1 //===- TailDuplicator.cpp - Duplicate blocks into predecessors' tails -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This utility class duplicates basic blocks ending in unconditional branches
10 // into the tails of their predecessors.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/TailDuplicator.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/ProfileSummaryInfo.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
25 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/MachineSizeOpts.h"
32 #include "llvm/CodeGen/MachineSSAUpdater.h"
33 #include "llvm/CodeGen/TargetInstrInfo.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/CodeGen/TargetSubtargetInfo.h"
36 #include "llvm/IR/DebugLoc.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Target/TargetMachine.h"
43 #include <algorithm>
44 #include <cassert>
45 #include <iterator>
46 #include <utility>
47 
48 using namespace llvm;
49 
50 #define DEBUG_TYPE "tailduplication"
51 
52 STATISTIC(NumTails, "Number of tails duplicated");
53 STATISTIC(NumTailDups, "Number of tail duplicated blocks");
54 STATISTIC(NumTailDupAdded,
55           "Number of instructions added due to tail duplication");
56 STATISTIC(NumTailDupRemoved,
57           "Number of instructions removed due to tail duplication");
58 STATISTIC(NumDeadBlocks, "Number of dead blocks removed");
59 STATISTIC(NumAddedPHIs, "Number of phis added");
60 
61 // Heuristic for tail duplication.
62 static cl::opt<unsigned> TailDuplicateSize(
63     "tail-dup-size",
64     cl::desc("Maximum instructions to consider tail duplicating"), cl::init(2),
65     cl::Hidden);
66 
67 static cl::opt<unsigned> TailDupIndirectBranchSize(
68     "tail-dup-indirect-size",
69     cl::desc("Maximum instructions to consider tail duplicating blocks that "
70              "end with indirect branches."), cl::init(20),
71     cl::Hidden);
72 
73 static cl::opt<bool>
74     TailDupVerify("tail-dup-verify",
75                   cl::desc("Verify sanity of PHI instructions during taildup"),
76                   cl::init(false), cl::Hidden);
77 
78 static cl::opt<unsigned> TailDupLimit("tail-dup-limit", cl::init(~0U),
79                                       cl::Hidden);
80 
81 void TailDuplicator::initMF(MachineFunction &MFin, bool PreRegAlloc,
82                             const MachineBranchProbabilityInfo *MBPIin,
83                             const MachineBlockFrequencyInfo *MBFIin,
84                             ProfileSummaryInfo *PSIin,
85                             bool LayoutModeIn, unsigned TailDupSizeIn) {
86   MF = &MFin;
87   TII = MF->getSubtarget().getInstrInfo();
88   TRI = MF->getSubtarget().getRegisterInfo();
89   MRI = &MF->getRegInfo();
90   MMI = &MF->getMMI();
91   MBPI = MBPIin;
92   MBFI = MBFIin;
93   PSI = PSIin;
94   TailDupSize = TailDupSizeIn;
95 
96   assert(MBPI != nullptr && "Machine Branch Probability Info required");
97 
98   LayoutMode = LayoutModeIn;
99   this->PreRegAlloc = PreRegAlloc;
100 }
101 
102 static void VerifyPHIs(MachineFunction &MF, bool CheckExtra) {
103   for (MachineFunction::iterator I = ++MF.begin(), E = MF.end(); I != E; ++I) {
104     MachineBasicBlock *MBB = &*I;
105     SmallSetVector<MachineBasicBlock *, 8> Preds(MBB->pred_begin(),
106                                                  MBB->pred_end());
107     MachineBasicBlock::iterator MI = MBB->begin();
108     while (MI != MBB->end()) {
109       if (!MI->isPHI())
110         break;
111       for (MachineBasicBlock *PredBB : Preds) {
112         bool Found = false;
113         for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2) {
114           MachineBasicBlock *PHIBB = MI->getOperand(i + 1).getMBB();
115           if (PHIBB == PredBB) {
116             Found = true;
117             break;
118           }
119         }
120         if (!Found) {
121           dbgs() << "Malformed PHI in " << printMBBReference(*MBB) << ": "
122                  << *MI;
123           dbgs() << "  missing input from predecessor "
124                  << printMBBReference(*PredBB) << '\n';
125           llvm_unreachable(nullptr);
126         }
127       }
128 
129       for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2) {
130         MachineBasicBlock *PHIBB = MI->getOperand(i + 1).getMBB();
131         if (CheckExtra && !Preds.count(PHIBB)) {
132           dbgs() << "Warning: malformed PHI in " << printMBBReference(*MBB)
133                  << ": " << *MI;
134           dbgs() << "  extra input from predecessor "
135                  << printMBBReference(*PHIBB) << '\n';
136           llvm_unreachable(nullptr);
137         }
138         if (PHIBB->getNumber() < 0) {
139           dbgs() << "Malformed PHI in " << printMBBReference(*MBB) << ": "
140                  << *MI;
141           dbgs() << "  non-existing " << printMBBReference(*PHIBB) << '\n';
142           llvm_unreachable(nullptr);
143         }
144       }
145       ++MI;
146     }
147   }
148 }
149 
150 /// Tail duplicate the block and cleanup.
151 /// \p IsSimple - return value of isSimpleBB
152 /// \p MBB - block to be duplicated
153 /// \p ForcedLayoutPred - If non-null, treat this block as the layout
154 ///     predecessor, instead of using the ordering in MF
155 /// \p DuplicatedPreds - if non-null, \p DuplicatedPreds will contain a list of
156 ///     all Preds that received a copy of \p MBB.
