1 //===- SplitKit.cpp - Toolkit for splitting live ranges -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the SplitAnalysis class as well as mutator functions for
10 // live range splitting.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SplitKit.h"
15 #include "llvm/ADT/None.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/AliasAnalysis.h"
19 #include "llvm/CodeGen/LiveRangeEdit.h"
20 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
21 #include "llvm/CodeGen/MachineDominators.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineLoopInfo.h"
25 #include "llvm/CodeGen/MachineOperand.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/TargetInstrInfo.h"
28 #include "llvm/CodeGen/TargetOpcodes.h"
29 #include "llvm/CodeGen/TargetRegisterInfo.h"
30 #include "llvm/CodeGen/TargetSubtargetInfo.h"
31 #include "llvm/CodeGen/VirtRegMap.h"
32 #include "llvm/Config/llvm-config.h"
33 #include "llvm/IR/DebugLoc.h"
34 #include "llvm/Support/Allocator.h"
35 #include "llvm/Support/BlockFrequency.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <algorithm>
40 #include <cassert>
41 #include <iterator>
42 #include <limits>
43 #include <tuple>
44 
45 using namespace llvm;
46 
47 #define DEBUG_TYPE "regalloc"
48 
49 STATISTIC(NumFinished, "Number of splits finished");
50 STATISTIC(NumSimple,   "Number of splits that were simple");
51 STATISTIC(NumCopies,   "Number of copies inserted for splitting");
52 STATISTIC(NumRemats,   "Number of rematerialized defs for splitting");
53 
54 //===----------------------------------------------------------------------===//
55 //                     Last Insert Point Analysis
56 //===----------------------------------------------------------------------===//
57 
58 InsertPointAnalysis::InsertPointAnalysis(const LiveIntervals &lis,
59                                          unsigned BBNum)
60     : LIS(lis), LastInsertPoint(BBNum) {}
61 
62 SlotIndex
63 InsertPointAnalysis::computeLastInsertPoint(const LiveInterval &CurLI,
64                                             const MachineBasicBlock &MBB) {
65   unsigned Num = MBB.getNumber();
66   std::pair<SlotIndex, SlotIndex> &LIP = LastInsertPoint[Num];
67   SlotIndex MBBEnd = LIS.getMBBEndIdx(&MBB);
68 
69   SmallVector<const MachineBasicBlock *, 1> ExceptionalSuccessors;
70   bool EHPadSuccessor = false;
71   for (const MachineBasicBlock *SMBB : MBB.successors()) {
72     if (SMBB->isEHPad()) {
73       ExceptionalSuccessors.push_back(SMBB);
74       EHPadSuccessor = true;
75     } else if (SMBB->isInlineAsmBrIndirectTarget())
76       ExceptionalSuccessors.push_back(SMBB);
77   }
78 
79   // Compute insert points on the first call. The pair is independent of the
80   // current live interval.
81   if (!LIP.first.isValid()) {
82     MachineBasicBlock::const_iterator FirstTerm = MBB.getFirstTerminator();
83     if (FirstTerm == MBB.end())
84       LIP.first = MBBEnd;
85     else
86       LIP.first = LIS.getInstructionIndex(*FirstTerm);
87 
88     // If there is a landing pad or inlineasm_br successor, also find the
89     // instruction. If there is no such instruction, we don't need to do
90     // anything special.  We assume there cannot be multiple instructions that
91     // are Calls with EHPad successors or INLINEASM_BR in a block. Further, we
92     // assume that if there are any, they will be after any other call
93     // instructions in the block.
94     if (ExceptionalSuccessors.empty())
95       return LIP.first;
96     for (const MachineInstr &MI : llvm::reverse(MBB)) {
97       if ((EHPadSuccessor && MI.isCall()) ||
98           MI.getOpcode() == TargetOpcode::INLINEASM_BR) {
99         LIP.second = LIS.getInstructionIndex(MI);
100         break;
101       }
102     }
103   }
104 
105   // If CurLI is live into a landing pad successor, move the last insert point
106   // back to the call that may throw.
107   if (!LIP.second)
108     return LIP.first;
109 
110   if (none_of(ExceptionalSuccessors, [&](const MachineBasicBlock *EHPad) {
111         return LIS.isLiveInToMBB(CurLI, EHPad);
112       }))
113     return LIP.first;
114 
115   // Find the value leaving MBB.
116   const VNInfo *VNI = CurLI.getVNInfoBefore(MBBEnd);
117   if (!VNI)
118     return LIP.first;
119 
120   // The def of statepoint instruction is a gc relocation and it should be alive
121   // in landing pad. So we cannot split interval after statepoint instruction.
122   if (SlotIndex::isSameInstr(VNI->def, LIP.second))
123     if (auto *I = LIS.getInstructionFromIndex(LIP.second))
124       if (I->getOpcode() == TargetOpcode::STATEPOINT)
125         return LIP.second;
126 
127   // If the value leaving MBB was defined after the call in MBB, it can't
128   // really be live-in to the landing pad.  This can happen if the landing pad
129   // has a PHI, and this register is undef on the exceptional edge.
130   // <rdar://problem/10664933>
131   if (!SlotIndex::isEarlierInstr(VNI->def, LIP.second) && VNI->def < MBBEnd)
132     return LIP.first;
133 
134   // Value is properly live-in to the landing pad.
135   // Only allow inserts before the call.
136   return LIP.second;
137 }
138 
139 MachineBasicBlock::iterator
140 InsertPointAnalysis::getLastInsertPointIter(const LiveInterval &CurLI,
141                                             MachineBasicBlock &MBB) {
142   SlotIndex LIP = getLastInsertPoint(CurLI, MBB);
143   if (LIP == LIS.getMBBEndIdx(&MBB))
144     return MBB.end();
145   return LIS.getInstructionFromIndex(LIP);
146 }
147 
148 //===----------------------------------------------------------------------===//
149 //                                 Split Analysis
150 //===----------------------------------------------------------------------===//
151 
152 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis,
153                              const MachineLoopInfo &mli)
154     : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli),
155       TII(*MF.getSubtarget().getInstrInfo()), IPA(lis, MF.getNumBlockIDs()) {}
156 
157 void SplitAnalysis::clear() {
158   UseSlots.clear();
159   UseBlocks.clear();
160   ThroughBlocks.clear();
161   CurLI = nullptr;
162 }
163 
164 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
165 void SplitAnalysis::analyzeUses() {
166   assert(UseSlots.empty() && "Call clear first");
167 
168   // First get all the defs from the interval values. This provides the correct
169   // slots for early clobbers.
170   for (const VNInfo *VNI : CurLI->valnos)
171     if (!VNI->isPHIDef() && !VNI->isUnused())
172       UseSlots.push_back(VNI->def);
173 
174   // Get use slots form the use-def chain.
175   const MachineRegisterInfo &MRI = MF.getRegInfo();
176   for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg()))
177     if (!MO.isUndef())
178       UseSlots.push_back(LIS.getInstructionIndex(*MO.getParent()).getRegSlot());
179 
180   array_pod_sort(UseSlots.begin(), UseSlots.end());
181 
182   // Remove duplicates, keeping the smaller slot for each instruction.
183   // That is what we want for early clobbers.
184   UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
185                              SlotIndex::isSameInstr),
186                  UseSlots.end());
187 
188   // Compute per-live block info.
189   calcLiveBlockInfo();
190 
191   LLVM_DEBUG(dbgs() << "Analyze counted " << UseSlots.size() << " instrs in "
192                     << UseBlocks.size() << " blocks, through "
193                     << NumThroughBlocks << " blocks.\n");
194 }
195 
196 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
197 /// where CurLI is live.
198 void SplitAnalysis::calcLiveBlockInfo() {
199   ThroughBlocks.resize(MF.getNumBlockIDs());
200   NumThroughBlocks = NumGapBlocks = 0;
201   if (CurLI->empty())
202     return;
203 
204   LiveInterval::const_iterator LVI = CurLI->begin();
205   LiveInterval::const_iterator LVE = CurLI->end();
206 
207   SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
208   UseI = UseSlots.begin();
209   UseE = UseSlots.end();
210 
211   // Loop over basic blocks where CurLI is live.
212   MachineFunction::iterator MFI =
213       LIS.getMBBFromIndex(LVI->start)->getIterator();
214   while (true) {
215     BlockInfo BI;
216     BI.MBB = &*MFI;
217     SlotIndex Start, Stop;
218     std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
219 
220     // If the block contains no uses, the range must be live through. At one
221     // point, RegisterCoalescer could create dangling ranges that ended
222     // mid-block.
223     if (UseI == UseE || *UseI >= Stop) {
224       ++NumThroughBlocks;
225       ThroughBlocks.set(BI.MBB->getNumber());
226       // The range shouldn't end mid-block if there are no uses. This shouldn't
227       // happen.
228       assert(LVI->end >= Stop && "range ends mid block with no uses");
229     } else {
230       // This block has uses. Find the first and last uses in the block.
231       BI.FirstInstr = *UseI;
232       assert(BI.FirstInstr >= Start);
233       do ++UseI;
234       while (UseI != UseE && *UseI < Stop);
235       BI.LastInstr = UseI[-1];
236       assert(BI.LastInstr < Stop);
237 
238       // LVI is the first live segment overlapping MBB.
239       BI.LiveIn = LVI->start <= Start;
240 
241       // When not live in, the first use should be a def.
