HiBits)) {
4682             Lo = RHS;
4683             Hi = LHS.getOperand(0);
4684             return true;
4685           }
4686           return false;
4687         };
4688 
4689         auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
4690           unsigned EltBits = N0.getScalarValueSizeInBits();
4691           unsigned HalfBits = EltBits / 2;
4692           APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
4693           SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
4694           SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
4695           SDValue NewN0 =
4696               DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
4697           SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
4698           return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
4699         };
4700 
4701         SDValue Lo, Hi;
4702         if (IsConcat(N0, Lo, Hi))
4703           return MergeConcat(Lo, Hi);
4704 
4705         if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
4706           SDValue Lo0, Lo1, Hi0, Hi1;
4707           if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
4708               IsConcat(N0.getOperand(1), Lo1, Hi1)) {
4709             return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
4710                                DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
4711           }
4712         }
4713       }
4714     }
4715 
4716     // If we have "setcc X, C0", check to see if we can shrink the immediate
4717     // by changing cc.
4718     // TODO: Support this for vectors after legalize ops.
4719     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4720       // SETUGT X, SINTMAX  -> SETLT X, 0
4721       // SETUGE X, SINTMIN -> SETLT X, 0
4722       if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
4723           (Cond == ISD::SETUGE && C1.isMinSignedValue()))
4724         return DAG.getSetCC(dl, VT, N0,
4725                             DAG.getConstant(0, dl, N1.getValueType()),
4726                             ISD::SETLT);
4727 
4728       // SETULT X, SINTMIN  -> SETGT X, -1
4729       // SETULE X, SINTMAX  -> SETGT X, -1
4730       if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
4731           (Cond == ISD::SETULE && C1.isMaxSignedValue()))
4732         return DAG.getSetCC(dl, VT, N0,
4733                             DAG.getAllOnesConstant(dl, N1.getValueType()),
4734                             ISD::SETGT);
4735     }
4736   }
4737 
4738   // Back to non-vector simplifications.
4739   // TODO: Can we do these for vector splats?
4740   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4741     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4742     const APInt &C1 = N1C->getAPIntValue();
4743     EVT ShValTy = N0.getValueType();
4744 
4745     // Fold bit comparisons when we can. This will result in an
4746     // incorrect value when boolean false is negative one, unless
4747     // the bitsize is 1 in which case the false value is the same
4748     // in practice regardless of the representation.
4749     if ((VT.getSizeInBits() == 1 ||
4750          getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
4751         (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4752         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
4753         N0.getOpcode() == ISD::AND) {
4754       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4755         EVT ShiftTy =
4756             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4757         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
4758           // Perform the xform if the AND RHS is a single bit.
4759           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
4760           if (AndRHS->getAPIntValue().isPowerOf2() &&
4761               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4762             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4763                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4764                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4765           }
4766         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
4767           // (X & 8) == 8  -->  (X & 8) >> 3
4768           // Perform the xform if C1 is a single bit.
4769           unsigned ShCt = C1.logBase2();
4770           if (C1.isPowerOf2() &&
4771               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4772             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4773                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4774                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4775           }
4776         }
4777       }
4778     }
4779 
4780     if (C1.getMinSignedBits() <= 64 &&
4781         !isLegalICmpImmediate(C1.getSExtValue())) {
4782       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4783       // (X & -256) == 256 -> (X >> 8) == 1
4784       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4785           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
4786         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4787           const APInt &AndRHSC = AndRHS->getAPIntValue();
4788           if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) {
4789             unsigned ShiftBits = AndRHSC.countTrailingZeros();
4790             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4791               SDValue Shift =
4792                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
4793                             DAG.getConstant(ShiftBits, dl, ShiftTy));
4794               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
4795               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
4796             }
4797           }
4798         }
4799       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
4800                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
4801         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
4802         // X <  0x100000000 -> (X >> 32) <  1
4803         // X >= 0x100000000 -> (X >> 32) >= 1
4804         // X <= 0x0ffffffff -> (X >> 32) <  1
4805         // X >  0x0ffffffff -> (X >> 32) >= 1
4806         unsigned ShiftBits;
4807         APInt NewC = C1;
4808         ISD::CondCode NewCond = Cond;
4809         if (AdjOne) {
4810           ShiftBits = C1.countTrailingOnes();
4811           NewC = NewC + 1;
4812           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4813         } else {
4814           ShiftBits = C1.countTrailingZeros();
4815         }
4816         NewC.lshrInPlace(ShiftBits);
4817         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
4818             isLegalICmpImmediate(NewC.getSExtValue()) &&
4819             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4820           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4821                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
4822           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
4823           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
4824         }
4825       }
4826     }
4827   }
4828 
4829   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
4830     auto *CFP = cast<ConstantFPSDNode>(N1);
4831     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
4832 
4833     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
4834     // constant if knowing that the operand is non-nan is enough.  We prefer to
4835     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
4836     // materialize 0.0.
4837     if (Cond == ISD::SETO || Cond == ISD::SETUO)
4838       return DAG.getSetCC(dl, VT, N0, N0, Cond);
4839 
4840     // setcc (fneg x), C -> setcc swap(pred) x, -C
4841     if (N0.getOpcode() == ISD::FNEG) {
4842       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
4843       if (DCI.isBeforeLegalizeOps() ||
4844           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
4845         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
4846         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
4847       }
4848     }
4849 
4850     // If the condition is not legal, see if we can find an equivalent one
4851     // which is legal.
4852     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
4853       // If the comparison was an awkward floating-point == or != and one of
4854       // the comparison operands is infinity or negative infinity, convert the
4855       // condition to a less-awkward <= or >=.
4856       if (CFP->getValueAPF().isInfinity()) {
4857         bool IsNegInf = CFP->getValueAPF().isNegative();
4858         ISD::CondCode NewCond = ISD::SETCC_INVALID;
4859         switch (Cond) {
4860         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
4861         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
4862         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
4863         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
4864         default: break;
4865         }
4866         if (NewCond != ISD::SETCC_INVALID &&
4867             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
4868           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4869       }
4870     }
4871   }
4872 
4873   if (N0 == N1) {
4874     // The sext(setcc()) => setcc() optimization relies on the appropriate
4875     // constant being emitted.
4876     assert(!N0.getValueType().isInteger() &&
4877            "Integer types should be handled by FoldSetCC");
4878 
4879     bool EqTrue = ISD::isTrueWhenEqual(Cond);
4880     unsigned UOF = ISD::getUnorderedFlavor(Cond);
4881     if (UOF == 2) // FP operators that are undefined on NaNs.
4882       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4883     if (UOF == unsigned(EqTrue))
4884       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4885     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
4886     // if it is not already.
4887     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
4888     if (NewCond != Cond &&
4889         (DCI.isBeforeLegalizeOps() ||
4890                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
4891       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4892   }
4893 
4894   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4895       N0.getValueType().isInteger()) {
4896     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
4897         N0.getOpcode() == ISD::XOR) {
4898       // Simplify (X+Y) == (X+Z) -->  Y == Z
4899       if (N0.getOpcode() == N1.getOpcode()) {
4900         if (N0.getOperand(0) == N1.getOperand(0))
4901           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
4902         if (N0.getOperand(1) == N1.getOperand(1))
4903           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
4904         if (isCommutativeBinOp(N0.getOpcode())) {
4905           // If X op Y == Y op X, try other combinations.
4906           if (N0.getOperand(0) == N1.getOperand(1))
4907             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
4908                                 Cond);
4909           if (N0.getOperand(1) == N1.getOperand(0))
4910             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
4911                                 Cond);
4912         }
4913       }
4914 
4915       // If RHS is a legal immediate value for a compare instruction, we need
4916       // to be careful about increasing register pressure needlessly.
4917       bool LegalRHSImm = false;
4918 
4919       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
4920         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4921           // Turn (X+C1) == C2 --> X == C2-C1
4922           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse())
4923             return DAG.getSetCC(
4924                 dl, VT, N0.getOperand(0),
4925                 DAG.getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(),
4926                                 dl, N0.getValueType()),
4927                 Cond);
4928 
4929           // Turn (X^C1) == C2 --> X == C1^C2
4930           if (N0.getOpcode() == ISD::XOR && N0.getNode()->hasOneUse())
4931             return DAG.getSetCC(
4932                 dl, VT, N0.getOperand(0),
4933                 DAG.getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(),
4934                                 dl, N0.getValueType()),
4935                 Cond);
4936         }
4937 
4938         // Turn (C1-X) == C2 --> X == C1-C2
4939         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
4940           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse())
4941             return DAG.getSetCC(
4942                 dl, VT, N0.getOperand(1),
4943                 DAG.getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(),
4944                                 dl, N0.getValueType()),
4945                 Cond);
4946 
4947         // Could RHSC fold directly into a compare?
4948         if (RHSC->getValueType(0).getSizeInBits() <= 64)
4949           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
4950       }
4951 
4952       // (X+Y) == X --> Y == 0 and similar folds.
4953       // Don't do this if X is an immediate that can fold into a cmp
4954       // instruction and X+Y has other uses. It could be an induction variable
4955       // chain, and the transform would increase register pressure.
4956       if (!LegalRHSImm || N0.hasOneUse())
4957         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
4958           return V;
4959     }
4960 
4961     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
4962         N1.getOpcode() == ISD::XOR)
4963       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
4964         return V;
4965 
4966     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
4967       return V;
4968   }
4969 
4970   // Fold remainder of division by a constant.
4971   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4972       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4973     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4974 
4975     // When division is cheap or optimizing for minimum size,
4976     // fall through to DIVREM creation by skipping this fold.
4977     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) {
4978       if (N0.getOpcode() == ISD::UREM) {
4979         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4980           return Folded;
4981       } else if (N0.getOpcode() == ISD::SREM) {
4982         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4983           return Folded;
4984       }
4985     }
4986   }
4987 
4988   // Fold away ALL boolean setcc's.
4989   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4990     SDValue Temp;
4991     switch (Cond) {
4992     default: llvm_unreachable("Unknown integer setcc!");
4993     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4994       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4995       N0 = DAG.getNOT(dl, Temp, OpVT);
4996       if (!DCI.isCalledByLegalizer())
4997         DCI.AddToWorklist(Temp.getNode());
4998       break;
4999     case ISD::SETNE:  // X != Y   -->  (X^Y)
5000       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
5001       break;
5002     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
5003     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
5004       Temp = DAG.getNOT(dl, N0, OpVT);
5005       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
5006       if (!DCI.isCalledByLegalizer())
5007         DCI.AddToWorklist(Temp.getNode());
5008       break;
5009     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
5010     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
5011       Temp = DAG.getNOT(dl, N1, OpVT);
5012       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
5013       if (!DCI.isCalledByLegalizer())
5014         DCI.AddToWorklist(Temp.getNode());
5015       break;
5016     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
5017     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
5018       Temp = DAG.getNOT(dl, N0, OpVT);
5019       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
5020       if (!DCI.isCalledByLegalizer())
5021         DCI.AddToWorklist(Temp.getNode());
5022       break;
5023     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
5024     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
5025       Temp = DAG.getNOT(dl, N1, OpVT);
5026       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
5027       break;
5028     }
5029     if (VT.getScalarType() != MVT::i1) {
5030       if (!DCI.isCalledByLegalizer())
5031         DCI.AddToWorklist(N0.getNode());
5032       // FIXME: If running after legalize, we probably can't do this.
5033       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
5034       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
5035     }
5036     return N0;
5037   }
5038 
5039   // Could not fold it.
5040   return SDValue();
5041 }
5042 
5043 /// Returns true (and the GlobalValue and the offset) if the node is a
5044 /// GlobalAddress + offset.
5045 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
5046                                     int64_t &Offset) const {
5047 
5048   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
5049 
5050   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
5051     GA = GASD->getGlobal();
5052     Offset += GASD->getOffset();
5053     return true;
5054   }
5055 
5056   if (N->getOpcode() == ISD::ADD) {
5057     SDValue N1 = N->getOperand(0);
5058     SDValue N2 = N->getOperand(1);
5059     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
5060       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
5061         Offset += V->getSExtValue();
5062         return true;
5063       }
5064     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
5065       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
5066         Offset += V->getSExtValue();
5067         return true;
5068       }
5069     }
5070   }
5071 
5072   return false;
5073 }
5074 
5075 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
5076                                           DAGCombinerInfo &DCI) const {
5077   // Default implementation: no optimization.
5078   return SDValue();
5079 }
5080 
5081 //===----------------------------------------------------------------------===//
5082 //  Inline Assembler Implementation Methods
5083 //===----------------------------------------------------------------------===//
5084 
5085 TargetLowering::ConstraintType
5086 TargetLowering::getConstraintType(StringRef Constraint) const {
5087   unsigned S = Constraint.size();
5088 
5089   if (S == 1) {
5090     switch (Constraint[0]) {
5091     default: break;
5092     case 'r':
5093       return C_RegisterClass;
5094     case 'm': // memory
5095     case 'o': // offsetable
5096     case 'V': // not offsetable
5097       return C_Memory;
5098     case 'p': // Address.
5099       return C_Address;
5100     case 'n': // Simple Integer
5101     case 'E': // Floating Point Constant
5102     case 'F': // Floating Point Constant
5103       return C_Immediate;
5104     case 'i': // Simple Integer or Relocatable Constant
5105     case 's': // Relocatable Constant
5106     case 'X': // Allow ANY value.
5107     case 'I': // Target registers.
5108     case 'J':
5109     case 'K':
5110     case 'L':
5111     case 'M':
5112     case 'N':
5113     case 'O':
5114     case 'P':
5115     case '<':
5116     case '>':
5117       return C_Other;
5118     }
5119   }
5120 
5121   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
5122     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
5123       return C_Memory;
5124     return C_Register;
5125   }
5126   return C_Unknown;
5127 }
5128 
5129 /// Try to replace an X constraint, which matches anything, with another that
5130 /// has more specific requirements based on the type of the corresponding
5131 /// operand.
5132 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
5133   if (ConstraintVT.isInteger())
5134     return "r";
5135   if (ConstraintVT.isFloatingPoint())
5136     return "f"; // works for many targets
5137   return nullptr;
5138 }
5139 
5140 SDValue TargetLowering::LowerAsmOutputForConstraint(
5141     SDValue &Chain, SDValue &Flag, const SDLoc &DL,
5142     const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
5143   return SDValue();
5144 }
5145 
5146 /// Lower the specified operand into the Ops vector.
5147 /// If it is invalid, don't add anything to Ops.
5148 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
5149                                                   std::string &Constraint,
5150                                                   std::vector<SDValue> &Ops,
5151                                                   SelectionDAG &DAG) const {
5152 
5153   if (Constraint.length() > 1) return;
5154 
5155   char ConstraintLetter = Constraint[0];
5156   switch (ConstraintLetter) {
5157   default: break;
5158   case 'X':    // Allows any operand
5159   case 'i':    // Simple Integer or Relocatable Constant
5160   case 'n':    // Simple Integer
5161   case 's': {  // Relocatable Constant
5162 
5163     ConstantSDNode *C;
5164     uint64_t Offset = 0;
5165 
5166     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
5167     // etc., since getelementpointer is variadic. We can't use
5168     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
5169     // while in this case the GA may be furthest from the root node which is
5170     // likely an ISD::ADD.
5171     while (true) {
5172       if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') {
5173         // gcc prints these as sign extended.  Sign extend value to 64 bits
5174         // now; without this it would get ZExt'd later in
5175         // ScheduleDAGSDNodes::EmitNode, which is very generic.
5176         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
5177         BooleanContent BCont = getBooleanContents(MVT::i64);
5178         ISD::NodeType ExtOpc =
5179             IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND;
5180         int64_t ExtVal =
5181             ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue();
5182         Ops.push_back(
5183             DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64));
5184         return;
5185       }
5186       if (ConstraintLetter != 'n') {
5187         if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
5188           Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
5189                                                    GA->getValueType(0),
5190                                                    Offset + GA->getOffset()));
5191           return;
5192         }
5193         if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
5194           Ops.push_back(DAG.getTargetBlockAddress(
5195               BA->getBlockAddress(), BA->getValueType(0),
5196               Offset + BA->getOffset(), BA->getTargetFlags()));
5197           return;
5198         }
5199         if (isa<BasicBlockSDNode>(Op)) {
5200           Ops.push_back(Op);
5201           return;
5202         }
5203       }
5204       const unsigned OpCode = Op.getOpcode();
5205       if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
5206         if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
5207           Op = Op.getOperand(1);
5208         // Subtraction is not commutative.
5209         else if (OpCode == ISD::ADD &&
5210                  (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
5211           Op = Op.getOperand(0);
5212         else
5213           return;
5214         Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
5215         continue;
5216       }
5217       return;
5218     }
5219     break;
5220   }
5221   }
5222 }
5223 
5224 std::pair<unsigned, const TargetRegisterClass *>
5225 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
5226                                              StringRef Constraint,
5227                                              MVT VT) const {
5228   if (Constraint.empty() || Constraint[0] != '{')
5229     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
5230   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
5231 
5232   // Remove the braces from around the name.
5233   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
5234 
5235   std::pair<unsigned, const TargetRegisterClass *> R =
5236       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
5237 
5238   // Figure out which register class contains this reg.
5239   for (const TargetRegisterClass *RC : RI->regclasses()) {
5240     // If none of the value types for this register class are valid, we
5241     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
5242     if (!isLegalRC(*RI, *RC))
5243       continue;
5244 
5245     for (const MCPhysReg &PR : *RC) {
5246       if (RegName.equals_insensitive(RI->getRegAsmName(PR))) {
5247         std::pair<unsigned, const TargetRegisterClass *> S =
5248             std::make_pair(PR, RC);
5249 
5250         // If this register class has the requested value type, return it,
5251         // otherwise keep searching and return the first class found
5252         // if no other is found which explicitly has the requested type.
5253         if (RI->isTypeLegalForClass(*RC, VT))
5254           return S;
5255         if (!R.second)
5256           R = S;
5257       }
5258     }
5259   }
5260 
5261   return R;
5262 }
5263 
5264 //===----------------------------------------------------------------------===//
5265 // Constraint Selection.
5266 
5267 /// Return true of this is an input operand that is a matching constraint like
5268 /// "4".
5269 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
5270   assert(!ConstraintCode.empty() && "No known constraint!");
5271   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
5272 }
5273 
5274 /// If this is an input matching constraint, this method returns the output
5275 /// operand it matches.
5276 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
5277   assert(!ConstraintCode.empty() && "No known constraint!");
5278   return atoi(ConstraintCode.c_str());
5279 }
5280 
5281 /// Split up the constraint string from the inline assembly value into the
5282 /// specific constraints and their prefixes, and also tie in the associated
5283 /// operand values.
5284 /// If this returns an empty vector, and if the constraint string itself
5285 /// isn't empty, there was an error parsing.
5286 TargetLowering::AsmOperandInfoVector
5287 TargetLowering::ParseConstraints(const DataLayout &DL,
5288                                  const TargetRegisterInfo *TRI,
5289                                  const CallBase &Call) const {
5290   /// Information about all of the constraints.
5291   AsmOperandInfoVector ConstraintOperands;
5292   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
5293   unsigned maCount = 0; // Largest number of multiple alternative constraints.
5294 
5295   // Do a prepass over the constraints, canonicalizing them, and building up the
5296   // ConstraintOperands list.
5297   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
5298   unsigned ResNo = 0; // ResNo - The result number of the next output.
5299   unsigned LabelNo = 0; // LabelNo - CallBr indirect dest number.
5300 
5301   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
5302     ConstraintOperands.emplace_back(std::move(CI));
5303     AsmOperandInfo &OpInfo = ConstraintOperands.back();
5304 
5305     // Update multiple alternative constraint count.
5306     if (OpInfo.multipleAlternatives.size() > maCount)
5307       maCount = OpInfo.multipleAlternatives.size();
5308 
5309     OpInfo.ConstraintVT = MVT::Other;
5310 
5311     // Compute the value type for each operand.
5312     switch (OpInfo.Type) {
5313     case InlineAsm::isOutput:
5314       // Indirect outputs just consume an argument.
5315       if (OpInfo.isIndirect) {
5316         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5317         break;
5318       }
5319 
5320       // The return value of the call is this value.  As such, there is no
5321       // corresponding argument.
5322       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
5323       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
5324         OpInfo.ConstraintVT =
5325             getSimpleValueType(DL, STy->getElementType(ResNo));
5326       } else {
5327         assert(ResNo == 0 && "Asm only has one result!");
5328         OpInfo.ConstraintVT =
5329             getAsmOperandValueType(DL, Call.getType()).getSimpleVT();
5330       }
5331       ++ResNo;
5332       break;
5333     case InlineAsm::isInput:
5334       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5335       break;
5336     case InlineAsm::isLabel:
5337       OpInfo.CallOperandVal =
5338           cast<CallBrInst>(&Call)->getBlockAddressForIndirectDest(LabelNo);
5339       OpInfo.ConstraintVT =
5340           getAsmOperandValueType(DL, OpInfo.CallOperandVal->getType())
5341               .getSimpleVT();
5342       ++LabelNo;
5343       continue;
5344     case InlineAsm::isClobber:
5345       // Nothing to do.
