1 //===- StackProtector.cpp - Stack Protector Insertion ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass inserts stack protectors into functions which need them. A variable
10 // with a random value in it is stored onto the stack before the local variables
11 // are allocated. Upon exiting the block, the stored value is checked. If it's
12 // changed, then there was some sort of violation and the program aborts.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/CodeGen/StackProtector.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/BranchProbabilityInfo.h"
20 #include "llvm/Analysis/EHPersonalities.h"
21 #include "llvm/Analysis/MemoryLocation.h"
22 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
23 #include "llvm/CodeGen/Passes.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetPassConfig.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DebugInfo.h"
32 #include "llvm/IR/DebugLoc.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/IRBuilder.h"
37 #include "llvm/IR/Instruction.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/MDBuilder.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/Type.h"
44 #include "llvm/IR/User.h"
45 #include "llvm/InitializePasses.h"
46 #include "llvm/Pass.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Target/TargetMachine.h"
50 #include "llvm/Target/TargetOptions.h"
51 #include <utility>
52 
53 using namespace llvm;
54 
55 #define DEBUG_TYPE "stack-protector"
56 
57 STATISTIC(NumFunProtected, "Number of functions protected");
58 STATISTIC(NumAddrTaken, "Number of local variables that have their address"
59                         " taken.");
60 
61 static cl::opt<bool> EnableSelectionDAGSP("enable-selectiondag-sp",
62                                           cl::init(true), cl::Hidden);
63 
64 char StackProtector::ID = 0;
65 
66 StackProtector::StackProtector() : FunctionPass(ID), SSPBufferSize(8) {
67   initializeStackProtectorPass(*PassRegistry::getPassRegistry());
68 }
69 
70 INITIALIZE_PASS_BEGIN(StackProtector, DEBUG_TYPE,
71                       "Insert stack protectors", false, true)
72 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
73 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
74 INITIALIZE_PASS_END(StackProtector, DEBUG_TYPE,
75                     "Insert stack protectors", false, true)
76 
77 FunctionPass *llvm::createStackProtectorPass() { return new StackProtector(); }
78 
79 void StackProtector::getAnalysisUsage(AnalysisUsage &AU) const {
80   AU.addRequired<TargetPassConfig>();
81   AU.addPreserved<DominatorTreeWrapperPass>();
82 }
83 
84 bool StackProtector::runOnFunction(Function &Fn) {
85   F = &Fn;
86   M = F->getParent();
87   DominatorTreeWrapperPass *DTWP =
88       getAnalysisIfAvailable<DominatorTreeWrapperPass>();
89   DT = DTWP ? &DTWP->getDomTree() : nullptr;
90   TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
91   Trip = TM->getTargetTriple();
92   TLI = TM->getSubtargetImpl(Fn)->getTargetLowering();
93   HasPrologue = false;
94   HasIRCheck = false;
95 
96   Attribute Attr = Fn.getFnAttribute("stack-protector-buffer-size");
97   if (Attr.isStringAttribute() &&
98       Attr.getValueAsString().getAsInteger(10, SSPBufferSize))
99     return false; // Invalid integer string
100 
101   if (!RequiresStackProtector())
102     return false;
103 
104   // TODO(etienneb): Functions with funclets are not correctly supported now.
105   // Do nothing if this is funclet-based personality.
106   if (Fn.hasPersonalityFn()) {
107     EHPersonality Personality = classifyEHPersonality(Fn.getPersonalityFn());
108     if (isFuncletEHPersonality(Personality))
109       return false;
110   }
111 
112   ++NumFunProtected;
113   return InsertStackProtectors();
114 }
115 
116 /// \param [out] IsLarge is set to true if a protectable array is found and
117 /// it is "large" ( >= ssp-buffer-size).  In the case of a structure with
118 /// multiple arrays, this gets set if any of them is large.
119 bool StackProtector::ContainsProtectableArray(Type *Ty, bool &IsLarge,
120                                               bool Strong,
121                                               bool InStruct) const {
122   if (!Ty)
123     return false;
124   if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
125     if (!AT->getElementType()->isIntegerTy(8)) {
126       // If we're on a non-Darwin platform or we're inside of a structure, don't
127       // add stack protectors unless the array is a character array.