157 /// \p RemovalCallback - if non-null, called just before MBB is deleted.
158 bool TailDuplicator::tailDuplicateAndUpdate(
159     bool IsSimple, MachineBasicBlock *MBB,
160     MachineBasicBlock *ForcedLayoutPred,
161     SmallVectorImpl<MachineBasicBlock*> *DuplicatedPreds,
162     function_ref<void(MachineBasicBlock *)> *RemovalCallback) {
163   // Save the successors list.
164   SmallSetVector<MachineBasicBlock *, 8> Succs(MBB->succ_begin(),
165                                                MBB->succ_end());
166 
167   SmallVector<MachineBasicBlock *, 8> TDBBs;
168   SmallVector<MachineInstr *, 16> Copies;
169   if (!tailDuplicate(IsSimple, MBB, ForcedLayoutPred, TDBBs, Copies))
170     return false;
171 
172   ++NumTails;
173 
174   SmallVector<MachineInstr *, 8> NewPHIs;
175   MachineSSAUpdater SSAUpdate(*MF, &NewPHIs);
176 
177   // TailBB's immediate successors are now successors of those predecessors
178   // which duplicated TailBB. Add the predecessors as sources to the PHI
179   // instructions.
180   bool isDead = MBB->pred_empty() && !MBB->hasAddressTaken();
181   if (PreRegAlloc)
182     updateSuccessorsPHIs(MBB, isDead, TDBBs, Succs);
183 
184   // If it is dead, remove it.
185   if (isDead) {
186     NumTailDupRemoved += MBB->size();
187     removeDeadBlock(MBB, RemovalCallback);
188     ++NumDeadBlocks;
189   }
190 
191   // Update SSA form.
192   if (!SSAUpdateVRs.empty()) {
193     for (unsigned i = 0, e = SSAUpdateVRs.size(); i != e; ++i) {
194       unsigned VReg = SSAUpdateVRs[i];
195       SSAUpdate.Initialize(VReg);
196 
197       // If the original definition is still around, add it as an available
198       // value.
199       MachineInstr *DefMI = MRI->getVRegDef(VReg);
200       MachineBasicBlock *DefBB = nullptr;
201       if (DefMI) {
202         DefBB = DefMI->getParent();
203         SSAUpdate.AddAvailableValue(DefBB, VReg);
204       }
205 
206       // Add the new vregs as available values.
207       DenseMap<unsigned, AvailableValsTy>::iterator LI =
208           SSAUpdateVals.find(VReg);
209       for (unsigned j = 0, ee = LI->second.size(); j != ee; ++j) {
210         MachineBasicBlock *SrcBB = LI->second[j].first;
211         unsigned SrcReg = LI->second[j].second;
212         SSAUpdate.AddAvailableValue(SrcBB, SrcReg);
213       }
214 
215       // Rewrite uses that are outside of the original def's block.
216       MachineRegisterInfo::use_iterator UI = MRI->use_begin(VReg);
217       while (UI != MRI->use_end()) {
218         MachineOperand &UseMO = *UI;
219         MachineInstr *UseMI = UseMO.getParent();
220         ++UI;
221         if (UseMI->isDebugValue()) {
222           // SSAUpdate can replace the use with an undef. That creates
223           // a debug instruction that is a kill.
224           // FIXME: Should it SSAUpdate job to delete debug instructions
225           // instead of replacing the use with undef?
226           UseMI->eraseFromParent();
227           continue;
228         }
229         if (UseMI->getParent() == DefBB && !UseMI->isPHI())
230           continue;
231         SSAUpdate.RewriteUse(UseMO);
232       }
233     }
234 
235     SSAUpdateVRs.clear();
236     SSAUpdateVals.clear();
237   }
238 
239   // Eliminate some of the copies inserted by tail duplication to maintain
240   // SSA form.
241   for (unsigned i = 0, e = Copies.size(); i != e; ++i) {
242     MachineInstr *Copy = Copies[i];
243     if (!Copy->isCopy())
244       continue;
245     Register Dst = Copy->getOperand(0).getReg();
246     Register Src = Copy->getOperand(1).getReg();
247     if (MRI->hasOneNonDBGUse(Src) &&
248         MRI->constrainRegClass(Src, MRI->getRegClass(Dst))) {
249       // Copy is the only use. Do trivial copy propagation here.
250       MRI->replaceRegWith(Dst, Src);
251       Copy->eraseFromParent();
252     }
253   }
254 
255   if (NewPHIs.size())
256     NumAddedPHIs += NewPHIs.size();
257 
258   if (DuplicatedPreds)
259     *DuplicatedPreds = std::move(TDBBs);
260 
261   return true;
262 }
263 
264 /// Look for small blocks that are unconditionally branched to and do not fall
265 /// through. Tail-duplicate their instructions into their predecessors to
266 /// eliminate (dynamic) branches.