242       if (!BI.LiveIn) {
243         assert(LVI->start == LVI->valno->def && "Dangling Segment start");
244         assert(LVI->start == BI.FirstInstr && "First instr should be a def");
245         BI.FirstDef = BI.FirstInstr;
246       }
247 
248       // Look for gaps in the live range.
249       BI.LiveOut = true;
250       while (LVI->end < Stop) {
251         SlotIndex LastStop = LVI->end;
252         if (++LVI == LVE || LVI->start >= Stop) {
253           BI.LiveOut = false;
254           BI.LastInstr = LastStop;
255           break;
256         }
257 
258         if (LastStop < LVI->start) {
259           // There is a gap in the live range. Create duplicate entries for the
260           // live-in snippet and the live-out snippet.
261           ++NumGapBlocks;
262 
263           // Push the Live-in part.
264           BI.LiveOut = false;
265           UseBlocks.push_back(BI);
266           UseBlocks.back().LastInstr = LastStop;
267 
268           // Set up BI for the live-out part.
269           BI.LiveIn = false;
270           BI.LiveOut = true;
271           BI.FirstInstr = BI.FirstDef = LVI->start;
272         }
273 
274         // A Segment that starts in the middle of the block must be a def.
275         assert(LVI->start == LVI->valno->def && "Dangling Segment start");
276         if (!BI.FirstDef)
277           BI.FirstDef = LVI->start;
278       }
279 
280       UseBlocks.push_back(BI);
281 
282       // LVI is now at LVE or LVI->end >= Stop.
283       if (LVI == LVE)
284         break;
285     }
286 
287     // Live segment ends exactly at Stop. Move to the next segment.
288     if (LVI->end == Stop && ++LVI == LVE)
289       break;
290 
291     // Pick the next basic block.
292     if (LVI->start < Stop)
293       ++MFI;
294     else
295       MFI = LIS.getMBBFromIndex(LVI->start)->getIterator();
296   }
297 
298   assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
299 }
300 
301 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
302   if (cli->empty())
303     return 0;
304   LiveInterval *li = const_cast<LiveInterval*>(cli);
305   LiveInterval::iterator LVI = li->begin();
306   LiveInterval::iterator LVE = li->end();
307   unsigned Count = 0;
308 
309   // Loop over basic blocks where li is live.
310   MachineFunction::const_iterator MFI =
311       LIS.getMBBFromIndex(LVI->start)->getIterator();
312   SlotIndex Stop = LIS.getMBBEndIdx(&*MFI);
313   while (true) {
314     ++Count;
315     LVI = li->advanceTo(LVI, Stop);
316     if (LVI == LVE)
317       return Count;
318     do {
319       ++MFI;
320       Stop = LIS.getMBBEndIdx(&*MFI);
321     } while (Stop <= LVI->start);
322   }
323 }
324 
325 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
326   unsigned OrigReg = VRM.getOriginal(CurLI->reg());
327   const LiveInterval &Orig = LIS.getInterval(OrigReg);
328   assert(!Orig.empty() && "Splitting empty interval?");
329   LiveInterval::const_iterator I = Orig.find(Idx);
330 
331   // Range containing Idx should begin at Idx.
332   if (I != Orig.end() && I->start <= Idx)
333     return I->start == Idx;
334 
335   // Range does not contain Idx, previous must end at Idx.
336   return I != Orig.begin() && (--I)->end == Idx;
337 }
338 
339 void SplitAnalysis::analyze(const LiveInterval *li) {
340   clear();
341   CurLI = li;
342   analyzeUses();
343 }
344 
345 //===----------------------------------------------------------------------===//
346 //                               Split Editor
347 //===----------------------------------------------------------------------===//
348 
349 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
350 SplitEditor::SplitEditor(SplitAnalysis &SA, LiveIntervals &LIS, VirtRegMap &VRM,
351                          MachineDominatorTree &MDT,
352                          MachineBlockFrequencyInfo &MBFI, VirtRegAuxInfo &VRAI)
353     : SA(SA), LIS(LIS), VRM(VRM), MRI(VRM.getMachineFunction().getRegInfo()),
354       MDT(MDT), TII(*VRM.getMachineFunction().getSubtarget().getInstrInfo()),
355       TRI(*VRM.getMachineFunction().getSubtarget().getRegisterInfo()),
356       MBFI(MBFI), VRAI(VRAI), RegAssign(Allocator) {}
357 
358 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) {
359   Edit = &LRE;
360   SpillMode = SM;
361   OpenIdx = 0;
362   RegAssign.clear();
363   Values.clear();
364 
365   // Reset the LiveIntervalCalc instances needed for this spill mode.
366   LICalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
367                   &LIS.getVNInfoAllocator());
368   if (SpillMode)
369     LICalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
370                     &LIS.getVNInfoAllocator());
371 
372   Edit->anyRematerializable();
373 }
374 
375 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
376 LLVM_DUMP_METHOD void SplitEditor::dump() const {
377   if (RegAssign.empty()) {
378     dbgs() << " empty\n";
379     return;
380   }
381 
382   for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
383     dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
384   dbgs() << '\n';
385 }
386 #endif
387 
388 /// Find a subrange corresponding to the exact lane mask @p LM in the live
389 /// interval @p LI. The interval @p LI is assumed to contain such a subrange.
390 /// This function is used to find corresponding subranges between the
391 /// original interval and the new intervals.
392 template <typename T> auto &getSubrangeImpl(LaneBitmask LM, T &LI) {
393   for (auto &S : LI.subranges())
394     if (S.LaneMask == LM)
395       return S;
396   llvm_unreachable("SubRange for this mask not found");
397 }
398 
399 LiveInterval::SubRange &getSubRangeForMaskExact(LaneBitmask LM,
400                                                 LiveInterval &LI) {
401   return getSubrangeImpl(LM, LI);
402 }
403 
404 const LiveInterval::SubRange &getSubRangeForMaskExact(LaneBitmask LM,
405                                                       const LiveInterval &LI) {
406   return getSubrangeImpl(LM, LI);
407 }
408 
409 /// Find a subrange corresponding to the lane mask @p LM, or a superset of it,
410 /// in the live interval @p LI. The interval @p LI is assumed to contain such
411 /// a subrange.  This function is used to find corresponding subranges between
412 /// the original interval and the new intervals.
413 const LiveInterval::SubRange &getSubRangeForMask(LaneBitmask LM,
414                                                  const LiveInterval &LI) {
415   for (const LiveInterval::SubRange &S : LI.subranges())
416     if ((S.LaneMask & LM) == LM)
417       return S;
418   llvm_unreachable("SubRange for this mask not found");
419 }
420 
421 void SplitEditor::addDeadDef(LiveInterval &LI, VNInfo *VNI, bool Original) {
422   if (!LI.hasSubRanges()) {
423     LI.createDeadDef(VNI);
424     return;
425   }
426 
427   SlotIndex Def = VNI->def;
428   if (Original) {
429     // If we are transferring a def from the original interval, make sure
430     // to only update the subranges for which the original subranges had
431     // a def at this location.
432     for (LiveInterval::SubRange &S : LI.subranges()) {
433       auto &PS = getSubRangeForMask(S.LaneMask, Edit->getParent());
434       VNInfo *PV = PS.getVNInfoAt(Def);
435       if (PV != nullptr && PV->def == Def)
436         S.createDeadDef(Def, LIS.getVNInfoAllocator());
437     }
438   } else {
439     // This is a new def: either from rematerialization, or from an inserted
440     // copy. Since rematerialization can regenerate a definition of a sub-
441     // register, we need to check which subranges need to be updated.
442     const MachineInstr *DefMI = LIS.getInstructionFromIndex(Def);
443     assert(DefMI != nullptr);
444     LaneBitmask LM;
445     for (const MachineOperand &DefOp : DefMI->defs()) {
446       Register R = DefOp.getReg();
447       if (R != LI.reg())
448         continue;
449       if (unsigned SR = DefOp.getSubReg())
450         LM |= TRI.getSubRegIndexLaneMask(SR);
451       else {
452         LM = MRI.getMaxLaneMaskForVReg(R);
453         break;
454       }
455     }
456     for (LiveInterval::SubRange &S : LI.subranges())
457       if ((S.LaneMask & LM).any())
458         S.createDeadDef(Def, LIS.getVNInfoAllocator());
459   }
460 }
461 
462 VNInfo *SplitEditor::defValue(unsigned RegIdx,
463                               const VNInfo *ParentVNI,
464                               SlotIndex Idx,
465                               bool Original) {
466   assert(ParentVNI && "Mapping  NULL value");
467   assert(Idx.isValid() && "Invalid SlotIndex");
468   assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
469   LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
470 
471   // Create a new value.
472   VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator());
473 
474   bool Force = LI->hasSubRanges();
475   ValueForcePair FP(Force ? nullptr : VNI, Force);
476   // Use insert for lookup, so we can add missing values with a second lookup.
477   std::pair<ValueMap::iterator, bool> InsP =
478     Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), FP));
479 
480   // This was the first time (RegIdx, ParentVNI) was mapped, and it is not
481   // forced. Keep it as a simple def without any liveness.
482   if (!Force && InsP.second)
483     return VNI;
484 
485   // If the previous value was a simple mapping, add liveness for it now.
486   if (VNInfo *OldVNI = InsP.first->second.getPointer()) {
487     addDeadDef(*LI, OldVNI, Original);
488 
489     // No longer a simple mapping.  Switch to a complex mapping. If the
490     // interval has subranges, make it a forced mapping.
