1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Target/TargetLoweringObjectFile.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 using namespace llvm;
36 
37 /// NOTE: The TargetMachine owns TLOF.
38 TargetLowering::TargetLowering(const TargetMachine &tm)
39     : TargetLoweringBase(tm) {}
40 
41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42   return nullptr;
43 }
44 
45 bool TargetLowering::isPositionIndependent() const {
46   return getTargetMachine().isPositionIndependent();
47 }
48 
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52                                           SDValue &Chain) const {
53   const Function &F = DAG.getMachineFunction().getFunction();
54 
55   // First, check if tail calls have been disabled in this function.
56   if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
57     return false;
58 
59   // Conservatively require the attributes of the call to match those of
60   // the return. Ignore NoAlias and NonNull because they don't affect the
61   // call sequence.
62   AttributeList CallerAttrs = F.getAttributes();
63   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
64           .removeAttribute(Attribute::NoAlias)
65           .removeAttribute(Attribute::NonNull)
66           .hasAttributes())
67     return false;
68 
69   // It's not safe to eliminate the sign / zero extension of the return value.
70   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
71       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
72     return false;
73 
74   // Check if the only use is a function return node.
75   return isUsedByReturnOnly(Node, Chain);
76 }
77 
78 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
79     const uint32_t *CallerPreservedMask,
80     const SmallVectorImpl<CCValAssign> &ArgLocs,
81     const SmallVectorImpl<SDValue> &OutVals) const {
82   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
83     const CCValAssign &ArgLoc = ArgLocs[I];
84     if (!ArgLoc.isRegLoc())
85       continue;
86     Register Reg = ArgLoc.getLocReg();
87     // Only look at callee saved registers.
88     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
89       continue;
90     // Check that we pass the value used for the caller.
91     // (We look for a CopyFromReg reading a virtual register that is used
92     //  for the function live-in value of register Reg)
93     SDValue Value = OutVals[I];
94     if (Value->getOpcode() != ISD::CopyFromReg)
95       return false;
96     unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
97     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
98       return false;
99   }
100   return true;
101 }
102 
103 /// Set CallLoweringInfo attribute flags based on a call instruction
104 /// and called function attributes.
105 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
106                                                      unsigned ArgIdx) {
107   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
108   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
109   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
110   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
111   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
112   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
113   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
114   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
115   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
116   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
117   Alignment = Call->getParamAlignment(ArgIdx);
118   ByValType = nullptr;
119   if (Call->paramHasAttr(ArgIdx, Attribute::ByVal))
120     ByValType = Call->getParamByValType(ArgIdx);
121 }
122 
123 /// Generate a libcall taking the given operands as arguments and returning a
124 /// result of type RetVT.
125 std::pair<SDValue, SDValue>
126 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
127                             ArrayRef<SDValue> Ops,
128                             MakeLibCallOptions CallOptions,
129                             const SDLoc &dl,
130                             SDValue InChain) const {
131   if (!InChain)
132     InChain = DAG.getEntryNode();
133 
134   TargetLowering::ArgListTy Args;
135   Args.reserve(Ops.size());
136 
137   TargetLowering::ArgListEntry Entry;
138   for (unsigned i = 0; i < Ops.size(); ++i) {
139     SDValue NewOp = Ops[i];
140     Entry.Node = NewOp;
141     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
142     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
143                                                  CallOptions.IsSExt);
144     Entry.IsZExt = !Entry.IsSExt;
145 
146     if (CallOptions.IsSoften &&
147         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
148       Entry.IsSExt = Entry.IsZExt = false;
149     }
150     Args.push_back(Entry);
151   }
152 
153   if (LC == RTLIB::UNKNOWN_LIBCALL)
154     report_fatal_error("Unsupported library call operation!");
155   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
156                                          getPointerTy(DAG.getDataLayout()));
157 
158   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
159   TargetLowering::CallLoweringInfo CLI(DAG);
160   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
161   bool zeroExtend = !signExtend;
162 
163   if (CallOptions.IsSoften &&
164       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
165     signExtend = zeroExtend = false;
166   }
167 
168   CLI.setDebugLoc(dl)
169       .setChain(InChain)
170       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
171       .setNoReturn(CallOptions.DoesNotReturn)
172       .setDiscardResult(!CallOptions.IsReturnValueUsed)
173       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
174       .setSExtResult(signExtend)
175       .setZExtResult(zeroExtend);
176   return LowerCallTo(CLI);
177 }
178 
179 bool
180 TargetLowering::findOptimalMemOpLowering(std::vector<EVT> &MemOps,
181                                          unsigned Limit, uint64_t Size,
182                                          unsigned DstAlign, unsigned SrcAlign,
183                                          bool IsMemset,
184                                          bool ZeroMemset,
185                                          bool MemcpyStrSrc,
186                                          bool AllowOverlap,
187                                          unsigned DstAS, unsigned SrcAS,
188                                          const AttributeList &FuncAttributes) const {
189   // If 'SrcAlign' is zero, that means the memory operation does not need to
190   // load the value, i.e. memset or memcpy from constant string. Otherwise,
191   // it's the inferred alignment of the source. 'DstAlign', on the other hand,
192   // is the specified alignment of the memory operation. If it is zero, that
193   // means it's possible to change the alignment of the destination.
194   // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
195   // not need to be loaded.
196   if (!(SrcAlign == 0 || SrcAlign >= DstAlign))
197     return false;
198 
199   EVT VT = getOptimalMemOpType(Size, DstAlign, SrcAlign,
200                                IsMemset, ZeroMemset, MemcpyStrSrc,
201                                FuncAttributes);
202 
203   if (VT == MVT::Other) {
204     // Use the largest integer type whose alignment constraints are satisfied.
205     // We only need to check DstAlign here as SrcAlign is always greater or
206     // equal to DstAlign (or zero).
207     VT = MVT::i64;
208     while (DstAlign && DstAlign < VT.getSizeInBits() / 8 &&
209            !allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign))
210       VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
211     assert(VT.isInteger());
212 
213     // Find the largest legal integer type.
214     MVT LVT = MVT::i64;
215     while (!isTypeLegal(LVT))
216       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
217     assert(LVT.isInteger());
218 
219     // If the type we've chosen is larger than the largest legal integer type
220     // then use that instead.
221     if (VT.bitsGT(LVT))
222       VT = LVT;
223   }
224 
225   unsigned NumMemOps = 0;
226   while (Size != 0) {
227     unsigned VTSize = VT.getSizeInBits() / 8;
228     while (VTSize > Size) {
229       // For now, only use non-vector load / store's for the left-over pieces.
230       EVT NewVT = VT;
231       unsigned NewVTSize;
232 
233       bool Found = false;
234       if (VT.isVector() || VT.isFloatingPoint()) {
235         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
236         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
237             isSafeMemOpType(NewVT.getSimpleVT()))
238           Found = true;
239         else if (NewVT == MVT::i64 &&
240                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
241                  isSafeMemOpType(MVT::f64)) {
242           // i64 is usually not legal on 32-bit targets, but f64 may be.
243           NewVT = MVT::f64;
244           Found = true;
245         }
246       }
247 
248       if (!Found) {
249         do {
250           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
251           if (NewVT == MVT::i8)
252             break;
253         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
254       }
255       NewVTSize = NewVT.getSizeInBits() / 8;
256 
257       // If the new VT cannot cover all of the remaining bits, then consider
258       // issuing a (or a pair of) unaligned and overlapping load / store.
259       bool Fast;
260       if (NumMemOps && AllowOverlap && NewVTSize < Size &&
261           allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign,
262                                          MachineMemOperand::MONone, &Fast) &&
263           Fast)
264         VTSize = Size;
265       else {
266         VT = NewVT;
267         VTSize = NewVTSize;
268       }
269     }
270 
271     if (++NumMemOps > Limit)
272       return false;
273 
274     MemOps.push_back(VT);
275     Size -= VTSize;
276   }
277 
278   return true;
279 }
280 
281 /// Soften the operands of a comparison. This code is shared among BR_CC,
282 /// SELECT_CC, and SETCC handlers.
283 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
284                                          SDValue &NewLHS, SDValue &NewRHS,
285                                          ISD::CondCode &CCCode,
286                                          const SDLoc &dl, const SDValue OldLHS,
287                                          const SDValue OldRHS) const {
288   SDValue Chain;
289   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
290                              OldRHS, Chain);
291 }
292 
293 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
294                                          SDValue &NewLHS, SDValue &NewRHS,
295                                          ISD::CondCode &CCCode,
296                                          const SDLoc &dl, const SDValue OldLHS,
297                                          const SDValue OldRHS,
298                                          SDValue &Chain,
299                                          bool IsSignaling) const {
300   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
301   // not supporting it. We can update this code when libgcc provides such
302   // functions.
303 
304   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
305          && "Unsupported setcc type!");
306 
307   // Expand into one or more soft-fp libcall(s).
308   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
309   bool ShouldInvertCC = false;
310   switch (CCCode) {
311   case ISD::SETEQ:
312   case ISD::SETOEQ:
313     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
314           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
315           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
316     break;
317   case ISD::SETNE:
318   case ISD::SETUNE:
319     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
320           (VT == MVT::f64) ? RTLIB::UNE_F64 :
321           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
322     break;
323   case ISD::SETGE:
324   case ISD::SETOGE:
325     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
326           (VT == MVT::f64) ? RTLIB::OGE_F64 :
327           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
328     break;
329   case ISD::SETLT:
330   case ISD::SETOLT:
331     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
332           (VT == MVT::f64) ? RTLIB::OLT_F64 :
333           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
334     break;
335   case ISD::SETLE:
336   case ISD::SETOLE:
337     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
338           (VT == MVT::f64) ? RTLIB::OLE_F64 :
339           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
340     break;
341   case ISD::SETGT:
342   case ISD::SETOGT:
343     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
344           (VT == MVT::f64) ? RTLIB::OGT_F64 :
345           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
346     break;
347   case ISD::SETO:
348     ShouldInvertCC = true;
349     LLVM_FALLTHROUGH;
350   case ISD::SETUO:
351     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
352           (VT == MVT::f64) ? RTLIB::UO_F64 :
353           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
354     break;
355   case ISD::SETONE:
356     // SETONE = O && UNE
357     ShouldInvertCC = true;
358     LLVM_FALLTHROUGH;
359   case ISD::SETUEQ:
360     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
361           (VT == MVT::f64) ? RTLIB::UO_F64 :
362           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
363     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
364           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
365           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
366     break;
367   default:
368     // Invert CC for unordered comparisons
369     ShouldInvertCC = true;
370     switch (CCCode) {
371     case ISD::SETULT:
372       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
373             (VT == MVT::f64) ? RTLIB::OGE_F64 :
374             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
375       break;
376     case ISD::SETULE:
377       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
378             (VT == MVT::f64) ? RTLIB::OGT_F64 :
379             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
380       break;
381     case ISD::SETUGT:
382       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
383             (VT == MVT::f64) ? RTLIB::OLE_F64 :
384             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
385       break;
386     case ISD::SETUGE:
387       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
388             (VT == MVT::f64) ? RTLIB::OLT_F64 :
389             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
390       break;
391     default: llvm_unreachable("Do not know how to soften this setcc!");
392     }
393   }
394 
395   // Use the target specific return value for comparions lib calls.
396   EVT RetVT = getCmpLibcallReturnType();
397   SDValue Ops[2] = {NewLHS, NewRHS};
398   TargetLowering::MakeLibCallOptions CallOptions;
399   EVT OpsVT[2] = { OldLHS.getValueType(),
400                    OldRHS.getValueType() };
401   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
402   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
403   NewLHS = Call.first;
404   NewRHS = DAG.getConstant(0, dl, RetVT);
405 
406   CCCode = getCmpLibcallCC(LC1);
407   if (ShouldInvertCC) {
408     assert(RetVT.isInteger());
409     CCCode = getSetCCInverse(CCCode, RetVT);
410   }
411 
412   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
413     // Update Chain.
414     Chain = Call.second;
415   } else {
416     EVT SetCCVT =
417         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
418     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
419     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
420     CCCode = getCmpLibcallCC(LC2);
421     if (ShouldInvertCC)
422       CCCode = getSetCCInverse(CCCode, RetVT);
423     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
424     if (Chain)
425       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
426                           Call2.second);
427     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
428                          Tmp.getValueType(), Tmp, NewLHS);
429     NewRHS = SDValue();
430   }
431 }
432 
433 /// Return the entry encoding for a jump table in the current function. The
434 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
435 unsigned TargetLowering::getJumpTableEncoding() const {
436   // In non-pic modes, just use the address of a block.
437   if (!isPositionIndependent())
438     return MachineJumpTableInfo::EK_BlockAddress;
439 
440   // In PIC mode, if the target supports a GPRel32 directive, use it.
441   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
442     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
443 
444   // Otherwise, use a label difference.
445   return MachineJumpTableInfo::EK_LabelDifference32;
446 }
447 
448 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
449                                                  SelectionDAG &DAG) const {
450   // If our PIC model is GP relative, use the global offset table as the base.
451   unsigned JTEncoding = getJumpTableEncoding();
452 
453   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
454       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
455     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
456 
457   return Table;
458 }
459 
460 /// This returns the relocation base for the given PIC jumptable, the same as
461 /// getPICJumpTableRelocBase, but as an MCExpr.
462 const MCExpr *
463 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
464                                              unsigned JTI,MCContext &Ctx) const{
465   // The normal PIC reloc base is the label at the start of the jump table.
466   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
467 }
468 
469 bool
470 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
471   const TargetMachine &TM = getTargetMachine();
472   const GlobalValue *GV = GA->getGlobal();
473 
474   // If the address is not even local to this DSO we will have to load it from
475   // a got and then add the offset.
476   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
477     return false;
478 
479   // If the code is position independent we will have to add a base register.
480   if (isPositionIndependent())
481     return false;
482 
483   // Otherwise we can do it.
484   return true;
485 }
486 
487 //===----------------------------------------------------------------------===//
488 //  Optimization Methods
489 //===----------------------------------------------------------------------===//
490 
491 /// If the specified instruction has a constant integer operand and there are
492 /// bits set in that constant that are not demanded, then clear those bits and
493 /// return true.
494 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
495                                             TargetLoweringOpt &TLO) const {
496   SDLoc DL(Op);
497   unsigned Opcode = Op.getOpcode();
498 
499   // Do target-specific constant optimization.
500   if (targetShrinkDemandedConstant(Op, Demanded, TLO))
501     return TLO.New.getNode();
502 
503   // FIXME: ISD::SELECT, ISD::SELECT_CC
504   switch (Opcode) {
505   default:
506     break;
507   case ISD::XOR:
508   case ISD::AND:
509   case ISD::OR: {
510     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
511     if (!Op1C)
512       return false;
513 
514     // If this is a 'not' op, don't touch it because that's a canonical form.
515     const APInt &C = Op1C->getAPIntValue();
516     if (Opcode == ISD::XOR && Demanded.isSubsetOf(C))
517       return false;
518 
519     if (!C.isSubsetOf(Demanded)) {
520       EVT VT = Op.getValueType();
521       SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT);
522       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
523       return TLO.CombineTo(Op, NewOp);
524     }
525 
526     break;
527   }
528   }
529 
530   return false;
531 }
532 
533 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
534 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
535 /// generalized for targets with other types of implicit widening casts.
536 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
537                                       const APInt &Demanded,
538                                       TargetLoweringOpt &TLO) const {
539   assert(Op.getNumOperands() == 2 &&
540          "ShrinkDemandedOp only supports binary operators!");
541   assert(Op.getNode()->getNumValues() == 1 &&
542          "ShrinkDemandedOp only supports nodes with one result!");
543 
544   SelectionDAG &DAG = TLO.DAG;
545   SDLoc dl(Op);
546 
547   // Early return, as this function cannot handle vector types.
548   if (Op.getValueType().isVector())
549     return false;
550 
551   // Don't do this if the node has another user, which may require the
552   // full value.
553   if (!Op.getNode()->hasOneUse())
554     return false;
555 
556   // Search for the smallest integer type with free casts to and from
557   // Op's type. For expedience, just check power-of-2 integer types.
558   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
559   unsigned DemandedSize = Demanded.getActiveBits();
560   unsigned SmallVTBits = DemandedSize;
561   if (!isPowerOf2_32(SmallVTBits))
562     SmallVTBits = NextPowerOf2(SmallVTBits);
563   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
564     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
565     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
566         TLI.isZExtFree(SmallVT, Op.getValueType())) {
567       // We found a type with free casts.
568       SDValue X = DAG.getNode(
569           Op.getOpcode(), dl, SmallVT,
570           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
571           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
572       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
573       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
574       return TLO.CombineTo(Op, Z);
575     }
576   }
577   return false;
578 }
579 
580 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
581                                           DAGCombinerInfo &DCI) const {
582   SelectionDAG &DAG = DCI.DAG;
583   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
584                         !DCI.isBeforeLegalizeOps());
585   KnownBits Known;
586 
587   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
588   if (Simplified) {
589     DCI.AddToWorklist(Op.getNode());
590     DCI.CommitTargetLoweringOpt(TLO);
591   }
592   return Simplified;
593 }
594 
595 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
596                                           KnownBits &Known,
597                                           TargetLoweringOpt &TLO,
598                                           unsigned Depth,
599                                           bool AssumeSingleUse) const {
600   EVT VT = Op.getValueType();
601   APInt DemandedElts = VT.isVector()
602                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
603                            : APInt(1, 1);
604   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
605                               AssumeSingleUse);
606 }
607 
608 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
609 // TODO: Under what circumstances can we create nodes? Constant folding?
610 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
611     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
612     SelectionDAG &DAG, unsigned Depth) const {
613   // Limit search depth.
614   if (Depth >= SelectionDAG::MaxRecursionDepth)
615     return SDValue();
616 
617   // Ignore UNDEFs.
618   if (Op.isUndef())
619     return SDValue();
620 
621   // Not demanding any bits/elts from Op.
622   if (DemandedBits == 0 || DemandedElts == 0)
623     return DAG.getUNDEF(Op.getValueType());
624 
625   unsigned NumElts = DemandedElts.getBitWidth();
626   KnownBits LHSKnown, RHSKnown;
627   switch (Op.getOpcode()) {
628   case ISD::BITCAST: {
629     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
630     EVT SrcVT = Src.getValueType();
631     EVT DstVT = Op.getValueType();
632     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
633     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
634 
635     if (NumSrcEltBits == NumDstEltBits)
636       if (SDValue V = SimplifyMultipleUseDemandedBits(
637               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
638         return DAG.getBitcast(DstVT, V);
639 
640     // TODO - bigendian once we have test coverage.
641     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 &&
642         DAG.getDataLayout().isLittleEndian()) {
643       unsigned Scale = NumDstEltBits / NumSrcEltBits;
644       unsigned NumSrcElts = SrcVT.getVectorNumElements();
645       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
646       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
647       for (unsigned i = 0; i != Scale; ++i) {
648         unsigned Offset = i * NumSrcEltBits;
649         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
650         if (!Sub.isNullValue()) {
651           DemandedSrcBits |= Sub;
652           for (unsigned j = 0; j != NumElts; ++j)
653             if (DemandedElts[j])
654               DemandedSrcElts.setBit((j * Scale) + i);
655         }
656       }
657 
658       if (SDValue V = SimplifyMultipleUseDemandedBits(
659               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
660         return DAG.getBitcast(DstVT, V);
661     }
662 
663     // TODO - bigendian once we have test coverage.
664     if ((NumSrcEltBits % NumDstEltBits) == 0 &&
665         DAG.getDataLayout().isLittleEndian()) {
666       unsigned Scale = NumSrcEltBits / NumDstEltBits;
667       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
668       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
669       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
670       for (unsigned i = 0; i != NumElts; ++i)
671         if (DemandedElts[i]) {
672           unsigned Offset = (i % Scale) * NumDstEltBits;
673           DemandedSrcBits.insertBits(DemandedBits, Offset);
674           DemandedSrcElts.setBit(i / Scale);
675         }
676 
677       if (SDValue V = SimplifyMultipleUseDemandedBits(
678               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
679         return DAG.getBitcast(DstVT, V);
680     }
681 
682     break;
683   }
684   case ISD::AND: {
685     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
686     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
687 
688     // If all of the demanded bits are known 1 on one side, return the other.
689     // These bits cannot contribute to the result of the 'and' in this
690     // context.
691     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
692       return Op.getOperand(0);
693     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
694       return Op.getOperand(1);
695     break;
696   }
697   case ISD::OR: {
698     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
699     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
700 
701     // If all of the demanded bits are known zero on one side, return the
702     // other.  These bits cannot contribute to the result of the 'or' in this
703     // context.
704     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
705       return Op.getOperand(0);
706     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
707       return Op.getOperand(1);
708     break;
709   }
710   case ISD::XOR: {
711     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
712     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
713 
714     // If all of the demanded bits are known zero on one side, return the
715     // other.
716     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
717       return Op.getOperand(0);
718     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
719       return Op.getOperand(1);
720     break;
721   }
722   case ISD::SETCC: {
723     SDValue Op0 = Op.getOperand(0);
724     SDValue Op1 = Op.getOperand(1);
725     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
726     // If (1) we only need the sign-bit, (2) the setcc operands are the same
727     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
728     // -1, we may be able to bypass the setcc.
729     if (DemandedBits.isSignMask() &&
730         Op0.getScalarValueSizeInBits() == DemandedBits.getBitWidth() &&
731         getBooleanContents(Op0.getValueType()) ==
732             BooleanContent::ZeroOrNegativeOneBooleanContent) {
733       // If we're testing X < 0, then this compare isn't needed - just use X!
734       // FIXME: We're limiting to integer types here, but this should also work
735       // if we don't care about FP signed-zero. The use of SETLT with FP means
736       // that we don't care about NaNs.
737       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
738           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
739         return Op0;
740     }
741     break;
742   }
743   case ISD::SIGN_EXTEND_INREG: {
744     // If none of the extended bits are demanded, eliminate the sextinreg.
745     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
746     if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits())
747       return Op.getOperand(0);
748     break;
749   }
750   case ISD::INSERT_VECTOR_ELT: {
751     // If we don't demand the inserted element, return the base vector.
752     SDValue Vec = Op.getOperand(0);
753     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
754     EVT VecVT = Vec.getValueType();
755     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
756         !DemandedElts[CIdx->getZExtValue()])
757       return Vec;
758     break;
759   }
760   case ISD::VECTOR_SHUFFLE: {
761     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
762 
763     // If all the demanded elts are from one operand and are inline,
764     // then we can use the operand directly.
765     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
766     for (unsigned i = 0; i != NumElts; ++i) {
767       int M = ShuffleMask[i];
768       if (M < 0 || !DemandedElts[i])
769         continue;
770       AllUndef = false;
771       IdentityLHS &= (M == (int)i);
772       IdentityRHS &= ((M - NumElts) == i);
773     }
774 
775     if (AllUndef)
776       return DAG.getUNDEF(Op.getValueType());
777     if (IdentityLHS)
778       return Op.getOperand(0);
779     if (IdentityRHS)
780       return Op.getOperand(1);
781     break;
782   }
783   default:
784     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
785       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
786               Op, DemandedBits, DemandedElts, DAG, Depth))
787         return V;
788     break;
789   }
790   return SDValue();
791 }
792 
793 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
794 /// result of Op are ever used downstream. If we can use this information to
795 /// simplify Op, create a new simplified DAG node and return true, returning the
796 /// original and new nodes in Old and New. Otherwise, analyze the expression and
797 /// return a mask of Known bits for the expression (used to simplify the
798 /// caller).  The Known bits may only be accurate for those bits in the
799 /// OriginalDemandedBits and OriginalDemandedElts.
800 bool TargetLowering::SimplifyDemandedBits(
801     SDValue Op, const APInt &OriginalDemandedBits,
802     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
803     unsigned Depth, bool AssumeSingleUse) const {
804   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
805   assert(Op.getScalarValueSizeInBits() == BitWidth &&
806          "Mask size mismatches value type size!");
807 
808   unsigned NumElts = OriginalDemandedElts.getBitWidth();
809   assert((!Op.getValueType().isVector() ||
810           NumElts == Op.getValueType().getVectorNumElements()) &&
811          "Unexpected vector size");
812 
813   APInt DemandedBits = OriginalDemandedBits;
814   APInt DemandedElts = OriginalDemandedElts;
815   SDLoc dl(Op);
816   auto &DL = TLO.DAG.getDataLayout();
817 
818   // Don't know anything.
819   Known = KnownBits(BitWidth);
820 
821   // Undef operand.
822   if (Op.isUndef())
823     return false;
824 
825   if (Op.getOpcode() == ISD::Constant) {
826     // We know all of the bits for a constant!
827     Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
828     Known.Zero = ~Known.One;
829     return false;
830   }
831 
832   // Other users may use these bits.
833   EVT VT = Op.getValueType();
834   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
835     if (Depth != 0) {
836       // If not at the root, Just compute the Known bits to
837       // simplify things downstream.
838       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
839       return false;
840     }
841     // If this is the root being simplified, allow it to have multiple uses,
842     // just set the DemandedBits/Elts to all bits.
843     DemandedBits = APInt::getAllOnesValue(BitWidth);
844     DemandedElts = APInt::getAllOnesValue(NumElts);
845   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
846     // Not demanding any bits/elts from Op.
847     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
848   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
849     // Limit search depth.
850     return false;
851   }
852 
853   KnownBits Known2, KnownOut;
854   switch (Op.getOpcode()) {
855   case ISD::TargetConstant:
856     llvm_unreachable("Can't simplify this node");
857   case ISD::SCALAR_TO_VECTOR: {
858     if (!DemandedElts[0])
859       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
860 
861     KnownBits SrcKnown;
862     SDValue Src = Op.getOperand(0);
863     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
864     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
865     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
866       return true;
867     Known = SrcKnown.zextOrTrunc(BitWidth, false);
868     break;
869   }
870   case ISD::BUILD_VECTOR:
871     // Collect the known bits that are shared by every demanded element.
872     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
873     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
874     return false; // Don't fall through, will infinitely loop.
875   case ISD::LOAD: {
876     LoadSDNode *LD = cast<LoadSDNode>(Op);
877     if (getTargetConstantFromLoad(LD)) {
878       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
879       return false; // Don't fall through, will infinitely loop.
880     }
881     break;
882   }
883   case ISD::INSERT_VECTOR_ELT: {
884     SDValue Vec = Op.getOperand(0);
885     SDValue Scl = Op.getOperand(1);
886     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
887     EVT VecVT = Vec.getValueType();
888 
889     // If index isn't constant, assume we need all vector elements AND the
890     // inserted element.
891     APInt DemandedVecElts(DemandedElts);
892     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
893       unsigned Idx = CIdx->getZExtValue();
894       DemandedVecElts.clearBit(Idx);
895 
896       // Inserted element is not required.
897       if (!DemandedElts[Idx])
898         return TLO.CombineTo(Op, Vec);
899     }
900 
901     KnownBits KnownScl;
902     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
903     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
904     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
905       return true;
906 
907     Known = KnownScl.zextOrTrunc(BitWidth, false);
908 
909     KnownBits KnownVec;
910     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
911                              Depth + 1))
912       return true;
913 
914     if (!!DemandedVecElts) {
915       Known.One &= KnownVec.One;
916       Known.Zero &= KnownVec.Zero;
917     }
918 
919     return false;
920   }
921   case ISD::INSERT_SUBVECTOR: {
922     SDValue Base = Op.getOperand(0);
923     SDValue Sub = Op.getOperand(1);
924     EVT SubVT = Sub.getValueType();
925     unsigned NumSubElts = SubVT.getVectorNumElements();
926 
927     // If index isn't constant, assume we need the original demanded base
928     // elements and ALL the inserted subvector elements.
929     APInt BaseElts = DemandedElts;
930     APInt SubElts = APInt::getAllOnesValue(NumSubElts);
931     if (isa<ConstantSDNode>(Op.getOperand(2))) {
932       const APInt &Idx = Op.getConstantOperandAPInt(2);
933       if (Idx.ule(NumElts - NumSubElts)) {
934         unsigned SubIdx = Idx.getZExtValue();
935         SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
936         BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
937       }
938     }
939 
940     KnownBits KnownSub, KnownBase;
941     if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO,
942                              Depth + 1))
943       return true;
944     if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO,
945                              Depth + 1))
946       return true;
947 
948     Known.Zero.setAllBits();
949     Known.One.setAllBits();
950     if (!!SubElts) {
951         Known.One &= KnownSub.One;
952         Known.Zero &= KnownSub.Zero;
953     }
954     if (!!BaseElts) {
955         Known.One &= KnownBase.One;
956         Known.Zero &= KnownBase.Zero;
957     }
958     break;
959   }
960   case ISD::EXTRACT_SUBVECTOR: {
961     // If index isn't constant, assume we need all the source vector elements.
962     SDValue Src = Op.getOperand(0);
963     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
964     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
965     APInt SrcElts = APInt::getAllOnesValue(NumSrcElts);
966     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
967       // Offset the demanded elts by the subvector index.
968       uint64_t Idx = SubIdx->getZExtValue();
969       SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
970     }
971     if (SimplifyDemandedBits(Src, DemandedBits, SrcElts, Known, TLO, Depth + 1))
972       return true;
973     break;
974   }
975   case ISD::CONCAT_VECTORS: {
976     Known.Zero.setAllBits();
977     Known.One.setAllBits();
978     EVT SubVT = Op.getOperand(0).getValueType();
979     unsigned NumSubVecs = Op.getNumOperands();
980     unsigned NumSubElts = SubVT.getVectorNumElements();
981     for (unsigned i = 0; i != NumSubVecs; ++i) {
982       APInt DemandedSubElts =
983           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
984       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
985                                Known2, TLO, Depth + 1))
986         return true;
987       // Known bits are shared by every demanded subvector element.
988       if (!!DemandedSubElts) {
989         Known.One &= Known2.One;
990         Known.Zero &= Known2.Zero;
991       }
992     }
993     break;
994   }
995   case ISD::VECTOR_SHUFFLE: {
996     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
997 
998     // Collect demanded elements from shuffle operands..
