10b57cec5SDimitry Andric //===- StackColoring.cpp --------------------------------------------------===//
20b57cec5SDimitry Andric //
30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
60b57cec5SDimitry Andric //
70b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
80b57cec5SDimitry Andric //
90b57cec5SDimitry Andric // This pass implements the stack-coloring optimization that looks for
100b57cec5SDimitry Andric // lifetime markers machine instructions (LIFESTART_BEGIN and LIFESTART_END),
110b57cec5SDimitry Andric // which represent the possible lifetime of stack slots. It attempts to
120b57cec5SDimitry Andric // merge disjoint stack slots and reduce the used stack space.
130b57cec5SDimitry Andric // NOTE: This pass is not StackSlotColoring, which optimizes spill slots.
140b57cec5SDimitry Andric //
150b57cec5SDimitry Andric // TODO: In the future we plan to improve stack coloring in the following ways:
160b57cec5SDimitry Andric // 1. Allow merging multiple small slots into a single larger slot at different
170b57cec5SDimitry Andric //    offsets.
180b57cec5SDimitry Andric // 2. Merge this pass with StackSlotColoring and allow merging of allocas with
190b57cec5SDimitry Andric //    spill slots.
200b57cec5SDimitry Andric //
210b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
220b57cec5SDimitry Andric 
230b57cec5SDimitry Andric #include "llvm/ADT/BitVector.h"
240b57cec5SDimitry Andric #include "llvm/ADT/DenseMap.h"
250b57cec5SDimitry Andric #include "llvm/ADT/DepthFirstIterator.h"
260b57cec5SDimitry Andric #include "llvm/ADT/SmallPtrSet.h"
270b57cec5SDimitry Andric #include "llvm/ADT/SmallVector.h"
280b57cec5SDimitry Andric #include "llvm/ADT/Statistic.h"
290b57cec5SDimitry Andric #include "llvm/Analysis/ValueTracking.h"
300b57cec5SDimitry Andric #include "llvm/CodeGen/LiveInterval.h"
310b57cec5SDimitry Andric #include "llvm/CodeGen/MachineBasicBlock.h"
320b57cec5SDimitry Andric #include "llvm/CodeGen/MachineFrameInfo.h"
330b57cec5SDimitry Andric #include "llvm/CodeGen/MachineFunction.h"
340b57cec5SDimitry Andric #include "llvm/CodeGen/MachineFunctionPass.h"
350b57cec5SDimitry Andric #include "llvm/CodeGen/MachineInstr.h"
360b57cec5SDimitry Andric #include "llvm/CodeGen/MachineMemOperand.h"
370b57cec5SDimitry Andric #include "llvm/CodeGen/MachineOperand.h"
380b57cec5SDimitry Andric #include "llvm/CodeGen/Passes.h"
390b57cec5SDimitry Andric #include "llvm/CodeGen/SelectionDAGNodes.h"
400b57cec5SDimitry Andric #include "llvm/CodeGen/SlotIndexes.h"
410b57cec5SDimitry Andric #include "llvm/CodeGen/TargetOpcodes.h"
420b57cec5SDimitry Andric #include "llvm/CodeGen/WinEHFuncInfo.h"
430b57cec5SDimitry Andric #include "llvm/Config/llvm-config.h"
440b57cec5SDimitry Andric #include "llvm/IR/Constants.h"
450b57cec5SDimitry Andric #include "llvm/IR/DebugInfoMetadata.h"
460b57cec5SDimitry Andric #include "llvm/IR/Function.h"
470b57cec5SDimitry Andric #include "llvm/IR/Instructions.h"
480b57cec5SDimitry Andric #include "llvm/IR/Metadata.h"
490b57cec5SDimitry Andric #include "llvm/IR/Use.h"
500b57cec5SDimitry Andric #include "llvm/IR/Value.h"
51480093f4SDimitry Andric #include "llvm/InitializePasses.h"
520b57cec5SDimitry Andric #include "llvm/Pass.h"
530b57cec5SDimitry Andric #include "llvm/Support/Casting.h"
540b57cec5SDimitry Andric #include "llvm/Support/CommandLine.h"
550b57cec5SDimitry Andric #include "llvm/Support/Compiler.h"
560b57cec5SDimitry Andric #include "llvm/Support/Debug.h"
570b57cec5SDimitry Andric #include "llvm/Support/raw_ostream.h"
580b57cec5SDimitry Andric #include <algorithm>
590b57cec5SDimitry Andric #include <cassert>
600b57cec5SDimitry Andric #include <limits>
610b57cec5SDimitry Andric #include <memory>
620b57cec5SDimitry Andric #include <utility>
630b57cec5SDimitry Andric 
640b57cec5SDimitry Andric using namespace llvm;
650b57cec5SDimitry Andric 
660b57cec5SDimitry Andric #define DEBUG_TYPE "stack-coloring"
670b57cec5SDimitry Andric 
680b57cec5SDimitry Andric static cl::opt<bool>
690b57cec5SDimitry Andric DisableColoring("no-stack-coloring",
700b57cec5SDimitry Andric         cl::init(false), cl::Hidden,
710b57cec5SDimitry Andric         cl::desc("Disable stack coloring"));
720b57cec5SDimitry Andric 
730b57cec5SDimitry Andric /// The user may write code that uses allocas outside of the declared lifetime
740b57cec5SDimitry Andric /// zone. This can happen when the user returns a reference to a local
750b57cec5SDimitry Andric /// data-structure. We can detect these cases and decide not to optimize the
760b57cec5SDimitry Andric /// code. If this flag is enabled, we try to save the user. This option
770b57cec5SDimitry Andric /// is treated as overriding LifetimeStartOnFirstUse below.
780b57cec5SDimitry Andric static cl::opt<bool>
790b57cec5SDimitry Andric ProtectFromEscapedAllocas("protect-from-escaped-allocas",
800b57cec5SDimitry Andric                           cl::init(false), cl::Hidden,
810b57cec5SDimitry Andric                           cl::desc("Do not optimize lifetime zones that "
820b57cec5SDimitry Andric                                    "are broken"));
830b57cec5SDimitry Andric 
840b57cec5SDimitry Andric /// Enable enhanced dataflow scheme for lifetime analysis (treat first
850b57cec5SDimitry Andric /// use of stack slot as start of slot lifetime, as opposed to looking
860b57cec5SDimitry Andric /// for LIFETIME_START marker). See "Implementation notes" below for
870b57cec5SDimitry Andric /// more info.
880b57cec5SDimitry Andric static cl::opt<bool>
890b57cec5SDimitry Andric LifetimeStartOnFirstUse("stackcoloring-lifetime-start-on-first-use",
900b57cec5SDimitry Andric         cl::init(true), cl::Hidden,
910b57cec5SDimitry Andric         cl::desc("Treat stack lifetimes as starting on first use, not on START marker."));
920b57cec5SDimitry Andric 
930b57cec5SDimitry Andric 
940b57cec5SDimitry Andric STATISTIC(NumMarkerSeen,  "Number of lifetime markers found.");
950b57cec5SDimitry Andric STATISTIC(StackSpaceSaved, "Number of bytes saved due to merging slots.");
960b57cec5SDimitry Andric STATISTIC(StackSlotMerged, "Number of stack slot merged.");
970b57cec5SDimitry Andric STATISTIC(EscapedAllocas, "Number of allocas that escaped the lifetime region");
980b57cec5SDimitry Andric 
990b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
1000b57cec5SDimitry Andric //                           StackColoring Pass
1010b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
1020b57cec5SDimitry Andric //
1030b57cec5SDimitry Andric // Stack Coloring reduces stack usage by merging stack slots when they
1040b57cec5SDimitry Andric // can't be used together. For example, consider the following C program:
1050b57cec5SDimitry Andric //
1060b57cec5SDimitry Andric //     void bar(char *, int);
1070b57cec5SDimitry Andric //     void foo(bool var) {
1080b57cec5SDimitry Andric //         A: {
1090b57cec5SDimitry Andric //             char z[4096];
1100b57cec5SDimitry Andric //             bar(z, 0);
1110b57cec5SDimitry Andric //         }
1120b57cec5SDimitry Andric //
1130b57cec5SDimitry Andric //         char *p;
1140b57cec5SDimitry Andric //         char x[4096];
1150b57cec5SDimitry Andric //         char y[4096];
1160b57cec5SDimitry Andric //         if (var) {
1170b57cec5SDimitry Andric //             p = x;
1180b57cec5SDimitry Andric //         } else {
1190b57cec5SDimitry Andric //             bar(y, 1);
1200b57cec5SDimitry Andric //             p = y + 1024;
1210b57cec5SDimitry Andric //         }
1220b57cec5SDimitry Andric //     B:
1230b57cec5SDimitry Andric //         bar(p, 2);
1240b57cec5SDimitry Andric //     }
1250b57cec5SDimitry Andric //
1260b57cec5SDimitry Andric // Naively-compiled, this program would use 12k of stack space. However, the
1270b57cec5SDimitry Andric // stack slot corresponding to `z` is always destroyed before either of the
1280b57cec5SDimitry Andric // stack slots for `x` or `y` are used, and then `x` is only used if `var`
1290b57cec5SDimitry Andric // is true, while `y` is only used if `var` is false. So in no time are 2
1300b57cec5SDimitry Andric // of the stack slots used together, and therefore we can merge them,
1310b57cec5SDimitry Andric // compiling the function using only a single 4k alloca:
1320b57cec5SDimitry Andric //
1330b57cec5SDimitry Andric //     void foo(bool var) { // equivalent
1340b57cec5SDimitry Andric //         char x[4096];
1350b57cec5SDimitry Andric //         char *p;
1360b57cec5SDimitry Andric //         bar(x, 0);
1370b57cec5SDimitry Andric //         if (var) {
1380b57cec5SDimitry Andric //             p = x;
1390b57cec5SDimitry Andric //         } else {
1400b57cec5SDimitry Andric //             bar(x, 1);
1410b57cec5SDimitry Andric //             p = x + 1024;
1420b57cec5SDimitry Andric //         }
1430b57cec5SDimitry Andric //         bar(p, 2);
1440b57cec5SDimitry Andric //     }
1450b57cec5SDimitry Andric //
1460b57cec5SDimitry Andric // This is an important optimization if we want stack space to be under
1470b57cec5SDimitry Andric // control in large functions, both open-coded ones and ones created by
1480b57cec5SDimitry Andric // inlining.
1490b57cec5SDimitry Andric //
1500b57cec5SDimitry Andric // Implementation Notes:
1510b57cec5SDimitry Andric // ---------------------
1520b57cec5SDimitry Andric //
1530b57cec5SDimitry Andric // An important part of the above reasoning is that `z` can't be accessed
1540b57cec5SDimitry Andric // while the latter 2 calls to `bar` are running. This is justified because
1550b57cec5SDimitry Andric // `z`'s lifetime is over after we exit from block `A:`, so any further
1560b57cec5SDimitry Andric // accesses to it would be UB. The way we represent this information
1570b57cec5SDimitry Andric // in LLVM is by having frontends delimit blocks with `lifetime.start`
1580b57cec5SDimitry Andric // and `lifetime.end` intrinsics.
1590b57cec5SDimitry Andric //
1600b57cec5SDimitry Andric // The effect of these intrinsics seems to be as follows (maybe I should
1610b57cec5SDimitry Andric // specify this in the reference?):
1620b57cec5SDimitry Andric //
1630b57cec5SDimitry Andric //   L1) at start, each stack-slot is marked as *out-of-scope*, unless no
1640b57cec5SDimitry Andric //   lifetime intrinsic refers to that stack slot, in which case
1650b57cec5SDimitry Andric //   it is marked as *in-scope*.
1660b57cec5SDimitry Andric //   L2) on a `lifetime.start`, a stack slot is marked as *in-scope* and
1670b57cec5SDimitry Andric //   the stack slot is overwritten with `undef`.
1680b57cec5SDimitry Andric //   L3) on a `lifetime.end`, a stack slot is marked as *out-of-scope*.
1690b57cec5SDimitry Andric //   L4) on function exit, all stack slots are marked as *out-of-scope*.
1700b57cec5SDimitry Andric //   L5) `lifetime.end` is a no-op when called on a slot that is already
1710b57cec5SDimitry Andric //   *out-of-scope*.
1720b57cec5SDimitry Andric //   L6) memory accesses to *out-of-scope* stack slots are UB.
