1 //===-- TargetInstrInfo.cpp - Target Instruction Information --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetInstrInfo.h"
14 #include "llvm/ADT/StringExtras.h"
15 #include "llvm/BinaryFormat/Dwarf.h"
16 #include "llvm/CodeGen/MachineCombinerPattern.h"
17 #include "llvm/CodeGen/MachineFrameInfo.h"
18 #include "llvm/CodeGen/MachineInstrBuilder.h"
19 #include "llvm/CodeGen/MachineMemOperand.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/MachineScheduler.h"
22 #include "llvm/CodeGen/MachineTraceMetrics.h"
23 #include "llvm/CodeGen/PseudoSourceValue.h"
24 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
25 #include "llvm/CodeGen/StackMaps.h"
26 #include "llvm/CodeGen/TargetFrameLowering.h"
27 #include "llvm/CodeGen/TargetLowering.h"
28 #include "llvm/CodeGen/TargetRegisterInfo.h"
29 #include "llvm/CodeGen/TargetSchedule.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DebugInfoMetadata.h"
32 #include "llvm/MC/MCAsmInfo.h"
33 #include "llvm/MC/MCInstrItineraries.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/raw_ostream.h"
37 
38 using namespace llvm;
39 
40 static cl::opt<bool> DisableHazardRecognizer(
41   "disable-sched-hazard", cl::Hidden, cl::init(false),
42   cl::desc("Disable hazard detection during preRA scheduling"));
43 
44 TargetInstrInfo::~TargetInstrInfo() = default;
45 
46 const TargetRegisterClass*
47 TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
48                              const TargetRegisterInfo *TRI,
49                              const MachineFunction &MF) const {
50   if (OpNum >= MCID.getNumOperands())
51     return nullptr;
52 
53   short RegClass = MCID.operands()[OpNum].RegClass;
54   if (MCID.operands()[OpNum].isLookupPtrRegClass())
55     return TRI->getPointerRegClass(MF, RegClass);
56 
57   // Instructions like INSERT_SUBREG do not have fixed register classes.
58   if (RegClass < 0)
59     return nullptr;
60 
61   // Otherwise just look it up normally.
62   return TRI->getRegClass(RegClass);
63 }
64 
65 /// insertNoop - Insert a noop into the instruction stream at the specified
66 /// point.
67 void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB,
68                                  MachineBasicBlock::iterator MI) const {
69   llvm_unreachable("Target didn't implement insertNoop!");
70 }
71 
72 /// insertNoops - Insert noops into the instruction stream at the specified
73 /// point.
74 void TargetInstrInfo::insertNoops(MachineBasicBlock &MBB,
75                                   MachineBasicBlock::iterator MI,
76                                   unsigned Quantity) const {
77   for (unsigned i = 0; i < Quantity; ++i)
78     insertNoop(MBB, MI);
79 }
80 
81 static bool isAsmComment(const char *Str, const MCAsmInfo &MAI) {
82   return strncmp(Str, MAI.getCommentString().data(),
83                  MAI.getCommentString().size()) == 0;
84 }
85 
86 /// Measure the specified inline asm to determine an approximation of its
87 /// length.
88 /// Comments (which run till the next SeparatorString or newline) do not
89 /// count as an instruction.
90 /// Any other non-whitespace text is considered an instruction, with
91 /// multiple instructions separated by SeparatorString or newlines.
92 /// Variable-length instructions are not handled here; this function
93 /// may be overloaded in the target code to do that.
94 /// We implement a special case of the .space directive which takes only a
95 /// single integer argument in base 10 that is the size in bytes. This is a
96 /// restricted form of the GAS directive in that we only interpret
97 /// simple--i.e. not a logical or arithmetic expression--size values without
98 /// the optional fill value. This is primarily used for creating arbitrary
99 /// sized inline asm blocks for testing purposes.
100 unsigned TargetInstrInfo::getInlineAsmLength(
101   const char *Str,
102   const MCAsmInfo &MAI, const TargetSubtargetInfo *STI) const {
103   // Count the number of instructions in the asm.
104   bool AtInsnStart = true;
105   unsigned Length = 0;
106   const unsigned MaxInstLength = MAI.getMaxInstLength(STI);
107   for (; *Str; ++Str) {
108     if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
109                                 strlen(MAI.getSeparatorString())) == 0) {
110       AtInsnStart = true;
111     } else if (isAsmComment(Str, MAI)) {
112       // Stop counting as an instruction after a comment until the next
113       // separator.
114       AtInsnStart = false;
115     }
116 
117     if (AtInsnStart && !isSpace(static_cast<unsigned char>(*Str))) {
118       unsigned AddLength = MaxInstLength;
119       if (strncmp(Str, ".space", 6) == 0) {
120         char *EStr;
121         int SpaceSize;
122         SpaceSize = strtol(Str + 6, &EStr, 10);
123         SpaceSize = SpaceSize < 0 ? 0 : SpaceSize;
124         while (*EStr != '\n' && isSpace(static_cast<unsigned char>(*EStr)))
125           ++EStr;
126         if (*EStr == '\0' || *EStr == '\n' ||
127             isAsmComment(EStr, MAI)) // Successfully parsed .space argument
128           AddLength = SpaceSize;
129       }
130       Length += AddLength;
131       AtInsnStart = false;
132     }
133   }
134 
135   return Length;
136 }
137 
138 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
139 /// after it, replacing it with an unconditional branch to NewDest.
140 void
141 TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
142                                          MachineBasicBlock *NewDest) const {
143   MachineBasicBlock *MBB = Tail->getParent();
144 
145   // Remove all the old successors of MBB from the CFG.
146   while (!MBB->succ_empty())
147     MBB->removeSuccessor(MBB->succ_begin());
148 
149   // Save off the debug loc before erasing the instruction.
150   DebugLoc DL = Tail->getDebugLoc();
151 
152   // Update call site info and remove all the dead instructions
153   // from the end of MBB.
154   while (Tail != MBB->end()) {
155     auto MI = Tail++;
156     if (MI->shouldUpdateCallSiteInfo())
157       MBB->getParent()->eraseCallSiteInfo(&*MI);
158     MBB->erase(MI);
159   }
160 
161   // If MBB isn't immediately before MBB, insert a branch to it.
162   if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest))
163     insertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(), DL);
164   MBB->addSuccessor(NewDest);
165 }
166 
167 MachineInstr *TargetInstrInfo::commuteInstructionImpl(MachineInstr &MI,
168                                                       bool NewMI, unsigned Idx1,
169                                                       unsigned Idx2) const {
170   const MCInstrDesc &MCID = MI.getDesc();
171   bool HasDef = MCID.getNumDefs();
172   if (HasDef && !MI.getOperand(0).isReg())
173     // No idea how to commute this instruction. Target should implement its own.