5346       break;
5347     }
5348 
5349     if (OpInfo.CallOperandVal) {
5350       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
5351       if (OpInfo.isIndirect) {
5352         OpTy = Call.getParamElementType(ArgNo);
5353         assert(OpTy && "Indirect operand must have elementtype attribute");
5354       }
5355 
5356       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5357       if (StructType *STy = dyn_cast<StructType>(OpTy))
5358         if (STy->getNumElements() == 1)
5359           OpTy = STy->getElementType(0);
5360 
5361       // If OpTy is not a single value, it may be a struct/union that we
5362       // can tile with integers.
5363       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5364         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
5365         switch (BitSize) {
5366         default: break;
5367         case 1:
5368         case 8:
5369         case 16:
5370         case 32:
5371         case 64:
5372         case 128:
5373           OpTy = IntegerType::get(OpTy->getContext(), BitSize);
5374           break;
5375         }
5376       }
5377 
5378       EVT VT = getAsmOperandValueType(DL, OpTy, true);
5379       OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other;
5380       ArgNo++;
5381     }
5382   }
5383 
5384   // If we have multiple alternative constraints, select the best alternative.
5385   if (!ConstraintOperands.empty()) {
5386     if (maCount) {
5387       unsigned bestMAIndex = 0;
5388       int bestWeight = -1;
5389       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
5390       int weight = -1;
5391       unsigned maIndex;
5392       // Compute the sums of the weights for each alternative, keeping track
5393       // of the best (highest weight) one so far.
5394       for (maIndex = 0; maIndex < maCount; ++maIndex) {
5395         int weightSum = 0;
5396         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5397              cIndex != eIndex; ++cIndex) {
5398           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5399           if (OpInfo.Type == InlineAsm::isClobber)
5400             continue;
5401 
5402           // If this is an output operand with a matching input operand,
5403           // look up the matching input. If their types mismatch, e.g. one
5404           // is an integer, the other is floating point, or their sizes are
5405           // different, flag it as an maCantMatch.
5406           if (OpInfo.hasMatchingInput()) {
5407             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5408             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5409               if ((OpInfo.ConstraintVT.isInteger() !=
5410                    Input.ConstraintVT.isInteger()) ||
5411                   (OpInfo.ConstraintVT.getSizeInBits() !=
5412                    Input.ConstraintVT.getSizeInBits())) {
5413                 weightSum = -1; // Can't match.
5414                 break;
5415               }
5416             }
5417           }
5418           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
5419           if (weight == -1) {
5420             weightSum = -1;
5421             break;
5422           }
5423           weightSum += weight;
5424         }
5425         // Update best.
5426         if (weightSum > bestWeight) {
5427           bestWeight = weightSum;
5428           bestMAIndex = maIndex;
5429         }
5430       }
5431 
5432       // Now select chosen alternative in each constraint.
5433       for (AsmOperandInfo &cInfo : ConstraintOperands)
5434         if (cInfo.Type != InlineAsm::isClobber)
5435           cInfo.selectAlternative(bestMAIndex);
5436     }
5437   }
5438 
5439   // Check and hook up tied operands, choose constraint code to use.
5440   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5441        cIndex != eIndex; ++cIndex) {
5442     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5443 
5444     // If this is an output operand with a matching input operand, look up the
5445     // matching input. If their types mismatch, e.g. one is an integer, the
5446     // other is floating point, or their sizes are different, flag it as an
5447     // error.
5448     if (OpInfo.hasMatchingInput()) {
5449       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5450 
5451       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5452         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
5453             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
5454                                          OpInfo.ConstraintVT);
5455         std::pair<unsigned, const TargetRegisterClass *> InputRC =
5456             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
5457                                          Input.ConstraintVT);
5458         if ((OpInfo.ConstraintVT.isInteger() !=
5459              Input.ConstraintVT.isInteger()) ||
5460             (MatchRC.second != InputRC.second)) {
5461           report_fatal_error("Unsupported asm: input constraint"
5462                              " with a matching output constraint of"
5463                              " incompatible type!");
5464         }
5465       }
5466     }
5467   }
5468 
5469   return ConstraintOperands;
5470 }
5471 
5472 /// Return an integer indicating how general CT is.
5473 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
5474   switch (CT) {
5475   case TargetLowering::C_Immediate:
5476   case TargetLowering::C_Other:
5477   case TargetLowering::C_Unknown:
5478     return 0;
5479   case TargetLowering::C_Register:
5480     return 1;
5481   case TargetLowering::C_RegisterClass:
5482     return 2;
5483   case TargetLowering::C_Memory:
5484   case TargetLowering::C_Address:
5485     return 3;
5486   }
5487   llvm_unreachable("Invalid constraint type");
5488 }
5489 
5490 /// Examine constraint type and operand type and determine a weight value.
5491 /// This object must already have been set up with the operand type
5492 /// and the current alternative constraint selected.
5493 TargetLowering::ConstraintWeight
5494   TargetLowering::getMultipleConstraintMatchWeight(
5495     AsmOperandInfo &info, int maIndex) const {
5496   InlineAsm::ConstraintCodeVector *rCodes;
5497   if (maIndex >= (int)info.multipleAlternatives.size())
5498     rCodes = &info.Codes;
5499   else
5500     rCodes = &info.multipleAlternatives[maIndex].Codes;
5501   ConstraintWeight BestWeight = CW_Invalid;
5502 
5503   // Loop over the options, keeping track of the most general one.
5504   for (const std::string &rCode : *rCodes) {
5505     ConstraintWeight weight =
5506         getSingleConstraintMatchWeight(info, rCode.c_str());
5507     if (weight > BestWeight)
5508       BestWeight = weight;
5509   }
5510 
5511   return BestWeight;
5512 }
5513 
5514 /// Examine constraint type and operand type and determine a weight value.
5515 /// This object must already have been set up with the operand type
5516 /// and the current alternative constraint selected.
5517 TargetLowering::ConstraintWeight
5518   TargetLowering::getSingleConstraintMatchWeight(
5519     AsmOperandInfo &info, const char *constraint) const {
5520   ConstraintWeight weight = CW_Invalid;
5521   Value *CallOperandVal = info.CallOperandVal;
5522     // If we don't have a value, we can't do a match,
5523     // but allow it at the lowest weight.
5524   if (!CallOperandVal)
5525     return CW_Default;
5526   // Look at the constraint type.
5527   switch (*constraint) {
5528     case 'i': // immediate integer.
5529     case 'n': // immediate integer with a known value.
5530       if (isa<ConstantInt>(CallOperandVal))
5531         weight = CW_Constant;
5532       break;
5533     case 's': // non-explicit intregal immediate.
5534       if (isa<GlobalValue>(CallOperandVal))
5535         weight = CW_Constant;
5536       break;
5537     case 'E': // immediate float if host format.
5538     case 'F': // immediate float.
5539       if (isa<ConstantFP>(CallOperandVal))
5540         weight = CW_Constant;
5541       break;
5542     case '<': // memory operand with autodecrement.
5543     case '>': // memory operand with autoincrement.
5544     case 'm': // memory operand.
5545     case 'o': // offsettable memory operand
5546     case 'V': // non-offsettable memory operand
5547       weight = CW_Memory;
5548       break;
5549     case 'r': // general register.
5550     case 'g': // general register, memory operand or immediate integer.
5551               // note: Clang converts "g" to "imr".
5552       if (CallOperandVal->getType()->isIntegerTy())
5553         weight = CW_Register;
5554       break;
5555     case 'X': // any operand.
5556   default:
5557     weight = CW_Default;
5558     break;
5559   }
5560   return weight;
5561 }
5562 
5563 /// If there are multiple different constraints that we could pick for this
5564 /// operand (e.g. "imr") try to pick the 'best' one.
5565 /// This is somewhat tricky: constraints fall into four classes:
5566 ///    Other         -> immediates and magic values
5567 ///    Register      -> one specific register
5568 ///    RegisterClass -> a group of regs
5569 ///    Memory        -> memory
5570 /// Ideally, we would pick the most specific constraint possible: if we have
5571 /// something that fits into a register, we would pick it.  The problem here
5572 /// is that if we have something that could either be in a register or in
5573 /// memory that use of the register could cause selection of *other*
5574 /// operands to fail: they might only succeed if we pick memory.  Because of
5575 /// this the heuristic we use is:
5576 ///
5577 ///  1) If there is an 'other' constraint, and if the operand is valid for
5578 ///     that constraint, use it.  This makes us take advantage of 'i'
5579 ///     constraints when available.
5580 ///  2) Otherwise, pick the most general constraint present.  This prefers
5581 ///     'm' over 'r', for example.
5582 ///
5583 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
5584                              const TargetLowering &TLI,
5585                              SDValue Op, SelectionDAG *DAG) {
5586   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
5587   unsigned BestIdx = 0;
5588   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
5589   int BestGenerality = -1;
5590 
5591   // Loop over the options, keeping track of the most general one.
5592   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
5593     TargetLowering::ConstraintType CType =
5594       TLI.getConstraintType(OpInfo.Codes[i]);
5595 
5596     // Indirect 'other' or 'immediate' constraints are not allowed.
5597     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
5598                                CType == TargetLowering::C_Register ||
5599                                CType == TargetLowering::C_RegisterClass))
5600       continue;
5601 
5602     // If this is an 'other' or 'immediate' constraint, see if the operand is
5603     // valid for it. For example, on X86 we might have an 'rI' constraint. If
5604     // the operand is an integer in the range [0..31] we want to use I (saving a
5605     // load of a register), otherwise we must use 'r'.
5606     if ((CType == TargetLowering::C_Other ||
5607          CType == TargetLowering::C_Immediate) && Op.getNode()) {
5608       assert(OpInfo.Codes[i].size() == 1 &&
5609              "Unhandled multi-letter 'other' constraint");
5610       std::vector<SDValue> ResultOps;
5611       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
5612                                        ResultOps, *DAG);
5613       if (!ResultOps.empty()) {
5614         BestType = CType;
5615         BestIdx = i;
5616         break;
5617       }
5618     }
5619 
5620     // Things with matching constraints can only be registers, per gcc
5621     // documentation.  This mainly affects "g" constraints.
5622     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
5623       continue;
5624 
5625     // This constraint letter is more general than the previous one, use it.
5626     int Generality = getConstraintGenerality(CType);
5627     if (Generality > BestGenerality) {
5628       BestType = CType;
5629       BestIdx = i;
5630       BestGenerality = Generality;
5631     }
5632   }
5633 
5634   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
5635   OpInfo.ConstraintType = BestType;
5636 }
5637 
5638 /// Determines the constraint code and constraint type to use for the specific
5639 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
5640 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
5641                                             SDValue Op,
5642                                             SelectionDAG *DAG) const {
5643   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
5644 
5645   // Single-letter constraints ('r') are very common.
5646   if (OpInfo.Codes.size() == 1) {
5647     OpInfo.ConstraintCode = OpInfo.Codes[0];
5648     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5649   } else {
5650     ChooseConstraint(OpInfo, *this, Op, DAG);
5651   }
5652 
5653   // 'X' matches anything.
5654   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
5655     // Constants are handled elsewhere.  For Functions, the type here is the
5656     // type of the result, which is not what we want to look at; leave them
5657     // alone.
5658     Value *v = OpInfo.CallOperandVal;
5659     if (isa<ConstantInt>(v) || isa<Function>(v)) {
5660       return;
5661     }
5662 
5663     if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) {
5664       OpInfo.ConstraintCode = "i";
5665       return;
5666     }
5667 
5668     // Otherwise, try to resolve it to something we know about by looking at
5669     // the actual operand type.
5670     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
5671       OpInfo.ConstraintCode = Repl;
5672       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5673     }
5674   }
5675 }
5676 
5677 /// Given an exact SDIV by a constant, create a multiplication
5678 /// with the multiplicative inverse of the constant.
5679 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
5680                               const SDLoc &dl, SelectionDAG &DAG,
5681                               SmallVectorImpl<SDNode *> &Created) {
5682   SDValue Op0 = N->getOperand(0);
5683   SDValue Op1 = N->getOperand(1);
5684   EVT VT = N->getValueType(0);
5685   EVT SVT = VT.getScalarType();
5686   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
5687   EVT ShSVT = ShVT.getScalarType();
5688 
5689   bool UseSRA = false;
5690   SmallVector<SDValue, 16> Shifts, Factors;
5691 
5692   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5693     if (C->isZero())
5694       return false;
5695     APInt Divisor = C->getAPIntValue();
5696     unsigned Shift = Divisor.countTrailingZeros();
5697     if (Shift) {
5698       Divisor.ashrInPlace(Shift);
5699       UseSRA = true;
5700     }
5701     // Calculate the multiplicative inverse, using Newton's method.
5702     APInt t;
5703     APInt Factor = Divisor;
5704     while ((t = Divisor * Factor) != 1)
5705       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
5706     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
5707     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
5708     return true;
5709   };
5710 
5711   // Collect all magic values from the build vector.
5712   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
5713     return SDValue();
5714 
5715   SDValue Shift, Factor;
5716   if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
5717     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5718     Factor = DAG.getBuildVector(VT, dl, Factors);
5719   } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
5720     assert(Shifts.size() == 1 && Factors.size() == 1 &&
5721            "Expected matchUnaryPredicate to return one element for scalable "
5722            "vectors");
5723     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5724     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5725   } else {
5726     assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
5727     Shift = Shifts[0];
5728     Factor = Factors[0];
5729   }
5730 
5731   SDValue Res = Op0;
5732 
5733   // Shift the value upfront if it is even, so the LSB is one.
5734   if (UseSRA) {
5735     // TODO: For UDIV use SRL instead of SRA.
5736     SDNodeFlags Flags;
5737     Flags.setExact(true);
5738     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
5739     Created.push_back(Res.getNode());
5740   }
5741 
5742   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
5743 }
5744 
5745 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
5746                               SelectionDAG &DAG,
5747                               SmallVectorImpl<SDNode *> &Created) const {
5748   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5749   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5750   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5751     return SDValue(N, 0); // Lower SDIV as SDIV
5752   return SDValue();
5753 }
5754 
5755 SDValue
5756 TargetLowering::BuildSREMPow2(SDNode *N, const APInt &Divisor,
5757                               SelectionDAG &DAG,
5758                               SmallVectorImpl<SDNode *> &Created) const {
5759   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5760   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5761   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5762     return SDValue(N, 0); // Lower SREM as SREM
5763   return SDValue();
5764 }
5765 
5766 /// Given an ISD::SDIV node expressing a divide by constant,
5767 /// return a DAG expression to select that will generate the same value by
5768 /// multiplying by a magic number.
5769 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5770 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
5771                                   bool IsAfterLegalization,
5772                                   SmallVectorImpl<SDNode *> &Created) const {
5773   SDLoc dl(N);
5774   EVT VT = N->getValueType(0);
5775   EVT SVT = VT.getScalarType();
5776   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5777   EVT ShSVT = ShVT.getScalarType();
5778   unsigned EltBits = VT.getScalarSizeInBits();
5779   EVT MulVT;
5780 
5781   // Check to see if we can do this.
5782   // FIXME: We should be more aggressive here.
5783   if (!isTypeLegal(VT)) {
5784     // Limit this to simple scalars for now.
5785     if (VT.isVector() || !VT.isSimple())
5786       return SDValue();
5787 
5788     // If this type will be promoted to a large enough type with a legal
5789     // multiply operation, we can go ahead and do this transform.
5790     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5791       return SDValue();
5792 
5793     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5794     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5795         !isOperationLegal(ISD::MUL, MulVT))
5796       return SDValue();
5797   }
5798 
5799   // If the sdiv has an 'exact' bit we can use a simpler lowering.
5800   if (N->getFlags().hasExact())
5801     return BuildExactSDIV(*this, N, dl, DAG, Created);
5802 
5803   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
5804 
5805   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5806     if (C->isZero())
5807       return false;
5808 
5809     const APInt &Divisor = C->getAPIntValue();
5810     SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor);
5811     int NumeratorFactor = 0;
5812     int ShiftMask = -1;
5813 
5814     if (Divisor.isOne() || Divisor.isAllOnes()) {
5815       // If d is +1/-1, we just multiply the numerator by +1/-1.
5816       NumeratorFactor = Divisor.getSExtValue();
5817       magics.Magic = 0;
5818       magics.ShiftAmount = 0;
5819       ShiftMask = 0;
5820     } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) {
5821       // If d > 0 and m < 0, add the numerator.
5822       NumeratorFactor = 1;
5823     } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) {
5824       // If d < 0 and m > 0, subtract the numerator.
5825       NumeratorFactor = -1;
5826     }
5827 
5828     MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT));
5829     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
5830     Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT));
5831     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
5832     return true;
5833   };
5834 
5835   SDValue N0 = N->getOperand(0);
5836   SDValue N1 = N->getOperand(1);
5837 
5838   // Collect the shifts / magic values from each element.
5839   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
5840     return SDValue();
5841 
5842   SDValue MagicFactor, Factor, Shift, ShiftMask;
5843   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5844     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5845     Factor = DAG.getBuildVector(VT, dl, Factors);
5846     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5847     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
5848   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5849     assert(MagicFactors.size() == 1 && Factors.size() == 1 &&
5850            Shifts.size() == 1 && ShiftMasks.size() == 1 &&
5851            "Expected matchUnaryPredicate to return one element for scalable "
5852            "vectors");
5853     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5854     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5855     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5856     ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
5857   } else {
5858     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5859     MagicFactor = MagicFactors[0];
5860     Factor = Factors[0];
5861     Shift = Shifts[0];
5862     ShiftMask = ShiftMasks[0];
5863   }
5864 
5865   // Multiply the numerator (operand 0) by the magic value.
5866   // FIXME: We should support doing a MUL in a wider type.
5867   auto GetMULHS = [&](SDValue X, SDValue Y) {
5868     // If the type isn't legal, use a wider mul of the the type calculated
5869     // earlier.
5870     if (!isTypeLegal(VT)) {
5871       X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X);
5872       Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y);
5873       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5874       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5875                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5876       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5877     }
5878 
5879     if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization))
5880       return DAG.getNode(ISD::MULHS, dl, VT, X, Y);
5881     if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) {
5882       SDValue LoHi =
5883           DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5884       return SDValue(LoHi.getNode(), 1);
5885     }
5886     return SDValue();
5887   };
5888 
5889   SDValue Q = GetMULHS(N0, MagicFactor);
5890   if (!Q)
5891     return SDValue();
5892 
5893   Created.push_back(Q.getNode());
5894 
5895   // (Optionally) Add/subtract the numerator using Factor.
5896   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
5897   Created.push_back(Factor.getNode());
5898   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
5899   Created.push_back(Q.getNode());
5900 
5901   // Shift right algebraic by shift value.
5902   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
5903   Created.push_back(Q.getNode());
5904 
5905   // Extract the sign bit, mask it and add it to the quotient.
5906   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
5907   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
5908   Created.push_back(T.getNode());
5909   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
5910   Created.push_back(T.getNode());
5911   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
5912 }
5913 
5914 /// Given an ISD::UDIV node expressing a divide by constant,
5915 /// return a DAG expression to select that will generate the same value by
5916 /// multiplying by a magic number.
5917 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5918 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
5919                                   bool IsAfterLegalization,
5920                                   SmallVectorImpl<SDNode *> &Created) const {
5921   SDLoc dl(N);
5922   EVT VT = N->getValueType(0);
5923   EVT SVT = VT.getScalarType();
5924   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5925   EVT ShSVT = ShVT.getScalarType();
5926   unsigned EltBits = VT.getScalarSizeInBits();
5927   EVT MulVT;
5928 
5929   // Check to see if we can do this.
5930   // FIXME: We should be more aggressive here.
5931   if (!isTypeLegal(VT)) {
5932     // Limit this to simple scalars for now.
5933     if (VT.isVector() || !VT.isSimple())
5934       return SDValue();
5935 
5936     // If this type will be promoted to a large enough type with a legal
5937     // multiply operation, we can go ahead and do this transform.
5938     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5939       return SDValue();
5940 
5941     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5942     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5943         !isOperationLegal(ISD::MUL, MulVT))
5944       return SDValue();
5945   }
5946 
5947   bool UseNPQ = false;
5948   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
5949 
5950   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
5951     if (C->isZero())
5952       return false;
5953     // FIXME: We should use a narrower constant when the upper
5954     // bits are known to be zero.
5955     const APInt& Divisor = C->getAPIntValue();
5956     UnsignedDivisionByConstantInfo magics =
5957         UnsignedDivisionByConstantInfo::get(Divisor);
5958     unsigned PreShift = 0, PostShift = 0;
5959 
5960     // If the divisor is even, we can avoid using the expensive fixup by
5961     // shifting the divided value upfront.
5962     if (magics.IsAdd && !Divisor[0]) {
5963       PreShift = Divisor.countTrailingZeros();
5964       // Get magic number for the shifted divisor.