128       // However, in strong mode any array, regardless of type and size,
129       // triggers a protector.
130       if (!Strong && (InStruct || !Trip.isOSDarwin()))
131         return false;
132     }
133 
134     // If an array has more than SSPBufferSize bytes of allocated space, then we
135     // emit stack protectors.
136     if (SSPBufferSize <= M->getDataLayout().getTypeAllocSize(AT)) {
137       IsLarge = true;
138       return true;
139     }
140 
141     if (Strong)
142       // Require a protector for all arrays in strong mode
143       return true;
144   }
145 
146   const StructType *ST = dyn_cast<StructType>(Ty);
147   if (!ST)
148     return false;
149 
150   bool NeedsProtector = false;
151   for (StructType::element_iterator I = ST->element_begin(),
152                                     E = ST->element_end();
153        I != E; ++I)
154     if (ContainsProtectableArray(*I, IsLarge, Strong, true)) {
155       // If the element is a protectable array and is large (>= SSPBufferSize)
156       // then we are done.  If the protectable array is not large, then
157       // keep looking in case a subsequent element is a large array.
158       if (IsLarge)
159         return true;
160       NeedsProtector = true;
161     }
162 
163   return NeedsProtector;
164 }
165 
166 bool StackProtector::HasAddressTaken(const Instruction *AI,
167                                      uint64_t AllocSize) {
168   const DataLayout &DL = M->getDataLayout();
169   for (const User *U : AI->users()) {
170     const auto *I = cast<Instruction>(U);
171     // If this instruction accesses memory make sure it doesn't access beyond
172     // the bounds of the allocated object.
173     Optional<MemoryLocation> MemLoc = MemoryLocation::getOrNone(I);
174     if (MemLoc.hasValue() && MemLoc->Size.hasValue() &&
175         MemLoc->Size.getValue() > AllocSize)
176       return true;
177     switch (I->getOpcode()) {
178     case Instruction::Store:
179       if (AI == cast<StoreInst>(I)->getValueOperand())
180         return true;
181       break;
182     case Instruction::AtomicCmpXchg:
183       // cmpxchg conceptually includes both a load and store from the same
184       // location. So, like store, the value being stored is what matters.
185       if (AI == cast<AtomicCmpXchgInst>(I)->getNewValOperand())
186         return true;
187       break;
188     case Instruction::PtrToInt:
189       if (AI == cast<PtrToIntInst>(I)->getOperand(0))
190         return true;
191       break;
192     case Instruction::Call: {
193       // Ignore intrinsics that do not become real instructions.
194       // TODO: Narrow this to intrinsics that have store-like effects.
195       const auto *CI = cast<CallInst>(I);
196       if (!CI->isDebugOrPseudoInst() && !CI->isLifetimeStartOrEnd())
197         return true;
198       break;
199     }
200     case Instruction::Invoke:
201       return true;
202     case Instruction::GetElementPtr: {
203       // If the GEP offset is out-of-bounds, or is non-constant and so has to be
204       // assumed to be potentially out-of-bounds, then any memory access that
205       // would use it could also be out-of-bounds meaning stack protection is
206       // required.
207       const GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
208       unsigned TypeSize = DL.getIndexTypeSizeInBits(I->getType());
209       APInt Offset(TypeSize, 0);
210       APInt MaxOffset(TypeSize, AllocSize);
211       if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.ugt(MaxOffset))
212         return true;
213       // Adjust AllocSize to be the space remaining after this offset.
214       if (HasAddressTaken(I, AllocSize - Offset.getLimitedValue()))
215         return true;
216       break;
217     }
218     case Instruction::BitCast:
219     case Instruction::Select:
220     case Instruction::AddrSpaceCast:
221       if (HasAddressTaken(I, AllocSize))
222         return true;
223       break;
224     case Instruction::PHI: {
225       // Keep track of what PHI nodes we have already visited to ensure
226       // they are only visited once.