174     return nullptr;
175 
176   unsigned CommutableOpIdx1 = Idx1; (void)CommutableOpIdx1;
177   unsigned CommutableOpIdx2 = Idx2; (void)CommutableOpIdx2;
178   assert(findCommutedOpIndices(MI, CommutableOpIdx1, CommutableOpIdx2) &&
179          CommutableOpIdx1 == Idx1 && CommutableOpIdx2 == Idx2 &&
180          "TargetInstrInfo::CommuteInstructionImpl(): not commutable operands.");
181   assert(MI.getOperand(Idx1).isReg() && MI.getOperand(Idx2).isReg() &&
182          "This only knows how to commute register operands so far");
183 
184   Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register();
185   Register Reg1 = MI.getOperand(Idx1).getReg();
186   Register Reg2 = MI.getOperand(Idx2).getReg();
187   unsigned SubReg0 = HasDef ? MI.getOperand(0).getSubReg() : 0;
188   unsigned SubReg1 = MI.getOperand(Idx1).getSubReg();
189   unsigned SubReg2 = MI.getOperand(Idx2).getSubReg();
190   bool Reg1IsKill = MI.getOperand(Idx1).isKill();
191   bool Reg2IsKill = MI.getOperand(Idx2).isKill();
192   bool Reg1IsUndef = MI.getOperand(Idx1).isUndef();
193   bool Reg2IsUndef = MI.getOperand(Idx2).isUndef();
194   bool Reg1IsInternal = MI.getOperand(Idx1).isInternalRead();
195   bool Reg2IsInternal = MI.getOperand(Idx2).isInternalRead();
196   // Avoid calling isRenamable for virtual registers since we assert that
197   // renamable property is only queried/set for physical registers.
198   bool Reg1IsRenamable =
199       Reg1.isPhysical() ? MI.getOperand(Idx1).isRenamable() : false;
200   bool Reg2IsRenamable =
201       Reg2.isPhysical() ? MI.getOperand(Idx2).isRenamable() : false;
202   // If destination is tied to either of the commuted source register, then
203   // it must be updated.
204   if (HasDef && Reg0 == Reg1 &&
205       MI.getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) {
206     Reg2IsKill = false;
207     Reg0 = Reg2;
208     SubReg0 = SubReg2;
209   } else if (HasDef && Reg0 == Reg2 &&
210              MI.getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) {
211     Reg1IsKill = false;
212     Reg0 = Reg1;
213     SubReg0 = SubReg1;
214   }
215 
216   MachineInstr *CommutedMI = nullptr;
217   if (NewMI) {
218     // Create a new instruction.
219     MachineFunction &MF = *MI.getMF();
220     CommutedMI = MF.CloneMachineInstr(&MI);
221   } else {
222     CommutedMI = &MI;
223   }
224 
225   if (HasDef) {
226     CommutedMI->getOperand(0).setReg(Reg0);
227     CommutedMI->getOperand(0).setSubReg(SubReg0);
228   }
229   CommutedMI->getOperand(Idx2).setReg(Reg1);
230   CommutedMI->getOperand(Idx1).setReg(Reg2);
231   CommutedMI->getOperand(Idx2).setSubReg(SubReg1);
232   CommutedMI->getOperand(Idx1).setSubReg(SubReg2);
233   CommutedMI->getOperand(Idx2).setIsKill(Reg1IsKill);
234   CommutedMI->getOperand(Idx1).setIsKill(Reg2IsKill);
235   CommutedMI->getOperand(Idx2).setIsUndef(Reg1IsUndef);
236   CommutedMI->getOperand(Idx1).setIsUndef(Reg2IsUndef);
237   CommutedMI->getOperand(Idx2).setIsInternalRead(Reg1IsInternal);
238   CommutedMI->getOperand(Idx1).setIsInternalRead(Reg2IsInternal);
239   // Avoid calling setIsRenamable for virtual registers since we assert that
240   // renamable property is only queried/set for physical registers.
241   if (Reg1.isPhysical())
242     CommutedMI->getOperand(Idx2).setIsRenamable(Reg1IsRenamable);
243   if (Reg2.isPhysical())
244     CommutedMI->getOperand(Idx1).setIsRenamable(Reg2IsRenamable);
245   return CommutedMI;
246 }
247 
248 MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr &MI, bool NewMI,
249                                                   unsigned OpIdx1,
250                                                   unsigned OpIdx2) const {
251   // If OpIdx1 or OpIdx2 is not specified, then this method is free to choose
252   // any commutable operand, which is done in findCommutedOpIndices() method
253   // called below.
254   if ((OpIdx1 == CommuteAnyOperandIndex || OpIdx2 == CommuteAnyOperandIndex) &&
255       !findCommutedOpIndices(MI, OpIdx1, OpIdx2)) {
256     assert(MI.isCommutable() &&
257            "Precondition violation: MI must be commutable.");
258     return nullptr;
259   }
260   return commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
261 }
262 
263 bool TargetInstrInfo::fixCommutedOpIndices(unsigned &ResultIdx1,
264                                            unsigned &ResultIdx2,
265                                            unsigned CommutableOpIdx1,
266                                            unsigned CommutableOpIdx2) {
267   if (ResultIdx1 == CommuteAnyOperandIndex &&
268       ResultIdx2 == CommuteAnyOperandIndex) {
269     ResultIdx1 = CommutableOpIdx1;
270     ResultIdx2 = CommutableOpIdx2;
271   } else if (ResultIdx1 == CommuteAnyOperandIndex) {
272     if (ResultIdx2 == CommutableOpIdx1)
273       ResultIdx1 = CommutableOpIdx2;
274     else if (ResultIdx2 == CommutableOpIdx2)
275       ResultIdx1 = CommutableOpIdx1;
276     else
277       return false;
278   } else if (ResultIdx2 == CommuteAnyOperandIndex) {
279     if (ResultIdx1 == CommutableOpIdx1)
280       ResultIdx2 = CommutableOpIdx2;
281     else if (ResultIdx1 == CommutableOpIdx2)
282       ResultIdx2 = CommutableOpIdx1;
283     else
284       return false;
285   } else
286     // Check that the result operand indices match the given commutable
287     // operand indices.
288     return (ResultIdx1 == CommutableOpIdx1 && ResultIdx2 == CommutableOpIdx2) ||
289            (ResultIdx1 == CommutableOpIdx2 && ResultIdx2 == CommutableOpIdx1);
290 
291   return true;
292 }
293 
294 bool TargetInstrInfo::findCommutedOpIndices(const MachineInstr &MI,
295                                             unsigned &SrcOpIdx1,
296                                             unsigned &SrcOpIdx2) const {
297   assert(!MI.isBundle() &&
298          "TargetInstrInfo::findCommutedOpIndices() can't handle bundles");
299 
300   const MCInstrDesc &MCID = MI.getDesc();
301   if (!MCID.isCommutable())
302     return false;
303 
304   // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
305   // is not true, then the target must implement this.
306   unsigned CommutableOpIdx1 = MCID.getNumDefs();
307   unsigned CommutableOpIdx2 = CommutableOpIdx1 + 1;
308   if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
309                             CommutableOpIdx1, CommutableOpIdx2))
310     return false;
311 
312   if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg())
313     // No idea.
