1 //===- StackProtector.cpp - Stack Protector Insertion ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass inserts stack protectors into functions which need them. A variable
10 // with a random value in it is stored onto the stack before the local variables
11 // are allocated. Upon exiting the block, the stored value is checked. If it's
12 // changed, then there was some sort of violation and the program aborts.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/CodeGen/StackProtector.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/BranchProbabilityInfo.h"
20 #include "llvm/Analysis/EHPersonalities.h"
21 #include "llvm/Analysis/MemoryLocation.h"
22 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
23 #include "llvm/CodeGen/Passes.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetPassConfig.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/IRBuilder.h"
35 #include "llvm/IR/Instruction.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/IntrinsicInst.h"
38 #include "llvm/IR/Intrinsics.h"
39 #include "llvm/IR/MDBuilder.h"
40 #include "llvm/IR/Module.h"
41 #include "llvm/IR/Type.h"
42 #include "llvm/IR/User.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/Pass.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/CommandLine.h"
47 #include "llvm/Target/TargetMachine.h"
48 #include "llvm/Target/TargetOptions.h"
49 #include <utility>
50 
51 using namespace llvm;
52 
53 #define DEBUG_TYPE "stack-protector"
54 
55 STATISTIC(NumFunProtected, "Number of functions protected");
56 STATISTIC(NumAddrTaken, "Number of local variables that have their address"
57                         " taken.");
58 
59 static cl::opt<bool> EnableSelectionDAGSP("enable-selectiondag-sp",
60                                           cl::init(true), cl::Hidden);
61 
62 char StackProtector::ID = 0;
63 
64 StackProtector::StackProtector() : FunctionPass(ID), SSPBufferSize(8) {
65   initializeStackProtectorPass(*PassRegistry::getPassRegistry());
66 }
67 
68 INITIALIZE_PASS_BEGIN(StackProtector, DEBUG_TYPE,
69                       "Insert stack protectors", false, true)
70 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
71 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
72 INITIALIZE_PASS_END(StackProtector, DEBUG_TYPE,
73                     "Insert stack protectors", false, true)
74 
75 FunctionPass *llvm::createStackProtectorPass() { return new StackProtector(); }
76 
77 void StackProtector::getAnalysisUsage(AnalysisUsage &AU) const {
78   AU.addRequired<TargetPassConfig>();
79   AU.addPreserved<DominatorTreeWrapperPass>();
80 }
81 
82 bool StackProtector::runOnFunction(Function &Fn) {
83   F = &Fn;
84   M = F->getParent();
85   DominatorTreeWrapperPass *DTWP =
86       getAnalysisIfAvailable<DominatorTreeWrapperPass>();
87   DT = DTWP ? &DTWP->getDomTree() : nullptr;
88   TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
89   Trip = TM->getTargetTriple();
90   TLI = TM->getSubtargetImpl(Fn)->getTargetLowering();
91   HasPrologue = false;
92   HasIRCheck = false;
93 
94   Attribute Attr = Fn.getFnAttribute("stack-protector-buffer-size");
95   if (Attr.isStringAttribute() &&
96       Attr.getValueAsString().getAsInteger(10, SSPBufferSize))
97     return false; // Invalid integer string
98 
99   if (!RequiresStackProtector())
100     return false;
101 
102   // TODO(etienneb): Functions with funclets are not correctly supported now.
103   // Do nothing if this is funclet-based personality.
104   if (Fn.hasPersonalityFn()) {
105     EHPersonality Personality = classifyEHPersonality(Fn.getPersonalityFn());
106     if (isFuncletEHPersonality(Personality))
107       return false;
108   }
109 
110   ++NumFunProtected;
111   return InsertStackProtectors();
112 }
113 
114 /// \param [out] IsLarge is set to true if a protectable array is found and
115 /// it is "large" ( >= ssp-buffer-size).  In the case of a structure with
116 /// multiple arrays, this gets set if any of them is large.
117 bool StackProtector::ContainsProtectableArray(Type *Ty, bool &IsLarge,
118                                               bool Strong,
119                                               bool InStruct) const {
120   if (!Ty)
121     return false;
122   if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
123     if (!AT->getElementType()->isIntegerTy(8)) {
124       // If we're on a non-Darwin platform or we're inside of a structure, don't
125       // add stack protectors unless the array is a character array.