1730b57cec5SDimitry Andric //   L7) when a stack-slot is marked as *out-of-scope*, all pointers to it
1740b57cec5SDimitry Andric //   are invalidated, unless the slot is "degenerate". This is used to
1750b57cec5SDimitry Andric //   justify not marking slots as in-use until the pointer to them is
1760b57cec5SDimitry Andric //   used, but feels a bit hacky in the presence of things like LICM. See
1770b57cec5SDimitry Andric //   the "Degenerate Slots" section for more details.
1780b57cec5SDimitry Andric //
1790b57cec5SDimitry Andric // Now, let's ground stack coloring on these rules. We'll define a slot
1800b57cec5SDimitry Andric // as *in-use* at a (dynamic) point in execution if it either can be
1810b57cec5SDimitry Andric // written to at that point, or if it has a live and non-undef content
1820b57cec5SDimitry Andric // at that point.
1830b57cec5SDimitry Andric //
1840b57cec5SDimitry Andric // Obviously, slots that are never *in-use* together can be merged, and
1850b57cec5SDimitry Andric // in our example `foo`, the slots for `x`, `y` and `z` are never
1860b57cec5SDimitry Andric // in-use together (of course, sometimes slots that *are* in-use together
1870b57cec5SDimitry Andric // might still be mergable, but we don't care about that here).
1880b57cec5SDimitry Andric //
1890b57cec5SDimitry Andric // In this implementation, we successively merge pairs of slots that are
1900b57cec5SDimitry Andric // not *in-use* together. We could be smarter - for example, we could merge
1910b57cec5SDimitry Andric // a single large slot with 2 small slots, or we could construct the
1920b57cec5SDimitry Andric // interference graph and run a "smart" graph coloring algorithm, but with
1930b57cec5SDimitry Andric // that aside, how do we find out whether a pair of slots might be *in-use*
1940b57cec5SDimitry Andric // together?
1950b57cec5SDimitry Andric //
1960b57cec5SDimitry Andric // From our rules, we see that *out-of-scope* slots are never *in-use*,
1970b57cec5SDimitry Andric // and from (L7) we see that "non-degenerate" slots remain non-*in-use*
1980b57cec5SDimitry Andric // until their address is taken. Therefore, we can approximate slot activity
1990b57cec5SDimitry Andric // using dataflow.
2000b57cec5SDimitry Andric //
2010b57cec5SDimitry Andric // A subtle point: naively, we might try to figure out which pairs of
2020b57cec5SDimitry Andric // stack-slots interfere by propagating `S in-use` through the CFG for every
2030b57cec5SDimitry Andric // stack-slot `S`, and having `S` and `T` interfere if there is a CFG point in
2040b57cec5SDimitry Andric // which they are both *in-use*.
2050b57cec5SDimitry Andric //
2060b57cec5SDimitry Andric // That is sound, but overly conservative in some cases: in our (artificial)
2070b57cec5SDimitry Andric // example `foo`, either `x` or `y` might be in use at the label `B:`, but
2080b57cec5SDimitry Andric // as `x` is only in use if we came in from the `var` edge and `y` only
2090b57cec5SDimitry Andric // if we came from the `!var` edge, they still can't be in use together.
2100b57cec5SDimitry Andric // See PR32488 for an important real-life case.
2110b57cec5SDimitry Andric //
2120b57cec5SDimitry Andric // If we wanted to find all points of interference precisely, we could
2130b57cec5SDimitry Andric // propagate `S in-use` and `S&T in-use` predicates through the CFG. That
2140b57cec5SDimitry Andric // would be precise, but requires propagating `O(n^2)` dataflow facts.
2150b57cec5SDimitry Andric //
2160b57cec5SDimitry Andric // However, we aren't interested in the *set* of points of interference
2170b57cec5SDimitry Andric // between 2 stack slots, only *whether* there *is* such a point. So we
2180b57cec5SDimitry Andric // can rely on a little trick: for `S` and `T` to be in-use together,
2190b57cec5SDimitry Andric // one of them needs to become in-use while the other is in-use (or
2200b57cec5SDimitry Andric // they might both become in use simultaneously). We can check this
2210b57cec5SDimitry Andric // by also keeping track of the points at which a stack slot might *start*
2220b57cec5SDimitry Andric // being in-use.
2230b57cec5SDimitry Andric //
2240b57cec5SDimitry Andric // Exact first use:
2250b57cec5SDimitry Andric // ----------------
2260b57cec5SDimitry Andric //
2270b57cec5SDimitry Andric // Consider the following motivating example:
2280b57cec5SDimitry Andric //
2290b57cec5SDimitry Andric //     int foo() {
2300b57cec5SDimitry Andric //       char b1[1024], b2[1024];
2310b57cec5SDimitry Andric //       if (...) {
2320b57cec5SDimitry Andric //         char b3[1024];
2330b57cec5SDimitry Andric //         <uses of b1, b3>;
2340b57cec5SDimitry Andric //         return x;
2350b57cec5SDimitry Andric //       } else {
2360b57cec5SDimitry Andric //         char b4[1024], b5[1024];
2370b57cec5SDimitry Andric //         <uses of b2, b4, b5>;
2380b57cec5SDimitry Andric //         return y;
2390b57cec5SDimitry Andric //       }
2400b57cec5SDimitry Andric //     }
2410b57cec5SDimitry Andric //
2420b57cec5SDimitry Andric // In the code above, "b3" and "b4" are declared in distinct lexical
2430b57cec5SDimitry Andric // scopes, meaning that it is easy to prove that they can share the
2440b57cec5SDimitry Andric // same stack slot. Variables "b1" and "b2" are declared in the same
2450b57cec5SDimitry Andric // scope, meaning that from a lexical point of view, their lifetimes
2460b57cec5SDimitry Andric // overlap. From a control flow pointer of view, however, the two
2470b57cec5SDimitry Andric // variables are accessed in disjoint regions of the CFG, thus it
2480b57cec5SDimitry Andric // should be possible for them to share the same stack slot. An ideal
2490b57cec5SDimitry Andric // stack allocation for the function above would look like:
2500b57cec5SDimitry Andric //
2510b57cec5SDimitry Andric //     slot 0: b1, b2
2520b57cec5SDimitry Andric //     slot 1: b3, b4
2530b57cec5SDimitry Andric //     slot 2: b5
2540b57cec5SDimitry Andric //
2550b57cec5SDimitry Andric // Achieving this allocation is tricky, however, due to the way
2560b57cec5SDimitry Andric // lifetime markers are inserted. Here is a simplified view of the
2570b57cec5SDimitry Andric // control flow graph for the code above:
2580b57cec5SDimitry Andric //
2590b57cec5SDimitry Andric //                +------  block 0 -------+
2600b57cec5SDimitry Andric //               0| LIFETIME_START b1, b2 |
2610b57cec5SDimitry Andric //               1| <test 'if' condition> |
2620b57cec5SDimitry Andric //                +-----------------------+
2630b57cec5SDimitry Andric //                   ./              \.
2640b57cec5SDimitry Andric //   +------  block 1 -------+   +------  block 2 -------+
2650b57cec5SDimitry Andric //  2| LIFETIME_START b3     |  5| LIFETIME_START b4, b5 |
2660b57cec5SDimitry Andric //  3| <uses of b1, b3>      |  6| <uses of b2, b4, b5>  |
2670b57cec5SDimitry Andric //  4| LIFETIME_END b3       |  7| LIFETIME_END b4, b5   |
2680b57cec5SDimitry Andric //   +-----------------------+   +-----------------------+
2690b57cec5SDimitry Andric //                   \.              /.
2700b57cec5SDimitry Andric //                +------  block 3 -------+
2710b57cec5SDimitry Andric //               8| <cleanupcode>         |
2720b57cec5SDimitry Andric //               9| LIFETIME_END b1, b2   |
2730b57cec5SDimitry Andric //              10| return                |
2740b57cec5SDimitry Andric //                +-----------------------+
2750b57cec5SDimitry Andric //
2760b57cec5SDimitry Andric // If we create live intervals for the variables above strictly based
2770b57cec5SDimitry Andric // on the lifetime markers, we'll get the set of intervals on the
2780b57cec5SDimitry Andric // left. If we ignore the lifetime start markers and instead treat a
2790b57cec5SDimitry Andric // variable's lifetime as beginning with the first reference to the
2800b57cec5SDimitry Andric // var, then we get the intervals on the right.
2810b57cec5SDimitry Andric //
2820b57cec5SDimitry Andric //            LIFETIME_START      First Use
2830b57cec5SDimitry Andric //     b1:    [0,9]               [3,4] [8,9]
2840b57cec5SDimitry Andric //     b2:    [0,9]               [6,9]
2850b57cec5SDimitry Andric //     b3:    [2,4]               [3,4]
2860b57cec5SDimitry Andric //     b4:    [5,7]               [6,7]
2870b57cec5SDimitry Andric //     b5:    [5,7]               [6,7]
2880b57cec5SDimitry Andric //
2890b57cec5SDimitry Andric // For the intervals on the left, the best we can do is overlap two
2900b57cec5SDimitry Andric // variables (b3 and b4, for example); this gives us a stack size of
2910b57cec5SDimitry Andric // 4*1024 bytes, not ideal. When treating first-use as the start of a
2920b57cec5SDimitry Andric // lifetime, we can additionally overlap b1 and b5, giving us a 3*1024
2930b57cec5SDimitry Andric // byte stack (better).
2940b57cec5SDimitry Andric //
2950b57cec5SDimitry Andric // Degenerate Slots:
2960b57cec5SDimitry Andric // -----------------
2970b57cec5SDimitry Andric //
2980b57cec5SDimitry Andric // Relying entirely on first-use of stack slots is problematic,
2990b57cec5SDimitry Andric // however, due to the fact that optimizations can sometimes migrate
3000b57cec5SDimitry Andric // uses of a variable outside of its lifetime start/end region. Here
3010b57cec5SDimitry Andric // is an example:
3020b57cec5SDimitry Andric //
3030b57cec5SDimitry Andric //     int bar() {
3040b57cec5SDimitry Andric //       char b1[1024], b2[1024];
3050b57cec5SDimitry Andric //       if (...) {
3060b57cec5SDimitry Andric //         <uses of b2>
3070b57cec5SDimitry Andric //         return y;
3080b57cec5SDimitry Andric //       } else {
3090b57cec5SDimitry Andric //         <uses of b1>
3100b57cec5SDimitry Andric //         while (...) {
3110b57cec5SDimitry Andric //           char b3[1024];
3120b57cec5SDimitry Andric //           <uses of b3>
3130b57cec5SDimitry Andric //         }
3140b57cec5SDimitry Andric //       }
3150b57cec5SDimitry Andric //     }
3160b57cec5SDimitry Andric //
3170b57cec5SDimitry Andric // Before optimization, the control flow graph for the code above
3180b57cec5SDimitry Andric // might look like the following:
3190b57cec5SDimitry Andric //
3200b57cec5SDimitry Andric //                +------  block 0 -------+
3210b57cec5SDimitry Andric //               0| LIFETIME_START b1, b2 |
3220b57cec5SDimitry Andric //               1| <test 'if' condition> |
3230b57cec5SDimitry Andric //                +-----------------------+
3240b57cec5SDimitry Andric //                   ./              \.
3250b57cec5SDimitry Andric //   +------  block 1 -------+    +------- block 2 -------+
3260b57cec5SDimitry Andric //  2| <uses of b2>          |   3| <uses of b1>          |
3270b57cec5SDimitry Andric //   +-----------------------+    +-----------------------+
3280b57cec5SDimitry Andric //              |                            |
3290b57cec5SDimitry Andric //              |                 +------- block 3 -------+ <-\.