314     return false;
315   return true;
316 }
317 
318 bool TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
319   if (!MI.isTerminator()) return false;
320 
321   // Conditional branch is a special case.
322   if (MI.isBranch() && !MI.isBarrier())
323     return true;
324   if (!MI.isPredicable())
325     return true;
326   return !isPredicated(MI);
327 }
328 
329 bool TargetInstrInfo::PredicateInstruction(
330     MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
331   bool MadeChange = false;
332 
333   assert(!MI.isBundle() &&
334          "TargetInstrInfo::PredicateInstruction() can't handle bundles");
335 
336   const MCInstrDesc &MCID = MI.getDesc();
337   if (!MI.isPredicable())
338     return false;
339 
340   for (unsigned j = 0, i = 0, e = MI.getNumOperands(); i != e; ++i) {
341     if (MCID.operands()[i].isPredicate()) {
342       MachineOperand &MO = MI.getOperand(i);
343       if (MO.isReg()) {
344         MO.setReg(Pred[j].getReg());
345         MadeChange = true;
346       } else if (MO.isImm()) {
347         MO.setImm(Pred[j].getImm());
348         MadeChange = true;
349       } else if (MO.isMBB()) {
350         MO.setMBB(Pred[j].getMBB());
351         MadeChange = true;
352       }
353       ++j;
354     }
355   }
356   return MadeChange;
357 }
358 
359 bool TargetInstrInfo::hasLoadFromStackSlot(
360     const MachineInstr &MI,
361     SmallVectorImpl<const MachineMemOperand *> &Accesses) const {
362   size_t StartSize = Accesses.size();
363   for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
364                                   oe = MI.memoperands_end();
365        o != oe; ++o) {
366     if ((*o)->isLoad() &&
367         isa_and_nonnull<FixedStackPseudoSourceValue>((*o)->getPseudoValue()))
368       Accesses.push_back(*o);
369   }
370   return Accesses.size() != StartSize;
371 }
372 
373 bool TargetInstrInfo::hasStoreToStackSlot(
374     const MachineInstr &MI,
375     SmallVectorImpl<const MachineMemOperand *> &Accesses) const {
376   size_t StartSize = Accesses.size();
377   for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
378                                   oe = MI.memoperands_end();
379        o != oe; ++o) {
380     if ((*o)->isStore() &&
381         isa_and_nonnull<FixedStackPseudoSourceValue>((*o)->getPseudoValue()))
382       Accesses.push_back(*o);
383   }
384   return Accesses.size() != StartSize;
385 }
386 
387 bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC,
388                                         unsigned SubIdx, unsigned &Size,
389                                         unsigned &Offset,
390                                         const MachineFunction &MF) const {
391   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
392   if (!SubIdx) {
393     Size = TRI->getSpillSize(*RC);
394     Offset = 0;
395     return true;
396   }
397   unsigned BitSize = TRI->getSubRegIdxSize(SubIdx);
398   // Convert bit size to byte size.
399   if (BitSize % 8)
400     return false;
401 
402   int BitOffset = TRI->getSubRegIdxOffset(SubIdx);
403   if (BitOffset < 0 || BitOffset % 8)
404     return false;
405 
406   Size = BitSize / 8;
407   Offset = (unsigned)BitOffset / 8;
408 
409   assert(TRI->getSpillSize(*RC) >= (Offset + Size) && "bad subregister range");
410 
411   if (!MF.getDataLayout().isLittleEndian()) {
412     Offset = TRI->getSpillSize(*RC) - (Offset + Size);
413   }
414   return true;
415 }
416 
417 void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB,
418                                     MachineBasicBlock::iterator I,
419                                     Register DestReg, unsigned SubIdx,
420                                     const MachineInstr &Orig,
421                                     const TargetRegisterInfo &TRI) const {
422   MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
423   MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI);
424   MBB.insert(I, MI);
425 }
426 
427 bool TargetInstrInfo::produceSameValue(const MachineInstr &MI0,
428                                        const MachineInstr &MI1,
429                                        const MachineRegisterInfo *MRI) const {
430   return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
431 }
432 
433 MachineInstr &TargetInstrInfo::duplicate(MachineBasicBlock &MBB,
434     MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) const {
435   assert(!Orig.isNotDuplicable() && "Instruction cannot be duplicated");
436   MachineFunction &MF = *MBB.getParent();
437   return MF.cloneMachineInstrBundle(MBB, InsertBefore, Orig);
438 }
439 
440 // If the COPY instruction in MI can be folded to a stack operation, return
441 // the register class to use.
442 static const TargetRegisterClass *canFoldCopy(const MachineInstr &MI,
443                                               unsigned FoldIdx) {
444   assert(MI.isCopy() && "MI must be a COPY instruction");
445   if (MI.getNumOperands() != 2)
446     return nullptr;
447   assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand");
448 
449   const MachineOperand &FoldOp = MI.getOperand(FoldIdx);
450   const MachineOperand &LiveOp = MI.getOperand(1 - FoldIdx);
451 
452   if (FoldOp.getSubReg() || LiveOp.getSubReg())
453     return nullptr;
454 
455   Register FoldReg = FoldOp.getReg();
456   Register LiveReg = LiveOp.getReg();
457 
458   assert(FoldReg.isVirtual() && "Cannot fold physregs");
459 
460   const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
461   const TargetRegisterClass *RC = MRI.getRegClass(FoldReg);
462 
463   if (LiveOp.getReg().isPhysical())
464     return RC->contains(LiveOp.getReg()) ? RC : nullptr;
465 
466   if (RC->hasSubClassEq(MRI.getRegClass(LiveReg)))
467     return RC;
468 
469   // FIXME: Allow folding when register classes are memory compatible.
470   return nullptr;
471 }
472 
473 MCInst TargetInstrInfo::getNop() const { llvm_unreachable("Not implemented"); }
474 
475 std::pair<unsigned, unsigned>
476 TargetInstrInfo::getPatchpointUnfoldableRange(const MachineInstr &MI) const {
477   switch (MI.getOpcode()) {
478   case TargetOpcode::STACKMAP:
479     // StackMapLiveValues are foldable
480     return std::make_pair(0, StackMapOpers(&MI).getVarIdx());
481   case TargetOpcode::PATCHPOINT:
482     // For PatchPoint, the call args are not foldable (even if reported in the
483     // stackmap e.g. via anyregcc).
484     return std::make_pair(0, PatchPointOpers(&MI).getVarIdx());
485   case TargetOpcode::STATEPOINT:
486     // For statepoints, fold deopt and gc arguments, but not call arguments.