999     APInt DemandedLHS(NumElts, 0);
1000     APInt DemandedRHS(NumElts, 0);
1001     for (unsigned i = 0; i != NumElts; ++i) {
1002       if (!DemandedElts[i])
1003         continue;
1004       int M = ShuffleMask[i];
1005       if (M < 0) {
1006         // For UNDEF elements, we don't know anything about the common state of
1007         // the shuffle result.
1008         DemandedLHS.clearAllBits();
1009         DemandedRHS.clearAllBits();
1010         break;
1011       }
1012       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1013       if (M < (int)NumElts)
1014         DemandedLHS.setBit(M);
1015       else
1016         DemandedRHS.setBit(M - NumElts);
1017     }
1018 
1019     if (!!DemandedLHS || !!DemandedRHS) {
1020       SDValue Op0 = Op.getOperand(0);
1021       SDValue Op1 = Op.getOperand(1);
1022 
1023       Known.Zero.setAllBits();
1024       Known.One.setAllBits();
1025       if (!!DemandedLHS) {
1026         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1027                                  Depth + 1))
1028           return true;
1029         Known.One &= Known2.One;
1030         Known.Zero &= Known2.Zero;
1031       }
1032       if (!!DemandedRHS) {
1033         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1034                                  Depth + 1))
1035           return true;
1036         Known.One &= Known2.One;
1037         Known.Zero &= Known2.Zero;
1038       }
1039 
1040       // Attempt to avoid multi-use ops if we don't need anything from them.
1041       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1042           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1043       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1044           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1045       if (DemandedOp0 || DemandedOp1) {
1046         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1047         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1048         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1049         return TLO.CombineTo(Op, NewOp);
1050       }
1051     }
1052     break;
1053   }
1054   case ISD::AND: {
1055     SDValue Op0 = Op.getOperand(0);
1056     SDValue Op1 = Op.getOperand(1);
1057 
1058     // If the RHS is a constant, check to see if the LHS would be zero without
1059     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1060     // simplify the LHS, here we're using information from the LHS to simplify
1061     // the RHS.
1062     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1063       // Do not increment Depth here; that can cause an infinite loop.
1064       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1065       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1066       if ((LHSKnown.Zero & DemandedBits) ==
1067           (~RHSC->getAPIntValue() & DemandedBits))
1068         return TLO.CombineTo(Op, Op0);
1069 
1070       // If any of the set bits in the RHS are known zero on the LHS, shrink
1071       // the constant.
1072       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO))
1073         return true;
1074 
1075       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1076       // constant, but if this 'and' is only clearing bits that were just set by
1077       // the xor, then this 'and' can be eliminated by shrinking the mask of
1078       // the xor. For example, for a 32-bit X:
1079       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1080       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1081           LHSKnown.One == ~RHSC->getAPIntValue()) {
1082         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1083         return TLO.CombineTo(Op, Xor);
1084       }
1085     }
1086 
1087     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1088                              Depth + 1))
1089       return true;
1090     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1091     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1092                              Known2, TLO, Depth + 1))
1093       return true;
1094     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1095 
1096     // Attempt to avoid multi-use ops if we don't need anything from them.
1097     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1098       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1099           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1100       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1101           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1102       if (DemandedOp0 || DemandedOp1) {
1103         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1104         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1105         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1106         return TLO.CombineTo(Op, NewOp);
1107       }
1108     }
1109 
1110     // If all of the demanded bits are known one on one side, return the other.
1111     // These bits cannot contribute to the result of the 'and'.
1112     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1113       return TLO.CombineTo(Op, Op0);
1114     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1115       return TLO.CombineTo(Op, Op1);
1116     // If all of the demanded bits in the inputs are known zeros, return zero.
1117     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1118       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1119     // If the RHS is a constant, see if we can simplify it.
1120     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO))
1121       return true;
1122     // If the operation can be done in a smaller type, do so.
1123     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1124       return true;
1125 
1126     // Output known-1 bits are only known if set in both the LHS & RHS.
1127     Known.One &= Known2.One;
1128     // Output known-0 are known to be clear if zero in either the LHS | RHS.
1129     Known.Zero |= Known2.Zero;
1130     break;
1131   }
1132   case ISD::OR: {
1133     SDValue Op0 = Op.getOperand(0);
1134     SDValue Op1 = Op.getOperand(1);
1135 
1136     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1137                              Depth + 1))
1138       return true;
1139     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1140     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1141                              Known2, TLO, Depth + 1))
1142       return true;
1143     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1144 
1145     // Attempt to avoid multi-use ops if we don't need anything from them.
1146     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1147       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1148           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1149       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1150           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1151       if (DemandedOp0 || DemandedOp1) {
1152         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1153         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1154         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1155         return TLO.CombineTo(Op, NewOp);
1156       }
1157     }
1158 
1159     // If all of the demanded bits are known zero on one side, return the other.
1160     // These bits cannot contribute to the result of the 'or'.
1161     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1162       return TLO.CombineTo(Op, Op0);
1163     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1164       return TLO.CombineTo(Op, Op1);
1165     // If the RHS is a constant, see if we can simplify it.
1166     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1167       return true;
1168     // If the operation can be done in a smaller type, do so.
1169     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1170       return true;
1171 
1172     // Output known-0 bits are only known if clear in both the LHS & RHS.
1173     Known.Zero &= Known2.Zero;
1174     // Output known-1 are known to be set if set in either the LHS | RHS.
1175     Known.One |= Known2.One;
1176     break;
1177   }
1178   case ISD::XOR: {
1179     SDValue Op0 = Op.getOperand(0);
1180     SDValue Op1 = Op.getOperand(1);
1181 
1182     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1183                              Depth + 1))
1184       return true;
1185     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1186     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1187                              Depth + 1))
1188       return true;
1189     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1190 
1191     // Attempt to avoid multi-use ops if we don't need anything from them.
1192     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1193       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1194           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1195       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1196           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1197       if (DemandedOp0 || DemandedOp1) {
1198         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1199         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1200         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1201         return TLO.CombineTo(Op, NewOp);
1202       }
1203     }
1204 
1205     // If all of the demanded bits are known zero on one side, return the other.
1206     // These bits cannot contribute to the result of the 'xor'.
1207     if (DemandedBits.isSubsetOf(Known.Zero))
1208       return TLO.CombineTo(Op, Op0);
1209     if (DemandedBits.isSubsetOf(Known2.Zero))
1210       return TLO.CombineTo(Op, Op1);
1211     // If the operation can be done in a smaller type, do so.
1212     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1213       return true;
1214 
1215     // If all of the unknown bits are known to be zero on one side or the other
1216     // (but not both) turn this into an *inclusive* or.
1217     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1218     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1219       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1220 
1221     // Output known-0 bits are known if clear or set in both the LHS & RHS.
1222     KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
1223     // Output known-1 are known to be set if set in only one of the LHS, RHS.
1224     KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
1225 
1226     if (ConstantSDNode *C = isConstOrConstSplat(Op1)) {
1227       // If one side is a constant, and all of the known set bits on the other
1228       // side are also set in the constant, turn this into an AND, as we know
1229       // the bits will be cleared.
1230       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1231       // NB: it is okay if more bits are known than are requested
1232       if (C->getAPIntValue() == Known2.One) {
1233         SDValue ANDC =
1234             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1235         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1236       }
1237 
1238       // If the RHS is a constant, see if we can change it. Don't alter a -1
1239       // constant because that's a 'not' op, and that is better for combining
1240       // and codegen.
1241       if (!C->isAllOnesValue()) {
1242         if (DemandedBits.isSubsetOf(C->getAPIntValue())) {
1243           // We're flipping all demanded bits. Flip the undemanded bits too.
1244           SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1245           return TLO.CombineTo(Op, New);
1246         }
1247         // If we can't turn this into a 'not', try to shrink the constant.
1248         if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1249           return true;
1250       }
1251     }
1252 
1253     Known = std::move(KnownOut);
1254     break;
1255   }
1256   case ISD::SELECT:
1257     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1258                              Depth + 1))
1259       return true;
1260     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1261                              Depth + 1))
1262       return true;
1263     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1264     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1265 
1266     // If the operands are constants, see if we can simplify them.
1267     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1268       return true;
1269 
1270     // Only known if known in both the LHS and RHS.
1271     Known.One &= Known2.One;
1272     Known.Zero &= Known2.Zero;
1273     break;
1274   case ISD::SELECT_CC:
1275     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1276                              Depth + 1))
1277       return true;
1278     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1279                              Depth + 1))
1280       return true;
1281     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1282     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1283 
1284     // If the operands are constants, see if we can simplify them.
1285     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1286       return true;
1287 
1288     // Only known if known in both the LHS and RHS.
1289     Known.One &= Known2.One;
1290     Known.Zero &= Known2.Zero;
1291     break;
1292   case ISD::SETCC: {
1293     SDValue Op0 = Op.getOperand(0);
1294     SDValue Op1 = Op.getOperand(1);
1295     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1296     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1297     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1298     // -1, we may be able to bypass the setcc.
1299     if (DemandedBits.isSignMask() &&
1300         Op0.getScalarValueSizeInBits() == BitWidth &&
1301         getBooleanContents(Op0.getValueType()) ==
1302             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1303       // If we're testing X < 0, then this compare isn't needed - just use X!
1304       // FIXME: We're limiting to integer types here, but this should also work
1305       // if we don't care about FP signed-zero. The use of SETLT with FP means
1306       // that we don't care about NaNs.
1307       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1308           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1309         return TLO.CombineTo(Op, Op0);
1310 
1311       // TODO: Should we check for other forms of sign-bit comparisons?
1312       // Examples: X <= -1, X >= 0
1313     }
1314     if (getBooleanContents(Op0.getValueType()) ==
1315             TargetLowering::ZeroOrOneBooleanContent &&
1316         BitWidth > 1)
1317       Known.Zero.setBitsFrom(1);
1318     break;
1319   }
1320   case ISD::SHL: {
1321     SDValue Op0 = Op.getOperand(0);
1322     SDValue Op1 = Op.getOperand(1);
1323 
1324     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1325       // If the shift count is an invalid immediate, don't do anything.
1326       if (SA->getAPIntValue().uge(BitWidth))
1327         break;
1328 
1329       unsigned ShAmt = SA->getZExtValue();
1330       if (ShAmt == 0)
1331         return TLO.CombineTo(Op, Op0);
1332 
1333       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1334       // single shift.  We can do this if the bottom bits (which are shifted
1335       // out) are never demanded.
1336       // TODO - support non-uniform vector amounts.
1337       if (Op0.getOpcode() == ISD::SRL) {
1338         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1339           if (ConstantSDNode *SA2 =
1340                   isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
1341             if (SA2->getAPIntValue().ult(BitWidth)) {
1342               unsigned C1 = SA2->getZExtValue();
1343               unsigned Opc = ISD::SHL;
1344               int Diff = ShAmt - C1;
1345               if (Diff < 0) {
1346                 Diff = -Diff;
1347                 Opc = ISD::SRL;
1348               }
1349 
1350               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType());
1351               return TLO.CombineTo(
1352                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1353             }
1354           }
1355         }
1356       }
1357 
1358       if (SimplifyDemandedBits(Op0, DemandedBits.lshr(ShAmt), DemandedElts,
1359                                Known, TLO, Depth + 1))
1360         return true;
1361 
1362       // Try shrinking the operation as long as the shift amount will still be
1363       // in range.
1364       if ((ShAmt < DemandedBits.getActiveBits()) &&
1365           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1366         return true;
1367 
1368       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1369       // are not demanded. This will likely allow the anyext to be folded away.
1370       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1371         SDValue InnerOp = Op0.getOperand(0);
1372         EVT InnerVT = InnerOp.getValueType();
1373         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1374         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1375             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1376           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1377           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1378             ShTy = InnerVT;
1379           SDValue NarrowShl =
1380               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1381                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1382           return TLO.CombineTo(
1383               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1384         }
1385         // Repeat the SHL optimization above in cases where an extension
1386         // intervenes: (shl (anyext (shr x, c1)), c2) to
1387         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1388         // aren't demanded (as above) and that the shifted upper c1 bits of
1389         // x aren't demanded.
1390         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1391             InnerOp.hasOneUse()) {
1392           if (ConstantSDNode *SA2 =
1393                   isConstOrConstSplat(InnerOp.getOperand(1))) {
1394             unsigned InnerShAmt = SA2->getLimitedValue(InnerBits);
1395             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1396                 DemandedBits.getActiveBits() <=
1397                     (InnerBits - InnerShAmt + ShAmt) &&
1398                 DemandedBits.countTrailingZeros() >= ShAmt) {
1399               SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl,
1400                                                   Op1.getValueType());
1401               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1402                                                InnerOp.getOperand(0));
1403               return TLO.CombineTo(
1404                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1405             }
1406           }
1407         }
1408       }
1409 
1410       Known.Zero <<= ShAmt;
1411       Known.One <<= ShAmt;
1412       // low bits known zero.
1413       Known.Zero.setLowBits(ShAmt);
1414     }
1415     break;
1416   }
1417   case ISD::SRL: {
1418     SDValue Op0 = Op.getOperand(0);
1419     SDValue Op1 = Op.getOperand(1);
1420 
1421     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1422       // If the shift count is an invalid immediate, don't do anything.
1423       if (SA->getAPIntValue().uge(BitWidth))
1424         break;
1425 
1426       unsigned ShAmt = SA->getZExtValue();
1427       if (ShAmt == 0)
1428         return TLO.CombineTo(Op, Op0);
1429 
1430       EVT ShiftVT = Op1.getValueType();
1431       APInt InDemandedMask = (DemandedBits << ShAmt);
1432 
1433       // If the shift is exact, then it does demand the low bits (and knows that
1434       // they are zero).
1435       if (Op->getFlags().hasExact())
1436         InDemandedMask.setLowBits(ShAmt);
1437 
1438       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1439       // single shift.  We can do this if the top bits (which are shifted out)
1440       // are never demanded.
1441       // TODO - support non-uniform vector amounts.
1442       if (Op0.getOpcode() == ISD::SHL) {
1443         if (ConstantSDNode *SA2 =
1444                 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
1445           if (!DemandedBits.intersects(
1446                   APInt::getHighBitsSet(BitWidth, ShAmt))) {
1447             if (SA2->getAPIntValue().ult(BitWidth)) {
1448               unsigned C1 = SA2->getZExtValue();
1449               unsigned Opc = ISD::SRL;
1450               int Diff = ShAmt - C1;
1451               if (Diff < 0) {
1452                 Diff = -Diff;
1453                 Opc = ISD::SHL;
1454               }
1455 
1456               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1457               return TLO.CombineTo(
1458                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1459             }
1460           }
1461         }
1462       }
1463 
1464       // Compute the new bits that are at the top now.
1465       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1466                                Depth + 1))
1467         return true;
1468       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1469       Known.Zero.lshrInPlace(ShAmt);
1470       Known.One.lshrInPlace(ShAmt);
1471 
1472       Known.Zero.setHighBits(ShAmt); // High bits known zero.
1473     }
1474     break;
1475   }
1476   case ISD::SRA: {
1477     SDValue Op0 = Op.getOperand(0);
1478     SDValue Op1 = Op.getOperand(1);
1479 
1480     // If this is an arithmetic shift right and only the low-bit is set, we can
1481     // always convert this into a logical shr, even if the shift amount is
1482     // variable.  The low bit of the shift cannot be an input sign bit unless
1483     // the shift amount is >= the size of the datatype, which is undefined.
1484     if (DemandedBits.isOneValue())
1485       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1486 
1487     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1488       // If the shift count is an invalid immediate, don't do anything.
1489       if (SA->getAPIntValue().uge(BitWidth))
1490         break;
1491 
1492       unsigned ShAmt = SA->getZExtValue();
1493       if (ShAmt == 0)
1494         return TLO.CombineTo(Op, Op0);
1495 
1496       APInt InDemandedMask = (DemandedBits << ShAmt);
1497 
1498       // If the shift is exact, then it does demand the low bits (and knows that
1499       // they are zero).
1500       if (Op->getFlags().hasExact())
1501         InDemandedMask.setLowBits(ShAmt);
1502 
1503       // If any of the demanded bits are produced by the sign extension, we also
1504       // demand the input sign bit.
1505       if (DemandedBits.countLeadingZeros() < ShAmt)
1506         InDemandedMask.setSignBit();
1507 
1508       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1509                                Depth + 1))
1510         return true;
1511       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1512       Known.Zero.lshrInPlace(ShAmt);
1513       Known.One.lshrInPlace(ShAmt);
1514 
1515       // If the input sign bit is known to be zero, or if none of the top bits
1516       // are demanded, turn this into an unsigned shift right.
1517       if (Known.Zero[BitWidth - ShAmt - 1] ||
1518           DemandedBits.countLeadingZeros() >= ShAmt) {
1519         SDNodeFlags Flags;
1520         Flags.setExact(Op->getFlags().hasExact());
1521         return TLO.CombineTo(
1522             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1523       }
1524 
1525       int Log2 = DemandedBits.exactLogBase2();
1526       if (Log2 >= 0) {
1527         // The bit must come from the sign.
1528         SDValue NewSA =
1529             TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType());
1530         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1531       }
1532 
1533       if (Known.One[BitWidth - ShAmt - 1])
1534         // New bits are known one.
1535         Known.One.setHighBits(ShAmt);
1536     }
1537     break;
1538   }
1539   case ISD::FSHL:
1540   case ISD::FSHR: {
1541     SDValue Op0 = Op.getOperand(0);
1542     SDValue Op1 = Op.getOperand(1);
1543     SDValue Op2 = Op.getOperand(2);
1544     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1545 
1546     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1547       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1548 
1549       // For fshl, 0-shift returns the 1st arg.
1550       // For fshr, 0-shift returns the 2nd arg.
1551       if (Amt == 0) {
1552         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1553                                  Known, TLO, Depth + 1))
1554           return true;
1555         break;
1556       }
1557 
1558       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1559       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1560       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1561       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1562       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1563                                Depth + 1))
1564         return true;
1565       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1566                                Depth + 1))
1567         return true;
1568 
1569       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1570       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1571       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1572       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1573       Known.One |= Known2.One;
1574       Known.Zero |= Known2.Zero;
1575     }
1576     break;
1577   }
1578   case ISD::BITREVERSE: {
1579     SDValue Src = Op.getOperand(0);
1580     APInt DemandedSrcBits = DemandedBits.reverseBits();
1581     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1582                              Depth + 1))
1583       return true;
1584     Known.One = Known2.One.reverseBits();
1585     Known.Zero = Known2.Zero.reverseBits();
1586     break;
1587   }
1588   case ISD::BSWAP: {
1589     SDValue Src = Op.getOperand(0);
1590     APInt DemandedSrcBits = DemandedBits.byteSwap();
1591     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1592                              Depth + 1))
1593       return true;
1594     Known.One = Known2.One.byteSwap();
1595     Known.Zero = Known2.Zero.byteSwap();
1596     break;
1597   }
1598   case ISD::SIGN_EXTEND_INREG: {
1599     SDValue Op0 = Op.getOperand(0);
1600     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1601     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1602 
1603     // If we only care about the highest bit, don't bother shifting right.
1604     if (DemandedBits.isSignMask()) {
1605       unsigned NumSignBits = TLO.DAG.ComputeNumSignBits(Op0);
1606       bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1;
1607       // However if the input is already sign extended we expect the sign
1608       // extension to be dropped altogether later and do not simplify.
1609       if (!AlreadySignExtended) {
1610         // Compute the correct shift amount type, which must be getShiftAmountTy
1611         // for scalar types after legalization.
1612         EVT ShiftAmtTy = VT;
1613         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1614           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1615 
1616         SDValue ShiftAmt =
1617             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1618         return TLO.CombineTo(Op,
1619                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1620       }
1621     }
1622 
1623     // If none of the extended bits are demanded, eliminate the sextinreg.
1624     if (DemandedBits.getActiveBits() <= ExVTBits)
1625       return TLO.CombineTo(Op, Op0);
1626 
1627     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1628 
1629     // Since the sign extended bits are demanded, we know that the sign
1630     // bit is demanded.
1631     InputDemandedBits.setBit(ExVTBits - 1);
1632 
1633     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1634       return true;
1635     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1636 
1637     // If the sign bit of the input is known set or clear, then we know the
1638     // top bits of the result.
1639 
1640     // If the input sign bit is known zero, convert this into a zero extension.
1641     if (Known.Zero[ExVTBits - 1])
1642       return TLO.CombineTo(
1643           Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType()));
1644 
1645     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1646     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1647       Known.One.setBitsFrom(ExVTBits);
1648       Known.Zero &= Mask;
1649     } else { // Input sign bit unknown
1650       Known.Zero &= Mask;
1651       Known.One &= Mask;
1652     }
1653     break;
1654   }
1655   case ISD::BUILD_PAIR: {
1656     EVT HalfVT = Op.getOperand(0).getValueType();
1657     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1658 
1659     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1660     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1661 
1662     KnownBits KnownLo, KnownHi;
1663 
1664     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1665       return true;
1666 
1667     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1668       return true;
1669 
1670     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1671                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1672 
1673     Known.One = KnownLo.One.zext(BitWidth) |
1674                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1675     break;
1676   }
1677   case ISD::ZERO_EXTEND:
1678   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1679     SDValue Src = Op.getOperand(0);
1680     EVT SrcVT = Src.getValueType();
1681     unsigned InBits = SrcVT.getScalarSizeInBits();
1682     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1683     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1684 
1685     // If none of the top bits are demanded, convert this into an any_extend.
1686     if (DemandedBits.getActiveBits() <= InBits) {
1687       // If we only need the non-extended bits of the bottom element
1688       // then we can just bitcast to the result.
1689       if (IsVecInReg && DemandedElts == 1 &&
1690           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1691           TLO.DAG.getDataLayout().isLittleEndian())
1692         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1693 
1694       unsigned Opc =
1695           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1696       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1697         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1698     }
1699 
1700     APInt InDemandedBits = DemandedBits.trunc(InBits);
1701     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1702     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1703                              Depth + 1))
1704       return true;
1705     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1706     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1707     Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
1708     break;
1709   }
1710   case ISD::SIGN_EXTEND:
1711   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1712     SDValue Src = Op.getOperand(0);
1713     EVT SrcVT = Src.getValueType();
1714     unsigned InBits = SrcVT.getScalarSizeInBits();
1715     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1716     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1717 
1718     // If none of the top bits are demanded, convert this into an any_extend.
1719     if (DemandedBits.getActiveBits() <= InBits) {
1720       // If we only need the non-extended bits of the bottom element
1721       // then we can just bitcast to the result.
1722       if (IsVecInReg && DemandedElts == 1 &&
1723           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1724           TLO.DAG.getDataLayout().isLittleEndian())
1725         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1726 
1727       unsigned Opc =
1728           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1729       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1730         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1731     }
1732 
1733     APInt InDemandedBits = DemandedBits.trunc(InBits);
1734     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1735 
1736     // Since some of the sign extended bits are demanded, we know that the sign
1737     // bit is demanded.
1738     InDemandedBits.setBit(InBits - 1);
1739 
1740     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1741                              Depth + 1))
1742       return true;
1743     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1744     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1745 
1746     // If the sign bit is known one, the top bits match.
1747     Known = Known.sext(BitWidth);
1748 
1749     // If the sign bit is known zero, convert this to a zero extend.
1750     if (Known.isNonNegative()) {
1751       unsigned Opc =
1752           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
1753       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1754         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1755     }
1756     break;
1757   }
1758   case ISD::ANY_EXTEND:
1759   case ISD::ANY_EXTEND_VECTOR_INREG: {
1760     SDValue Src = Op.getOperand(0);
1761     EVT SrcVT = Src.getValueType();
1762     unsigned InBits = SrcVT.getScalarSizeInBits();
1763     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1764     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
1765 
1766     // If we only need the bottom element then we can just bitcast.
1767     // TODO: Handle ANY_EXTEND?
1768     if (IsVecInReg && DemandedElts == 1 &&
1769         VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1770         TLO.DAG.getDataLayout().isLittleEndian())
1771       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1772 
1773     APInt InDemandedBits = DemandedBits.trunc(InBits);
1774     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1775     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1776                              Depth + 1))
1777       return true;
1778     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1779     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1780     Known = Known.zext(BitWidth, false /* => any extend */);
1781     break;
1782   }
1783   case ISD::TRUNCATE: {
1784     SDValue Src = Op.getOperand(0);
1785 
1786     // Simplify the input, using demanded bit information, and compute the known
1787     // zero/one bits live out.
1788     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
1789     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
1790     if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1))
1791       return true;
1792     Known = Known.trunc(BitWidth);
1793 
1794     // Attempt to avoid multi-use ops if we don't need anything from them.
1795     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1796             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
1797       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
1798 
1799     // If the input is only used by this truncate, see if we can shrink it based
1800     // on the known demanded bits.
1801     if (Src.getNode()->hasOneUse()) {
1802       switch (Src.getOpcode()) {
1803       default:
1804         break;
1805       case ISD::SRL:
1806         // Shrink SRL by a constant if none of the high bits shifted in are
1807         // demanded.
1808         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
1809           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1810           // undesirable.
1811           break;
1812 
1813         SDValue ShAmt = Src.getOperand(1);
1814         auto *ShAmtC = dyn_cast<ConstantSDNode>(ShAmt);
1815         if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth))
1816           break;
1817         uint64_t ShVal = ShAmtC->getZExtValue();
1818 
1819         APInt HighBits =
1820             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
1821         HighBits.lshrInPlace(ShVal);
1822         HighBits = HighBits.trunc(BitWidth);
1823 
1824         if (!(HighBits & DemandedBits)) {
1825           // None of the shifted in bits are needed.  Add a truncate of the
1826           // shift input, then shift it.
1827           if (TLO.LegalTypes())
1828             ShAmt = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL));
1829           SDValue NewTrunc =
1830               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
1831           return TLO.CombineTo(
1832               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, ShAmt));
1833         }
1834         break;
1835       }
1836     }
1837 
1838     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1839     break;
1840   }
1841   case ISD::AssertZext: {
1842     // AssertZext demands all of the high bits, plus any of the low bits
1843     // demanded by its users.
1844     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1845     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
1846     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
1847                              TLO, Depth + 1))
1848       return true;
1849     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1850 
1851     Known.Zero |= ~InMask;
1852     break;
1853   }
1854   case ISD::EXTRACT_VECTOR_ELT: {
1855     SDValue Src = Op.getOperand(0);
1856     SDValue Idx = Op.getOperand(1);
1857     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1858     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
1859 
1860     // Demand the bits from every vector element without a constant index.
1861     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
1862     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
1863       if (CIdx->getAPIntValue().ult(NumSrcElts))
1864         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
1865 
1866     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
1867     // anything about the extended bits.
1868     APInt DemandedSrcBits = DemandedBits;
1869     if (BitWidth > EltBitWidth)
1870       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
1871 
1872     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
1873                              Depth + 1))
1874       return true;
1875 
1876     // Attempt to avoid multi-use ops if we don't need anything from them.
1877     if (!DemandedSrcBits.isAllOnesValue() ||
1878         !DemandedSrcElts.isAllOnesValue()) {
1879       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1880               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
1881         SDValue NewOp =
1882             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
1883         return TLO.CombineTo(Op, NewOp);
1884       }
1885     }
1886 
1887     Known = Known2;
1888     if (BitWidth > EltBitWidth)
1889       Known = Known.zext(BitWidth, false /* => any extend */);
1890     break;
1891   }
1892   case ISD::BITCAST: {
1893     SDValue Src = Op.getOperand(0);
1894     EVT SrcVT = Src.getValueType();
1895     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
1896 
1897     // If this is an FP->Int bitcast and if the sign bit is the only
1898     // thing demanded, turn this into a FGETSIGN.
1899     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
1900         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
1901         SrcVT.isFloatingPoint()) {
1902       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
1903       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1904       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
1905           SrcVT != MVT::f128) {
1906         // Cannot eliminate/lower SHL for f128 yet.
1907         EVT Ty = OpVTLegal ? VT : MVT::i32;
1908         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1909         // place.  We expect the SHL to be eliminated by other optimizations.
1910         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
1911         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
1912         if (!OpVTLegal && OpVTSizeInBits > 32)
1913           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
1914         unsigned ShVal = Op.getValueSizeInBits() - 1;
1915         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
1916         return TLO.CombineTo(Op,
1917                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
1918       }
1919     }
1920 
1921     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
1922     // Demand the elt/bit if any of the original elts/bits are demanded.
1923     // TODO - bigendian once we have test coverage.
1924     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 &&
1925         TLO.DAG.getDataLayout().isLittleEndian()) {
1926       unsigned Scale = BitWidth / NumSrcEltBits;
1927       unsigned NumSrcElts = SrcVT.getVectorNumElements();
1928       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
1929       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
1930       for (unsigned i = 0; i != Scale; ++i) {
1931         unsigned Offset = i * NumSrcEltBits;
1932         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
1933         if (!Sub.isNullValue()) {
1934           DemandedSrcBits |= Sub;
1935           for (unsigned j = 0; j != NumElts; ++j)
1936             if (DemandedElts[j])
1937               DemandedSrcElts.setBit((j * Scale) + i);
1938         }
1939       }
1940 
1941       APInt KnownSrcUndef, KnownSrcZero;
1942       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
1943                                      KnownSrcZero, TLO, Depth + 1))
1944         return true;
1945 
1946       KnownBits KnownSrcBits;
1947       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
1948                                KnownSrcBits, TLO, Depth + 1))
1949         return true;
1950     } else if ((NumSrcEltBits % BitWidth) == 0 &&
1951                TLO.DAG.getDataLayout().isLittleEndian()) {
1952       unsigned Scale = NumSrcEltBits / BitWidth;
1953       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1954       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
1955       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
1956       for (unsigned i = 0; i != NumElts; ++i)
1957         if (DemandedElts[i]) {
1958           unsigned Offset = (i % Scale) * BitWidth;
1959           DemandedSrcBits.insertBits(DemandedBits, Offset);
1960           DemandedSrcElts.setBit(i / Scale);
1961         }
1962 
1963       if (SrcVT.isVector()) {
1964         APInt KnownSrcUndef, KnownSrcZero;
1965         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
1966                                        KnownSrcZero, TLO, Depth + 1))
1967           return true;
1968       }
1969 
1970       KnownBits KnownSrcBits;
1971       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
1972                                KnownSrcBits, TLO, Depth + 1))
1973         return true;
1974     }
1975 
1976     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
1977     // recursive call where Known may be useful to the caller.