3300b57cec5SDimitry Andric //              |                4| <while condition>     |    |
3310b57cec5SDimitry Andric //              |                 +-----------------------+    |
3320b57cec5SDimitry Andric //              |               /          |                   |
3330b57cec5SDimitry Andric //              |              /  +------- block 4 -------+
3340b57cec5SDimitry Andric //              \             /  5| LIFETIME_START b3     |    |
3350b57cec5SDimitry Andric //               \           /   6| <uses of b3>          |    |
3360b57cec5SDimitry Andric //                \         /    7| LIFETIME_END b3       |    |
3370b57cec5SDimitry Andric //                 \        |    +------------------------+    |
3380b57cec5SDimitry Andric //                  \       |                 \                /
3390b57cec5SDimitry Andric //                +------  block 5 -----+      \---------------
3400b57cec5SDimitry Andric //               8| <cleanupcode>       |
3410b57cec5SDimitry Andric //               9| LIFETIME_END b1, b2 |
3420b57cec5SDimitry Andric //              10| return              |
3430b57cec5SDimitry Andric //                +---------------------+
3440b57cec5SDimitry Andric //
3450b57cec5SDimitry Andric // During optimization, however, it can happen that an instruction
3460b57cec5SDimitry Andric // computing an address in "b3" (for example, a loop-invariant GEP) is
3470b57cec5SDimitry Andric // hoisted up out of the loop from block 4 to block 2.  [Note that
3480b57cec5SDimitry Andric // this is not an actual load from the stack, only an instruction that
3490b57cec5SDimitry Andric // computes the address to be loaded]. If this happens, there is now a
3500b57cec5SDimitry Andric // path leading from the first use of b3 to the return instruction
3510b57cec5SDimitry Andric // that does not encounter the b3 LIFETIME_END, hence b3's lifetime is
3520b57cec5SDimitry Andric // now larger than if we were computing live intervals strictly based
3530b57cec5SDimitry Andric // on lifetime markers. In the example above, this lengthened lifetime
3540b57cec5SDimitry Andric // would mean that it would appear illegal to overlap b3 with b2.
3550b57cec5SDimitry Andric //
3560b57cec5SDimitry Andric // To deal with this such cases, the code in ::collectMarkers() below
3570b57cec5SDimitry Andric // tries to identify "degenerate" slots -- those slots where on a single
3580b57cec5SDimitry Andric // forward pass through the CFG we encounter a first reference to slot
3590b57cec5SDimitry Andric // K before we hit the slot K lifetime start marker. For such slots,
3600b57cec5SDimitry Andric // we fall back on using the lifetime start marker as the beginning of
3610b57cec5SDimitry Andric // the variable's lifetime.  NB: with this implementation, slots can
3620b57cec5SDimitry Andric // appear degenerate in cases where there is unstructured control flow:
3630b57cec5SDimitry Andric //
3640b57cec5SDimitry Andric //    if (q) goto mid;
3650b57cec5SDimitry Andric //    if (x > 9) {
3660b57cec5SDimitry Andric //         int b[100];
3670b57cec5SDimitry Andric //         memcpy(&b[0], ...);
3680b57cec5SDimitry Andric //    mid: b[k] = ...;
3690b57cec5SDimitry Andric //         abc(&b);
3700b57cec5SDimitry Andric //    }
3710b57cec5SDimitry Andric //
3720b57cec5SDimitry Andric // If in RPO ordering chosen to walk the CFG  we happen to visit the b[k]
3730b57cec5SDimitry Andric // before visiting the memcpy block (which will contain the lifetime start
3740b57cec5SDimitry Andric // for "b" then it will appear that 'b' has a degenerate lifetime.
3750b57cec5SDimitry Andric //
3760b57cec5SDimitry Andric 
3770b57cec5SDimitry Andric namespace {
3780b57cec5SDimitry Andric 
3790b57cec5SDimitry Andric /// StackColoring - A machine pass for merging disjoint stack allocations,
3800b57cec5SDimitry Andric /// marked by the LIFETIME_START and LIFETIME_END pseudo instructions.
3810b57cec5SDimitry Andric class StackColoring : public MachineFunctionPass {
3820b57cec5SDimitry Andric   MachineFrameInfo *MFI;
3830b57cec5SDimitry Andric   MachineFunction *MF;
3840b57cec5SDimitry Andric 
3850b57cec5SDimitry Andric   /// A class representing liveness information for a single basic block.
3860b57cec5SDimitry Andric   /// Each bit in the BitVector represents the liveness property
3870b57cec5SDimitry Andric   /// for a different stack slot.
3880b57cec5SDimitry Andric   struct BlockLifetimeInfo {
3890b57cec5SDimitry Andric     /// Which slots BEGINs in each basic block.
3900b57cec5SDimitry Andric     BitVector Begin;
3910b57cec5SDimitry Andric 
3920b57cec5SDimitry Andric     /// Which slots ENDs in each basic block.
3930b57cec5SDimitry Andric     BitVector End;
3940b57cec5SDimitry Andric 
3950b57cec5SDimitry Andric     /// Which slots are marked as LIVE_IN, coming into each basic block.
3960b57cec5SDimitry Andric     BitVector LiveIn;
3970b57cec5SDimitry Andric 
3980b57cec5SDimitry Andric     /// Which slots are marked as LIVE_OUT, coming out of each basic block.
3990b57cec5SDimitry Andric     BitVector LiveOut;
4000b57cec5SDimitry Andric   };
4010b57cec5SDimitry Andric 
4020b57cec5SDimitry Andric   /// Maps active slots (per bit) for each basic block.
4030b57cec5SDimitry Andric   using LivenessMap = DenseMap<const MachineBasicBlock *, BlockLifetimeInfo>;
4040b57cec5SDimitry Andric   LivenessMap BlockLiveness;
4050b57cec5SDimitry Andric 
4060b57cec5SDimitry Andric   /// Maps serial numbers to basic blocks.
4070b57cec5SDimitry Andric   DenseMap<const MachineBasicBlock *, int> BasicBlocks;
4080b57cec5SDimitry Andric 
4090b57cec5SDimitry Andric   /// Maps basic blocks to a serial number.
4100b57cec5SDimitry Andric   SmallVector<const MachineBasicBlock *, 8> BasicBlockNumbering;
4110b57cec5SDimitry Andric 
4120b57cec5SDimitry Andric   /// Maps slots to their use interval. Outside of this interval, slots
4130b57cec5SDimitry Andric   /// values are either dead or `undef` and they will not be written to.
4140b57cec5SDimitry Andric   SmallVector<std::unique_ptr<LiveInterval>, 16> Intervals;
4150b57cec5SDimitry Andric 
4160b57cec5SDimitry Andric   /// Maps slots to the points where they can become in-use.
4170b57cec5SDimitry Andric   SmallVector<SmallVector<SlotIndex, 4>, 16> LiveStarts;
4180b57cec5SDimitry Andric 
4190b57cec5SDimitry Andric   /// VNInfo is used for the construction of LiveIntervals.
4200b57cec5SDimitry Andric   VNInfo::Allocator VNInfoAllocator;
4210b57cec5SDimitry Andric 
4220b57cec5SDimitry Andric   /// SlotIndex analysis object.
4230b57cec5SDimitry Andric   SlotIndexes *Indexes;
4240b57cec5SDimitry Andric 
4250b57cec5SDimitry Andric   /// The list of lifetime markers found. These markers are to be removed
4260b57cec5SDimitry Andric   /// once the coloring is done.
4270b57cec5SDimitry Andric   SmallVector<MachineInstr*, 8> Markers;
4280b57cec5SDimitry Andric 
4290b57cec5SDimitry Andric   /// Record the FI slots for which we have seen some sort of
4300b57cec5SDimitry Andric   /// lifetime marker (either start or end).
4310b57cec5SDimitry Andric   BitVector InterestingSlots;
4320b57cec5SDimitry Andric 
4330b57cec5SDimitry Andric   /// FI slots that need to be handled conservatively (for these
4340b57cec5SDimitry Andric   /// slots lifetime-start-on-first-use is disabled).
4350b57cec5SDimitry Andric   BitVector ConservativeSlots;
4360b57cec5SDimitry Andric 
4370b57cec5SDimitry Andric   /// Number of iterations taken during data flow analysis.
4380b57cec5SDimitry Andric   unsigned NumIterations;
4390b57cec5SDimitry Andric 
4400b57cec5SDimitry Andric public:
4410b57cec5SDimitry Andric   static char ID;
4420b57cec5SDimitry Andric 
4430b57cec5SDimitry Andric   StackColoring() : MachineFunctionPass(ID) {
4440b57cec5SDimitry Andric     initializeStackColoringPass(*PassRegistry::getPassRegistry());
4450b57cec5SDimitry Andric   }
4460b57cec5SDimitry Andric 
4470b57cec5SDimitry Andric   void getAnalysisUsage(AnalysisUsage &AU) const override;
4480b57cec5SDimitry Andric   bool runOnMachineFunction(MachineFunction &Func) override;
4490b57cec5SDimitry Andric 
4500b57cec5SDimitry Andric private:
4510b57cec5SDimitry Andric   /// Used in collectMarkers
4520b57cec5SDimitry Andric   using BlockBitVecMap = DenseMap<const MachineBasicBlock *, BitVector>;
4530b57cec5SDimitry Andric 
4540b57cec5SDimitry Andric   /// Debug.
4550b57cec5SDimitry Andric   void dump() const;
4560b57cec5SDimitry Andric   void dumpIntervals() const;
4570b57cec5SDimitry Andric   void dumpBB(MachineBasicBlock *MBB) const;
4580b57cec5SDimitry Andric   void dumpBV(const char *tag, const BitVector &BV) const;
4590b57cec5SDimitry Andric 
4600b57cec5SDimitry Andric   /// Removes all of the lifetime marker instructions from the function.
4610b57cec5SDimitry Andric   /// \returns true if any markers were removed.
4620b57cec5SDimitry Andric   bool removeAllMarkers();
4630b57cec5SDimitry Andric 
4640b57cec5SDimitry Andric   /// Scan the machine function and find all of the lifetime markers.
4650b57cec5SDimitry Andric   /// Record the findings in the BEGIN and END vectors.
4660b57cec5SDimitry Andric   /// \returns the number of markers found.
4670b57cec5SDimitry Andric   unsigned collectMarkers(unsigned NumSlot);
4680b57cec5SDimitry Andric 
4690b57cec5SDimitry Andric   /// Perform the dataflow calculation and calculate the lifetime for each of
4700b57cec5SDimitry Andric   /// the slots, based on the BEGIN/END vectors. Set the LifetimeLIVE_IN and
4710b57cec5SDimitry Andric   /// LifetimeLIVE_OUT maps that represent which stack slots are live coming
4720b57cec5SDimitry Andric   /// in and out blocks.
4730b57cec5SDimitry Andric   void calculateLocalLiveness();
4740b57cec5SDimitry Andric 
4750b57cec5SDimitry Andric   /// Returns TRUE if we're using the first-use-begins-lifetime method for
4760b57cec5SDimitry Andric   /// this slot (if FALSE, then the start marker is treated as start of lifetime).
4770b57cec5SDimitry Andric   bool applyFirstUse(int Slot) {
4780b57cec5SDimitry Andric     if (!LifetimeStartOnFirstUse || ProtectFromEscapedAllocas)
4790b57cec5SDimitry Andric       return false;
4800b57cec5SDimitry Andric     if (ConservativeSlots.test(Slot))
4810b57cec5SDimitry Andric       return false;
4820b57cec5SDimitry Andric     return true;
4830b57cec5SDimitry Andric   }
4840b57cec5SDimitry Andric 
4850b57cec5SDimitry Andric   /// Examines the specified instruction and returns TRUE if the instruction
4860b57cec5SDimitry Andric   /// represents the start or end of an interesting lifetime. The slot or slots
4870b57cec5SDimitry Andric   /// starting or ending are added to the vector "slots" and "isStart" is set
4880b57cec5SDimitry Andric   /// accordingly.
4890b57cec5SDimitry Andric   /// \returns True if inst contains a lifetime start or end
4900b57cec5SDimitry Andric   bool isLifetimeStartOrEnd(const MachineInstr &MI,
4910b57cec5SDimitry Andric                             SmallVector<int, 4> &slots,
4920b57cec5SDimitry Andric                             bool &isStart);
4930b57cec5SDimitry Andric 
4940b57cec5SDimitry Andric   /// Construct the LiveIntervals for the slots.
4950b57cec5SDimitry Andric   void calculateLiveIntervals(unsigned NumSlots);
4960b57cec5SDimitry Andric 
4970b57cec5SDimitry Andric   /// Go over the machine function and change instructions which use stack
4980b57cec5SDimitry Andric   /// slots to use the joint slots.
4990b57cec5SDimitry Andric   void remapInstructions(DenseMap<int, int> &SlotRemap);
5000b57cec5SDimitry Andric 
5010b57cec5SDimitry Andric   /// The input program may contain instructions which are not inside lifetime
5020b57cec5SDimitry Andric   /// markers. This can happen due to a bug in the compiler or due to a bug in
5030b57cec5SDimitry Andric   /// user code (for example, returning a reference to a local variable).