487     return std::make_pair(MI.getNumDefs(), StatepointOpers(&MI).getVarIdx());
488   default:
489     llvm_unreachable("unexpected stackmap opcode");
490   }
491 }
492 
493 static MachineInstr *foldPatchpoint(MachineFunction &MF, MachineInstr &MI,
494                                     ArrayRef<unsigned> Ops, int FrameIndex,
495                                     const TargetInstrInfo &TII) {
496   unsigned StartIdx = 0;
497   unsigned NumDefs = 0;
498   // getPatchpointUnfoldableRange throws guarantee if MI is not a patchpoint.
499   std::tie(NumDefs, StartIdx) = TII.getPatchpointUnfoldableRange(MI);
500 
501   unsigned DefToFoldIdx = MI.getNumOperands();
502 
503   // Return false if any operands requested for folding are not foldable (not
504   // part of the stackmap's live values).
505   for (unsigned Op : Ops) {
506     if (Op < NumDefs) {
507       assert(DefToFoldIdx == MI.getNumOperands() && "Folding multiple defs");
508       DefToFoldIdx = Op;
509     } else if (Op < StartIdx) {
510       return nullptr;
511     }
512     if (MI.getOperand(Op).isTied())
513       return nullptr;
514   }
515 
516   MachineInstr *NewMI =
517       MF.CreateMachineInstr(TII.get(MI.getOpcode()), MI.getDebugLoc(), true);
518   MachineInstrBuilder MIB(MF, NewMI);
519 
520   // No need to fold return, the meta data, and function arguments
521   for (unsigned i = 0; i < StartIdx; ++i)
522     if (i != DefToFoldIdx)
523       MIB.add(MI.getOperand(i));
524 
525   for (unsigned i = StartIdx, e = MI.getNumOperands(); i < e; ++i) {
526     MachineOperand &MO = MI.getOperand(i);
527     unsigned TiedTo = e;
528     (void)MI.isRegTiedToDefOperand(i, &TiedTo);
529 
530     if (is_contained(Ops, i)) {
531       assert(TiedTo == e && "Cannot fold tied operands");
532       unsigned SpillSize;
533       unsigned SpillOffset;
534       // Compute the spill slot size and offset.
535       const TargetRegisterClass *RC =
536         MF.getRegInfo().getRegClass(MO.getReg());
537       bool Valid =
538           TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, SpillOffset, MF);
539       if (!Valid)
540         report_fatal_error("cannot spill patchpoint subregister operand");
541       MIB.addImm(StackMaps::IndirectMemRefOp);
542       MIB.addImm(SpillSize);
543       MIB.addFrameIndex(FrameIndex);
544       MIB.addImm(SpillOffset);
545     } else {
546       MIB.add(MO);
547       if (TiedTo < e) {
548         assert(TiedTo < NumDefs && "Bad tied operand");
549         if (TiedTo > DefToFoldIdx)
550           --TiedTo;
551         NewMI->tieOperands(TiedTo, NewMI->getNumOperands() - 1);
552       }
553     }
554   }
555   return NewMI;
556 }
557 
558 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
559                                                  ArrayRef<unsigned> Ops, int FI,
560                                                  LiveIntervals *LIS,
561                                                  VirtRegMap *VRM) const {
562   auto Flags = MachineMemOperand::MONone;
563   for (unsigned OpIdx : Ops)
564     Flags |= MI.getOperand(OpIdx).isDef() ? MachineMemOperand::MOStore
565                                           : MachineMemOperand::MOLoad;
566 
567   MachineBasicBlock *MBB = MI.getParent();
568   assert(MBB && "foldMemoryOperand needs an inserted instruction");
569   MachineFunction &MF = *MBB->getParent();
570 
571   // If we're not folding a load into a subreg, the size of the load is the
572   // size of the spill slot. But if we are, we need to figure out what the
573   // actual load size is.
574   int64_t MemSize = 0;
575   const MachineFrameInfo &MFI = MF.getFrameInfo();
576   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
577 
578   if (Flags & MachineMemOperand::MOStore) {
579     MemSize = MFI.getObjectSize(FI);
580   } else {
581     for (unsigned OpIdx : Ops) {
582       int64_t OpSize = MFI.getObjectSize(FI);
583 
584       if (auto SubReg = MI.getOperand(OpIdx).getSubReg()) {
585         unsigned SubRegSize = TRI->getSubRegIdxSize(SubReg);
586         if (SubRegSize > 0 && !(SubRegSize % 8))
587           OpSize = SubRegSize / 8;
588       }
589 
590       MemSize = std::max(MemSize, OpSize);
591     }
592   }
593 
594   assert(MemSize && "Did not expect a zero-sized stack slot");
595 
596   MachineInstr *NewMI = nullptr;
597 
598   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
599       MI.getOpcode() == TargetOpcode::PATCHPOINT ||
600       MI.getOpcode() == TargetOpcode::STATEPOINT) {
601     // Fold stackmap/patchpoint.
602     NewMI = foldPatchpoint(MF, MI, Ops, FI, *this);
603     if (NewMI)
604       MBB->insert(MI, NewMI);
605   } else {
606     // Ask the target to do the actual folding.
607     NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, FI, LIS, VRM);
608   }
609 
610   if (NewMI) {
611     NewMI->setMemRefs(MF, MI.memoperands());
612     // Add a memory operand, foldMemoryOperandImpl doesn't do that.
613     assert((!(Flags & MachineMemOperand::MOStore) ||
614             NewMI->mayStore()) &&
615            "Folded a def to a non-store!");
616     assert((!(Flags & MachineMemOperand::MOLoad) ||
617             NewMI->mayLoad()) &&
618            "Folded a use to a non-load!");
619     assert(MFI.getObjectOffset(FI) != -1);
620     MachineMemOperand *MMO =
621         MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI),
622                                 Flags, MemSize, MFI.getObjectAlign(FI));
623     NewMI->addMemOperand(MF, MMO);
624 
625     // The pass "x86 speculative load hardening" always attaches symbols to
626     // call instructions. We need copy it form old instruction.
627     NewMI->cloneInstrSymbols(MF, MI);
628 
629     return NewMI;
630   }
631 
632   // Straight COPY may fold as load/store.
633   if (!MI.isCopy() || Ops.size() != 1)
634     return nullptr;
635 
636   const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]);
637   if (!RC)
638     return nullptr;
639 
640   const MachineOperand &MO = MI.getOperand(1 - Ops[0]);
641   MachineBasicBlock::iterator Pos = MI;
642 
643   if (Flags == MachineMemOperand::MOStore)
644     storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI,
645                         Register());
646   else
647     loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI, Register());
648   return &*--Pos;
649 }
650 
651 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
652                                                  ArrayRef<unsigned> Ops,
653                                                  MachineInstr &LoadMI,
654                                                  LiveIntervals *LIS) const {
655   assert(LoadMI.canFoldAsLoad() && "LoadMI isn't foldable!");
656 #ifndef NDEBUG
657   for (unsigned OpIdx : Ops)
658     assert(MI.getOperand(OpIdx).isUse() && "Folding load into def!");
659 #endif
660 
661   MachineBasicBlock &MBB = *MI.getParent();
662   MachineFunction &MF = *MBB.getParent();
663 
664   // Ask the target to do the actual folding.