267 bool TailDuplicator::tailDuplicateBlocks() {
268   bool MadeChange = false;
269 
270   if (PreRegAlloc && TailDupVerify) {
271     LLVM_DEBUG(dbgs() << "\n*** Before tail-duplicating\n");
272     VerifyPHIs(*MF, true);
273   }
274 
275   for (MachineFunction::iterator I = ++MF->begin(), E = MF->end(); I != E;) {
276     MachineBasicBlock *MBB = &*I++;
277 
278     if (NumTails == TailDupLimit)
279       break;
280 
281     bool IsSimple = isSimpleBB(MBB);
282 
283     if (!shouldTailDuplicate(IsSimple, *MBB))
284       continue;
285 
286     MadeChange |= tailDuplicateAndUpdate(IsSimple, MBB, nullptr);
287   }
288 
289   if (PreRegAlloc && TailDupVerify)
290     VerifyPHIs(*MF, false);
291 
292   return MadeChange;
293 }
294 
295 static bool isDefLiveOut(unsigned Reg, MachineBasicBlock *BB,
296                          const MachineRegisterInfo *MRI) {
297   for (MachineInstr &UseMI : MRI->use_instructions(Reg)) {
298     if (UseMI.isDebugValue())
299       continue;
300     if (UseMI.getParent() != BB)
301       return true;
302   }
303   return false;
304 }
305 
306 static unsigned getPHISrcRegOpIdx(MachineInstr *MI, MachineBasicBlock *SrcBB) {
307   for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2)
308     if (MI->getOperand(i + 1).getMBB() == SrcBB)
309       return i;
310   return 0;
311 }
312 
313 // Remember which registers are used by phis in this block. This is
314 // used to determine which registers are liveout while modifying the
315 // block (which is why we need to copy the information).
316 static void getRegsUsedByPHIs(const MachineBasicBlock &BB,
317                               DenseSet<unsigned> *UsedByPhi) {
318   for (const auto &MI : BB) {
319     if (!MI.isPHI())
320       break;
321     for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
322       Register SrcReg = MI.getOperand(i).getReg();
323       UsedByPhi->insert(SrcReg);
324     }
325   }
326 }
327 
328 /// Add a definition and source virtual registers pair for SSA update.
329 void TailDuplicator::addSSAUpdateEntry(unsigned OrigReg, unsigned NewReg,
330                                        MachineBasicBlock *BB) {
331   DenseMap<unsigned, AvailableValsTy>::iterator LI =
332       SSAUpdateVals.find(OrigReg);
333   if (LI != SSAUpdateVals.end())
334     LI->second.push_back(std::make_pair(BB, NewReg));
335   else {
336     AvailableValsTy Vals;
337     Vals.push_back(std::make_pair(BB, NewReg));
338     SSAUpdateVals.insert(std::make_pair(OrigReg, Vals));
339     SSAUpdateVRs.push_back(OrigReg);
340   }
341 }
342 
343 /// Process PHI node in TailBB by turning it into a copy in PredBB. Remember the
344 /// source register that's contributed by PredBB and update SSA update map.
345 void TailDuplicator::processPHI(
346     MachineInstr *MI, MachineBasicBlock *TailBB, MachineBasicBlock *PredBB,
347     DenseMap<unsigned, RegSubRegPair> &LocalVRMap,
348     SmallVectorImpl<std::pair<unsigned, RegSubRegPair>> &Copies,
349     const DenseSet<unsigned> &RegsUsedByPhi, bool Remove) {
350   Register DefReg = MI->getOperand(0).getReg();
351   unsigned SrcOpIdx = getPHISrcRegOpIdx(MI, PredBB);
352   assert(SrcOpIdx && "Unable to find matching PHI source?");
353   Register SrcReg = MI->getOperand(SrcOpIdx).getReg();
354   unsigned SrcSubReg = MI->getOperand(SrcOpIdx).getSubReg();
355   const TargetRegisterClass *RC = MRI->getRegClass(DefReg);
356   LocalVRMap.insert(std::make_pair(DefReg, RegSubRegPair(SrcReg, SrcSubReg)));
357 
358   // Insert a copy from source to the end of the block. The def register is the
359   // available value liveout of the block.
360   Register NewDef = MRI->createVirtualRegister(RC);
361   Copies.push_back(std::make_pair(NewDef, RegSubRegPair(SrcReg, SrcSubReg)));
362   if (isDefLiveOut(DefReg, TailBB, MRI) || RegsUsedByPhi.count(DefReg))
363     addSSAUpdateEntry(DefReg, NewDef, PredBB);
364 
365   if (!Remove)
366     return;
367 
368   // Remove PredBB from the PHI node.
369   MI->RemoveOperand(SrcOpIdx + 1);
370   MI->RemoveOperand(SrcOpIdx);
371   if (MI->getNumOperands() == 1)
372     MI->eraseFromParent();
373 }
374 
375 /// Duplicate a TailBB instruction to PredBB and update
376 /// the source operands due to earlier PHI translation.
377 void TailDuplicator::duplicateInstruction(
378     MachineInstr *MI, MachineBasicBlock *TailBB, MachineBasicBlock *PredBB,
379     DenseMap<unsigned, RegSubRegPair> &LocalVRMap,
380     const DenseSet<unsigned> &UsedByPhi) {
381   // Allow duplication of CFI instructions.