126       // However, in strong mode any array, regardless of type and size,
127       // triggers a protector.
128       if (!Strong && (InStruct || !Trip.isOSDarwin()))
129         return false;
130     }
131 
132     // If an array has more than SSPBufferSize bytes of allocated space, then we
133     // emit stack protectors.
134     if (SSPBufferSize <= M->getDataLayout().getTypeAllocSize(AT)) {
135       IsLarge = true;
136       return true;
137     }
138 
139     if (Strong)
140       // Require a protector for all arrays in strong mode
141       return true;
142   }
143 
144   const StructType *ST = dyn_cast<StructType>(Ty);
145   if (!ST)
146     return false;
147 
148   bool NeedsProtector = false;
149   for (Type *ET : ST->elements())
150     if (ContainsProtectableArray(ET, IsLarge, Strong, true)) {
151       // If the element is a protectable array and is large (>= SSPBufferSize)
152       // then we are done.  If the protectable array is not large, then
153       // keep looking in case a subsequent element is a large array.
154       if (IsLarge)
155         return true;
156       NeedsProtector = true;
157     }
158 
159   return NeedsProtector;
160 }
161 
162 bool StackProtector::HasAddressTaken(const Instruction *AI,
163                                      TypeSize AllocSize) {
164   const DataLayout &DL = M->getDataLayout();
165   for (const User *U : AI->users()) {
166     const auto *I = cast<Instruction>(U);
167     // If this instruction accesses memory make sure it doesn't access beyond
168     // the bounds of the allocated object.
169     Optional<MemoryLocation> MemLoc = MemoryLocation::getOrNone(I);
170     if (MemLoc && MemLoc->Size.hasValue() &&
171         !TypeSize::isKnownGE(AllocSize,
172                              TypeSize::getFixed(MemLoc->Size.getValue())))
173       return true;
174     switch (I->getOpcode()) {
175     case Instruction::Store:
176       if (AI == cast<StoreInst>(I)->getValueOperand())
177         return true;
178       break;
179     case Instruction::AtomicCmpXchg:
180       // cmpxchg conceptually includes both a load and store from the same
181       // location. So, like store, the value being stored is what matters.
182       if (AI == cast<AtomicCmpXchgInst>(I)->getNewValOperand())
183         return true;
184       break;
185     case Instruction::PtrToInt:
186       if (AI == cast<PtrToIntInst>(I)->getOperand(0))
187         return true;
188       break;
189     case Instruction::Call: {
190       // Ignore intrinsics that do not become real instructions.
191       // TODO: Narrow this to intrinsics that have store-like effects.
192       const auto *CI = cast<CallInst>(I);
193       if (!CI->isDebugOrPseudoInst() && !CI->isLifetimeStartOrEnd())
194         return true;
195       break;
196     }
197     case Instruction::Invoke:
198       return true;
199     case Instruction::GetElementPtr: {
200       // If the GEP offset is out-of-bounds, or is non-constant and so has to be
201       // assumed to be potentially out-of-bounds, then any memory access that
202       // would use it could also be out-of-bounds meaning stack protection is
203       // required.
204       const GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
205       unsigned IndexSize = DL.getIndexTypeSizeInBits(I->getType());
206       APInt Offset(IndexSize, 0);
207       if (!GEP->accumulateConstantOffset(DL, Offset))
208         return true;
209       TypeSize OffsetSize = TypeSize::Fixed(Offset.getLimitedValue());
210       if (!TypeSize::isKnownGT(AllocSize, OffsetSize))
211         return true;
212       // Adjust AllocSize to be the space remaining after this offset.
213       // We can't subtract a fixed size from a scalable one, so in that case
214       // assume the scalable value is of minimum size.
215       TypeSize NewAllocSize =
216           TypeSize::Fixed(AllocSize.getKnownMinValue()) - OffsetSize;
217       if (HasAddressTaken(I, NewAllocSize))
218         return true;
219       break;
220     }
221     case Instruction::BitCast:
222     case Instruction::Select:
223     case Instruction::AddrSpaceCast:
224       if (HasAddressTaken(I, AllocSize))
225         return true;
226       break;
227     case Instruction::PHI: {
228       // Keep track of what PHI nodes we have already visited to ensure
229       // they are only visited once.