491     InsP.first->second = ValueForcePair(nullptr, Force);
492   }
493 
494   // This is a complex mapping, add liveness for VNI
495   addDeadDef(*LI, VNI, Original);
496   return VNI;
497 }
498 
499 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo &ParentVNI) {
500   ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI.id)];
501   VNInfo *VNI = VFP.getPointer();
502 
503   // ParentVNI was either unmapped or already complex mapped. Either way, just
504   // set the force bit.
505   if (!VNI) {
506     VFP.setInt(true);
507     return;
508   }
509 
510   // This was previously a single mapping. Make sure the old def is represented
511   // by a trivial live range.
512   addDeadDef(LIS.getInterval(Edit->get(RegIdx)), VNI, false);
513 
514   // Mark as complex mapped, forced.
515   VFP = ValueForcePair(nullptr, true);
516 }
517 
518 SlotIndex SplitEditor::buildSingleSubRegCopy(Register FromReg, Register ToReg,
519     MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
520     unsigned SubIdx, LiveInterval &DestLI, bool Late, SlotIndex Def) {
521   const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY);
522   bool FirstCopy = !Def.isValid();
523   MachineInstr *CopyMI = BuildMI(MBB, InsertBefore, DebugLoc(), Desc)
524       .addReg(ToReg, RegState::Define | getUndefRegState(FirstCopy)
525               | getInternalReadRegState(!FirstCopy), SubIdx)
526       .addReg(FromReg, 0, SubIdx);
527 
528   SlotIndexes &Indexes = *LIS.getSlotIndexes();
529   if (FirstCopy) {
530     Def = Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
531   } else {
532     CopyMI->bundleWithPred();
533   }
534   return Def;
535 }
536 
537 SlotIndex SplitEditor::buildCopy(Register FromReg, Register ToReg,
538     LaneBitmask LaneMask, MachineBasicBlock &MBB,
539     MachineBasicBlock::iterator InsertBefore, bool Late, unsigned RegIdx) {
540   const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY);
541   SlotIndexes &Indexes = *LIS.getSlotIndexes();
542   if (LaneMask.all() || LaneMask == MRI.getMaxLaneMaskForVReg(FromReg)) {
543     // The full vreg is copied.
544     MachineInstr *CopyMI =
545         BuildMI(MBB, InsertBefore, DebugLoc(), Desc, ToReg).addReg(FromReg);
546     return Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
547   }
548 
549   // Only a subset of lanes needs to be copied. The following is a simple
550   // heuristic to construct a sequence of COPYs. We could add a target
551   // specific callback if this turns out to be suboptimal.
552   LiveInterval &DestLI = LIS.getInterval(Edit->get(RegIdx));
553 
554   // First pass: Try to find a perfectly matching subregister index. If none
555   // exists find the one covering the most lanemask bits.
556   const TargetRegisterClass *RC = MRI.getRegClass(FromReg);
557   assert(RC == MRI.getRegClass(ToReg) && "Should have same reg class");
558 
559   SmallVector<unsigned, 8> SubIndexes;
560 
561   // Abort if we cannot possibly implement the COPY with the given indexes.
562   if (!TRI.getCoveringSubRegIndexes(MRI, RC, LaneMask, SubIndexes))
563     report_fatal_error("Impossible to implement partial COPY");
564 
565   SlotIndex Def;
566   for (unsigned BestIdx : SubIndexes) {
567     Def = buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore, BestIdx,
568                                 DestLI, Late, Def);
569   }
570 
571   BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
572   DestLI.refineSubRanges(
573       Allocator, LaneMask,
574       [Def, &Allocator](LiveInterval::SubRange &SR) {
575         SR.createDeadDef(Def, Allocator);
576       },
577       Indexes, TRI);
578 
579   return Def;
580 }
581 
582 VNInfo *SplitEditor::defFromParent(unsigned RegIdx, const VNInfo *ParentVNI,
583                                    SlotIndex UseIdx, MachineBasicBlock &MBB,
584                                    MachineBasicBlock::iterator I) {
585   SlotIndex Def;
586   LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
587 
588   // We may be trying to avoid interference that ends at a deleted instruction,
589   // so always begin RegIdx 0 early and all others late.
590   bool Late = RegIdx != 0;
591 
592   // Attempt cheap-as-a-copy rematerialization.
593   unsigned Original = VRM.getOriginal(Edit->get(RegIdx));
594   LiveInterval &OrigLI = LIS.getInterval(Original);
595   VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
596 
597   Register Reg = LI->reg();
598   bool DidRemat = false;
599   if (OrigVNI) {
600     LiveRangeEdit::Remat RM(ParentVNI);
601     RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
602     if (Edit->canRematerializeAt(RM, OrigVNI, UseIdx, true)) {
603       Def = Edit->rematerializeAt(MBB, I, Reg, RM, TRI, Late);
604       ++NumRemats;
605       DidRemat = true;
606     }
607   }
608   if (!DidRemat) {
609     LaneBitmask LaneMask;
610     if (OrigLI.hasSubRanges()) {
611       LaneMask = LaneBitmask::getNone();
612       for (LiveInterval::SubRange &S : OrigLI.subranges()) {
613         if (S.liveAt(UseIdx))
614           LaneMask |= S.LaneMask;
615       }
616     } else {
617       LaneMask = LaneBitmask::getAll();
618     }
619 
620     if (LaneMask.none()) {
621       const MCInstrDesc &Desc = TII.get(TargetOpcode::IMPLICIT_DEF);
622       MachineInstr *ImplicitDef = BuildMI(MBB, I, DebugLoc(), Desc, Reg);
623       SlotIndexes &Indexes = *LIS.getSlotIndexes();
624       Def = Indexes.insertMachineInstrInMaps(*ImplicitDef, Late).getRegSlot();
625     } else {
626       ++NumCopies;
627       Def = buildCopy(Edit->getReg(), Reg, LaneMask, MBB, I, Late, RegIdx);
628     }
629   }
630 
631   // Define the value in Reg.
632   return defValue(RegIdx, ParentVNI, Def, false);
633 }
634 
635 /// Create a new virtual register and live interval.
636 unsigned SplitEditor::openIntv() {
637   // Create the complement as index 0.
638   if (Edit->empty())
639     Edit->createEmptyInterval();
640 
641   // Create the open interval.
642   OpenIdx = Edit->size();
643   Edit->createEmptyInterval();
644   return OpenIdx;
645 }
646 
647 void SplitEditor::selectIntv(unsigned Idx) {
648   assert(Idx != 0 && "Cannot select the complement interval");
649   assert(Idx < Edit->size() && "Can only select previously opened interval");
650   LLVM_DEBUG(dbgs() << "    selectIntv " << OpenIdx << " -> " << Idx << '\n');
651   OpenIdx = Idx;
652 }
653 
654 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
655   assert(OpenIdx && "openIntv not called before enterIntvBefore");
656   LLVM_DEBUG(dbgs() << "    enterIntvBefore " << Idx);
657   Idx = Idx.getBaseIndex();
658   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
659   if (!ParentVNI) {
660     LLVM_DEBUG(dbgs() << ": not live\n");
661     return Idx;
662   }
663   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
664   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
665   assert(MI && "enterIntvBefore called with invalid index");
666 
667   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
668   return VNI->def;
669 }
670 
671 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
672   assert(OpenIdx && "openIntv not called before enterIntvAfter");
673   LLVM_DEBUG(dbgs() << "    enterIntvAfter " << Idx);
674   Idx = Idx.getBoundaryIndex();
675   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
676   if (!ParentVNI) {
677     LLVM_DEBUG(dbgs() << ": not live\n");
678     return Idx;
679   }
680   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
681   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
682   assert(MI && "enterIntvAfter called with invalid index");
683 
684   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
685                               std::next(MachineBasicBlock::iterator(MI)));
686   return VNI->def;
687 }
688 
689 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
690   assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
691   SlotIndex End = LIS.getMBBEndIdx(&MBB);
692   SlotIndex Last = End.getPrevSlot();
693   LLVM_DEBUG(dbgs() << "    enterIntvAtEnd " << printMBBReference(MBB) << ", "
694                     << Last);
695   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
696   if (!ParentVNI) {
697     LLVM_DEBUG(dbgs() << ": not live\n");
698     return End;
699   }
700   SlotIndex LSP = SA.getLastSplitPoint(&MBB);
701   if (LSP < Last) {
702     // It could be that the use after LSP is a def, and thus the ParentVNI
703     // just selected starts at that def.  For this case to exist, the def
704     // must be part of a tied def/use pair (as otherwise we'd have split
705     // distinct live ranges into individual live intervals), and thus we
706     // can insert the def into the VNI of the use and the tied def/use
707     // pair can live in the resulting interval.
708     Last = LSP;
709     ParentVNI = Edit->getParent().getVNInfoAt(Last);
710     if (!ParentVNI) {
711       // undef use --> undef tied def
712       LLVM_DEBUG(dbgs() << ": tied use not live\n");
713       return End;
714     }
715   }
716 
717   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id);
718   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
719                               SA.getLastSplitPointIter(&MBB));
720   RegAssign.insert(VNI->def, End, OpenIdx);
721   LLVM_DEBUG(dump());
722   return VNI->def;
723 }
724 
725 /// useIntv - indicate that all instructions in MBB should use OpenLI.