5965       magics =
5966           UnsignedDivisionByConstantInfo::get(Divisor.lshr(PreShift), PreShift);
5967       assert(!magics.IsAdd && "Should use cheap fixup now");
5968     }
5969 
5970     unsigned SelNPQ;
5971     if (!magics.IsAdd || Divisor.isOne()) {
5972       assert(magics.ShiftAmount < Divisor.getBitWidth() &&
5973              "We shouldn't generate an undefined shift!");
5974       PostShift = magics.ShiftAmount;
5975       SelNPQ = false;
5976     } else {
5977       PostShift = magics.ShiftAmount - 1;
5978       SelNPQ = true;
5979     }
5980 
5981     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
5982     MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT));
5983     NPQFactors.push_back(
5984         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
5985                                : APInt::getZero(EltBits),
5986                         dl, SVT));
5987     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
5988     UseNPQ |= SelNPQ;
5989     return true;
5990   };
5991 
5992   SDValue N0 = N->getOperand(0);
5993   SDValue N1 = N->getOperand(1);
5994 
5995   // Collect the shifts/magic values from each element.
5996   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
5997     return SDValue();
5998 
5999   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
6000   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
6001     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
6002     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
6003     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
6004     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
6005   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
6006     assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&
6007            NPQFactors.size() == 1 && PostShifts.size() == 1 &&
6008            "Expected matchUnaryPredicate to return one for scalable vectors");
6009     PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
6010     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
6011     NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
6012     PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
6013   } else {
6014     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
6015     PreShift = PreShifts[0];
6016     MagicFactor = MagicFactors[0];
6017     PostShift = PostShifts[0];
6018   }
6019 
6020   SDValue Q = N0;
6021   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
6022   Created.push_back(Q.getNode());
6023 
6024   // FIXME: We should support doing a MUL in a wider type.
6025   auto GetMULHU = [&](SDValue X, SDValue Y) {
6026     // If the type isn't legal, use a wider mul of the the type calculated
6027     // earlier.
6028     if (!isTypeLegal(VT)) {
6029       X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X);
6030       Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y);
6031       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
6032       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
6033                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
6034       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
6035     }
6036 
6037     if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization))
6038       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
6039     if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) {
6040       SDValue LoHi =
6041           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
6042       return SDValue(LoHi.getNode(), 1);
6043     }
6044     return SDValue(); // No mulhu or equivalent
6045   };
6046 
6047   // Multiply the numerator (operand 0) by the magic value.
6048   Q = GetMULHU(Q, MagicFactor);
6049   if (!Q)
6050     return SDValue();
6051 
6052   Created.push_back(Q.getNode());
6053 
6054   if (UseNPQ) {
6055     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
6056     Created.push_back(NPQ.getNode());
6057 
6058     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
6059     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
6060     if (VT.isVector())
6061       NPQ = GetMULHU(NPQ, NPQFactor);
6062     else
6063       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
6064 
6065     Created.push_back(NPQ.getNode());
6066 
6067     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
6068     Created.push_back(Q.getNode());
6069   }
6070 
6071   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
6072   Created.push_back(Q.getNode());
6073 
6074   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6075 
6076   SDValue One = DAG.getConstant(1, dl, VT);
6077   SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
6078   return DAG.getSelect(dl, VT, IsOne, N0, Q);
6079 }
6080 
6081 /// If all values in Values that *don't* match the predicate are same 'splat'
6082 /// value, then replace all values with that splat value.
6083 /// Else, if AlternativeReplacement was provided, then replace all values that
6084 /// do match predicate with AlternativeReplacement value.
6085 static void
6086 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
6087                           std::function<bool(SDValue)> Predicate,
6088                           SDValue AlternativeReplacement = SDValue()) {
6089   SDValue Replacement;
6090   // Is there a value for which the Predicate does *NOT* match? What is it?
6091   auto SplatValue = llvm::find_if_not(Values, Predicate);
6092   if (SplatValue != Values.end()) {
6093     // Does Values consist only of SplatValue's and values matching Predicate?
6094     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
6095           return Value == *SplatValue || Predicate(Value);
6096         })) // Then we shall replace values matching predicate with SplatValue.
6097       Replacement = *SplatValue;
6098   }
6099   if (!Replacement) {
6100     // Oops, we did not find the "baseline" splat value.
6101     if (!AlternativeReplacement)
6102       return; // Nothing to do.
6103     // Let's replace with provided value then.
6104     Replacement = AlternativeReplacement;
6105   }
6106   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
6107 }
6108 
6109 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
6110 /// where the divisor is constant and the comparison target is zero,
6111 /// return a DAG expression that will generate the same comparison result
6112 /// using only multiplications, additions and shifts/rotations.
6113 /// Ref: "Hacker's Delight" 10-17.
6114 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
6115                                         SDValue CompTargetNode,
6116                                         ISD::CondCode Cond,
6117                                         DAGCombinerInfo &DCI,
6118                                         const SDLoc &DL) const {
6119   SmallVector<SDNode *, 5> Built;
6120   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
6121                                          DCI, DL, Built)) {
6122     for (SDNode *N : Built)
6123       DCI.AddToWorklist(N);
6124     return Folded;
6125   }
6126 
6127   return SDValue();
6128 }
6129 
6130 SDValue
6131 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
6132                                   SDValue CompTargetNode, ISD::CondCode Cond,
6133                                   DAGCombinerInfo &DCI, const SDLoc &DL,
6134                                   SmallVectorImpl<SDNode *> &Created) const {
6135   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
6136   // - D must be constant, with D = D0 * 2^K where D0 is odd
6137   // - P is the multiplicative inverse of D0 modulo 2^W
6138   // - Q = floor(((2^W) - 1) / D)
6139   // where W is the width of the common type of N and D.
6140   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
6141          "Only applicable for (in)equality comparisons.");
6142 
6143   SelectionDAG &DAG = DCI.DAG;
6144 
6145   EVT VT = REMNode.getValueType();
6146   EVT SVT = VT.getScalarType();
6147   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
6148   EVT ShSVT = ShVT.getScalarType();
6149 
6150   // If MUL is unavailable, we cannot proceed in any case.
6151   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
6152     return SDValue();
6153 
6154   bool ComparingWithAllZeros = true;
6155   bool AllComparisonsWithNonZerosAreTautological = true;
6156   bool HadTautologicalLanes = false;
6157   bool AllLanesAreTautological = true;
6158   bool HadEvenDivisor = false;
6159   bool AllDivisorsArePowerOfTwo = true;
6160   bool HadTautologicalInvertedLanes = false;
6161   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
6162 
6163   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
6164     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
6165     if (CDiv->isZero())
6166       return false;
6167 
6168     const APInt &D = CDiv->getAPIntValue();
6169     const APInt &Cmp = CCmp->getAPIntValue();
6170 
6171     ComparingWithAllZeros &= Cmp.isZero();
6172 
6173     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
6174     // if C2 is not less than C1, the comparison is always false.
6175     // But we will only be able to produce the comparison that will give the
6176     // opposive tautological answer. So this lane would need to be fixed up.
6177     bool TautologicalInvertedLane = D.ule(Cmp);
6178     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
6179 
6180     // If all lanes are tautological (either all divisors are ones, or divisor
6181     // is not greater than the constant we are comparing with),
6182     // we will prefer to avoid the fold.
6183     bool TautologicalLane = D.isOne() || TautologicalInvertedLane;
6184     HadTautologicalLanes |= TautologicalLane;
6185     AllLanesAreTautological &= TautologicalLane;
6186 
6187     // If we are comparing with non-zero, we need'll need  to subtract said
6188     // comparison value from the LHS. But there is no point in doing that if
6189     // every lane where we are comparing with non-zero is tautological..
6190     if (!Cmp.isZero())
6191       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
6192 
6193     // Decompose D into D0 * 2^K
6194     unsigned K = D.countTrailingZeros();
6195     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
6196     APInt D0 = D.lshr(K);
6197 
6198     // D is even if it has trailing zeros.
6199     HadEvenDivisor |= (K != 0);
6200     // D is a power-of-two if D0 is one.
6201     // If all divisors are power-of-two, we will prefer to avoid the fold.
6202     AllDivisorsArePowerOfTwo &= D0.isOne();
6203 
6204     // P = inv(D0, 2^W)
6205     // 2^W requires W + 1 bits, so we have to extend and then truncate.
6206     unsigned W = D.getBitWidth();
6207     APInt P = D0.zext(W + 1)
6208                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
6209                   .trunc(W);
6210     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
6211     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
6212 
6213     // Q = floor((2^W - 1) u/ D)
6214     // R = ((2^W - 1) u% D)
6215     APInt Q, R;
6216     APInt::udivrem(APInt::getAllOnes(W), D, Q, R);
6217 
6218     // If we are comparing with zero, then that comparison constant is okay,
6219     // else it may need to be one less than that.
6220     if (Cmp.ugt(R))
6221       Q -= 1;
6222 
6223     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
6224            "We are expecting that K is always less than all-ones for ShSVT");
6225 
6226     // If the lane is tautological the result can be constant-folded.
6227     if (TautologicalLane) {
6228       // Set P and K amount to a bogus values so we can try to splat them.
6229       P = 0;
6230       K = -1;
6231       // And ensure that comparison constant is tautological,
6232       // it will always compare true/false.
6233       Q = -1;
6234     }
6235 
6236     PAmts.push_back(DAG.getConstant(P, DL, SVT));
6237     KAmts.push_back(
6238         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
6239     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
6240     return true;
6241   };
6242 
6243   SDValue N = REMNode.getOperand(0);
6244   SDValue D = REMNode.getOperand(1);
6245 
6246   // Collect the values from each element.
6247   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
6248     return SDValue();
6249 
6250   // If all lanes are tautological, the result can be constant-folded.
6251   if (AllLanesAreTautological)
6252     return SDValue();
6253 
6254   // If this is a urem by a powers-of-two, avoid the fold since it can be
6255   // best implemented as a bit test.
6256   if (AllDivisorsArePowerOfTwo)
6257     return SDValue();
6258 
6259   SDValue PVal, KVal, QVal;
6260   if (D.getOpcode() == ISD::BUILD_VECTOR) {
6261     if (HadTautologicalLanes) {
6262       // Try to turn PAmts into a splat, since we don't care about the values
6263       // that are currently '0'. If we can't, just keep '0'`s.
6264       turnVectorIntoSplatVector(PAmts, isNullConstant);
6265       // Try to turn KAmts into a splat, since we don't care about the values
6266       // that are currently '-1'. If we can't, change them to '0'`s.
6267       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
6268                                 DAG.getConstant(0, DL, ShSVT));
6269     }
6270 
6271     PVal = DAG.getBuildVector(VT, DL, PAmts);
6272     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
6273     QVal = DAG.getBuildVector(VT, DL, QAmts);
6274   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
6275     assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 &&
6276            "Expected matchBinaryPredicate to return one element for "
6277            "SPLAT_VECTORs");
6278     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
6279     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
6280     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
6281   } else {
6282     PVal = PAmts[0];
6283     KVal = KAmts[0];
6284     QVal = QAmts[0];
6285   }
6286 
6287   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
6288     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT))
6289       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
6290     assert(CompTargetNode.getValueType() == N.getValueType() &&
6291            "Expecting that the types on LHS and RHS of comparisons match.");
6292     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
6293   }
6294 
6295   // (mul N, P)
6296   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
6297   Created.push_back(Op0.getNode());
6298 
6299   // Rotate right only if any divisor was even. We avoid rotates for all-odd
6300   // divisors as a performance improvement, since rotating by 0 is a no-op.
6301   if (HadEvenDivisor) {
6302     // We need ROTR to do this.
6303     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
6304       return SDValue();
6305     // UREM: (rotr (mul N, P), K)
6306     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
6307     Created.push_back(Op0.getNode());
6308   }
6309 
6310   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
6311   SDValue NewCC =
6312       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
6313                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6314   if (!HadTautologicalInvertedLanes)
6315     return NewCC;
6316 
6317   // If any lanes previously compared always-false, the NewCC will give
6318   // always-true result for them, so we need to fixup those lanes.
6319   // Or the other way around for inequality predicate.
6320   assert(VT.isVector() && "Can/should only get here for vectors.");
6321   Created.push_back(NewCC.getNode());
6322 
6323   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
6324   // if C2 is not less than C1, the comparison is always false.
6325   // But we have produced the comparison that will give the
6326   // opposive tautological answer. So these lanes would need to be fixed up.
6327   SDValue TautologicalInvertedChannels =
6328       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
6329   Created.push_back(TautologicalInvertedChannels.getNode());
6330 
6331   // NOTE: we avoid letting illegal types through even if we're before legalize
6332   // ops – legalization has a hard time producing good code for this.
6333   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
6334     // If we have a vector select, let's replace the comparison results in the
6335     // affected lanes with the correct tautological result.
6336     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
6337                                               DL, SETCCVT, SETCCVT);
6338     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
6339                        Replacement, NewCC);
6340   }
6341 
6342   // Else, we can just invert the comparison result in the appropriate lanes.
6343   //
6344   // NOTE: see the note above VSELECT above.
6345   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
6346     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
6347                        TautologicalInvertedChannels);
6348 
6349   return SDValue(); // Don't know how to lower.
6350 }
6351 
6352 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
6353 /// where the divisor is constant and the comparison target is zero,
6354 /// return a DAG expression that will generate the same comparison result
6355 /// using only multiplications, additions and shifts/rotations.
6356 /// Ref: "Hacker's Delight" 10-17.
6357 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
6358                                         SDValue CompTargetNode,
6359                                         ISD::CondCode Cond,
6360                                         DAGCombinerInfo &DCI,
6361                                         const SDLoc &DL) const {
6362   SmallVector<SDNode *, 7> Built;
6363   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
6364                                          DCI, DL, Built)) {
6365     assert(Built.size() <= 7 && "Max size prediction failed.");
6366     for (SDNode *N : Built)
6367       DCI.AddToWorklist(N);
6368     return Folded;
6369   }
6370 
6371   return SDValue();
6372 }
6373 
6374 SDValue
6375 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
6376                                   SDValue CompTargetNode, ISD::CondCode Cond,
6377                                   DAGCombinerInfo &DCI, const SDLoc &DL,
6378                                   SmallVectorImpl<SDNode *> &Created) const {
6379   // Fold:
6380   //   (seteq/ne (srem N, D), 0)
6381   // To:
6382   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
6383   //
6384   // - D must be constant, with D = D0 * 2^K where D0 is odd
6385   // - P is the multiplicative inverse of D0 modulo 2^W
6386   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
6387   // - Q = floor((2 * A) / (2^K))
6388   // where W is the width of the common type of N and D.
6389   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
6390          "Only applicable for (in)equality comparisons.");
6391 
6392   SelectionDAG &DAG = DCI.DAG;
6393 
6394   EVT VT = REMNode.getValueType();
6395   EVT SVT = VT.getScalarType();
6396   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
6397   EVT ShSVT = ShVT.getScalarType();
6398 
6399   // If we are after ops legalization, and MUL is unavailable, we can not
6400   // proceed.
6401   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
6402     return SDValue();
6403 
6404   // TODO: Could support comparing with non-zero too.
6405   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
6406   if (!CompTarget || !CompTarget->isZero())
6407     return SDValue();
6408 
6409   bool HadIntMinDivisor = false;
6410   bool HadOneDivisor = false;
6411   bool AllDivisorsAreOnes = true;
6412   bool HadEvenDivisor = false;
6413   bool NeedToApplyOffset = false;
6414   bool AllDivisorsArePowerOfTwo = true;
6415   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
6416 
6417   auto BuildSREMPattern = [&](ConstantSDNode *C) {
6418     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
6419     if (C->isZero())
6420       return false;
6421 
6422     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
6423 
6424     // WARNING: this fold is only valid for positive divisors!
6425     APInt D = C->getAPIntValue();
6426     if (D.isNegative())
6427       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
6428 
6429     HadIntMinDivisor |= D.isMinSignedValue();
6430 
6431     // If all divisors are ones, we will prefer to avoid the fold.
6432     HadOneDivisor |= D.isOne();
6433     AllDivisorsAreOnes &= D.isOne();
6434 
6435     // Decompose D into D0 * 2^K
6436     unsigned K = D.countTrailingZeros();
6437     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
6438     APInt D0 = D.lshr(K);
6439 
6440     if (!D.isMinSignedValue()) {
6441       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
6442       // we don't care about this lane in this fold, we'll special-handle it.
6443       HadEvenDivisor |= (K != 0);
6444     }
6445 
6446     // D is a power-of-two if D0 is one. This includes INT_MIN.
6447     // If all divisors are power-of-two, we will prefer to avoid the fold.
6448     AllDivisorsArePowerOfTwo &= D0.isOne();
6449 
6450     // P = inv(D0, 2^W)
6451     // 2^W requires W + 1 bits, so we have to extend and then truncate.
6452     unsigned W = D.getBitWidth();
6453     APInt P = D0.zext(W + 1)
6454                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
6455                   .trunc(W);
6456     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
6457     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
6458 
6459     // A = floor((2^(W - 1) - 1) / D0) & -2^K
6460     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
6461     A.clearLowBits(K);
6462 
6463     if (!D.isMinSignedValue()) {
6464       // If divisor INT_MIN, then we don't care about this lane in this fold,
6465       // we'll special-handle it.
6466       NeedToApplyOffset |= A != 0;
6467     }
6468 
6469     // Q = floor((2 * A) / (2^K))
6470     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
6471 
6472     assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) &&
6473            "We are expecting that A is always less than all-ones for SVT");
6474     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
6475            "We are expecting that K is always less than all-ones for ShSVT");
6476 
6477     // If the divisor is 1 the result can be constant-folded. Likewise, we
6478     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
6479     if (D.isOne()) {
6480       // Set P, A and K to a bogus values so we can try to splat them.
6481       P = 0;
6482       A = -1;
6483       K = -1;
6484 
6485       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
6486       Q = -1;
6487     }
6488 
6489     PAmts.push_back(DAG.getConstant(P, DL, SVT));
6490     AAmts.push_back(DAG.getConstant(A, DL, SVT));
6491     KAmts.push_back(
6492         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
6493     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
6494     return true;
6495   };
6496 
6497   SDValue N = REMNode.getOperand(0);
6498   SDValue D = REMNode.getOperand(1);
6499 
6500   // Collect the values from each element.
6501   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
6502     return SDValue();
6503 
6504   // If this is a srem by a one, avoid the fold since it can be constant-folded.
6505   if (AllDivisorsAreOnes)
6506     return SDValue();
6507 
6508   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
6509   // since it can be best implemented as a bit test.
6510   if (AllDivisorsArePowerOfTwo)
6511     return SDValue();
6512 
6513   SDValue PVal, AVal, KVal, QVal;
6514   if (D.getOpcode() == ISD::BUILD_VECTOR) {
6515     if (HadOneDivisor) {
6516       // Try to turn PAmts into a splat, since we don't care about the values
6517       // that are currently '0'. If we can't, just keep '0'`s.
6518       turnVectorIntoSplatVector(PAmts, isNullConstant);
6519       // Try to turn AAmts into a splat, since we don't care about the
6520       // values that are currently '-1'. If we can't, change them to '0'`s.
6521       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
6522                                 DAG.getConstant(0, DL, SVT));
6523       // Try to turn KAmts into a splat, since we don't care about the values
6524       // that are currently '-1'. If we can't, change them to '0'`s.
6525       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
6526                                 DAG.getConstant(0, DL, ShSVT));
6527     }
6528 
6529     PVal = DAG.getBuildVector(VT, DL, PAmts);
6530     AVal = DAG.getBuildVector(VT, DL, AAmts);
6531     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
6532     QVal = DAG.getBuildVector(VT, DL, QAmts);
6533   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
6534     assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&
6535            QAmts.size() == 1 &&
6536            "Expected matchUnaryPredicate to return one element for scalable "
6537            "vectors");
6538     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
6539     AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
6540     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
6541     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
6542   } else {
6543     assert(isa<ConstantSDNode>(D) && "Expected a constant");
6544     PVal = PAmts[0];
6545     AVal = AAmts[0];
6546     KVal = KAmts[0];
6547     QVal = QAmts[0];
6548   }
6549 
6550   // (mul N, P)
6551   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
6552   Created.push_back(Op0.getNode());
6553 
6554   if (NeedToApplyOffset) {
6555     // We need ADD to do this.
6556     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT))
6557       return SDValue();
6558 
6559     // (add (mul N, P), A)
6560     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
6561     Created.push_back(Op0.getNode());
6562   }
6563 
6564   // Rotate right only if any divisor was even. We avoid rotates for all-odd
6565   // divisors as a performance improvement, since rotating by 0 is a no-op.
6566   if (HadEvenDivisor) {
6567     // We need ROTR to do this.
6568     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
6569       return SDValue();
6570     // SREM: (rotr (add (mul N, P), A), K)
6571     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
6572     Created.push_back(Op0.getNode());
6573   }
6574 
6575   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
6576   SDValue Fold =
6577       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
6578                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6579 
6580   // If we didn't have lanes with INT_MIN divisor, then we're done.
6581   if (!HadIntMinDivisor)
6582     return Fold;
6583 
6584   // That fold is only valid for positive divisors. Which effectively means,
6585   // it is invalid for INT_MIN divisors. So if we have such a lane,
6586   // we must fix-up results for said lanes.