665   MachineInstr *NewMI = nullptr;
666   int FrameIndex = 0;
667 
668   if ((MI.getOpcode() == TargetOpcode::STACKMAP ||
669        MI.getOpcode() == TargetOpcode::PATCHPOINT ||
670        MI.getOpcode() == TargetOpcode::STATEPOINT) &&
671       isLoadFromStackSlot(LoadMI, FrameIndex)) {
672     // Fold stackmap/patchpoint.
673     NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this);
674     if (NewMI)
675       NewMI = &*MBB.insert(MI, NewMI);
676   } else {
677     // Ask the target to do the actual folding.
678     NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, LoadMI, LIS);
679   }
680 
681   if (!NewMI)
682     return nullptr;
683 
684   // Copy the memoperands from the load to the folded instruction.
685   if (MI.memoperands_empty()) {
686     NewMI->setMemRefs(MF, LoadMI.memoperands());
687   } else {
688     // Handle the rare case of folding multiple loads.
689     NewMI->setMemRefs(MF, MI.memoperands());
690     for (MachineInstr::mmo_iterator I = LoadMI.memoperands_begin(),
691                                     E = LoadMI.memoperands_end();
692          I != E; ++I) {
693       NewMI->addMemOperand(MF, *I);
694     }
695   }
696   return NewMI;
697 }
698 
699 /// transferImplicitOperands - MI is a pseudo-instruction, and the lowered
700 /// replacement instructions immediately precede it.  Copy any implicit
701 /// operands from MI to the replacement instruction.
702 static void transferImplicitOperands(MachineInstr *MI,
703                                      const TargetRegisterInfo *TRI) {
704   MachineBasicBlock::iterator CopyMI = MI;
705   --CopyMI;
706 
707   Register DstReg = MI->getOperand(0).getReg();
708   for (const MachineOperand &MO : MI->implicit_operands()) {
709     CopyMI->addOperand(MO);
710 
711     // Be conservative about preserving kills when subregister defs are
712     // involved. If there was implicit kill of a super-register overlapping the
713     // copy result, we would kill the subregisters previous copies defined.
714 
715     if (MO.isKill() && TRI->regsOverlap(DstReg, MO.getReg()))
716       CopyMI->getOperand(CopyMI->getNumOperands() - 1).setIsKill(false);
717   }
718 }
719 
720 void TargetInstrInfo::lowerCopy(MachineInstr *MI,
721                                 const TargetRegisterInfo *TRI) const {
722   if (MI->allDefsAreDead()) {
723     MI->setDesc(get(TargetOpcode::KILL));
724     return;
725   }
726 
727   MachineOperand &DstMO = MI->getOperand(0);
728   MachineOperand &SrcMO = MI->getOperand(1);
729 
730   bool IdentityCopy = (SrcMO.getReg() == DstMO.getReg());
731   if (IdentityCopy || SrcMO.isUndef()) {
732     // No need to insert an identity copy instruction, but replace with a KILL
733     // if liveness is changed.
734     if (SrcMO.isUndef() || MI->getNumOperands() > 2) {
735       // We must make sure the super-register gets killed. Replace the
736       // instruction with KILL.
737       MI->setDesc(get(TargetOpcode::KILL));
738       return;
739     }
740     // Vanilla identity copy.
741     MI->eraseFromParent();
742     return;
743   }
744 
745   copyPhysReg(*MI->getParent(), MI, MI->getDebugLoc(), DstMO.getReg(),
746               SrcMO.getReg(), SrcMO.isKill());
747 
748   if (MI->getNumOperands() > 2)
749     transferImplicitOperands(MI, TRI);
750   MI->eraseFromParent();
751   return;
752 }
753 
754 bool TargetInstrInfo::hasReassociableOperands(
755     const MachineInstr &Inst, const MachineBasicBlock *MBB) const {
756   const MachineOperand &Op1 = Inst.getOperand(1);
757   const MachineOperand &Op2 = Inst.getOperand(2);
758   const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
759 
760   // We need virtual register definitions for the operands that we will
761   // reassociate.
762   MachineInstr *MI1 = nullptr;
763   MachineInstr *MI2 = nullptr;
764   if (Op1.isReg() && Op1.getReg().isVirtual())
765     MI1 = MRI.getUniqueVRegDef(Op1.getReg());
766   if (Op2.isReg() && Op2.getReg().isVirtual())
767     MI2 = MRI.getUniqueVRegDef(Op2.getReg());
768 
769   // And at least one operand must be defined in MBB.
770   return MI1 && MI2 && (MI1->getParent() == MBB || MI2->getParent() == MBB);
771 }
772 
773 bool TargetInstrInfo::areOpcodesEqualOrInverse(unsigned Opcode1,
774                                                unsigned Opcode2) const {
775   return Opcode1 == Opcode2 || getInverseOpcode(Opcode1) == Opcode2;
776 }
777 
778 bool TargetInstrInfo::hasReassociableSibling(const MachineInstr &Inst,
779                                              bool &Commuted) const {
780   const MachineBasicBlock *MBB = Inst.getParent();
781   const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
782   MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(1).getReg());
783   MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg());
784   unsigned Opcode = Inst.getOpcode();
785 
786   // If only one operand has the same or inverse opcode and it's the second
787   // source operand, the operands must be commuted.
788   Commuted = !areOpcodesEqualOrInverse(Opcode, MI1->getOpcode()) &&
789              areOpcodesEqualOrInverse(Opcode, MI2->getOpcode());
790   if (Commuted)
791     std::swap(MI1, MI2);
792 
793   // 1. The previous instruction must be the same type as Inst.
794   // 2. The previous instruction must also be associative/commutative or be the
795   //    inverse of such an operation (this can be different even for
796   //    instructions with the same opcode if traits like fast-math-flags are
797   //    included).
798   // 3. The previous instruction must have virtual register definitions for its
799   //    operands in the same basic block as Inst.
800   // 4. The previous instruction's result must only be used by Inst.
801   return areOpcodesEqualOrInverse(Opcode, MI1->getOpcode()) &&
802          (isAssociativeAndCommutative(*MI1) ||
803           isAssociativeAndCommutative(*MI1, /* Invert */ true)) &&
804          hasReassociableOperands(*MI1, MBB) &&
805          MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg());
806 }
807 
808 // 1. The operation must be associative and commutative or be the inverse of
809 //    such an operation.
810 // 2. The instruction must have virtual register definitions for its
811 //    operands in the same basic block.
812 // 3. The instruction must have a reassociable sibling.
813 bool TargetInstrInfo::isReassociationCandidate(const MachineInstr &Inst,
814                                                bool &Commuted) const {
815   return (isAssociativeAndCommutative(Inst) ||
816           isAssociativeAndCommutative(Inst, /* Invert */ true)) &&
817          hasReassociableOperands(Inst, Inst.getParent()) &&
818          hasReassociableSibling(Inst, Commuted);
819 }
820 
821 // The concept of the reassociation pass is that these operations can benefit
822 // from this kind of transformation:
823 //
824 // A = ? op ?