382   if (MI->isCFIInstruction()) {
383     BuildMI(*PredBB, PredBB->end(), PredBB->findDebugLoc(PredBB->begin()),
384       TII->get(TargetOpcode::CFI_INSTRUCTION)).addCFIIndex(
385       MI->getOperand(0).getCFIIndex());
386     return;
387   }
388   MachineInstr &NewMI = TII->duplicate(*PredBB, PredBB->end(), *MI);
389   if (PreRegAlloc) {
390     for (unsigned i = 0, e = NewMI.getNumOperands(); i != e; ++i) {
391       MachineOperand &MO = NewMI.getOperand(i);
392       if (!MO.isReg())
393         continue;
394       Register Reg = MO.getReg();
395       if (!Register::isVirtualRegister(Reg))
396         continue;
397       if (MO.isDef()) {
398         const TargetRegisterClass *RC = MRI->getRegClass(Reg);
399         Register NewReg = MRI->createVirtualRegister(RC);
400         MO.setReg(NewReg);
401         LocalVRMap.insert(std::make_pair(Reg, RegSubRegPair(NewReg, 0)));
402         if (isDefLiveOut(Reg, TailBB, MRI) || UsedByPhi.count(Reg))
403           addSSAUpdateEntry(Reg, NewReg, PredBB);
404       } else {
405         auto VI = LocalVRMap.find(Reg);
406         if (VI != LocalVRMap.end()) {
407           // Need to make sure that the register class of the mapped register
408           // will satisfy the constraints of the class of the register being
409           // replaced.
410           auto *OrigRC = MRI->getRegClass(Reg);
411           auto *MappedRC = MRI->getRegClass(VI->second.Reg);
412           const TargetRegisterClass *ConstrRC;
413           if (VI->second.SubReg != 0) {
414             ConstrRC = TRI->getMatchingSuperRegClass(MappedRC, OrigRC,
415                                                      VI->second.SubReg);
416             if (ConstrRC) {
417               // The actual constraining (as in "find appropriate new class")
418               // is done by getMatchingSuperRegClass, so now we only need to
419               // change the class of the mapped register.
420               MRI->setRegClass(VI->second.Reg, ConstrRC);
421             }
422           } else {
423             // For mapped registers that do not have sub-registers, simply
424             // restrict their class to match the original one.
425             ConstrRC = MRI->constrainRegClass(VI->second.Reg, OrigRC);
426           }
427 
428           if (ConstrRC) {
429             // If the class constraining succeeded, we can simply replace
430             // the old register with the mapped one.
431             MO.setReg(VI->second.Reg);
432             // We have Reg -> VI.Reg:VI.SubReg, so if Reg is used with a
433             // sub-register, we need to compose the sub-register indices.
434             MO.setSubReg(TRI->composeSubRegIndices(MO.getSubReg(),
435                                                    VI->second.SubReg));
436           } else {
437             // The direct replacement is not possible, due to failing register
438             // class constraints. An explicit COPY is necessary. Create one
439             // that can be reused
440             auto *NewRC = MI->getRegClassConstraint(i, TII, TRI);
441             if (NewRC == nullptr)
442               NewRC = OrigRC;
443             Register NewReg = MRI->createVirtualRegister(NewRC);
444             BuildMI(*PredBB, NewMI, NewMI.getDebugLoc(),
445                     TII->get(TargetOpcode::COPY), NewReg)
446                 .addReg(VI->second.Reg, 0, VI->second.SubReg);
447             LocalVRMap.erase(VI);
448             LocalVRMap.insert(std::make_pair(Reg, RegSubRegPair(NewReg, 0)));
449             MO.setReg(NewReg);
450             // The composed VI.Reg:VI.SubReg is replaced with NewReg, which
451             // is equivalent to the whole register Reg. Hence, Reg:subreg
452             // is same as NewReg:subreg, so keep the sub-register index
453             // unchanged.
454           }
455           // Clear any kill flags from this operand.  The new register could
456           // have uses after this one, so kills are not valid here.
457           MO.setIsKill(false);
458         }
459       }
460     }
461   }
462 }
463 
464 /// After FromBB is tail duplicated into its predecessor blocks, the successors
465 /// have gained new predecessors. Update the PHI instructions in them
466 /// accordingly.
467 void TailDuplicator::updateSuccessorsPHIs(
468     MachineBasicBlock *FromBB, bool isDead,
469     SmallVectorImpl<MachineBasicBlock *> &TDBBs,
470     SmallSetVector<MachineBasicBlock *, 8> &Succs) {
471   for (MachineBasicBlock *SuccBB : Succs) {
472     for (MachineInstr &MI : *SuccBB) {
473       if (!MI.isPHI())
474         break;
475       MachineInstrBuilder MIB(*FromBB->getParent(), MI);
476       unsigned Idx = 0;
477       for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
478         MachineOperand &MO = MI.getOperand(i + 1);
479         if (MO.getMBB() == FromBB) {
480           Idx = i;
481           break;
482         }
483       }
484 
485       assert(Idx != 0);
486       MachineOperand &MO0 = MI.getOperand(Idx);
487       Register Reg = MO0.getReg();
488       if (isDead) {
489         // Folded into the previous BB.
490         // There could be duplicate phi source entries. FIXME: Should sdisel
491         // or earlier pass fixed this?
492         for (unsigned i = MI.getNumOperands() - 2; i != Idx; i -= 2) {
493           MachineOperand &MO = MI.getOperand(i + 1);
494           if (MO.getMBB() == FromBB) {
495             MI.RemoveOperand(i + 1);
496             MI.RemoveOperand(i);
497           }
498         }
499       } else
500         Idx = 0;
501 
502       // If Idx is set, the operands at Idx and Idx+1 must be removed.
503       // We reuse the location to avoid expensive RemoveOperand calls.
504 
505       DenseMap<unsigned, AvailableValsTy>::iterator LI =
506           SSAUpdateVals.find(Reg);
507       if (LI != SSAUpdateVals.end()) {
508         // This register is defined in the tail block.