6587   assert(VT.isVector() && "Can/should only get here for vectors.");
6588 
6589   // NOTE: we avoid letting illegal types through even if we're before legalize
6590   // ops – legalization has a hard time producing good code for the code that
6591   // follows.
6592   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
6593       !isOperationLegalOrCustom(ISD::AND, VT) ||
6594       !isOperationLegalOrCustom(Cond, VT) ||
6595       !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT))
6596     return SDValue();
6597 
6598   Created.push_back(Fold.getNode());
6599 
6600   SDValue IntMin = DAG.getConstant(
6601       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
6602   SDValue IntMax = DAG.getConstant(
6603       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
6604   SDValue Zero =
6605       DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT);
6606 
6607   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
6608   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
6609   Created.push_back(DivisorIsIntMin.getNode());
6610 
6611   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
6612   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
6613   Created.push_back(Masked.getNode());
6614   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
6615   Created.push_back(MaskedIsZero.getNode());
6616 
6617   // To produce final result we need to blend 2 vectors: 'SetCC' and
6618   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
6619   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
6620   // constant-folded, select can get lowered to a shuffle with constant mask.
6621   SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin,
6622                                 MaskedIsZero, Fold);
6623 
6624   return Blended;
6625 }
6626 
6627 bool TargetLowering::
6628 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
6629   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
6630     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
6631                                 "be a constant integer");
6632     return true;
6633   }
6634 
6635   return false;
6636 }
6637 
6638 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
6639                                          const DenormalMode &Mode) const {
6640   SDLoc DL(Op);
6641   EVT VT = Op.getValueType();
6642   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6643   SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
6644   // Testing it with denormal inputs to avoid wrong estimate.
6645   if (Mode.Input == DenormalMode::IEEE) {
6646     // This is specifically a check for the handling of denormal inputs,
6647     // not the result.
6648 
6649     // Test = fabs(X) < SmallestNormal
6650     const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
6651     APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
6652     SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
6653     SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
6654     return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
6655   }
6656   // Test = X == 0.0
6657   return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
6658 }
6659 
6660 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
6661                                              bool LegalOps, bool OptForSize,
6662                                              NegatibleCost &Cost,
6663                                              unsigned Depth) const {
6664   // fneg is removable even if it has multiple uses.
6665   if (Op.getOpcode() == ISD::FNEG) {
6666     Cost = NegatibleCost::Cheaper;
6667     return Op.getOperand(0);
6668   }
6669 
6670   // Don't recurse exponentially.
6671   if (Depth > SelectionDAG::MaxRecursionDepth)
6672     return SDValue();
6673 
6674   // Pre-increment recursion depth for use in recursive calls.
6675   ++Depth;
6676   const SDNodeFlags Flags = Op->getFlags();
6677   const TargetOptions &Options = DAG.getTarget().Options;
6678   EVT VT = Op.getValueType();
6679   unsigned Opcode = Op.getOpcode();
6680 
6681   // Don't allow anything with multiple uses unless we know it is free.
6682   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
6683     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
6684                         isFPExtFree(VT, Op.getOperand(0).getValueType());
6685     if (!IsFreeExtend)
6686       return SDValue();
6687   }
6688 
6689   auto RemoveDeadNode = [&](SDValue N) {
6690     if (N && N.getNode()->use_empty())
6691       DAG.RemoveDeadNode(N.getNode());
6692   };
6693 
6694   SDLoc DL(Op);
6695 
6696   // Because getNegatedExpression can delete nodes we need a handle to keep
6697   // temporary nodes alive in case the recursion manages to create an identical
6698   // node.
6699   std::list<HandleSDNode> Handles;
6700 
6701   switch (Opcode) {
6702   case ISD::ConstantFP: {
6703     // Don't invert constant FP values after legalization unless the target says
6704     // the negated constant is legal.
6705     bool IsOpLegal =
6706         isOperationLegal(ISD::ConstantFP, VT) ||
6707         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
6708                      OptForSize);
6709 
6710     if (LegalOps && !IsOpLegal)
6711       break;
6712 
6713     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
6714     V.changeSign();
6715     SDValue CFP = DAG.getConstantFP(V, DL, VT);
6716 
6717     // If we already have the use of the negated floating constant, it is free
6718     // to negate it even it has multiple uses.
6719     if (!Op.hasOneUse() && CFP.use_empty())
6720       break;
6721     Cost = NegatibleCost::Neutral;
6722     return CFP;
6723   }
6724   case ISD::BUILD_VECTOR: {
6725     // Only permit BUILD_VECTOR of constants.
6726     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
6727           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
6728         }))
6729       break;
6730 
6731     bool IsOpLegal =
6732         (isOperationLegal(ISD::ConstantFP, VT) &&
6733          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
6734         llvm::all_of(Op->op_values(), [&](SDValue N) {
6735           return N.isUndef() ||
6736                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
6737                               OptForSize);
6738         });
6739 
6740     if (LegalOps && !IsOpLegal)
6741       break;
6742 
6743     SmallVector<SDValue, 4> Ops;
6744     for (SDValue C : Op->op_values()) {
6745       if (C.isUndef()) {
6746         Ops.push_back(C);
6747         continue;
6748       }
6749       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
6750       V.changeSign();
6751       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
6752     }
6753     Cost = NegatibleCost::Neutral;
6754     return DAG.getBuildVector(VT, DL, Ops);
6755   }
6756   case ISD::FADD: {
6757     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6758       break;
6759 
6760     // After operation legalization, it might not be legal to create new FSUBs.
6761     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
6762       break;
6763     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6764 
6765     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
6766     NegatibleCost CostX = NegatibleCost::Expensive;
6767     SDValue NegX =
6768         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6769     // Prevent this node from being deleted by the next call.
6770     if (NegX)
6771       Handles.emplace_back(NegX);
6772 
6773     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
6774     NegatibleCost CostY = NegatibleCost::Expensive;
6775     SDValue NegY =
6776         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6777 
6778     // We're done with the handles.
6779     Handles.clear();
6780 
6781     // Negate the X if its cost is less or equal than Y.
6782     if (NegX && (CostX <= CostY)) {
6783       Cost = CostX;
6784       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
6785       if (NegY != N)
6786         RemoveDeadNode(NegY);
6787       return N;
6788     }
6789 
6790     // Negate the Y if it is not expensive.
6791     if (NegY) {
6792       Cost = CostY;
6793       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
6794       if (NegX != N)
6795         RemoveDeadNode(NegX);
6796       return N;
6797     }
6798     break;
6799   }
6800   case ISD::FSUB: {
6801     // We can't turn -(A-B) into B-A when we honor signed zeros.
6802     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6803       break;
6804 
6805     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6806     // fold (fneg (fsub 0, Y)) -> Y
6807     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
6808       if (C->isZero()) {
6809         Cost = NegatibleCost::Cheaper;
6810         return Y;
6811       }
6812 
6813     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
6814     Cost = NegatibleCost::Neutral;
6815     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
6816   }
6817   case ISD::FMUL:
6818   case ISD::FDIV: {
6819     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6820 
6821     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
6822     NegatibleCost CostX = NegatibleCost::Expensive;
6823     SDValue NegX =
6824         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6825     // Prevent this node from being deleted by the next call.
6826     if (NegX)
6827       Handles.emplace_back(NegX);
6828 
6829     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
6830     NegatibleCost CostY = NegatibleCost::Expensive;
6831     SDValue NegY =
6832         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6833 
6834     // We're done with the handles.
6835     Handles.clear();
6836 
6837     // Negate the X if its cost is less or equal than Y.
6838     if (NegX && (CostX <= CostY)) {
6839       Cost = CostX;
6840       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
6841       if (NegY != N)
6842         RemoveDeadNode(NegY);
6843       return N;
6844     }
6845 
6846     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
6847     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
6848       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
6849         break;
6850 
6851     // Negate the Y if it is not expensive.
6852     if (NegY) {
6853       Cost = CostY;
6854       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
6855       if (NegX != N)
6856         RemoveDeadNode(NegX);
6857       return N;
6858     }
6859     break;
6860   }
6861   case ISD::FMA:
6862   case ISD::FMAD: {
6863     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6864       break;
6865 
6866     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
6867     NegatibleCost CostZ = NegatibleCost::Expensive;
6868     SDValue NegZ =
6869         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
6870     // Give up if fail to negate the Z.
6871     if (!NegZ)
6872       break;
6873 
6874     // Prevent this node from being deleted by the next two calls.
6875     Handles.emplace_back(NegZ);
6876 
6877     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
6878     NegatibleCost CostX = NegatibleCost::Expensive;
6879     SDValue NegX =
6880         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6881     // Prevent this node from being deleted by the next call.
6882     if (NegX)
6883       Handles.emplace_back(NegX);
6884 
6885     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
6886     NegatibleCost CostY = NegatibleCost::Expensive;
6887     SDValue NegY =
6888         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6889 
6890     // We're done with the handles.
6891     Handles.clear();
6892 
6893     // Negate the X if its cost is less or equal than Y.
6894     if (NegX && (CostX <= CostY)) {
6895       Cost = std::min(CostX, CostZ);
6896       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
6897       if (NegY != N)
6898         RemoveDeadNode(NegY);
6899       return N;
6900     }
6901 
6902     // Negate the Y if it is not expensive.
6903     if (NegY) {
6904       Cost = std::min(CostY, CostZ);
6905       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
6906       if (NegX != N)
6907         RemoveDeadNode(NegX);
6908       return N;
6909     }
6910     break;
6911   }
6912 
6913   case ISD::FP_EXTEND:
6914   case ISD::FSIN:
6915     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6916                                             OptForSize, Cost, Depth))
6917       return DAG.getNode(Opcode, DL, VT, NegV);
6918     break;
6919   case ISD::FP_ROUND:
6920     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6921                                             OptForSize, Cost, Depth))
6922       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
6923     break;
6924   }
6925 
6926   return SDValue();
6927 }
6928 
6929 //===----------------------------------------------------------------------===//
6930 // Legalization Utilities
6931 //===----------------------------------------------------------------------===//
6932 
6933 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
6934                                     SDValue LHS, SDValue RHS,
6935                                     SmallVectorImpl<SDValue> &Result,
6936                                     EVT HiLoVT, SelectionDAG &DAG,
6937                                     MulExpansionKind Kind, SDValue LL,
6938                                     SDValue LH, SDValue RL, SDValue RH) const {
6939   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
6940          Opcode == ISD::SMUL_LOHI);
6941 
6942   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
6943                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
6944   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
6945                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
6946   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6947                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
6948   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6949                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
6950 
6951   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
6952     return false;
6953 
6954   unsigned OuterBitSize = VT.getScalarSizeInBits();
6955   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
6956 
6957   // LL, LH, RL, and RH must be either all NULL or all set to a value.
6958   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
6959          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
6960 
6961   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
6962   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
6963                           bool Signed) -> bool {
6964     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
6965       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
6966       Hi = SDValue(Lo.getNode(), 1);
6967       return true;
6968     }
6969     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
6970       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
6971       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
6972       return true;
6973     }
6974     return false;
6975   };
6976 
6977   SDValue Lo, Hi;
6978 
6979   if (!LL.getNode() && !RL.getNode() &&
6980       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6981     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
6982     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
6983   }
6984 
6985   if (!LL.getNode())
6986     return false;
6987 
6988   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
6989   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
6990       DAG.MaskedValueIsZero(RHS, HighMask)) {
6991     // The inputs are both zero-extended.
6992     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
6993       Result.push_back(Lo);
6994       Result.push_back(Hi);
6995       if (Opcode != ISD::MUL) {
6996         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6997         Result.push_back(Zero);
6998         Result.push_back(Zero);
6999       }
7000       return true;
7001     }
7002   }
7003 
7004   if (!VT.isVector() && Opcode == ISD::MUL &&
7005       DAG.ComputeNumSignBits(LHS) > InnerBitSize &&
7006       DAG.ComputeNumSignBits(RHS) > InnerBitSize) {
7007     // The input values are both sign-extended.
7008     // TODO non-MUL case?
7009     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
7010       Result.push_back(Lo);
7011       Result.push_back(Hi);
7012       return true;
7013     }
7014   }
7015 
7016   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
7017   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
7018   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
7019 
7020   if (!LH.getNode() && !RH.getNode() &&
7021       isOperationLegalOrCustom(ISD::SRL, VT) &&
7022       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
7023     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
7024     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
7025     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
7026     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
7027   }
7028 
7029   if (!LH.getNode())
7030     return false;
7031 
7032   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
7033     return false;
7034 
7035   Result.push_back(Lo);
7036 
7037   if (Opcode == ISD::MUL) {
7038     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
7039     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
7040     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
7041     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
7042     Result.push_back(Hi);
7043     return true;
7044   }
7045 
7046   // Compute the full width result.
7047   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
7048     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
7049     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
7050     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
7051     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
7052   };
7053 
7054   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
7055   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
7056     return false;
7057 
7058   // This is effectively the add part of a multiply-add of half-sized operands,
7059   // so it cannot overflow.
7060   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
7061 
7062   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
7063     return false;
7064 
7065   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
7066   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7067 
7068   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
7069                   isOperationLegalOrCustom(ISD::ADDE, VT));
7070   if (UseGlue)
7071     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
7072                        Merge(Lo, Hi));
7073   else
7074     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
7075                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
7076 
7077   SDValue Carry = Next.getValue(1);
7078   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
7079   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
7080 
7081   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
7082     return false;
7083 
7084   if (UseGlue)
7085     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
7086                      Carry);
7087   else
7088     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
7089                      Zero, Carry);
7090 
7091   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
7092 
7093   if (Opcode == ISD::SMUL_LOHI) {
7094     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
7095                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
7096     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
7097 
7098     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
7099                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
7100     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
7101   }
7102 
7103   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
7104   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
7105   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
7106   return true;
7107 }
7108 
7109 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
7110                                SelectionDAG &DAG, MulExpansionKind Kind,
7111                                SDValue LL, SDValue LH, SDValue RL,
7112                                SDValue RH) const {
7113   SmallVector<SDValue, 2> Result;
7114   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
7115                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
7116                            DAG, Kind, LL, LH, RL, RH);
7117   if (Ok) {
7118     assert(Result.size() == 2);
7119     Lo = Result[0];
7120     Hi = Result[1];
7121   }
7122   return Ok;
7123 }
7124 
7125 // Check that (every element of) Z is undef or not an exact multiple of BW.
7126 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
7127   return ISD::matchUnaryPredicate(
7128       Z,
7129       [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
7130       true);
7131 }
7132 
7133 SDValue TargetLowering::expandFunnelShift(SDNode *Node,
7134                                           SelectionDAG &DAG) const {
7135   EVT VT = Node->getValueType(0);
7136 
7137   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
7138                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
7139                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
7140                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
7141     return SDValue();
7142 
7143   SDValue X = Node->getOperand(0);
7144   SDValue Y = Node->getOperand(1);
7145   SDValue Z = Node->getOperand(2);
7146 
7147   unsigned BW = VT.getScalarSizeInBits();
7148   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
7149   SDLoc DL(SDValue(Node, 0));
7150 
7151   EVT ShVT = Z.getValueType();
7152 
7153   // If a funnel shift in the other direction is more supported, use it.
7154   unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
7155   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
7156       isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
7157     if (isNonZeroModBitWidthOrUndef(Z, BW)) {
7158       // fshl X, Y, Z -> fshr X, Y, -Z
7159       // fshr X, Y, Z -> fshl X, Y, -Z
7160       SDValue Zero = DAG.getConstant(0, DL, ShVT);
7161       Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
7162     } else {
7163       // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
7164       // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
7165       SDValue One = DAG.getConstant(1, DL, ShVT);
7166       if (IsFSHL) {
7167         Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
7168         X = DAG.getNode(ISD::SRL, DL, VT, X, One);
7169       } else {
7170         X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
7171         Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
7172       }
7173       Z = DAG.getNOT(DL, Z, ShVT);
7174     }
7175     return DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
7176   }
7177 
7178   SDValue ShX, ShY;
7179   SDValue ShAmt, InvShAmt;
7180   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
7181     // fshl: X << C | Y >> (BW - C)
7182     // fshr: X << (BW - C) | Y >> C
7183     // where C = Z % BW is not zero
7184     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
7185     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
7186     InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
7187     ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
7188     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
7189   } else {
7190     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
7191     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
7192     SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
7193     if (isPowerOf2_32(BW)) {
7194       // Z % BW -> Z & (BW - 1)
7195       ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
7196       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
7197       InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
7198     } else {
7199       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
7200       ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
7201       InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
7202     }
7203 
7204     SDValue One = DAG.getConstant(1, DL, ShVT);
7205     if (IsFSHL) {
7206       ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
7207       SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
7208       ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
7209     } else {
7210       SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
7211       ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
7212       ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
7213     }
7214   }
7215   return DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
7216 }
7217 
7218 // TODO: Merge with expandFunnelShift.
7219 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
7220                                   SelectionDAG &DAG) const {
7221   EVT VT = Node->getValueType(0);
7222   unsigned EltSizeInBits = VT.getScalarSizeInBits();
7223   bool IsLeft = Node->getOpcode() == ISD::ROTL;
7224   SDValue Op0 = Node->getOperand(0);
7225   SDValue Op1 = Node->getOperand(1);
7226   SDLoc DL(SDValue(Node, 0));
7227 
7228   EVT ShVT = Op1.getValueType();
7229   SDValue Zero = DAG.getConstant(0, DL, ShVT);
7230 
7231   // If a rotate in the other direction is more supported, use it.
7232   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
7233   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
7234       isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
7235     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
7236     return DAG.getNode(RevRot, DL, VT, Op0, Sub);
7237   }
7238 
7239   if (!AllowVectorOps && VT.isVector() &&
7240       (!isOperationLegalOrCustom(ISD::SHL, VT) ||
7241        !isOperationLegalOrCustom(ISD::SRL, VT) ||
7242        !isOperationLegalOrCustom(ISD::SUB, VT) ||
7243        !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
7244        !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
7245     return SDValue();
7246 
7247   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
7248   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
7249   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
7250   SDValue ShVal;
7251   SDValue HsVal;
7252   if (isPowerOf2_32(EltSizeInBits)) {
7253     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
7254     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
7255     SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
7256     SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
7257     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
7258     SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
7259     HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
7260   } else {
7261     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
7262     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
7263     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
7264     SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
7265     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
7266     SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
7267     SDValue One = DAG.getConstant(1, DL, ShVT);
7268     HsVal =
7269         DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
7270   }
7271   return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
7272 }
7273 
7274 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi,
7275                                       SelectionDAG &DAG) const {
7276   assert(Node->getNumOperands() == 3 && "Not a double-shift!");
7277   EVT VT = Node->getValueType(0);
7278   unsigned VTBits = VT.getScalarSizeInBits();
7279   assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected");
7280 
7281   bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS;
7282   bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS;
7283   SDValue ShOpLo = Node->getOperand(0);
7284   SDValue ShOpHi = Node->getOperand(1);
7285   SDValue ShAmt = Node->getOperand(2);
7286   EVT ShAmtVT = ShAmt.getValueType();
7287   EVT ShAmtCCVT =
7288       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT);
7289   SDLoc dl(Node);
7290 
7291   // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and
7292   // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized
7293   // away during isel.
7294   SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
7295                                   DAG.getConstant(VTBits - 1, dl, ShAmtVT));
7296   SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7297                                      DAG.getConstant(VTBits - 1, dl, ShAmtVT))
7298                        : DAG.getConstant(0, dl, VT);
7299 
7300   SDValue Tmp2, Tmp3;
7301   if (IsSHL) {
7302     Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt);
7303     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
7304   } else {
7305     Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt);
7306     Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
7307   }
7308 
7309   // If the shift amount is larger or equal than the width of a part we don't
7310   // use the result from the FSHL/FSHR. Insert a test and select the appropriate
7311   // values for large shift amounts.
7312   SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
7313                                 DAG.getConstant(VTBits, dl, ShAmtVT));
7314   SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode,
7315                               DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE);
7316 
7317   if (IsSHL) {
7318     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
7319     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
7320   } else {
7321     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
7322     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
7323   }
7324 }
7325 
7326 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
7327                                       SelectionDAG &DAG) const {
7328   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
7329   SDValue Src = Node->getOperand(OpNo);
7330   EVT SrcVT = Src.getValueType();
7331   EVT DstVT = Node->getValueType(0);
7332   SDLoc dl(SDValue(Node, 0));
7333 
7334   // FIXME: Only f32 to i64 conversions are supported.
7335   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
7336     return false;
7337 
7338   if (Node->isStrictFPOpcode())
7339     // When a NaN is converted to an integer a trap is allowed. We can't
7340     // use this expansion here because it would eliminate that trap. Other
7341     // traps are also allowed and cannot be eliminated. See
7342     // IEEE 754-2008 sec 5.8.