5040b57cec5SDimitry Andric   /// This procedure checks all of the instructions in the function and
5050b57cec5SDimitry Andric   /// invalidates lifetime ranges which do not contain all of the instructions
5060b57cec5SDimitry Andric   /// which access that frame slot.
5070b57cec5SDimitry Andric   void removeInvalidSlotRanges();
5080b57cec5SDimitry Andric 
5090b57cec5SDimitry Andric   /// Map entries which point to other entries to their destination.
5100b57cec5SDimitry Andric   ///   A->B->C becomes A->C.
5110b57cec5SDimitry Andric   void expungeSlotMap(DenseMap<int, int> &SlotRemap, unsigned NumSlots);
5120b57cec5SDimitry Andric };
5130b57cec5SDimitry Andric 
5140b57cec5SDimitry Andric } // end anonymous namespace
5150b57cec5SDimitry Andric 
5160b57cec5SDimitry Andric char StackColoring::ID = 0;
5170b57cec5SDimitry Andric 
5180b57cec5SDimitry Andric char &llvm::StackColoringID = StackColoring::ID;
5190b57cec5SDimitry Andric 
5200b57cec5SDimitry Andric INITIALIZE_PASS_BEGIN(StackColoring, DEBUG_TYPE,
5210b57cec5SDimitry Andric                       "Merge disjoint stack slots", false, false)
5220b57cec5SDimitry Andric INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
5230b57cec5SDimitry Andric INITIALIZE_PASS_END(StackColoring, DEBUG_TYPE,
5240b57cec5SDimitry Andric                     "Merge disjoint stack slots", false, false)
5250b57cec5SDimitry Andric 
5260b57cec5SDimitry Andric void StackColoring::getAnalysisUsage(AnalysisUsage &AU) const {
5270b57cec5SDimitry Andric   AU.addRequired<SlotIndexes>();
5280b57cec5SDimitry Andric   MachineFunctionPass::getAnalysisUsage(AU);
5290b57cec5SDimitry Andric }
5300b57cec5SDimitry Andric 
5310b57cec5SDimitry Andric #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
5320b57cec5SDimitry Andric LLVM_DUMP_METHOD void StackColoring::dumpBV(const char *tag,
5330b57cec5SDimitry Andric                                             const BitVector &BV) const {
5340b57cec5SDimitry Andric   dbgs() << tag << " : { ";
5350b57cec5SDimitry Andric   for (unsigned I = 0, E = BV.size(); I != E; ++I)
5360b57cec5SDimitry Andric     dbgs() << BV.test(I) << " ";
5370b57cec5SDimitry Andric   dbgs() << "}\n";
5380b57cec5SDimitry Andric }
5390b57cec5SDimitry Andric 
5400b57cec5SDimitry Andric LLVM_DUMP_METHOD void StackColoring::dumpBB(MachineBasicBlock *MBB) const {
5410b57cec5SDimitry Andric   LivenessMap::const_iterator BI = BlockLiveness.find(MBB);
5420b57cec5SDimitry Andric   assert(BI != BlockLiveness.end() && "Block not found");
5430b57cec5SDimitry Andric   const BlockLifetimeInfo &BlockInfo = BI->second;
5440b57cec5SDimitry Andric 
5450b57cec5SDimitry Andric   dumpBV("BEGIN", BlockInfo.Begin);
5460b57cec5SDimitry Andric   dumpBV("END", BlockInfo.End);
5470b57cec5SDimitry Andric   dumpBV("LIVE_IN", BlockInfo.LiveIn);
5480b57cec5SDimitry Andric   dumpBV("LIVE_OUT", BlockInfo.LiveOut);
5490b57cec5SDimitry Andric }
5500b57cec5SDimitry Andric 
5510b57cec5SDimitry Andric LLVM_DUMP_METHOD void StackColoring::dump() const {
5520b57cec5SDimitry Andric   for (MachineBasicBlock *MBB : depth_first(MF)) {
5530b57cec5SDimitry Andric     dbgs() << "Inspecting block #" << MBB->getNumber() << " ["
5540b57cec5SDimitry Andric            << MBB->getName() << "]\n";
5550b57cec5SDimitry Andric     dumpBB(MBB);
5560b57cec5SDimitry Andric   }
5570b57cec5SDimitry Andric }
5580b57cec5SDimitry Andric 
5590b57cec5SDimitry Andric LLVM_DUMP_METHOD void StackColoring::dumpIntervals() const {
5600b57cec5SDimitry Andric   for (unsigned I = 0, E = Intervals.size(); I != E; ++I) {
5610b57cec5SDimitry Andric     dbgs() << "Interval[" << I << "]:\n";
5620b57cec5SDimitry Andric     Intervals[I]->dump();
5630b57cec5SDimitry Andric   }
5640b57cec5SDimitry Andric }
5650b57cec5SDimitry Andric #endif
5660b57cec5SDimitry Andric 
5670b57cec5SDimitry Andric static inline int getStartOrEndSlot(const MachineInstr &MI)
5680b57cec5SDimitry Andric {
5690b57cec5SDimitry Andric   assert((MI.getOpcode() == TargetOpcode::LIFETIME_START ||
5700b57cec5SDimitry Andric           MI.getOpcode() == TargetOpcode::LIFETIME_END) &&
5710b57cec5SDimitry Andric          "Expected LIFETIME_START or LIFETIME_END op");
5720b57cec5SDimitry Andric   const MachineOperand &MO = MI.getOperand(0);
5730b57cec5SDimitry Andric   int Slot = MO.getIndex();
5740b57cec5SDimitry Andric   if (Slot >= 0)
5750b57cec5SDimitry Andric     return Slot;
5760b57cec5SDimitry Andric   return -1;
5770b57cec5SDimitry Andric }
5780b57cec5SDimitry Andric 
5790b57cec5SDimitry Andric // At the moment the only way to end a variable lifetime is with
5800b57cec5SDimitry Andric // a VARIABLE_LIFETIME op (which can't contain a start). If things
5810b57cec5SDimitry Andric // change and the IR allows for a single inst that both begins
5820b57cec5SDimitry Andric // and ends lifetime(s), this interface will need to be reworked.
5830b57cec5SDimitry Andric bool StackColoring::isLifetimeStartOrEnd(const MachineInstr &MI,
5840b57cec5SDimitry Andric                                          SmallVector<int, 4> &slots,
5850b57cec5SDimitry Andric                                          bool &isStart) {
5860b57cec5SDimitry Andric   if (MI.getOpcode() == TargetOpcode::LIFETIME_START ||
5870b57cec5SDimitry Andric       MI.getOpcode() == TargetOpcode::LIFETIME_END) {
5880b57cec5SDimitry Andric     int Slot = getStartOrEndSlot(MI);
5890b57cec5SDimitry Andric     if (Slot < 0)
5900b57cec5SDimitry Andric       return false;
5910b57cec5SDimitry Andric     if (!InterestingSlots.test(Slot))
5920b57cec5SDimitry Andric       return false;
5930b57cec5SDimitry Andric     slots.push_back(Slot);
5940b57cec5SDimitry Andric     if (MI.getOpcode() == TargetOpcode::LIFETIME_END) {
5950b57cec5SDimitry Andric       isStart = false;
5960b57cec5SDimitry Andric       return true;
5970b57cec5SDimitry Andric     }
5980b57cec5SDimitry Andric     if (!applyFirstUse(Slot)) {
5990b57cec5SDimitry Andric       isStart = true;
6000b57cec5SDimitry Andric       return true;
6010b57cec5SDimitry Andric     }
6020b57cec5SDimitry Andric   } else if (LifetimeStartOnFirstUse && !ProtectFromEscapedAllocas) {
6030b57cec5SDimitry Andric     if (!MI.isDebugInstr()) {
6040b57cec5SDimitry Andric       bool found = false;
6050b57cec5SDimitry Andric       for (const MachineOperand &MO : MI.operands()) {
6060b57cec5SDimitry Andric         if (!MO.isFI())
6070b57cec5SDimitry Andric           continue;
6080b57cec5SDimitry Andric         int Slot = MO.getIndex();
6090b57cec5SDimitry Andric         if (Slot<0)
6100b57cec5SDimitry Andric           continue;
6110b57cec5SDimitry Andric         if (InterestingSlots.test(Slot) && applyFirstUse(Slot)) {
6120b57cec5SDimitry Andric           slots.push_back(Slot);
6130b57cec5SDimitry Andric           found = true;
6140b57cec5SDimitry Andric         }
6150b57cec5SDimitry Andric       }
6160b57cec5SDimitry Andric       if (found) {
6170b57cec5SDimitry Andric         isStart = true;
6180b57cec5SDimitry Andric         return true;
6190b57cec5SDimitry Andric       }
6200b57cec5SDimitry Andric     }
6210b57cec5SDimitry Andric   }
6220b57cec5SDimitry Andric   return false;
6230b57cec5SDimitry Andric }
6240b57cec5SDimitry Andric 
6250b57cec5SDimitry Andric unsigned StackColoring::collectMarkers(unsigned NumSlot) {
6260b57cec5SDimitry Andric   unsigned MarkersFound = 0;
6270b57cec5SDimitry Andric   BlockBitVecMap SeenStartMap;
6280b57cec5SDimitry Andric   InterestingSlots.clear();
6290b57cec5SDimitry Andric   InterestingSlots.resize(NumSlot);
6300b57cec5SDimitry Andric   ConservativeSlots.clear();
6310b57cec5SDimitry Andric   ConservativeSlots.resize(NumSlot);
6320b57cec5SDimitry Andric 
6330b57cec5SDimitry Andric   // number of start and end lifetime ops for each slot
6340b57cec5SDimitry Andric   SmallVector<int, 8> NumStartLifetimes(NumSlot, 0);
6350b57cec5SDimitry Andric   SmallVector<int, 8> NumEndLifetimes(NumSlot, 0);
6360b57cec5SDimitry Andric 
6370b57cec5SDimitry Andric   // Step 1: collect markers and populate the "InterestingSlots"
6380b57cec5SDimitry Andric   // and "ConservativeSlots" sets.
6390b57cec5SDimitry Andric   for (MachineBasicBlock *MBB : depth_first(MF)) {
6400b57cec5SDimitry Andric     // Compute the set of slots for which we've seen a START marker but have
6410b57cec5SDimitry Andric     // not yet seen an END marker at this point in the walk (e.g. on entry
6420b57cec5SDimitry Andric     // to this bb).
6430b57cec5SDimitry Andric     BitVector BetweenStartEnd;
6440b57cec5SDimitry Andric     BetweenStartEnd.resize(NumSlot);
6450b57cec5SDimitry Andric     for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
6460b57cec5SDimitry Andric              PE = MBB->pred_end(); PI != PE; ++PI) {
6470b57cec5SDimitry Andric       BlockBitVecMap::const_iterator I = SeenStartMap.find(*PI);
6480b57cec5SDimitry Andric       if (I != SeenStartMap.end()) {
6490b57cec5SDimitry Andric         BetweenStartEnd |= I->second;
6500b57cec5SDimitry Andric       }
6510b57cec5SDimitry Andric     }
6520b57cec5SDimitry Andric 
6530b57cec5SDimitry Andric     // Walk the instructions in the block to look for start/end ops.