509         for (unsigned j = 0, ee = LI->second.size(); j != ee; ++j) {
510           MachineBasicBlock *SrcBB = LI->second[j].first;
511           // If we didn't duplicate a bb into a particular predecessor, we
512           // might still have added an entry to SSAUpdateVals to correcly
513           // recompute SSA. If that case, avoid adding a dummy extra argument
514           // this PHI.
515           if (!SrcBB->isSuccessor(SuccBB))
516             continue;
517 
518           unsigned SrcReg = LI->second[j].second;
519           if (Idx != 0) {
520             MI.getOperand(Idx).setReg(SrcReg);
521             MI.getOperand(Idx + 1).setMBB(SrcBB);
522             Idx = 0;
523           } else {
524             MIB.addReg(SrcReg).addMBB(SrcBB);
525           }
526         }
527       } else {
528         // Live in tail block, must also be live in predecessors.
529         for (unsigned j = 0, ee = TDBBs.size(); j != ee; ++j) {
530           MachineBasicBlock *SrcBB = TDBBs[j];
531           if (Idx != 0) {
532             MI.getOperand(Idx).setReg(Reg);
533             MI.getOperand(Idx + 1).setMBB(SrcBB);
534             Idx = 0;
535           } else {
536             MIB.addReg(Reg).addMBB(SrcBB);
537           }
538         }
539       }
540       if (Idx != 0) {
541         MI.RemoveOperand(Idx + 1);
542         MI.RemoveOperand(Idx);
543       }
544     }
545   }
546 }
547 
548 /// Determine if it is profitable to duplicate this block.
549 bool TailDuplicator::shouldTailDuplicate(bool IsSimple,
550                                          MachineBasicBlock &TailBB) {
551   // When doing tail-duplication during layout, the block ordering is in flux,
552   // so canFallThrough returns a result based on incorrect information and
553   // should just be ignored.
554   if (!LayoutMode && TailBB.canFallThrough())
555     return false;
556 
557   // Don't try to tail-duplicate single-block loops.
558   if (TailBB.isSuccessor(&TailBB))
559     return false;
560 
561   // Set the limit on the cost to duplicate. When optimizing for size,
562   // duplicate only one, because one branch instruction can be eliminated to
563   // compensate for the duplication.
564   unsigned MaxDuplicateCount;
565   bool OptForSize = MF->getFunction().hasOptSize() ||
566                     llvm::shouldOptimizeForSize(&TailBB, PSI, MBFI);
567   if (TailDupSize == 0)
568     MaxDuplicateCount = TailDuplicateSize;
569   else
570     MaxDuplicateCount = TailDupSize;
571   if (OptForSize)
572     MaxDuplicateCount = 1;
573 
574   // If the block to be duplicated ends in an unanalyzable fallthrough, don't
575   // duplicate it.
576   // A similar check is necessary in MachineBlockPlacement to make sure pairs of
577   // blocks with unanalyzable fallthrough get layed out contiguously.
578   MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
579   SmallVector<MachineOperand, 4> PredCond;
580   if (TII->analyzeBranch(TailBB, PredTBB, PredFBB, PredCond) &&
581       TailBB.canFallThrough())
582     return false;
583 
584   // If the target has hardware branch prediction that can handle indirect
585   // branches, duplicating them can often make them predictable when there
586   // are common paths through the code.  The limit needs to be high enough
587   // to allow undoing the effects of tail merging and other optimizations
588   // that rearrange the predecessors of the indirect branch.
589 
590   bool HasIndirectbr = false;
591   if (!TailBB.empty())
592     HasIndirectbr = TailBB.back().isIndirectBranch();
593 
594   if (HasIndirectbr && PreRegAlloc)
595     MaxDuplicateCount = TailDupIndirectBranchSize;
596 
597   // Check the instructions in the block to determine whether tail-duplication
598   // is invalid or unlikely to be profitable.
599   unsigned InstrCount = 0;
600   for (MachineInstr &MI : TailBB) {
601     // Non-duplicable things shouldn't be tail-duplicated.
602     // CFI instructions are marked as non-duplicable, because Darwin compact
603     // unwind info emission can't handle multiple prologue setups. In case of
604     // DWARF, allow them be duplicated, so that their existence doesn't prevent
605     // tail duplication of some basic blocks, that would be duplicated otherwise.
606     if (MI.isNotDuplicable() &&
607         (TailBB.getParent()->getTarget().getTargetTriple().isOSDarwin() ||
608         !MI.isCFIInstruction()))
609       return false;
610 
611     // Convergent instructions can be duplicated only if doing so doesn't add
612     // new control dependencies, which is what we're going to do here.
613     if (MI.isConvergent())
614       return false;
615 
616     // Do not duplicate 'return' instructions if this is a pre-regalloc run.
617     // A return may expand into a lot more instructions (e.g. reload of callee
618     // saved registers) after PEI.
619     if (PreRegAlloc && MI.isReturn())
620       return false;
621 
622     // Avoid duplicating calls before register allocation. Calls presents a
623     // barrier to register allocation so duplicating them may end up increasing
624     // spills.
625     if (PreRegAlloc && MI.isCall())
626       return false;
627 
628     if (!MI.isPHI() && !MI.isMetaInstruction())
629       InstrCount += 1;
630 
631     if (InstrCount > MaxDuplicateCount)
632       return false;
633   }
634 
635   // Check if any of the successors of TailBB has a PHI node in which the
636   // value corresponding to TailBB uses a subregister.