825 // B = A op X (Prev)
826 // C = B op Y (Root)
827 // -->
828 // A = ? op ?
829 // B = X op Y
830 // C = A op B
831 //
832 // breaking the dependency between A and B, allowing them to be executed in
833 // parallel (or back-to-back in a pipeline) instead of depending on each other.
834 
835 // FIXME: This has the potential to be expensive (compile time) while not
836 // improving the code at all. Some ways to limit the overhead:
837 // 1. Track successful transforms; bail out if hit rate gets too low.
838 // 2. Only enable at -O3 or some other non-default optimization level.
839 // 3. Pre-screen pattern candidates here: if an operand of the previous
840 //    instruction is known to not increase the critical path, then don't match
841 //    that pattern.
842 bool TargetInstrInfo::getMachineCombinerPatterns(
843     MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns,
844     bool DoRegPressureReduce) const {
845   bool Commute;
846   if (isReassociationCandidate(Root, Commute)) {
847     // We found a sequence of instructions that may be suitable for a
848     // reassociation of operands to increase ILP. Specify each commutation
849     // possibility for the Prev instruction in the sequence and let the
850     // machine combiner decide if changing the operands is worthwhile.
851     if (Commute) {
852       Patterns.push_back(MachineCombinerPattern::REASSOC_AX_YB);
853       Patterns.push_back(MachineCombinerPattern::REASSOC_XA_YB);
854     } else {
855       Patterns.push_back(MachineCombinerPattern::REASSOC_AX_BY);
856       Patterns.push_back(MachineCombinerPattern::REASSOC_XA_BY);
857     }
858     return true;
859   }
860 
861   return false;
862 }
863 
864 /// Return true when a code sequence can improve loop throughput.
865 bool
866 TargetInstrInfo::isThroughputPattern(MachineCombinerPattern Pattern) const {
867   return false;
868 }
869 
870 std::pair<unsigned, unsigned>
871 TargetInstrInfo::getReassociationOpcodes(MachineCombinerPattern Pattern,
872                                          const MachineInstr &Root,
873                                          const MachineInstr &Prev) const {
874   bool AssocCommutRoot = isAssociativeAndCommutative(Root);
875   bool AssocCommutPrev = isAssociativeAndCommutative(Prev);
876 
877   // Early exit if both opcodes are associative and commutative. It's a trivial
878   // reassociation when we only change operands order. In this case opcodes are
879   // not required to have inverse versions.
880   if (AssocCommutRoot && AssocCommutPrev) {
881     assert(Root.getOpcode() == Prev.getOpcode() && "Expected to be equal");
882     return std::make_pair(Root.getOpcode(), Root.getOpcode());
883   }
884 
885   // At least one instruction is not associative or commutative.
886   // Since we have matched one of the reassociation patterns, we expect that the
887   // instructions' opcodes are equal or one of them is the inversion of the
888   // other.
889   assert(areOpcodesEqualOrInverse(Root.getOpcode(), Prev.getOpcode()) &&
890          "Incorrectly matched pattern");
891   unsigned AssocCommutOpcode = Root.getOpcode();
892   unsigned InverseOpcode = *getInverseOpcode(Root.getOpcode());
893   if (!AssocCommutRoot)
894     std::swap(AssocCommutOpcode, InverseOpcode);
895 
896   // The transformation rule (`+` is any associative and commutative binary
897   // operation, `-` is the inverse):
898   // REASSOC_AX_BY:
899   //   (A + X) + Y => A + (X + Y)
900   //   (A + X) - Y => A + (X - Y)
901   //   (A - X) + Y => A - (X - Y)
902   //   (A - X) - Y => A - (X + Y)
903   // REASSOC_XA_BY:
904   //   (X + A) + Y => (X + Y) + A
905   //   (X + A) - Y => (X - Y) + A
906   //   (X - A) + Y => (X + Y) - A
907   //   (X - A) - Y => (X - Y) - A
908   // REASSOC_AX_YB:
909   //   Y + (A + X) => (Y + X) + A
910   //   Y - (A + X) => (Y - X) - A
911   //   Y + (A - X) => (Y - X) + A
912   //   Y - (A - X) => (Y + X) - A
913   // REASSOC_XA_YB:
914   //   Y + (X + A) => (Y + X) + A
915   //   Y - (X + A) => (Y - X) - A
916   //   Y + (X - A) => (Y + X) - A
917   //   Y - (X - A) => (Y - X) + A
918   switch (Pattern) {
919   default:
920     llvm_unreachable("Unexpected pattern");
921   case MachineCombinerPattern::REASSOC_AX_BY:
922     if (!AssocCommutRoot && AssocCommutPrev)
923       return {AssocCommutOpcode, InverseOpcode};
924     if (AssocCommutRoot && !AssocCommutPrev)
925       return {InverseOpcode, InverseOpcode};
926     if (!AssocCommutRoot && !AssocCommutPrev)
927       return {InverseOpcode, AssocCommutOpcode};
928     break;
929   case MachineCombinerPattern::REASSOC_XA_BY:
930     if (!AssocCommutRoot && AssocCommutPrev)
931       return {AssocCommutOpcode, InverseOpcode};
932     if (AssocCommutRoot && !AssocCommutPrev)
933       return {InverseOpcode, AssocCommutOpcode};
934     if (!AssocCommutRoot && !AssocCommutPrev)
935       return {InverseOpcode, InverseOpcode};
936     break;
937   case MachineCombinerPattern::REASSOC_AX_YB:
938     if (!AssocCommutRoot && AssocCommutPrev)
939       return {InverseOpcode, InverseOpcode};
940     if (AssocCommutRoot && !AssocCommutPrev)
941       return {AssocCommutOpcode, InverseOpcode};
942     if (!AssocCommutRoot && !AssocCommutPrev)
943       return {InverseOpcode, AssocCommutOpcode};
944     break;
945   case MachineCombinerPattern::REASSOC_XA_YB:
946     if (!AssocCommutRoot && AssocCommutPrev)
947       return {InverseOpcode, InverseOpcode};
948     if (AssocCommutRoot && !AssocCommutPrev)
949       return {InverseOpcode, AssocCommutOpcode};
950     if (!AssocCommutRoot && !AssocCommutPrev)
951       return {AssocCommutOpcode, InverseOpcode};
952     break;
953   }
954   llvm_unreachable("Unhandled combination");
955 }
956 
957 // Return a pair of boolean flags showing if the new root and new prev operands
958 // must be swapped. See visual example of the rule in
959 // TargetInstrInfo::getReassociationOpcodes.