6540b57cec5SDimitry Andric     for (MachineInstr &MI : *MBB) {
6550b57cec5SDimitry Andric       if (MI.getOpcode() == TargetOpcode::LIFETIME_START ||
6560b57cec5SDimitry Andric           MI.getOpcode() == TargetOpcode::LIFETIME_END) {
6570b57cec5SDimitry Andric         int Slot = getStartOrEndSlot(MI);
6580b57cec5SDimitry Andric         if (Slot < 0)
6590b57cec5SDimitry Andric           continue;
6600b57cec5SDimitry Andric         InterestingSlots.set(Slot);
6610b57cec5SDimitry Andric         if (MI.getOpcode() == TargetOpcode::LIFETIME_START) {
6620b57cec5SDimitry Andric           BetweenStartEnd.set(Slot);
6630b57cec5SDimitry Andric           NumStartLifetimes[Slot] += 1;
6640b57cec5SDimitry Andric         } else {
6650b57cec5SDimitry Andric           BetweenStartEnd.reset(Slot);
6660b57cec5SDimitry Andric           NumEndLifetimes[Slot] += 1;
6670b57cec5SDimitry Andric         }
6680b57cec5SDimitry Andric         const AllocaInst *Allocation = MFI->getObjectAllocation(Slot);
6690b57cec5SDimitry Andric         if (Allocation) {
6700b57cec5SDimitry Andric           LLVM_DEBUG(dbgs() << "Found a lifetime ");
6710b57cec5SDimitry Andric           LLVM_DEBUG(dbgs() << (MI.getOpcode() == TargetOpcode::LIFETIME_START
6720b57cec5SDimitry Andric                                     ? "start"
6730b57cec5SDimitry Andric                                     : "end"));
6740b57cec5SDimitry Andric           LLVM_DEBUG(dbgs() << " marker for slot #" << Slot);
6750b57cec5SDimitry Andric           LLVM_DEBUG(dbgs()
6760b57cec5SDimitry Andric                      << " with allocation: " << Allocation->getName() << "\n");
6770b57cec5SDimitry Andric         }
6780b57cec5SDimitry Andric         Markers.push_back(&MI);
6790b57cec5SDimitry Andric         MarkersFound += 1;
6800b57cec5SDimitry Andric       } else {
6810b57cec5SDimitry Andric         for (const MachineOperand &MO : MI.operands()) {
6820b57cec5SDimitry Andric           if (!MO.isFI())
6830b57cec5SDimitry Andric             continue;
6840b57cec5SDimitry Andric           int Slot = MO.getIndex();
6850b57cec5SDimitry Andric           if (Slot < 0)
6860b57cec5SDimitry Andric             continue;
6870b57cec5SDimitry Andric           if (! BetweenStartEnd.test(Slot)) {
6880b57cec5SDimitry Andric             ConservativeSlots.set(Slot);
6890b57cec5SDimitry Andric           }
6900b57cec5SDimitry Andric         }
6910b57cec5SDimitry Andric       }
6920b57cec5SDimitry Andric     }
6930b57cec5SDimitry Andric     BitVector &SeenStart = SeenStartMap[MBB];
6940b57cec5SDimitry Andric     SeenStart |= BetweenStartEnd;
6950b57cec5SDimitry Andric   }
6960b57cec5SDimitry Andric   if (!MarkersFound) {
6970b57cec5SDimitry Andric     return 0;
6980b57cec5SDimitry Andric   }
6990b57cec5SDimitry Andric 
7000b57cec5SDimitry Andric   // PR27903: slots with multiple start or end lifetime ops are not
7010b57cec5SDimitry Andric   // safe to enable for "lifetime-start-on-first-use".
7020b57cec5SDimitry Andric   for (unsigned slot = 0; slot < NumSlot; ++slot)
7030b57cec5SDimitry Andric     if (NumStartLifetimes[slot] > 1 || NumEndLifetimes[slot] > 1)
7040b57cec5SDimitry Andric       ConservativeSlots.set(slot);
7050b57cec5SDimitry Andric   LLVM_DEBUG(dumpBV("Conservative slots", ConservativeSlots));
7060b57cec5SDimitry Andric 
7070b57cec5SDimitry Andric   // Step 2: compute begin/end sets for each block
7080b57cec5SDimitry Andric 
7090b57cec5SDimitry Andric   // NOTE: We use a depth-first iteration to ensure that we obtain a
7100b57cec5SDimitry Andric   // deterministic numbering.
7110b57cec5SDimitry Andric   for (MachineBasicBlock *MBB : depth_first(MF)) {
7120b57cec5SDimitry Andric     // Assign a serial number to this basic block.
7130b57cec5SDimitry Andric     BasicBlocks[MBB] = BasicBlockNumbering.size();
7140b57cec5SDimitry Andric     BasicBlockNumbering.push_back(MBB);
7150b57cec5SDimitry Andric 
7160b57cec5SDimitry Andric     // Keep a reference to avoid repeated lookups.
7170b57cec5SDimitry Andric     BlockLifetimeInfo &BlockInfo = BlockLiveness[MBB];
7180b57cec5SDimitry Andric 
7190b57cec5SDimitry Andric     BlockInfo.Begin.resize(NumSlot);
7200b57cec5SDimitry Andric     BlockInfo.End.resize(NumSlot);
7210b57cec5SDimitry Andric 
7220b57cec5SDimitry Andric     SmallVector<int, 4> slots;
7230b57cec5SDimitry Andric     for (MachineInstr &MI : *MBB) {
7240b57cec5SDimitry Andric       bool isStart = false;
7250b57cec5SDimitry Andric       slots.clear();
7260b57cec5SDimitry Andric       if (isLifetimeStartOrEnd(MI, slots, isStart)) {
7270b57cec5SDimitry Andric         if (!isStart) {
7280b57cec5SDimitry Andric           assert(slots.size() == 1 && "unexpected: MI ends multiple slots");
7290b57cec5SDimitry Andric           int Slot = slots[0];
7300b57cec5SDimitry Andric           if (BlockInfo.Begin.test(Slot)) {
7310b57cec5SDimitry Andric             BlockInfo.Begin.reset(Slot);
7320b57cec5SDimitry Andric           }
7330b57cec5SDimitry Andric           BlockInfo.End.set(Slot);
7340b57cec5SDimitry Andric         } else {
7350b57cec5SDimitry Andric           for (auto Slot : slots) {
7360b57cec5SDimitry Andric             LLVM_DEBUG(dbgs() << "Found a use of slot #" << Slot);
7370b57cec5SDimitry Andric             LLVM_DEBUG(dbgs()
7380b57cec5SDimitry Andric                        << " at " << printMBBReference(*MBB) << " index ");
7390b57cec5SDimitry Andric             LLVM_DEBUG(Indexes->getInstructionIndex(MI).print(dbgs()));
7400b57cec5SDimitry Andric             const AllocaInst *Allocation = MFI->getObjectAllocation(Slot);
7410b57cec5SDimitry Andric             if (Allocation) {
7420b57cec5SDimitry Andric               LLVM_DEBUG(dbgs()
7430b57cec5SDimitry Andric                          << " with allocation: " << Allocation->getName());
7440b57cec5SDimitry Andric             }
7450b57cec5SDimitry Andric             LLVM_DEBUG(dbgs() << "\n");
7460b57cec5SDimitry Andric             if (BlockInfo.End.test(Slot)) {
7470b57cec5SDimitry Andric               BlockInfo.End.reset(Slot);
7480b57cec5SDimitry Andric             }
7490b57cec5SDimitry Andric             BlockInfo.Begin.set(Slot);
7500b57cec5SDimitry Andric           }
7510b57cec5SDimitry Andric         }
7520b57cec5SDimitry Andric       }
7530b57cec5SDimitry Andric     }
7540b57cec5SDimitry Andric   }
7550b57cec5SDimitry Andric 
7560b57cec5SDimitry Andric   // Update statistics.
7570b57cec5SDimitry Andric   NumMarkerSeen += MarkersFound;
7580b57cec5SDimitry Andric   return MarkersFound;
7590b57cec5SDimitry Andric }
7600b57cec5SDimitry Andric 
7610b57cec5SDimitry Andric void StackColoring::calculateLocalLiveness() {
7620b57cec5SDimitry Andric   unsigned NumIters = 0;
7630b57cec5SDimitry Andric   bool changed = true;
7640b57cec5SDimitry Andric   while (changed) {
7650b57cec5SDimitry Andric     changed = false;
7660b57cec5SDimitry Andric     ++NumIters;
7670b57cec5SDimitry Andric 
7680b57cec5SDimitry Andric     for (const MachineBasicBlock *BB : BasicBlockNumbering) {
7690b57cec5SDimitry Andric       // Use an iterator to avoid repeated lookups.
7700b57cec5SDimitry Andric       LivenessMap::iterator BI = BlockLiveness.find(BB);
7710b57cec5SDimitry Andric       assert(BI != BlockLiveness.end() && "Block not found");
7720b57cec5SDimitry Andric       BlockLifetimeInfo &BlockInfo = BI->second;
7730b57cec5SDimitry Andric 
7740b57cec5SDimitry Andric       // Compute LiveIn by unioning together the LiveOut sets of all preds.
7750b57cec5SDimitry Andric       BitVector LocalLiveIn;
7760b57cec5SDimitry Andric       for (MachineBasicBlock::const_pred_iterator PI = BB->pred_begin(),
7770b57cec5SDimitry Andric            PE = BB->pred_end(); PI != PE; ++PI) {
7780b57cec5SDimitry Andric         LivenessMap::const_iterator I = BlockLiveness.find(*PI);
7790b57cec5SDimitry Andric         // PR37130: transformations prior to stack coloring can
7800b57cec5SDimitry Andric         // sometimes leave behind statically unreachable blocks; these
7810b57cec5SDimitry Andric         // can be safely skipped here.
7820b57cec5SDimitry Andric         if (I != BlockLiveness.end())
7830b57cec5SDimitry Andric           LocalLiveIn |= I->second.LiveOut;
7840b57cec5SDimitry Andric       }
7850b57cec5SDimitry Andric 
7860b57cec5SDimitry Andric       // Compute LiveOut by subtracting out lifetimes that end in this
7870b57cec5SDimitry Andric       // block, then adding in lifetimes that begin in this block.  If
7880b57cec5SDimitry Andric       // we have both BEGIN and END markers in the same basic block
7890b57cec5SDimitry Andric       // then we know that the BEGIN marker comes after the END,
7900b57cec5SDimitry Andric       // because we already handle the case where the BEGIN comes
7910b57cec5SDimitry Andric       // before the END when collecting the markers (and building the
7920b57cec5SDimitry Andric       // BEGIN/END vectors).
7930b57cec5SDimitry Andric       BitVector LocalLiveOut = LocalLiveIn;
7940b57cec5SDimitry Andric       LocalLiveOut.reset(BlockInfo.End);
7950b57cec5SDimitry Andric       LocalLiveOut |= BlockInfo.Begin;
7960b57cec5SDimitry Andric 
7970b57cec5SDimitry Andric       // Update block LiveIn set, noting whether it has changed.
7980b57cec5SDimitry Andric       if (LocalLiveIn.test(BlockInfo.LiveIn)) {
7990b57cec5SDimitry Andric         changed = true;
8000b57cec5SDimitry Andric         BlockInfo.LiveIn |= LocalLiveIn;
8010b57cec5SDimitry Andric       }
8020b57cec5SDimitry Andric 
8030b57cec5SDimitry Andric       // Update block LiveOut set, noting whether it has changed.
8040b57cec5SDimitry Andric       if (LocalLiveOut.test(BlockInfo.LiveOut)) {
8050b57cec5SDimitry Andric         changed = true;
8060b57cec5SDimitry Andric         BlockInfo.LiveOut |= LocalLiveOut;
8070b57cec5SDimitry Andric       }
8080b57cec5SDimitry Andric     }
8090b57cec5SDimitry Andric   } // while changed.
8100b57cec5SDimitry Andric 
8110b57cec5SDimitry Andric   NumIterations = NumIters;
8120b57cec5SDimitry Andric }
8130b57cec5SDimitry Andric 
8140b57cec5SDimitry Andric void StackColoring::calculateLiveIntervals(unsigned NumSlots) {
8150b57cec5SDimitry Andric   SmallVector<SlotIndex, 16> Starts;
8160b57cec5SDimitry Andric   SmallVector<bool, 16> DefinitelyInUse;
8170b57cec5SDimitry Andric 
8180b57cec5SDimitry Andric   // For each block, find which slots are active within this block
8190b57cec5SDimitry Andric   // and update the live intervals.
8200b57cec5SDimitry Andric   for (const MachineBasicBlock &MBB : *MF) {
8210b57cec5SDimitry Andric     Starts.clear();
8220b57cec5SDimitry Andric     Starts.resize(NumSlots);
8230b57cec5SDimitry Andric     DefinitelyInUse.clear();
8240b57cec5SDimitry Andric     DefinitelyInUse.resize(NumSlots);
8250b57cec5SDimitry Andric 
8260b57cec5SDimitry Andric     // Start the interval of the slots that we previously found to be 'in-use'.
8270b57cec5SDimitry Andric     BlockLifetimeInfo &MBBLiveness = BlockLiveness[&MBB];
8280b57cec5SDimitry Andric     for (int pos = MBBLiveness.LiveIn.find_first(); pos != -1;
8290b57cec5SDimitry Andric          pos = MBBLiveness.LiveIn.find_next(pos)) {
8300b57cec5SDimitry Andric       Starts[pos] = Indexes->getMBBStartIdx(&MBB);
8310b57cec5SDimitry Andric     }
8320b57cec5SDimitry Andric 
8330b57cec5SDimitry Andric     // Create the interval for the basic blocks containing lifetime begin/end.