637   // If a phi node uses a register paired with a subregister, the actual
638   // "value type" of the phi may differ from the type of the register without
639   // any subregisters. Due to a bug, tail duplication may add a new operand
640   // without a necessary subregister, producing an invalid code. This is
641   // demonstrated by test/CodeGen/Hexagon/tail-dup-subreg-abort.ll.
642   // Disable tail duplication for this case for now, until the problem is
643   // fixed.
644   for (auto SB : TailBB.successors()) {
645     for (auto &I : *SB) {
646       if (!I.isPHI())
647         break;
648       unsigned Idx = getPHISrcRegOpIdx(&I, &TailBB);
649       assert(Idx != 0);
650       MachineOperand &PU = I.getOperand(Idx);
651       if (PU.getSubReg() != 0)
652         return false;
653     }
654   }
655 
656   if (HasIndirectbr && PreRegAlloc)
657     return true;
658 
659   if (IsSimple)
660     return true;
661 
662   if (!PreRegAlloc)
663     return true;
664 
665   return canCompletelyDuplicateBB(TailBB);
666 }
667 
668 /// True if this BB has only one unconditional jump.
669 bool TailDuplicator::isSimpleBB(MachineBasicBlock *TailBB) {
670   if (TailBB->succ_size() != 1)
671     return false;
672   if (TailBB->pred_empty())
673     return false;
674   MachineBasicBlock::iterator I = TailBB->getFirstNonDebugInstr();
675   if (I == TailBB->end())
676     return true;
677   return I->isUnconditionalBranch();
678 }
679 
680 static bool bothUsedInPHI(const MachineBasicBlock &A,
681                           const SmallPtrSet<MachineBasicBlock *, 8> &SuccsB) {
682   for (MachineBasicBlock *BB : A.successors())
683     if (SuccsB.count(BB) && !BB->empty() && BB->begin()->isPHI())
684       return true;
685 
686   return false;
687 }
688 
689 bool TailDuplicator::canCompletelyDuplicateBB(MachineBasicBlock &BB) {
690   for (MachineBasicBlock *PredBB : BB.predecessors()) {
691     if (PredBB->succ_size() > 1)
692       return false;
693 
694     MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
695     SmallVector<MachineOperand, 4> PredCond;
696     if (TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond))
697       return false;
698 
699     if (!PredCond.empty())
700       return false;
701   }
702   return true;
703 }
704 
705 bool TailDuplicator::duplicateSimpleBB(
706     MachineBasicBlock *TailBB, SmallVectorImpl<MachineBasicBlock *> &TDBBs,
707     const DenseSet<unsigned> &UsedByPhi,
708     SmallVectorImpl<MachineInstr *> &Copies) {
709   SmallPtrSet<MachineBasicBlock *, 8> Succs(TailBB->succ_begin(),
710                                             TailBB->succ_end());
711   SmallVector<MachineBasicBlock *, 8> Preds(TailBB->pred_begin(),
712                                             TailBB->pred_end());
713   bool Changed = false;
714   for (MachineBasicBlock *PredBB : Preds) {
715     if (PredBB->hasEHPadSuccessor())
716       continue;
717 
718     if (bothUsedInPHI(*PredBB, Succs))
719       continue;
720 
721     MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
722     SmallVector<MachineOperand, 4> PredCond;
723     if (TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond))
724       continue;
725 
726     Changed = true;
727     LLVM_DEBUG(dbgs() << "\nTail-duplicating into PredBB: " << *PredBB
728                       << "From simple Succ: " << *TailBB);
729 
730     MachineBasicBlock *NewTarget = *TailBB->succ_begin();
731     MachineBasicBlock *NextBB = PredBB->getNextNode();
732 
733     // Make PredFBB explicit.
734     if (PredCond.empty())
735       PredFBB = PredTBB;
736 
737     // Make fall through explicit.
738     if (!PredTBB)
739       PredTBB = NextBB;
740     if (!PredFBB)
741       PredFBB = NextBB;
742 
743     // Redirect
744     if (PredFBB == TailBB)
745       PredFBB = NewTarget;
746     if (PredTBB == TailBB)
747       PredTBB = NewTarget;
748 
749     // Make the branch unconditional if possible
750     if (PredTBB == PredFBB) {
751       PredCond.clear();
752       PredFBB = nullptr;
753     }
754 
755     // Avoid adding fall through branches.
756     if (PredFBB == NextBB)
757       PredFBB = nullptr;
758     if (PredTBB == NextBB && PredFBB == nullptr)
759       PredTBB = nullptr;
760 
761     auto DL = PredBB->findBranchDebugLoc();
762     TII->removeBranch(*PredBB);
763 
764     if (!PredBB->isSuccessor(NewTarget))
765       PredBB->replaceSuccessor(TailBB, NewTarget);
766     else {
767       PredBB->removeSuccessor(TailBB, true);
768       assert(PredBB->succ_size() <= 1);
769     }
770 
771     if (PredTBB)
772       TII->insertBranch(*PredBB, PredTBB, PredFBB, PredCond, DL);
773 
774     TDBBs.push_back(PredBB);
775   }
776   return Changed;
777 }
778 
779 bool TailDuplicator::canTailDuplicate(MachineBasicBlock *TailBB,
780                                       MachineBasicBlock *PredBB) {
781   // EH edges are ignored by analyzeBranch.