1978     if (Depth > 0) {
1979       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1980       return false;
1981     }
1982     break;
1983   }
1984   case ISD::ADD:
1985   case ISD::MUL:
1986   case ISD::SUB: {
1987     // Add, Sub, and Mul don't demand any bits in positions beyond that
1988     // of the highest bit demanded of them.
1989     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
1990     SDNodeFlags Flags = Op.getNode()->getFlags();
1991     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
1992     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
1993     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
1994                              Depth + 1) ||
1995         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
1996                              Depth + 1) ||
1997         // See if the operation should be performed at a smaller bit width.
1998         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
1999       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2000         // Disable the nsw and nuw flags. We can no longer guarantee that we
2001         // won't wrap after simplification.
2002         Flags.setNoSignedWrap(false);
2003         Flags.setNoUnsignedWrap(false);
2004         SDValue NewOp =
2005             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2006         return TLO.CombineTo(Op, NewOp);
2007       }
2008       return true;
2009     }
2010 
2011     // Attempt to avoid multi-use ops if we don't need anything from them.
2012     if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
2013       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2014           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2015       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2016           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2017       if (DemandedOp0 || DemandedOp1) {
2018         Flags.setNoSignedWrap(false);
2019         Flags.setNoUnsignedWrap(false);
2020         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2021         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2022         SDValue NewOp =
2023             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2024         return TLO.CombineTo(Op, NewOp);
2025       }
2026     }
2027 
2028     // If we have a constant operand, we may be able to turn it into -1 if we
2029     // do not demand the high bits. This can make the constant smaller to
2030     // encode, allow more general folding, or match specialized instruction
2031     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2032     // is probably not useful (and could be detrimental).
2033     ConstantSDNode *C = isConstOrConstSplat(Op1);
2034     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2035     if (C && !C->isAllOnesValue() && !C->isOne() &&
2036         (C->getAPIntValue() | HighMask).isAllOnesValue()) {
2037       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2038       // Disable the nsw and nuw flags. We can no longer guarantee that we
2039       // won't wrap after simplification.
2040       Flags.setNoSignedWrap(false);
2041       Flags.setNoUnsignedWrap(false);
2042       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2043       return TLO.CombineTo(Op, NewOp);
2044     }
2045 
2046     LLVM_FALLTHROUGH;
2047   }
2048   default:
2049     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2050       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2051                                             Known, TLO, Depth))
2052         return true;
2053       break;
2054     }
2055 
2056     // Just use computeKnownBits to compute output bits.
2057     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2058     break;
2059   }
2060 
2061   // If we know the value of all of the demanded bits, return this as a
2062   // constant.
2063   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2064     // Avoid folding to a constant if any OpaqueConstant is involved.
2065     const SDNode *N = Op.getNode();
2066     for (SDNodeIterator I = SDNodeIterator::begin(N),
2067                         E = SDNodeIterator::end(N);
2068          I != E; ++I) {
2069       SDNode *Op = *I;
2070       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2071         if (C->isOpaque())
2072           return false;
2073     }
2074     // TODO: Handle float bits as well.
2075     if (VT.isInteger())
2076       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2077   }
2078 
2079   return false;
2080 }
2081 
2082 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2083                                                 const APInt &DemandedElts,
2084                                                 APInt &KnownUndef,
2085                                                 APInt &KnownZero,
2086                                                 DAGCombinerInfo &DCI) const {
2087   SelectionDAG &DAG = DCI.DAG;
2088   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2089                         !DCI.isBeforeLegalizeOps());
2090 
2091   bool Simplified =
2092       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2093   if (Simplified) {
2094     DCI.AddToWorklist(Op.getNode());
2095     DCI.CommitTargetLoweringOpt(TLO);
2096   }
2097 
2098   return Simplified;
2099 }
2100 
2101 /// Given a vector binary operation and known undefined elements for each input
2102 /// operand, compute whether each element of the output is undefined.
2103 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2104                                          const APInt &UndefOp0,
2105                                          const APInt &UndefOp1) {
2106   EVT VT = BO.getValueType();
2107   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2108          "Vector binop only");
2109 
2110   EVT EltVT = VT.getVectorElementType();
2111   unsigned NumElts = VT.getVectorNumElements();
2112   assert(UndefOp0.getBitWidth() == NumElts &&
2113          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2114 
2115   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2116                                    const APInt &UndefVals) {
2117     if (UndefVals[Index])
2118       return DAG.getUNDEF(EltVT);
2119 
2120     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2121       // Try hard to make sure that the getNode() call is not creating temporary
2122       // nodes. Ignore opaque integers because they do not constant fold.
2123       SDValue Elt = BV->getOperand(Index);
2124       auto *C = dyn_cast<ConstantSDNode>(Elt);
2125       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2126         return Elt;
2127     }
2128 
2129     return SDValue();
2130   };
2131 
2132   APInt KnownUndef = APInt::getNullValue(NumElts);
2133   for (unsigned i = 0; i != NumElts; ++i) {
2134     // If both inputs for this element are either constant or undef and match
2135     // the element type, compute the constant/undef result for this element of
2136     // the vector.
2137     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2138     // not handle FP constants. The code within getNode() should be refactored
2139     // to avoid the danger of creating a bogus temporary node here.
2140     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2141     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2142     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2143       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2144         KnownUndef.setBit(i);
2145   }
2146   return KnownUndef;
2147 }
2148 
2149 bool TargetLowering::SimplifyDemandedVectorElts(
2150     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2151     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2152     bool AssumeSingleUse) const {
2153   EVT VT = Op.getValueType();
2154   APInt DemandedElts = OriginalDemandedElts;
2155   unsigned NumElts = DemandedElts.getBitWidth();
2156   assert(VT.isVector() && "Expected vector op");
2157   assert(VT.getVectorNumElements() == NumElts &&
2158          "Mask size mismatches value type element count!");
2159 
2160   KnownUndef = KnownZero = APInt::getNullValue(NumElts);
2161 
2162   // Undef operand.
2163   if (Op.isUndef()) {
2164     KnownUndef.setAllBits();
2165     return false;
2166   }
2167 
2168   // If Op has other users, assume that all elements are needed.
2169   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2170     DemandedElts.setAllBits();
2171 
2172   // Not demanding any elements from Op.
2173   if (DemandedElts == 0) {
2174     KnownUndef.setAllBits();
2175     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2176   }
2177 
2178   // Limit search depth.
2179   if (Depth >= SelectionDAG::MaxRecursionDepth)
2180     return false;
2181 
2182   SDLoc DL(Op);
2183   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2184 
2185   switch (Op.getOpcode()) {
2186   case ISD::SCALAR_TO_VECTOR: {
2187     if (!DemandedElts[0]) {
2188       KnownUndef.setAllBits();
2189       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2190     }
2191     KnownUndef.setHighBits(NumElts - 1);
2192     break;
2193   }
2194   case ISD::BITCAST: {
2195     SDValue Src = Op.getOperand(0);
2196     EVT SrcVT = Src.getValueType();
2197 
2198     // We only handle vectors here.
2199     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2200     if (!SrcVT.isVector())
2201       break;
2202 
2203     // Fast handling of 'identity' bitcasts.
2204     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2205     if (NumSrcElts == NumElts)
2206       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2207                                         KnownZero, TLO, Depth + 1);
2208 
2209     APInt SrcZero, SrcUndef;
2210     APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
2211 
2212     // Bitcast from 'large element' src vector to 'small element' vector, we
2213     // must demand a source element if any DemandedElt maps to it.
2214     if ((NumElts % NumSrcElts) == 0) {
2215       unsigned Scale = NumElts / NumSrcElts;
2216       for (unsigned i = 0; i != NumElts; ++i)
2217         if (DemandedElts[i])
2218           SrcDemandedElts.setBit(i / Scale);
2219 
2220       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2221                                      TLO, Depth + 1))
2222         return true;
2223 
2224       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2225       // of the large element.
2226       // TODO - bigendian once we have test coverage.
2227       if (TLO.DAG.getDataLayout().isLittleEndian()) {
2228         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2229         APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
2230         for (unsigned i = 0; i != NumElts; ++i)
2231           if (DemandedElts[i]) {
2232             unsigned Ofs = (i % Scale) * EltSizeInBits;
2233             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2234           }
2235 
2236         KnownBits Known;
2237         if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1))
2238           return true;
2239       }
2240 
2241       // If the src element is zero/undef then all the output elements will be -
2242       // only demanded elements are guaranteed to be correct.
2243       for (unsigned i = 0; i != NumSrcElts; ++i) {
2244         if (SrcDemandedElts[i]) {
2245           if (SrcZero[i])
2246             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2247           if (SrcUndef[i])
2248             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2249         }
2250       }
2251     }
2252 
2253     // Bitcast from 'small element' src vector to 'large element' vector, we
2254     // demand all smaller source elements covered by the larger demanded element
2255     // of this vector.
2256     if ((NumSrcElts % NumElts) == 0) {
2257       unsigned Scale = NumSrcElts / NumElts;
2258       for (unsigned i = 0; i != NumElts; ++i)
2259         if (DemandedElts[i])
2260           SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
2261 
2262       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2263                                      TLO, Depth + 1))
2264         return true;
2265 
2266       // If all the src elements covering an output element are zero/undef, then
2267       // the output element will be as well, assuming it was demanded.
2268       for (unsigned i = 0; i != NumElts; ++i) {
2269         if (DemandedElts[i]) {
2270           if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
2271             KnownZero.setBit(i);
2272           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
2273             KnownUndef.setBit(i);
2274         }
2275       }
2276     }
2277     break;
2278   }
2279   case ISD::BUILD_VECTOR: {
2280     // Check all elements and simplify any unused elements with UNDEF.
2281     if (!DemandedElts.isAllOnesValue()) {
2282       // Don't simplify BROADCASTS.
2283       if (llvm::any_of(Op->op_values(),
2284                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2285         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2286         bool Updated = false;
2287         for (unsigned i = 0; i != NumElts; ++i) {
2288           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2289             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2290             KnownUndef.setBit(i);
2291             Updated = true;
2292           }
2293         }
2294         if (Updated)
2295           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2296       }
2297     }
2298     for (unsigned i = 0; i != NumElts; ++i) {
2299       SDValue SrcOp = Op.getOperand(i);
2300       if (SrcOp.isUndef()) {
2301         KnownUndef.setBit(i);
2302       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2303                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2304         KnownZero.setBit(i);
2305       }
2306     }
2307     break;
2308   }
2309   case ISD::CONCAT_VECTORS: {
2310     EVT SubVT = Op.getOperand(0).getValueType();
2311     unsigned NumSubVecs = Op.getNumOperands();
2312     unsigned NumSubElts = SubVT.getVectorNumElements();
2313     for (unsigned i = 0; i != NumSubVecs; ++i) {
2314       SDValue SubOp = Op.getOperand(i);
2315       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2316       APInt SubUndef, SubZero;
2317       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2318                                      Depth + 1))
2319         return true;
2320       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2321       KnownZero.insertBits(SubZero, i * NumSubElts);
2322     }
2323     break;
2324   }
2325   case ISD::INSERT_SUBVECTOR: {
2326     if (!isa<ConstantSDNode>(Op.getOperand(2)))
2327       break;
2328     SDValue Base = Op.getOperand(0);
2329     SDValue Sub = Op.getOperand(1);
2330     EVT SubVT = Sub.getValueType();
2331     unsigned NumSubElts = SubVT.getVectorNumElements();
2332     const APInt &Idx = Op.getConstantOperandAPInt(2);
2333     if (Idx.ugt(NumElts - NumSubElts))
2334       break;
2335     unsigned SubIdx = Idx.getZExtValue();
2336     APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
2337     APInt SubUndef, SubZero;
2338     if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO,
2339                                    Depth + 1))
2340       return true;
2341     APInt BaseElts = DemandedElts;
2342     BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
2343 
2344     // If none of the base operand elements are demanded, replace it with undef.
2345     if (!BaseElts && !Base.isUndef())
2346       return TLO.CombineTo(Op,
2347                            TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2348                                            TLO.DAG.getUNDEF(VT),
2349                                            Op.getOperand(1),
2350                                            Op.getOperand(2)));
2351 
2352     if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO,
2353                                    Depth + 1))
2354       return true;
2355     KnownUndef.insertBits(SubUndef, SubIdx);
2356     KnownZero.insertBits(SubZero, SubIdx);
2357     break;
2358   }
2359   case ISD::EXTRACT_SUBVECTOR: {
2360     SDValue Src = Op.getOperand(0);
2361     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2362     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2363     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2364       // Offset the demanded elts by the subvector index.
2365       uint64_t Idx = SubIdx->getZExtValue();
2366       APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2367       APInt SrcUndef, SrcZero;
2368       if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO,
2369                                      Depth + 1))
2370         return true;
2371       KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2372       KnownZero = SrcZero.extractBits(NumElts, Idx);
2373     }
2374     break;
2375   }
2376   case ISD::INSERT_VECTOR_ELT: {
2377     SDValue Vec = Op.getOperand(0);
2378     SDValue Scl = Op.getOperand(1);
2379     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2380 
2381     // For a legal, constant insertion index, if we don't need this insertion
2382     // then strip it, else remove it from the demanded elts.
2383     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2384       unsigned Idx = CIdx->getZExtValue();
2385       if (!DemandedElts[Idx])
2386         return TLO.CombineTo(Op, Vec);
2387 
2388       APInt DemandedVecElts(DemandedElts);
2389       DemandedVecElts.clearBit(Idx);
2390       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2391                                      KnownZero, TLO, Depth + 1))
2392         return true;
2393 
2394       KnownUndef.clearBit(Idx);
2395       if (Scl.isUndef())
2396         KnownUndef.setBit(Idx);
2397 
2398       KnownZero.clearBit(Idx);
2399       if (isNullConstant(Scl) || isNullFPConstant(Scl))
2400         KnownZero.setBit(Idx);
2401       break;
2402     }
2403 
2404     APInt VecUndef, VecZero;
2405     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2406                                    Depth + 1))
2407       return true;
2408     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2409     break;
2410   }
2411   case ISD::VSELECT: {
2412     // Try to transform the select condition based on the current demanded
2413     // elements.
2414     // TODO: If a condition element is undef, we can choose from one arm of the
2415     //       select (and if one arm is undef, then we can propagate that to the
2416     //       result).
2417     // TODO - add support for constant vselect masks (see IR version of this).
2418     APInt UnusedUndef, UnusedZero;
2419     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2420                                    UnusedZero, TLO, Depth + 1))
2421       return true;
2422 
2423     // See if we can simplify either vselect operand.
2424     APInt DemandedLHS(DemandedElts);
2425     APInt DemandedRHS(DemandedElts);
2426     APInt UndefLHS, ZeroLHS;
2427     APInt UndefRHS, ZeroRHS;
2428     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2429                                    ZeroLHS, TLO, Depth + 1))
2430       return true;
2431     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2432                                    ZeroRHS, TLO, Depth + 1))
2433       return true;
2434 
2435     KnownUndef = UndefLHS & UndefRHS;
2436     KnownZero = ZeroLHS & ZeroRHS;
2437     break;
2438   }
2439   case ISD::VECTOR_SHUFFLE: {
2440     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2441 
2442     // Collect demanded elements from shuffle operands..
2443     APInt DemandedLHS(NumElts, 0);
2444     APInt DemandedRHS(NumElts, 0);
2445     for (unsigned i = 0; i != NumElts; ++i) {
2446       int M = ShuffleMask[i];
2447       if (M < 0 || !DemandedElts[i])
2448         continue;
2449       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2450       if (M < (int)NumElts)
2451         DemandedLHS.setBit(M);
2452       else
2453         DemandedRHS.setBit(M - NumElts);
2454     }
2455 
2456     // See if we can simplify either shuffle operand.
2457     APInt UndefLHS, ZeroLHS;
2458     APInt UndefRHS, ZeroRHS;
2459     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2460                                    ZeroLHS, TLO, Depth + 1))
2461       return true;
2462     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2463                                    ZeroRHS, TLO, Depth + 1))
2464       return true;
2465 
2466     // Simplify mask using undef elements from LHS/RHS.
2467     bool Updated = false;
2468     bool IdentityLHS = true, IdentityRHS = true;
2469     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2470     for (unsigned i = 0; i != NumElts; ++i) {
2471       int &M = NewMask[i];
2472       if (M < 0)
2473         continue;
2474       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2475           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2476         Updated = true;
2477         M = -1;
2478       }
2479       IdentityLHS &= (M < 0) || (M == (int)i);
2480       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2481     }
2482 
2483     // Update legal shuffle masks based on demanded elements if it won't reduce
2484     // to Identity which can cause premature removal of the shuffle mask.
2485     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
2486       SDValue LegalShuffle =
2487           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
2488                                   NewMask, TLO.DAG);
2489       if (LegalShuffle)
2490         return TLO.CombineTo(Op, LegalShuffle);
2491     }
2492 
2493     // Propagate undef/zero elements from LHS/RHS.
2494     for (unsigned i = 0; i != NumElts; ++i) {
2495       int M = ShuffleMask[i];
2496       if (M < 0) {
2497         KnownUndef.setBit(i);
2498       } else if (M < (int)NumElts) {
2499         if (UndefLHS[M])
2500           KnownUndef.setBit(i);
2501         if (ZeroLHS[M])
2502           KnownZero.setBit(i);
2503       } else {
2504         if (UndefRHS[M - NumElts])
2505           KnownUndef.setBit(i);
2506         if (ZeroRHS[M - NumElts])
2507           KnownZero.setBit(i);
2508       }
2509     }
2510     break;
2511   }
2512   case ISD::ANY_EXTEND_VECTOR_INREG:
2513   case ISD::SIGN_EXTEND_VECTOR_INREG:
2514   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2515     APInt SrcUndef, SrcZero;
2516     SDValue Src = Op.getOperand(0);
2517     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2518     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2519     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2520                                    Depth + 1))
2521       return true;
2522     KnownZero = SrcZero.zextOrTrunc(NumElts);
2523     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2524 
2525     if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2526         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2527         DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) {
2528       // aext - if we just need the bottom element then we can bitcast.
2529       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2530     }
2531 
2532     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2533       // zext(undef) upper bits are guaranteed to be zero.
2534       if (DemandedElts.isSubsetOf(KnownUndef))
2535         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2536       KnownUndef.clearAllBits();
2537     }
2538     break;
2539   }
2540 
2541   // TODO: There are more binop opcodes that could be handled here - MUL, MIN,
2542   // MAX, saturated math, etc.
2543   case ISD::OR:
2544   case ISD::XOR:
2545   case ISD::ADD:
2546   case ISD::SUB:
2547   case ISD::FADD:
2548   case ISD::FSUB:
2549   case ISD::FMUL:
2550   case ISD::FDIV:
2551   case ISD::FREM: {
2552     APInt UndefRHS, ZeroRHS;
2553     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2554                                    ZeroRHS, TLO, Depth + 1))
2555       return true;
2556     APInt UndefLHS, ZeroLHS;
2557     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2558                                    ZeroLHS, TLO, Depth + 1))
2559       return true;
2560 
2561     KnownZero = ZeroLHS & ZeroRHS;
2562     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2563     break;
2564   }
2565   case ISD::SHL:
2566   case ISD::SRL:
2567   case ISD::SRA:
2568   case ISD::ROTL:
2569   case ISD::ROTR: {
2570     APInt UndefRHS, ZeroRHS;
2571     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2572                                    ZeroRHS, TLO, Depth + 1))
2573       return true;
2574     APInt UndefLHS, ZeroLHS;
2575     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2576                                    ZeroLHS, TLO, Depth + 1))
2577       return true;
2578 
2579     KnownZero = ZeroLHS;
2580     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2581     break;
2582   }
2583   case ISD::MUL:
2584   case ISD::AND: {
2585     APInt SrcUndef, SrcZero;
2586     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef,
2587                                    SrcZero, TLO, Depth + 1))
2588       return true;
2589     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2590                                    KnownZero, TLO, Depth + 1))
2591       return true;
2592 
2593     // If either side has a zero element, then the result element is zero, even
2594     // if the other is an UNDEF.
2595     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2596     // and then handle 'and' nodes with the rest of the binop opcodes.
2597     KnownZero |= SrcZero;
2598     KnownUndef &= SrcUndef;
2599     KnownUndef &= ~KnownZero;
2600     break;
2601   }
2602   case ISD::TRUNCATE:
2603   case ISD::SIGN_EXTEND:
2604   case ISD::ZERO_EXTEND:
2605     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2606                                    KnownZero, TLO, Depth + 1))
2607       return true;
2608 
2609     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2610       // zext(undef) upper bits are guaranteed to be zero.
2611       if (DemandedElts.isSubsetOf(KnownUndef))
2612         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2613       KnownUndef.clearAllBits();
2614     }
2615     break;
2616   default: {
2617     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2618       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2619                                                   KnownZero, TLO, Depth))
2620         return true;
2621     } else {
2622       KnownBits Known;
2623       APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
2624       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
2625                                TLO, Depth, AssumeSingleUse))
2626         return true;
2627     }
2628     break;
2629   }
2630   }
2631   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
2632 
2633   // Constant fold all undef cases.
2634   // TODO: Handle zero cases as well.
2635   if (DemandedElts.isSubsetOf(KnownUndef))
2636     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2637 
2638   return false;
2639 }
2640 
2641 /// Determine which of the bits specified in Mask are known to be either zero or
2642 /// one and return them in the Known.
2643 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
2644                                                    KnownBits &Known,
2645                                                    const APInt &DemandedElts,
2646                                                    const SelectionDAG &DAG,
2647                                                    unsigned Depth) const {
2648   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2649           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2650           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2651           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2652          "Should use MaskedValueIsZero if you don't know whether Op"
2653          " is a target node!");
2654   Known.resetAll();
2655 }
2656 
2657 void TargetLowering::computeKnownBitsForTargetInstr(
2658     GISelKnownBits &Analysis, Register R, KnownBits &Known,
2659     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
2660     unsigned Depth) const {
2661   Known.resetAll();
2662 }
2663 
2664 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
2665                                                    KnownBits &Known,
2666                                                    const APInt &DemandedElts,
2667                                                    const SelectionDAG &DAG,
2668                                                    unsigned Depth) const {
2669   assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex");
2670 
2671   if (unsigned Align = DAG.InferPtrAlignment(Op)) {
2672     // The low bits are known zero if the pointer is aligned.
2673     Known.Zero.setLowBits(Log2_32(Align));
2674   }
2675 }
2676 
2677 /// This method can be implemented by targets that want to expose additional
2678 /// information about sign bits to the DAG Combiner.
2679 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
2680                                                          const APInt &,
2681                                                          const SelectionDAG &,
2682                                                          unsigned Depth) const {
2683   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2684           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2685           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2686           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2687          "Should use ComputeNumSignBits if you don't know whether Op"
2688          " is a target node!");
2689   return 1;
2690 }
2691 
2692 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
2693     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
2694     TargetLoweringOpt &TLO, unsigned Depth) const {
2695   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2696           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2697           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2698           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2699          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
2700          " is a target node!");
2701   return false;
2702 }
2703 
2704 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
2705     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2706     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
2707   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2708           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2709           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2710           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2711          "Should use SimplifyDemandedBits if you don't know whether Op"
2712          " is a target node!");
2713   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
2714   return false;
2715 }
2716 
2717 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
2718     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2719     SelectionDAG &DAG, unsigned Depth) const {
2720   assert(
2721       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2722        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2723        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2724        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2725       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
2726       " is a target node!");
2727   return SDValue();
2728 }
2729 
2730 SDValue
2731 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
2732                                         SDValue N1, MutableArrayRef<int> Mask,
2733                                         SelectionDAG &DAG) const {
2734   bool LegalMask = isShuffleMaskLegal(Mask, VT);
2735   if (!LegalMask) {
2736     std::swap(N0, N1);
2737     ShuffleVectorSDNode::commuteMask(Mask);
2738     LegalMask = isShuffleMaskLegal(Mask, VT);
2739   }
2740 
2741   if (!LegalMask)
2742     return SDValue();
2743 
2744   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
2745 }
2746 
2747 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
2748   return nullptr;
2749 }
2750 
2751 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
2752                                                   const SelectionDAG &DAG,
2753                                                   bool SNaN,
2754                                                   unsigned Depth) const {
2755   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2756           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2757           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2758           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2759          "Should use isKnownNeverNaN if you don't know whether Op"
2760          " is a target node!");
2761   return false;
2762 }
2763 
2764 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
2765 // work with truncating build vectors and vectors with elements of less than
2766 // 8 bits.
2767 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
2768   if (!N)
2769     return false;
2770 
2771   APInt CVal;
2772   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
2773     CVal = CN->getAPIntValue();
2774   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
2775     auto *CN = BV->getConstantSplatNode();
2776     if (!CN)
2777       return false;
2778 
2779     // If this is a truncating build vector, truncate the splat value.
2780     // Otherwise, we may fail to match the expected values below.
2781     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
2782     CVal = CN->getAPIntValue();
2783     if (BVEltWidth < CVal.getBitWidth())
2784       CVal = CVal.trunc(BVEltWidth);
2785   } else {
2786     return false;
2787   }
2788 
2789   switch (getBooleanContents(N->getValueType(0))) {
2790   case UndefinedBooleanContent:
2791     return CVal[0];
2792   case ZeroOrOneBooleanContent:
2793     return CVal.isOneValue();
2794   case ZeroOrNegativeOneBooleanContent:
2795     return CVal.isAllOnesValue();
2796   }
2797 
2798   llvm_unreachable("Invalid boolean contents");
2799 }
2800 
2801 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
2802   if (!N)
2803     return false;
2804 
2805   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
2806   if (!CN) {
2807     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
2808     if (!BV)
2809       return false;
2810 
2811     // Only interested in constant splats, we don't care about undef
2812     // elements in identifying boolean constants and getConstantSplatNode
2813     // returns NULL if all ops are undef;
2814     CN = BV->getConstantSplatNode();
2815     if (!CN)
2816       return false;
2817   }
2818 
2819   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
2820     return !CN->getAPIntValue()[0];
2821 
2822   return CN->isNullValue();
2823 }
2824 
2825 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
2826                                        bool SExt) const {
2827   if (VT == MVT::i1)
2828     return N->isOne();
2829 
2830   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
2831   switch (Cnt) {
2832   case TargetLowering::ZeroOrOneBooleanContent:
2833     // An extended value of 1 is always true, unless its original type is i1,
2834     // in which case it will be sign extended to -1.
2835     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
2836   case TargetLowering::UndefinedBooleanContent:
2837   case TargetLowering::ZeroOrNegativeOneBooleanContent:
2838     return N->isAllOnesValue() && SExt;
2839   }
2840   llvm_unreachable("Unexpected enumeration.");
2841 }
2842 
2843 /// This helper function of SimplifySetCC tries to optimize the comparison when
2844 /// either operand of the SetCC node is a bitwise-and instruction.
2845 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
2846                                          ISD::CondCode Cond, const SDLoc &DL,
2847                                          DAGCombinerInfo &DCI) const {
2848   // Match these patterns in any of their permutations:
2849   // (X & Y) == Y
2850   // (X & Y) != Y
2851   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
2852     std::swap(N0, N1);
2853 
2854   EVT OpVT = N0.getValueType();
2855   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
2856       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
2857     return SDValue();
2858 
2859   SDValue X, Y;
2860   if (N0.getOperand(0) == N1) {
2861     X = N0.getOperand(1);
2862     Y = N0.getOperand(0);
2863   } else if (N0.getOperand(1) == N1) {
2864     X = N0.getOperand(0);
2865     Y = N0.getOperand(1);
2866   } else {
2867     return SDValue();
2868   }
2869 
2870   SelectionDAG &DAG = DCI.DAG;
2871   SDValue Zero = DAG.getConstant(0, DL, OpVT);
2872   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
2873     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
2874     // Note that where Y is variable and is known to have at most one bit set
2875     // (for example, if it is Z & 1) we cannot do this; the expressions are not
2876     // equivalent when Y == 0.
2877     assert(OpVT.isInteger());
2878     Cond = ISD::getSetCCInverse(Cond, OpVT);
2879     if (DCI.isBeforeLegalizeOps() ||
2880         isCondCodeLegal(Cond, N0.getSimpleValueType()))
2881       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
2882   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
2883     // If the target supports an 'and-not' or 'and-complement' logic operation,
2884     // try to use that to make a comparison operation more efficient.
2885     // But don't do this transform if the mask is a single bit because there are
2886     // more efficient ways to deal with that case (for example, 'bt' on x86 or
2887     // 'rlwinm' on PPC).
2888 
2889     // Bail out if the compare operand that we want to turn into a zero is
2890     // already a zero (otherwise, infinite loop).
2891     auto *YConst = dyn_cast<ConstantSDNode>(Y);
2892     if (YConst && YConst->isNullValue())
2893       return SDValue();
2894 
2895     // Transform this into: ~X & Y == 0.
2896     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
2897     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
2898     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
2899   }
2900 
2901   return SDValue();
2902 }
2903 
2904 /// There are multiple IR patterns that could be checking whether certain
2905 /// truncation of a signed number would be lossy or not. The pattern which is
2906 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
2907 /// We are looking for the following pattern: (KeptBits is a constant)
2908 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
2909 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
2910 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
2911 /// We will unfold it into the natural trunc+sext pattern:
2912 ///   ((%x << C) a>> C) dstcond %x
2913 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
2914 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
2915     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
2916     const SDLoc &DL) const {
2917   // We must be comparing with a constant.
2918   ConstantSDNode *C1;
2919   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
2920     return SDValue();
2921 
2922   // N0 should be:  add %x, (1 << (KeptBits-1))
2923   if (N0->getOpcode() != ISD::ADD)
2924     return SDValue();
2925 
2926   // And we must be 'add'ing a constant.
2927   ConstantSDNode *C01;
2928   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
2929     return SDValue();
2930 
2931   SDValue X = N0->getOperand(0);
2932   EVT XVT = X.getValueType();
2933 
2934   // Validate constants ...