8340b57cec5SDimitry Andric     for (const MachineInstr &MI : MBB) {
8350b57cec5SDimitry Andric       SmallVector<int, 4> slots;
8360b57cec5SDimitry Andric       bool IsStart = false;
8370b57cec5SDimitry Andric       if (!isLifetimeStartOrEnd(MI, slots, IsStart))
8380b57cec5SDimitry Andric         continue;
8390b57cec5SDimitry Andric       SlotIndex ThisIndex = Indexes->getInstructionIndex(MI);
8400b57cec5SDimitry Andric       for (auto Slot : slots) {
8410b57cec5SDimitry Andric         if (IsStart) {
8420b57cec5SDimitry Andric           // If a slot is already definitely in use, we don't have to emit
8430b57cec5SDimitry Andric           // a new start marker because there is already a pre-existing
8440b57cec5SDimitry Andric           // one.
8450b57cec5SDimitry Andric           if (!DefinitelyInUse[Slot]) {
8460b57cec5SDimitry Andric             LiveStarts[Slot].push_back(ThisIndex);
8470b57cec5SDimitry Andric             DefinitelyInUse[Slot] = true;
8480b57cec5SDimitry Andric           }
8490b57cec5SDimitry Andric           if (!Starts[Slot].isValid())
8500b57cec5SDimitry Andric             Starts[Slot] = ThisIndex;
8510b57cec5SDimitry Andric         } else {
8520b57cec5SDimitry Andric           if (Starts[Slot].isValid()) {
8530b57cec5SDimitry Andric             VNInfo *VNI = Intervals[Slot]->getValNumInfo(0);
8540b57cec5SDimitry Andric             Intervals[Slot]->addSegment(
8550b57cec5SDimitry Andric                 LiveInterval::Segment(Starts[Slot], ThisIndex, VNI));
8560b57cec5SDimitry Andric             Starts[Slot] = SlotIndex(); // Invalidate the start index
8570b57cec5SDimitry Andric             DefinitelyInUse[Slot] = false;
8580b57cec5SDimitry Andric           }
8590b57cec5SDimitry Andric         }
8600b57cec5SDimitry Andric       }
8610b57cec5SDimitry Andric     }
8620b57cec5SDimitry Andric 
8630b57cec5SDimitry Andric     // Finish up started segments
8640b57cec5SDimitry Andric     for (unsigned i = 0; i < NumSlots; ++i) {
8650b57cec5SDimitry Andric       if (!Starts[i].isValid())
8660b57cec5SDimitry Andric         continue;
8670b57cec5SDimitry Andric 
8680b57cec5SDimitry Andric       SlotIndex EndIdx = Indexes->getMBBEndIdx(&MBB);
8690b57cec5SDimitry Andric       VNInfo *VNI = Intervals[i]->getValNumInfo(0);
8700b57cec5SDimitry Andric       Intervals[i]->addSegment(LiveInterval::Segment(Starts[i], EndIdx, VNI));
8710b57cec5SDimitry Andric     }
8720b57cec5SDimitry Andric   }
8730b57cec5SDimitry Andric }
8740b57cec5SDimitry Andric 
8750b57cec5SDimitry Andric bool StackColoring::removeAllMarkers() {
8760b57cec5SDimitry Andric   unsigned Count = 0;
8770b57cec5SDimitry Andric   for (MachineInstr *MI : Markers) {
8780b57cec5SDimitry Andric     MI->eraseFromParent();
8790b57cec5SDimitry Andric     Count++;
8800b57cec5SDimitry Andric   }
8810b57cec5SDimitry Andric   Markers.clear();
8820b57cec5SDimitry Andric 
8830b57cec5SDimitry Andric   LLVM_DEBUG(dbgs() << "Removed " << Count << " markers.\n");
8840b57cec5SDimitry Andric   return Count;
8850b57cec5SDimitry Andric }
8860b57cec5SDimitry Andric 
8870b57cec5SDimitry Andric void StackColoring::remapInstructions(DenseMap<int, int> &SlotRemap) {
8880b57cec5SDimitry Andric   unsigned FixedInstr = 0;
8890b57cec5SDimitry Andric   unsigned FixedMemOp = 0;
8900b57cec5SDimitry Andric   unsigned FixedDbg = 0;
8910b57cec5SDimitry Andric 
8920b57cec5SDimitry Andric   // Remap debug information that refers to stack slots.
8930b57cec5SDimitry Andric   for (auto &VI : MF->getVariableDbgInfo()) {
8940b57cec5SDimitry Andric     if (!VI.Var)
8950b57cec5SDimitry Andric       continue;
8960b57cec5SDimitry Andric     if (SlotRemap.count(VI.Slot)) {
8970b57cec5SDimitry Andric       LLVM_DEBUG(dbgs() << "Remapping debug info for ["
8980b57cec5SDimitry Andric                         << cast<DILocalVariable>(VI.Var)->getName() << "].\n");
8990b57cec5SDimitry Andric       VI.Slot = SlotRemap[VI.Slot];
9000b57cec5SDimitry Andric       FixedDbg++;
9010b57cec5SDimitry Andric     }
9020b57cec5SDimitry Andric   }
9030b57cec5SDimitry Andric 
9040b57cec5SDimitry Andric   // Keep a list of *allocas* which need to be remapped.
9050b57cec5SDimitry Andric   DenseMap<const AllocaInst*, const AllocaInst*> Allocas;
9060b57cec5SDimitry Andric 
9070b57cec5SDimitry Andric   // Keep a list of allocas which has been affected by the remap.
9080b57cec5SDimitry Andric   SmallPtrSet<const AllocaInst*, 32> MergedAllocas;
9090b57cec5SDimitry Andric 
9100b57cec5SDimitry Andric   for (const std::pair<int, int> &SI : SlotRemap) {
9110b57cec5SDimitry Andric     const AllocaInst *From = MFI->getObjectAllocation(SI.first);
9120b57cec5SDimitry Andric     const AllocaInst *To = MFI->getObjectAllocation(SI.second);
9130b57cec5SDimitry Andric     assert(To && From && "Invalid allocation object");
9140b57cec5SDimitry Andric     Allocas[From] = To;
9150b57cec5SDimitry Andric 
9160b57cec5SDimitry Andric     // AA might be used later for instruction scheduling, and we need it to be
9170b57cec5SDimitry Andric     // able to deduce the correct aliasing releationships between pointers
9180b57cec5SDimitry Andric     // derived from the alloca being remapped and the target of that remapping.
9190b57cec5SDimitry Andric     // The only safe way, without directly informing AA about the remapping
9200b57cec5SDimitry Andric     // somehow, is to directly update the IR to reflect the change being made
9210b57cec5SDimitry Andric     // here.
9220b57cec5SDimitry Andric     Instruction *Inst = const_cast<AllocaInst *>(To);
9230b57cec5SDimitry Andric     if (From->getType() != To->getType()) {
9240b57cec5SDimitry Andric       BitCastInst *Cast = new BitCastInst(Inst, From->getType());
9250b57cec5SDimitry Andric       Cast->insertAfter(Inst);
9260b57cec5SDimitry Andric       Inst = Cast;
9270b57cec5SDimitry Andric     }
9280b57cec5SDimitry Andric 
9290b57cec5SDimitry Andric     // We keep both slots to maintain AliasAnalysis metadata later.
9300b57cec5SDimitry Andric     MergedAllocas.insert(From);
9310b57cec5SDimitry Andric     MergedAllocas.insert(To);
9320b57cec5SDimitry Andric 
9330b57cec5SDimitry Andric     // Transfer the stack protector layout tag, but make sure that SSPLK_AddrOf
9340b57cec5SDimitry Andric     // does not overwrite SSPLK_SmallArray or SSPLK_LargeArray, and make sure
9350b57cec5SDimitry Andric     // that SSPLK_SmallArray does not overwrite SSPLK_LargeArray.
9360b57cec5SDimitry Andric     MachineFrameInfo::SSPLayoutKind FromKind
9370b57cec5SDimitry Andric         = MFI->getObjectSSPLayout(SI.first);
9380b57cec5SDimitry Andric     MachineFrameInfo::SSPLayoutKind ToKind = MFI->getObjectSSPLayout(SI.second);
9390b57cec5SDimitry Andric     if (FromKind != MachineFrameInfo::SSPLK_None &&
9400b57cec5SDimitry Andric         (ToKind == MachineFrameInfo::SSPLK_None ||
9410b57cec5SDimitry Andric          (ToKind != MachineFrameInfo::SSPLK_LargeArray &&
9420b57cec5SDimitry Andric           FromKind != MachineFrameInfo::SSPLK_AddrOf)))
9430b57cec5SDimitry Andric       MFI->setObjectSSPLayout(SI.second, FromKind);
9440b57cec5SDimitry Andric 
9450b57cec5SDimitry Andric     // The new alloca might not be valid in a llvm.dbg.declare for this
9460b57cec5SDimitry Andric     // variable, so undef out the use to make the verifier happy.
9470b57cec5SDimitry Andric     AllocaInst *FromAI = const_cast<AllocaInst *>(From);
9480b57cec5SDimitry Andric     if (FromAI->isUsedByMetadata())
9490b57cec5SDimitry Andric       ValueAsMetadata::handleRAUW(FromAI, UndefValue::get(FromAI->getType()));
9500b57cec5SDimitry Andric     for (auto &Use : FromAI->uses()) {
9510b57cec5SDimitry Andric       if (BitCastInst *BCI = dyn_cast<BitCastInst>(Use.get()))
9520b57cec5SDimitry Andric         if (BCI->isUsedByMetadata())
9530b57cec5SDimitry Andric           ValueAsMetadata::handleRAUW(BCI, UndefValue::get(BCI->getType()));
9540b57cec5SDimitry Andric     }
9550b57cec5SDimitry Andric 
9560b57cec5SDimitry Andric     // Note that this will not replace uses in MMOs (which we'll update below),
9570b57cec5SDimitry Andric     // or anywhere else (which is why we won't delete the original
9580b57cec5SDimitry Andric     // instruction).
9590b57cec5SDimitry Andric     FromAI->replaceAllUsesWith(Inst);
9600b57cec5SDimitry Andric   }
9610b57cec5SDimitry Andric 
9620b57cec5SDimitry Andric   // Remap all instructions to the new stack slots.
96355e4f9d5SDimitry Andric   std::vector<std::vector<MachineMemOperand *>> SSRefs(MFI->getObjectIndexEnd());
9640b57cec5SDimitry Andric   for (MachineBasicBlock &BB : *MF)
9650b57cec5SDimitry Andric     for (MachineInstr &I : BB) {
9660b57cec5SDimitry Andric       // Skip lifetime markers. We'll remove them soon.
9670b57cec5SDimitry Andric       if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
9680b57cec5SDimitry Andric           I.getOpcode() == TargetOpcode::LIFETIME_END)
9690b57cec5SDimitry Andric         continue;
9700b57cec5SDimitry Andric 
9710b57cec5SDimitry Andric       // Update the MachineMemOperand to use the new alloca.
9720b57cec5SDimitry Andric       for (MachineMemOperand *MMO : I.memoperands()) {
9730b57cec5SDimitry Andric         // We've replaced IR-level uses of the remapped allocas, so we only
9740b57cec5SDimitry Andric         // need to replace direct uses here.
9750b57cec5SDimitry Andric         const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(MMO->getValue());
9760b57cec5SDimitry Andric         if (!AI)
9770b57cec5SDimitry Andric           continue;
9780b57cec5SDimitry Andric 
9790b57cec5SDimitry Andric         if (!Allocas.count(AI))
9800b57cec5SDimitry Andric           continue;
9810b57cec5SDimitry Andric 
9820b57cec5SDimitry Andric         MMO->setValue(Allocas[AI]);
9830b57cec5SDimitry Andric         FixedMemOp++;
9840b57cec5SDimitry Andric       }
9850b57cec5SDimitry Andric 
9860b57cec5SDimitry Andric       // Update all of the machine instruction operands.
9870b57cec5SDimitry Andric       for (MachineOperand &MO : I.operands()) {
9880b57cec5SDimitry Andric         if (!MO.isFI())
9890b57cec5SDimitry Andric           continue;
9900b57cec5SDimitry Andric         int FromSlot = MO.getIndex();
9910b57cec5SDimitry Andric 
9920b57cec5SDimitry Andric         // Don't touch arguments.