227       const auto *PN = cast<PHINode>(I);
228       if (VisitedPHIs.insert(PN).second)
229         if (HasAddressTaken(PN, AllocSize))
230           return true;
231       break;
232     }
233     case Instruction::Load:
234     case Instruction::AtomicRMW:
235     case Instruction::Ret:
236       // These instructions take an address operand, but have load-like or
237       // other innocuous behavior that should not trigger a stack protector.
238       // atomicrmw conceptually has both load and store semantics, but the
239       // value being stored must be integer; so if a pointer is being stored,
240       // we'll catch it in the PtrToInt case above.
241       break;
242     default:
243       // Conservatively return true for any instruction that takes an address
244       // operand, but is not handled above.
245       return true;
246     }
247   }
248   return false;
249 }
250 
251 /// Search for the first call to the llvm.stackprotector intrinsic and return it
252 /// if present.
253 static const CallInst *findStackProtectorIntrinsic(Function &F) {
254   for (const BasicBlock &BB : F)
255     for (const Instruction &I : BB)
256       if (const auto *II = dyn_cast<IntrinsicInst>(&I))
257         if (II->getIntrinsicID() == Intrinsic::stackprotector)
258           return II;
259   return nullptr;
260 }
261 
262 /// Check whether or not this function needs a stack protector based
263 /// upon the stack protector level.
264 ///
265 /// We use two heuristics: a standard (ssp) and strong (sspstrong).
266 /// The standard heuristic which will add a guard variable to functions that
267 /// call alloca with a either a variable size or a size >= SSPBufferSize,
268 /// functions with character buffers larger than SSPBufferSize, and functions
269 /// with aggregates containing character buffers larger than SSPBufferSize. The
270 /// strong heuristic will add a guard variables to functions that call alloca
271 /// regardless of size, functions with any buffer regardless of type and size,
272 /// functions with aggregates that contain any buffer regardless of type and
273 /// size, and functions that contain stack-based variables that have had their
274 /// address taken.
275 bool StackProtector::RequiresStackProtector() {
276   bool Strong = false;
277   bool NeedsProtector = false;
278 
279   if (F->hasFnAttribute(Attribute::SafeStack))
280     return false;
281 
282   // We are constructing the OptimizationRemarkEmitter on the fly rather than
283   // using the analysis pass to avoid building DominatorTree and LoopInfo which
284   // are not available this late in the IR pipeline.
285   OptimizationRemarkEmitter ORE(F);
286 
287   if (F->hasFnAttribute(Attribute::StackProtectReq)) {
288     ORE.emit([&]() {
289       return OptimizationRemark(DEBUG_TYPE, "StackProtectorRequested", F)
290              << "Stack protection applied to function "
291              << ore::NV("Function", F)
292              << " due to a function attribute or command-line switch";
293     });
294     NeedsProtector = true;
295     Strong = true; // Use the same heuristic as strong to determine SSPLayout
296   } else if (F->hasFnAttribute(Attribute::StackProtectStrong))
297     Strong = true;
298   else if (!F->hasFnAttribute(Attribute::StackProtect))
299     return false;
300 
301   for (const BasicBlock &BB : *F) {
302     for (const Instruction &I : BB) {
303       if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
304         if (AI->isArrayAllocation()) {
305           auto RemarkBuilder = [&]() {
306             return OptimizationRemark(DEBUG_TYPE, "StackProtectorAllocaOrArray",
307                                       &I)
308                    << "Stack protection applied to function "
309                    << ore::NV("Function", F)
310                    << " due to a call to alloca or use of a variable length "
311                       "array";
312           };
313           if (const auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) {
314             if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize) {
315               // A call to alloca with size >= SSPBufferSize requires
316               // stack protectors.
317               Layout.insert(std::make_pair(AI,
318                                            MachineFrameInfo::SSPLK_LargeArray));
319               ORE.emit(RemarkBuilder);
320               NeedsProtector = true;
321             } else if (Strong) {
322               // Require protectors for all alloca calls in strong mode.
323               Layout.insert(std::make_pair(AI,
324                                            MachineFrameInfo::SSPLK_SmallArray));
325               ORE.emit(RemarkBuilder);
326               NeedsProtector = true;
327             }
328           } else {
329             // A call to alloca with a variable size requires protectors.