726 void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
727   useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
728 }
729 
730 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
731   assert(OpenIdx && "openIntv not called before useIntv");
732   LLVM_DEBUG(dbgs() << "    useIntv [" << Start << ';' << End << "):");
733   RegAssign.insert(Start, End, OpenIdx);
734   LLVM_DEBUG(dump());
735 }
736 
737 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
738   assert(OpenIdx && "openIntv not called before leaveIntvAfter");
739   LLVM_DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
740 
741   // The interval must be live beyond the instruction at Idx.
742   SlotIndex Boundary = Idx.getBoundaryIndex();
743   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary);
744   if (!ParentVNI) {
745     LLVM_DEBUG(dbgs() << ": not live\n");
746     return Boundary.getNextSlot();
747   }
748   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
749   MachineInstr *MI = LIS.getInstructionFromIndex(Boundary);
750   assert(MI && "No instruction at index");
751 
752   // In spill mode, make live ranges as short as possible by inserting the copy
753   // before MI.  This is only possible if that instruction doesn't redefine the
754   // value.  The inserted COPY is not a kill, and we don't need to recompute
755   // the source live range.  The spiller also won't try to hoist this copy.
756   if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) &&
757       MI->readsVirtualRegister(Edit->getReg())) {
758     forceRecompute(0, *ParentVNI);
759     defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
760     return Idx;
761   }
762 
763   VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(),
764                               std::next(MachineBasicBlock::iterator(MI)));
765   return VNI->def;
766 }
767 
768 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
769   assert(OpenIdx && "openIntv not called before leaveIntvBefore");
770   LLVM_DEBUG(dbgs() << "    leaveIntvBefore " << Idx);
771 
772   // The interval must be live into the instruction at Idx.
773   Idx = Idx.getBaseIndex();
774   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
775   if (!ParentVNI) {
776     LLVM_DEBUG(dbgs() << ": not live\n");
777     return Idx.getNextSlot();
778   }
779   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
780 
781   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
782   assert(MI && "No instruction at index");
783   VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
784   return VNI->def;
785 }
786 
787 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
788   assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
789   SlotIndex Start = LIS.getMBBStartIdx(&MBB);
790   LLVM_DEBUG(dbgs() << "    leaveIntvAtTop " << printMBBReference(MBB) << ", "
791                     << Start);
792 
793   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
794   if (!ParentVNI) {
795     LLVM_DEBUG(dbgs() << ": not live\n");
796     return Start;
797   }
798 
799   VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
800                               MBB.SkipPHIsLabelsAndDebug(MBB.begin()));
801   RegAssign.insert(Start, VNI->def, OpenIdx);
802   LLVM_DEBUG(dump());
803   return VNI->def;
804 }
805 
806 static bool hasTiedUseOf(MachineInstr &MI, unsigned Reg) {
807   return any_of(MI.defs(), [Reg](const MachineOperand &MO) {
808     return MO.isReg() && MO.isTied() && MO.getReg() == Reg;
809   });
810 }
811 
812 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
813   assert(OpenIdx && "openIntv not called before overlapIntv");
814   const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
815   assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) &&
816          "Parent changes value in extended range");
817   assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
818          "Range cannot span basic blocks");
819 
820   // The complement interval will be extended as needed by LICalc.extend().
821   if (ParentVNI)
822     forceRecompute(0, *ParentVNI);
823 
824   // If the last use is tied to a def, we can't mark it as live for the
825   // interval which includes only the use.  That would cause the tied pair
826   // to end up in two different intervals.
827   if (auto *MI = LIS.getInstructionFromIndex(End))
828     if (hasTiedUseOf(*MI, Edit->getReg())) {
829       LLVM_DEBUG(dbgs() << "skip overlap due to tied def at end\n");
830       return;
831     }
832 
833   LLVM_DEBUG(dbgs() << "    overlapIntv [" << Start << ';' << End << "):");
834   RegAssign.insert(Start, End, OpenIdx);
835   LLVM_DEBUG(dump());
836 }
837 
838 //===----------------------------------------------------------------------===//
839 //                                  Spill modes
840 //===----------------------------------------------------------------------===//
841 
842 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) {
843   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
844   LLVM_DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n");
845   RegAssignMap::iterator AssignI;
846   AssignI.setMap(RegAssign);
847 
848   for (const VNInfo *C : Copies) {
849     SlotIndex Def = C->def;
850     MachineInstr *MI = LIS.getInstructionFromIndex(Def);
851     assert(MI && "No instruction for back-copy");
852 
853     MachineBasicBlock *MBB = MI->getParent();
854     MachineBasicBlock::iterator MBBI(MI);
855     bool AtBegin;
856     do AtBegin = MBBI == MBB->begin();
857     while (!AtBegin && (--MBBI)->isDebugOrPseudoInstr());
858 
859     LLVM_DEBUG(dbgs() << "Removing " << Def << '\t' << *MI);
860     LIS.removeVRegDefAt(*LI, Def);
861     LIS.RemoveMachineInstrFromMaps(*MI);
862     MI->eraseFromParent();
863 
864     // Adjust RegAssign if a register assignment is killed at Def. We want to
865     // avoid calculating the live range of the source register if possible.
866     AssignI.find(Def.getPrevSlot());
867     if (!AssignI.valid() || AssignI.start() >= Def)
868       continue;
869     // If MI doesn't kill the assigned register, just leave it.
870     if (AssignI.stop() != Def)
871       continue;
872     unsigned RegIdx = AssignI.value();
873     // We could hoist back-copy right after another back-copy. As a result
874     // MMBI points to copy instruction which is actually dead now.
875     // We cannot set its stop to MBBI which will be the same as start and
876     // interval does not support that.
877     SlotIndex Kill =
878         AtBegin ? SlotIndex() : LIS.getInstructionIndex(*MBBI).getRegSlot();
879     if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg()) ||
880         Kill <= AssignI.start()) {
881       LLVM_DEBUG(dbgs() << "  cannot find simple kill of RegIdx " << RegIdx
882                         << '\n');
883       forceRecompute(RegIdx, *Edit->getParent().getVNInfoAt(Def));
884     } else {
885       LLVM_DEBUG(dbgs() << "  move kill to " << Kill << '\t' << *MBBI);
886       AssignI.setStop(Kill);
887     }
888   }
889 }
890 
891 MachineBasicBlock*
892 SplitEditor::findShallowDominator(MachineBasicBlock *MBB,
893                                   MachineBasicBlock *DefMBB) {
894   if (MBB == DefMBB)
895     return MBB;
896   assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def.");
897 
898   const MachineLoopInfo &Loops = SA.Loops;
899   const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB);
900   MachineDomTreeNode *DefDomNode = MDT[DefMBB];
901 
902   // Best candidate so far.
903   MachineBasicBlock *BestMBB = MBB;
904   unsigned BestDepth = std::numeric_limits<unsigned>::max();
905 
906   while (true) {
907     const MachineLoop *Loop = Loops.getLoopFor(MBB);
908 
909     // MBB isn't in a loop, it doesn't get any better.  All dominators have a
910     // higher frequency by definition.
911     if (!Loop) {
912       LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
913                         << " dominates " << printMBBReference(*MBB)
914                         << " at depth 0\n");
915       return MBB;
916     }
917 
918     // We'll never be able to exit the DefLoop.
919     if (Loop == DefLoop) {
920       LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
921                         << " dominates " << printMBBReference(*MBB)
922                         << " in the same loop\n");
923       return MBB;
924     }
925 
926     // Least busy dominator seen so far.
927     unsigned Depth = Loop->getLoopDepth();
928     if (Depth < BestDepth) {
929       BestMBB = MBB;
930       BestDepth = Depth;
931       LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
932                         << " dominates " << printMBBReference(*MBB)
933                         << " at depth " << Depth << '\n');
934     }
935 
936     // Leave loop by going to the immediate dominator of the loop header.
937     // This is a bigger stride than simply walking up the dominator tree.
938     MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom();
939 
940     // Too far up the dominator tree?
941     if (!IDom || !MDT.dominates(DefDomNode, IDom))
942       return BestMBB;
943 
944     MBB = IDom->getBlock();
945   }
946 }
947 
948 void SplitEditor::computeRedundantBackCopies(
949     DenseSet<unsigned> &NotToHoistSet, SmallVectorImpl<VNInfo *> &BackCopies) {
950   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
951   const LiveInterval *Parent = &Edit->getParent();
952   SmallVector<SmallPtrSet<VNInfo *, 8>, 8> EqualVNs(Parent->getNumValNums());
953   SmallPtrSet<VNInfo *, 8> DominatedVNIs;
954 
955   // Aggregate VNIs having the same value as ParentVNI.
956   for (VNInfo *VNI : LI->valnos) {
957     if (VNI->isUnused())
958       continue;
959     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
960     EqualVNs[ParentVNI->id].insert(VNI);
961   }
962 
963   // For VNI aggregation of each ParentVNI, collect dominated, i.e.,
964   // redundant VNIs to BackCopies.