7343     return false;
7344 
7345   // Expand f32 -> i64 conversion
7346   // This algorithm comes from compiler-rt's implementation of fixsfdi:
7347   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
7348   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
7349   EVT IntVT = SrcVT.changeTypeToInteger();
7350   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
7351 
7352   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
7353   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
7354   SDValue Bias = DAG.getConstant(127, dl, IntVT);
7355   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
7356   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
7357   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
7358 
7359   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
7360 
7361   SDValue ExponentBits = DAG.getNode(
7362       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
7363       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
7364   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
7365 
7366   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
7367                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
7368                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
7369   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
7370 
7371   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
7372                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
7373                           DAG.getConstant(0x00800000, dl, IntVT));
7374 
7375   R = DAG.getZExtOrTrunc(R, dl, DstVT);
7376 
7377   R = DAG.getSelectCC(
7378       dl, Exponent, ExponentLoBit,
7379       DAG.getNode(ISD::SHL, dl, DstVT, R,
7380                   DAG.getZExtOrTrunc(
7381                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
7382                       dl, IntShVT)),
7383       DAG.getNode(ISD::SRL, dl, DstVT, R,
7384                   DAG.getZExtOrTrunc(
7385                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
7386                       dl, IntShVT)),
7387       ISD::SETGT);
7388 
7389   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
7390                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
7391 
7392   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
7393                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
7394   return true;
7395 }
7396 
7397 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
7398                                       SDValue &Chain,
7399                                       SelectionDAG &DAG) const {
7400   SDLoc dl(SDValue(Node, 0));
7401   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
7402   SDValue Src = Node->getOperand(OpNo);
7403 
7404   EVT SrcVT = Src.getValueType();
7405   EVT DstVT = Node->getValueType(0);
7406   EVT SetCCVT =
7407       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
7408   EVT DstSetCCVT =
7409       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
7410 
7411   // Only expand vector types if we have the appropriate vector bit operations.
7412   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
7413                                                    ISD::FP_TO_SINT;
7414   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
7415                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
7416     return false;
7417 
7418   // If the maximum float value is smaller then the signed integer range,
7419   // the destination signmask can't be represented by the float, so we can
7420   // just use FP_TO_SINT directly.
7421   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
7422   APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits()));
7423   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
7424   if (APFloat::opOverflow &
7425       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
7426     if (Node->isStrictFPOpcode()) {
7427       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
7428                            { Node->getOperand(0), Src });
7429       Chain = Result.getValue(1);
7430     } else
7431       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
7432     return true;
7433   }
7434 
7435   // Don't expand it if there isn't cheap fsub instruction.
7436   if (!isOperationLegalOrCustom(
7437           Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
7438     return false;
7439 
7440   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
7441   SDValue Sel;
7442 
7443   if (Node->isStrictFPOpcode()) {
7444     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
7445                        Node->getOperand(0), /*IsSignaling*/ true);
7446     Chain = Sel.getValue(1);
7447   } else {
7448     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
7449   }
7450 
7451   bool Strict = Node->isStrictFPOpcode() ||
7452                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
7453 
7454   if (Strict) {
7455     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
7456     // signmask then offset (the result of which should be fully representable).
7457     // Sel = Src < 0x8000000000000000
7458     // FltOfs = select Sel, 0, 0x8000000000000000
7459     // IntOfs = select Sel, 0, 0x8000000000000000
7460     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
7461 
7462     // TODO: Should any fast-math-flags be set for the FSUB?
7463     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
7464                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
7465     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
7466     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
7467                                    DAG.getConstant(0, dl, DstVT),
7468                                    DAG.getConstant(SignMask, dl, DstVT));
7469     SDValue SInt;
7470     if (Node->isStrictFPOpcode()) {
7471       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
7472                                 { Chain, Src, FltOfs });
7473       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
7474                          { Val.getValue(1), Val });
7475       Chain = SInt.getValue(1);
7476     } else {
7477       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
7478       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
7479     }
7480     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
7481   } else {
7482     // Expand based on maximum range of FP_TO_SINT:
7483     // True = fp_to_sint(Src)
7484     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
7485     // Result = select (Src < 0x8000000000000000), True, False
7486 
7487     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
7488     // TODO: Should any fast-math-flags be set for the FSUB?
7489     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
7490                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
7491     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
7492                         DAG.getConstant(SignMask, dl, DstVT));
7493     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
7494     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
7495   }
7496   return true;
7497 }
7498 
7499 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
7500                                       SDValue &Chain,
7501                                       SelectionDAG &DAG) const {
7502   // This transform is not correct for converting 0 when rounding mode is set
7503   // to round toward negative infinity which will produce -0.0. So disable under
7504   // strictfp.
7505   if (Node->isStrictFPOpcode())
7506     return false;
7507 
7508   SDValue Src = Node->getOperand(0);
7509   EVT SrcVT = Src.getValueType();
7510   EVT DstVT = Node->getValueType(0);
7511 
7512   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
7513     return false;
7514 
7515   // Only expand vector types if we have the appropriate vector bit operations.
7516   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
7517                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
7518                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
7519                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
7520                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
7521     return false;
7522 
7523   SDLoc dl(SDValue(Node, 0));
7524   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
7525 
7526   // Implementation of unsigned i64 to f64 following the algorithm in
7527   // __floatundidf in compiler_rt.  This implementation performs rounding
7528   // correctly in all rounding modes with the exception of converting 0
7529   // when rounding toward negative infinity. In that case the fsub will produce
7530   // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect.
7531   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
7532   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
7533       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
7534   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
7535   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
7536   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
7537 
7538   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
7539   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
7540   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
7541   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
7542   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
7543   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
7544   SDValue HiSub =
7545       DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
7546   Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
7547   return true;
7548 }
7549 
7550 SDValue
7551 TargetLowering::createSelectForFMINNUM_FMAXNUM(SDNode *Node,
7552                                                SelectionDAG &DAG) const {
7553   unsigned Opcode = Node->getOpcode();
7554   assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM ||
7555           Opcode == ISD::STRICT_FMINNUM || Opcode == ISD::STRICT_FMAXNUM) &&
7556          "Wrong opcode");
7557 
7558   if (Node->getFlags().hasNoNaNs()) {
7559     ISD::CondCode Pred = Opcode == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
7560     SDValue Op1 = Node->getOperand(0);
7561     SDValue Op2 = Node->getOperand(1);
7562     SDValue SelCC = DAG.getSelectCC(SDLoc(Node), Op1, Op2, Op1, Op2, Pred);
7563     // Copy FMF flags, but always set the no-signed-zeros flag
7564     // as this is implied by the FMINNUM/FMAXNUM semantics.
7565     SDNodeFlags Flags = Node->getFlags();
7566     Flags.setNoSignedZeros(true);
7567     SelCC->setFlags(Flags);
7568     return SelCC;
7569   }
7570 
7571   return SDValue();
7572 }
7573 
7574 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
7575                                               SelectionDAG &DAG) const {
7576   SDLoc dl(Node);
7577   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
7578     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
7579   EVT VT = Node->getValueType(0);
7580 
7581   if (VT.isScalableVector())
7582     report_fatal_error(
7583         "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
7584 
7585   if (isOperationLegalOrCustom(NewOp, VT)) {
7586     SDValue Quiet0 = Node->getOperand(0);
7587     SDValue Quiet1 = Node->getOperand(1);
7588 
7589     if (!Node->getFlags().hasNoNaNs()) {
7590       // Insert canonicalizes if it's possible we need to quiet to get correct
7591       // sNaN behavior.
7592       if (!DAG.isKnownNeverSNaN(Quiet0)) {
7593         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
7594                              Node->getFlags());
7595       }
7596       if (!DAG.isKnownNeverSNaN(Quiet1)) {
7597         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
7598                              Node->getFlags());
7599       }
7600     }
7601 
7602     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
7603   }
7604 
7605   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
7606   // instead if there are no NaNs.
7607   if (Node->getFlags().hasNoNaNs()) {
7608     unsigned IEEE2018Op =
7609         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
7610     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
7611       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
7612                          Node->getOperand(1), Node->getFlags());
7613     }
7614   }
7615 
7616   if (SDValue SelCC = createSelectForFMINNUM_FMAXNUM(Node, DAG))
7617     return SelCC;
7618 
7619   return SDValue();
7620 }
7621 
7622 SDValue TargetLowering::expandIS_FPCLASS(EVT ResultVT, SDValue Op,
7623                                          unsigned Test, SDNodeFlags Flags,
7624                                          const SDLoc &DL,
7625                                          SelectionDAG &DAG) const {
7626   EVT OperandVT = Op.getValueType();
7627   assert(OperandVT.isFloatingPoint());
7628 
7629   // Degenerated cases.
7630   if (Test == 0)
7631     return DAG.getBoolConstant(false, DL, ResultVT, OperandVT);
7632   if ((Test & fcAllFlags) == fcAllFlags)
7633     return DAG.getBoolConstant(true, DL, ResultVT, OperandVT);
7634 
7635   // PPC double double is a pair of doubles, of which the higher part determines
7636   // the value class.
7637   if (OperandVT == MVT::ppcf128) {
7638     Op = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::f64, Op,
7639                      DAG.getConstant(1, DL, MVT::i32));
7640     OperandVT = MVT::f64;
7641   }
7642 
7643   // Some checks may be represented as inversion of simpler check, for example
7644   // "inf|normal|subnormal|zero" => !"nan".
7645   bool IsInverted = false;
7646   if (unsigned InvertedCheck = getInvertedFPClassTest(Test)) {
7647     IsInverted = true;
7648     Test = InvertedCheck;
7649   }
7650 
7651   // Floating-point type properties.
7652   EVT ScalarFloatVT = OperandVT.getScalarType();
7653   const Type *FloatTy = ScalarFloatVT.getTypeForEVT(*DAG.getContext());
7654   const llvm::fltSemantics &Semantics = FloatTy->getFltSemantics();
7655   bool IsF80 = (ScalarFloatVT == MVT::f80);
7656 
7657   // Some checks can be implemented using float comparisons, if floating point
7658   // exceptions are ignored.
7659   if (Flags.hasNoFPExcept() &&
7660       isOperationLegalOrCustom(ISD::SETCC, OperandVT.getScalarType())) {
7661     if (Test == fcZero)
7662       return DAG.getSetCC(DL, ResultVT, Op,
7663                           DAG.getConstantFP(0.0, DL, OperandVT),
7664                           IsInverted ? ISD::SETUNE : ISD::SETOEQ);
7665     if (Test == fcNan)
7666       return DAG.getSetCC(DL, ResultVT, Op, Op,
7667                           IsInverted ? ISD::SETO : ISD::SETUO);
7668   }
7669 
7670   // In the general case use integer operations.
7671   unsigned BitSize = OperandVT.getScalarSizeInBits();
7672   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), BitSize);
7673   if (OperandVT.isVector())
7674     IntVT = EVT::getVectorVT(*DAG.getContext(), IntVT,
7675                              OperandVT.getVectorElementCount());
7676   SDValue OpAsInt = DAG.getBitcast(IntVT, Op);
7677 
7678   // Various masks.
7679   APInt SignBit = APInt::getSignMask(BitSize);
7680   APInt ValueMask = APInt::getSignedMaxValue(BitSize);     // All bits but sign.
7681   APInt Inf = APFloat::getInf(Semantics).bitcastToAPInt(); // Exp and int bit.
7682   const unsigned ExplicitIntBitInF80 = 63;
7683   APInt ExpMask = Inf;
7684   if (IsF80)
7685     ExpMask.clearBit(ExplicitIntBitInF80);
7686   APInt AllOneMantissa = APFloat::getLargest(Semantics).bitcastToAPInt() & ~Inf;
7687   APInt QNaNBitMask =
7688       APInt::getOneBitSet(BitSize, AllOneMantissa.getActiveBits() - 1);
7689   APInt InvertionMask = APInt::getAllOnesValue(ResultVT.getScalarSizeInBits());
7690 
7691   SDValue ValueMaskV = DAG.getConstant(ValueMask, DL, IntVT);
7692   SDValue SignBitV = DAG.getConstant(SignBit, DL, IntVT);
7693   SDValue ExpMaskV = DAG.getConstant(ExpMask, DL, IntVT);
7694   SDValue ZeroV = DAG.getConstant(0, DL, IntVT);
7695   SDValue InfV = DAG.getConstant(Inf, DL, IntVT);
7696   SDValue ResultInvertionMask = DAG.getConstant(InvertionMask, DL, ResultVT);
7697 
7698   SDValue Res;
7699   const auto appendResult = [&](SDValue PartialRes) {
7700     if (PartialRes) {
7701       if (Res)
7702         Res = DAG.getNode(ISD::OR, DL, ResultVT, Res, PartialRes);
7703       else
7704         Res = PartialRes;
7705     }
7706   };
7707 
7708   SDValue IntBitIsSetV; // Explicit integer bit in f80 mantissa is set.
7709   const auto getIntBitIsSet = [&]() -> SDValue {
7710     if (!IntBitIsSetV) {
7711       APInt IntBitMask(BitSize, 0);
7712       IntBitMask.setBit(ExplicitIntBitInF80);
7713       SDValue IntBitMaskV = DAG.getConstant(IntBitMask, DL, IntVT);
7714       SDValue IntBitV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, IntBitMaskV);
7715       IntBitIsSetV = DAG.getSetCC(DL, ResultVT, IntBitV, ZeroV, ISD::SETNE);
7716     }
7717     return IntBitIsSetV;
7718   };
7719 
7720   // Split the value into sign bit and absolute value.
7721   SDValue AbsV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ValueMaskV);
7722   SDValue SignV = DAG.getSetCC(DL, ResultVT, OpAsInt,
7723                                DAG.getConstant(0.0, DL, IntVT), ISD::SETLT);
7724 
7725   // Tests that involve more than one class should be processed first.
7726   SDValue PartialRes;
7727 
7728   if (IsF80)
7729     ; // Detect finite numbers of f80 by checking individual classes because
7730       // they have different settings of the explicit integer bit.
7731   else if ((Test & fcFinite) == fcFinite) {
7732     // finite(V) ==> abs(V) < exp_mask
7733     PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
7734     Test &= ~fcFinite;
7735   } else if ((Test & fcFinite) == fcPosFinite) {
7736     // finite(V) && V > 0 ==> V < exp_mask
7737     PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ExpMaskV, ISD::SETULT);
7738     Test &= ~fcPosFinite;
7739   } else if ((Test & fcFinite) == fcNegFinite) {
7740     // finite(V) && V < 0 ==> abs(V) < exp_mask && signbit == 1
7741     PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
7742     PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
7743     Test &= ~fcNegFinite;
7744   }
7745   appendResult(PartialRes);
7746 
7747   // Check for individual classes.
7748 
7749   if (unsigned PartialCheck = Test & fcZero) {
7750     if (PartialCheck == fcPosZero)
7751       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ZeroV, ISD::SETEQ);
7752     else if (PartialCheck == fcZero)
7753       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ZeroV, ISD::SETEQ);
7754     else // ISD::fcNegZero
7755       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, SignBitV, ISD::SETEQ);
7756     appendResult(PartialRes);
7757   }
7758 
7759   if (unsigned PartialCheck = Test & fcInf) {
7760     if (PartialCheck == fcPosInf)
7761       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, InfV, ISD::SETEQ);
7762     else if (PartialCheck == fcInf)
7763       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETEQ);
7764     else { // ISD::fcNegInf
7765       APInt NegInf = APFloat::getInf(Semantics, true).bitcastToAPInt();
7766       SDValue NegInfV = DAG.getConstant(NegInf, DL, IntVT);
7767       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, NegInfV, ISD::SETEQ);
7768     }
7769     appendResult(PartialRes);
7770   }
7771 
7772   if (unsigned PartialCheck = Test & fcNan) {
7773     APInt InfWithQnanBit = Inf | QNaNBitMask;
7774     SDValue InfWithQnanBitV = DAG.getConstant(InfWithQnanBit, DL, IntVT);
7775     if (PartialCheck == fcNan) {
7776       // isnan(V) ==> abs(V) > int(inf)
7777       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
7778       if (IsF80) {
7779         // Recognize unsupported values as NaNs for compatibility with glibc.
7780         // In them (exp(V)==0) == int_bit.
7781         SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, AbsV, ExpMaskV);
7782         SDValue ExpIsZero =
7783             DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ);
7784         SDValue IsPseudo =
7785             DAG.getSetCC(DL, ResultVT, getIntBitIsSet(), ExpIsZero, ISD::SETEQ);
7786         PartialRes = DAG.getNode(ISD::OR, DL, ResultVT, PartialRes, IsPseudo);
7787       }
7788     } else if (PartialCheck == fcQNan) {
7789       // isquiet(V) ==> abs(V) >= (unsigned(Inf) | quiet_bit)
7790       PartialRes =
7791           DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETGE);
7792     } else { // ISD::fcSNan
7793       // issignaling(V) ==> abs(V) > unsigned(Inf) &&
7794       //                    abs(V) < (unsigned(Inf) | quiet_bit)
7795       SDValue IsNan = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
7796       SDValue IsNotQnan =
7797           DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETLT);
7798       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, IsNan, IsNotQnan);
7799     }
7800     appendResult(PartialRes);
7801   }
7802 
7803   if (unsigned PartialCheck = Test & fcSubnormal) {
7804     // issubnormal(V) ==> unsigned(abs(V) - 1) < (all mantissa bits set)
7805     // issubnormal(V) && V>0 ==> unsigned(V - 1) < (all mantissa bits set)
7806     SDValue V = (PartialCheck == fcPosSubnormal) ? OpAsInt : AbsV;
7807     SDValue MantissaV = DAG.getConstant(AllOneMantissa, DL, IntVT);
7808     SDValue VMinusOneV =
7809         DAG.getNode(ISD::SUB, DL, IntVT, V, DAG.getConstant(1, DL, IntVT));
7810     PartialRes = DAG.getSetCC(DL, ResultVT, VMinusOneV, MantissaV, ISD::SETULT);
7811     if (PartialCheck == fcNegSubnormal)
7812       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
7813     appendResult(PartialRes);
7814   }
7815 
7816   if (unsigned PartialCheck = Test & fcNormal) {
7817     // isnormal(V) ==> (0 < exp < max_exp) ==> (unsigned(exp-1) < (max_exp-1))
7818     APInt ExpLSB = ExpMask & ~(ExpMask.shl(1));
7819     SDValue ExpLSBV = DAG.getConstant(ExpLSB, DL, IntVT);
7820     SDValue ExpMinus1 = DAG.getNode(ISD::SUB, DL, IntVT, AbsV, ExpLSBV);
7821     APInt ExpLimit = ExpMask - ExpLSB;
7822     SDValue ExpLimitV = DAG.getConstant(ExpLimit, DL, IntVT);
7823     PartialRes = DAG.getSetCC(DL, ResultVT, ExpMinus1, ExpLimitV, ISD::SETULT);
7824     if (PartialCheck == fcNegNormal)
7825       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
7826     else if (PartialCheck == fcPosNormal) {
7827       SDValue PosSignV =
7828           DAG.getNode(ISD::XOR, DL, ResultVT, SignV, ResultInvertionMask);
7829       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, PosSignV);
7830     }
7831     if (IsF80)
7832       PartialRes =
7833           DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, getIntBitIsSet());
7834     appendResult(PartialRes);
7835   }
7836 
7837   if (!Res)
7838     return DAG.getConstant(IsInverted, DL, ResultVT);
7839   if (IsInverted)
7840     Res = DAG.getNode(ISD::XOR, DL, ResultVT, Res, ResultInvertionMask);
7841   return Res;
7842 }
7843 
7844 // Only expand vector types if we have the appropriate vector bit operations.
7845 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) {
7846   assert(VT.isVector() && "Expected vector type");
7847   unsigned Len = VT.getScalarSizeInBits();
7848   return TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
7849          TLI.isOperationLegalOrCustom(ISD::SUB, VT) &&
7850          TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
7851          (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) &&
7852          TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT);
7853 }
7854 
7855 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const {
7856   SDLoc dl(Node);
7857   EVT VT = Node->getValueType(0);
7858   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7859   SDValue Op = Node->getOperand(0);
7860   unsigned Len = VT.getScalarSizeInBits();
7861   assert(VT.isInteger() && "CTPOP not implemented for this type.");
7862 
7863   // TODO: Add support for irregular type lengths.
7864   if (!(Len <= 128 && Len % 8 == 0))
7865     return SDValue();
7866 
7867   // Only expand vector types if we have the appropriate vector bit operations.
7868   if (VT.isVector() && !canExpandVectorCTPOP(*this, VT))
7869     return SDValue();
7870 
7871   // This is the "best" algorithm from
7872   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
7873   SDValue Mask55 =
7874       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
7875   SDValue Mask33 =
7876       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
7877   SDValue Mask0F =
7878       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
7879 
7880   // v = v - ((v >> 1) & 0x55555555...)
7881   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
7882                    DAG.getNode(ISD::AND, dl, VT,
7883                                DAG.getNode(ISD::SRL, dl, VT, Op,
7884                                            DAG.getConstant(1, dl, ShVT)),
7885                                Mask55));
7886   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
7887   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
7888                    DAG.getNode(ISD::AND, dl, VT,
7889                                DAG.getNode(ISD::SRL, dl, VT, Op,
7890                                            DAG.getConstant(2, dl, ShVT)),
7891                                Mask33));
7892   // v = (v + (v >> 4)) & 0x0F0F0F0F...