330             Layout.insert(std::make_pair(AI,
331                                          MachineFrameInfo::SSPLK_LargeArray));
332             ORE.emit(RemarkBuilder);
333             NeedsProtector = true;
334           }
335           continue;
336         }
337 
338         bool IsLarge = false;
339         if (ContainsProtectableArray(AI->getAllocatedType(), IsLarge, Strong)) {
340           Layout.insert(std::make_pair(AI, IsLarge
341                                        ? MachineFrameInfo::SSPLK_LargeArray
342                                        : MachineFrameInfo::SSPLK_SmallArray));
343           ORE.emit([&]() {
344             return OptimizationRemark(DEBUG_TYPE, "StackProtectorBuffer", &I)
345                    << "Stack protection applied to function "
346                    << ore::NV("Function", F)
347                    << " due to a stack allocated buffer or struct containing a "
348                       "buffer";
349           });
350           NeedsProtector = true;
351           continue;
352         }
353 
354         if (Strong && HasAddressTaken(AI, M->getDataLayout().getTypeAllocSize(
355                                               AI->getAllocatedType()))) {
356           ++NumAddrTaken;
357           Layout.insert(std::make_pair(AI, MachineFrameInfo::SSPLK_AddrOf));
358           ORE.emit([&]() {
359             return OptimizationRemark(DEBUG_TYPE, "StackProtectorAddressTaken",
360                                       &I)
361                    << "Stack protection applied to function "
362                    << ore::NV("Function", F)
363                    << " due to the address of a local variable being taken";
364           });
365           NeedsProtector = true;
366         }
367         // Clear any PHIs that we visited, to make sure we examine all uses of
368         // any subsequent allocas that we look at.
369         VisitedPHIs.clear();
370       }
371     }
372   }
373 
374   return NeedsProtector;
375 }
376 
377 /// Create a stack guard loading and populate whether SelectionDAG SSP is
378 /// supported.
379 static Value *getStackGuard(const TargetLoweringBase *TLI, Module *M,
380                             IRBuilder<> &B,
381                             bool *SupportsSelectionDAGSP = nullptr) {
382   Value *Guard = TLI->getIRStackGuard(B);
383   StringRef GuardMode = M->getStackProtectorGuard();
384   if ((GuardMode == "tls" || GuardMode.empty()) && Guard)
385     return B.CreateLoad(B.getInt8PtrTy(), Guard, true, "StackGuard");
386 
387   // Use SelectionDAG SSP handling, since there isn't an IR guard.
388   //
389   // This is more or less weird, since we optionally output whether we
390   // should perform a SelectionDAG SP here. The reason is that it's strictly
391   // defined as !TLI->getIRStackGuard(B), where getIRStackGuard is also
392   // mutating. There is no way to get this bit without mutating the IR, so
393   // getting this bit has to happen in this right time.
394   //
395   // We could have define a new function TLI::supportsSelectionDAGSP(), but that
396   // will put more burden on the backends' overriding work, especially when it
397   // actually conveys the same information getIRStackGuard() already gives.
398   if (SupportsSelectionDAGSP)
399     *SupportsSelectionDAGSP = true;
400   TLI->insertSSPDeclarations(*M);
401   return B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackguard));
402 }
403 
404 /// Insert code into the entry block that stores the stack guard
405 /// variable onto the stack:
406 ///
407 ///   entry:
408 ///     StackGuardSlot = alloca i8*
409 ///     StackGuard = <stack guard>
410 ///     call void @llvm.stackprotector(StackGuard, StackGuardSlot)
411 ///
412 /// Returns true if the platform/triple supports the stackprotectorcreate pseudo
413 /// node.
414 static bool CreatePrologue(Function *F, Module *M, ReturnInst *RI,
415                            const TargetLoweringBase *TLI, AllocaInst *&AI) {
416   bool SupportsSelectionDAGSP = false;
417   IRBuilder<> B(&F->getEntryBlock().front());
418   PointerType *PtrTy = Type::getInt8PtrTy(RI->getContext());
419   AI = B.CreateAlloca(PtrTy, nullptr, "StackGuardSlot");
420 
421   Value *GuardSlot = getStackGuard(TLI, M, B, &SupportsSelectionDAGSP);
422   B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackprotector),
423                {GuardSlot, AI});
424   return SupportsSelectionDAGSP;
425 }
426 
427 /// InsertStackProtectors - Insert code into the prologue and epilogue of the
428 /// function.