965   for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
966     const VNInfo *ParentVNI = Parent->getValNumInfo(i);
967     if (!NotToHoistSet.count(ParentVNI->id))
968       continue;
969     SmallPtrSetIterator<VNInfo *> It1 = EqualVNs[ParentVNI->id].begin();
970     SmallPtrSetIterator<VNInfo *> It2 = It1;
971     for (; It1 != EqualVNs[ParentVNI->id].end(); ++It1) {
972       It2 = It1;
973       for (++It2; It2 != EqualVNs[ParentVNI->id].end(); ++It2) {
974         if (DominatedVNIs.count(*It1) || DominatedVNIs.count(*It2))
975           continue;
976 
977         MachineBasicBlock *MBB1 = LIS.getMBBFromIndex((*It1)->def);
978         MachineBasicBlock *MBB2 = LIS.getMBBFromIndex((*It2)->def);
979         if (MBB1 == MBB2) {
980           DominatedVNIs.insert((*It1)->def < (*It2)->def ? (*It2) : (*It1));
981         } else if (MDT.dominates(MBB1, MBB2)) {
982           DominatedVNIs.insert(*It2);
983         } else if (MDT.dominates(MBB2, MBB1)) {
984           DominatedVNIs.insert(*It1);
985         }
986       }
987     }
988     if (!DominatedVNIs.empty()) {
989       forceRecompute(0, *ParentVNI);
990       append_range(BackCopies, DominatedVNIs);
991       DominatedVNIs.clear();
992     }
993   }
994 }
995 
996 /// For SM_Size mode, find a common dominator for all the back-copies for
997 /// the same ParentVNI and hoist the backcopies to the dominator BB.
998 /// For SM_Speed mode, if the common dominator is hot and it is not beneficial
999 /// to do the hoisting, simply remove the dominated backcopies for the same
1000 /// ParentVNI.
1001 void SplitEditor::hoistCopies() {
1002   // Get the complement interval, always RegIdx 0.
1003   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
1004   const LiveInterval *Parent = &Edit->getParent();
1005 
1006   // Track the nearest common dominator for all back-copies for each ParentVNI,
1007   // indexed by ParentVNI->id.
1008   using DomPair = std::pair<MachineBasicBlock *, SlotIndex>;
1009   SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums());
1010   // The total cost of all the back-copies for each ParentVNI.
1011   SmallVector<BlockFrequency, 8> Costs(Parent->getNumValNums());
1012   // The ParentVNI->id set for which hoisting back-copies are not beneficial
1013   // for Speed.
1014   DenseSet<unsigned> NotToHoistSet;
1015 
1016   // Find the nearest common dominator for parent values with multiple
1017   // back-copies.  If a single back-copy dominates, put it in DomPair.second.
1018   for (VNInfo *VNI : LI->valnos) {
1019     if (VNI->isUnused())
1020       continue;
1021     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
1022     assert(ParentVNI && "Parent not live at complement def");
1023 
1024     // Don't hoist remats.  The complement is probably going to disappear
1025     // completely anyway.
1026     if (Edit->didRematerialize(ParentVNI))
1027       continue;
1028 
1029     MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def);
1030 
1031     DomPair &Dom = NearestDom[ParentVNI->id];
1032 
1033     // Keep directly defined parent values.  This is either a PHI or an
1034     // instruction in the complement range.  All other copies of ParentVNI
1035     // should be eliminated.
1036     if (VNI->def == ParentVNI->def) {
1037       LLVM_DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n');
1038       Dom = DomPair(ValMBB, VNI->def);
1039       continue;
1040     }
1041     // Skip the singly mapped values.  There is nothing to gain from hoisting a
1042     // single back-copy.
1043     if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) {
1044       LLVM_DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n');
1045       continue;
1046     }
1047 
1048     if (!Dom.first) {
1049       // First time we see ParentVNI.  VNI dominates itself.
1050       Dom = DomPair(ValMBB, VNI->def);
1051     } else if (Dom.first == ValMBB) {
1052       // Two defs in the same block.  Pick the earlier def.
1053       if (!Dom.second.isValid() || VNI->def < Dom.second)
1054         Dom.second = VNI->def;
1055     } else {
1056       // Different basic blocks. Check if one dominates.
1057       MachineBasicBlock *Near =
1058         MDT.findNearestCommonDominator(Dom.first, ValMBB);
1059       if (Near == ValMBB)
1060         // Def ValMBB dominates.
1061         Dom = DomPair(ValMBB, VNI->def);
1062       else if (Near != Dom.first)
1063         // None dominate. Hoist to common dominator, need new def.
1064         Dom = DomPair(Near, SlotIndex());
1065       Costs[ParentVNI->id] += MBFI.getBlockFreq(ValMBB);
1066     }
1067 
1068     LLVM_DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@'
1069                       << VNI->def << " for parent " << ParentVNI->id << '@'
1070                       << ParentVNI->def << " hoist to "
1071                       << printMBBReference(*Dom.first) << ' ' << Dom.second
1072                       << '\n');
1073   }
1074 
1075   // Insert the hoisted copies.
1076   for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
1077     DomPair &Dom = NearestDom[i];
1078     if (!Dom.first || Dom.second.isValid())
1079       continue;
1080     // This value needs a hoisted copy inserted at the end of Dom.first.
1081     const VNInfo *ParentVNI = Parent->getValNumInfo(i);
1082     MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def);
1083     // Get a less loopy dominator than Dom.first.
1084     Dom.first = findShallowDominator(Dom.first, DefMBB);
1085     if (SpillMode == SM_Speed &&
1086         MBFI.getBlockFreq(Dom.first) > Costs[ParentVNI->id]) {
1087       NotToHoistSet.insert(ParentVNI->id);
1088       continue;
1089     }
1090     SlotIndex LSP = SA.getLastSplitPoint(Dom.first);
1091     if (LSP <= ParentVNI->def) {
1092       NotToHoistSet.insert(ParentVNI->id);
1093       continue;
1094     }
1095     Dom.second = defFromParent(0, ParentVNI, LSP, *Dom.first,
1096                                SA.getLastSplitPointIter(Dom.first))->def;
1097   }
1098 
1099   // Remove redundant back-copies that are now known to be dominated by another
1100   // def with the same value.
1101   SmallVector<VNInfo*, 8> BackCopies;
1102   for (VNInfo *VNI : LI->valnos) {
1103     if (VNI->isUnused())
1104       continue;
1105     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
1106     const DomPair &Dom = NearestDom[ParentVNI->id];
1107     if (!Dom.first || Dom.second == VNI->def ||
1108         NotToHoistSet.count(ParentVNI->id))
1109       continue;
1110     BackCopies.push_back(VNI);
1111     forceRecompute(0, *ParentVNI);
1112   }
1113 
1114   // If it is not beneficial to hoist all the BackCopies, simply remove
1115   // redundant BackCopies in speed mode.
1116   if (SpillMode == SM_Speed && !NotToHoistSet.empty())
1117     computeRedundantBackCopies(NotToHoistSet, BackCopies);
1118 
1119   removeBackCopies(BackCopies);
1120 }
1121 
1122 /// transferValues - Transfer all possible values to the new live ranges.
1123 /// Values that were rematerialized are left alone, they need LICalc.extend().
1124 bool SplitEditor::transferValues() {
1125   bool Skipped = false;
1126   RegAssignMap::const_iterator AssignI = RegAssign.begin();
1127   for (const LiveRange::Segment &S : Edit->getParent()) {
1128     LLVM_DEBUG(dbgs() << "  blit " << S << ':');
1129     VNInfo *ParentVNI = S.valno;
1130     // RegAssign has holes where RegIdx 0 should be used.
1131     SlotIndex Start = S.start;
1132     AssignI.advanceTo(Start);
1133     do {
1134       unsigned RegIdx;
1135       SlotIndex End = S.end;
1136       if (!AssignI.valid()) {
1137         RegIdx = 0;
1138       } else if (AssignI.start() <= Start) {
1139         RegIdx = AssignI.value();
1140         if (AssignI.stop() < End) {
1141           End = AssignI.stop();
1142           ++AssignI;
1143         }
1144       } else {
1145         RegIdx = 0;
1146         End = std::min(End, AssignI.start());
1147       }
1148 
1149       // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
1150       LLVM_DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx << '('
1151                         << printReg(Edit->get(RegIdx)) << ')');
1152       LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1153 
1154       // Check for a simply defined value that can be blitted directly.
1155       ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id));
1156       if (VNInfo *VNI = VFP.getPointer()) {
1157         LLVM_DEBUG(dbgs() << ':' << VNI->id);
1158         LI.addSegment(LiveInterval::Segment(Start, End, VNI));
1159         Start = End;
1160         continue;
1161       }
1162 
1163       // Skip values with forced recomputation.
1164       if (VFP.getInt()) {
1165         LLVM_DEBUG(dbgs() << "(recalc)");
1166         Skipped = true;
1167         Start = End;
1168         continue;
1169       }
1170 
1171       LiveIntervalCalc &LIC = getLICalc(RegIdx);
1172 
1173       // This value has multiple defs in RegIdx, but it wasn't rematerialized,
1174       // so the live range is accurate. Add live-in blocks in [Start;End) to the
1175       // LiveInBlocks.
1176       MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
1177       SlotIndex BlockStart, BlockEnd;
1178       std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(&*MBB);
1179 
1180       // The first block may be live-in, or it may have its own def.
1181       if (Start != BlockStart) {
1182         VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
1183         assert(VNI && "Missing def for complex mapped value");
1184         LLVM_DEBUG(dbgs() << ':' << VNI->id << "*" << printMBBReference(*MBB));
1185         // MBB has its own def. Is it also live-out?
1186         if (BlockEnd <= End)
1187           LIC.setLiveOutValue(&*MBB, VNI);
1188 
1189         // Skip to the next block for live-in.