2935 
2936   APInt I1 = C1->getAPIntValue();
2937 
2938   ISD::CondCode NewCond;
2939   if (Cond == ISD::CondCode::SETULT) {
2940     NewCond = ISD::CondCode::SETEQ;
2941   } else if (Cond == ISD::CondCode::SETULE) {
2942     NewCond = ISD::CondCode::SETEQ;
2943     // But need to 'canonicalize' the constant.
2944     I1 += 1;
2945   } else if (Cond == ISD::CondCode::SETUGT) {
2946     NewCond = ISD::CondCode::SETNE;
2947     // But need to 'canonicalize' the constant.
2948     I1 += 1;
2949   } else if (Cond == ISD::CondCode::SETUGE) {
2950     NewCond = ISD::CondCode::SETNE;
2951   } else
2952     return SDValue();
2953 
2954   APInt I01 = C01->getAPIntValue();
2955 
2956   auto checkConstants = [&I1, &I01]() -> bool {
2957     // Both of them must be power-of-two, and the constant from setcc is bigger.
2958     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
2959   };
2960 
2961   if (checkConstants()) {
2962     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
2963   } else {
2964     // What if we invert constants? (and the target predicate)
2965     I1.negate();
2966     I01.negate();
2967     assert(XVT.isInteger());
2968     NewCond = getSetCCInverse(NewCond, XVT);
2969     if (!checkConstants())
2970       return SDValue();
2971     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
2972   }
2973 
2974   // They are power-of-two, so which bit is set?
2975   const unsigned KeptBits = I1.logBase2();
2976   const unsigned KeptBitsMinusOne = I01.logBase2();
2977 
2978   // Magic!
2979   if (KeptBits != (KeptBitsMinusOne + 1))
2980     return SDValue();
2981   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
2982 
2983   // We don't want to do this in every single case.
2984   SelectionDAG &DAG = DCI.DAG;
2985   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
2986           XVT, KeptBits))
2987     return SDValue();
2988 
2989   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
2990   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
2991 
2992   // Unfold into:  ((%x << C) a>> C) cond %x
2993   // Where 'cond' will be either 'eq' or 'ne'.
2994   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
2995   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
2996   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
2997   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
2998 
2999   return T2;
3000 }
3001 
3002 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3003 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3004     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3005     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3006   assert(isConstOrConstSplat(N1C) &&
3007          isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() &&
3008          "Should be a comparison with 0.");
3009   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3010          "Valid only for [in]equality comparisons.");
3011 
3012   unsigned NewShiftOpcode;
3013   SDValue X, C, Y;
3014 
3015   SelectionDAG &DAG = DCI.DAG;
3016   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3017 
3018   // Look for '(C l>>/<< Y)'.
3019   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3020     // The shift should be one-use.
3021     if (!V.hasOneUse())
3022       return false;
3023     unsigned OldShiftOpcode = V.getOpcode();
3024     switch (OldShiftOpcode) {
3025     case ISD::SHL:
3026       NewShiftOpcode = ISD::SRL;
3027       break;
3028     case ISD::SRL:
3029       NewShiftOpcode = ISD::SHL;
3030       break;
3031     default:
3032       return false; // must be a logical shift.
3033     }
3034     // We should be shifting a constant.
3035     // FIXME: best to use isConstantOrConstantVector().
3036     C = V.getOperand(0);
3037     ConstantSDNode *CC =
3038         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3039     if (!CC)
3040       return false;
3041     Y = V.getOperand(1);
3042 
3043     ConstantSDNode *XC =
3044         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3045     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3046         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3047   };
3048 
3049   // LHS of comparison should be an one-use 'and'.
3050   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3051     return SDValue();
3052 
3053   X = N0.getOperand(0);
3054   SDValue Mask = N0.getOperand(1);
3055 
3056   // 'and' is commutative!
3057   if (!Match(Mask)) {
3058     std::swap(X, Mask);
3059     if (!Match(Mask))
3060       return SDValue();
3061   }
3062 
3063   EVT VT = X.getValueType();
3064 
3065   // Produce:
3066   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3067   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3068   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3069   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3070   return T2;
3071 }
3072 
3073 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3074 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3075 /// handle the commuted versions of these patterns.
3076 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3077                                            ISD::CondCode Cond, const SDLoc &DL,
3078                                            DAGCombinerInfo &DCI) const {
3079   unsigned BOpcode = N0.getOpcode();
3080   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3081          "Unexpected binop");
3082   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3083 
3084   // (X + Y) == X --> Y == 0
3085   // (X - Y) == X --> Y == 0
3086   // (X ^ Y) == X --> Y == 0
3087   SelectionDAG &DAG = DCI.DAG;
3088   EVT OpVT = N0.getValueType();
3089   SDValue X = N0.getOperand(0);
3090   SDValue Y = N0.getOperand(1);
3091   if (X == N1)
3092     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3093 
3094   if (Y != N1)
3095     return SDValue();
3096 
3097   // (X + Y) == Y --> X == 0
3098   // (X ^ Y) == Y --> X == 0
3099   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3100     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3101 
3102   // The shift would not be valid if the operands are boolean (i1).
3103   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3104     return SDValue();
3105 
3106   // (X - Y) == Y --> X == Y << 1
3107   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3108                                  !DCI.isBeforeLegalize());
3109   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3110   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3111   if (!DCI.isCalledByLegalizer())
3112     DCI.AddToWorklist(YShl1.getNode());
3113   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3114 }
3115 
3116 /// Try to simplify a setcc built with the specified operands and cc. If it is
3117 /// unable to simplify it, return a null SDValue.
3118 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3119                                       ISD::CondCode Cond, bool foldBooleans,
3120                                       DAGCombinerInfo &DCI,
3121                                       const SDLoc &dl) const {
3122   SelectionDAG &DAG = DCI.DAG;
3123   const DataLayout &Layout = DAG.getDataLayout();
3124   EVT OpVT = N0.getValueType();
3125 
3126   // Constant fold or commute setcc.
3127   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3128     return Fold;
3129 
3130   // Ensure that the constant occurs on the RHS and fold constant comparisons.
3131   // TODO: Handle non-splat vector constants. All undef causes trouble.
3132   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3133   if (isConstOrConstSplat(N0) &&
3134       (DCI.isBeforeLegalizeOps() ||
3135        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3136     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3137 
3138   // If we have a subtract with the same 2 non-constant operands as this setcc
3139   // -- but in reverse order -- then try to commute the operands of this setcc
3140   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3141   // instruction on some targets.
3142   if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3143       (DCI.isBeforeLegalizeOps() ||
3144        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3145       DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) &&
3146       !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } ))
3147     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3148 
3149   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3150     const APInt &C1 = N1C->getAPIntValue();
3151 
3152     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3153     // equality comparison, then we're just comparing whether X itself is
3154     // zero.
3155     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
3156         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3157         N0.getOperand(1).getOpcode() == ISD::Constant) {
3158       const APInt &ShAmt = N0.getConstantOperandAPInt(1);
3159       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3160           ShAmt == Log2_32(N0.getValueSizeInBits())) {
3161         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3162           // (srl (ctlz x), 5) == 0  -> X != 0
3163           // (srl (ctlz x), 5) != 1  -> X != 0
3164           Cond = ISD::SETNE;
3165         } else {
3166           // (srl (ctlz x), 5) != 0  -> X == 0
3167           // (srl (ctlz x), 5) == 1  -> X == 0
3168           Cond = ISD::SETEQ;
3169         }
3170         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3171         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
3172                             Zero, Cond);
3173       }
3174     }
3175 
3176     SDValue CTPOP = N0;
3177     // Look through truncs that don't change the value of a ctpop.
3178     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
3179       CTPOP = N0.getOperand(0);
3180 
3181     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
3182         (N0 == CTPOP ||
3183          N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
3184       EVT CTVT = CTPOP.getValueType();
3185       SDValue CTOp = CTPOP.getOperand(0);
3186 
3187       // (ctpop x) u< 2 -> (x & x-1) == 0
3188       // (ctpop x) u> 1 -> (x & x-1) != 0
3189       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
3190         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3191         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3192         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3193         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3194         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
3195       }
3196 
3197       // If ctpop is not supported, expand a power-of-2 comparison based on it.
3198       if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) &&
3199           (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3200         // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3201         // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3202         SDValue Zero = DAG.getConstant(0, dl, CTVT);
3203         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3204         assert(CTVT.isInteger());
3205         ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3206         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3207         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3208         SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3209         SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3210         unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3211         return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3212       }
3213     }
3214 
3215     // (zext x) == C --> x == (trunc C)
3216     // (sext x) == C --> x == (trunc C)
3217     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3218         DCI.isBeforeLegalize() && N0->hasOneUse()) {
3219       unsigned MinBits = N0.getValueSizeInBits();
3220       SDValue PreExt;
3221       bool Signed = false;
3222       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3223         // ZExt
3224         MinBits = N0->getOperand(0).getValueSizeInBits();
3225         PreExt = N0->getOperand(0);
3226       } else if (N0->getOpcode() == ISD::AND) {
3227         // DAGCombine turns costly ZExts into ANDs
3228         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3229           if ((C->getAPIntValue()+1).isPowerOf2()) {
3230             MinBits = C->getAPIntValue().countTrailingOnes();
3231             PreExt = N0->getOperand(0);
3232           }
3233       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3234         // SExt
3235         MinBits = N0->getOperand(0).getValueSizeInBits();
3236         PreExt = N0->getOperand(0);
3237         Signed = true;
3238       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3239         // ZEXTLOAD / SEXTLOAD
3240         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3241           MinBits = LN0->getMemoryVT().getSizeInBits();
3242           PreExt = N0;
3243         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3244           Signed = true;
3245           MinBits = LN0->getMemoryVT().getSizeInBits();
3246           PreExt = N0;
3247         }
3248       }
3249 
3250       // Figure out how many bits we need to preserve this constant.
3251       unsigned ReqdBits = Signed ?
3252         C1.getBitWidth() - C1.getNumSignBits() + 1 :
3253         C1.getActiveBits();
3254 
3255       // Make sure we're not losing bits from the constant.
3256       if (MinBits > 0 &&
3257           MinBits < C1.getBitWidth() &&
3258           MinBits >= ReqdBits) {
3259         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3260         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3261           // Will get folded away.
3262           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3263           if (MinBits == 1 && C1 == 1)
3264             // Invert the condition.
3265             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3266                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3267           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3268           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3269         }
3270 
3271         // If truncating the setcc operands is not desirable, we can still
3272         // simplify the expression in some cases:
3273         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3274         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3275         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3276         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3277         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3278         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3279         SDValue TopSetCC = N0->getOperand(0);
3280         unsigned N0Opc = N0->getOpcode();
3281         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3282         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3283             TopSetCC.getOpcode() == ISD::SETCC &&
3284             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3285             (isConstFalseVal(N1C) ||
3286              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3287 
3288           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
3289                          (!N1C->isNullValue() && Cond == ISD::SETNE);
3290 
3291           if (!Inverse)
3292             return TopSetCC;
3293 
3294           ISD::CondCode InvCond = ISD::getSetCCInverse(
3295               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3296               TopSetCC.getOperand(0).getValueType());
3297           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3298                                       TopSetCC.getOperand(1),
3299                                       InvCond);
3300         }
3301       }
3302     }
3303 
3304     // If the LHS is '(and load, const)', the RHS is 0, the test is for
3305     // equality or unsigned, and all 1 bits of the const are in the same
3306     // partial word, see if we can shorten the load.
3307     if (DCI.isBeforeLegalize() &&
3308         !ISD::isSignedIntSetCC(Cond) &&
3309         N0.getOpcode() == ISD::AND && C1 == 0 &&
3310         N0.getNode()->hasOneUse() &&
3311         isa<LoadSDNode>(N0.getOperand(0)) &&
3312         N0.getOperand(0).getNode()->hasOneUse() &&
3313         isa<ConstantSDNode>(N0.getOperand(1))) {
3314       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3315       APInt bestMask;
3316       unsigned bestWidth = 0, bestOffset = 0;
3317       if (Lod->isSimple() && Lod->isUnindexed()) {
3318         unsigned origWidth = N0.getValueSizeInBits();
3319         unsigned maskWidth = origWidth;
3320         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3321         // 8 bits, but have to be careful...
3322         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3323           origWidth = Lod->getMemoryVT().getSizeInBits();
3324         const APInt &Mask = N0.getConstantOperandAPInt(1);
3325         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3326           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3327           for (unsigned offset=0; offset<origWidth/width; offset++) {
3328             if (Mask.isSubsetOf(newMask)) {
3329               if (Layout.isLittleEndian())
3330                 bestOffset = (uint64_t)offset * (width/8);
3331               else
3332                 bestOffset = (origWidth/width - offset - 1) * (width/8);
3333               bestMask = Mask.lshr(offset * (width/8) * 8);
3334               bestWidth = width;
3335               break;
3336             }
3337             newMask <<= width;
3338           }
3339         }
3340       }
3341       if (bestWidth) {
3342         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3343         if (newVT.isRound() &&
3344             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3345           SDValue Ptr = Lod->getBasePtr();
3346           if (bestOffset != 0)
3347             Ptr = DAG.getMemBasePlusOffset(Ptr, bestOffset, dl);
3348           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
3349           SDValue NewLoad = DAG.getLoad(
3350               newVT, dl, Lod->getChain(), Ptr,
3351               Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
3352           return DAG.getSetCC(dl, VT,
3353                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3354                                       DAG.getConstant(bestMask.trunc(bestWidth),
3355                                                       dl, newVT)),
3356                               DAG.getConstant(0LL, dl, newVT), Cond);
3357         }
3358       }
3359     }
3360 
3361     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3362     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3363       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3364 
3365       // If the comparison constant has bits in the upper part, the
3366       // zero-extended value could never match.
3367       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3368                                               C1.getBitWidth() - InSize))) {
3369         switch (Cond) {
3370         case ISD::SETUGT:
3371         case ISD::SETUGE:
3372         case ISD::SETEQ:
3373           return DAG.getConstant(0, dl, VT);
3374         case ISD::SETULT:
3375         case ISD::SETULE:
3376         case ISD::SETNE:
3377           return DAG.getConstant(1, dl, VT);
3378         case ISD::SETGT:
3379         case ISD::SETGE:
3380           // True if the sign bit of C1 is set.
3381           return DAG.getConstant(C1.isNegative(), dl, VT);
3382         case ISD::SETLT:
3383         case ISD::SETLE:
3384           // True if the sign bit of C1 isn't set.
3385           return DAG.getConstant(C1.isNonNegative(), dl, VT);
3386         default:
3387           break;
3388         }
3389       }
3390 
3391       // Otherwise, we can perform the comparison with the low bits.
3392       switch (Cond) {
3393       case ISD::SETEQ:
3394       case ISD::SETNE:
3395       case ISD::SETUGT:
3396       case ISD::SETUGE:
3397       case ISD::SETULT:
3398       case ISD::SETULE: {
3399         EVT newVT = N0.getOperand(0).getValueType();
3400         if (DCI.isBeforeLegalizeOps() ||
3401             (isOperationLegal(ISD::SETCC, newVT) &&
3402              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3403           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
3404           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3405 
3406           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3407                                           NewConst, Cond);
3408           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3409         }
3410         break;
3411       }
3412       default:
3413         break; // todo, be more careful with signed comparisons
3414       }
3415     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3416                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3417       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3418       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3419       EVT ExtDstTy = N0.getValueType();
3420       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3421 
3422       // If the constant doesn't fit into the number of bits for the source of
3423       // the sign extension, it is impossible for both sides to be equal.
3424       if (C1.getMinSignedBits() > ExtSrcTyBits)
3425         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
3426 
3427       SDValue ZextOp;
3428       EVT Op0Ty = N0.getOperand(0).getValueType();
3429       if (Op0Ty == ExtSrcTy) {
3430         ZextOp = N0.getOperand(0);
3431       } else {
3432         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3433         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
3434                              DAG.getConstant(Imm, dl, Op0Ty));
3435       }
3436       if (!DCI.isCalledByLegalizer())
3437         DCI.AddToWorklist(ZextOp.getNode());
3438       // Otherwise, make this a use of a zext.
3439       return DAG.getSetCC(dl, VT, ZextOp,
3440                           DAG.getConstant(C1 & APInt::getLowBitsSet(
3441                                                               ExtDstTyBits,
3442                                                               ExtSrcTyBits),
3443                                           dl, ExtDstTy),
3444                           Cond);
3445     } else if ((N1C->isNullValue() || N1C->isOne()) &&
3446                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3447       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
3448       if (N0.getOpcode() == ISD::SETCC &&
3449           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
3450           (N0.getValueType() == MVT::i1 ||
3451            getBooleanContents(N0.getOperand(0).getValueType()) ==
3452                        ZeroOrOneBooleanContent)) {
3453         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3454         if (TrueWhenTrue)
3455           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3456         // Invert the condition.
3457         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3458         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
3459         if (DCI.isBeforeLegalizeOps() ||
3460             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3461           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3462       }
3463 
3464       if ((N0.getOpcode() == ISD::XOR ||
3465            (N0.getOpcode() == ISD::AND &&
3466             N0.getOperand(0).getOpcode() == ISD::XOR &&
3467             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3468           isa<ConstantSDNode>(N0.getOperand(1)) &&
3469           cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
3470         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
3471         // can only do this if the top bits are known zero.
3472         unsigned BitWidth = N0.getValueSizeInBits();
3473         if (DAG.MaskedValueIsZero(N0,
3474                                   APInt::getHighBitsSet(BitWidth,
3475                                                         BitWidth-1))) {
3476           // Okay, get the un-inverted input value.
3477           SDValue Val;
3478           if (N0.getOpcode() == ISD::XOR) {
3479             Val = N0.getOperand(0);
3480           } else {
3481             assert(N0.getOpcode() == ISD::AND &&
3482                     N0.getOperand(0).getOpcode() == ISD::XOR);
3483             // ((X^1)&1)^1 -> X & 1
3484             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3485                               N0.getOperand(0).getOperand(0),
3486                               N0.getOperand(1));
3487           }
3488 
3489           return DAG.getSetCC(dl, VT, Val, N1,
3490                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3491         }
3492       } else if (N1C->isOne()) {
3493         SDValue Op0 = N0;
3494         if (Op0.getOpcode() == ISD::TRUNCATE)
3495           Op0 = Op0.getOperand(0);
3496 
3497         if ((Op0.getOpcode() == ISD::XOR) &&
3498             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3499             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3500           SDValue XorLHS = Op0.getOperand(0);
3501           SDValue XorRHS = Op0.getOperand(1);
3502           // Ensure that the input setccs return an i1 type or 0/1 value.
3503           if (Op0.getValueType() == MVT::i1 ||
3504               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
3505                       ZeroOrOneBooleanContent &&
3506                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
3507                         ZeroOrOneBooleanContent)) {
3508             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3509             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3510             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
3511           }
3512         }
3513         if (Op0.getOpcode() == ISD::AND &&
3514             isa<ConstantSDNode>(Op0.getOperand(1)) &&
3515             cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
3516           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3517           if (Op0.getValueType().bitsGT(VT))
3518             Op0 = DAG.getNode(ISD::AND, dl, VT,
3519                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3520                           DAG.getConstant(1, dl, VT));
3521           else if (Op0.getValueType().bitsLT(VT))
3522             Op0 = DAG.getNode(ISD::AND, dl, VT,
3523                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3524                         DAG.getConstant(1, dl, VT));
3525 
3526           return DAG.getSetCC(dl, VT, Op0,
3527                               DAG.getConstant(0, dl, Op0.getValueType()),
3528                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3529         }
3530         if (Op0.getOpcode() == ISD::AssertZext &&
3531             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3532           return DAG.getSetCC(dl, VT, Op0,
3533                               DAG.getConstant(0, dl, Op0.getValueType()),
3534                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3535       }
3536     }
3537 
3538     // Given:
3539     //   icmp eq/ne (urem %x, %y), 0
3540     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3541     //   icmp eq/ne %x, 0
3542     if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() &&
3543         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3544       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3545       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3546       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3547         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3548     }
3549 
3550     if (SDValue V =
3551             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
3552       return V;
3553   }
3554 
3555   // These simplifications apply to splat vectors as well.
3556   // TODO: Handle more splat vector cases.
3557   if (auto *N1C = isConstOrConstSplat(N1)) {
3558     const APInt &C1 = N1C->getAPIntValue();
3559 
3560     APInt MinVal, MaxVal;
3561     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
3562     if (ISD::isSignedIntSetCC(Cond)) {
3563       MinVal = APInt::getSignedMinValue(OperandBitSize);
3564       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
3565     } else {
3566       MinVal = APInt::getMinValue(OperandBitSize);
3567       MaxVal = APInt::getMaxValue(OperandBitSize);
3568     }
3569 
3570     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3571     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3572       // X >= MIN --> true
3573       if (C1 == MinVal)
3574         return DAG.getBoolConstant(true, dl, VT, OpVT);
3575 
3576       if (!VT.isVector()) { // TODO: Support this for vectors.
3577         // X >= C0 --> X > (C0 - 1)
3578         APInt C = C1 - 1;
3579         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
3580         if ((DCI.isBeforeLegalizeOps() ||
3581              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3582             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3583                                   isLegalICmpImmediate(C.getSExtValue())))) {
3584           return DAG.getSetCC(dl, VT, N0,
3585                               DAG.getConstant(C, dl, N1.getValueType()),
3586                               NewCC);
3587         }
3588       }
3589     }
3590 
3591     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
3592       // X <= MAX --> true
3593       if (C1 == MaxVal)
3594         return DAG.getBoolConstant(true, dl, VT, OpVT);
3595 
3596       // X <= C0 --> X < (C0 + 1)
3597       if (!VT.isVector()) { // TODO: Support this for vectors.
3598         APInt C = C1 + 1;
3599         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
3600         if ((DCI.isBeforeLegalizeOps() ||
3601              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3602             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3603                                   isLegalICmpImmediate(C.getSExtValue())))) {
3604           return DAG.getSetCC(dl, VT, N0,
3605                               DAG.getConstant(C, dl, N1.getValueType()),
3606                               NewCC);
3607         }
3608       }
3609     }
3610 
3611     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
3612       if (C1 == MinVal)
3613         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
3614 
3615       // TODO: Support this for vectors after legalize ops.
3616       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3617         // Canonicalize setlt X, Max --> setne X, Max
3618         if (C1 == MaxVal)
3619           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3620 
3621         // If we have setult X, 1, turn it into seteq X, 0
3622         if (C1 == MinVal+1)
3623           return DAG.getSetCC(dl, VT, N0,
3624                               DAG.getConstant(MinVal, dl, N0.getValueType()),
3625                               ISD::SETEQ);
3626       }
3627     }
3628 
3629     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
3630       if (C1 == MaxVal)
3631         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
3632 
3633       // TODO: Support this for vectors after legalize ops.
3634       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3635         // Canonicalize setgt X, Min --> setne X, Min
3636         if (C1 == MinVal)
3637           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3638 
3639         // If we have setugt X, Max-1, turn it into seteq X, Max
3640         if (C1 == MaxVal-1)
3641           return DAG.getSetCC(dl, VT, N0,
3642                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
3643                               ISD::SETEQ);
3644       }
3645     }
3646 
3647     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
3648       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3649       if (C1.isNullValue())
3650         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
3651                 VT, N0, N1, Cond, DCI, dl))
3652           return CC;
3653     }
3654 
3655     // If we have "setcc X, C0", check to see if we can shrink the immediate
3656     // by changing cc.
3657     // TODO: Support this for vectors after legalize ops.
3658     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3659       // SETUGT X, SINTMAX  -> SETLT X, 0
3660       if (Cond == ISD::SETUGT &&
3661           C1 == APInt::getSignedMaxValue(OperandBitSize))
3662         return DAG.getSetCC(dl, VT, N0,
3663                             DAG.getConstant(0, dl, N1.getValueType()),
3664                             ISD::SETLT);
3665 
3666       // SETULT X, SINTMIN  -> SETGT X, -1
3667       if (Cond == ISD::SETULT &&
3668           C1 == APInt::getSignedMinValue(OperandBitSize)) {
3669         SDValue ConstMinusOne =
3670             DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
3671                             N1.getValueType());
3672         return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
3673       }
3674     }
3675   }
3676 
3677   // Back to non-vector simplifications.
3678   // TODO: Can we do these for vector splats?
3679   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3680     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3681     const APInt &C1 = N1C->getAPIntValue();
3682     EVT ShValTy = N0.getValueType();
3683 
3684     // Fold bit comparisons when we can.
3685     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3686         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
3687         N0.getOpcode() == ISD::AND) {
3688       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3689         EVT ShiftTy =
3690             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
3691         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
3692           // Perform the xform if the AND RHS is a single bit.
3693           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
3694           if (AndRHS->getAPIntValue().isPowerOf2() &&
3695               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
3696             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3697                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3698                                            DAG.getConstant(ShCt, dl, ShiftTy)));
3699           }
3700         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
3701           // (X & 8) == 8  -->  (X & 8) >> 3
3702           // Perform the xform if C1 is a single bit.
3703           unsigned ShCt = C1.logBase2();
3704           if (C1.isPowerOf2() &&
3705               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
3706             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3707                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3708                                            DAG.getConstant(ShCt, dl, ShiftTy)));
3709           }
3710         }
3711       }
3712     }
3713 
3714     if (C1.getMinSignedBits() <= 64 &&
3715         !isLegalICmpImmediate(C1.getSExtValue())) {
3716       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
3717       // (X & -256) == 256 -> (X >> 8) == 1
3718       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3719           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
3720         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3721           const APInt &AndRHSC = AndRHS->getAPIntValue();
3722           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
3723             unsigned ShiftBits = AndRHSC.countTrailingZeros();
3724             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
3725               SDValue Shift =
3726                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
3727                             DAG.getConstant(ShiftBits, dl, ShiftTy));
3728               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
3729               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
3730             }
3731           }
3732         }
3733       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
3734                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
3735         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
3736         // X <  0x100000000 -> (X >> 32) <  1
3737         // X >= 0x100000000 -> (X >> 32) >= 1
3738         // X <= 0x0ffffffff -> (X >> 32) <  1
3739         // X >  0x0ffffffff -> (X >> 32) >= 1
3740         unsigned ShiftBits;
3741         APInt NewC = C1;
3742         ISD::CondCode NewCond = Cond;
3743         if (AdjOne) {
3744           ShiftBits = C1.countTrailingOnes();
3745           NewC = NewC + 1;
3746           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
3747         } else {
3748           ShiftBits = C1.countTrailingZeros();
3749         }
3750         NewC.lshrInPlace(ShiftBits);
3751         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
3752             isLegalICmpImmediate(NewC.getSExtValue()) &&
3753             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
3754           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3755                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
3756           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
3757           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
3758         }
3759       }
3760     }
3761   }
3762 
3763   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
3764     auto *CFP = cast<ConstantFPSDNode>(N1);
3765     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
3766 
3767     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
3768     // constant if knowing that the operand is non-nan is enough.  We prefer to
3769     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
3770     // materialize 0.0.
3771     if (Cond == ISD::SETO || Cond == ISD::SETUO)
3772       return DAG.getSetCC(dl, VT, N0, N0, Cond);
3773 
3774     // setcc (fneg x), C -> setcc swap(pred) x, -C
3775     if (N0.getOpcode() == ISD::FNEG) {
3776       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
3777       if (DCI.isBeforeLegalizeOps() ||
3778           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
3779         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
3780         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
3781       }
3782     }
3783 
3784     // If the condition is not legal, see if we can find an equivalent one
3785     // which is legal.
3786     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
3787       // If the comparison was an awkward floating-point == or != and one of
3788       // the comparison operands is infinity or negative infinity, convert the
3789       // condition to a less-awkward <= or >=.
3790       if (CFP->getValueAPF().isInfinity()) {
3791         if (CFP->getValueAPF().isNegative()) {
3792           if (Cond == ISD::SETOEQ &&
3793               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
3794             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
3795           if (Cond == ISD::SETUEQ &&
3796               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
3797             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
3798           if (Cond == ISD::SETUNE &&
3799               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
3800             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
3801           if (Cond == ISD::SETONE &&
3802               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
3803             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
3804         } else {
3805           if (Cond == ISD::SETOEQ &&
3806               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
3807             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
3808           if (Cond == ISD::SETUEQ &&
3809               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
3810             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
3811           if (Cond == ISD::SETUNE &&
3812               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
3813             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
3814           if (Cond == ISD::SETONE &&
3815               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
3816             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
3817         }
3818       }
3819     }
3820   }
3821 
3822   if (N0 == N1) {
3823     // The sext(setcc()) => setcc() optimization relies on the appropriate
3824     // constant being emitted.
3825     assert(!N0.getValueType().isInteger() &&
3826            "Integer types should be handled by FoldSetCC");
3827 
3828     bool EqTrue = ISD::isTrueWhenEqual(Cond);
3829     unsigned UOF = ISD::getUnorderedFlavor(Cond);
3830     if (UOF == 2) // FP operators that are undefined on NaNs.
3831       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3832     if (UOF == unsigned(EqTrue))
3833       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3834     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
3835     // if it is not already.
3836     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
3837     if (NewCond != Cond &&
3838         (DCI.isBeforeLegalizeOps() ||
3839                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
3840       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
3841   }
3842 
3843   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3844       N0.getValueType().isInteger()) {
3845     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
3846         N0.getOpcode() == ISD::XOR) {
3847       // Simplify (X+Y) == (X+Z) -->  Y == Z
3848       if (N0.getOpcode() == N1.getOpcode()) {
3849         if (N0.getOperand(0) == N1.getOperand(0))
3850           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
3851         if (N0.getOperand(1) == N1.getOperand(1))
3852           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
3853         if (isCommutativeBinOp(N0.getOpcode())) {
3854           // If X op Y == Y op X, try other combinations.
3855           if (N0.getOperand(0) == N1.getOperand(1))
3856             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
3857                                 Cond);
3858           if (N0.getOperand(1) == N1.getOperand(0))
3859             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
3860                                 Cond);
3861         }
3862       }
3863 
3864       // If RHS is a legal immediate value for a compare instruction, we need
3865       // to be careful about increasing register pressure needlessly.