230       const auto *PN = cast<PHINode>(I);
231       if (VisitedPHIs.insert(PN).second)
232         if (HasAddressTaken(PN, AllocSize))
233           return true;
234       break;
235     }
236     case Instruction::Load:
237     case Instruction::AtomicRMW:
238     case Instruction::Ret:
239       // These instructions take an address operand, but have load-like or
240       // other innocuous behavior that should not trigger a stack protector.
241       // atomicrmw conceptually has both load and store semantics, but the
242       // value being stored must be integer; so if a pointer is being stored,
243       // we'll catch it in the PtrToInt case above.
244       break;
245     default:
246       // Conservatively return true for any instruction that takes an address
247       // operand, but is not handled above.
248       return true;
249     }
250   }
251   return false;
252 }
253 
254 /// Search for the first call to the llvm.stackprotector intrinsic and return it
255 /// if present.
256 static const CallInst *findStackProtectorIntrinsic(Function &F) {
257   for (const BasicBlock &BB : F)
258     for (const Instruction &I : BB)
259       if (const auto *II = dyn_cast<IntrinsicInst>(&I))
260         if (II->getIntrinsicID() == Intrinsic::stackprotector)
261           return II;
262   return nullptr;
263 }
264 
265 /// Check whether or not this function needs a stack protector based
266 /// upon the stack protector level.
267 ///
268 /// We use two heuristics: a standard (ssp) and strong (sspstrong).
269 /// The standard heuristic which will add a guard variable to functions that
270 /// call alloca with a either a variable size or a size >= SSPBufferSize,
271 /// functions with character buffers larger than SSPBufferSize, and functions
272 /// with aggregates containing character buffers larger than SSPBufferSize. The
273 /// strong heuristic will add a guard variables to functions that call alloca
274 /// regardless of size, functions with any buffer regardless of type and size,
275 /// functions with aggregates that contain any buffer regardless of type and
276 /// size, and functions that contain stack-based variables that have had their
277 /// address taken.
278 bool StackProtector::RequiresStackProtector() {
279   bool Strong = false;
280   bool NeedsProtector = false;
281 
282   if (F->hasFnAttribute(Attribute::SafeStack))
283     return false;
284 
285   // We are constructing the OptimizationRemarkEmitter on the fly rather than
286   // using the analysis pass to avoid building DominatorTree and LoopInfo which
287   // are not available this late in the IR pipeline.
288   OptimizationRemarkEmitter ORE(F);
289 
290   if (F->hasFnAttribute(Attribute::StackProtectReq)) {
291     ORE.emit([&]() {
292       return OptimizationRemark(DEBUG_TYPE, "StackProtectorRequested", F)
293              << "Stack protection applied to function "
294              << ore::NV("Function", F)
295              << " due to a function attribute or command-line switch";
296     });
297     NeedsProtector = true;
298     Strong = true; // Use the same heuristic as strong to determine SSPLayout
299   } else if (F->hasFnAttribute(Attribute::StackProtectStrong))
300     Strong = true;
301   else if (!F->hasFnAttribute(Attribute::StackProtect))
302     return false;
303 
304   for (const BasicBlock &BB : *F) {
305     for (const Instruction &I : BB) {
306       if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
307         if (AI->isArrayAllocation()) {
308           auto RemarkBuilder = [&]() {
309             return OptimizationRemark(DEBUG_TYPE, "StackProtectorAllocaOrArray",
310                                       &I)
311                    << "Stack protection applied to function "
312                    << ore::NV("Function", F)
313                    << " due to a call to alloca or use of a variable length "
314                       "array";
315           };
316           if (const auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) {
317             if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize) {
318               // A call to alloca with size >= SSPBufferSize requires
319               // stack protectors.
320               Layout.insert(std::make_pair(AI,
321                                            MachineFrameInfo::SSPLK_LargeArray));
322               ORE.emit(RemarkBuilder);
323               NeedsProtector = true;
324             } else if (Strong) {
325               // Require protectors for all alloca calls in strong mode.