1190         ++MBB;
1191         BlockStart = BlockEnd;
1192       }
1193 
1194       // Handle the live-in blocks covered by [Start;End).
1195       assert(Start <= BlockStart && "Expected live-in block");
1196       while (BlockStart < End) {
1197         LLVM_DEBUG(dbgs() << ">" << printMBBReference(*MBB));
1198         BlockEnd = LIS.getMBBEndIdx(&*MBB);
1199         if (BlockStart == ParentVNI->def) {
1200           // This block has the def of a parent PHI, so it isn't live-in.
1201           assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
1202           VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
1203           assert(VNI && "Missing def for complex mapped parent PHI");
1204           if (End >= BlockEnd)
1205             LIC.setLiveOutValue(&*MBB, VNI); // Live-out as well.
1206         } else {
1207           // This block needs a live-in value.  The last block covered may not
1208           // be live-out.
1209           if (End < BlockEnd)
1210             LIC.addLiveInBlock(LI, MDT[&*MBB], End);
1211           else {
1212             // Live-through, and we don't know the value.
1213             LIC.addLiveInBlock(LI, MDT[&*MBB]);
1214             LIC.setLiveOutValue(&*MBB, nullptr);
1215           }
1216         }
1217         BlockStart = BlockEnd;
1218         ++MBB;
1219       }
1220       Start = End;
1221     } while (Start != S.end);
1222     LLVM_DEBUG(dbgs() << '\n');
1223   }
1224 
1225   LICalc[0].calculateValues();
1226   if (SpillMode)
1227     LICalc[1].calculateValues();
1228 
1229   return Skipped;
1230 }
1231 
1232 static bool removeDeadSegment(SlotIndex Def, LiveRange &LR) {
1233   const LiveRange::Segment *Seg = LR.getSegmentContaining(Def);
1234   if (Seg == nullptr)
1235     return true;
1236   if (Seg->end != Def.getDeadSlot())
1237     return false;
1238   // This is a dead PHI. Remove it.
1239   LR.removeSegment(*Seg, true);
1240   return true;
1241 }
1242 
1243 void SplitEditor::extendPHIRange(MachineBasicBlock &B, LiveIntervalCalc &LIC,
1244                                  LiveRange &LR, LaneBitmask LM,
1245                                  ArrayRef<SlotIndex> Undefs) {
1246   for (MachineBasicBlock *P : B.predecessors()) {
1247     SlotIndex End = LIS.getMBBEndIdx(P);
1248     SlotIndex LastUse = End.getPrevSlot();
1249     // The predecessor may not have a live-out value. That is OK, like an
1250     // undef PHI operand.
1251     const LiveInterval &PLI = Edit->getParent();
1252     // Need the cast because the inputs to ?: would otherwise be deemed
1253     // "incompatible": SubRange vs LiveInterval.
1254     const LiveRange &PSR = !LM.all() ? getSubRangeForMaskExact(LM, PLI)
1255                                      : static_cast<const LiveRange &>(PLI);
1256     if (PSR.liveAt(LastUse))
1257       LIC.extend(LR, End, /*PhysReg=*/0, Undefs);
1258   }
1259 }
1260 
1261 void SplitEditor::extendPHIKillRanges() {
1262   // Extend live ranges to be live-out for successor PHI values.
1263 
1264   // Visit each PHI def slot in the parent live interval. If the def is dead,
1265   // remove it. Otherwise, extend the live interval to reach the end indexes
1266   // of all predecessor blocks.
1267 
1268   const LiveInterval &ParentLI = Edit->getParent();
1269   for (const VNInfo *V : ParentLI.valnos) {
1270     if (V->isUnused() || !V->isPHIDef())
1271       continue;
1272 
1273     unsigned RegIdx = RegAssign.lookup(V->def);
1274     LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1275     LiveIntervalCalc &LIC = getLICalc(RegIdx);
1276     MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
1277     if (!removeDeadSegment(V->def, LI))
1278       extendPHIRange(B, LIC, LI, LaneBitmask::getAll(), /*Undefs=*/{});
1279   }
1280 
1281   SmallVector<SlotIndex, 4> Undefs;
1282   LiveIntervalCalc SubLIC;
1283 
1284   for (const LiveInterval::SubRange &PS : ParentLI.subranges()) {
1285     for (const VNInfo *V : PS.valnos) {
1286       if (V->isUnused() || !V->isPHIDef())
1287         continue;
1288       unsigned RegIdx = RegAssign.lookup(V->def);
1289       LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1290       LiveInterval::SubRange &S = getSubRangeForMaskExact(PS.LaneMask, LI);
1291       if (removeDeadSegment(V->def, S))
1292         continue;
1293 
1294       MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
1295       SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
1296                    &LIS.getVNInfoAllocator());
1297       Undefs.clear();
1298       LI.computeSubRangeUndefs(Undefs, PS.LaneMask, MRI, *LIS.getSlotIndexes());
1299       extendPHIRange(B, SubLIC, S, PS.LaneMask, Undefs);
1300     }
1301   }
1302 }
1303 
1304 /// rewriteAssigned - Rewrite all uses of Edit->getReg().
1305 void SplitEditor::rewriteAssigned(bool ExtendRanges) {
1306   struct ExtPoint {
1307     ExtPoint(const MachineOperand &O, unsigned R, SlotIndex N)
1308       : MO(O), RegIdx(R), Next(N) {}
1309 
1310     MachineOperand MO;
1311     unsigned RegIdx;
1312     SlotIndex Next;
1313   };
1314 
1315   SmallVector<ExtPoint,4> ExtPoints;
1316 
1317   for (MachineOperand &MO :
1318        llvm::make_early_inc_range(MRI.reg_operands(Edit->getReg()))) {
1319     MachineInstr *MI = MO.getParent();
1320     // LiveDebugVariables should have handled all DBG_VALUE instructions.
1321     if (MI->isDebugValue()) {
1322       LLVM_DEBUG(dbgs() << "Zapping " << *MI);
1323       MO.setReg(0);
1324       continue;
1325     }
1326 
1327     // <undef> operands don't really read the register, so it doesn't matter
1328     // which register we choose.  When the use operand is tied to a def, we must
1329     // use the same register as the def, so just do that always.
1330     SlotIndex Idx = LIS.getInstructionIndex(*MI);
1331     if (MO.isDef() || MO.isUndef())
1332       Idx = Idx.getRegSlot(MO.isEarlyClobber());
1333 
1334     // Rewrite to the mapped register at Idx.
1335     unsigned RegIdx = RegAssign.lookup(Idx);
1336     LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1337     MO.setReg(LI.reg());
1338     LLVM_DEBUG(dbgs() << "  rewr " << printMBBReference(*MI->getParent())
1339                       << '\t' << Idx << ':' << RegIdx << '\t' << *MI);
1340 
1341     // Extend liveness to Idx if the instruction reads reg.
1342     if (!ExtendRanges || MO.isUndef())
1343       continue;
1344 
1345     // Skip instructions that don't read Reg.
1346     if (MO.isDef()) {
1347       if (!MO.getSubReg() && !MO.isEarlyClobber())
1348         continue;
1349       // We may want to extend a live range for a partial redef, or for a use
1350       // tied to an early clobber.
1351       if (!Edit->getParent().liveAt(Idx.getPrevSlot()))
1352         continue;
1353     } else {
1354       assert(MO.isUse());
1355       bool IsEarlyClobber = false;
1356       if (MO.isTied()) {
1357         // We want to extend a live range into `e` slot rather than `r` slot if
1358         // tied-def is early clobber, because the `e` slot already contained
1359         // in the live range of early-clobber tied-def operand, give an example
1360         // here:
1361         //  0  %0 = ...
1362         // 16  early-clobber %0 = Op %0 (tied-def 0), ...
1363         // 32  ... = Op %0
1364         // Before extend:
1365         //   %0 = [0r, 0d) [16e, 32d)
1366         // The point we want to extend is 0d to 16e not 16r in this case, but if
1367         // we use 16r here we will extend nothing because that already contained
1368         // in [16e, 32d).
1369         unsigned OpIdx = MI->getOperandNo(&MO);
1370         unsigned DefOpIdx = MI->findTiedOperandIdx(OpIdx);
1371         const MachineOperand &DefOp = MI->getOperand(DefOpIdx);
1372         IsEarlyClobber = DefOp.isEarlyClobber();
1373       }
1374 
1375       Idx = Idx.getRegSlot(IsEarlyClobber);
1376     }
1377 
1378     SlotIndex Next = Idx;
1379     if (LI.hasSubRanges()) {
1380       // We have to delay extending subranges until we have seen all operands
1381       // defining the register. This is because a <def,read-undef> operand
1382       // will create an "undef" point, and we cannot extend any subranges
1383       // until all of them have been accounted for.
1384       if (MO.isUse())
1385         ExtPoints.push_back(ExtPoint(MO, RegIdx, Next));
1386     } else {
1387       LiveIntervalCalc &LIC = getLICalc(RegIdx);
1388       LIC.extend(LI, Next, 0, ArrayRef<SlotIndex>());
1389     }
1390   }
1391 
1392   for (ExtPoint &EP : ExtPoints) {
1393     LiveInterval &LI = LIS.getInterval(Edit->get(EP.RegIdx));
1394     assert(LI.hasSubRanges());
1395 
1396     LiveIntervalCalc SubLIC;
1397     Register Reg = EP.MO.getReg(), Sub = EP.MO.getSubReg();
1398     LaneBitmask LM = Sub != 0 ? TRI.getSubRegIndexLaneMask(Sub)
1399                               : MRI.getMaxLaneMaskForVReg(Reg);
1400     for (LiveInterval::SubRange &S : LI.subranges()) {
1401       if ((S.LaneMask & LM).none())
1402         continue;
1403       // The problem here can be that the new register may have been created
1404       // for a partially defined original register. For example:
1405       //   %0:subreg_hireg<def,read-undef> = ...