7893   Op = DAG.getNode(ISD::AND, dl, VT,
7894                    DAG.getNode(ISD::ADD, dl, VT, Op,
7895                                DAG.getNode(ISD::SRL, dl, VT, Op,
7896                                            DAG.getConstant(4, dl, ShVT))),
7897                    Mask0F);
7898 
7899   if (Len <= 8)
7900     return Op;
7901 
7902   // Avoid the multiply if we only have 2 bytes to add.
7903   // TODO: Only doing this for scalars because vectors weren't as obviously
7904   // improved.
7905   if (Len == 16 && !VT.isVector()) {
7906     // v = (v + (v >> 8)) & 0x00FF;
7907     return DAG.getNode(ISD::AND, dl, VT,
7908                      DAG.getNode(ISD::ADD, dl, VT, Op,
7909                                  DAG.getNode(ISD::SRL, dl, VT, Op,
7910                                              DAG.getConstant(8, dl, ShVT))),
7911                      DAG.getConstant(0xFF, dl, VT));
7912   }
7913 
7914   // v = (v * 0x01010101...) >> (Len - 8)
7915   SDValue Mask01 =
7916       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
7917   return DAG.getNode(ISD::SRL, dl, VT,
7918                      DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
7919                      DAG.getConstant(Len - 8, dl, ShVT));
7920 }
7921 
7922 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const {
7923   SDLoc dl(Node);
7924   EVT VT = Node->getValueType(0);
7925   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7926   SDValue Op = Node->getOperand(0);
7927   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7928 
7929   // If the non-ZERO_UNDEF version is supported we can use that instead.
7930   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
7931       isOperationLegalOrCustom(ISD::CTLZ, VT))
7932     return DAG.getNode(ISD::CTLZ, dl, VT, Op);
7933 
7934   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7935   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
7936     EVT SetCCVT =
7937         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7938     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
7939     SDValue Zero = DAG.getConstant(0, dl, VT);
7940     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7941     return DAG.getSelect(dl, VT, SrcIsZero,
7942                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
7943   }
7944 
7945   // Only expand vector types if we have the appropriate vector bit operations.
7946   // This includes the operations needed to expand CTPOP if it isn't supported.
7947   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7948                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7949                          !canExpandVectorCTPOP(*this, VT)) ||
7950                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
7951                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
7952     return SDValue();
7953 
7954   // for now, we do this:
7955   // x = x | (x >> 1);
7956   // x = x | (x >> 2);
7957   // ...
7958   // x = x | (x >>16);
7959   // x = x | (x >>32); // for 64-bit input
7960   // return popcount(~x);
7961   //
7962   // Ref: "Hacker's Delight" by Henry Warren
7963   for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) {
7964     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
7965     Op = DAG.getNode(ISD::OR, dl, VT, Op,
7966                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
7967   }
7968   Op = DAG.getNOT(dl, Op, VT);
7969   return DAG.getNode(ISD::CTPOP, dl, VT, Op);
7970 }
7971 
7972 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const {
7973   SDLoc dl(Node);
7974   EVT VT = Node->getValueType(0);
7975   SDValue Op = Node->getOperand(0);
7976   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7977 
7978   // If the non-ZERO_UNDEF version is supported we can use that instead.
7979   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
7980       isOperationLegalOrCustom(ISD::CTTZ, VT))
7981     return DAG.getNode(ISD::CTTZ, dl, VT, Op);
7982 
7983   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7984   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
7985     EVT SetCCVT =
7986         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7987     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
7988     SDValue Zero = DAG.getConstant(0, dl, VT);
7989     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7990     return DAG.getSelect(dl, VT, SrcIsZero,
7991                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
7992   }
7993 
7994   // Only expand vector types if we have the appropriate vector bit operations.
7995   // This includes the operations needed to expand CTPOP if it isn't supported.
7996   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7997                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7998                          !isOperationLegalOrCustom(ISD::CTLZ, VT) &&
7999                          !canExpandVectorCTPOP(*this, VT)) ||
8000                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
8001                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
8002                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
8003     return SDValue();
8004 
8005   // for now, we use: { return popcount(~x & (x - 1)); }
8006   // unless the target has ctlz but not ctpop, in which case we use:
8007   // { return 32 - nlz(~x & (x-1)); }
8008   // Ref: "Hacker's Delight" by Henry Warren
8009   SDValue Tmp = DAG.getNode(
8010       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
8011       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
8012 
8013   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
8014   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
8015     return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
8016                        DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
8017   }
8018 
8019   return DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
8020 }
8021 
8022 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG,
8023                                   bool IsNegative) const {
8024   SDLoc dl(N);
8025   EVT VT = N->getValueType(0);
8026   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
8027   SDValue Op = N->getOperand(0);
8028 
8029   // abs(x) -> smax(x,sub(0,x))
8030   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
8031       isOperationLegal(ISD::SMAX, VT)) {
8032     SDValue Zero = DAG.getConstant(0, dl, VT);
8033     return DAG.getNode(ISD::SMAX, dl, VT, Op,
8034                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
8035   }
8036 
8037   // abs(x) -> umin(x,sub(0,x))
8038   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
8039       isOperationLegal(ISD::UMIN, VT)) {
8040     SDValue Zero = DAG.getConstant(0, dl, VT);
8041     Op = DAG.getFreeze(Op);
8042     return DAG.getNode(ISD::UMIN, dl, VT, Op,
8043                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
8044   }
8045 
8046   // 0 - abs(x) -> smin(x, sub(0,x))
8047   if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
8048       isOperationLegal(ISD::SMIN, VT)) {
8049     Op = DAG.getFreeze(Op);
8050     SDValue Zero = DAG.getConstant(0, dl, VT);
8051     return DAG.getNode(ISD::SMIN, dl, VT, Op,
8052                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
8053   }
8054 
8055   // Only expand vector types if we have the appropriate vector operations.
8056   if (VT.isVector() &&
8057       (!isOperationLegalOrCustom(ISD::SRA, VT) ||
8058        (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
8059        (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
8060        !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
8061     return SDValue();
8062 
8063   Op = DAG.getFreeze(Op);
8064   SDValue Shift =
8065       DAG.getNode(ISD::SRA, dl, VT, Op,
8066                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
8067   SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
8068 
8069   // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y)
8070   if (!IsNegative)
8071     return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift);
8072 
8073   // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
8074   return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
8075 }
8076 
8077 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const {
8078   SDLoc dl(N);
8079   EVT VT = N->getValueType(0);
8080   SDValue Op = N->getOperand(0);
8081 
8082   if (!VT.isSimple())
8083     return SDValue();
8084 
8085   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
8086   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
8087   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
8088   default:
8089     return SDValue();
8090   case MVT::i16:
8091     // Use a rotate by 8. This can be further expanded if necessary.
8092     return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
8093   case MVT::i32:
8094     Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
8095     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
8096     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
8097     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
8098     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
8099                        DAG.getConstant(0xFF0000, dl, VT));
8100     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
8101     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
8102     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
8103     return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
8104   case MVT::i64:
8105     Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
8106     Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
8107     Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
8108     Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
8109     Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
8110     Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
8111     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
8112     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
8113     Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
8114                        DAG.getConstant(255ULL<<48, dl, VT));
8115     Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
8116                        DAG.getConstant(255ULL<<40, dl, VT));
8117     Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
8118                        DAG.getConstant(255ULL<<32, dl, VT));
8119     Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
8120                        DAG.getConstant(255ULL<<24, dl, VT));
8121     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
8122                        DAG.getConstant(255ULL<<16, dl, VT));
8123     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
8124                        DAG.getConstant(255ULL<<8 , dl, VT));
8125     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
8126     Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
8127     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
8128     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
8129     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
8130     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
8131     return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
8132   }
8133 }
8134 
8135 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
8136   SDLoc dl(N);
8137   EVT VT = N->getValueType(0);
8138   SDValue Op = N->getOperand(0);
8139   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
8140   unsigned Sz = VT.getScalarSizeInBits();
8141 
8142   SDValue Tmp, Tmp2, Tmp3;
8143 
8144   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
8145   // and finally the i1 pairs.
8146   // TODO: We can easily support i4/i2 legal types if any target ever does.
8147   if (Sz >= 8 && isPowerOf2_32(Sz)) {
8148     // Create the masks - repeating the pattern every byte.
8149     APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
8150     APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
8151     APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
8152 
8153     // BSWAP if the type is wider than a single byte.
8154     Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
8155 
8156     // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
8157     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT));
8158     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT));
8159     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT));
8160     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
8161     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8162 
8163     // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
8164     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT));
8165     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT));
8166     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT));
8167     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
8168     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8169 
8170     // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
8171     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT));
8172     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT));
8173     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT));
8174     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
8175     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8176     return Tmp;
8177   }
8178 
8179   Tmp = DAG.getConstant(0, dl, VT);
8180   for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
8181     if (I < J)
8182       Tmp2 =
8183           DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
8184     else
8185       Tmp2 =
8186           DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
8187 
8188     APInt Shift(Sz, 1);
8189     Shift <<= J;
8190     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
8191     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
8192   }
8193 
8194   return Tmp;
8195 }
8196 
8197 std::pair<SDValue, SDValue>
8198 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
8199                                     SelectionDAG &DAG) const {
8200   SDLoc SL(LD);
8201   SDValue Chain = LD->getChain();
8202   SDValue BasePTR = LD->getBasePtr();
8203   EVT SrcVT = LD->getMemoryVT();
8204   EVT DstVT = LD->getValueType(0);
8205   ISD::LoadExtType ExtType = LD->getExtensionType();
8206 
8207   if (SrcVT.isScalableVector())
8208     report_fatal_error("Cannot scalarize scalable vector loads");
8209 
8210   unsigned NumElem = SrcVT.getVectorNumElements();
8211 
8212   EVT SrcEltVT = SrcVT.getScalarType();
8213   EVT DstEltVT = DstVT.getScalarType();
8214 
8215   // A vector must always be stored in memory as-is, i.e. without any padding
8216   // between the elements, since various code depend on it, e.g. in the
8217   // handling of a bitcast of a vector type to int, which may be done with a
8218   // vector store followed by an integer load. A vector that does not have
8219   // elements that are byte-sized must therefore be stored as an integer
8220   // built out of the extracted vector elements.
8221   if (!SrcEltVT.isByteSized()) {
8222     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
8223     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
8224 
8225     unsigned NumSrcBits = SrcVT.getSizeInBits();
8226     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
8227 
8228     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
8229     SDValue SrcEltBitMask = DAG.getConstant(
8230         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
8231 
8232     // Load the whole vector and avoid masking off the top bits as it makes
8233     // the codegen worse.
8234     SDValue Load =
8235         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
8236                        LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
8237                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
8238 
8239     SmallVector<SDValue, 8> Vals;
8240     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8241       unsigned ShiftIntoIdx =
8242           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
8243       SDValue ShiftAmount =
8244           DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
8245                                      LoadVT, SL, /*LegalTypes=*/false);
8246       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
8247       SDValue Elt =
8248           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
8249       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
8250 
8251       if (ExtType != ISD::NON_EXTLOAD) {
8252         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
8253         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
8254       }
8255 
8256       Vals.push_back(Scalar);
8257     }
8258 
8259     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
8260     return std::make_pair(Value, Load.getValue(1));
8261   }
8262 
8263   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
8264   assert(SrcEltVT.isByteSized());
8265 
8266   SmallVector<SDValue, 8> Vals;
8267   SmallVector<SDValue, 8> LoadChains;
8268 
8269   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8270     SDValue ScalarLoad =
8271         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
8272                        LD->getPointerInfo().getWithOffset(Idx * Stride),
8273                        SrcEltVT, LD->getOriginalAlign(),
8274                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
8275 
8276     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride));
8277 
8278     Vals.push_back(ScalarLoad.getValue(0));
8279     LoadChains.push_back(ScalarLoad.getValue(1));
8280   }
8281 
8282   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
8283   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
8284 
8285   return std::make_pair(Value, NewChain);
8286 }
8287 
8288 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
8289                                              SelectionDAG &DAG) const {
8290   SDLoc SL(ST);
8291 
8292   SDValue Chain = ST->getChain();
8293   SDValue BasePtr = ST->getBasePtr();
8294   SDValue Value = ST->getValue();
8295   EVT StVT = ST->getMemoryVT();
8296 
8297   if (StVT.isScalableVector())
8298     report_fatal_error("Cannot scalarize scalable vector stores");
8299 
8300   // The type of the data we want to save
8301   EVT RegVT = Value.getValueType();
8302   EVT RegSclVT = RegVT.getScalarType();
8303 
8304   // The type of data as saved in memory.
8305   EVT MemSclVT = StVT.getScalarType();
8306 
8307   unsigned NumElem = StVT.getVectorNumElements();
8308 
8309   // A vector must always be stored in memory as-is, i.e. without any padding
8310   // between the elements, since various code depend on it, e.g. in the
8311   // handling of a bitcast of a vector type to int, which may be done with a
8312   // vector store followed by an integer load. A vector that does not have
8313   // elements that are byte-sized must therefore be stored as an integer
8314   // built out of the extracted vector elements.
8315   if (!MemSclVT.isByteSized()) {
8316     unsigned NumBits = StVT.getSizeInBits();
8317     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
8318 
8319     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
8320 
8321     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8322       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
8323                                 DAG.getVectorIdxConstant(Idx, SL));
8324       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
8325       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
8326       unsigned ShiftIntoIdx =
8327           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
8328       SDValue ShiftAmount =
8329           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
8330       SDValue ShiftedElt =
8331           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
8332       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
8333     }
8334 
8335     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
8336                         ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
8337                         ST->getAAInfo());
8338   }
8339 
8340   // Store Stride in bytes
8341   unsigned Stride = MemSclVT.getSizeInBits() / 8;
8342   assert(Stride && "Zero stride!");
8343   // Extract each of the elements from the original vector and save them into
8344   // memory individually.
8345   SmallVector<SDValue, 8> Stores;
8346   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8347     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
8348                               DAG.getVectorIdxConstant(Idx, SL));
8349 
8350     SDValue Ptr =
8351         DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride));
8352 
8353     // This scalar TruncStore may be illegal, but we legalize it later.
8354     SDValue Store = DAG.getTruncStore(
8355         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
8356         MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
8357         ST->getAAInfo());
8358 
8359     Stores.push_back(Store);
8360   }
8361 
8362   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
8363 }
8364 
8365 std::pair<SDValue, SDValue>
8366 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
8367   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
8368          "unaligned indexed loads not implemented!");
8369   SDValue Chain = LD->getChain();
8370   SDValue Ptr = LD->getBasePtr();
8371   EVT VT = LD->getValueType(0);
8372   EVT LoadedVT = LD->getMemoryVT();
8373   SDLoc dl(LD);
8374   auto &MF = DAG.getMachineFunction();
8375 
8376   if (VT.isFloatingPoint() || VT.isVector()) {
8377     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
8378     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
8379       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
8380           LoadedVT.isVector()) {
8381         // Scalarize the load and let the individual components be handled.
8382         return scalarizeVectorLoad(LD, DAG);
8383       }
8384 
8385       // Expand to a (misaligned) integer load of the same size,
8386       // then bitconvert to floating point or vector.
8387       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
8388                                     LD->getMemOperand());
8389       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
8390       if (LoadedVT != VT)
8391         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
8392                              ISD::ANY_EXTEND, dl, VT, Result);
8393 
8394       return std::make_pair(Result, newLoad.getValue(1));
8395     }
8396 
8397     // Copy the value to a (aligned) stack slot using (unaligned) integer
8398     // loads and stores, then do a (aligned) load from the stack slot.
8399     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
8400     unsigned LoadedBytes = LoadedVT.getStoreSize();
8401     unsigned RegBytes = RegVT.getSizeInBits() / 8;
8402     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
8403 
8404     // Make sure the stack slot is also aligned for the register type.
8405     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
8406     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
8407     SmallVector<SDValue, 8> Stores;
8408     SDValue StackPtr = StackBase;
8409     unsigned Offset = 0;
8410 
8411     EVT PtrVT = Ptr.getValueType();
8412     EVT StackPtrVT = StackPtr.getValueType();
8413 
8414     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
8415     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
8416 
8417     // Do all but one copies using the full register width.
8418     for (unsigned i = 1; i < NumRegs; i++) {
8419       // Load one integer register's worth from the original location.
8420       SDValue Load = DAG.getLoad(
8421           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
8422           LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
8423           LD->getAAInfo());
8424       // Follow the load with a store to the stack slot.  Remember the store.
8425       Stores.push_back(DAG.getStore(
8426           Load.getValue(1), dl, Load, StackPtr,
8427           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
8428       // Increment the pointers.
8429       Offset += RegBytes;
8430 
8431       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
8432       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
8433     }
8434 
8435     // The last copy may be partial.  Do an extending load.
8436     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
8437                                   8 * (LoadedBytes - Offset));
8438     SDValue Load =
8439         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
8440                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
8441                        LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
8442                        LD->getAAInfo());
8443     // Follow the load with a store to the stack slot.  Remember the store.
8444     // On big-endian machines this requires a truncating store to ensure
8445     // that the bits end up in the right place.
8446     Stores.push_back(DAG.getTruncStore(
8447         Load.getValue(1), dl, Load, StackPtr,
8448         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
8449 
8450     // The order of the stores doesn't matter - say it with a TokenFactor.
8451     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8452 
8453     // Finally, perform the original load only redirected to the stack slot.
8454     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
8455                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
8456                           LoadedVT);
8457 
8458     // Callers expect a MERGE_VALUES node.
8459     return std::make_pair(Load, TF);
8460   }
8461 
8462   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
8463          "Unaligned load of unsupported type.");
8464 
8465   // Compute the new VT that is half the size of the old one.  This is an
8466   // integer MVT.
8467   unsigned NumBits = LoadedVT.getSizeInBits();
8468   EVT NewLoadedVT;
8469   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
8470   NumBits >>= 1;
8471 
8472   Align Alignment = LD->getOriginalAlign();
8473   unsigned IncrementSize = NumBits / 8;
8474   ISD::LoadExtType HiExtType = LD->getExtensionType();
8475 
8476   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
8477   if (HiExtType == ISD::NON_EXTLOAD)
8478     HiExtType = ISD::ZEXTLOAD;
8479 
8480   // Load the value in two parts
8481   SDValue Lo, Hi;
8482   if (DAG.getDataLayout().isLittleEndian()) {
8483     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
8484                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8485                         LD->getAAInfo());
8486 
8487     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
8488     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
8489                         LD->getPointerInfo().getWithOffset(IncrementSize),
8490                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8491                         LD->getAAInfo());
8492   } else {
8493     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
8494                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8495                         LD->getAAInfo());
8496 
8497     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
8498     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
8499                         LD->getPointerInfo().getWithOffset(IncrementSize),
8500                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8501                         LD->getAAInfo());
8502   }
8503 
8504   // aggregate the two parts
8505   SDValue ShiftAmount =
8506       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
8507                                                     DAG.getDataLayout()));
8508   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
8509   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
8510 
8511   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
8512                              Hi.getValue(1));
8513 
8514   return std::make_pair(Result, TF);
8515 }
8516 
8517 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
8518                                              SelectionDAG &DAG) const {
8519   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
8520          "unaligned indexed stores not implemented!");
8521   SDValue Chain = ST->getChain();
8522   SDValue Ptr = ST->getBasePtr();
8523   SDValue Val = ST->getValue();
8524   EVT VT = Val.getValueType();
8525   Align Alignment = ST->getOriginalAlign();
8526   auto &MF = DAG.getMachineFunction();
8527   EVT StoreMemVT = ST->getMemoryVT();
8528 
8529   SDLoc dl(ST);
8530   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
8531     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
8532     if (isTypeLegal(intVT)) {
8533       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
8534           StoreMemVT.isVector()) {
8535         // Scalarize the store and let the individual components be handled.
8536         SDValue Result = scalarizeVectorStore(ST, DAG);
8537         return Result;
8538       }
8539       // Expand to a bitconvert of the value to the integer type of the
8540       // same size, then a (misaligned) int store.
8541       // FIXME: Does not handle truncating floating point stores!
8542       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
8543       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
8544                             Alignment, ST->getMemOperand()->getFlags());
8545       return Result;
8546     }
8547     // Do a (aligned) store to a stack slot, then copy from the stack slot
8548     // to the final destination using (unaligned) integer loads and stores.
8549     MVT RegVT = getRegisterType(
8550         *DAG.getContext(),
8551         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
8552     EVT PtrVT = Ptr.getValueType();
8553     unsigned StoredBytes = StoreMemVT.getStoreSize();
8554     unsigned RegBytes = RegVT.getSizeInBits() / 8;
8555     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
8556 
8557     // Make sure the stack slot is also aligned for the register type.
8558     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
8559     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
8560 
8561     // Perform the original store, only redirected to the stack slot.
8562     SDValue Store = DAG.getTruncStore(
8563         Chain, dl, Val, StackPtr,
8564         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
8565 
8566     EVT StackPtrVT = StackPtr.getValueType();
8567 
8568     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
8569     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
8570     SmallVector<SDValue, 8> Stores;
8571     unsigned Offset = 0;
8572 
8573     // Do all but one copies using the full register width.
8574     for (unsigned i = 1; i < NumRegs; i++) {
8575       // Load one integer register's worth from the stack slot.