782   if (PredBB->succ_size() > 1)
783     return false;
784 
785   MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
786   SmallVector<MachineOperand, 4> PredCond;
787   if (TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond))
788     return false;
789   if (!PredCond.empty())
790     return false;
791   return true;
792 }
793 
794 /// If it is profitable, duplicate TailBB's contents in each
795 /// of its predecessors.
796 /// \p IsSimple result of isSimpleBB
797 /// \p TailBB   Block to be duplicated.
798 /// \p ForcedLayoutPred  When non-null, use this block as the layout predecessor
799 ///                      instead of the previous block in MF's order.
800 /// \p TDBBs             A vector to keep track of all blocks tail-duplicated
801 ///                      into.
802 /// \p Copies            A vector of copy instructions inserted. Used later to
803 ///                      walk all the inserted copies and remove redundant ones.
804 bool TailDuplicator::tailDuplicate(bool IsSimple, MachineBasicBlock *TailBB,
805                                    MachineBasicBlock *ForcedLayoutPred,
806                                    SmallVectorImpl<MachineBasicBlock *> &TDBBs,
807                                    SmallVectorImpl<MachineInstr *> &Copies) {
808   LLVM_DEBUG(dbgs() << "\n*** Tail-duplicating " << printMBBReference(*TailBB)
809                     << '\n');
810 
811   DenseSet<unsigned> UsedByPhi;
812   getRegsUsedByPHIs(*TailBB, &UsedByPhi);
813 
814   if (IsSimple)
815     return duplicateSimpleBB(TailBB, TDBBs, UsedByPhi, Copies);
816 
817   // Iterate through all the unique predecessors and tail-duplicate this
818   // block into them, if possible. Copying the list ahead of time also
819   // avoids trouble with the predecessor list reallocating.
820   bool Changed = false;
821   SmallSetVector<MachineBasicBlock *, 8> Preds(TailBB->pred_begin(),
822                                                TailBB->pred_end());
823   for (MachineBasicBlock *PredBB : Preds) {
824     assert(TailBB != PredBB &&
825            "Single-block loop should have been rejected earlier!");
826 
827     if (!canTailDuplicate(TailBB, PredBB))
828       continue;
829 
830     // Don't duplicate into a fall-through predecessor (at least for now).
831     bool IsLayoutSuccessor = false;
832     if (ForcedLayoutPred)
833       IsLayoutSuccessor = (ForcedLayoutPred == PredBB);
834     else if (PredBB->isLayoutSuccessor(TailBB) && PredBB->canFallThrough())
835       IsLayoutSuccessor = true;
836     if (IsLayoutSuccessor)
837       continue;
838 
839     LLVM_DEBUG(dbgs() << "\nTail-duplicating into PredBB: " << *PredBB
840                       << "From Succ: " << *TailBB);
841 
842     TDBBs.push_back(PredBB);
843 
844     // Remove PredBB's unconditional branch.
845     TII->removeBranch(*PredBB);
846 
847     // Clone the contents of TailBB into PredBB.
848     DenseMap<unsigned, RegSubRegPair> LocalVRMap;
849     SmallVector<std::pair<unsigned, RegSubRegPair>, 4> CopyInfos;
850     for (MachineBasicBlock::iterator I = TailBB->begin(), E = TailBB->end();
851          I != E; /* empty */) {
852       MachineInstr *MI = &*I;
853       ++I;
854       if (MI->isPHI()) {
855         // Replace the uses of the def of the PHI with the register coming
856         // from PredBB.
857         processPHI(MI, TailBB, PredBB, LocalVRMap, CopyInfos, UsedByPhi, true);
858       } else {
859         // Replace def of virtual registers with new registers, and update
860         // uses with PHI source register or the new registers.
861         duplicateInstruction(MI, TailBB, PredBB, LocalVRMap, UsedByPhi);
862       }
863     }
864     appendCopies(PredBB, CopyInfos, Copies);
865 
866     NumTailDupAdded += TailBB->size() - 1; // subtract one for removed branch
867 
868     // Update the CFG.
869     PredBB->removeSuccessor(PredBB->succ_begin());
870     assert(PredBB->succ_empty() &&
871            "TailDuplicate called on block with multiple successors!");
872     for (MachineBasicBlock *Succ : TailBB->successors())
873       PredBB->addSuccessor(Succ, MBPI->getEdgeProbability(TailBB, Succ));
874 
875     Changed = true;
876     ++NumTailDups;
877   }
878 
879   // If TailBB was duplicated into all its predecessors except for the prior
880   // block, which falls through unconditionally, move the contents of this
881   // block into the prior block.
882   MachineBasicBlock *PrevBB = ForcedLayoutPred;
883   if (!PrevBB)
884     PrevBB = &*std::prev(TailBB->getIterator());
885   MachineBasicBlock *PriorTBB = nullptr, *PriorFBB = nullptr;
886   SmallVector<MachineOperand, 4> PriorCond;
887   // This has to check PrevBB->succ_size() because EH edges are ignored by
888   // analyzeBranch.
889   if (PrevBB->succ_size() == 1 &&
890       // Layout preds are not always CFG preds. Check.
891       *PrevBB->succ_begin() == TailBB &&
892       !TII->analyzeBranch(*PrevBB, PriorTBB, PriorFBB, PriorCond) &&
893       PriorCond.empty() &&
894       (!PriorTBB || PriorTBB == TailBB) &&
895       TailBB->pred_size() == 1 &&
896       !TailBB->hasAddressTaken()) {
897     LLVM_DEBUG(dbgs() << "\nMerging into block: " << *PrevBB
898                       << "From MBB: " << *TailBB);
899     // There may be a branch to the layout successor. This is unlikely but it
900     // happens. The correct thing to do is to remove the branch before
901     // duplicating the instructions in all cases.