429 ///
430 ///  - The prologue code loads and stores the stack guard onto the stack.
431 ///  - The epilogue checks the value stored in the prologue against the original
432 ///    value. It calls __stack_chk_fail if they differ.
433 bool StackProtector::InsertStackProtectors() {
434   // If the target wants to XOR the frame pointer into the guard value, it's
435   // impossible to emit the check in IR, so the target *must* support stack
436   // protection in SDAG.
437   bool SupportsSelectionDAGSP =
438       TLI->useStackGuardXorFP() ||
439       (EnableSelectionDAGSP && !TM->Options.EnableFastISel &&
440        !TM->Options.EnableGlobalISel);
441   AllocaInst *AI = nullptr;       // Place on stack that stores the stack guard.
442 
443   for (Function::iterator I = F->begin(), E = F->end(); I != E;) {
444     BasicBlock *BB = &*I++;
445     ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator());
446     if (!RI)
447       continue;
448 
449     // Generate prologue instrumentation if not already generated.
450     if (!HasPrologue) {
451       HasPrologue = true;
452       SupportsSelectionDAGSP &= CreatePrologue(F, M, RI, TLI, AI);
453     }
454 
455     // SelectionDAG based code generation. Nothing else needs to be done here.
456     // The epilogue instrumentation is postponed to SelectionDAG.
457     if (SupportsSelectionDAGSP)
458       break;
459 
460     // Find the stack guard slot if the prologue was not created by this pass
461     // itself via a previous call to CreatePrologue().
462     if (!AI) {
463       const CallInst *SPCall = findStackProtectorIntrinsic(*F);
464       assert(SPCall && "Call to llvm.stackprotector is missing");
465       AI = cast<AllocaInst>(SPCall->getArgOperand(1));
466     }
467 
468     // Set HasIRCheck to true, so that SelectionDAG will not generate its own
469     // version. SelectionDAG called 'shouldEmitSDCheck' to check whether
470     // instrumentation has already been generated.
471     HasIRCheck = true;
472 
473     // If we're instrumenting a block with a musttail call, the check has to be
474     // inserted before the call rather than between it and the return. The
475     // verifier guarantees that a musttail call is either directly before the
476     // return or with a single correct bitcast of the return value in between so
477     // we don't need to worry about many situations here.
478     Instruction *CheckLoc = RI;
479     Instruction *Prev = RI->getPrevNonDebugInstruction();
480     if (Prev && isa<CallInst>(Prev) && cast<CallInst>(Prev)->isMustTailCall())
481       CheckLoc = Prev;
482     else if (Prev) {
483       Prev = Prev->getPrevNonDebugInstruction();
484       if (Prev && isa<CallInst>(Prev) && cast<CallInst>(Prev)->isMustTailCall())
485         CheckLoc = Prev;
486     }
487 
488     // Generate epilogue instrumentation. The epilogue intrumentation can be
489     // function-based or inlined depending on which mechanism the target is
490     // providing.
491     if (Function *GuardCheck = TLI->getSSPStackGuardCheck(*M)) {
492       // Generate the function-based epilogue instrumentation.
493       // The target provides a guard check function, generate a call to it.
494       IRBuilder<> B(CheckLoc);
495       LoadInst *Guard = B.CreateLoad(B.getInt8PtrTy(), AI, true, "Guard");
496       CallInst *Call = B.CreateCall(GuardCheck, {Guard});
497       Call->setAttributes(GuardCheck->getAttributes());
498       Call->setCallingConv(GuardCheck->getCallingConv());
499     } else {
500       // Generate the epilogue with inline instrumentation.
501       // If we do not support SelectionDAG based calls, generate IR level
502       // calls.
503       //
504       // For each block with a return instruction, convert this:
505       //
506       //   return:
507       //     ...
508       //     ret ...
509       //
510       // into this:
511       //
512       //   return:
513       //     ...