8576       SDValue Load = DAG.getLoad(
8577           RegVT, dl, Store, StackPtr,
8578           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
8579       // Store it to the final location.  Remember the store.
8580       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
8581                                     ST->getPointerInfo().getWithOffset(Offset),
8582                                     ST->getOriginalAlign(),
8583                                     ST->getMemOperand()->getFlags()));
8584       // Increment the pointers.
8585       Offset += RegBytes;
8586       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
8587       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
8588     }
8589 
8590     // The last store may be partial.  Do a truncating store.  On big-endian
8591     // machines this requires an extending load from the stack slot to ensure
8592     // that the bits are in the right place.
8593     EVT LoadMemVT =
8594         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
8595 
8596     // Load from the stack slot.
8597     SDValue Load = DAG.getExtLoad(
8598         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
8599         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
8600 
8601     Stores.push_back(
8602         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
8603                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
8604                           ST->getOriginalAlign(),
8605                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
8606     // The order of the stores doesn't matter - say it with a TokenFactor.
8607     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8608     return Result;
8609   }
8610 
8611   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
8612          "Unaligned store of unknown type.");
8613   // Get the half-size VT
8614   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
8615   unsigned NumBits = NewStoredVT.getFixedSizeInBits();
8616   unsigned IncrementSize = NumBits / 8;
8617 
8618   // Divide the stored value in two parts.
8619   SDValue ShiftAmount = DAG.getConstant(
8620       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
8621   SDValue Lo = Val;
8622   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
8623 
8624   // Store the two parts
8625   SDValue Store1, Store2;
8626   Store1 = DAG.getTruncStore(Chain, dl,
8627                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
8628                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
8629                              ST->getMemOperand()->getFlags());
8630 
8631   Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
8632   Store2 = DAG.getTruncStore(
8633       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
8634       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
8635       ST->getMemOperand()->getFlags(), ST->getAAInfo());
8636 
8637   SDValue Result =
8638       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
8639   return Result;
8640 }
8641 
8642 SDValue
8643 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
8644                                        const SDLoc &DL, EVT DataVT,
8645                                        SelectionDAG &DAG,
8646                                        bool IsCompressedMemory) const {
8647   SDValue Increment;
8648   EVT AddrVT = Addr.getValueType();
8649   EVT MaskVT = Mask.getValueType();
8650   assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
8651          "Incompatible types of Data and Mask");
8652   if (IsCompressedMemory) {
8653     if (DataVT.isScalableVector())
8654       report_fatal_error(
8655           "Cannot currently handle compressed memory with scalable vectors");
8656     // Incrementing the pointer according to number of '1's in the mask.
8657     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
8658     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
8659     if (MaskIntVT.getSizeInBits() < 32) {
8660       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
8661       MaskIntVT = MVT::i32;
8662     }
8663 
8664     // Count '1's with POPCNT.
8665     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
8666     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
8667     // Scale is an element size in bytes.
8668     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
8669                                     AddrVT);
8670     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
8671   } else if (DataVT.isScalableVector()) {
8672     Increment = DAG.getVScale(DL, AddrVT,
8673                               APInt(AddrVT.getFixedSizeInBits(),
8674                                     DataVT.getStoreSize().getKnownMinSize()));
8675   } else
8676     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
8677 
8678   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
8679 }
8680 
8681 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx,
8682                                        EVT VecVT, const SDLoc &dl,
8683                                        ElementCount SubEC) {
8684   assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) &&
8685          "Cannot index a scalable vector within a fixed-width vector");
8686 
8687   unsigned NElts = VecVT.getVectorMinNumElements();
8688   unsigned NumSubElts = SubEC.getKnownMinValue();
8689   EVT IdxVT = Idx.getValueType();
8690 
8691   if (VecVT.isScalableVector() && !SubEC.isScalable()) {
8692     // If this is a constant index and we know the value plus the number of the
8693     // elements in the subvector minus one is less than the minimum number of
8694     // elements then it's safe to return Idx.
8695     if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx))
8696       if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
8697         return Idx;
8698     SDValue VS =
8699         DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts));
8700     unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT;
8701     SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS,
8702                               DAG.getConstant(NumSubElts, dl, IdxVT));
8703     return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
8704   }
8705   if (isPowerOf2_32(NElts) && NumSubElts == 1) {
8706     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts));
8707     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
8708                        DAG.getConstant(Imm, dl, IdxVT));
8709   }
8710   unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
8711   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
8712                      DAG.getConstant(MaxIndex, dl, IdxVT));
8713 }
8714 
8715 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
8716                                                 SDValue VecPtr, EVT VecVT,
8717                                                 SDValue Index) const {
8718   return getVectorSubVecPointer(
8719       DAG, VecPtr, VecVT,
8720       EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1),
8721       Index);
8722 }
8723 
8724 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG,
8725                                                SDValue VecPtr, EVT VecVT,
8726                                                EVT SubVecVT,
8727                                                SDValue Index) const {
8728   SDLoc dl(Index);
8729   // Make sure the index type is big enough to compute in.
8730   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
8731 
8732   EVT EltVT = VecVT.getVectorElementType();
8733 
8734   // Calculate the element offset and add it to the pointer.
8735   unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
8736   assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
8737          "Converting bits to bytes lost precision");
8738   assert(SubVecVT.getVectorElementType() == EltVT &&
8739          "Sub-vector must be a vector with matching element type");
8740   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl,
8741                                   SubVecVT.getVectorElementCount());
8742 
8743   EVT IdxVT = Index.getValueType();
8744   if (SubVecVT.isScalableVector())
8745     Index =
8746         DAG.getNode(ISD::MUL, dl, IdxVT, Index,
8747                     DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1)));
8748 
8749   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
8750                       DAG.getConstant(EltSize, dl, IdxVT));
8751   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
8752 }
8753 
8754 //===----------------------------------------------------------------------===//
8755 // Implementation of Emulated TLS Model
8756 //===----------------------------------------------------------------------===//
8757 
8758 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
8759                                                 SelectionDAG &DAG) const {
8760   // Access to address of TLS varialbe xyz is lowered to a function call:
8761   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
8762   EVT PtrVT = getPointerTy(DAG.getDataLayout());
8763   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
8764   SDLoc dl(GA);
8765 
8766   ArgListTy Args;
8767   ArgListEntry Entry;
8768   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
8769   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
8770   StringRef EmuTlsVarName(NameString);
8771   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
8772   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
8773   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
8774   Entry.Ty = VoidPtrType;
8775   Args.push_back(Entry);
8776 
8777   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
8778 
8779   TargetLowering::CallLoweringInfo CLI(DAG);
8780   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
8781   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
8782   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
8783 
8784   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
8785   // At last for X86 targets, maybe good for other targets too?
8786   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
8787   MFI.setAdjustsStack(true); // Is this only for X86 target?
8788   MFI.setHasCalls(true);
8789 
8790   assert((GA->getOffset() == 0) &&
8791          "Emulated TLS must have zero offset in GlobalAddressSDNode");
8792   return CallResult.first;
8793 }
8794 
8795 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
8796                                                 SelectionDAG &DAG) const {
8797   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
8798   if (!isCtlzFast())
8799     return SDValue();
8800   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8801   SDLoc dl(Op);
8802   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
8803     if (C->isZero() && CC == ISD::SETEQ) {
8804       EVT VT = Op.getOperand(0).getValueType();
8805       SDValue Zext = Op.getOperand(0);
8806       if (VT.bitsLT(MVT::i32)) {
8807         VT = MVT::i32;
8808         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
8809       }
8810       unsigned Log2b = Log2_32(VT.getSizeInBits());
8811       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
8812       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
8813                                 DAG.getConstant(Log2b, dl, MVT::i32));
8814       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
8815     }
8816   }
8817   return SDValue();
8818 }
8819 
8820 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
8821   SDValue Op0 = Node->getOperand(0);
8822   SDValue Op1 = Node->getOperand(1);
8823   EVT VT = Op0.getValueType();
8824   unsigned Opcode = Node->getOpcode();
8825   SDLoc DL(Node);
8826 
8827   // umin(x,y) -> sub(x,usubsat(x,y))
8828   if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
8829       isOperationLegal(ISD::USUBSAT, VT)) {
8830     return DAG.getNode(ISD::SUB, DL, VT, Op0,
8831                        DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
8832   }
8833 
8834   // umax(x,y) -> add(x,usubsat(y,x))
8835   if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
8836       isOperationLegal(ISD::USUBSAT, VT)) {
8837     return DAG.getNode(ISD::ADD, DL, VT, Op0,
8838                        DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
8839   }
8840 
8841   // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
8842   ISD::CondCode CC;
8843   switch (Opcode) {
8844   default: llvm_unreachable("How did we get here?");
8845   case ISD::SMAX: CC = ISD::SETGT; break;
8846   case ISD::SMIN: CC = ISD::SETLT; break;
8847   case ISD::UMAX: CC = ISD::SETUGT; break;
8848   case ISD::UMIN: CC = ISD::SETULT; break;
8849   }
8850 
8851   // FIXME: Should really try to split the vector in case it's legal on a
8852   // subvector.
8853   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8854     return DAG.UnrollVectorOp(Node);
8855 
8856   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8857   SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC);
8858   return DAG.getSelect(DL, VT, Cond, Op0, Op1);
8859 }
8860 
8861 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
8862   unsigned Opcode = Node->getOpcode();
8863   SDValue LHS = Node->getOperand(0);
8864   SDValue RHS = Node->getOperand(1);
8865   EVT VT = LHS.getValueType();
8866   SDLoc dl(Node);
8867 
8868   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8869   assert(VT.isInteger() && "Expected operands to be integers");
8870 
8871   // usub.sat(a, b) -> umax(a, b) - b
8872   if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
8873     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
8874     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
8875   }
8876 
8877   // uadd.sat(a, b) -> umin(a, ~b) + b
8878   if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
8879     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
8880     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
8881     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
8882   }
8883 
8884   unsigned OverflowOp;
8885   switch (Opcode) {
8886   case ISD::SADDSAT:
8887     OverflowOp = ISD::SADDO;
8888     break;
8889   case ISD::UADDSAT:
8890     OverflowOp = ISD::UADDO;
8891     break;
8892   case ISD::SSUBSAT:
8893     OverflowOp = ISD::SSUBO;
8894     break;
8895   case ISD::USUBSAT:
8896     OverflowOp = ISD::USUBO;
8897     break;
8898   default:
8899     llvm_unreachable("Expected method to receive signed or unsigned saturation "
8900                      "addition or subtraction node.");
8901   }
8902 
8903   // FIXME: Should really try to split the vector in case it's legal on a
8904   // subvector.
8905   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8906     return DAG.UnrollVectorOp(Node);
8907 
8908   unsigned BitWidth = LHS.getScalarValueSizeInBits();
8909   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8910   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8911   SDValue SumDiff = Result.getValue(0);
8912   SDValue Overflow = Result.getValue(1);
8913   SDValue Zero = DAG.getConstant(0, dl, VT);
8914   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
8915 
8916   if (Opcode == ISD::UADDSAT) {
8917     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8918       // (LHS + RHS) | OverflowMask
8919       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8920       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
8921     }
8922     // Overflow ? 0xffff.... : (LHS + RHS)
8923     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
8924   }
8925 
8926   if (Opcode == ISD::USUBSAT) {
8927     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8928       // (LHS - RHS) & ~OverflowMask
8929       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8930       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
8931       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
8932     }
8933     // Overflow ? 0 : (LHS - RHS)
8934     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
8935   }
8936 
8937   // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff
8938   APInt MinVal = APInt::getSignedMinValue(BitWidth);
8939   SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8940   SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff,
8941                               DAG.getConstant(BitWidth - 1, dl, VT));
8942   Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin);
8943   return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
8944 }
8945 
8946 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
8947   unsigned Opcode = Node->getOpcode();
8948   bool IsSigned = Opcode == ISD::SSHLSAT;
8949   SDValue LHS = Node->getOperand(0);
8950   SDValue RHS = Node->getOperand(1);
8951   EVT VT = LHS.getValueType();
8952   SDLoc dl(Node);
8953 
8954   assert((Node->getOpcode() == ISD::SSHLSAT ||
8955           Node->getOpcode() == ISD::USHLSAT) &&
8956           "Expected a SHLSAT opcode");
8957   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8958   assert(VT.isInteger() && "Expected operands to be integers");
8959 
8960   // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
8961 
8962   unsigned BW = VT.getScalarSizeInBits();
8963   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
8964   SDValue Orig =
8965       DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
8966 
8967   SDValue SatVal;
8968   if (IsSigned) {
8969     SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
8970     SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
8971     SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT),
8972                              SatMin, SatMax, ISD::SETLT);
8973   } else {
8974     SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
8975   }
8976   Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE);
8977 
8978   return Result;
8979 }
8980 
8981 SDValue
8982 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
8983   assert((Node->getOpcode() == ISD::SMULFIX ||
8984           Node->getOpcode() == ISD::UMULFIX ||
8985           Node->getOpcode() == ISD::SMULFIXSAT ||
8986           Node->getOpcode() == ISD::UMULFIXSAT) &&
8987          "Expected a fixed point multiplication opcode");
8988 
8989   SDLoc dl(Node);
8990   SDValue LHS = Node->getOperand(0);
8991   SDValue RHS = Node->getOperand(1);
8992   EVT VT = LHS.getValueType();
8993   unsigned Scale = Node->getConstantOperandVal(2);
8994   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
8995                      Node->getOpcode() == ISD::UMULFIXSAT);
8996   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
8997                  Node->getOpcode() == ISD::SMULFIXSAT);
8998   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8999   unsigned VTSize = VT.getScalarSizeInBits();
9000 
9001   if (!Scale) {
9002     // [us]mul.fix(a, b, 0) -> mul(a, b)
9003     if (!Saturating) {
9004       if (isOperationLegalOrCustom(ISD::MUL, VT))
9005         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
9006     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
9007       SDValue Result =
9008           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
9009       SDValue Product = Result.getValue(0);
9010       SDValue Overflow = Result.getValue(1);
9011       SDValue Zero = DAG.getConstant(0, dl, VT);
9012 
9013       APInt MinVal = APInt::getSignedMinValue(VTSize);
9014       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
9015       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
9016       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
9017       // Xor the inputs, if resulting sign bit is 0 the product will be
9018       // positive, else negative.
9019       SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
9020       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT);
9021       Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax);
9022       return DAG.getSelect(dl, VT, Overflow, Result, Product);
9023     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
9024       SDValue Result =
9025           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
9026       SDValue Product = Result.getValue(0);
9027       SDValue Overflow = Result.getValue(1);
9028 
9029       APInt MaxVal = APInt::getMaxValue(VTSize);
9030       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
9031       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
9032     }
9033   }
9034 
9035   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
9036          "Expected scale to be less than the number of bits if signed or at "
9037          "most the number of bits if unsigned.");
9038   assert(LHS.getValueType() == RHS.getValueType() &&
9039          "Expected both operands to be the same type");
9040 
9041   // Get the upper and lower bits of the result.
9042   SDValue Lo, Hi;
9043   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
9044   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
9045   if (isOperationLegalOrCustom(LoHiOp, VT)) {
9046     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
9047     Lo = Result.getValue(0);
9048     Hi = Result.getValue(1);
9049   } else if (isOperationLegalOrCustom(HiOp, VT)) {
9050     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
9051     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
9052   } else if (VT.isVector()) {
9053     return SDValue();
9054   } else {
9055     report_fatal_error("Unable to expand fixed point multiplication.");
9056   }
9057 
9058   if (Scale == VTSize)
9059     // Result is just the top half since we'd be shifting by the width of the
9060     // operand. Overflow impossible so this works for both UMULFIX and
9061     // UMULFIXSAT.
9062     return Hi;
9063 
9064   // The result will need to be shifted right by the scale since both operands
9065   // are scaled. The result is given to us in 2 halves, so we only want part of
9066   // both in the result.
9067   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
9068   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
9069                                DAG.getConstant(Scale, dl, ShiftTy));
9070   if (!Saturating)
9071     return Result;
9072 
9073   if (!Signed) {
9074     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
9075     // widened multiplication) aren't all zeroes.
9076 
9077     // Saturate to max if ((Hi >> Scale) != 0),
9078     // which is the same as if (Hi > ((1 << Scale) - 1))
9079     APInt MaxVal = APInt::getMaxValue(VTSize);
9080     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
9081                                       dl, VT);
9082     Result = DAG.getSelectCC(dl, Hi, LowMask,
9083                              DAG.getConstant(MaxVal, dl, VT), Result,
9084                              ISD::SETUGT);
9085 
9086     return Result;
9087   }
9088 
9089   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
9090   // widened multiplication) aren't all ones or all zeroes.
9091 
9092   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
9093   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
9094 
9095   if (Scale == 0) {
9096     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
9097                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
9098     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
9099     // Saturated to SatMin if wide product is negative, and SatMax if wide
9100     // product is positive ...
9101     SDValue Zero = DAG.getConstant(0, dl, VT);
9102     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
9103                                                ISD::SETLT);
9104     // ... but only if we overflowed.
9105     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
9106   }
9107 
9108   //  We handled Scale==0 above so all the bits to examine is in Hi.
9109 
9110   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
9111   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
9112   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
9113                                     dl, VT);
9114   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
9115   // Saturate to min if (Hi >> (Scale - 1)) < -1),
9116   // which is the same as if (HI < (-1 << (Scale - 1))
9117   SDValue HighMask =
9118       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
9119                       dl, VT);
9120   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
9121   return Result;
9122 }
9123 
9124 SDValue
9125 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
9126                                     SDValue LHS, SDValue RHS,
9127                                     unsigned Scale, SelectionDAG &DAG) const {
9128   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
9129           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
9130          "Expected a fixed point division opcode");
9131 
9132   EVT VT = LHS.getValueType();
9133   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
9134   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
9135   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9136 
9137   // If there is enough room in the type to upscale the LHS or downscale the
9138   // RHS before the division, we can perform it in this type without having to
9139   // resize. For signed operations, the LHS headroom is the number of
9140   // redundant sign bits, and for unsigned ones it is the number of zeroes.
9141   // The headroom for the RHS is the number of trailing zeroes.
9142   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
9143                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
9144   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
9145 
9146   // For signed saturating operations, we need to be able to detect true integer
9147   // division overflow; that is, when you have MIN / -EPS. However, this
9148   // is undefined behavior and if we emit divisions that could take such
9149   // values it may cause undesired behavior (arithmetic exceptions on x86, for
9150   // example).
9151   // Avoid this by requiring an extra bit so that we never get this case.
9152   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
9153   // signed saturating division, we need to emit a whopping 32-bit division.
9154   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
9155     return SDValue();
9156 
9157   unsigned LHSShift = std::min(LHSLead, Scale);
9158   unsigned RHSShift = Scale - LHSShift;
9159 
9160   // At this point, we know that if we shift the LHS up by LHSShift and the
9161   // RHS down by RHSShift, we can emit a regular division with a final scaling
9162   // factor of Scale.
9163 
9164   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
9165   if (LHSShift)
9166     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
9167                       DAG.getConstant(LHSShift, dl, ShiftTy));
9168   if (RHSShift)
9169     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
9170                       DAG.getConstant(RHSShift, dl, ShiftTy));
9171 
9172   SDValue Quot;
9173   if (Signed) {
9174     // For signed operations, if the resulting quotient is negative and the
9175     // remainder is nonzero, subtract 1 from the quotient to round towards
9176     // negative infinity.
9177     SDValue Rem;
9178     // FIXME: Ideally we would always produce an SDIVREM here, but if the
9179     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
9180     // we couldn't just form a libcall, but the type legalizer doesn't do it.
9181     if (isTypeLegal(VT) &&
9182         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
9183       Quot = DAG.getNode(ISD::SDIVREM, dl,
9184                          DAG.getVTList(VT, VT),
9185                          LHS, RHS);
9186       Rem = Quot.getValue(1);
9187       Quot = Quot.getValue(0);
9188     } else {
9189       Quot = DAG.getNode(ISD::SDIV, dl, VT,
9190                          LHS, RHS);
9191       Rem = DAG.getNode(ISD::SREM, dl, VT,
9192                         LHS, RHS);
9193     }
9194     SDValue Zero = DAG.getConstant(0, dl, VT);
9195     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
9196     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
9197     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
9198     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
9199     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
9200                                DAG.getConstant(1, dl, VT));
9201     Quot = DAG.getSelect(dl, VT,
9202                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
9203                          Sub1, Quot);
9204   } else
9205     Quot = DAG.getNode(ISD::UDIV, dl, VT,
9206                        LHS, RHS);
9207 
9208   return Quot;
9209 }
9210 
9211 void TargetLowering::expandUADDSUBO(
9212     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
9213   SDLoc dl(Node);
9214   SDValue LHS = Node->getOperand(0);
9215   SDValue RHS = Node->getOperand(1);
9216   bool IsAdd = Node->getOpcode() == ISD::UADDO;
9217 
9218   // If ADD/SUBCARRY is legal, use that instead.