902     TII->removeBranch(*PrevBB);
903     if (PreRegAlloc) {
904       DenseMap<unsigned, RegSubRegPair> LocalVRMap;
905       SmallVector<std::pair<unsigned, RegSubRegPair>, 4> CopyInfos;
906       MachineBasicBlock::iterator I = TailBB->begin();
907       // Process PHI instructions first.
908       while (I != TailBB->end() && I->isPHI()) {
909         // Replace the uses of the def of the PHI with the register coming
910         // from PredBB.
911         MachineInstr *MI = &*I++;
912         processPHI(MI, TailBB, PrevBB, LocalVRMap, CopyInfos, UsedByPhi, true);
913       }
914 
915       // Now copy the non-PHI instructions.
916       while (I != TailBB->end()) {
917         // Replace def of virtual registers with new registers, and update
918         // uses with PHI source register or the new registers.
919         MachineInstr *MI = &*I++;
920         assert(!MI->isBundle() && "Not expecting bundles before regalloc!");
921         duplicateInstruction(MI, TailBB, PrevBB, LocalVRMap, UsedByPhi);
922         MI->eraseFromParent();
923       }
924       appendCopies(PrevBB, CopyInfos, Copies);
925     } else {
926       TII->removeBranch(*PrevBB);
927       // No PHIs to worry about, just splice the instructions over.
928       PrevBB->splice(PrevBB->end(), TailBB, TailBB->begin(), TailBB->end());
929     }
930     PrevBB->removeSuccessor(PrevBB->succ_begin());
931     assert(PrevBB->succ_empty());
932     PrevBB->transferSuccessors(TailBB);
933     TDBBs.push_back(PrevBB);
934     Changed = true;
935   }
936 
937   // If this is after register allocation, there are no phis to fix.
938   if (!PreRegAlloc)
939     return Changed;
940 
941   // If we made no changes so far, we are safe.
942   if (!Changed)
943     return Changed;
944 
945   // Handle the nasty case in that we duplicated a block that is part of a loop
946   // into some but not all of its predecessors. For example:
947   //    1 -> 2 <-> 3                 |
948   //          \                      |
949   //           \---> rest            |
950   // if we duplicate 2 into 1 but not into 3, we end up with
951   // 12 -> 3 <-> 2 -> rest           |
952   //   \             /               |
953   //    \----->-----/                |
954   // If there was a "var = phi(1, 3)" in 2, it has to be ultimately replaced
955   // with a phi in 3 (which now dominates 2).
956   // What we do here is introduce a copy in 3 of the register defined by the
957   // phi, just like when we are duplicating 2 into 3, but we don't copy any
958   // real instructions or remove the 3 -> 2 edge from the phi in 2.
959   for (MachineBasicBlock *PredBB : Preds) {
960     if (is_contained(TDBBs, PredBB))
961       continue;
962 
963     // EH edges
964     if (PredBB->succ_size() != 1)
965       continue;
966 
967     DenseMap<unsigned, RegSubRegPair> LocalVRMap;
968     SmallVector<std::pair<unsigned, RegSubRegPair>, 4> CopyInfos;
969     MachineBasicBlock::iterator I = TailBB->begin();
970     // Process PHI instructions first.
971     while (I != TailBB->end() && I->isPHI()) {
972       // Replace the uses of the def of the PHI with the register coming
973       // from PredBB.
974       MachineInstr *MI = &*I++;
975       processPHI(MI, TailBB, PredBB, LocalVRMap, CopyInfos, UsedByPhi, false);
976     }
977     appendCopies(PredBB, CopyInfos, Copies);
978   }
979 
980   return Changed;
981 }
982 
983 /// At the end of the block \p MBB generate COPY instructions between registers
984 /// described by \p CopyInfos. Append resulting instructions to \p Copies.
985 void TailDuplicator::appendCopies(MachineBasicBlock *MBB,
986       SmallVectorImpl<std::pair<unsigned,RegSubRegPair>> &CopyInfos,
987       SmallVectorImpl<MachineInstr*> &Copies) {
988   MachineBasicBlock::iterator Loc = MBB->getFirstTerminator();
989   const MCInstrDesc &CopyD = TII->get(TargetOpcode::COPY);
990   for (auto &CI : CopyInfos) {
991     auto C = BuildMI(*MBB, Loc, DebugLoc(), CopyD, CI.first)
992                 .addReg(CI.second.Reg, 0, CI.second.SubReg);
993     Copies.push_back(C);
994   }
995 }
996 
997 /// Remove the specified dead machine basic block from the function, updating
998 /// the CFG.
999 void TailDuplicator::removeDeadBlock(
1000     MachineBasicBlock *MBB,
1001     function_ref<void(MachineBasicBlock *)> *RemovalCallback) {
1002   assert(MBB->pred_empty() && "MBB must be dead!");
1003   LLVM_DEBUG(dbgs() << "\nRemoving MBB: " << *MBB);
1004 
1005   if (RemovalCallback)
1006     (*RemovalCallback)(MBB);
1007 
1008   // Remove all successors.
1009   while (!MBB->succ_empty())
1010     MBB->removeSuccessor(MBB->succ_end() - 1);
1011 
1012   // Remove the block.
1013   MBB->eraseFromParent();
1014 }
1015