3866       bool LegalRHSImm = false;
3867 
3868       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
3869         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3870           // Turn (X+C1) == C2 --> X == C2-C1
3871           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
3872             return DAG.getSetCC(dl, VT, N0.getOperand(0),
3873                                 DAG.getConstant(RHSC->getAPIntValue()-
3874                                                 LHSR->getAPIntValue(),
3875                                 dl, N0.getValueType()), Cond);
3876           }
3877 
3878           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
3879           if (N0.getOpcode() == ISD::XOR)
3880             // If we know that all of the inverted bits are zero, don't bother
3881             // performing the inversion.
3882             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
3883               return
3884                 DAG.getSetCC(dl, VT, N0.getOperand(0),
3885                              DAG.getConstant(LHSR->getAPIntValue() ^
3886                                                RHSC->getAPIntValue(),
3887                                              dl, N0.getValueType()),
3888                              Cond);
3889         }
3890 
3891         // Turn (C1-X) == C2 --> X == C1-C2
3892         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
3893           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
3894             return
3895               DAG.getSetCC(dl, VT, N0.getOperand(1),
3896                            DAG.getConstant(SUBC->getAPIntValue() -
3897                                              RHSC->getAPIntValue(),
3898                                            dl, N0.getValueType()),
3899                            Cond);
3900           }
3901         }
3902 
3903         // Could RHSC fold directly into a compare?
3904         if (RHSC->getValueType(0).getSizeInBits() <= 64)
3905           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
3906       }
3907 
3908       // (X+Y) == X --> Y == 0 and similar folds.
3909       // Don't do this if X is an immediate that can fold into a cmp
3910       // instruction and X+Y has other uses. It could be an induction variable
3911       // chain, and the transform would increase register pressure.
3912       if (!LegalRHSImm || N0.hasOneUse())
3913         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
3914           return V;
3915     }
3916 
3917     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
3918         N1.getOpcode() == ISD::XOR)
3919       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
3920         return V;
3921 
3922     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
3923       return V;
3924   }
3925 
3926   // Fold remainder of division by a constant.
3927   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
3928       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3929     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
3930 
3931     // When division is cheap or optimizing for minimum size,
3932     // fall through to DIVREM creation by skipping this fold.
3933     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) {
3934       if (N0.getOpcode() == ISD::UREM) {
3935         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
3936           return Folded;
3937       } else if (N0.getOpcode() == ISD::SREM) {
3938         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
3939           return Folded;
3940       }
3941     }
3942   }
3943 
3944   // Fold away ALL boolean setcc's.
3945   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
3946     SDValue Temp;
3947     switch (Cond) {
3948     default: llvm_unreachable("Unknown integer setcc!");
3949     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
3950       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
3951       N0 = DAG.getNOT(dl, Temp, OpVT);
3952       if (!DCI.isCalledByLegalizer())
3953         DCI.AddToWorklist(Temp.getNode());
3954       break;
3955     case ISD::SETNE:  // X != Y   -->  (X^Y)
3956       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
3957       break;
3958     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
3959     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
3960       Temp = DAG.getNOT(dl, N0, OpVT);
3961       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
3962       if (!DCI.isCalledByLegalizer())
3963         DCI.AddToWorklist(Temp.getNode());
3964       break;
3965     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
3966     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
3967       Temp = DAG.getNOT(dl, N1, OpVT);
3968       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
3969       if (!DCI.isCalledByLegalizer())
3970         DCI.AddToWorklist(Temp.getNode());
3971       break;
3972     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
3973     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
3974       Temp = DAG.getNOT(dl, N0, OpVT);
3975       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
3976       if (!DCI.isCalledByLegalizer())
3977         DCI.AddToWorklist(Temp.getNode());
3978       break;
3979     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
3980     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
3981       Temp = DAG.getNOT(dl, N1, OpVT);
3982       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
3983       break;
3984     }
3985     if (VT.getScalarType() != MVT::i1) {
3986       if (!DCI.isCalledByLegalizer())
3987         DCI.AddToWorklist(N0.getNode());
3988       // FIXME: If running after legalize, we probably can't do this.
3989       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
3990       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
3991     }
3992     return N0;
3993   }
3994 
3995   // Could not fold it.
3996   return SDValue();
3997 }
3998 
3999 /// Returns true (and the GlobalValue and the offset) if the node is a
4000 /// GlobalAddress + offset.
4001 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4002                                     int64_t &Offset) const {
4003 
4004   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4005 
4006   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4007     GA = GASD->getGlobal();
4008     Offset += GASD->getOffset();
4009     return true;
4010   }
4011 
4012   if (N->getOpcode() == ISD::ADD) {
4013     SDValue N1 = N->getOperand(0);
4014     SDValue N2 = N->getOperand(1);
4015     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4016       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4017         Offset += V->getSExtValue();
4018         return true;
4019       }
4020     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4021       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4022         Offset += V->getSExtValue();
4023         return true;
4024       }
4025     }
4026   }
4027 
4028   return false;
4029 }
4030 
4031 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4032                                           DAGCombinerInfo &DCI) const {
4033   // Default implementation: no optimization.
4034   return SDValue();
4035 }
4036 
4037 //===----------------------------------------------------------------------===//
4038 //  Inline Assembler Implementation Methods
4039 //===----------------------------------------------------------------------===//
4040 
4041 TargetLowering::ConstraintType
4042 TargetLowering::getConstraintType(StringRef Constraint) const {
4043   unsigned S = Constraint.size();
4044 
4045   if (S == 1) {
4046     switch (Constraint[0]) {
4047     default: break;
4048     case 'r':
4049       return C_RegisterClass;
4050     case 'm': // memory
4051     case 'o': // offsetable
4052     case 'V': // not offsetable
4053       return C_Memory;
4054     case 'n': // Simple Integer
4055     case 'E': // Floating Point Constant
4056     case 'F': // Floating Point Constant
4057       return C_Immediate;
4058     case 'i': // Simple Integer or Relocatable Constant
4059     case 's': // Relocatable Constant
4060     case 'p': // Address.
4061     case 'X': // Allow ANY value.
4062     case 'I': // Target registers.
4063     case 'J':
4064     case 'K':
4065     case 'L':
4066     case 'M':
4067     case 'N':
4068     case 'O':
4069     case 'P':
4070     case '<':
4071     case '>':
4072       return C_Other;
4073     }
4074   }
4075 
4076   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4077     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4078       return C_Memory;
4079     return C_Register;
4080   }
4081   return C_Unknown;
4082 }
4083 
4084 /// Try to replace an X constraint, which matches anything, with another that
4085 /// has more specific requirements based on the type of the corresponding
4086 /// operand.
4087 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4088   if (ConstraintVT.isInteger())
4089     return "r";
4090   if (ConstraintVT.isFloatingPoint())
4091     return "f"; // works for many targets
4092   return nullptr;
4093 }
4094 
4095 SDValue TargetLowering::LowerAsmOutputForConstraint(
4096     SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo,
4097     SelectionDAG &DAG) const {
4098   return SDValue();
4099 }
4100 
4101 /// Lower the specified operand into the Ops vector.
4102 /// If it is invalid, don't add anything to Ops.
4103 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4104                                                   std::string &Constraint,
4105                                                   std::vector<SDValue> &Ops,
4106                                                   SelectionDAG &DAG) const {
4107 
4108   if (Constraint.length() > 1) return;
4109 
4110   char ConstraintLetter = Constraint[0];
4111   switch (ConstraintLetter) {
4112   default: break;
4113   case 'X':     // Allows any operand; labels (basic block) use this.
4114     if (Op.getOpcode() == ISD::BasicBlock ||
4115         Op.getOpcode() == ISD::TargetBlockAddress) {
4116       Ops.push_back(Op);
4117       return;
4118     }
4119     LLVM_FALLTHROUGH;
4120   case 'i':    // Simple Integer or Relocatable Constant
4121   case 'n':    // Simple Integer
4122   case 's': {  // Relocatable Constant
4123 
4124     GlobalAddressSDNode *GA;
4125     ConstantSDNode *C;
4126     BlockAddressSDNode *BA;
4127     uint64_t Offset = 0;
4128 
4129     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4130     // etc., since getelementpointer is variadic. We can't use
4131     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4132     // while in this case the GA may be furthest from the root node which is
4133     // likely an ISD::ADD.
4134     while (1) {
4135       if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4136         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4137                                                  GA->getValueType(0),
4138                                                  Offset + GA->getOffset()));
4139         return;
4140       } else if ((C = dyn_cast<ConstantSDNode>(Op)) &&
4141                  ConstraintLetter != 's') {
4142         // gcc prints these as sign extended.  Sign extend value to 64 bits
4143         // now; without this it would get ZExt'd later in
4144         // ScheduleDAGSDNodes::EmitNode, which is very generic.
4145         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4146         BooleanContent BCont = getBooleanContents(MVT::i64);
4147         ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont)
4148                                       : ISD::SIGN_EXTEND;
4149         int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue()
4150                                                     : C->getSExtValue();
4151         Ops.push_back(DAG.getTargetConstant(Offset + ExtVal,
4152                                             SDLoc(C), MVT::i64));
4153         return;
4154       } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) &&
4155                  ConstraintLetter != 'n') {
4156         Ops.push_back(DAG.getTargetBlockAddress(
4157             BA->getBlockAddress(), BA->getValueType(0),
4158             Offset + BA->getOffset(), BA->getTargetFlags()));
4159         return;
4160       } else {
4161         const unsigned OpCode = Op.getOpcode();
4162         if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4163           if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4164             Op = Op.getOperand(1);
4165           // Subtraction is not commutative.
4166           else if (OpCode == ISD::ADD &&
4167                    (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4168             Op = Op.getOperand(0);
4169           else
4170             return;
4171           Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4172           continue;
4173         }
4174       }
4175       return;
4176     }
4177     break;
4178   }
4179   }
4180 }
4181 
4182 std::pair<unsigned, const TargetRegisterClass *>
4183 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4184                                              StringRef Constraint,
4185                                              MVT VT) const {
4186   if (Constraint.empty() || Constraint[0] != '{')
4187     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4188   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4189 
4190   // Remove the braces from around the name.
4191   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4192 
4193   std::pair<unsigned, const TargetRegisterClass *> R =
4194       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4195 
4196   // Figure out which register class contains this reg.
4197   for (const TargetRegisterClass *RC : RI->regclasses()) {
4198     // If none of the value types for this register class are valid, we
4199     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4200     if (!isLegalRC(*RI, *RC))
4201       continue;
4202 
4203     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
4204          I != E; ++I) {
4205       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
4206         std::pair<unsigned, const TargetRegisterClass *> S =
4207             std::make_pair(*I, RC);
4208 
4209         // If this register class has the requested value type, return it,
4210         // otherwise keep searching and return the first class found
4211         // if no other is found which explicitly has the requested type.
4212         if (RI->isTypeLegalForClass(*RC, VT))
4213           return S;
4214         if (!R.second)
4215           R = S;
4216       }
4217     }
4218   }
4219 
4220   return R;
4221 }
4222 
4223 //===----------------------------------------------------------------------===//
4224 // Constraint Selection.
4225 
4226 /// Return true of this is an input operand that is a matching constraint like
4227 /// "4".
4228 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4229   assert(!ConstraintCode.empty() && "No known constraint!");
4230   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4231 }
4232 
4233 /// If this is an input matching constraint, this method returns the output
4234 /// operand it matches.
4235 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4236   assert(!ConstraintCode.empty() && "No known constraint!");
4237   return atoi(ConstraintCode.c_str());
4238 }
4239 
4240 /// Split up the constraint string from the inline assembly value into the
4241 /// specific constraints and their prefixes, and also tie in the associated
4242 /// operand values.
4243 /// If this returns an empty vector, and if the constraint string itself
4244 /// isn't empty, there was an error parsing.
4245 TargetLowering::AsmOperandInfoVector
4246 TargetLowering::ParseConstraints(const DataLayout &DL,
4247                                  const TargetRegisterInfo *TRI,
4248                                  ImmutableCallSite CS) const {
4249   /// Information about all of the constraints.
4250   AsmOperandInfoVector ConstraintOperands;
4251   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
4252   unsigned maCount = 0; // Largest number of multiple alternative constraints.
4253 
4254   // Do a prepass over the constraints, canonicalizing them, and building up the
4255   // ConstraintOperands list.
4256   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4257   unsigned ResNo = 0; // ResNo - The result number of the next output.
4258 
4259   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4260     ConstraintOperands.emplace_back(std::move(CI));
4261     AsmOperandInfo &OpInfo = ConstraintOperands.back();
4262 
4263     // Update multiple alternative constraint count.
4264     if (OpInfo.multipleAlternatives.size() > maCount)
4265       maCount = OpInfo.multipleAlternatives.size();
4266 
4267     OpInfo.ConstraintVT = MVT::Other;
4268 
4269     // Compute the value type for each operand.
4270     switch (OpInfo.Type) {
4271     case InlineAsm::isOutput:
4272       // Indirect outputs just consume an argument.
4273       if (OpInfo.isIndirect) {
4274         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
4275         break;
4276       }
4277 
4278       // The return value of the call is this value.  As such, there is no
4279       // corresponding argument.
4280       assert(!CS.getType()->isVoidTy() &&
4281              "Bad inline asm!");
4282       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
4283         OpInfo.ConstraintVT =
4284             getSimpleValueType(DL, STy->getElementType(ResNo));
4285       } else {
4286         assert(ResNo == 0 && "Asm only has one result!");
4287         OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
4288       }
4289       ++ResNo;
4290       break;
4291     case InlineAsm::isInput:
4292       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
4293       break;
4294     case InlineAsm::isClobber:
4295       // Nothing to do.
4296       break;
4297     }
4298 
4299     if (OpInfo.CallOperandVal) {
4300       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4301       if (OpInfo.isIndirect) {
4302         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4303         if (!PtrTy)
4304           report_fatal_error("Indirect operand for inline asm not a pointer!");
4305         OpTy = PtrTy->getElementType();
4306       }
4307 
4308       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4309       if (StructType *STy = dyn_cast<StructType>(OpTy))
4310         if (STy->getNumElements() == 1)
4311           OpTy = STy->getElementType(0);
4312 
4313       // If OpTy is not a single value, it may be a struct/union that we
4314       // can tile with integers.
4315       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4316         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4317         switch (BitSize) {
4318         default: break;
4319         case 1:
4320         case 8:
4321         case 16:
4322         case 32:
4323         case 64:
4324         case 128:
4325           OpInfo.ConstraintVT =
4326               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4327           break;
4328         }
4329       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4330         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4331         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4332       } else {
4333         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4334       }
4335     }
4336   }
4337 
4338   // If we have multiple alternative constraints, select the best alternative.
4339   if (!ConstraintOperands.empty()) {
4340     if (maCount) {
4341       unsigned bestMAIndex = 0;
4342       int bestWeight = -1;
4343       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
4344       int weight = -1;
4345       unsigned maIndex;
4346       // Compute the sums of the weights for each alternative, keeping track
4347       // of the best (highest weight) one so far.
4348       for (maIndex = 0; maIndex < maCount; ++maIndex) {
4349         int weightSum = 0;
4350         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4351              cIndex != eIndex; ++cIndex) {
4352           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4353           if (OpInfo.Type == InlineAsm::isClobber)
4354             continue;
4355 
4356           // If this is an output operand with a matching input operand,
4357           // look up the matching input. If their types mismatch, e.g. one
4358           // is an integer, the other is floating point, or their sizes are
4359           // different, flag it as an maCantMatch.
4360           if (OpInfo.hasMatchingInput()) {
4361             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4362             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4363               if ((OpInfo.ConstraintVT.isInteger() !=
4364                    Input.ConstraintVT.isInteger()) ||
4365                   (OpInfo.ConstraintVT.getSizeInBits() !=
4366                    Input.ConstraintVT.getSizeInBits())) {
4367                 weightSum = -1; // Can't match.
4368                 break;
4369               }
4370             }
4371           }
4372           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4373           if (weight == -1) {
4374             weightSum = -1;
4375             break;
4376           }
4377           weightSum += weight;
4378         }
4379         // Update best.
4380         if (weightSum > bestWeight) {
4381           bestWeight = weightSum;
4382           bestMAIndex = maIndex;
4383         }
4384       }
4385 
4386       // Now select chosen alternative in each constraint.
4387       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4388            cIndex != eIndex; ++cIndex) {
4389         AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
4390         if (cInfo.Type == InlineAsm::isClobber)
4391           continue;
4392         cInfo.selectAlternative(bestMAIndex);
4393       }
4394     }
4395   }
4396 
4397   // Check and hook up tied operands, choose constraint code to use.
4398   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4399        cIndex != eIndex; ++cIndex) {
4400     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4401 
4402     // If this is an output operand with a matching input operand, look up the
4403     // matching input. If their types mismatch, e.g. one is an integer, the
4404     // other is floating point, or their sizes are different, flag it as an
4405     // error.
4406     if (OpInfo.hasMatchingInput()) {
4407       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4408 
4409       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4410         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4411             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4412                                          OpInfo.ConstraintVT);
4413         std::pair<unsigned, const TargetRegisterClass *> InputRC =
4414             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4415                                          Input.ConstraintVT);
4416         if ((OpInfo.ConstraintVT.isInteger() !=
4417              Input.ConstraintVT.isInteger()) ||
4418             (MatchRC.second != InputRC.second)) {
4419           report_fatal_error("Unsupported asm: input constraint"
4420                              " with a matching output constraint of"
4421                              " incompatible type!");
4422         }
4423       }
4424     }
4425   }
4426 
4427   return ConstraintOperands;
4428 }
4429 
4430 /// Return an integer indicating how general CT is.
4431 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4432   switch (CT) {
4433   case TargetLowering::C_Immediate:
4434   case TargetLowering::C_Other:
4435   case TargetLowering::C_Unknown:
4436     return 0;
4437   case TargetLowering::C_Register:
4438     return 1;
4439   case TargetLowering::C_RegisterClass:
4440     return 2;
4441   case TargetLowering::C_Memory:
4442     return 3;
4443   }
4444   llvm_unreachable("Invalid constraint type");
4445 }
4446 
4447 /// Examine constraint type and operand type and determine a weight value.
4448 /// This object must already have been set up with the operand type
4449 /// and the current alternative constraint selected.
4450 TargetLowering::ConstraintWeight
4451   TargetLowering::getMultipleConstraintMatchWeight(
4452     AsmOperandInfo &info, int maIndex) const {
4453   InlineAsm::ConstraintCodeVector *rCodes;
4454   if (maIndex >= (int)info.multipleAlternatives.size())
4455     rCodes = &info.Codes;
4456   else
4457     rCodes = &info.multipleAlternatives[maIndex].Codes;
4458   ConstraintWeight BestWeight = CW_Invalid;
4459 
4460   // Loop over the options, keeping track of the most general one.
4461   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
4462     ConstraintWeight weight =
4463       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
4464     if (weight > BestWeight)
4465       BestWeight = weight;
4466   }
4467 
4468   return BestWeight;
4469 }
4470 
4471 /// Examine constraint type and operand type and determine a weight value.
4472 /// This object must already have been set up with the operand type
4473 /// and the current alternative constraint selected.
4474 TargetLowering::ConstraintWeight
4475   TargetLowering::getSingleConstraintMatchWeight(
4476     AsmOperandInfo &info, const char *constraint) const {
4477   ConstraintWeight weight = CW_Invalid;
4478   Value *CallOperandVal = info.CallOperandVal;
4479     // If we don't have a value, we can't do a match,
4480     // but allow it at the lowest weight.
4481   if (!CallOperandVal)
4482     return CW_Default;
4483   // Look at the constraint type.
4484   switch (*constraint) {
4485     case 'i': // immediate integer.
4486     case 'n': // immediate integer with a known value.
4487       if (isa<ConstantInt>(CallOperandVal))
4488         weight = CW_Constant;
4489       break;
4490     case 's': // non-explicit intregal immediate.
4491       if (isa<GlobalValue>(CallOperandVal))
4492         weight = CW_Constant;
4493       break;
4494     case 'E': // immediate float if host format.
4495     case 'F': // immediate float.
4496       if (isa<ConstantFP>(CallOperandVal))
4497         weight = CW_Constant;
4498       break;
4499     case '<': // memory operand with autodecrement.
4500     case '>': // memory operand with autoincrement.
4501     case 'm': // memory operand.
4502     case 'o': // offsettable memory operand
4503     case 'V': // non-offsettable memory operand
4504       weight = CW_Memory;
4505       break;
4506     case 'r': // general register.
4507     case 'g': // general register, memory operand or immediate integer.
4508               // note: Clang converts "g" to "imr".
4509       if (CallOperandVal->getType()->isIntegerTy())
4510         weight = CW_Register;
4511       break;
4512     case 'X': // any operand.
4513   default:
4514     weight = CW_Default;
4515     break;
4516   }
4517   return weight;
4518 }
4519 
4520 /// If there are multiple different constraints that we could pick for this
4521 /// operand (e.g. "imr") try to pick the 'best' one.
4522 /// This is somewhat tricky: constraints fall into four classes:
4523 ///    Other         -> immediates and magic values
4524 ///    Register      -> one specific register
4525 ///    RegisterClass -> a group of regs
4526 ///    Memory        -> memory
4527 /// Ideally, we would pick the most specific constraint possible: if we have
4528 /// something that fits into a register, we would pick it.  The problem here
4529 /// is that if we have something that could either be in a register or in
4530 /// memory that use of the register could cause selection of *other*
4531 /// operands to fail: they might only succeed if we pick memory.  Because of
4532 /// this the heuristic we use is:
4533 ///
4534 ///  1) If there is an 'other' constraint, and if the operand is valid for
4535 ///     that constraint, use it.  This makes us take advantage of 'i'
4536 ///     constraints when available.
4537 ///  2) Otherwise, pick the most general constraint present.  This prefers
4538 ///     'm' over 'r', for example.
4539 ///
4540 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
4541                              const TargetLowering &TLI,
4542                              SDValue Op, SelectionDAG *DAG) {
4543   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
4544   unsigned BestIdx = 0;
4545   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
4546   int BestGenerality = -1;
4547 
4548   // Loop over the options, keeping track of the most general one.
4549   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
4550     TargetLowering::ConstraintType CType =
4551       TLI.getConstraintType(OpInfo.Codes[i]);
4552 
4553     // Indirect 'other' or 'immediate' constraints are not allowed.
4554     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
4555                                CType == TargetLowering::C_Register ||
4556                                CType == TargetLowering::C_RegisterClass))
4557       continue;
4558 
4559     // If this is an 'other' or 'immediate' constraint, see if the operand is
4560     // valid for it. For example, on X86 we might have an 'rI' constraint. If
4561     // the operand is an integer in the range [0..31] we want to use I (saving a
4562     // load of a register), otherwise we must use 'r'.
4563     if ((CType == TargetLowering::C_Other ||
4564          CType == TargetLowering::C_Immediate) && Op.getNode()) {
4565       assert(OpInfo.Codes[i].size() == 1 &&
4566              "Unhandled multi-letter 'other' constraint");
4567       std::vector<SDValue> ResultOps;
4568       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
4569                                        ResultOps, *DAG);
4570       if (!ResultOps.empty()) {
4571         BestType = CType;
4572         BestIdx = i;
4573         break;
4574       }
4575     }
4576 
4577     // Things with matching constraints can only be registers, per gcc
4578     // documentation.  This mainly affects "g" constraints.
4579     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
4580       continue;
4581 
4582     // This constraint letter is more general than the previous one, use it.
4583     int Generality = getConstraintGenerality(CType);
4584     if (Generality > BestGenerality) {
4585       BestType = CType;
4586       BestIdx = i;
4587       BestGenerality = Generality;
4588     }
4589   }
4590 
4591   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
4592   OpInfo.ConstraintType = BestType;
4593 }
4594 
4595 /// Determines the constraint code and constraint type to use for the specific
4596 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
4597 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
4598                                             SDValue Op,
4599                                             SelectionDAG *DAG) const {
4600   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
4601 
4602   // Single-letter constraints ('r') are very common.
4603   if (OpInfo.Codes.size() == 1) {
4604     OpInfo.ConstraintCode = OpInfo.Codes[0];
4605     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4606   } else {
4607     ChooseConstraint(OpInfo, *this, Op, DAG);
4608   }
4609 
4610   // 'X' matches anything.
4611   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
4612     // Labels and constants are handled elsewhere ('X' is the only thing
4613     // that matches labels).  For Functions, the type here is the type of
4614     // the result, which is not what we want to look at; leave them alone.
4615     Value *v = OpInfo.CallOperandVal;
4616     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
4617       OpInfo.CallOperandVal = v;
4618       return;
4619     }
4620 
4621     if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
4622       return;
4623 
4624     // Otherwise, try to resolve it to something we know about by looking at
4625     // the actual operand type.
4626     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
4627       OpInfo.ConstraintCode = Repl;
4628       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4629     }
4630   }
4631 }
4632 
4633 /// Given an exact SDIV by a constant, create a multiplication
4634 /// with the multiplicative inverse of the constant.
4635 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
4636                               const SDLoc &dl, SelectionDAG &DAG,
4637                               SmallVectorImpl<SDNode *> &Created) {
4638   SDValue Op0 = N->getOperand(0);
4639   SDValue Op1 = N->getOperand(1);
4640   EVT VT = N->getValueType(0);
4641   EVT SVT = VT.getScalarType();
4642   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
4643   EVT ShSVT = ShVT.getScalarType();
4644 
4645   bool UseSRA = false;
4646   SmallVector<SDValue, 16> Shifts, Factors;
4647 
4648   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4649     if (C->isNullValue())
4650       return false;
4651     APInt Divisor = C->getAPIntValue();
4652     unsigned Shift = Divisor.countTrailingZeros();
4653     if (Shift) {
4654       Divisor.ashrInPlace(Shift);
4655       UseSRA = true;
4656     }
4657     // Calculate the multiplicative inverse, using Newton's method.
4658     APInt t;
4659     APInt Factor = Divisor;
4660     while ((t = Divisor * Factor) != 1)
4661       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
4662     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
4663     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
4664     return true;
4665   };
4666 
4667   // Collect all magic values from the build vector.
4668   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
4669     return SDValue();
4670 
4671   SDValue Shift, Factor;
4672   if (VT.isVector()) {
4673     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4674     Factor = DAG.getBuildVector(VT, dl, Factors);
4675   } else {
4676     Shift = Shifts[0];
4677     Factor = Factors[0];
4678   }
4679 
4680   SDValue Res = Op0;
4681 
4682   // Shift the value upfront if it is even, so the LSB is one.
4683   if (UseSRA) {
4684     // TODO: For UDIV use SRL instead of SRA.
4685     SDNodeFlags Flags;
4686     Flags.setExact(true);
4687     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
4688     Created.push_back(Res.getNode());
4689   }
4690 
4691   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
4692 }
4693 
4694 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
4695                               SelectionDAG &DAG,
4696                               SmallVectorImpl<SDNode *> &Created) const {
4697   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4698   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4699   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
4700     return SDValue(N, 0); // Lower SDIV as SDIV
4701   return SDValue();
4702 }
4703 
4704 /// Given an ISD::SDIV node expressing a divide by constant,
4705 /// return a DAG expression to select that will generate the same value by
4706 /// multiplying by a magic number.
4707 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4708 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
4709                                   bool IsAfterLegalization,
4710                                   SmallVectorImpl<SDNode *> &Created) const {
4711   SDLoc dl(N);
4712   EVT VT = N->getValueType(0);
4713   EVT SVT = VT.getScalarType();
4714   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4715   EVT ShSVT = ShVT.getScalarType();
4716   unsigned EltBits = VT.getScalarSizeInBits();
4717 
4718   // Check to see if we can do this.
4719   // FIXME: We should be more aggressive here.
4720   if (!isTypeLegal(VT))
4721     return SDValue();
4722 
4723   // If the sdiv has an 'exact' bit we can use a simpler lowering.
4724   if (N->getFlags().hasExact())
4725     return BuildExactSDIV(*this, N, dl, DAG, Created);
4726 
4727   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
4728 
4729   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4730     if (C->isNullValue())
4731       return false;
4732 
4733     const APInt &Divisor = C->getAPIntValue();
4734     APInt::ms magics = Divisor.magic();
4735     int NumeratorFactor = 0;
4736     int ShiftMask = -1;
4737 
4738     if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
4739       // If d is +1/-1, we just multiply the numerator by +1/-1.
4740       NumeratorFactor = Divisor.getSExtValue();
4741       magics.m = 0;
4742       magics.s = 0;
4743       ShiftMask = 0;
4744     } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
4745       // If d > 0 and m < 0, add the numerator.
4746       NumeratorFactor = 1;
4747     } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
4748       // If d < 0 and m > 0, subtract the numerator.
4749       NumeratorFactor = -1;
4750     }
4751 
4752     MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
4753     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
4754     Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
4755     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
4756     return true;
4757   };
4758 
4759   SDValue N0 = N->getOperand(0);
4760   SDValue N1 = N->getOperand(1);
4761 
4762   // Collect the shifts / magic values from each element.
4763   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
4764     return SDValue();
4765 
4766   SDValue MagicFactor, Factor, Shift, ShiftMask;
4767   if (VT.isVector()) {
4768     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4769     Factor = DAG.getBuildVector(VT, dl, Factors);
4770     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4771     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
4772   } else {
4773     MagicFactor = MagicFactors[0];
4774     Factor = Factors[0];
4775     Shift = Shifts[0];
4776     ShiftMask = ShiftMasks[0];
4777   }
4778 
4779   // Multiply the numerator (operand 0) by the magic value.
4780   // FIXME: We should support doing a MUL in a wider type.
4781   SDValue Q;
4782   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT)
4783                           : isOperationLegalOrCustom(ISD::MULHS, VT))
4784     Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor);
4785   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT)
4786                                : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
4787     SDValue LoHi =
4788         DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor);
4789     Q = SDValue(LoHi.getNode(), 1);
4790   } else
4791     return SDValue(); // No mulhs or equivalent.
4792   Created.push_back(Q.getNode());
4793 
4794   // (Optionally) Add/subtract the numerator using Factor.
4795   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
4796   Created.push_back(Factor.getNode());
4797   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
4798   Created.push_back(Q.getNode());
4799 
4800   // Shift right algebraic by shift value.
4801   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
4802   Created.push_back(Q.getNode());
4803 
4804   // Extract the sign bit, mask it and add it to the quotient.