1406       //   ...
1407       //   %1 = COPY %0
1408       if (S.empty())
1409         continue;
1410       SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
1411                    &LIS.getVNInfoAllocator());
1412       SmallVector<SlotIndex, 4> Undefs;
1413       LI.computeSubRangeUndefs(Undefs, S.LaneMask, MRI, *LIS.getSlotIndexes());
1414       SubLIC.extend(S, EP.Next, 0, Undefs);
1415     }
1416   }
1417 
1418   for (Register R : *Edit) {
1419     LiveInterval &LI = LIS.getInterval(R);
1420     if (!LI.hasSubRanges())
1421       continue;
1422     LI.clear();
1423     LI.removeEmptySubRanges();
1424     LIS.constructMainRangeFromSubranges(LI);
1425   }
1426 }
1427 
1428 void SplitEditor::deleteRematVictims() {
1429   SmallVector<MachineInstr*, 8> Dead;
1430   for (const Register &R : *Edit) {
1431     LiveInterval *LI = &LIS.getInterval(R);
1432     for (const LiveRange::Segment &S : LI->segments) {
1433       // Dead defs end at the dead slot.
1434       if (S.end != S.valno->def.getDeadSlot())
1435         continue;
1436       if (S.valno->isPHIDef())
1437         continue;
1438       MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def);
1439       assert(MI && "Missing instruction for dead def");
1440       MI->addRegisterDead(LI->reg(), &TRI);
1441 
1442       if (!MI->allDefsAreDead())
1443         continue;
1444 
1445       LLVM_DEBUG(dbgs() << "All defs dead: " << *MI);
1446       Dead.push_back(MI);
1447     }
1448   }
1449 
1450   if (Dead.empty())
1451     return;
1452 
1453   Edit->eliminateDeadDefs(Dead, None);
1454 }
1455 
1456 void SplitEditor::forceRecomputeVNI(const VNInfo &ParentVNI) {
1457   // Fast-path for common case.
1458   if (!ParentVNI.isPHIDef()) {
1459     for (unsigned I = 0, E = Edit->size(); I != E; ++I)
1460       forceRecompute(I, ParentVNI);
1461     return;
1462   }
1463 
1464   // Trace value through phis.
1465   SmallPtrSet<const VNInfo *, 8> Visited; ///< whether VNI was/is in worklist.
1466   SmallVector<const VNInfo *, 4> WorkList;
1467   Visited.insert(&ParentVNI);
1468   WorkList.push_back(&ParentVNI);
1469 
1470   const LiveInterval &ParentLI = Edit->getParent();
1471   const SlotIndexes &Indexes = *LIS.getSlotIndexes();
1472   do {
1473     const VNInfo &VNI = *WorkList.back();
1474     WorkList.pop_back();
1475     for (unsigned I = 0, E = Edit->size(); I != E; ++I)
1476       forceRecompute(I, VNI);
1477     if (!VNI.isPHIDef())
1478       continue;
1479 
1480     MachineBasicBlock &MBB = *Indexes.getMBBFromIndex(VNI.def);
1481     for (const MachineBasicBlock *Pred : MBB.predecessors()) {
1482       SlotIndex PredEnd = Indexes.getMBBEndIdx(Pred);
1483       VNInfo *PredVNI = ParentLI.getVNInfoBefore(PredEnd);
1484       assert(PredVNI && "Value available in PhiVNI predecessor");
1485       if (Visited.insert(PredVNI).second)
1486         WorkList.push_back(PredVNI);
1487     }
1488   } while(!WorkList.empty());
1489 }
1490 
1491 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
1492   ++NumFinished;
1493 
1494   // At this point, the live intervals in Edit contain VNInfos corresponding to
1495   // the inserted copies.
1496 
1497   // Add the original defs from the parent interval.
1498   for (const VNInfo *ParentVNI : Edit->getParent().valnos) {
1499     if (ParentVNI->isUnused())
1500       continue;
1501     unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
1502     defValue(RegIdx, ParentVNI, ParentVNI->def, true);
1503 
1504     // Force rematted values to be recomputed everywhere.
1505     // The new live ranges may be truncated.
1506     if (Edit->didRematerialize(ParentVNI))
1507       forceRecomputeVNI(*ParentVNI);
1508   }
1509 
1510   // Hoist back-copies to the complement interval when in spill mode.
1511   switch (SpillMode) {
1512   case SM_Partition:
1513     // Leave all back-copies as is.
1514     break;
1515   case SM_Size:
1516   case SM_Speed:
1517     // hoistCopies will behave differently between size and speed.
1518     hoistCopies();
1519   }
1520 
1521   // Transfer the simply mapped values, check if any are skipped.
1522   bool Skipped = transferValues();
1523 
1524   // Rewrite virtual registers, possibly extending ranges.
1525   rewriteAssigned(Skipped);
1526 
1527   if (Skipped)
1528     extendPHIKillRanges();
1529   else
1530     ++NumSimple;
1531 
1532   // Delete defs that were rematted everywhere.
1533   if (Skipped)
1534     deleteRematVictims();
1535 
1536   // Get rid of unused values and set phi-kill flags.
1537   for (Register Reg : *Edit) {
1538     LiveInterval &LI = LIS.getInterval(Reg);
1539     LI.removeEmptySubRanges();
1540     LI.RenumberValues();
1541   }
1542 
1543   // Provide a reverse mapping from original indices to Edit ranges.
1544   if (LRMap) {
1545     auto Seq = llvm::seq<unsigned>(0, Edit->size());
1546     LRMap->assign(Seq.begin(), Seq.end());
1547   }
1548 
1549   // Now check if any registers were separated into multiple components.
1550   ConnectedVNInfoEqClasses ConEQ(LIS);
1551   for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
1552     // Don't use iterators, they are invalidated by create() below.
1553     Register VReg = Edit->get(i);
1554     LiveInterval &LI = LIS.getInterval(VReg);
1555     SmallVector<LiveInterval*, 8> SplitLIs;
1556     LIS.splitSeparateComponents(LI, SplitLIs);
1557     Register Original = VRM.getOriginal(VReg);
1558     for (LiveInterval *SplitLI : SplitLIs)
1559       VRM.setIsSplitFromReg(SplitLI->reg(), Original);
1560 
1561     // The new intervals all map back to i.
1562     if (LRMap)
1563       LRMap->resize(Edit->size(), i);
1564   }
1565 
1566   // Calculate spill weight and allocation hints for new intervals.
1567   Edit->calculateRegClassAndHint(VRM.getMachineFunction(), VRAI);
1568 
1569   assert(!LRMap || LRMap->size() == Edit->size());
1570 }
1571 
1572 //===----------------------------------------------------------------------===//
1573 //                            Single Block Splitting
1574 //===----------------------------------------------------------------------===//
1575 
1576 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI,
1577                                            bool SingleInstrs) const {
1578   // Always split for multiple instructions.
1579   if (!BI.isOneInstr())
1580     return true;
1581   // Don't split for single instructions unless explicitly requested.
1582   if (!SingleInstrs)
1583     return false;
1584   // Splitting a live-through range always makes progress.
1585   if (BI.LiveIn && BI.LiveOut)
1586     return true;
1587   // No point in isolating a copy. It has no register class constraints.
1588   if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike())
1589     return false;
1590   // Finally, don't isolate an end point that was created by earlier splits.
1591   return isOriginalEndpoint(BI.FirstInstr);
1592 }
1593 
1594 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
1595   openIntv();
1596   SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB);
1597   SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr,
1598     LastSplitPoint));
1599   if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) {
1600     useIntv(SegStart, leaveIntvAfter(BI.LastInstr));
1601   } else {
1602       // The last use is after the last valid split point.
1603     SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
1604     useIntv(SegStart, SegStop);
1605     overlapIntv(SegStop, BI.LastInstr);
1606   }
1607 }
1608 
1609 //===----------------------------------------------------------------------===//
1610 //                    Global Live Range Splitting Support
1611 //===----------------------------------------------------------------------===//
1612 
1613 // These methods support a method of global live range splitting that uses a
1614 // global algorithm to decide intervals for CFG edges. They will insert split
1615 // points and color intervals in basic blocks while avoiding interference.
1616 //
1617 // Note that splitSingleBlock is also useful for blocks where both CFG edges
1618 // are on the stack.
1619 
1620 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
1621                                         unsigned IntvIn, SlotIndex LeaveBefore,
1622                                         unsigned IntvOut, SlotIndex EnterAfter){
1623   SlotIndex Start, Stop;
1624   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
1625 
1626   LLVM_DEBUG(dbgs() << "%bb." << MBBNum << " [" << Start << ';' << Stop
1627                     << ") intf " << LeaveBefore << '-' << EnterAfter
1628                     << ", live-through " << IntvIn << " -> " << IntvOut);
1629 
1630   assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
1631 
1632   assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
1633   assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
1634   assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");
1635 
1636   MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
1637 
1638   if (!IntvOut) {
1639     LLVM_DEBUG(dbgs() << ", spill on entry.\n");
1640     //
1641     //        <<<<<<<<<    Possible LeaveBefore interference.