326               Layout.insert(std::make_pair(AI,
327                                            MachineFrameInfo::SSPLK_SmallArray));
328               ORE.emit(RemarkBuilder);
329               NeedsProtector = true;
330             }
331           } else {
332             // A call to alloca with a variable size requires protectors.
333             Layout.insert(std::make_pair(AI,
334                                          MachineFrameInfo::SSPLK_LargeArray));
335             ORE.emit(RemarkBuilder);
336             NeedsProtector = true;
337           }
338           continue;
339         }
340 
341         bool IsLarge = false;
342         if (ContainsProtectableArray(AI->getAllocatedType(), IsLarge, Strong)) {
343           Layout.insert(std::make_pair(AI, IsLarge
344                                        ? MachineFrameInfo::SSPLK_LargeArray
345                                        : MachineFrameInfo::SSPLK_SmallArray));
346           ORE.emit([&]() {
347             return OptimizationRemark(DEBUG_TYPE, "StackProtectorBuffer", &I)
348                    << "Stack protection applied to function "
349                    << ore::NV("Function", F)
350                    << " due to a stack allocated buffer or struct containing a "
351                       "buffer";
352           });
353           NeedsProtector = true;
354           continue;
355         }
356 
357         if (Strong && HasAddressTaken(AI, M->getDataLayout().getTypeAllocSize(
358                                               AI->getAllocatedType()))) {
359           ++NumAddrTaken;
360           Layout.insert(std::make_pair(AI, MachineFrameInfo::SSPLK_AddrOf));
361           ORE.emit([&]() {
362             return OptimizationRemark(DEBUG_TYPE, "StackProtectorAddressTaken",
363                                       &I)
364                    << "Stack protection applied to function "
365                    << ore::NV("Function", F)
366                    << " due to the address of a local variable being taken";
367           });
368           NeedsProtector = true;
369         }
370         // Clear any PHIs that we visited, to make sure we examine all uses of
371         // any subsequent allocas that we look at.
372         VisitedPHIs.clear();
373       }
374     }
375   }
376 
377   return NeedsProtector;
378 }
379 
380 /// Create a stack guard loading and populate whether SelectionDAG SSP is
381 /// supported.
382 static Value *getStackGuard(const TargetLoweringBase *TLI, Module *M,
383                             IRBuilder<> &B,
384                             bool *SupportsSelectionDAGSP = nullptr) {
385   Value *Guard = TLI->getIRStackGuard(B);
386   StringRef GuardMode = M->getStackProtectorGuard();
387   if ((GuardMode == "tls" || GuardMode.empty()) && Guard)
388     return B.CreateLoad(B.getInt8PtrTy(), Guard, true, "StackGuard");
389 
390   // Use SelectionDAG SSP handling, since there isn't an IR guard.
391   //
392   // This is more or less weird, since we optionally output whether we
393   // should perform a SelectionDAG SP here. The reason is that it's strictly
394   // defined as !TLI->getIRStackGuard(B), where getIRStackGuard is also
395   // mutating. There is no way to get this bit without mutating the IR, so
396   // getting this bit has to happen in this right time.
397   //
398   // We could have define a new function TLI::supportsSelectionDAGSP(), but that
399   // will put more burden on the backends' overriding work, especially when it
400   // actually conveys the same information getIRStackGuard() already gives.
401   if (SupportsSelectionDAGSP)
402     *SupportsSelectionDAGSP = true;
403   TLI->insertSSPDeclarations(*M);
404   return B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackguard));
405 }
406 
407 /// Insert code into the entry block that stores the stack guard
408 /// variable onto the stack:
409 ///
410 ///   entry:
411 ///     StackGuardSlot = alloca i8*
412 ///     StackGuard = <stack guard>
413 ///     call void @llvm.stackprotector(StackGuard, StackGuardSlot)
414 ///
415 /// Returns true if the platform/triple supports the stackprotectorcreate pseudo
416 /// node.