4805   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
4806   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
4807   Created.push_back(T.getNode());
4808   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
4809   Created.push_back(T.getNode());
4810   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
4811 }
4812 
4813 /// Given an ISD::UDIV node expressing a divide by constant,
4814 /// return a DAG expression to select that will generate the same value by
4815 /// multiplying by a magic number.
4816 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4817 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
4818                                   bool IsAfterLegalization,
4819                                   SmallVectorImpl<SDNode *> &Created) const {
4820   SDLoc dl(N);
4821   EVT VT = N->getValueType(0);
4822   EVT SVT = VT.getScalarType();
4823   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4824   EVT ShSVT = ShVT.getScalarType();
4825   unsigned EltBits = VT.getScalarSizeInBits();
4826 
4827   // Check to see if we can do this.
4828   // FIXME: We should be more aggressive here.
4829   if (!isTypeLegal(VT))
4830     return SDValue();
4831 
4832   bool UseNPQ = false;
4833   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
4834 
4835   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
4836     if (C->isNullValue())
4837       return false;
4838     // FIXME: We should use a narrower constant when the upper
4839     // bits are known to be zero.
4840     APInt Divisor = C->getAPIntValue();
4841     APInt::mu magics = Divisor.magicu();
4842     unsigned PreShift = 0, PostShift = 0;
4843 
4844     // If the divisor is even, we can avoid using the expensive fixup by
4845     // shifting the divided value upfront.
4846     if (magics.a != 0 && !Divisor[0]) {
4847       PreShift = Divisor.countTrailingZeros();
4848       // Get magic number for the shifted divisor.
4849       magics = Divisor.lshr(PreShift).magicu(PreShift);
4850       assert(magics.a == 0 && "Should use cheap fixup now");
4851     }
4852 
4853     APInt Magic = magics.m;
4854 
4855     unsigned SelNPQ;
4856     if (magics.a == 0 || Divisor.isOneValue()) {
4857       assert(magics.s < Divisor.getBitWidth() &&
4858              "We shouldn't generate an undefined shift!");
4859       PostShift = magics.s;
4860       SelNPQ = false;
4861     } else {
4862       PostShift = magics.s - 1;
4863       SelNPQ = true;
4864     }
4865 
4866     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
4867     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
4868     NPQFactors.push_back(
4869         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
4870                                : APInt::getNullValue(EltBits),
4871                         dl, SVT));
4872     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
4873     UseNPQ |= SelNPQ;
4874     return true;
4875   };
4876 
4877   SDValue N0 = N->getOperand(0);
4878   SDValue N1 = N->getOperand(1);
4879 
4880   // Collect the shifts/magic values from each element.
4881   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
4882     return SDValue();
4883 
4884   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
4885   if (VT.isVector()) {
4886     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
4887     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4888     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
4889     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
4890   } else {
4891     PreShift = PreShifts[0];
4892     MagicFactor = MagicFactors[0];
4893     PostShift = PostShifts[0];
4894   }
4895 
4896   SDValue Q = N0;
4897   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
4898   Created.push_back(Q.getNode());
4899 
4900   // FIXME: We should support doing a MUL in a wider type.
4901   auto GetMULHU = [&](SDValue X, SDValue Y) {
4902     if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT)
4903                             : isOperationLegalOrCustom(ISD::MULHU, VT))
4904       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
4905     if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT)
4906                             : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) {
4907       SDValue LoHi =
4908           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
4909       return SDValue(LoHi.getNode(), 1);
4910     }
4911     return SDValue(); // No mulhu or equivalent
4912   };
4913 
4914   // Multiply the numerator (operand 0) by the magic value.
4915   Q = GetMULHU(Q, MagicFactor);
4916   if (!Q)
4917     return SDValue();
4918 
4919   Created.push_back(Q.getNode());
4920 
4921   if (UseNPQ) {
4922     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
4923     Created.push_back(NPQ.getNode());
4924 
4925     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
4926     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
4927     if (VT.isVector())
4928       NPQ = GetMULHU(NPQ, NPQFactor);
4929     else
4930       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
4931 
4932     Created.push_back(NPQ.getNode());
4933 
4934     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
4935     Created.push_back(Q.getNode());
4936   }
4937 
4938   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
4939   Created.push_back(Q.getNode());
4940 
4941   SDValue One = DAG.getConstant(1, dl, VT);
4942   SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ);
4943   return DAG.getSelect(dl, VT, IsOne, N0, Q);
4944 }
4945 
4946 /// If all values in Values that *don't* match the predicate are same 'splat'
4947 /// value, then replace all values with that splat value.
4948 /// Else, if AlternativeReplacement was provided, then replace all values that
4949 /// do match predicate with AlternativeReplacement value.
4950 static void
4951 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
4952                           std::function<bool(SDValue)> Predicate,
4953                           SDValue AlternativeReplacement = SDValue()) {
4954   SDValue Replacement;
4955   // Is there a value for which the Predicate does *NOT* match? What is it?
4956   auto SplatValue = llvm::find_if_not(Values, Predicate);
4957   if (SplatValue != Values.end()) {
4958     // Does Values consist only of SplatValue's and values matching Predicate?
4959     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
4960           return Value == *SplatValue || Predicate(Value);
4961         })) // Then we shall replace values matching predicate with SplatValue.
4962       Replacement = *SplatValue;
4963   }
4964   if (!Replacement) {
4965     // Oops, we did not find the "baseline" splat value.
4966     if (!AlternativeReplacement)
4967       return; // Nothing to do.
4968     // Let's replace with provided value then.
4969     Replacement = AlternativeReplacement;
4970   }
4971   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
4972 }
4973 
4974 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
4975 /// where the divisor is constant and the comparison target is zero,
4976 /// return a DAG expression that will generate the same comparison result
4977 /// using only multiplications, additions and shifts/rotations.
4978 /// Ref: "Hacker's Delight" 10-17.
4979 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
4980                                         SDValue CompTargetNode,
4981                                         ISD::CondCode Cond,
4982                                         DAGCombinerInfo &DCI,
4983                                         const SDLoc &DL) const {
4984   SmallVector<SDNode *, 5> Built;
4985   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
4986                                          DCI, DL, Built)) {
4987     for (SDNode *N : Built)
4988       DCI.AddToWorklist(N);
4989     return Folded;
4990   }
4991 
4992   return SDValue();
4993 }
4994 
4995 SDValue
4996 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
4997                                   SDValue CompTargetNode, ISD::CondCode Cond,
4998                                   DAGCombinerInfo &DCI, const SDLoc &DL,
4999                                   SmallVectorImpl<SDNode *> &Created) const {
5000   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
5001   // - D must be constant, with D = D0 * 2^K where D0 is odd
5002   // - P is the multiplicative inverse of D0 modulo 2^W
5003   // - Q = floor(((2^W) - 1) / D)
5004   // where W is the width of the common type of N and D.
5005   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5006          "Only applicable for (in)equality comparisons.");
5007 
5008   SelectionDAG &DAG = DCI.DAG;
5009 
5010   EVT VT = REMNode.getValueType();
5011   EVT SVT = VT.getScalarType();
5012   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5013   EVT ShSVT = ShVT.getScalarType();
5014 
5015   // If MUL is unavailable, we cannot proceed in any case.
5016   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5017     return SDValue();
5018 
5019   bool ComparingWithAllZeros = true;
5020   bool AllComparisonsWithNonZerosAreTautological = true;
5021   bool HadTautologicalLanes = false;
5022   bool AllLanesAreTautological = true;
5023   bool HadEvenDivisor = false;
5024   bool AllDivisorsArePowerOfTwo = true;
5025   bool HadTautologicalInvertedLanes = false;
5026   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
5027 
5028   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
5029     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5030     if (CDiv->isNullValue())
5031       return false;
5032 
5033     const APInt &D = CDiv->getAPIntValue();
5034     const APInt &Cmp = CCmp->getAPIntValue();
5035 
5036     ComparingWithAllZeros &= Cmp.isNullValue();
5037 
5038     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5039     // if C2 is not less than C1, the comparison is always false.
5040     // But we will only be able to produce the comparison that will give the
5041     // opposive tautological answer. So this lane would need to be fixed up.
5042     bool TautologicalInvertedLane = D.ule(Cmp);
5043     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
5044 
5045     // If all lanes are tautological (either all divisors are ones, or divisor
5046     // is not greater than the constant we are comparing with),
5047     // we will prefer to avoid the fold.
5048     bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane;
5049     HadTautologicalLanes |= TautologicalLane;
5050     AllLanesAreTautological &= TautologicalLane;
5051 
5052     // If we are comparing with non-zero, we need'll need  to subtract said
5053     // comparison value from the LHS. But there is no point in doing that if
5054     // every lane where we are comparing with non-zero is tautological..
5055     if (!Cmp.isNullValue())
5056       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
5057 
5058     // Decompose D into D0 * 2^K
5059     unsigned K = D.countTrailingZeros();
5060     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5061     APInt D0 = D.lshr(K);
5062 
5063     // D is even if it has trailing zeros.
5064     HadEvenDivisor |= (K != 0);
5065     // D is a power-of-two if D0 is one.
5066     // If all divisors are power-of-two, we will prefer to avoid the fold.
5067     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5068 
5069     // P = inv(D0, 2^W)
5070     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5071     unsigned W = D.getBitWidth();
5072     APInt P = D0.zext(W + 1)
5073                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5074                   .trunc(W);
5075     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5076     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5077 
5078     // Q = floor((2^W - 1) u/ D)
5079     // R = ((2^W - 1) u% D)
5080     APInt Q, R;
5081     APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R);
5082 
5083     // If we are comparing with zero, then that comparison constant is okay,
5084     // else it may need to be one less than that.
5085     if (Cmp.ugt(R))
5086       Q -= 1;
5087 
5088     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5089            "We are expecting that K is always less than all-ones for ShSVT");
5090 
5091     // If the lane is tautological the result can be constant-folded.
5092     if (TautologicalLane) {
5093       // Set P and K amount to a bogus values so we can try to splat them.
5094       P = 0;
5095       K = -1;
5096       // And ensure that comparison constant is tautological,
5097       // it will always compare true/false.
5098       Q = -1;
5099     }
5100 
5101     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5102     KAmts.push_back(
5103         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5104     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5105     return true;
5106   };
5107 
5108   SDValue N = REMNode.getOperand(0);
5109   SDValue D = REMNode.getOperand(1);
5110 
5111   // Collect the values from each element.
5112   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
5113     return SDValue();
5114 
5115   // If all lanes are tautological, the result can be constant-folded.
5116   if (AllLanesAreTautological)
5117     return SDValue();
5118 
5119   // If this is a urem by a powers-of-two, avoid the fold since it can be
5120   // best implemented as a bit test.
5121   if (AllDivisorsArePowerOfTwo)
5122     return SDValue();
5123 
5124   SDValue PVal, KVal, QVal;
5125   if (VT.isVector()) {
5126     if (HadTautologicalLanes) {
5127       // Try to turn PAmts into a splat, since we don't care about the values
5128       // that are currently '0'. If we can't, just keep '0'`s.
5129       turnVectorIntoSplatVector(PAmts, isNullConstant);
5130       // Try to turn KAmts into a splat, since we don't care about the values
5131       // that are currently '-1'. If we can't, change them to '0'`s.
5132       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5133                                 DAG.getConstant(0, DL, ShSVT));
5134     }
5135 
5136     PVal = DAG.getBuildVector(VT, DL, PAmts);
5137     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5138     QVal = DAG.getBuildVector(VT, DL, QAmts);
5139   } else {
5140     PVal = PAmts[0];
5141     KVal = KAmts[0];
5142     QVal = QAmts[0];
5143   }
5144 
5145   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
5146     if (!isOperationLegalOrCustom(ISD::SUB, VT))
5147       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
5148     assert(CompTargetNode.getValueType() == N.getValueType() &&
5149            "Expecting that the types on LHS and RHS of comparisons match.");
5150     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
5151   }
5152 
5153   // (mul N, P)
5154   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5155   Created.push_back(Op0.getNode());
5156 
5157   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5158   // divisors as a performance improvement, since rotating by 0 is a no-op.
5159   if (HadEvenDivisor) {
5160     // We need ROTR to do this.
5161     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5162       return SDValue();
5163     SDNodeFlags Flags;
5164     Flags.setExact(true);
5165     // UREM: (rotr (mul N, P), K)
5166     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5167     Created.push_back(Op0.getNode());
5168   }
5169 
5170   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5171   SDValue NewCC =
5172       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5173                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5174   if (!HadTautologicalInvertedLanes)
5175     return NewCC;
5176 
5177   // If any lanes previously compared always-false, the NewCC will give
5178   // always-true result for them, so we need to fixup those lanes.
5179   // Or the other way around for inequality predicate.
5180   assert(VT.isVector() && "Can/should only get here for vectors.");
5181   Created.push_back(NewCC.getNode());
5182 
5183   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5184   // if C2 is not less than C1, the comparison is always false.
5185   // But we have produced the comparison that will give the
5186   // opposive tautological answer. So these lanes would need to be fixed up.
5187   SDValue TautologicalInvertedChannels =
5188       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
5189   Created.push_back(TautologicalInvertedChannels.getNode());
5190 
5191   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
5192     // If we have a vector select, let's replace the comparison results in the
5193     // affected lanes with the correct tautological result.
5194     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
5195                                               DL, SETCCVT, SETCCVT);
5196     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
5197                        Replacement, NewCC);
5198   }
5199 
5200   // Else, we can just invert the comparison result in the appropriate lanes.
5201   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
5202     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
5203                        TautologicalInvertedChannels);
5204 
5205   return SDValue(); // Don't know how to lower.
5206 }
5207 
5208 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5209 /// where the divisor is constant and the comparison target is zero,
5210 /// return a DAG expression that will generate the same comparison result
5211 /// using only multiplications, additions and shifts/rotations.
5212 /// Ref: "Hacker's Delight" 10-17.
5213 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
5214                                         SDValue CompTargetNode,
5215                                         ISD::CondCode Cond,
5216                                         DAGCombinerInfo &DCI,
5217                                         const SDLoc &DL) const {
5218   SmallVector<SDNode *, 7> Built;
5219   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5220                                          DCI, DL, Built)) {
5221     assert(Built.size() <= 7 && "Max size prediction failed.");
5222     for (SDNode *N : Built)
5223       DCI.AddToWorklist(N);
5224     return Folded;
5225   }
5226 
5227   return SDValue();
5228 }
5229 
5230 SDValue
5231 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5232                                   SDValue CompTargetNode, ISD::CondCode Cond,
5233                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5234                                   SmallVectorImpl<SDNode *> &Created) const {
5235   // Fold:
5236   //   (seteq/ne (srem N, D), 0)
5237   // To:
5238   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
5239   //
5240   // - D must be constant, with D = D0 * 2^K where D0 is odd
5241   // - P is the multiplicative inverse of D0 modulo 2^W
5242   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5243   // - Q = floor((2 * A) / (2^K))
5244   // where W is the width of the common type of N and D.
5245   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5246          "Only applicable for (in)equality comparisons.");
5247 
5248   SelectionDAG &DAG = DCI.DAG;
5249 
5250   EVT VT = REMNode.getValueType();
5251   EVT SVT = VT.getScalarType();
5252   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5253   EVT ShSVT = ShVT.getScalarType();
5254 
5255   // If MUL is unavailable, we cannot proceed in any case.
5256   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5257     return SDValue();
5258 
5259   // TODO: Could support comparing with non-zero too.
5260   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
5261   if (!CompTarget || !CompTarget->isNullValue())
5262     return SDValue();
5263 
5264   bool HadIntMinDivisor = false;
5265   bool HadOneDivisor = false;
5266   bool AllDivisorsAreOnes = true;
5267   bool HadEvenDivisor = false;
5268   bool NeedToApplyOffset = false;
5269   bool AllDivisorsArePowerOfTwo = true;
5270   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
5271 
5272   auto BuildSREMPattern = [&](ConstantSDNode *C) {
5273     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5274     if (C->isNullValue())
5275       return false;
5276 
5277     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5278 
5279     // WARNING: this fold is only valid for positive divisors!
5280     APInt D = C->getAPIntValue();
5281     if (D.isNegative())
5282       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
5283 
5284     HadIntMinDivisor |= D.isMinSignedValue();
5285 
5286     // If all divisors are ones, we will prefer to avoid the fold.
5287     HadOneDivisor |= D.isOneValue();
5288     AllDivisorsAreOnes &= D.isOneValue();
5289 
5290     // Decompose D into D0 * 2^K
5291     unsigned K = D.countTrailingZeros();
5292     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5293     APInt D0 = D.lshr(K);
5294 
5295     if (!D.isMinSignedValue()) {
5296       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5297       // we don't care about this lane in this fold, we'll special-handle it.
5298       HadEvenDivisor |= (K != 0);
5299     }
5300 
5301     // D is a power-of-two if D0 is one. This includes INT_MIN.
5302     // If all divisors are power-of-two, we will prefer to avoid the fold.
5303     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5304 
5305     // P = inv(D0, 2^W)
5306     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5307     unsigned W = D.getBitWidth();
5308     APInt P = D0.zext(W + 1)
5309                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5310                   .trunc(W);
5311     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5312     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5313 
5314     // A = floor((2^(W - 1) - 1) / D0) & -2^K
5315     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
5316     A.clearLowBits(K);
5317 
5318     if (!D.isMinSignedValue()) {
5319       // If divisor INT_MIN, then we don't care about this lane in this fold,
5320       // we'll special-handle it.
5321       NeedToApplyOffset |= A != 0;
5322     }
5323 
5324     // Q = floor((2 * A) / (2^K))
5325     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
5326 
5327     assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) &&
5328            "We are expecting that A is always less than all-ones for SVT");
5329     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5330            "We are expecting that K is always less than all-ones for ShSVT");
5331 
5332     // If the divisor is 1 the result can be constant-folded. Likewise, we
5333     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5334     if (D.isOneValue()) {
5335       // Set P, A and K to a bogus values so we can try to splat them.
5336       P = 0;
5337       A = -1;
5338       K = -1;
5339 
5340       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
5341       Q = -1;
5342     }
5343 
5344     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5345     AAmts.push_back(DAG.getConstant(A, DL, SVT));
5346     KAmts.push_back(
5347         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5348     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5349     return true;
5350   };
5351 
5352   SDValue N = REMNode.getOperand(0);
5353   SDValue D = REMNode.getOperand(1);
5354 
5355   // Collect the values from each element.
5356   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
5357     return SDValue();
5358 
5359   // If this is a srem by a one, avoid the fold since it can be constant-folded.
5360   if (AllDivisorsAreOnes)
5361     return SDValue();
5362 
5363   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5364   // since it can be best implemented as a bit test.
5365   if (AllDivisorsArePowerOfTwo)
5366     return SDValue();
5367 
5368   SDValue PVal, AVal, KVal, QVal;
5369   if (VT.isVector()) {
5370     if (HadOneDivisor) {
5371       // Try to turn PAmts into a splat, since we don't care about the values
5372       // that are currently '0'. If we can't, just keep '0'`s.
5373       turnVectorIntoSplatVector(PAmts, isNullConstant);
5374       // Try to turn AAmts into a splat, since we don't care about the
5375       // values that are currently '-1'. If we can't, change them to '0'`s.
5376       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
5377                                 DAG.getConstant(0, DL, SVT));
5378       // Try to turn KAmts into a splat, since we don't care about the values
5379       // that are currently '-1'. If we can't, change them to '0'`s.
5380       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5381                                 DAG.getConstant(0, DL, ShSVT));
5382     }
5383 
5384     PVal = DAG.getBuildVector(VT, DL, PAmts);
5385     AVal = DAG.getBuildVector(VT, DL, AAmts);
5386     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5387     QVal = DAG.getBuildVector(VT, DL, QAmts);
5388   } else {
5389     PVal = PAmts[0];
5390     AVal = AAmts[0];
5391     KVal = KAmts[0];
5392     QVal = QAmts[0];
5393   }
5394 
5395   // (mul N, P)
5396   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5397   Created.push_back(Op0.getNode());
5398 
5399   if (NeedToApplyOffset) {
5400     // We need ADD to do this.
5401     if (!isOperationLegalOrCustom(ISD::ADD, VT))
5402       return SDValue();
5403 
5404     // (add (mul N, P), A)
5405     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
5406     Created.push_back(Op0.getNode());
5407   }
5408 
5409   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5410   // divisors as a performance improvement, since rotating by 0 is a no-op.
5411   if (HadEvenDivisor) {
5412     // We need ROTR to do this.
5413     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5414       return SDValue();
5415     SDNodeFlags Flags;
5416     Flags.setExact(true);
5417     // SREM: (rotr (add (mul N, P), A), K)
5418     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5419     Created.push_back(Op0.getNode());
5420   }
5421 
5422   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
5423   SDValue Fold =
5424       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5425                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5426 
5427   // If we didn't have lanes with INT_MIN divisor, then we're done.
5428   if (!HadIntMinDivisor)
5429     return Fold;
5430 
5431   // That fold is only valid for positive divisors. Which effectively means,
5432   // it is invalid for INT_MIN divisors. So if we have such a lane,
5433   // we must fix-up results for said lanes.
5434   assert(VT.isVector() && "Can/should only get here for vectors.");
5435 
5436   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
5437       !isOperationLegalOrCustom(ISD::AND, VT) ||
5438       !isOperationLegalOrCustom(Cond, VT) ||
5439       !isOperationLegalOrCustom(ISD::VSELECT, VT))
5440     return SDValue();
5441 
5442   Created.push_back(Fold.getNode());
5443 
5444   SDValue IntMin = DAG.getConstant(
5445       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
5446   SDValue IntMax = DAG.getConstant(
5447       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
5448   SDValue Zero =
5449       DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT);
5450 
5451   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
5452   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
5453   Created.push_back(DivisorIsIntMin.getNode());
5454 
5455   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
5456   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
5457   Created.push_back(Masked.getNode());
5458   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
5459   Created.push_back(MaskedIsZero.getNode());
5460 
5461   // To produce final result we need to blend 2 vectors: 'SetCC' and
5462   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
5463   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
5464   // constant-folded, select can get lowered to a shuffle with constant mask.
5465   SDValue Blended =
5466       DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold);
5467 
5468   return Blended;
5469 }
5470 
5471 bool TargetLowering::
5472 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
5473   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
5474     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
5475                                 "be a constant integer");
5476     return true;
5477   }
5478 
5479   return false;
5480 }
5481 
5482 char TargetLowering::isNegatibleForFree(SDValue Op, SelectionDAG &DAG,
5483                                         bool LegalOperations, bool ForCodeSize,
5484                                         unsigned Depth) const {
5485   // fneg is removable even if it has multiple uses.
5486   if (Op.getOpcode() == ISD::FNEG)
5487     return 2;
5488 
5489   // Don't allow anything with multiple uses unless we know it is free.
5490   EVT VT = Op.getValueType();
5491   const SDNodeFlags Flags = Op->getFlags();
5492   const TargetOptions &Options = DAG.getTarget().Options;
5493   if (!Op.hasOneUse() && !(Op.getOpcode() == ISD::FP_EXTEND &&
5494                            isFPExtFree(VT, Op.getOperand(0).getValueType())))
5495     return 0;
5496 
5497   // Don't recurse exponentially.
5498   if (Depth > SelectionDAG::MaxRecursionDepth)
5499     return 0;
5500 
5501   switch (Op.getOpcode()) {
5502   case ISD::ConstantFP: {
5503     if (!LegalOperations)
5504       return 1;
5505 
5506     // Don't invert constant FP values after legalization unless the target says
5507     // the negated constant is legal.
5508     return isOperationLegal(ISD::ConstantFP, VT) ||
5509            isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
5510                         ForCodeSize);
5511   }
5512   case ISD::BUILD_VECTOR: {
5513     // Only permit BUILD_VECTOR of constants.
5514     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
5515           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
5516         }))
5517       return 0;
5518     if (!LegalOperations)
5519       return 1;
5520     if (isOperationLegal(ISD::ConstantFP, VT) &&
5521         isOperationLegal(ISD::BUILD_VECTOR, VT))
5522       return 1;
5523     return llvm::all_of(Op->op_values(), [&](SDValue N) {
5524       return N.isUndef() ||
5525              isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
5526                           ForCodeSize);
5527     });
5528   }
5529   case ISD::FADD:
5530     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5531       return 0;
5532 
5533     // After operation legalization, it might not be legal to create new FSUBs.
5534     if (LegalOperations && !isOperationLegalOrCustom(ISD::FSUB, VT))
5535       return 0;
5536 
5537     // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
5538     if (char V = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations,
5539                                     ForCodeSize, Depth + 1))
5540       return V;
5541     // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
5542     return isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations,
5543                               ForCodeSize, Depth + 1);
5544   case ISD::FSUB:
5545     // We can't turn -(A-B) into B-A when we honor signed zeros.
5546     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5547       return 0;
5548 
5549     // fold (fneg (fsub A, B)) -> (fsub B, A)
5550     return 1;
5551 
5552   case ISD::FMUL:
5553   case ISD::FDIV:
5554     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
5555     if (char V = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations,
5556                                     ForCodeSize, Depth + 1))
5557       return V;
5558 
5559     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
5560     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
5561       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
5562         return 0;
5563 
5564     return isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations,
5565                               ForCodeSize, Depth + 1);
5566 
5567   case ISD::FMA:
5568   case ISD::FMAD: {
5569     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5570       return 0;
5571 
5572     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
5573     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
5574     char V2 = isNegatibleForFree(Op.getOperand(2), DAG, LegalOperations,
5575                                  ForCodeSize, Depth + 1);
5576     if (!V2)
5577       return 0;
5578 
5579     // One of Op0/Op1 must be cheaply negatible, then select the cheapest.
5580     char V0 = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations,
5581                                  ForCodeSize, Depth + 1);
5582     char V1 = isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations,
5583                                  ForCodeSize, Depth + 1);
5584     char V01 = std::max(V0, V1);
5585     return V01 ? std::max(V01, V2) : 0;
5586   }
5587 
5588   case ISD::FP_EXTEND:
5589   case ISD::FP_ROUND:
5590   case ISD::FSIN:
5591     return isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations,
5592                               ForCodeSize, Depth + 1);
5593   }
5594 
5595   return 0;
5596 }
5597 
5598 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
5599                                              bool LegalOperations,
5600                                              bool ForCodeSize,
5601                                              unsigned Depth) const {
5602   // fneg is removable even if it has multiple uses.
5603   if (Op.getOpcode() == ISD::FNEG)
5604     return Op.getOperand(0);
5605 
5606   assert(Depth <= SelectionDAG::MaxRecursionDepth &&
5607          "getNegatedExpression doesn't match isNegatibleForFree");
5608   const SDNodeFlags Flags = Op->getFlags();
5609 
5610   switch (Op.getOpcode()) {
5611   case ISD::ConstantFP: {
5612     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
5613     V.changeSign();
5614     return DAG.getConstantFP(V, SDLoc(Op), Op.getValueType());
5615   }
5616   case ISD::BUILD_VECTOR: {
5617     SmallVector<SDValue, 4> Ops;
5618     for (SDValue C : Op->op_values()) {
5619       if (C.isUndef()) {
5620         Ops.push_back(C);
5621         continue;
5622       }
5623       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
5624       V.changeSign();
5625       Ops.push_back(DAG.getConstantFP(V, SDLoc(Op), C.getValueType()));
5626     }
5627     return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Ops);
5628   }
5629   case ISD::FADD:
5630     assert((DAG.getTarget().Options.NoSignedZerosFPMath ||
5631             Flags.hasNoSignedZeros()) &&
5632            "Expected NSZ fp-flag");
5633 
5634     // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
5635     if (isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, ForCodeSize,
5636                            Depth + 1))
5637       return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
5638                          getNegatedExpression(Op.getOperand(0), DAG,
5639                                               LegalOperations, ForCodeSize,
5640                                               Depth + 1),
5641                          Op.getOperand(1), Flags);
5642     // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
5643     return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
5644                        getNegatedExpression(Op.getOperand(1), DAG,
5645                                             LegalOperations, ForCodeSize,
5646                                             Depth + 1),
5647                        Op.getOperand(0), Flags);
5648   case ISD::FSUB:
5649     // fold (fneg (fsub 0, B)) -> B
5650     if (ConstantFPSDNode *N0CFP =
5651             isConstOrConstSplatFP(Op.getOperand(0), /*AllowUndefs*/ true))
5652       if (N0CFP->isZero())
5653         return Op.getOperand(1);
5654 
5655     // fold (fneg (fsub A, B)) -> (fsub B, A)
5656     return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
5657                        Op.getOperand(1), Op.getOperand(0), Flags);
5658 
5659   case ISD::FMUL:
5660   case ISD::FDIV:
5661     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
5662     if (isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, ForCodeSize,
5663                            Depth + 1))
5664       return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
5665                          getNegatedExpression(Op.getOperand(0), DAG,
5666                                               LegalOperations, ForCodeSize,
5667                                               Depth + 1),
5668                          Op.getOperand(1), Flags);
5669 
5670     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
5671     return DAG.getNode(
5672         Op.getOpcode(), SDLoc(Op), Op.getValueType(), Op.getOperand(0),
5673         getNegatedExpression(Op.getOperand(1), DAG, LegalOperations,
5674                              ForCodeSize, Depth + 1),
5675         Flags);
5676 
5677   case ISD::FMA:
5678   case ISD::FMAD: {
5679     assert((DAG.getTarget().Options.NoSignedZerosFPMath ||
5680             Flags.hasNoSignedZeros()) &&
5681            "Expected NSZ fp-flag");
5682 
5683     SDValue Neg2 = getNegatedExpression(Op.getOperand(2), DAG, LegalOperations,
5684                                         ForCodeSize, Depth + 1);
5685 
5686     char V0 = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations,
5687                                  ForCodeSize, Depth + 1);
5688     char V1 = isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations,
5689                                  ForCodeSize, Depth + 1);
5690     // TODO: This is a hack. It is possible that costs have changed between now
5691     //       and the initial calls to isNegatibleForFree(). That is because we
5692     //       are rewriting the expression, and that may change the number of
5693     //       uses (and therefore the cost) of values. If the negation costs are
5694     //       equal, only negate this value if it is a constant. Otherwise, try
5695     //       operand 1. A better fix would eliminate uses as a cost factor or
5696     //       track the change in uses as we rewrite the expression.