1642     //    |-----------|    Live through.
1643     //    -____________    Spill on entry.
1644     //
1645     selectIntv(IntvIn);
1646     SlotIndex Idx = leaveIntvAtTop(*MBB);
1647     assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1648     (void)Idx;
1649     return;
1650   }
1651 
1652   if (!IntvIn) {
1653     LLVM_DEBUG(dbgs() << ", reload on exit.\n");
1654     //
1655     //    >>>>>>>          Possible EnterAfter interference.
1656     //    |-----------|    Live through.
1657     //    ___________--    Reload on exit.
1658     //
1659     selectIntv(IntvOut);
1660     SlotIndex Idx = enterIntvAtEnd(*MBB);
1661     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1662     (void)Idx;
1663     return;
1664   }
1665 
1666   if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
1667     LLVM_DEBUG(dbgs() << ", straight through.\n");
1668     //
1669     //    |-----------|    Live through.
1670     //    -------------    Straight through, same intv, no interference.
1671     //
1672     selectIntv(IntvOut);
1673     useIntv(Start, Stop);
1674     return;
1675   }
1676 
1677   // We cannot legally insert splits after LSP.
1678   SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
1679   assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");
1680 
1681   if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
1682                   LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
1683     LLVM_DEBUG(dbgs() << ", switch avoiding interference.\n");
1684     //
1685     //    >>>>     <<<<    Non-overlapping EnterAfter/LeaveBefore interference.
1686     //    |-----------|    Live through.
1687     //    ------=======    Switch intervals between interference.
1688     //
1689     selectIntv(IntvOut);
1690     SlotIndex Idx;
1691     if (LeaveBefore && LeaveBefore < LSP) {
1692       Idx = enterIntvBefore(LeaveBefore);
1693       useIntv(Idx, Stop);
1694     } else {
1695       Idx = enterIntvAtEnd(*MBB);
1696     }
1697     selectIntv(IntvIn);
1698     useIntv(Start, Idx);
1699     assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1700     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1701     return;
1702   }
1703 
1704   LLVM_DEBUG(dbgs() << ", create local intv for interference.\n");
1705   //
1706   //    >>><><><><<<<    Overlapping EnterAfter/LeaveBefore interference.
1707   //    |-----------|    Live through.
1708   //    ==---------==    Switch intervals before/after interference.
1709   //
1710   assert(LeaveBefore <= EnterAfter && "Missed case");
1711 
1712   selectIntv(IntvOut);
1713   SlotIndex Idx = enterIntvAfter(EnterAfter);
1714   useIntv(Idx, Stop);
1715   assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1716 
1717   selectIntv(IntvIn);
1718   Idx = leaveIntvBefore(LeaveBefore);
1719   useIntv(Start, Idx);
1720   assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1721 }
1722 
1723 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
1724                                   unsigned IntvIn, SlotIndex LeaveBefore) {
1725   SlotIndex Start, Stop;
1726   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1727 
1728   LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';'
1729                     << Stop << "), uses " << BI.FirstInstr << '-'
1730                     << BI.LastInstr << ", reg-in " << IntvIn
1731                     << ", leave before " << LeaveBefore
1732                     << (BI.LiveOut ? ", stack-out" : ", killed in block"));
1733 
1734   assert(IntvIn && "Must have register in");
1735   assert(BI.LiveIn && "Must be live-in");
1736   assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
1737 
1738   if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) {
1739     LLVM_DEBUG(dbgs() << " before interference.\n");
1740     //
1741     //               <<<    Interference after kill.
1742     //     |---o---x   |    Killed in block.
1743     //     =========        Use IntvIn everywhere.
1744     //
1745     selectIntv(IntvIn);
1746     useIntv(Start, BI.LastInstr);
1747     return;
1748   }
1749 
1750   SlotIndex LSP = SA.getLastSplitPoint(BI.MBB);
1751 
1752   if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) {
1753     //
1754     //               <<<    Possible interference after last use.
1755     //     |---o---o---|    Live-out on stack.
1756     //     =========____    Leave IntvIn after last use.
1757     //
1758     //                 <    Interference after last use.
1759     //     |---o---o--o|    Live-out on stack, late last use.
1760     //     ============     Copy to stack after LSP, overlap IntvIn.
1761     //            \_____    Stack interval is live-out.
1762     //
1763     if (BI.LastInstr < LSP) {
1764       LLVM_DEBUG(dbgs() << ", spill after last use before interference.\n");
1765       selectIntv(IntvIn);
1766       SlotIndex Idx = leaveIntvAfter(BI.LastInstr);
1767       useIntv(Start, Idx);
1768       assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1769     } else {
1770       LLVM_DEBUG(dbgs() << ", spill before last split point.\n");
1771       selectIntv(IntvIn);
1772       SlotIndex Idx = leaveIntvBefore(LSP);
1773       overlapIntv(Idx, BI.LastInstr);
1774       useIntv(Start, Idx);
1775       assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1776     }
1777     return;
1778   }
1779 
1780   // The interference is overlapping somewhere we wanted to use IntvIn. That
1781   // means we need to create a local interval that can be allocated a
1782   // different register.
1783   unsigned LocalIntv = openIntv();
1784   (void)LocalIntv;
1785   LLVM_DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
1786 
1787   if (!BI.LiveOut || BI.LastInstr < LSP) {
1788     //
1789     //           <<<<<<<    Interference overlapping uses.
1790     //     |---o---o---|    Live-out on stack.
1791     //     =====----____    Leave IntvIn before interference, then spill.
1792     //
1793     SlotIndex To = leaveIntvAfter(BI.LastInstr);
1794     SlotIndex From = enterIntvBefore(LeaveBefore);
1795     useIntv(From, To);
1796     selectIntv(IntvIn);
1797     useIntv(Start, From);
1798     assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1799     return;
1800   }
1801 
1802   //           <<<<<<<    Interference overlapping uses.
1803   //     |---o---o--o|    Live-out on stack, late last use.
1804   //     =====-------     Copy to stack before LSP, overlap LocalIntv.
1805   //            \_____    Stack interval is live-out.
1806   //
1807   SlotIndex To = leaveIntvBefore(LSP);
1808   overlapIntv(To, BI.LastInstr);
1809   SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
1810   useIntv(From, To);
1811   selectIntv(IntvIn);
1812   useIntv(Start, From);
1813   assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1814 }
1815 
1816 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
1817                                    unsigned IntvOut, SlotIndex EnterAfter) {
1818   SlotIndex Start, Stop;
1819   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1820 
1821   LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';'
1822                     << Stop << "), uses " << BI.FirstInstr << '-'
1823                     << BI.LastInstr << ", reg-out " << IntvOut
1824                     << ", enter after " << EnterAfter
1825                     << (BI.LiveIn ? ", stack-in" : ", defined in block"));
1826 
1827   SlotIndex LSP = SA.getLastSplitPoint(BI.MBB);
1828 
1829   assert(IntvOut && "Must have register out");
1830   assert(BI.LiveOut && "Must be live-out");
1831   assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
1832 
1833   if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) {
1834     LLVM_DEBUG(dbgs() << " after interference.\n");
1835     //
1836     //    >>>>             Interference before def.
1837     //    |   o---o---|    Defined in block.
1838     //        =========    Use IntvOut everywhere.
1839     //
1840     selectIntv(IntvOut);
1841     useIntv(BI.FirstInstr, Stop);
1842     return;
1843   }
1844 
1845   if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) {
1846     LLVM_DEBUG(dbgs() << ", reload after interference.\n");
1847     //
1848     //    >>>>             Interference before def.
1849     //    |---o---o---|    Live-through, stack-in.
1850     //    ____=========    Enter IntvOut before first use.
1851     //
1852     selectIntv(IntvOut);
1853     SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr));
1854     useIntv(Idx, Stop);
1855     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1856     return;
1857   }
1858 
1859   // The interference is overlapping somewhere we wanted to use IntvOut. That
1860   // means we need to create a local interval that can be allocated a
1861   // different register.
1862   LLVM_DEBUG(dbgs() << ", interference overlaps uses.\n");
1863   //
1864   //    >>>>>>>          Interference overlapping uses.
1865   //    |---o---o---|    Live-through, stack-in.
1866   //    ____---======    Create local interval for interference range.
1867   //
1868   selectIntv(IntvOut);
1869   SlotIndex Idx = enterIntvAfter(EnterAfter);
1870   useIntv(Idx, Stop);
1871   assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1872 
1873   openIntv();
1874   SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr));
1875   useIntv(From, Idx);
1876 }
1877 
1878 void SplitAnalysis::BlockInfo::print(raw_ostream &OS) const {
1879   OS << "{" << printMBBReference(*MBB) << ", "
1880      << "uses " << FirstInstr << " to " << LastInstr << ", "
1881      << "1st def " << FirstDef << ", "
1882      << (LiveIn ? "live in" : "dead in") << ", "
1883      << (LiveOut ? "live out" : "dead out") << "}";
1884 }
1885 
1886 void SplitAnalysis::BlockInfo::dump() const {
1887   print(dbgs());
1888   dbgs() << "\n";
1889 }
1890