9219   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
9220   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
9221     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
9222     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
9223                                     { LHS, RHS, CarryIn });
9224     Result = SDValue(NodeCarry.getNode(), 0);
9225     Overflow = SDValue(NodeCarry.getNode(), 1);
9226     return;
9227   }
9228 
9229   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
9230                             LHS.getValueType(), LHS, RHS);
9231 
9232   EVT ResultType = Node->getValueType(1);
9233   EVT SetCCType = getSetCCResultType(
9234       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
9235   SDValue SetCC;
9236   if (IsAdd && isOneConstant(RHS)) {
9237     // Special case: uaddo X, 1 overflowed if X+1 is 0. This potential reduces
9238     // the live range of X. We assume comparing with 0 is cheap.
9239     // The general case (X + C) < C is not necessarily beneficial. Although we
9240     // reduce the live range of X, we may introduce the materialization of
9241     // constant C.
9242     SetCC =
9243         DAG.getSetCC(dl, SetCCType, Result,
9244                      DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETEQ);
9245   } else {
9246     ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
9247     SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
9248   }
9249   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
9250 }
9251 
9252 void TargetLowering::expandSADDSUBO(
9253     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
9254   SDLoc dl(Node);
9255   SDValue LHS = Node->getOperand(0);
9256   SDValue RHS = Node->getOperand(1);
9257   bool IsAdd = Node->getOpcode() == ISD::SADDO;
9258 
9259   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
9260                             LHS.getValueType(), LHS, RHS);
9261 
9262   EVT ResultType = Node->getValueType(1);
9263   EVT OType = getSetCCResultType(
9264       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
9265 
9266   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
9267   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
9268   if (isOperationLegal(OpcSat, LHS.getValueType())) {
9269     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
9270     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
9271     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
9272     return;
9273   }
9274 
9275   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
9276 
9277   // For an addition, the result should be less than one of the operands (LHS)
9278   // if and only if the other operand (RHS) is negative, otherwise there will
9279   // be overflow.
9280   // For a subtraction, the result should be less than one of the operands
9281   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
9282   // otherwise there will be overflow.
9283   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
9284   SDValue ConditionRHS =
9285       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
9286 
9287   Overflow = DAG.getBoolExtOrTrunc(
9288       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
9289       ResultType, ResultType);
9290 }
9291 
9292 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
9293                                 SDValue &Overflow, SelectionDAG &DAG) const {
9294   SDLoc dl(Node);
9295   EVT VT = Node->getValueType(0);
9296   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9297   SDValue LHS = Node->getOperand(0);
9298   SDValue RHS = Node->getOperand(1);
9299   bool isSigned = Node->getOpcode() == ISD::SMULO;
9300 
9301   // For power-of-two multiplications we can use a simpler shift expansion.
9302   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
9303     const APInt &C = RHSC->getAPIntValue();
9304     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
9305     if (C.isPowerOf2()) {
9306       // smulo(x, signed_min) is same as umulo(x, signed_min).
9307       bool UseArithShift = isSigned && !C.isMinSignedValue();
9308       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
9309       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
9310       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
9311       Overflow = DAG.getSetCC(dl, SetCCVT,
9312           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
9313                       dl, VT, Result, ShiftAmt),
9314           LHS, ISD::SETNE);
9315       return true;
9316     }
9317   }
9318 
9319   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
9320   if (VT.isVector())
9321     WideVT =
9322         EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount());
9323 
9324   SDValue BottomHalf;
9325   SDValue TopHalf;
9326   static const unsigned Ops[2][3] =
9327       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
9328         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
9329   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
9330     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
9331     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
9332   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
9333     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
9334                              RHS);
9335     TopHalf = BottomHalf.getValue(1);
9336   } else if (isTypeLegal(WideVT)) {
9337     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
9338     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
9339     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
9340     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
9341     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
9342         getShiftAmountTy(WideVT, DAG.getDataLayout()));
9343     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
9344                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
9345   } else {
9346     if (VT.isVector())
9347       return false;
9348 
9349     // We can fall back to a libcall with an illegal type for the MUL if we
9350     // have a libcall big enough.
9351     // Also, we can fall back to a division in some cases, but that's a big
9352     // performance hit in the general case.
9353     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
9354     if (WideVT == MVT::i16)
9355       LC = RTLIB::MUL_I16;
9356     else if (WideVT == MVT::i32)
9357       LC = RTLIB::MUL_I32;
9358     else if (WideVT == MVT::i64)
9359       LC = RTLIB::MUL_I64;
9360     else if (WideVT == MVT::i128)
9361       LC = RTLIB::MUL_I128;
9362     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
9363 
9364     SDValue HiLHS;
9365     SDValue HiRHS;
9366     if (isSigned) {
9367       // The high part is obtained by SRA'ing all but one of the bits of low
9368       // part.
9369       unsigned LoSize = VT.getFixedSizeInBits();
9370       HiLHS =
9371           DAG.getNode(ISD::SRA, dl, VT, LHS,
9372                       DAG.getConstant(LoSize - 1, dl,
9373                                       getPointerTy(DAG.getDataLayout())));
9374       HiRHS =
9375           DAG.getNode(ISD::SRA, dl, VT, RHS,
9376                       DAG.getConstant(LoSize - 1, dl,
9377                                       getPointerTy(DAG.getDataLayout())));
9378     } else {
9379         HiLHS = DAG.getConstant(0, dl, VT);
9380         HiRHS = DAG.getConstant(0, dl, VT);
9381     }
9382 
9383     // Here we're passing the 2 arguments explicitly as 4 arguments that are
9384     // pre-lowered to the correct types. This all depends upon WideVT not
9385     // being a legal type for the architecture and thus has to be split to
9386     // two arguments.
9387     SDValue Ret;
9388     TargetLowering::MakeLibCallOptions CallOptions;
9389     CallOptions.setSExt(isSigned);
9390     CallOptions.setIsPostTypeLegalization(true);
9391     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
9392       // Halves of WideVT are packed into registers in different order
9393       // depending on platform endianness. This is usually handled by
9394       // the C calling convention, but we can't defer to it in
9395       // the legalizer.
9396       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
9397       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
9398     } else {
9399       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
9400       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
9401     }
9402     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
9403            "Ret value is a collection of constituent nodes holding result.");
9404     if (DAG.getDataLayout().isLittleEndian()) {
9405       // Same as above.
9406       BottomHalf = Ret.getOperand(0);
9407       TopHalf = Ret.getOperand(1);
9408     } else {
9409       BottomHalf = Ret.getOperand(1);
9410       TopHalf = Ret.getOperand(0);
9411     }
9412   }
9413 
9414   Result = BottomHalf;
9415   if (isSigned) {
9416     SDValue ShiftAmt = DAG.getConstant(
9417         VT.getScalarSizeInBits() - 1, dl,
9418         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
9419     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
9420     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
9421   } else {
9422     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
9423                             DAG.getConstant(0, dl, VT), ISD::SETNE);
9424   }
9425 
9426   // Truncate the result if SetCC returns a larger type than needed.
9427   EVT RType = Node->getValueType(1);
9428   if (RType.bitsLT(Overflow.getValueType()))
9429     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
9430 
9431   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
9432          "Unexpected result type for S/UMULO legalization");
9433   return true;
9434 }
9435 
9436 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
9437   SDLoc dl(Node);
9438   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
9439   SDValue Op = Node->getOperand(0);
9440   EVT VT = Op.getValueType();
9441 
9442   if (VT.isScalableVector())
9443     report_fatal_error(
9444         "Expanding reductions for scalable vectors is undefined.");
9445 
9446   // Try to use a shuffle reduction for power of two vectors.
9447   if (VT.isPow2VectorType()) {
9448     while (VT.getVectorNumElements() > 1) {
9449       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
9450       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
9451         break;
9452 
9453       SDValue Lo, Hi;
9454       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
9455       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
9456       VT = HalfVT;
9457     }
9458   }
9459 
9460   EVT EltVT = VT.getVectorElementType();
9461   unsigned NumElts = VT.getVectorNumElements();
9462 
9463   SmallVector<SDValue, 8> Ops;
9464   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
9465 
9466   SDValue Res = Ops[0];
9467   for (unsigned i = 1; i < NumElts; i++)
9468     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
9469 
9470   // Result type may be wider than element type.
9471   if (EltVT != Node->getValueType(0))
9472     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
9473   return Res;
9474 }
9475 
9476 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
9477   SDLoc dl(Node);
9478   SDValue AccOp = Node->getOperand(0);
9479   SDValue VecOp = Node->getOperand(1);
9480   SDNodeFlags Flags = Node->getFlags();
9481 
9482   EVT VT = VecOp.getValueType();
9483   EVT EltVT = VT.getVectorElementType();
9484 
9485   if (VT.isScalableVector())
9486     report_fatal_error(
9487         "Expanding reductions for scalable vectors is undefined.");
9488 
9489   unsigned NumElts = VT.getVectorNumElements();
9490 
9491   SmallVector<SDValue, 8> Ops;
9492   DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
9493 
9494   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
9495 
9496   SDValue Res = AccOp;
9497   for (unsigned i = 0; i < NumElts; i++)
9498     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
9499 
9500   return Res;
9501 }
9502 
9503 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
9504                                SelectionDAG &DAG) const {
9505   EVT VT = Node->getValueType(0);
9506   SDLoc dl(Node);
9507   bool isSigned = Node->getOpcode() == ISD::SREM;
9508   unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
9509   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
9510   SDValue Dividend = Node->getOperand(0);
9511   SDValue Divisor = Node->getOperand(1);
9512   if (isOperationLegalOrCustom(DivRemOpc, VT)) {
9513     SDVTList VTs = DAG.getVTList(VT, VT);
9514     Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
9515     return true;
9516   }
9517   if (isOperationLegalOrCustom(DivOpc, VT)) {
9518     // X % Y -> X-X/Y*Y
9519     SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
9520     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
9521     Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
9522     return true;
9523   }
9524   return false;
9525 }
9526 
9527 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
9528                                             SelectionDAG &DAG) const {
9529   bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
9530   SDLoc dl(SDValue(Node, 0));
9531   SDValue Src = Node->getOperand(0);
9532 
9533   // DstVT is the result type, while SatVT is the size to which we saturate
9534   EVT SrcVT = Src.getValueType();
9535   EVT DstVT = Node->getValueType(0);
9536 
9537   EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
9538   unsigned SatWidth = SatVT.getScalarSizeInBits();
9539   unsigned DstWidth = DstVT.getScalarSizeInBits();
9540   assert(SatWidth <= DstWidth &&
9541          "Expected saturation width smaller than result width");
9542 
9543   // Determine minimum and maximum integer values and their corresponding
9544   // floating-point values.
9545   APInt MinInt, MaxInt;
9546   if (IsSigned) {
9547     MinInt = APInt::getSignedMinValue(SatWidth).sext(DstWidth);
9548     MaxInt = APInt::getSignedMaxValue(SatWidth).sext(DstWidth);
9549   } else {
9550     MinInt = APInt::getMinValue(SatWidth).zext(DstWidth);
9551     MaxInt = APInt::getMaxValue(SatWidth).zext(DstWidth);
9552   }
9553 
9554   // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as
9555   // libcall emission cannot handle this. Large result types will fail.
9556   if (SrcVT == MVT::f16) {
9557     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
9558     SrcVT = Src.getValueType();
9559   }
9560 
9561   APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT));
9562   APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT));
9563 
9564   APFloat::opStatus MinStatus =
9565       MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
9566   APFloat::opStatus MaxStatus =
9567       MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
9568   bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
9569                              !(MaxStatus & APFloat::opStatus::opInexact);
9570 
9571   SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
9572   SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
9573 
9574   // If the integer bounds are exactly representable as floats and min/max are
9575   // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
9576   // of comparisons and selects.
9577   bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
9578                      isOperationLegal(ISD::FMAXNUM, SrcVT);
9579   if (AreExactFloatBounds && MinMaxLegal) {
9580     SDValue Clamped = Src;
9581 
9582     // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
9583     Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
9584     // Clamp by MaxFloat from above. NaN cannot occur.
9585     Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
9586     // Convert clamped value to integer.
9587     SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
9588                                   dl, DstVT, Clamped);
9589 
9590     // In the unsigned case we're done, because we mapped NaN to MinFloat,
9591     // which will cast to zero.
9592     if (!IsSigned)
9593       return FpToInt;
9594 
9595     // Otherwise, select 0 if Src is NaN.
9596     SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
9597     return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt,
9598                            ISD::CondCode::SETUO);
9599   }
9600 
9601   SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
9602   SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
9603 
9604   // Result of direct conversion. The assumption here is that the operation is
9605   // non-trapping and it's fine to apply it to an out-of-range value if we
9606   // select it away later.
9607   SDValue FpToInt =
9608       DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
9609 
9610   SDValue Select = FpToInt;
9611 
9612   // If Src ULT MinFloat, select MinInt. In particular, this also selects
9613   // MinInt if Src is NaN.
9614   Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select,
9615                            ISD::CondCode::SETULT);
9616   // If Src OGT MaxFloat, select MaxInt.
9617   Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select,
9618                            ISD::CondCode::SETOGT);
9619 
9620   // In the unsigned case we are done, because we mapped NaN to MinInt, which
9621   // is already zero.
9622   if (!IsSigned)
9623     return Select;
9624 
9625   // Otherwise, select 0 if Src is NaN.
9626   SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
9627   return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO);
9628 }
9629 
9630 SDValue TargetLowering::expandVectorSplice(SDNode *Node,
9631                                            SelectionDAG &DAG) const {
9632   assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!");
9633   assert(Node->getValueType(0).isScalableVector() &&
9634          "Fixed length vector types expected to use SHUFFLE_VECTOR!");
9635 
9636   EVT VT = Node->getValueType(0);
9637   SDValue V1 = Node->getOperand(0);
9638   SDValue V2 = Node->getOperand(1);
9639   int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue();
9640   SDLoc DL(Node);
9641 
9642   // Expand through memory thusly:
9643   //  Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr
9644   //  Store V1, Ptr
9645   //  Store V2, Ptr + sizeof(V1)
9646   //  If (Imm < 0)
9647   //    TrailingElts = -Imm
9648   //    Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt))
9649   //  else
9650   //    Ptr = Ptr + (Imm * sizeof(VT.Elt))
9651   //  Res = Load Ptr
9652 
9653   Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false);
9654 
9655   EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
9656                                VT.getVectorElementCount() * 2);
9657   SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
9658   EVT PtrVT = StackPtr.getValueType();
9659   auto &MF = DAG.getMachineFunction();
9660   auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
9661   auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
9662 
9663   // Store the lo part of CONCAT_VECTORS(V1, V2)
9664   SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo);
9665   // Store the hi part of CONCAT_VECTORS(V1, V2)
9666   SDValue OffsetToV2 = DAG.getVScale(
9667       DL, PtrVT,
9668       APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
9669   SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2);
9670   SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo);
9671 
9672   if (Imm >= 0) {
9673     // Load back the required element. getVectorElementPointer takes care of
9674     // clamping the index if it's out-of-bounds.
9675     StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
9676     // Load the spliced result
9677     return DAG.getLoad(VT, DL, StoreV2, StackPtr,
9678                        MachinePointerInfo::getUnknownStack(MF));
9679   }
9680 
9681   uint64_t TrailingElts = -Imm;
9682 
9683   // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2.
9684   TypeSize EltByteSize = VT.getVectorElementType().getStoreSize();
9685   SDValue TrailingBytes =
9686       DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT);
9687 
9688   if (TrailingElts > VT.getVectorMinNumElements()) {
9689     SDValue VLBytes = DAG.getVScale(
9690         DL, PtrVT,
9691         APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
9692     TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes);
9693   }
9694 
9695   // Calculate the start address of the spliced result.
9696   StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes);
9697 
9698   // Load the spliced result
9699   return DAG.getLoad(VT, DL, StoreV2, StackPtr2,
9700                      MachinePointerInfo::getUnknownStack(MF));
9701 }
9702 
9703 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT,
9704                                            SDValue &LHS, SDValue &RHS,
9705                                            SDValue &CC, SDValue Mask,
9706                                            SDValue EVL, bool &NeedInvert,
9707                                            const SDLoc &dl, SDValue &Chain,
9708                                            bool IsSignaling) const {
9709   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9710   MVT OpVT = LHS.getSimpleValueType();
9711   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
9712   NeedInvert = false;
9713   assert(!EVL == !Mask && "VP Mask and EVL must either both be set or unset");
9714   bool IsNonVP = !EVL;
9715   switch (TLI.getCondCodeAction(CCCode, OpVT)) {
9716   default:
9717     llvm_unreachable("Unknown condition code action!");
9718   case TargetLowering::Legal:
9719     // Nothing to do.
9720     break;
9721   case TargetLowering::Expand: {
9722     ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
9723     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9724       std::swap(LHS, RHS);
9725       CC = DAG.getCondCode(InvCC);
9726       return true;
9727     }
9728     // Swapping operands didn't work. Try inverting the condition.
9729     bool NeedSwap = false;
9730     InvCC = getSetCCInverse(CCCode, OpVT);
9731     if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9732       // If inverting the condition is not enough, try swapping operands
9733       // on top of it.
9734       InvCC = ISD::getSetCCSwappedOperands(InvCC);
9735       NeedSwap = true;
9736     }
9737     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9738       CC = DAG.getCondCode(InvCC);
9739       NeedInvert = true;
9740       if (NeedSwap)
9741         std::swap(LHS, RHS);
9742       return true;
9743     }
9744 
9745     ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
9746     unsigned Opc = 0;
9747     switch (CCCode) {
9748     default:
9749       llvm_unreachable("Don't know how to expand this condition!");
9750     case ISD::SETUO:
9751       if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) {
9752         CC1 = ISD::SETUNE;
9753         CC2 = ISD::SETUNE;
9754         Opc = ISD::OR;
9755         break;
9756       }
9757       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
9758              "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
9759       NeedInvert = true;
9760       LLVM_FALLTHROUGH;
9761     case ISD::SETO:
9762       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
9763              "If SETO is expanded, SETOEQ must be legal!");
9764       CC1 = ISD::SETOEQ;
9765       CC2 = ISD::SETOEQ;
9766       Opc = ISD::AND;
9767       break;
9768     case ISD::SETONE:
9769     case ISD::SETUEQ:
9770       // If the SETUO or SETO CC isn't legal, we might be able to use
9771       // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one
9772       // of SETOGT/SETOLT to be legal, the other can be emulated by swapping
9773       // the operands.
9774       CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
9775       if (!TLI.isCondCodeLegal(CC2, OpVT) &&
9776           (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) ||
9777            TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) {
9778         CC1 = ISD::SETOGT;
9779         CC2 = ISD::SETOLT;
9780         Opc = ISD::OR;
9781         NeedInvert = ((unsigned)CCCode & 0x8U);
9782         break;
9783       }
9784       LLVM_FALLTHROUGH;
9785     case ISD::SETOEQ:
9786     case ISD::SETOGT:
9787     case ISD::SETOGE:
9788     case ISD::SETOLT:
9789     case ISD::SETOLE:
9790     case ISD::SETUNE:
9791     case ISD::SETUGT:
9792     case ISD::SETUGE:
9793     case ISD::SETULT:
9794     case ISD::SETULE:
9795       // If we are floating point, assign and break, otherwise fall through.
9796       if (!OpVT.isInteger()) {
9797         // We can use the 4th bit to tell if we are the unordered
9798         // or ordered version of the opcode.
9799         CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
9800         Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
9801         CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
9802         break;
9803       }
9804       // Fallthrough if we are unsigned integer.
9805       LLVM_FALLTHROUGH;
9806     case ISD::SETLE:
9807     case ISD::SETGT:
9808     case ISD::SETGE:
9809     case ISD::SETLT:
9810     case ISD::SETNE:
9811     case ISD::SETEQ:
9812       // If all combinations of inverting the condition and swapping operands
9813       // didn't work then we have no means to expand the condition.
9814       llvm_unreachable("Don't know how to expand this condition!");
9815     }
9816 
9817     SDValue SetCC1, SetCC2;
9818     if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
9819       // If we aren't the ordered or unorder operation,
9820       // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
9821       if (IsNonVP) {
9822         SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
9823         SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
9824       } else {
9825         SetCC1 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC1, Mask, EVL);
9826         SetCC2 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC2, Mask, EVL);
9827       }
9828     } else {
9829       // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
9830       if (IsNonVP) {
9831         SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
9832         SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
9833       } else {
9834         SetCC1 = DAG.getSetCCVP(dl, VT, LHS, LHS, CC1, Mask, EVL);
9835         SetCC2 = DAG.getSetCCVP(dl, VT, RHS, RHS, CC2, Mask, EVL);
9836       }
9837     }
9838     if (Chain)
9839       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
9840                           SetCC2.getValue(1));
9841     if (IsNonVP)
9842       LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
9843     else {
9844       // Transform the binary opcode to the VP equivalent.
9845       assert((Opc == ISD::OR || Opc == ISD::AND) && "Unexpected opcode");
9846       Opc = Opc == ISD::OR ? ISD::VP_OR : ISD::VP_AND;
9847       LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2, Mask, EVL);
9848     }
9849     RHS = SDValue();
9850     CC = SDValue();
9851     return true;
9852   }
9853   }
9854   return false;
9855 }
9856