5697     if (V0 > V1 || (V0 == V1 && isa<ConstantFPSDNode>(Op.getOperand(0)))) {
5698       // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
5699       SDValue Neg0 = getNegatedExpression(
5700           Op.getOperand(0), DAG, LegalOperations, ForCodeSize, Depth + 1);
5701       return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), Neg0,
5702                          Op.getOperand(1), Neg2, Flags);
5703     }
5704 
5705     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
5706     SDValue Neg1 = getNegatedExpression(Op.getOperand(1), DAG, LegalOperations,
5707                                         ForCodeSize, Depth + 1);
5708     return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
5709                        Op.getOperand(0), Neg1, Neg2, Flags);
5710   }
5711 
5712   case ISD::FP_EXTEND:
5713   case ISD::FSIN:
5714     return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
5715                        getNegatedExpression(Op.getOperand(0), DAG,
5716                                             LegalOperations, ForCodeSize,
5717                                             Depth + 1));
5718   case ISD::FP_ROUND:
5719     return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(),
5720                        getNegatedExpression(Op.getOperand(0), DAG,
5721                                             LegalOperations, ForCodeSize,
5722                                             Depth + 1),
5723                        Op.getOperand(1));
5724   }
5725 
5726   llvm_unreachable("Unknown code");
5727 }
5728 
5729 //===----------------------------------------------------------------------===//
5730 // Legalization Utilities
5731 //===----------------------------------------------------------------------===//
5732 
5733 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
5734                                     SDValue LHS, SDValue RHS,
5735                                     SmallVectorImpl<SDValue> &Result,
5736                                     EVT HiLoVT, SelectionDAG &DAG,
5737                                     MulExpansionKind Kind, SDValue LL,
5738                                     SDValue LH, SDValue RL, SDValue RH) const {
5739   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
5740          Opcode == ISD::SMUL_LOHI);
5741 
5742   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
5743                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
5744   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
5745                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
5746   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5747                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
5748   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5749                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
5750 
5751   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
5752     return false;
5753 
5754   unsigned OuterBitSize = VT.getScalarSizeInBits();
5755   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
5756   unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
5757   unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
5758 
5759   // LL, LH, RL, and RH must be either all NULL or all set to a value.
5760   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
5761          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
5762 
5763   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
5764   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
5765                           bool Signed) -> bool {
5766     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
5767       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
5768       Hi = SDValue(Lo.getNode(), 1);
5769       return true;
5770     }
5771     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
5772       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
5773       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
5774       return true;
5775     }
5776     return false;
5777   };
5778 
5779   SDValue Lo, Hi;
5780 
5781   if (!LL.getNode() && !RL.getNode() &&
5782       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5783     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
5784     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
5785   }
5786 
5787   if (!LL.getNode())
5788     return false;
5789 
5790   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
5791   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
5792       DAG.MaskedValueIsZero(RHS, HighMask)) {
5793     // The inputs are both zero-extended.
5794     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
5795       Result.push_back(Lo);
5796       Result.push_back(Hi);
5797       if (Opcode != ISD::MUL) {
5798         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5799         Result.push_back(Zero);
5800         Result.push_back(Zero);
5801       }
5802       return true;
5803     }
5804   }
5805 
5806   if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
5807       RHSSB > InnerBitSize) {
5808     // The input values are both sign-extended.
5809     // TODO non-MUL case?
5810     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
5811       Result.push_back(Lo);
5812       Result.push_back(Hi);
5813       return true;
5814     }
5815   }
5816 
5817   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
5818   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
5819   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
5820     // FIXME getShiftAmountTy does not always return a sensible result when VT
5821     // is an illegal type, and so the type may be too small to fit the shift
5822     // amount. Override it with i32. The shift will have to be legalized.
5823     ShiftAmountTy = MVT::i32;
5824   }
5825   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
5826 
5827   if (!LH.getNode() && !RH.getNode() &&
5828       isOperationLegalOrCustom(ISD::SRL, VT) &&
5829       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5830     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
5831     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
5832     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
5833     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
5834   }
5835 
5836   if (!LH.getNode())
5837     return false;
5838 
5839   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
5840     return false;
5841 
5842   Result.push_back(Lo);
5843 
5844   if (Opcode == ISD::MUL) {
5845     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
5846     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
5847     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
5848     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
5849     Result.push_back(Hi);
5850     return true;
5851   }
5852 
5853   // Compute the full width result.
5854   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
5855     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
5856     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5857     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
5858     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
5859   };
5860 
5861   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5862   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
5863     return false;
5864 
5865   // This is effectively the add part of a multiply-add of half-sized operands,
5866   // so it cannot overflow.
5867   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5868 
5869   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
5870     return false;
5871 
5872   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5873   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5874 
5875   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
5876                   isOperationLegalOrCustom(ISD::ADDE, VT));
5877   if (UseGlue)
5878     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
5879                        Merge(Lo, Hi));
5880   else
5881     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
5882                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
5883 
5884   SDValue Carry = Next.getValue(1);
5885   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5886   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
5887 
5888   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
5889     return false;
5890 
5891   if (UseGlue)
5892     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
5893                      Carry);
5894   else
5895     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
5896                      Zero, Carry);
5897 
5898   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5899 
5900   if (Opcode == ISD::SMUL_LOHI) {
5901     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
5902                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
5903     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
5904 
5905     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
5906                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
5907     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
5908   }
5909 
5910   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5911   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
5912   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5913   return true;
5914 }
5915 
5916 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
5917                                SelectionDAG &DAG, MulExpansionKind Kind,
5918                                SDValue LL, SDValue LH, SDValue RL,
5919                                SDValue RH) const {
5920   SmallVector<SDValue, 2> Result;
5921   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
5922                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
5923                            DAG, Kind, LL, LH, RL, RH);
5924   if (Ok) {
5925     assert(Result.size() == 2);
5926     Lo = Result[0];
5927     Hi = Result[1];
5928   }
5929   return Ok;
5930 }
5931 
5932 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
5933                                        SelectionDAG &DAG) const {
5934   EVT VT = Node->getValueType(0);
5935 
5936   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
5937                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
5938                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
5939                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
5940     return false;
5941 
5942   // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
5943   // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
5944   SDValue X = Node->getOperand(0);
5945   SDValue Y = Node->getOperand(1);
5946   SDValue Z = Node->getOperand(2);
5947 
5948   unsigned EltSizeInBits = VT.getScalarSizeInBits();
5949   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
5950   SDLoc DL(SDValue(Node, 0));
5951 
5952   EVT ShVT = Z.getValueType();
5953   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
5954   SDValue Zero = DAG.getConstant(0, DL, ShVT);
5955 
5956   SDValue ShAmt;
5957   if (isPowerOf2_32(EltSizeInBits)) {
5958     SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
5959     ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
5960   } else {
5961     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
5962   }
5963 
5964   SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
5965   SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
5966   SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
5967   SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
5968 
5969   // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
5970   // and that is undefined. We must compare and select to avoid UB.
5971   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT);
5972 
5973   // For fshl, 0-shift returns the 1st arg (X).
5974   // For fshr, 0-shift returns the 2nd arg (Y).
5975   SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ);
5976   Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or);
5977   return true;
5978 }
5979 
5980 // TODO: Merge with expandFunnelShift.
5981 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result,
5982                                SelectionDAG &DAG) const {
5983   EVT VT = Node->getValueType(0);
5984   unsigned EltSizeInBits = VT.getScalarSizeInBits();
5985   bool IsLeft = Node->getOpcode() == ISD::ROTL;
5986   SDValue Op0 = Node->getOperand(0);
5987   SDValue Op1 = Node->getOperand(1);
5988   SDLoc DL(SDValue(Node, 0));
5989 
5990   EVT ShVT = Op1.getValueType();
5991   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
5992 
5993   // If a rotate in the other direction is legal, use it.
5994   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
5995   if (isOperationLegal(RevRot, VT)) {
5996     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
5997     Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
5998     return true;
5999   }
6000 
6001   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6002                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6003                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6004                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
6005                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6006     return false;
6007 
6008   // Otherwise,
6009   //   (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1)))
6010   //   (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1)))
6011   //
6012   assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 &&
6013          "Expecting the type bitwidth to be a power of 2");
6014   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
6015   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
6016   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6017   SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
6018   SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
6019   SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
6020   Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0),
6021                        DAG.getNode(HsOpc, DL, VT, Op0, And1));
6022   return true;
6023 }
6024 
6025 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
6026                                       SelectionDAG &DAG) const {
6027   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6028   SDValue Src = Node->getOperand(OpNo);
6029   EVT SrcVT = Src.getValueType();
6030   EVT DstVT = Node->getValueType(0);
6031   SDLoc dl(SDValue(Node, 0));
6032 
6033   // FIXME: Only f32 to i64 conversions are supported.
6034   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
6035     return false;
6036 
6037   if (Node->isStrictFPOpcode())
6038     // When a NaN is converted to an integer a trap is allowed. We can't
6039     // use this expansion here because it would eliminate that trap. Other
6040     // traps are also allowed and cannot be eliminated. See
6041     // IEEE 754-2008 sec 5.8.
6042     return false;
6043 
6044   // Expand f32 -> i64 conversion
6045   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6046   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
6047   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
6048   EVT IntVT = SrcVT.changeTypeToInteger();
6049   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
6050 
6051   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
6052   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
6053   SDValue Bias = DAG.getConstant(127, dl, IntVT);
6054   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
6055   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
6056   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
6057 
6058   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
6059 
6060   SDValue ExponentBits = DAG.getNode(
6061       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
6062       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
6063   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
6064 
6065   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
6066                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
6067                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
6068   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
6069 
6070   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
6071                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
6072                           DAG.getConstant(0x00800000, dl, IntVT));
6073 
6074   R = DAG.getZExtOrTrunc(R, dl, DstVT);
6075 
6076   R = DAG.getSelectCC(
6077       dl, Exponent, ExponentLoBit,
6078       DAG.getNode(ISD::SHL, dl, DstVT, R,
6079                   DAG.getZExtOrTrunc(
6080                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
6081                       dl, IntShVT)),
6082       DAG.getNode(ISD::SRL, dl, DstVT, R,
6083                   DAG.getZExtOrTrunc(
6084                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
6085                       dl, IntShVT)),
6086       ISD::SETGT);
6087 
6088   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
6089                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
6090 
6091   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
6092                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
6093   return true;
6094 }
6095 
6096 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
6097                                       SDValue &Chain,
6098                                       SelectionDAG &DAG) const {
6099   SDLoc dl(SDValue(Node, 0));
6100   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6101   SDValue Src = Node->getOperand(OpNo);
6102 
6103   EVT SrcVT = Src.getValueType();
6104   EVT DstVT = Node->getValueType(0);
6105   EVT SetCCVT =
6106       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
6107   EVT DstSetCCVT =
6108       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
6109 
6110   // Only expand vector types if we have the appropriate vector bit operations.
6111   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
6112                                                    ISD::FP_TO_SINT;
6113   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
6114                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
6115     return false;
6116 
6117   // If the maximum float value is smaller then the signed integer range,
6118   // the destination signmask can't be represented by the float, so we can
6119   // just use FP_TO_SINT directly.
6120   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
6121   APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
6122   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
6123   if (APFloat::opOverflow &
6124       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
6125     if (Node->isStrictFPOpcode()) {
6126       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6127                            { Node->getOperand(0), Src });
6128       Chain = Result.getValue(1);
6129     } else
6130       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6131     return true;
6132   }
6133 
6134   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
6135   SDValue Sel;
6136 
6137   if (Node->isStrictFPOpcode()) {
6138     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
6139                        Node->getOperand(0), /*IsSignaling*/ true);
6140     Chain = Sel.getValue(1);
6141   } else {
6142     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
6143   }
6144 
6145   bool Strict = Node->isStrictFPOpcode() ||
6146                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
6147 
6148   if (Strict) {
6149     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
6150     // signmask then offset (the result of which should be fully representable).
6151     // Sel = Src < 0x8000000000000000
6152     // FltOfs = select Sel, 0, 0x8000000000000000
6153     // IntOfs = select Sel, 0, 0x8000000000000000
6154     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
6155 
6156     // TODO: Should any fast-math-flags be set for the FSUB?
6157     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
6158                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
6159     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6160     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
6161                                    DAG.getConstant(0, dl, DstVT),
6162                                    DAG.getConstant(SignMask, dl, DstVT));
6163     SDValue SInt;
6164     if (Node->isStrictFPOpcode()) {
6165       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
6166                                 { Chain, Src, FltOfs });
6167       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6168                          { Val.getValue(1), Val });
6169       Chain = SInt.getValue(1);
6170     } else {
6171       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
6172       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
6173     }
6174     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
6175   } else {
6176     // Expand based on maximum range of FP_TO_SINT:
6177     // True = fp_to_sint(Src)
6178     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
6179     // Result = select (Src < 0x8000000000000000), True, False
6180 
6181     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6182     // TODO: Should any fast-math-flags be set for the FSUB?
6183     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
6184                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
6185     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
6186                         DAG.getConstant(SignMask, dl, DstVT));
6187     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6188     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
6189   }
6190   return true;
6191 }
6192 
6193 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
6194                                       SDValue &Chain,
6195                                       SelectionDAG &DAG) const {
6196   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6197   SDValue Src = Node->getOperand(OpNo);
6198   EVT SrcVT = Src.getValueType();
6199   EVT DstVT = Node->getValueType(0);
6200 
6201   if (SrcVT.getScalarType() != MVT::i64)
6202     return false;
6203 
6204   SDLoc dl(SDValue(Node, 0));
6205   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
6206 
6207   if (DstVT.getScalarType() == MVT::f32) {
6208     // Only expand vector types if we have the appropriate vector bit
6209     // operations.
6210     if (SrcVT.isVector() &&
6211         (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
6212          !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
6213          !isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT) ||
6214          !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
6215          !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
6216       return false;
6217 
6218     // For unsigned conversions, convert them to signed conversions using the
6219     // algorithm from the x86_64 __floatundisf in compiler_rt.
6220 
6221     // TODO: This really should be implemented using a branch rather than a
6222     // select.  We happen to get lucky and machinesink does the right
6223     // thing most of the time.  This would be a good candidate for a
6224     // pseudo-op, or, even better, for whole-function isel.
6225     EVT SetCCVT =
6226         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
6227 
6228     SDValue SignBitTest = DAG.getSetCC(
6229         dl, SetCCVT, Src, DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
6230 
6231     SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT);
6232     SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Src, ShiftConst);
6233     SDValue AndConst = DAG.getConstant(1, dl, SrcVT);
6234     SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Src, AndConst);
6235     SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr);
6236 
6237     SDValue Slow, Fast;
6238     if (Node->isStrictFPOpcode()) {
6239       // In strict mode, we must avoid spurious exceptions, and therefore
6240       // must make sure to only emit a single STRICT_SINT_TO_FP.
6241       SDValue InCvt = DAG.getSelect(dl, SrcVT, SignBitTest, Or, Src);
6242       Fast = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DstVT, MVT::Other },
6243                          { Node->getOperand(0), InCvt });
6244       Slow = DAG.getNode(ISD::STRICT_FADD, dl, { DstVT, MVT::Other },
6245                          { Fast.getValue(1), Fast, Fast });
6246       Chain = Slow.getValue(1);
6247       // The STRICT_SINT_TO_FP inherits the exception mode from the
6248       // incoming STRICT_UINT_TO_FP node; the STRICT_FADD node can
6249       // never raise any exception.
6250       SDNodeFlags Flags;
6251       Flags.setNoFPExcept(Node->getFlags().hasNoFPExcept());
6252       Fast->setFlags(Flags);
6253       Flags.setNoFPExcept(true);
6254       Slow->setFlags(Flags);
6255     } else {
6256       SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Or);
6257       Slow = DAG.getNode(ISD::FADD, dl, DstVT, SignCvt, SignCvt);
6258       Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src);
6259     }
6260 
6261     Result = DAG.getSelect(dl, DstVT, SignBitTest, Slow, Fast);
6262     return true;
6263   }
6264 
6265   if (DstVT.getScalarType() == MVT::f64) {
6266     // Only expand vector types if we have the appropriate vector bit
6267     // operations.
6268     if (SrcVT.isVector() &&
6269         (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
6270          !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
6271          !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
6272          !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
6273          !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
6274       return false;
6275 
6276     // Implementation of unsigned i64 to f64 following the algorithm in
6277     // __floatundidf in compiler_rt. This implementation has the advantage
6278     // of performing rounding correctly, both in the default rounding mode
6279     // and in all alternate rounding modes.
6280     SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
6281     SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
6282         BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
6283     SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
6284     SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
6285     SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
6286 
6287     SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
6288     SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
6289     SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
6290     SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
6291     SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
6292     SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
6293     if (Node->isStrictFPOpcode()) {
6294       SDValue HiSub =
6295           DAG.getNode(ISD::STRICT_FSUB, dl, {DstVT, MVT::Other},
6296                       {Node->getOperand(0), HiFlt, TwoP84PlusTwoP52});
6297       Result = DAG.getNode(ISD::STRICT_FADD, dl, {DstVT, MVT::Other},
6298                            {HiSub.getValue(1), LoFlt, HiSub});
6299       Chain = Result.getValue(1);
6300     } else {
6301       SDValue HiSub =
6302           DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
6303       Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
6304     }
6305     return true;
6306   }
6307 
6308   return false;
6309 }
6310 
6311 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
6312                                               SelectionDAG &DAG) const {
6313   SDLoc dl(Node);
6314   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
6315     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
6316   EVT VT = Node->getValueType(0);
6317   if (isOperationLegalOrCustom(NewOp, VT)) {
6318     SDValue Quiet0 = Node->getOperand(0);
6319     SDValue Quiet1 = Node->getOperand(1);
6320 
6321     if (!Node->getFlags().hasNoNaNs()) {
6322       // Insert canonicalizes if it's possible we need to quiet to get correct
6323       // sNaN behavior.
6324       if (!DAG.isKnownNeverSNaN(Quiet0)) {
6325         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
6326                              Node->getFlags());
6327       }
6328       if (!DAG.isKnownNeverSNaN(Quiet1)) {
6329         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
6330                              Node->getFlags());
6331       }
6332     }
6333 
6334     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
6335   }
6336 
6337   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
6338   // instead if there are no NaNs.
6339   if (Node->getFlags().hasNoNaNs()) {
6340     unsigned IEEE2018Op =
6341         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
6342     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
6343       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
6344                          Node->getOperand(1), Node->getFlags());
6345     }
6346   }
6347 
6348   // If none of the above worked, but there are no NaNs, then expand to
6349   // a compare/select sequence.  This is required for correctness since
6350   // InstCombine might have canonicalized a fcmp+select sequence to a
6351   // FMINNUM/FMAXNUM node.  If we were to fall through to the default
6352   // expansion to libcall, we might introduce a link-time dependency
6353   // on libm into a file that originally did not have one.
6354   if (Node->getFlags().hasNoNaNs()) {
6355     ISD::CondCode Pred =
6356         Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
6357     SDValue Op1 = Node->getOperand(0);
6358     SDValue Op2 = Node->getOperand(1);
6359     SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred);
6360     // Copy FMF flags, but always set the no-signed-zeros flag
6361     // as this is implied by the FMINNUM/FMAXNUM semantics.
6362     SDNodeFlags Flags = Node->getFlags();
6363     Flags.setNoSignedZeros(true);
6364     SelCC->setFlags(Flags);
6365     return SelCC;
6366   }
6367 
6368   return SDValue();
6369 }
6370 
6371 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
6372                                  SelectionDAG &DAG) const {
6373   SDLoc dl(Node);
6374   EVT VT = Node->getValueType(0);
6375   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6376   SDValue Op = Node->getOperand(0);
6377   unsigned Len = VT.getScalarSizeInBits();
6378   assert(VT.isInteger() && "CTPOP not implemented for this type.");
6379 
6380   // TODO: Add support for irregular type lengths.
6381   if (!(Len <= 128 && Len % 8 == 0))
6382     return false;
6383 
6384   // Only expand vector types if we have the appropriate vector bit operations.
6385   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
6386                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6387                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6388                         (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
6389                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6390     return false;
6391 
6392   // This is the "best" algorithm from
6393   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
6394   SDValue Mask55 =
6395       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
6396   SDValue Mask33 =
6397       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
6398   SDValue Mask0F =
6399       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
6400   SDValue Mask01 =
6401       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
6402 
6403   // v = v - ((v >> 1) & 0x55555555...)
6404   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
6405                    DAG.getNode(ISD::AND, dl, VT,
6406                                DAG.getNode(ISD::SRL, dl, VT, Op,
6407                                            DAG.getConstant(1, dl, ShVT)),
6408                                Mask55));
6409   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
6410   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
6411                    DAG.getNode(ISD::AND, dl, VT,
6412                                DAG.getNode(ISD::SRL, dl, VT, Op,
6413                                            DAG.getConstant(2, dl, ShVT)),
6414                                Mask33));
6415   // v = (v + (v >> 4)) & 0x0F0F0F0F...
6416   Op = DAG.getNode(ISD::AND, dl, VT,
6417                    DAG.getNode(ISD::ADD, dl, VT, Op,
6418                                DAG.getNode(ISD::SRL, dl, VT, Op,
6419                                            DAG.getConstant(4, dl, ShVT))),
6420                    Mask0F);
6421   // v = (v * 0x01010101...) >> (Len - 8)
6422   if (Len > 8)
6423     Op =
6424         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
6425                     DAG.getConstant(Len - 8, dl, ShVT));
6426 
6427   Result = Op;
6428   return true;
6429 }
6430 
6431 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
6432                                 SelectionDAG &DAG) const {
6433   SDLoc dl(Node);
6434   EVT VT = Node->getValueType(0);
6435   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6436   SDValue Op = Node->getOperand(0);
6437   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6438 
6439   // If the non-ZERO_UNDEF version is supported we can use that instead.
6440   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
6441       isOperationLegalOrCustom(ISD::CTLZ, VT)) {
6442     Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
6443     return true;
6444   }
6445 
6446   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6447   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
6448     EVT SetCCVT =
6449         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6450     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
6451     SDValue Zero = DAG.getConstant(0, dl, VT);
6452     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6453     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6454                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
6455     return true;
6456   }
6457 
6458   // Only expand vector types if we have the appropriate vector bit operations.
6459   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6460                         !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
6461                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6462                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6463     return false;
6464 
6465   // for now, we do this:
6466   // x = x | (x >> 1);
6467   // x = x | (x >> 2);
6468   // ...
6469   // x = x | (x >>16);
6470   // x = x | (x >>32); // for 64-bit input
6471   // return popcount(~x);
6472   //
6473   // Ref: "Hacker's Delight" by Henry Warren
6474   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
6475     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
6476     Op = DAG.getNode(ISD::OR, dl, VT, Op,
6477                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
6478   }
6479   Op = DAG.getNOT(dl, Op, VT);
6480   Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
6481   return true;
6482 }
6483 
6484 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
6485                                 SelectionDAG &DAG) const {
6486   SDLoc dl(Node);
6487   EVT VT = Node->getValueType(0);
6488   SDValue Op = Node->getOperand(0);
6489   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6490 
6491   // If the non-ZERO_UNDEF version is supported we can use that instead.
6492   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
6493       isOperationLegalOrCustom(ISD::CTTZ, VT)) {
6494     Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
6495     return true;
6496   }
6497 
6498   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6499   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
6500     EVT SetCCVT =
6501         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6502     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
6503     SDValue Zero = DAG.getConstant(0, dl, VT);
6504     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6505     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6506                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
6507     return true;
6508   }
6509 
6510   // Only expand vector types if we have the appropriate vector bit operations.
6511   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6512                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
6513                          !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
6514                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6515                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
6516                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6517     return false;
6518 
6519   // for now, we use: { return popcount(~x & (x - 1)); }
6520   // unless the target has ctlz but not ctpop, in which case we use:
6521   // { return 32 - nlz(~x & (x-1)); }
6522   // Ref: "Hacker's Delight" by Henry Warren
6523   SDValue Tmp = DAG.getNode(
6524       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
6525       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
6526 
6527   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
6528   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
6529     Result =
6530         DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
6531                     DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
6532     return true;
6533   }
6534 
6535   Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
6536   return true;
6537 }
6538 
6539 bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
6540                                SelectionDAG &DAG) const {
6541   SDLoc dl(N);
6542   EVT VT = N->getValueType(0);
6543   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6544   SDValue Op = N->getOperand(0);
6545 
6546   // Only expand vector types if we have the appropriate vector operations.
6547   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) ||
6548                         !isOperationLegalOrCustom(ISD::ADD, VT) ||
6549                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6550     return false;
6551 
6552   SDValue Shift =
6553       DAG.getNode(ISD::SRA, dl, VT, Op,
6554                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
6555   SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
6556   Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
6557   return true;
6558 }
6559 
6560 std::pair<SDValue, SDValue>
6561 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
6562                                     SelectionDAG &DAG) const {
6563   SDLoc SL(LD);
6564   SDValue Chain = LD->getChain();
6565   SDValue BasePTR = LD->getBasePtr();
6566   EVT SrcVT = LD->getMemoryVT();
6567   ISD::LoadExtType ExtType = LD->getExtensionType();
6568 
6569   unsigned NumElem = SrcVT.getVectorNumElements();
6570 
6571   EVT SrcEltVT = SrcVT.getScalarType();
6572   EVT DstEltVT = LD->getValueType(0).getScalarType();
6573 
6574   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
6575   assert(SrcEltVT.isByteSized());
6576 
6577   SmallVector<SDValue, 8> Vals;
6578   SmallVector<SDValue, 8> LoadChains;
6579 
6580   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6581     SDValue ScalarLoad =
6582         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
6583                        LD->getPointerInfo().getWithOffset(Idx * Stride),
6584                        SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
6585                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6586 
6587     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride);
6588 
6589     Vals.push_back(ScalarLoad.getValue(0));
6590     LoadChains.push_back(ScalarLoad.getValue(1));
6591   }
6592 
6593   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
6594   SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals);
6595 
6596   return std::make_pair(Value, NewChain);
6597 }
6598 
6599 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
6600                                              SelectionDAG &DAG) const {
6601   SDLoc SL(ST);
6602 
6603   SDValue Chain = ST->getChain();
6604   SDValue BasePtr = ST->getBasePtr();
6605   SDValue Value = ST->getValue();
6606   EVT StVT = ST->getMemoryVT();
6607 
6608   // The type of the data we want to save
6609   EVT RegVT = Value.getValueType();
6610   EVT RegSclVT = RegVT.getScalarType();
6611 
6612   // The type of data as saved in memory.
6613   EVT MemSclVT = StVT.getScalarType();
6614 
6615   EVT IdxVT = getVectorIdxTy(DAG.getDataLayout());
6616   unsigned NumElem = StVT.getVectorNumElements();
6617 
6618   // A vector must always be stored in memory as-is, i.e. without any padding
6619   // between the elements, since various code depend on it, e.g. in the
6620   // handling of a bitcast of a vector type to int, which may be done with a
6621   // vector store followed by an integer load. A vector that does not have
6622   // elements that are byte-sized must therefore be stored as an integer
6623   // built out of the extracted vector elements.
6624   if (!MemSclVT.isByteSized()) {
6625     unsigned NumBits = StVT.getSizeInBits();
6626     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
6627 
6628     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
6629 
6630     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6631       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6632                                 DAG.getConstant(Idx, SL, IdxVT));
6633       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
6634       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
6635       unsigned ShiftIntoIdx =
6636           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
6637       SDValue ShiftAmount =
6638           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
6639       SDValue ShiftedElt =
6640           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
6641       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
6642     }
6643 
6644     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
6645                         ST->getAlignment(), ST->getMemOperand()->getFlags(),
6646                         ST->getAAInfo());
6647   }
6648 
6649   // Store Stride in bytes
6650   unsigned Stride = MemSclVT.getSizeInBits() / 8;
6651   assert(Stride && "Zero stride!");
6652   // Extract each of the elements from the original vector and save them into
6653   // memory individually.
6654   SmallVector<SDValue, 8> Stores;
6655   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6656     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6657                               DAG.getConstant(Idx, SL, IdxVT));
6658 
6659     SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride);
6660 
6661     // This scalar TruncStore may be illegal, but we legalize it later.
6662     SDValue Store = DAG.getTruncStore(
6663         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
6664         MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
6665         ST->getMemOperand()->getFlags(), ST->getAAInfo());
6666 
6667     Stores.push_back(Store);
6668   }
6669 
6670   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
6671 }
6672 
6673 std::pair<SDValue, SDValue>
6674 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
6675   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
6676          "unaligned indexed loads not implemented!");
6677   SDValue Chain = LD->getChain();
6678   SDValue Ptr = LD->getBasePtr();
6679   EVT VT = LD->getValueType(0);
6680   EVT LoadedVT = LD->getMemoryVT();
6681   SDLoc dl(LD);
6682   auto &MF = DAG.getMachineFunction();
6683 
6684   if (VT.isFloatingPoint() || VT.isVector()) {
6685     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
6686     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
6687       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
6688           LoadedVT.isVector()) {
6689         // Scalarize the load and let the individual components be handled.
6690         return scalarizeVectorLoad(LD, DAG);
6691       }
6692 
6693       // Expand to a (misaligned) integer load of the same size,
6694       // then bitconvert to floating point or vector.
6695       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
6696                                     LD->getMemOperand());
6697       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
6698       if (LoadedVT != VT)
6699         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
6700                              ISD::ANY_EXTEND, dl, VT, Result);
6701 
6702       return std::make_pair(Result, newLoad.getValue(1));
6703     }
6704 
6705     // Copy the value to a (aligned) stack slot using (unaligned) integer
6706     // loads and stores, then do a (aligned) load from the stack slot.
6707     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
6708     unsigned LoadedBytes = LoadedVT.getStoreSize();
6709     unsigned RegBytes = RegVT.getSizeInBits() / 8;
6710     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
6711 
6712     // Make sure the stack slot is also aligned for the register type.