960 static std::pair<bool, bool> mustSwapOperands(MachineCombinerPattern Pattern) {
961   switch (Pattern) {
962   default:
963     llvm_unreachable("Unexpected pattern");
964   case MachineCombinerPattern::REASSOC_AX_BY:
965     return {false, false};
966   case MachineCombinerPattern::REASSOC_XA_BY:
967     return {true, false};
968   case MachineCombinerPattern::REASSOC_AX_YB:
969     return {true, true};
970   case MachineCombinerPattern::REASSOC_XA_YB:
971     return {true, true};
972   }
973 }
974 
975 /// Attempt the reassociation transformation to reduce critical path length.
976 /// See the above comments before getMachineCombinerPatterns().
977 void TargetInstrInfo::reassociateOps(
978     MachineInstr &Root, MachineInstr &Prev,
979     MachineCombinerPattern Pattern,
980     SmallVectorImpl<MachineInstr *> &InsInstrs,
981     SmallVectorImpl<MachineInstr *> &DelInstrs,
982     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
983   MachineFunction *MF = Root.getMF();
984   MachineRegisterInfo &MRI = MF->getRegInfo();
985   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
986   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
987   const TargetRegisterClass *RC = Root.getRegClassConstraint(0, TII, TRI);
988 
989   // This array encodes the operand index for each parameter because the
990   // operands may be commuted. Each row corresponds to a pattern value,
991   // and each column specifies the index of A, B, X, Y.
992   unsigned OpIdx[4][4] = {
993     { 1, 1, 2, 2 },
994     { 1, 2, 2, 1 },
995     { 2, 1, 1, 2 },
996     { 2, 2, 1, 1 }
997   };
998 
999   int Row;
1000   switch (Pattern) {
1001   case MachineCombinerPattern::REASSOC_AX_BY: Row = 0; break;
1002   case MachineCombinerPattern::REASSOC_AX_YB: Row = 1; break;
1003   case MachineCombinerPattern::REASSOC_XA_BY: Row = 2; break;
1004   case MachineCombinerPattern::REASSOC_XA_YB: Row = 3; break;
1005   default: llvm_unreachable("unexpected MachineCombinerPattern");
1006   }
1007 
1008   MachineOperand &OpA = Prev.getOperand(OpIdx[Row][0]);
1009   MachineOperand &OpB = Root.getOperand(OpIdx[Row][1]);
1010   MachineOperand &OpX = Prev.getOperand(OpIdx[Row][2]);
1011   MachineOperand &OpY = Root.getOperand(OpIdx[Row][3]);
1012   MachineOperand &OpC = Root.getOperand(0);
1013 
1014   Register RegA = OpA.getReg();
1015   Register RegB = OpB.getReg();
1016   Register RegX = OpX.getReg();
1017   Register RegY = OpY.getReg();
1018   Register RegC = OpC.getReg();
1019 
1020   if (RegA.isVirtual())
1021     MRI.constrainRegClass(RegA, RC);
1022   if (RegB.isVirtual())
1023     MRI.constrainRegClass(RegB, RC);
1024   if (RegX.isVirtual())
1025     MRI.constrainRegClass(RegX, RC);
1026   if (RegY.isVirtual())
1027     MRI.constrainRegClass(RegY, RC);
1028   if (RegC.isVirtual())
1029     MRI.constrainRegClass(RegC, RC);
1030 
1031   // Create a new virtual register for the result of (X op Y) instead of
1032   // recycling RegB because the MachineCombiner's computation of the critical
1033   // path requires a new register definition rather than an existing one.
1034   Register NewVR = MRI.createVirtualRegister(RC);
1035   InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
1036 
1037   auto [NewRootOpc, NewPrevOpc] = getReassociationOpcodes(Pattern, Root, Prev);
1038   bool KillA = OpA.isKill();
1039   bool KillX = OpX.isKill();
1040   bool KillY = OpY.isKill();
1041   bool KillNewVR = true;
1042 
1043   auto [SwapRootOperands, SwapPrevOperands] = mustSwapOperands(Pattern);
1044 
1045   if (SwapPrevOperands) {
1046     std::swap(RegX, RegY);
1047     std::swap(KillX, KillY);
1048   }
1049 
1050   // Create new instructions for insertion.
1051   MachineInstrBuilder MIB1 =
1052       BuildMI(*MF, MIMetadata(Prev), TII->get(NewPrevOpc), NewVR)
1053           .addReg(RegX, getKillRegState(KillX))
1054           .addReg(RegY, getKillRegState(KillY))
1055           .setMIFlags(Prev.getFlags());
1056 
1057   if (SwapRootOperands) {
1058     std::swap(RegA, NewVR);
1059     std::swap(KillA, KillNewVR);
1060   }
1061 
1062   MachineInstrBuilder MIB2 =
1063       BuildMI(*MF, MIMetadata(Root), TII->get(NewRootOpc), RegC)
1064           .addReg(RegA, getKillRegState(KillA))
1065           .addReg(NewVR, getKillRegState(KillNewVR))
1066           .setMIFlags(Root.getFlags());
1067 
1068   setSpecialOperandAttr(Root, Prev, *MIB1, *MIB2);
1069 
1070   // Record new instructions for insertion and old instructions for deletion.
1071   InsInstrs.push_back(MIB1);
1072   InsInstrs.push_back(MIB2);
1073   DelInstrs.push_back(&Prev);
1074   DelInstrs.push_back(&Root);
1075 
1076   // We transformed:
1077   // B = A op X (Prev)
1078   // C = B op Y (Root)
1079   // Into:
1080   // B = X op Y (MIB1)
1081   // C = A op B (MIB2)
1082   // C has the same value as before, B doesn't; as such, keep the debug number
1083   // of C but not of B.
1084   if (unsigned OldRootNum = Root.peekDebugInstrNum())
1085     MIB2.getInstr()->setDebugInstrNum(OldRootNum);
1086 }
1087 
1088 void TargetInstrInfo::genAlternativeCodeSequence(
1089     MachineInstr &Root, MachineCombinerPattern Pattern,
1090     SmallVectorImpl<MachineInstr *> &InsInstrs,
1091     SmallVectorImpl<MachineInstr *> &DelInstrs,
1092     DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const {
1093   MachineRegisterInfo &MRI = Root.getMF()->getRegInfo();
1094 
1095   // Select the previous instruction in the sequence based on the input pattern.
1096   MachineInstr *Prev = nullptr;
1097   switch (Pattern) {
1098   case MachineCombinerPattern::REASSOC_AX_BY:
1099   case MachineCombinerPattern::REASSOC_XA_BY:
1100     Prev = MRI.getUniqueVRegDef(Root.getOperand(1).getReg());
1101     break;
1102   case MachineCombinerPattern::REASSOC_AX_YB:
1103   case MachineCombinerPattern::REASSOC_XA_YB:
1104     Prev = MRI.getUniqueVRegDef(Root.getOperand(2).getReg());
1105     break;
1106   default:
1107     llvm_unreachable("Unknown pattern for machine combiner");
1108   }
1109 
1110   // Don't reassociate if Prev and Root are in different blocks.