417 static bool CreatePrologue(Function *F, Module *M, ReturnInst *RI,
418                            const TargetLoweringBase *TLI, AllocaInst *&AI) {
419   bool SupportsSelectionDAGSP = false;
420   IRBuilder<> B(&F->getEntryBlock().front());
421   PointerType *PtrTy = Type::getInt8PtrTy(RI->getContext());
422   AI = B.CreateAlloca(PtrTy, nullptr, "StackGuardSlot");
423 
424   Value *GuardSlot = getStackGuard(TLI, M, B, &SupportsSelectionDAGSP);
425   B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackprotector),
426                {GuardSlot, AI});
427   return SupportsSelectionDAGSP;
428 }
429 
430 /// InsertStackProtectors - Insert code into the prologue and epilogue of the
431 /// function.
432 ///
433 ///  - The prologue code loads and stores the stack guard onto the stack.
434 ///  - The epilogue checks the value stored in the prologue against the original
435 ///    value. It calls __stack_chk_fail if they differ.
436 bool StackProtector::InsertStackProtectors() {
437   // If the target wants to XOR the frame pointer into the guard value, it's
438   // impossible to emit the check in IR, so the target *must* support stack
439   // protection in SDAG.
440   bool SupportsSelectionDAGSP =
441       TLI->useStackGuardXorFP() ||
442       (EnableSelectionDAGSP && !TM->Options.EnableFastISel);
443   AllocaInst *AI = nullptr; // Place on stack that stores the stack guard.
444 
445   for (BasicBlock &BB : llvm::make_early_inc_range(*F)) {
446     ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator());
447     if (!RI)
448       continue;
449 
450     // Generate prologue instrumentation if not already generated.
451     if (!HasPrologue) {
452       HasPrologue = true;
453       SupportsSelectionDAGSP &= CreatePrologue(F, M, RI, TLI, AI);
454     }
455 
456     // SelectionDAG based code generation. Nothing else needs to be done here.
457     // The epilogue instrumentation is postponed to SelectionDAG.
458     if (SupportsSelectionDAGSP)
459       break;
460 
461     // Find the stack guard slot if the prologue was not created by this pass
462     // itself via a previous call to CreatePrologue().
463     if (!AI) {
464       const CallInst *SPCall = findStackProtectorIntrinsic(*F);
465       assert(SPCall && "Call to llvm.stackprotector is missing");
466       AI = cast<AllocaInst>(SPCall->getArgOperand(1));
467     }
468 
469     // Set HasIRCheck to true, so that SelectionDAG will not generate its own
470     // version. SelectionDAG called 'shouldEmitSDCheck' to check whether
471     // instrumentation has already been generated.
472     HasIRCheck = true;
473 
474     // If we're instrumenting a block with a musttail call, the check has to be
475     // inserted before the call rather than between it and the return. The
476     // verifier guarantees that a musttail call is either directly before the
477     // return or with a single correct bitcast of the return value in between so
478     // we don't need to worry about many situations here.
479     Instruction *CheckLoc = RI;
480     Instruction *Prev = RI->getPrevNonDebugInstruction();
481     if (Prev && isa<CallInst>(Prev) && cast<CallInst>(Prev)->isMustTailCall())
482       CheckLoc = Prev;
483     else if (Prev) {
484       Prev = Prev->getPrevNonDebugInstruction();
485       if (Prev && isa<CallInst>(Prev) && cast<CallInst>(Prev)->isMustTailCall())
486         CheckLoc = Prev;
487     }
488 
489     // Generate epilogue instrumentation. The epilogue intrumentation can be
490     // function-based or inlined depending on which mechanism the target is
491     // providing.
492     if (Function *GuardCheck = TLI->getSSPStackGuardCheck(*M)) {
493       // Generate the function-based epilogue instrumentation.
494       // The target provides a guard check function, generate a call to it.
495       IRBuilder<> B(CheckLoc);
496       LoadInst *Guard = B.CreateLoad(B.getInt8PtrTy(), AI, true, "Guard");
497       CallInst *Call = B.CreateCall(GuardCheck, {Guard});
498       Call->setAttributes(GuardCheck->getAttributes());
499       Call->setCallingConv(GuardCheck->getCallingConv());
500     } else {
501       // Generate the epilogue with inline instrumentation.
502       // If we do not support SelectionDAG based calls, generate IR level
503       // calls.
504       //
505       // For each block with a return instruction, convert this:
506       //
507       //   return:
508       //     ...
509       //     ret ...
510       //
511       // into this:
512       //
513       //   return:
514       //     ...