6713     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
6714     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
6715     SmallVector<SDValue, 8> Stores;
6716     SDValue StackPtr = StackBase;
6717     unsigned Offset = 0;
6718 
6719     EVT PtrVT = Ptr.getValueType();
6720     EVT StackPtrVT = StackPtr.getValueType();
6721 
6722     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6723     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6724 
6725     // Do all but one copies using the full register width.
6726     for (unsigned i = 1; i < NumRegs; i++) {
6727       // Load one integer register's worth from the original location.
6728       SDValue Load = DAG.getLoad(
6729           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
6730           MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
6731           LD->getAAInfo());
6732       // Follow the load with a store to the stack slot.  Remember the store.
6733       Stores.push_back(DAG.getStore(
6734           Load.getValue(1), dl, Load, StackPtr,
6735           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
6736       // Increment the pointers.
6737       Offset += RegBytes;
6738 
6739       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6740       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6741     }
6742 
6743     // The last copy may be partial.  Do an extending load.
6744     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
6745                                   8 * (LoadedBytes - Offset));
6746     SDValue Load =
6747         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
6748                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
6749                        MinAlign(LD->getAlignment(), Offset),
6750                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6751     // Follow the load with a store to the stack slot.  Remember the store.
6752     // On big-endian machines this requires a truncating store to ensure
6753     // that the bits end up in the right place.
6754     Stores.push_back(DAG.getTruncStore(
6755         Load.getValue(1), dl, Load, StackPtr,
6756         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
6757 
6758     // The order of the stores doesn't matter - say it with a TokenFactor.
6759     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6760 
6761     // Finally, perform the original load only redirected to the stack slot.
6762     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
6763                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
6764                           LoadedVT);
6765 
6766     // Callers expect a MERGE_VALUES node.
6767     return std::make_pair(Load, TF);
6768   }
6769 
6770   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
6771          "Unaligned load of unsupported type.");
6772 
6773   // Compute the new VT that is half the size of the old one.  This is an
6774   // integer MVT.
6775   unsigned NumBits = LoadedVT.getSizeInBits();
6776   EVT NewLoadedVT;
6777   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
6778   NumBits >>= 1;
6779 
6780   unsigned Alignment = LD->getAlignment();
6781   unsigned IncrementSize = NumBits / 8;
6782   ISD::LoadExtType HiExtType = LD->getExtensionType();
6783 
6784   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
6785   if (HiExtType == ISD::NON_EXTLOAD)
6786     HiExtType = ISD::ZEXTLOAD;
6787 
6788   // Load the value in two parts
6789   SDValue Lo, Hi;
6790   if (DAG.getDataLayout().isLittleEndian()) {
6791     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
6792                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
6793                         LD->getAAInfo());
6794 
6795     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6796     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
6797                         LD->getPointerInfo().getWithOffset(IncrementSize),
6798                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
6799                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
6800   } else {
6801     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
6802                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
6803                         LD->getAAInfo());
6804 
6805     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6806     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
6807                         LD->getPointerInfo().getWithOffset(IncrementSize),
6808                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
6809                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
6810   }
6811 
6812   // aggregate the two parts
6813   SDValue ShiftAmount =
6814       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
6815                                                     DAG.getDataLayout()));
6816   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
6817   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
6818 
6819   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
6820                              Hi.getValue(1));
6821 
6822   return std::make_pair(Result, TF);
6823 }
6824 
6825 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
6826                                              SelectionDAG &DAG) const {
6827   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
6828          "unaligned indexed stores not implemented!");
6829   SDValue Chain = ST->getChain();
6830   SDValue Ptr = ST->getBasePtr();
6831   SDValue Val = ST->getValue();
6832   EVT VT = Val.getValueType();
6833   int Alignment = ST->getAlignment();
6834   auto &MF = DAG.getMachineFunction();
6835   EVT StoreMemVT = ST->getMemoryVT();
6836 
6837   SDLoc dl(ST);
6838   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
6839     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
6840     if (isTypeLegal(intVT)) {
6841       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
6842           StoreMemVT.isVector()) {
6843         // Scalarize the store and let the individual components be handled.
6844         SDValue Result = scalarizeVectorStore(ST, DAG);
6845         return Result;
6846       }
6847       // Expand to a bitconvert of the value to the integer type of the
6848       // same size, then a (misaligned) int store.
6849       // FIXME: Does not handle truncating floating point stores!
6850       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
6851       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
6852                             Alignment, ST->getMemOperand()->getFlags());
6853       return Result;
6854     }
6855     // Do a (aligned) store to a stack slot, then copy from the stack slot
6856     // to the final destination using (unaligned) integer loads and stores.
6857     MVT RegVT = getRegisterType(
6858         *DAG.getContext(),
6859         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
6860     EVT PtrVT = Ptr.getValueType();
6861     unsigned StoredBytes = StoreMemVT.getStoreSize();
6862     unsigned RegBytes = RegVT.getSizeInBits() / 8;
6863     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
6864 
6865     // Make sure the stack slot is also aligned for the register type.
6866     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
6867     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
6868 
6869     // Perform the original store, only redirected to the stack slot.
6870     SDValue Store = DAG.getTruncStore(
6871         Chain, dl, Val, StackPtr,
6872         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
6873 
6874     EVT StackPtrVT = StackPtr.getValueType();
6875 
6876     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6877     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6878     SmallVector<SDValue, 8> Stores;
6879     unsigned Offset = 0;
6880 
6881     // Do all but one copies using the full register width.
6882     for (unsigned i = 1; i < NumRegs; i++) {
6883       // Load one integer register's worth from the stack slot.
6884       SDValue Load = DAG.getLoad(
6885           RegVT, dl, Store, StackPtr,
6886           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
6887       // Store it to the final location.  Remember the store.
6888       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
6889                                     ST->getPointerInfo().getWithOffset(Offset),
6890                                     MinAlign(ST->getAlignment(), Offset),
6891                                     ST->getMemOperand()->getFlags()));
6892       // Increment the pointers.
6893       Offset += RegBytes;
6894       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6895       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6896     }
6897 
6898     // The last store may be partial.  Do a truncating store.  On big-endian
6899     // machines this requires an extending load from the stack slot to ensure
6900     // that the bits are in the right place.
6901     EVT LoadMemVT =
6902         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
6903 
6904     // Load from the stack slot.
6905     SDValue Load = DAG.getExtLoad(
6906         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
6907         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
6908 
6909     Stores.push_back(
6910         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
6911                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
6912                           MinAlign(ST->getAlignment(), Offset),
6913                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
6914     // The order of the stores doesn't matter - say it with a TokenFactor.
6915     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6916     return Result;
6917   }
6918 
6919   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
6920          "Unaligned store of unknown type.");
6921   // Get the half-size VT
6922   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
6923   int NumBits = NewStoredVT.getSizeInBits();
6924   int IncrementSize = NumBits / 8;
6925 
6926   // Divide the stored value in two parts.
6927   SDValue ShiftAmount = DAG.getConstant(
6928       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
6929   SDValue Lo = Val;
6930   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
6931 
6932   // Store the two parts
6933   SDValue Store1, Store2;
6934   Store1 = DAG.getTruncStore(Chain, dl,
6935                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
6936                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
6937                              ST->getMemOperand()->getFlags());
6938 
6939   Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6940   Alignment = MinAlign(Alignment, IncrementSize);
6941   Store2 = DAG.getTruncStore(
6942       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
6943       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
6944       ST->getMemOperand()->getFlags(), ST->getAAInfo());
6945 
6946   SDValue Result =
6947       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
6948   return Result;
6949 }
6950 
6951 SDValue
6952 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
6953                                        const SDLoc &DL, EVT DataVT,
6954                                        SelectionDAG &DAG,
6955                                        bool IsCompressedMemory) const {
6956   SDValue Increment;
6957   EVT AddrVT = Addr.getValueType();
6958   EVT MaskVT = Mask.getValueType();
6959   assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
6960          "Incompatible types of Data and Mask");
6961   if (IsCompressedMemory) {
6962     // Incrementing the pointer according to number of '1's in the mask.
6963     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
6964     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
6965     if (MaskIntVT.getSizeInBits() < 32) {
6966       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
6967       MaskIntVT = MVT::i32;
6968     }
6969 
6970     // Count '1's with POPCNT.
6971     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
6972     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
6973     // Scale is an element size in bytes.
6974     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
6975                                     AddrVT);
6976     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
6977   } else
6978     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
6979 
6980   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
6981 }
6982 
6983 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
6984                                        SDValue Idx,
6985                                        EVT VecVT,
6986                                        const SDLoc &dl) {
6987   if (isa<ConstantSDNode>(Idx))
6988     return Idx;
6989 
6990   EVT IdxVT = Idx.getValueType();
6991   unsigned NElts = VecVT.getVectorNumElements();
6992   if (isPowerOf2_32(NElts)) {
6993     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
6994                                      Log2_32(NElts));
6995     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
6996                        DAG.getConstant(Imm, dl, IdxVT));
6997   }
6998 
6999   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
7000                      DAG.getConstant(NElts - 1, dl, IdxVT));
7001 }
7002 
7003 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
7004                                                 SDValue VecPtr, EVT VecVT,
7005                                                 SDValue Index) const {
7006   SDLoc dl(Index);
7007   // Make sure the index type is big enough to compute in.
7008   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
7009 
7010   EVT EltVT = VecVT.getVectorElementType();
7011 
7012   // Calculate the element offset and add it to the pointer.
7013   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
7014   assert(EltSize * 8 == EltVT.getSizeInBits() &&
7015          "Converting bits to bytes lost precision");
7016 
7017   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
7018 
7019   EVT IdxVT = Index.getValueType();
7020 
7021   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
7022                       DAG.getConstant(EltSize, dl, IdxVT));
7023   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
7024 }
7025 
7026 //===----------------------------------------------------------------------===//
7027 // Implementation of Emulated TLS Model
7028 //===----------------------------------------------------------------------===//
7029 
7030 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
7031                                                 SelectionDAG &DAG) const {
7032   // Access to address of TLS varialbe xyz is lowered to a function call:
7033   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
7034   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7035   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
7036   SDLoc dl(GA);
7037 
7038   ArgListTy Args;
7039   ArgListEntry Entry;
7040   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
7041   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
7042   StringRef EmuTlsVarName(NameString);
7043   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
7044   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
7045   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
7046   Entry.Ty = VoidPtrType;
7047   Args.push_back(Entry);
7048 
7049   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
7050 
7051   TargetLowering::CallLoweringInfo CLI(DAG);
7052   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
7053   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
7054   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
7055 
7056   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7057   // At last for X86 targets, maybe good for other targets too?
7058   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7059   MFI.setAdjustsStack(true); // Is this only for X86 target?
7060   MFI.setHasCalls(true);
7061 
7062   assert((GA->getOffset() == 0) &&
7063          "Emulated TLS must have zero offset in GlobalAddressSDNode");
7064   return CallResult.first;
7065 }
7066 
7067 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
7068                                                 SelectionDAG &DAG) const {
7069   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
7070   if (!isCtlzFast())
7071     return SDValue();
7072   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7073   SDLoc dl(Op);
7074   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
7075     if (C->isNullValue() && CC == ISD::SETEQ) {
7076       EVT VT = Op.getOperand(0).getValueType();
7077       SDValue Zext = Op.getOperand(0);
7078       if (VT.bitsLT(MVT::i32)) {
7079         VT = MVT::i32;
7080         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
7081       }
7082       unsigned Log2b = Log2_32(VT.getSizeInBits());
7083       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
7084       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
7085                                 DAG.getConstant(Log2b, dl, MVT::i32));
7086       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
7087     }
7088   }
7089   return SDValue();
7090 }
7091 
7092 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
7093   unsigned Opcode = Node->getOpcode();
7094   SDValue LHS = Node->getOperand(0);
7095   SDValue RHS = Node->getOperand(1);
7096   EVT VT = LHS.getValueType();
7097   SDLoc dl(Node);
7098 
7099   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
7100   assert(VT.isInteger() && "Expected operands to be integers");
7101 
7102   // usub.sat(a, b) -> umax(a, b) - b
7103   if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) {
7104     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
7105     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
7106   }
7107 
7108   if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) {
7109     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
7110     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
7111     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
7112   }
7113 
7114   unsigned OverflowOp;
7115   switch (Opcode) {
7116   case ISD::SADDSAT:
7117     OverflowOp = ISD::SADDO;
7118     break;
7119   case ISD::UADDSAT:
7120     OverflowOp = ISD::UADDO;
7121     break;
7122   case ISD::SSUBSAT:
7123     OverflowOp = ISD::SSUBO;
7124     break;
7125   case ISD::USUBSAT:
7126     OverflowOp = ISD::USUBO;
7127     break;
7128   default:
7129     llvm_unreachable("Expected method to receive signed or unsigned saturation "
7130                      "addition or subtraction node.");
7131   }
7132 
7133   unsigned BitWidth = LHS.getScalarValueSizeInBits();
7134   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7135   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT),
7136                                LHS, RHS);
7137   SDValue SumDiff = Result.getValue(0);
7138   SDValue Overflow = Result.getValue(1);
7139   SDValue Zero = DAG.getConstant(0, dl, VT);
7140   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
7141 
7142   if (Opcode == ISD::UADDSAT) {
7143     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7144       // (LHS + RHS) | OverflowMask
7145       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7146       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
7147     }
7148     // Overflow ? 0xffff.... : (LHS + RHS)
7149     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
7150   } else if (Opcode == ISD::USUBSAT) {
7151     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7152       // (LHS - RHS) & ~OverflowMask
7153       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7154       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
7155       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
7156     }
7157     // Overflow ? 0 : (LHS - RHS)
7158     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
7159   } else {
7160     // SatMax -> Overflow && SumDiff < 0
7161     // SatMin -> Overflow && SumDiff >= 0
7162     APInt MinVal = APInt::getSignedMinValue(BitWidth);
7163     APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
7164     SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7165     SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7166     SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
7167     Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin);
7168     return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
7169   }
7170 }
7171 
7172 SDValue
7173 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
7174   assert((Node->getOpcode() == ISD::SMULFIX ||
7175           Node->getOpcode() == ISD::UMULFIX ||
7176           Node->getOpcode() == ISD::SMULFIXSAT ||
7177           Node->getOpcode() == ISD::UMULFIXSAT) &&
7178          "Expected a fixed point multiplication opcode");
7179 
7180   SDLoc dl(Node);
7181   SDValue LHS = Node->getOperand(0);
7182   SDValue RHS = Node->getOperand(1);
7183   EVT VT = LHS.getValueType();
7184   unsigned Scale = Node->getConstantOperandVal(2);
7185   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
7186                      Node->getOpcode() == ISD::UMULFIXSAT);
7187   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
7188                  Node->getOpcode() == ISD::SMULFIXSAT);
7189   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7190   unsigned VTSize = VT.getScalarSizeInBits();
7191 
7192   if (!Scale) {
7193     // [us]mul.fix(a, b, 0) -> mul(a, b)
7194     if (!Saturating) {
7195       if (isOperationLegalOrCustom(ISD::MUL, VT))
7196         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7197     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
7198       SDValue Result =
7199           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7200       SDValue Product = Result.getValue(0);
7201       SDValue Overflow = Result.getValue(1);
7202       SDValue Zero = DAG.getConstant(0, dl, VT);
7203 
7204       APInt MinVal = APInt::getSignedMinValue(VTSize);
7205       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
7206       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7207       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7208       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT);
7209       Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin);
7210       return DAG.getSelect(dl, VT, Overflow, Result, Product);
7211     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
7212       SDValue Result =
7213           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7214       SDValue Product = Result.getValue(0);
7215       SDValue Overflow = Result.getValue(1);
7216 
7217       APInt MaxVal = APInt::getMaxValue(VTSize);
7218       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7219       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
7220     }
7221   }
7222 
7223   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
7224          "Expected scale to be less than the number of bits if signed or at "
7225          "most the number of bits if unsigned.");
7226   assert(LHS.getValueType() == RHS.getValueType() &&
7227          "Expected both operands to be the same type");
7228 
7229   // Get the upper and lower bits of the result.
7230   SDValue Lo, Hi;
7231   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
7232   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
7233   if (isOperationLegalOrCustom(LoHiOp, VT)) {
7234     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
7235     Lo = Result.getValue(0);
7236     Hi = Result.getValue(1);
7237   } else if (isOperationLegalOrCustom(HiOp, VT)) {
7238     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7239     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
7240   } else if (VT.isVector()) {
7241     return SDValue();
7242   } else {
7243     report_fatal_error("Unable to expand fixed point multiplication.");
7244   }
7245 
7246   if (Scale == VTSize)
7247     // Result is just the top half since we'd be shifting by the width of the
7248     // operand. Overflow impossible so this works for both UMULFIX and
7249     // UMULFIXSAT.
7250     return Hi;
7251 
7252   // The result will need to be shifted right by the scale since both operands
7253   // are scaled. The result is given to us in 2 halves, so we only want part of
7254   // both in the result.
7255   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
7256   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
7257                                DAG.getConstant(Scale, dl, ShiftTy));
7258   if (!Saturating)
7259     return Result;
7260 
7261   if (!Signed) {
7262     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
7263     // widened multiplication) aren't all zeroes.
7264 
7265     // Saturate to max if ((Hi >> Scale) != 0),
7266     // which is the same as if (Hi > ((1 << Scale) - 1))
7267     APInt MaxVal = APInt::getMaxValue(VTSize);
7268     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
7269                                       dl, VT);
7270     Result = DAG.getSelectCC(dl, Hi, LowMask,
7271                              DAG.getConstant(MaxVal, dl, VT), Result,
7272                              ISD::SETUGT);
7273 
7274     return Result;
7275   }
7276 
7277   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
7278   // widened multiplication) aren't all ones or all zeroes.
7279 
7280   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
7281   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
7282 
7283   if (Scale == 0) {
7284     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
7285                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
7286     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
7287     // Saturated to SatMin if wide product is negative, and SatMax if wide
7288     // product is positive ...
7289     SDValue Zero = DAG.getConstant(0, dl, VT);
7290     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
7291                                                ISD::SETLT);
7292     // ... but only if we overflowed.
7293     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
7294   }
7295 
7296   //  We handled Scale==0 above so all the bits to examine is in Hi.
7297 
7298   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
7299   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
7300   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
7301                                     dl, VT);
7302   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
7303   // Saturate to min if (Hi >> (Scale - 1)) < -1),
7304   // which is the same as if (HI < (-1 << (Scale - 1))
7305   SDValue HighMask =
7306       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
7307                       dl, VT);
7308   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
7309   return Result;
7310 }
7311 
7312 SDValue
7313 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
7314                                     SDValue LHS, SDValue RHS,
7315                                     unsigned Scale, SelectionDAG &DAG) const {
7316   assert((Opcode == ISD::SDIVFIX ||
7317           Opcode == ISD::UDIVFIX) &&
7318          "Expected a fixed point division opcode");
7319 
7320   EVT VT = LHS.getValueType();
7321   bool Signed = Opcode == ISD::SDIVFIX;
7322   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7323 
7324   // If there is enough room in the type to upscale the LHS or downscale the
7325   // RHS before the division, we can perform it in this type without having to
7326   // resize. For signed operations, the LHS headroom is the number of
7327   // redundant sign bits, and for unsigned ones it is the number of zeroes.
7328   // The headroom for the RHS is the number of trailing zeroes.
7329   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
7330                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
7331   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
7332 
7333   if (LHSLead + RHSTrail < Scale)
7334     return SDValue();
7335 
7336   unsigned LHSShift = std::min(LHSLead, Scale);
7337   unsigned RHSShift = Scale - LHSShift;
7338 
7339   // At this point, we know that if we shift the LHS up by LHSShift and the
7340   // RHS down by RHSShift, we can emit a regular division with a final scaling
7341   // factor of Scale.
7342 
7343   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
7344   if (LHSShift)
7345     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
7346                       DAG.getConstant(LHSShift, dl, ShiftTy));
7347   if (RHSShift)
7348     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
7349                       DAG.getConstant(RHSShift, dl, ShiftTy));
7350 
7351   SDValue Quot;
7352   if (Signed) {
7353     // For signed operations, if the resulting quotient is negative and the
7354     // remainder is nonzero, subtract 1 from the quotient to round towards
7355     // negative infinity.
7356     SDValue Rem;
7357     // FIXME: Ideally we would always produce an SDIVREM here, but if the
7358     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
7359     // we couldn't just form a libcall, but the type legalizer doesn't do it.
7360     if (isTypeLegal(VT) &&
7361         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
7362       Quot = DAG.getNode(ISD::SDIVREM, dl,
7363                          DAG.getVTList(VT, VT),
7364                          LHS, RHS);
7365       Rem = Quot.getValue(1);
7366       Quot = Quot.getValue(0);
7367     } else {
7368       Quot = DAG.getNode(ISD::SDIV, dl, VT,
7369                          LHS, RHS);
7370       Rem = DAG.getNode(ISD::SREM, dl, VT,
7371                         LHS, RHS);
7372     }
7373     SDValue Zero = DAG.getConstant(0, dl, VT);
7374     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
7375     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
7376     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
7377     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
7378     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
7379                                DAG.getConstant(1, dl, VT));
7380     Quot = DAG.getSelect(dl, VT,
7381                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
7382                          Sub1, Quot);
7383   } else
7384     Quot = DAG.getNode(ISD::UDIV, dl, VT,
7385                        LHS, RHS);
7386 
7387   // TODO: Saturation.
7388 
7389   return Quot;
7390 }
7391 
7392 void TargetLowering::expandUADDSUBO(
7393     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
7394   SDLoc dl(Node);
7395   SDValue LHS = Node->getOperand(0);
7396   SDValue RHS = Node->getOperand(1);
7397   bool IsAdd = Node->getOpcode() == ISD::UADDO;
7398 
7399   // If ADD/SUBCARRY is legal, use that instead.
7400   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
7401   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
7402     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
7403     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
7404                                     { LHS, RHS, CarryIn });
7405     Result = SDValue(NodeCarry.getNode(), 0);
7406     Overflow = SDValue(NodeCarry.getNode(), 1);
7407     return;
7408   }
7409 
7410   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
7411                             LHS.getValueType(), LHS, RHS);
7412 
7413   EVT ResultType = Node->getValueType(1);
7414   EVT SetCCType = getSetCCResultType(
7415       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
7416   ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
7417   SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
7418   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
7419 }
7420 
7421 void TargetLowering::expandSADDSUBO(
7422     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
7423   SDLoc dl(Node);
7424   SDValue LHS = Node->getOperand(0);
7425   SDValue RHS = Node->getOperand(1);
7426   bool IsAdd = Node->getOpcode() == ISD::SADDO;
7427 
7428   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
7429                             LHS.getValueType(), LHS, RHS);
7430 
7431   EVT ResultType = Node->getValueType(1);
7432   EVT OType = getSetCCResultType(
7433       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
7434 
7435   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
7436   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
7437   if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) {
7438     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
7439     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
7440     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
7441     return;
7442   }
7443 
7444   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
7445 
7446   // For an addition, the result should be less than one of the operands (LHS)
7447   // if and only if the other operand (RHS) is negative, otherwise there will
7448   // be overflow.
7449   // For a subtraction, the result should be less than one of the operands
7450   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
7451   // otherwise there will be overflow.
7452   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
7453   SDValue ConditionRHS =
7454       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
7455 
7456   Overflow = DAG.getBoolExtOrTrunc(
7457       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
7458       ResultType, ResultType);
7459 }
7460 
7461 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
7462                                 SDValue &Overflow, SelectionDAG &DAG) const {
7463   SDLoc dl(Node);
7464   EVT VT = Node->getValueType(0);
7465   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7466   SDValue LHS = Node->getOperand(0);
7467   SDValue RHS = Node->getOperand(1);
7468   bool isSigned = Node->getOpcode() == ISD::SMULO;
7469 
7470   // For power-of-two multiplications we can use a simpler shift expansion.
7471   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
7472     const APInt &C = RHSC->getAPIntValue();
7473     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
7474     if (C.isPowerOf2()) {
7475       // smulo(x, signed_min) is same as umulo(x, signed_min).
7476       bool UseArithShift = isSigned && !C.isMinSignedValue();
7477       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
7478       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
7479       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
7480       Overflow = DAG.getSetCC(dl, SetCCVT,
7481           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
7482                       dl, VT, Result, ShiftAmt),
7483           LHS, ISD::SETNE);
7484       return true;
7485     }
7486   }
7487 
7488   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
7489   if (VT.isVector())
7490     WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
7491                               VT.getVectorNumElements());
7492 
7493   SDValue BottomHalf;
7494   SDValue TopHalf;
7495   static const unsigned Ops[2][3] =
7496       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
7497         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
7498   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
7499     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7500     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
7501   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
7502     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
7503                              RHS);
7504     TopHalf = BottomHalf.getValue(1);
7505   } else if (isTypeLegal(WideVT)) {
7506     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
7507     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
7508     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
7509     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
7510     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
7511         getShiftAmountTy(WideVT, DAG.getDataLayout()));
7512     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
7513                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
7514   } else {
7515     if (VT.isVector())
7516       return false;
7517 
7518     // We can fall back to a libcall with an illegal type for the MUL if we
7519     // have a libcall big enough.
7520     // Also, we can fall back to a division in some cases, but that's a big
7521     // performance hit in the general case.
7522     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
7523     if (WideVT == MVT::i16)
7524       LC = RTLIB::MUL_I16;
7525     else if (WideVT == MVT::i32)
7526       LC = RTLIB::MUL_I32;
7527     else if (WideVT == MVT::i64)
7528       LC = RTLIB::MUL_I64;
7529     else if (WideVT == MVT::i128)
7530       LC = RTLIB::MUL_I128;
7531     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
7532 
7533     SDValue HiLHS;
7534     SDValue HiRHS;
7535     if (isSigned) {
7536       // The high part is obtained by SRA'ing all but one of the bits of low
7537       // part.
7538       unsigned LoSize = VT.getSizeInBits();
7539       HiLHS =
7540           DAG.getNode(ISD::SRA, dl, VT, LHS,
7541                       DAG.getConstant(LoSize - 1, dl,
7542                                       getPointerTy(DAG.getDataLayout())));
7543       HiRHS =
7544           DAG.getNode(ISD::SRA, dl, VT, RHS,
7545                       DAG.getConstant(LoSize - 1, dl,
7546                                       getPointerTy(DAG.getDataLayout())));
7547     } else {
7548         HiLHS = DAG.getConstant(0, dl, VT);
7549         HiRHS = DAG.getConstant(0, dl, VT);
7550     }
7551 
7552     // Here we're passing the 2 arguments explicitly as 4 arguments that are
7553     // pre-lowered to the correct types. This all depends upon WideVT not
7554     // being a legal type for the architecture and thus has to be split to
7555     // two arguments.
7556     SDValue Ret;
7557     TargetLowering::MakeLibCallOptions CallOptions;
7558     CallOptions.setSExt(isSigned);
7559     CallOptions.setIsPostTypeLegalization(true);
7560     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
7561       // Halves of WideVT are packed into registers in different order
7562       // depending on platform endianness. This is usually handled by
7563       // the C calling convention, but we can't defer to it in
7564       // the legalizer.
7565       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
7566       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
7567     } else {
7568       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
7569       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
7570     }
7571     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
7572            "Ret value is a collection of constituent nodes holding result.");
7573     if (DAG.getDataLayout().isLittleEndian()) {
7574       // Same as above.
7575       BottomHalf = Ret.getOperand(0);
7576       TopHalf = Ret.getOperand(1);
7577     } else {
7578       BottomHalf = Ret.getOperand(1);
7579       TopHalf = Ret.getOperand(0);
7580     }
7581   }
7582 
7583   Result = BottomHalf;
7584   if (isSigned) {
7585     SDValue ShiftAmt = DAG.getConstant(
7586         VT.getScalarSizeInBits() - 1, dl,
7587         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
7588     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
7589     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
7590   } else {
7591     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
7592                             DAG.getConstant(0, dl, VT), ISD::SETNE);
7593   }
7594 
7595   // Truncate the result if SetCC returns a larger type than needed.
7596   EVT RType = Node->getValueType(1);
7597   if (RType.getSizeInBits() < Overflow.getValueSizeInBits())
7598     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
7599 
7600   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
7601          "Unexpected result type for S/UMULO legalization");
7602   return true;
7603 }
7604 
7605 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
7606   SDLoc dl(Node);
7607   bool NoNaN = Node->getFlags().hasNoNaNs();
7608   unsigned BaseOpcode = 0;
7609   switch (Node->getOpcode()) {
7610   default: llvm_unreachable("Expected VECREDUCE opcode");
7611   case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break;
7612   case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break;
7613   case ISD::VECREDUCE_ADD:  BaseOpcode = ISD::ADD; break;
7614   case ISD::VECREDUCE_MUL:  BaseOpcode = ISD::MUL; break;
7615   case ISD::VECREDUCE_AND:  BaseOpcode = ISD::AND; break;
7616   case ISD::VECREDUCE_OR:   BaseOpcode = ISD::OR; break;
7617   case ISD::VECREDUCE_XOR:  BaseOpcode = ISD::XOR; break;
7618   case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break;
7619   case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break;
7620   case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break;
7621   case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break;
7622   case ISD::VECREDUCE_FMAX:
7623     BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM;
7624     break;
7625   case ISD::VECREDUCE_FMIN:
7626     BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM;
7627     break;
7628   }
7629 
7630   SDValue Op = Node->getOperand(0);
7631   EVT VT = Op.getValueType();
7632 
7633   // Try to use a shuffle reduction for power of two vectors.
7634   if (VT.isPow2VectorType()) {
7635     while (VT.getVectorNumElements() > 1) {
7636       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
7637       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
7638         break;
7639 
7640       SDValue Lo, Hi;
7641       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
7642       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
7643       VT = HalfVT;
7644     }
7645   }
7646 
7647   EVT EltVT = VT.getVectorElementType();
7648   unsigned NumElts = VT.getVectorNumElements();
7649 
7650   SmallVector<SDValue, 8> Ops;
7651   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
7652 
7653   SDValue Res = Ops[0];
7654   for (unsigned i = 1; i < NumElts; i++)
7655     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
7656 
7657   // Result type may be wider than element type.
7658   if (EltVT != Node->getValueType(0))
7659     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
7660   return Res;
7661 }
7662