9930b57cec5SDimitry Andric         if (FromSlot<0)
9940b57cec5SDimitry Andric           continue;
9950b57cec5SDimitry Andric 
9960b57cec5SDimitry Andric         // Only look at mapped slots.
9970b57cec5SDimitry Andric         if (!SlotRemap.count(FromSlot))
9980b57cec5SDimitry Andric           continue;
9990b57cec5SDimitry Andric 
10000b57cec5SDimitry Andric         // In a debug build, check that the instruction that we are modifying is
10010b57cec5SDimitry Andric         // inside the expected live range. If the instruction is not inside
10020b57cec5SDimitry Andric         // the calculated range then it means that the alloca usage moved
10030b57cec5SDimitry Andric         // outside of the lifetime markers, or that the user has a bug.
10040b57cec5SDimitry Andric         // NOTE: Alloca address calculations which happen outside the lifetime
10050b57cec5SDimitry Andric         // zone are okay, despite the fact that we don't have a good way
10060b57cec5SDimitry Andric         // for validating all of the usages of the calculation.
10070b57cec5SDimitry Andric #ifndef NDEBUG
1008480093f4SDimitry Andric         bool TouchesMemory = I.mayLoadOrStore();
10090b57cec5SDimitry Andric         // If we *don't* protect the user from escaped allocas, don't bother
10100b57cec5SDimitry Andric         // validating the instructions.
10110b57cec5SDimitry Andric         if (!I.isDebugInstr() && TouchesMemory && ProtectFromEscapedAllocas) {
10120b57cec5SDimitry Andric           SlotIndex Index = Indexes->getInstructionIndex(I);
10130b57cec5SDimitry Andric           const LiveInterval *Interval = &*Intervals[FromSlot];
10140b57cec5SDimitry Andric           assert(Interval->find(Index) != Interval->end() &&
10150b57cec5SDimitry Andric                  "Found instruction usage outside of live range.");
10160b57cec5SDimitry Andric         }
10170b57cec5SDimitry Andric #endif
10180b57cec5SDimitry Andric 
10190b57cec5SDimitry Andric         // Fix the machine instructions.
10200b57cec5SDimitry Andric         int ToSlot = SlotRemap[FromSlot];
10210b57cec5SDimitry Andric         MO.setIndex(ToSlot);
10220b57cec5SDimitry Andric         FixedInstr++;
10230b57cec5SDimitry Andric       }
10240b57cec5SDimitry Andric 
10250b57cec5SDimitry Andric       // We adjust AliasAnalysis information for merged stack slots.
10260b57cec5SDimitry Andric       SmallVector<MachineMemOperand *, 2> NewMMOs;
10270b57cec5SDimitry Andric       bool ReplaceMemOps = false;
10280b57cec5SDimitry Andric       for (MachineMemOperand *MMO : I.memoperands()) {
102955e4f9d5SDimitry Andric         // Collect MachineMemOperands which reference
103055e4f9d5SDimitry Andric         // FixedStackPseudoSourceValues with old frame indices.
103155e4f9d5SDimitry Andric         if (const auto *FSV = dyn_cast_or_null<FixedStackPseudoSourceValue>(
103255e4f9d5SDimitry Andric                 MMO->getPseudoValue())) {
103355e4f9d5SDimitry Andric           int FI = FSV->getFrameIndex();
103455e4f9d5SDimitry Andric           auto To = SlotRemap.find(FI);
103555e4f9d5SDimitry Andric           if (To != SlotRemap.end())
103655e4f9d5SDimitry Andric             SSRefs[FI].push_back(MMO);
103755e4f9d5SDimitry Andric         }
103855e4f9d5SDimitry Andric 
10390b57cec5SDimitry Andric         // If this memory location can be a slot remapped here,
10400b57cec5SDimitry Andric         // we remove AA information.
10410b57cec5SDimitry Andric         bool MayHaveConflictingAAMD = false;
10420b57cec5SDimitry Andric         if (MMO->getAAInfo()) {
10430b57cec5SDimitry Andric           if (const Value *MMOV = MMO->getValue()) {
10440b57cec5SDimitry Andric             SmallVector<Value *, 4> Objs;
10450b57cec5SDimitry Andric             getUnderlyingObjectsForCodeGen(MMOV, Objs, MF->getDataLayout());
10460b57cec5SDimitry Andric 
10470b57cec5SDimitry Andric             if (Objs.empty())
10480b57cec5SDimitry Andric               MayHaveConflictingAAMD = true;
10490b57cec5SDimitry Andric             else
10500b57cec5SDimitry Andric               for (Value *V : Objs) {
10510b57cec5SDimitry Andric                 // If this memory location comes from a known stack slot
10520b57cec5SDimitry Andric                 // that is not remapped, we continue checking.
10530b57cec5SDimitry Andric                 // Otherwise, we need to invalidate AA infomation.
10540b57cec5SDimitry Andric                 const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(V);
10550b57cec5SDimitry Andric                 if (AI && MergedAllocas.count(AI)) {
10560b57cec5SDimitry Andric                   MayHaveConflictingAAMD = true;
10570b57cec5SDimitry Andric                   break;
10580b57cec5SDimitry Andric                 }
10590b57cec5SDimitry Andric               }
10600b57cec5SDimitry Andric           }
10610b57cec5SDimitry Andric         }
10620b57cec5SDimitry Andric         if (MayHaveConflictingAAMD) {
10630b57cec5SDimitry Andric           NewMMOs.push_back(MF->getMachineMemOperand(MMO, AAMDNodes()));
10640b57cec5SDimitry Andric           ReplaceMemOps = true;
10650b57cec5SDimitry Andric         } else {
10660b57cec5SDimitry Andric           NewMMOs.push_back(MMO);
10670b57cec5SDimitry Andric         }
10680b57cec5SDimitry Andric       }
10690b57cec5SDimitry Andric 
10700b57cec5SDimitry Andric       // If any memory operand is updated, set memory references of
10710b57cec5SDimitry Andric       // this instruction.
10720b57cec5SDimitry Andric       if (ReplaceMemOps)
10730b57cec5SDimitry Andric         I.setMemRefs(*MF, NewMMOs);
10740b57cec5SDimitry Andric     }
10750b57cec5SDimitry Andric 
107655e4f9d5SDimitry Andric   // Rewrite MachineMemOperands that reference old frame indices.
107755e4f9d5SDimitry Andric   for (auto E : enumerate(SSRefs)) {
107855e4f9d5SDimitry Andric     const PseudoSourceValue *NewSV =
107955e4f9d5SDimitry Andric         MF->getPSVManager().getFixedStack(SlotRemap[E.index()]);
108055e4f9d5SDimitry Andric     for (MachineMemOperand *Ref : E.value())
108155e4f9d5SDimitry Andric       Ref->setValue(NewSV);
108255e4f9d5SDimitry Andric   }
108355e4f9d5SDimitry Andric 
10840b57cec5SDimitry Andric   // Update the location of C++ catch objects for the MSVC personality routine.
10850b57cec5SDimitry Andric   if (WinEHFuncInfo *EHInfo = MF->getWinEHFuncInfo())
10860b57cec5SDimitry Andric     for (WinEHTryBlockMapEntry &TBME : EHInfo->TryBlockMap)
10870b57cec5SDimitry Andric       for (WinEHHandlerType &H : TBME.HandlerArray)
10880b57cec5SDimitry Andric         if (H.CatchObj.FrameIndex != std::numeric_limits<int>::max() &&
10890b57cec5SDimitry Andric             SlotRemap.count(H.CatchObj.FrameIndex))
10900b57cec5SDimitry Andric           H.CatchObj.FrameIndex = SlotRemap[H.CatchObj.FrameIndex];
10910b57cec5SDimitry Andric 
10920b57cec5SDimitry Andric   LLVM_DEBUG(dbgs() << "Fixed " << FixedMemOp << " machine memory operands.\n");
10930b57cec5SDimitry Andric   LLVM_DEBUG(dbgs() << "Fixed " << FixedDbg << " debug locations.\n");
10940b57cec5SDimitry Andric   LLVM_DEBUG(dbgs() << "Fixed " << FixedInstr << " machine instructions.\n");
10950b57cec5SDimitry Andric }
10960b57cec5SDimitry Andric 
10970b57cec5SDimitry Andric void StackColoring::removeInvalidSlotRanges() {
10980b57cec5SDimitry Andric   for (MachineBasicBlock &BB : *MF)
10990b57cec5SDimitry Andric     for (MachineInstr &I : BB) {
11000b57cec5SDimitry Andric       if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
11010b57cec5SDimitry Andric           I.getOpcode() == TargetOpcode::LIFETIME_END || I.isDebugInstr())
11020b57cec5SDimitry Andric         continue;
11030b57cec5SDimitry Andric 
11040b57cec5SDimitry Andric       // Some intervals are suspicious! In some cases we find address
11050b57cec5SDimitry Andric       // calculations outside of the lifetime zone, but not actual memory
11060b57cec5SDimitry Andric       // read or write. Memory accesses outside of the lifetime zone are a clear
11070b57cec5SDimitry Andric       // violation, but address calculations are okay. This can happen when
11080b57cec5SDimitry Andric       // GEPs are hoisted outside of the lifetime zone.
11090b57cec5SDimitry Andric       // So, in here we only check instructions which can read or write memory.
11100b57cec5SDimitry Andric       if (!I.mayLoad() && !I.mayStore())
11110b57cec5SDimitry Andric         continue;
11120b57cec5SDimitry Andric 
11130b57cec5SDimitry Andric       // Check all of the machine operands.
11140b57cec5SDimitry Andric       for (const MachineOperand &MO : I.operands()) {
11150b57cec5SDimitry Andric         if (!MO.isFI())
11160b57cec5SDimitry Andric           continue;
11170b57cec5SDimitry Andric 
11180b57cec5SDimitry Andric         int Slot = MO.getIndex();
11190b57cec5SDimitry Andric 
11200b57cec5SDimitry Andric         if (Slot<0)
11210b57cec5SDimitry Andric           continue;
11220b57cec5SDimitry Andric 
11230b57cec5SDimitry Andric         if (Intervals[Slot]->empty())
11240b57cec5SDimitry Andric           continue;
11250b57cec5SDimitry Andric 
11260b57cec5SDimitry Andric         // Check that the used slot is inside the calculated lifetime range.
11270b57cec5SDimitry Andric         // If it is not, warn about it and invalidate the range.
11280b57cec5SDimitry Andric         LiveInterval *Interval = &*Intervals[Slot];
11290b57cec5SDimitry Andric         SlotIndex Index = Indexes->getInstructionIndex(I);
11300b57cec5SDimitry Andric         if (Interval->find(Index) == Interval->end()) {
11310b57cec5SDimitry Andric           Interval->clear();
11320b57cec5SDimitry Andric           LLVM_DEBUG(dbgs() << "Invalidating range #" << Slot << "\n");
11330b57cec5SDimitry Andric           EscapedAllocas++;
11340b57cec5SDimitry Andric         }
11350b57cec5SDimitry Andric       }
11360b57cec5SDimitry Andric     }
11370b57cec5SDimitry Andric }
11380b57cec5SDimitry Andric 
11390b57cec5SDimitry Andric void StackColoring::expungeSlotMap(DenseMap<int, int> &SlotRemap,
11400b57cec5SDimitry Andric                                    unsigned NumSlots) {
11410b57cec5SDimitry Andric   // Expunge slot remap map.
11420b57cec5SDimitry Andric   for (unsigned i=0; i < NumSlots; ++i) {
11430b57cec5SDimitry Andric     // If we are remapping i
11440b57cec5SDimitry Andric     if (SlotRemap.count(i)) {
11450b57cec5SDimitry Andric       int Target = SlotRemap[i];
11460b57cec5SDimitry Andric       // As long as our target is mapped to something else, follow it.