515       //     %1 = <stack guard>
516       //     %2 = load StackGuardSlot
517       //     %3 = cmp i1 %1, %2
518       //     br i1 %3, label %SP_return, label %CallStackCheckFailBlk
519       //
520       //   SP_return:
521       //     ret ...
522       //
523       //   CallStackCheckFailBlk:
524       //     call void @__stack_chk_fail()
525       //     unreachable
526 
527       // Create the FailBB. We duplicate the BB every time since the MI tail
528       // merge pass will merge together all of the various BB into one including
529       // fail BB generated by the stack protector pseudo instruction.
530       BasicBlock *FailBB = CreateFailBB();
531 
532       // Split the basic block before the return instruction.
533       BasicBlock *NewBB =
534           BB.splitBasicBlock(CheckLoc->getIterator(), "SP_return");
535 
536       // Update the dominator tree if we need to.
537       if (DT && DT->isReachableFromEntry(&BB)) {
538         DT->addNewBlock(NewBB, &BB);
539         DT->addNewBlock(FailBB, &BB);
540       }
541 
542       // Remove default branch instruction to the new BB.
543       BB.getTerminator()->eraseFromParent();
544 
545       // Move the newly created basic block to the point right after the old
546       // basic block so that it's in the "fall through" position.
547       NewBB->moveAfter(&BB);
548 
549       // Generate the stack protector instructions in the old basic block.
550       IRBuilder<> B(&BB);
551       Value *Guard = getStackGuard(TLI, M, B);
552       LoadInst *LI2 = B.CreateLoad(B.getInt8PtrTy(), AI, true);
553       Value *Cmp = B.CreateICmpEQ(Guard, LI2);
554       auto SuccessProb =
555           BranchProbabilityInfo::getBranchProbStackProtector(true);
556       auto FailureProb =
557           BranchProbabilityInfo::getBranchProbStackProtector(false);
558       MDNode *Weights = MDBuilder(F->getContext())
559                             .createBranchWeights(SuccessProb.getNumerator(),
560                                                  FailureProb.getNumerator());
561       B.CreateCondBr(Cmp, NewBB, FailBB, Weights);
562     }
563   }
564 
565   // Return if we didn't modify any basic blocks. i.e., there are no return
566   // statements in the function.
567   return HasPrologue;
568 }
569 
570 /// CreateFailBB - Create a basic block to jump to when the stack protector
571 /// check fails.
572 BasicBlock *StackProtector::CreateFailBB() {
573   LLVMContext &Context = F->getContext();
574   BasicBlock *FailBB = BasicBlock::Create(Context, "CallStackCheckFailBlk", F);
575   IRBuilder<> B(FailBB);
576   if (F->getSubprogram())
577     B.SetCurrentDebugLocation(
578         DILocation::get(Context, 0, 0, F->getSubprogram()));
579   if (Trip.isOSOpenBSD()) {
580     FunctionCallee StackChkFail = M->getOrInsertFunction(
581         "__stack_smash_handler", Type::getVoidTy(Context),
582         Type::getInt8PtrTy(Context));
583 
584     B.CreateCall(StackChkFail, B.CreateGlobalStringPtr(F->getName(), "SSH"));
585   } else {
586     FunctionCallee StackChkFail =
587         M->getOrInsertFunction("__stack_chk_fail", Type::getVoidTy(Context));
588 
589     B.CreateCall(StackChkFail, {});
590   }
591   B.CreateUnreachable();
592   return FailBB;
593 }
594 
595 bool StackProtector::shouldEmitSDCheck(const BasicBlock &BB) const {
596   return HasPrologue && !HasIRCheck && isa<ReturnInst>(BB.getTerminator());
597 }
598 
599 void StackProtector::copyToMachineFrameInfo(MachineFrameInfo &MFI) const {
600   if (Layout.empty())
601     return;
602 
603   for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) {
604     if (MFI.isDeadObjectIndex(I))
605       continue;
606 
607     const AllocaInst *AI = MFI.getObjectAllocation(I);
608     if (!AI)
609       continue;
610 
611     SSPLayoutMap::const_iterator LI = Layout.find(AI);
612     if (LI == Layout.end())
613       continue;
614 
615     MFI.setObjectSSPLayout(I, LI->second);
616   }
617 }
618