514       //     %1 = <stack guard>
515       //     %2 = load StackGuardSlot
516       //     %3 = cmp i1 %1, %2
517       //     br i1 %3, label %SP_return, label %CallStackCheckFailBlk
518       //
519       //   SP_return:
520       //     ret ...
521       //
522       //   CallStackCheckFailBlk:
523       //     call void @__stack_chk_fail()
524       //     unreachable
525 
526       // Create the FailBB. We duplicate the BB every time since the MI tail
527       // merge pass will merge together all of the various BB into one including
528       // fail BB generated by the stack protector pseudo instruction.
529       BasicBlock *FailBB = CreateFailBB();
530 
531       // Split the basic block before the return instruction.
532       BasicBlock *NewBB =
533           BB->splitBasicBlock(CheckLoc->getIterator(), "SP_return");
534 
535       // Update the dominator tree if we need to.
536       if (DT && DT->isReachableFromEntry(BB)) {
537         DT->addNewBlock(NewBB, BB);
538         DT->addNewBlock(FailBB, BB);
539       }
540 
541       // Remove default branch instruction to the new BB.
542       BB->getTerminator()->eraseFromParent();
543 
544       // Move the newly created basic block to the point right after the old
545       // basic block so that it's in the "fall through" position.
546       NewBB->moveAfter(BB);
547 
548       // Generate the stack protector instructions in the old basic block.
549       IRBuilder<> B(BB);
550       Value *Guard = getStackGuard(TLI, M, B);
551       LoadInst *LI2 = B.CreateLoad(B.getInt8PtrTy(), AI, true);
552       Value *Cmp = B.CreateICmpEQ(Guard, LI2);
553       auto SuccessProb =
554           BranchProbabilityInfo::getBranchProbStackProtector(true);
555       auto FailureProb =
556           BranchProbabilityInfo::getBranchProbStackProtector(false);
557       MDNode *Weights = MDBuilder(F->getContext())
558                             .createBranchWeights(SuccessProb.getNumerator(),
559                                                  FailureProb.getNumerator());
560       B.CreateCondBr(Cmp, NewBB, FailBB, Weights);
561     }
562   }
563 
564   // Return if we didn't modify any basic blocks. i.e., there are no return
565   // statements in the function.
566   return HasPrologue;
567 }
568 
569 /// CreateFailBB - Create a basic block to jump to when the stack protector
570 /// check fails.
571 BasicBlock *StackProtector::CreateFailBB() {
572   LLVMContext &Context = F->getContext();
573   BasicBlock *FailBB = BasicBlock::Create(Context, "CallStackCheckFailBlk", F);
574   IRBuilder<> B(FailBB);
575   if (F->getSubprogram())
576     B.SetCurrentDebugLocation(
577         DILocation::get(Context, 0, 0, F->getSubprogram()));
578   if (Trip.isOSOpenBSD()) {
579     FunctionCallee StackChkFail = M->getOrInsertFunction(
580         "__stack_smash_handler", Type::getVoidTy(Context),
581         Type::getInt8PtrTy(Context));
582 
583     B.CreateCall(StackChkFail, B.CreateGlobalStringPtr(F->getName(), "SSH"));
584   } else {
585     FunctionCallee StackChkFail =
586         M->getOrInsertFunction("__stack_chk_fail", Type::getVoidTy(Context));
587 
588     B.CreateCall(StackChkFail, {});
589   }
590   B.CreateUnreachable();
591   return FailBB;
592 }
593 
594 bool StackProtector::shouldEmitSDCheck(const BasicBlock &BB) const {
595   return HasPrologue && !HasIRCheck && isa<ReturnInst>(BB.getTerminator());
596 }
597 
598 void StackProtector::copyToMachineFrameInfo(MachineFrameInfo &MFI) const {
599   if (Layout.empty())
600     return;
601 
602   for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) {
603     if (MFI.isDeadObjectIndex(I))
604       continue;
605 
606     const AllocaInst *AI = MFI.getObjectAllocation(I);
607     if (!AI)
608       continue;
609 
610     SSPLayoutMap::const_iterator LI = Layout.find(AI);
611     if (LI == Layout.end())
612       continue;
613 
614     MFI.setObjectSSPLayout(I, LI->second);
615   }
616 }
617