11470b57cec5SDimitry Andric       while (SlotRemap.count(Target)) {
11480b57cec5SDimitry Andric         Target = SlotRemap[Target];
11490b57cec5SDimitry Andric         SlotRemap[i] = Target;
11500b57cec5SDimitry Andric       }
11510b57cec5SDimitry Andric     }
11520b57cec5SDimitry Andric   }
11530b57cec5SDimitry Andric }
11540b57cec5SDimitry Andric 
11550b57cec5SDimitry Andric bool StackColoring::runOnMachineFunction(MachineFunction &Func) {
11560b57cec5SDimitry Andric   LLVM_DEBUG(dbgs() << "********** Stack Coloring **********\n"
11570b57cec5SDimitry Andric                     << "********** Function: " << Func.getName() << '\n');
11580b57cec5SDimitry Andric   MF = &Func;
11590b57cec5SDimitry Andric   MFI = &MF->getFrameInfo();
11600b57cec5SDimitry Andric   Indexes = &getAnalysis<SlotIndexes>();
11610b57cec5SDimitry Andric   BlockLiveness.clear();
11620b57cec5SDimitry Andric   BasicBlocks.clear();
11630b57cec5SDimitry Andric   BasicBlockNumbering.clear();
11640b57cec5SDimitry Andric   Markers.clear();
11650b57cec5SDimitry Andric   Intervals.clear();
11660b57cec5SDimitry Andric   LiveStarts.clear();
11670b57cec5SDimitry Andric   VNInfoAllocator.Reset();
11680b57cec5SDimitry Andric 
11690b57cec5SDimitry Andric   unsigned NumSlots = MFI->getObjectIndexEnd();
11700b57cec5SDimitry Andric 
11710b57cec5SDimitry Andric   // If there are no stack slots then there are no markers to remove.
11720b57cec5SDimitry Andric   if (!NumSlots)
11730b57cec5SDimitry Andric     return false;
11740b57cec5SDimitry Andric 
11750b57cec5SDimitry Andric   SmallVector<int, 8> SortedSlots;
11760b57cec5SDimitry Andric   SortedSlots.reserve(NumSlots);
11770b57cec5SDimitry Andric   Intervals.reserve(NumSlots);
11780b57cec5SDimitry Andric   LiveStarts.resize(NumSlots);
11790b57cec5SDimitry Andric 
11800b57cec5SDimitry Andric   unsigned NumMarkers = collectMarkers(NumSlots);
11810b57cec5SDimitry Andric 
11820b57cec5SDimitry Andric   unsigned TotalSize = 0;
11830b57cec5SDimitry Andric   LLVM_DEBUG(dbgs() << "Found " << NumMarkers << " markers and " << NumSlots
11840b57cec5SDimitry Andric                     << " slots\n");
11850b57cec5SDimitry Andric   LLVM_DEBUG(dbgs() << "Slot structure:\n");
11860b57cec5SDimitry Andric 
11870b57cec5SDimitry Andric   for (int i=0; i < MFI->getObjectIndexEnd(); ++i) {
11880b57cec5SDimitry Andric     LLVM_DEBUG(dbgs() << "Slot #" << i << " - " << MFI->getObjectSize(i)
11890b57cec5SDimitry Andric                       << " bytes.\n");
11900b57cec5SDimitry Andric     TotalSize += MFI->getObjectSize(i);
11910b57cec5SDimitry Andric   }
11920b57cec5SDimitry Andric 
11930b57cec5SDimitry Andric   LLVM_DEBUG(dbgs() << "Total Stack size: " << TotalSize << " bytes\n\n");
11940b57cec5SDimitry Andric 
11950b57cec5SDimitry Andric   // Don't continue because there are not enough lifetime markers, or the
11960b57cec5SDimitry Andric   // stack is too small, or we are told not to optimize the slots.
11970b57cec5SDimitry Andric   if (NumMarkers < 2 || TotalSize < 16 || DisableColoring ||
11980b57cec5SDimitry Andric       skipFunction(Func.getFunction())) {
11990b57cec5SDimitry Andric     LLVM_DEBUG(dbgs() << "Will not try to merge slots.\n");
12000b57cec5SDimitry Andric     return removeAllMarkers();
12010b57cec5SDimitry Andric   }
12020b57cec5SDimitry Andric 
12030b57cec5SDimitry Andric   for (unsigned i=0; i < NumSlots; ++i) {
12040b57cec5SDimitry Andric     std::unique_ptr<LiveInterval> LI(new LiveInterval(i, 0));
12050b57cec5SDimitry Andric     LI->getNextValue(Indexes->getZeroIndex(), VNInfoAllocator);
12060b57cec5SDimitry Andric     Intervals.push_back(std::move(LI));
12070b57cec5SDimitry Andric     SortedSlots.push_back(i);
12080b57cec5SDimitry Andric   }
12090b57cec5SDimitry Andric 
12100b57cec5SDimitry Andric   // Calculate the liveness of each block.
12110b57cec5SDimitry Andric   calculateLocalLiveness();
12120b57cec5SDimitry Andric   LLVM_DEBUG(dbgs() << "Dataflow iterations: " << NumIterations << "\n");
12130b57cec5SDimitry Andric   LLVM_DEBUG(dump());
12140b57cec5SDimitry Andric 
12150b57cec5SDimitry Andric   // Propagate the liveness information.
12160b57cec5SDimitry Andric   calculateLiveIntervals(NumSlots);
12170b57cec5SDimitry Andric   LLVM_DEBUG(dumpIntervals());
12180b57cec5SDimitry Andric 
12190b57cec5SDimitry Andric   // Search for allocas which are used outside of the declared lifetime
12200b57cec5SDimitry Andric   // markers.
12210b57cec5SDimitry Andric   if (ProtectFromEscapedAllocas)
12220b57cec5SDimitry Andric     removeInvalidSlotRanges();
12230b57cec5SDimitry Andric 
12240b57cec5SDimitry Andric   // Maps old slots to new slots.
12250b57cec5SDimitry Andric   DenseMap<int, int> SlotRemap;
12260b57cec5SDimitry Andric   unsigned RemovedSlots = 0;
12270b57cec5SDimitry Andric   unsigned ReducedSize = 0;
12280b57cec5SDimitry Andric 
12290b57cec5SDimitry Andric   // Do not bother looking at empty intervals.
12300b57cec5SDimitry Andric   for (unsigned I = 0; I < NumSlots; ++I) {
12310b57cec5SDimitry Andric     if (Intervals[SortedSlots[I]]->empty())
12320b57cec5SDimitry Andric       SortedSlots[I] = -1;
12330b57cec5SDimitry Andric   }
12340b57cec5SDimitry Andric 
12350b57cec5SDimitry Andric   // This is a simple greedy algorithm for merging allocas. First, sort the
12360b57cec5SDimitry Andric   // slots, placing the largest slots first. Next, perform an n^2 scan and look
12370b57cec5SDimitry Andric   // for disjoint slots. When you find disjoint slots, merge the samller one
12380b57cec5SDimitry Andric   // into the bigger one and update the live interval. Remove the small alloca
12390b57cec5SDimitry Andric   // and continue.
12400b57cec5SDimitry Andric 
12410b57cec5SDimitry Andric   // Sort the slots according to their size. Place unused slots at the end.
12420b57cec5SDimitry Andric   // Use stable sort to guarantee deterministic code generation.
12430b57cec5SDimitry Andric   llvm::stable_sort(SortedSlots, [this](int LHS, int RHS) {
12440b57cec5SDimitry Andric     // We use -1 to denote a uninteresting slot. Place these slots at the end.
12450b57cec5SDimitry Andric     if (LHS == -1)
12460b57cec5SDimitry Andric       return false;
12470b57cec5SDimitry Andric     if (RHS == -1)
12480b57cec5SDimitry Andric       return true;
12490b57cec5SDimitry Andric     // Sort according to size.
12500b57cec5SDimitry Andric     return MFI->getObjectSize(LHS) > MFI->getObjectSize(RHS);
12510b57cec5SDimitry Andric   });
12520b57cec5SDimitry Andric 
12530b57cec5SDimitry Andric   for (auto &s : LiveStarts)
12540b57cec5SDimitry Andric     llvm::sort(s);
12550b57cec5SDimitry Andric 
12560b57cec5SDimitry Andric   bool Changed = true;
12570b57cec5SDimitry Andric   while (Changed) {
12580b57cec5SDimitry Andric     Changed = false;
12590b57cec5SDimitry Andric     for (unsigned I = 0; I < NumSlots; ++I) {
12600b57cec5SDimitry Andric       if (SortedSlots[I] == -1)
12610b57cec5SDimitry Andric         continue;
12620b57cec5SDimitry Andric 
12630b57cec5SDimitry Andric       for (unsigned J=I+1; J < NumSlots; ++J) {
12640b57cec5SDimitry Andric         if (SortedSlots[J] == -1)
12650b57cec5SDimitry Andric           continue;
12660b57cec5SDimitry Andric 
12670b57cec5SDimitry Andric         int FirstSlot = SortedSlots[I];
12680b57cec5SDimitry Andric         int SecondSlot = SortedSlots[J];
12690b57cec5SDimitry Andric         LiveInterval *First = &*Intervals[FirstSlot];
12700b57cec5SDimitry Andric         LiveInterval *Second = &*Intervals[SecondSlot];
12710b57cec5SDimitry Andric         auto &FirstS = LiveStarts[FirstSlot];
12720b57cec5SDimitry Andric         auto &SecondS = LiveStarts[SecondSlot];
12730b57cec5SDimitry Andric         assert(!First->empty() && !Second->empty() && "Found an empty range");
12740b57cec5SDimitry Andric 
12750b57cec5SDimitry Andric         // Merge disjoint slots. This is a little bit tricky - see the
12760b57cec5SDimitry Andric         // Implementation Notes section for an explanation.
12770b57cec5SDimitry Andric         if (!First->isLiveAtIndexes(SecondS) &&
12780b57cec5SDimitry Andric             !Second->isLiveAtIndexes(FirstS)) {
12790b57cec5SDimitry Andric           Changed = true;
12800b57cec5SDimitry Andric           First->MergeSegmentsInAsValue(*Second, First->getValNumInfo(0));
12810b57cec5SDimitry Andric 
12820b57cec5SDimitry Andric           int OldSize = FirstS.size();
12830b57cec5SDimitry Andric           FirstS.append(SecondS.begin(), SecondS.end());
12840b57cec5SDimitry Andric           auto Mid = FirstS.begin() + OldSize;
12850b57cec5SDimitry Andric           std::inplace_merge(FirstS.begin(), Mid, FirstS.end());
12860b57cec5SDimitry Andric 
12870b57cec5SDimitry Andric           SlotRemap[SecondSlot] = FirstSlot;
12880b57cec5SDimitry Andric           SortedSlots[J] = -1;
12890b57cec5SDimitry Andric           LLVM_DEBUG(dbgs() << "Merging #" << FirstSlot << " and slots #"
12900b57cec5SDimitry Andric                             << SecondSlot << " together.\n");
12910b57cec5SDimitry Andric           unsigned MaxAlignment = std::max(MFI->getObjectAlignment(FirstSlot),
12920b57cec5SDimitry Andric                                            MFI->getObjectAlignment(SecondSlot));
12930b57cec5SDimitry Andric 
12940b57cec5SDimitry Andric           assert(MFI->getObjectSize(FirstSlot) >=
12950b57cec5SDimitry Andric                  MFI->getObjectSize(SecondSlot) &&
12960b57cec5SDimitry Andric                  "Merging a small object into a larger one");
12970b57cec5SDimitry Andric 
12980b57cec5SDimitry Andric           RemovedSlots+=1;
12990b57cec5SDimitry Andric           ReducedSize += MFI->getObjectSize(SecondSlot);
13000b57cec5SDimitry Andric           MFI->setObjectAlignment(FirstSlot, MaxAlignment);
13010b57cec5SDimitry Andric           MFI->RemoveStackObject(SecondSlot);
13020b57cec5SDimitry Andric         }
13030b57cec5SDimitry Andric       }
13040b57cec5SDimitry Andric     }
13050b57cec5SDimitry Andric   }// While changed.
13060b57cec5SDimitry Andric 
13070b57cec5SDimitry Andric   // Record statistics.
13080b57cec5SDimitry Andric   StackSpaceSaved += ReducedSize;
13090b57cec5SDimitry Andric   StackSlotMerged += RemovedSlots;
13100b57cec5SDimitry Andric   LLVM_DEBUG(dbgs() << "Merge " << RemovedSlots << " slots. Saved "
13110b57cec5SDimitry Andric                     << ReducedSize << " bytes\n");
13120b57cec5SDimitry Andric 
13130b57cec5SDimitry Andric   // Scan the entire function and update all machine operands that use frame
13140b57cec5SDimitry Andric   // indices to use the remapped frame index.
13150b57cec5SDimitry Andric   expungeSlotMap(SlotRemap, NumSlots);
13160b57cec5SDimitry Andric   remapInstructions(SlotRemap);
13170b57cec5SDimitry Andric 
13180b57cec5SDimitry Andric   return removeAllMarkers();
13190b57cec5SDimitry Andric }
1320