1111   if (Prev->getParent() != Root.getParent())
1112     return;
1113 
1114   reassociateOps(Root, *Prev, Pattern, InsInstrs, DelInstrs, InstIdxForVirtReg);
1115 }
1116 
1117 MachineTraceStrategy TargetInstrInfo::getMachineCombinerTraceStrategy() const {
1118   return MachineTraceStrategy::TS_MinInstrCount;
1119 }
1120 
1121 bool TargetInstrInfo::isReallyTriviallyReMaterializableGeneric(
1122     const MachineInstr &MI) const {
1123   const MachineFunction &MF = *MI.getMF();
1124   const MachineRegisterInfo &MRI = MF.getRegInfo();
1125 
1126   // Remat clients assume operand 0 is the defined register.
1127   if (!MI.getNumOperands() || !MI.getOperand(0).isReg())
1128     return false;
1129   Register DefReg = MI.getOperand(0).getReg();
1130 
1131   // A sub-register definition can only be rematerialized if the instruction
1132   // doesn't read the other parts of the register.  Otherwise it is really a
1133   // read-modify-write operation on the full virtual register which cannot be
1134   // moved safely.
1135   if (DefReg.isVirtual() && MI.getOperand(0).getSubReg() &&
1136       MI.readsVirtualRegister(DefReg))
1137     return false;
1138 
1139   // A load from a fixed stack slot can be rematerialized. This may be
1140   // redundant with subsequent checks, but it's target-independent,
1141   // simple, and a common case.
1142   int FrameIdx = 0;
1143   if (isLoadFromStackSlot(MI, FrameIdx) &&
1144       MF.getFrameInfo().isImmutableObjectIndex(FrameIdx))
1145     return true;
1146 
1147   // Avoid instructions obviously unsafe for remat.
1148   if (MI.isNotDuplicable() || MI.mayStore() || MI.mayRaiseFPException() ||
1149       MI.hasUnmodeledSideEffects())
1150     return false;
1151 
1152   // Don't remat inline asm. We have no idea how expensive it is
1153   // even if it's side effect free.
1154   if (MI.isInlineAsm())
1155     return false;
1156 
1157   // Avoid instructions which load from potentially varying memory.
1158   if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad())
1159     return false;
1160 
1161   // If any of the registers accessed are non-constant, conservatively assume
1162   // the instruction is not rematerializable.
1163   for (const MachineOperand &MO : MI.operands()) {
1164     if (!MO.isReg()) continue;
1165     Register Reg = MO.getReg();
1166     if (Reg == 0)
1167       continue;
1168 
1169     // Check for a well-behaved physical register.
1170     if (Reg.isPhysical()) {
1171       if (MO.isUse()) {
1172         // If the physreg has no defs anywhere, it's just an ambient register
1173         // and we can freely move its uses. Alternatively, if it's allocatable,
1174         // it could get allocated to something with a def during allocation.
1175         if (!MRI.isConstantPhysReg(Reg))
1176           return false;
1177       } else {
1178         // A physreg def. We can't remat it.
1179         return false;
1180       }
1181       continue;
1182     }
1183 
1184     // Only allow one virtual-register def.  There may be multiple defs of the
1185     // same virtual register, though.
1186     if (MO.isDef() && Reg != DefReg)
1187       return false;
1188 
1189     // Don't allow any virtual-register uses. Rematting an instruction with
1190     // virtual register uses would length the live ranges of the uses, which
1191     // is not necessarily a good idea, certainly not "trivial".
1192     if (MO.isUse())
1193       return false;
1194   }
1195 
1196   // Everything checked out.
1197   return true;
1198 }
1199 
1200 int TargetInstrInfo::getSPAdjust(const MachineInstr &MI) const {
1201   const MachineFunction *MF = MI.getMF();
1202   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
1203   bool StackGrowsDown =
1204     TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown;
1205 
1206   unsigned FrameSetupOpcode = getCallFrameSetupOpcode();
1207   unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode();
1208 
1209   if (!isFrameInstr(MI))
1210     return 0;
1211 
1212   int SPAdj = TFI->alignSPAdjust(getFrameSize(MI));
1213 
1214   if ((!StackGrowsDown && MI.getOpcode() == FrameSetupOpcode) ||
1215       (StackGrowsDown && MI.getOpcode() == FrameDestroyOpcode))
1216     SPAdj = -SPAdj;
1217 
1218   return SPAdj;
1219 }
1220 
1221 /// isSchedulingBoundary - Test if the given instruction should be
1222 /// considered a scheduling boundary. This primarily includes labels
1223 /// and terminators.
1224 bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
1225                                            const MachineBasicBlock *MBB,
1226                                            const MachineFunction &MF) const {
1227   // Terminators and labels can't be scheduled around.
1228   if (MI.isTerminator() || MI.isPosition())
1229     return true;
1230 
1231   // INLINEASM_BR can jump to another block
1232   if (MI.getOpcode() == TargetOpcode::INLINEASM_BR)
1233     return true;
1234 
1235   // Don't attempt to schedule around any instruction that defines
1236   // a stack-oriented pointer, as it's unlikely to be profitable. This
1237   // saves compile time, because it doesn't require every single
1238   // stack slot reference to depend on the instruction that does the
1239   // modification.
1240   const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
1241   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1242   return MI.modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI);
1243 }
1244 
1245 // Provide a global flag for disabling the PreRA hazard recognizer that targets
1246 // may choose to honor.
1247 bool TargetInstrInfo::usePreRAHazardRecognizer() const {
1248   return !DisableHazardRecognizer;
1249 }
1250 
1251 // Default implementation of CreateTargetRAHazardRecognizer.
1252 ScheduleHazardRecognizer *TargetInstrInfo::
1253 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
1254                              const ScheduleDAG *DAG) const {
1255   // Dummy hazard recognizer allows all instructions to issue.
1256   return new ScheduleHazardRecognizer();
1257 }
1258 
1259 // Default implementation of CreateTargetMIHazardRecognizer.
1260 ScheduleHazardRecognizer *TargetInstrInfo::CreateTargetMIHazardRecognizer(
1261     const InstrItineraryData *II, const ScheduleDAGMI *DAG) const {
1262   return new ScoreboardHazardRecognizer(II, DAG, "machine-scheduler");
1263 }
1264 
1265 // Default implementation of CreateTargetPostRAHazardRecognizer.
1266 ScheduleHazardRecognizer *TargetInstrInfo::
1267 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
1268                                    const ScheduleDAG *DAG) const {
1269   return new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched");
1270 }
1271 
1272 // Default implementation of getMemOperandWithOffset.
1273 bool TargetInstrInfo::getMemOperandWithOffset(
1274     const MachineInstr &MI, const MachineOperand *&BaseOp, int64_t &Offset,
1275     bool &OffsetIsScalable, const TargetRegisterInfo *TRI) const {
1276   SmallVector<const MachineOperand *, 4> BaseOps;
1277   unsigned Width;
1278   if (!getMemOperandsWithOffsetWidth(MI, BaseOps, Offset, OffsetIsScalable,
1279                                      Width, TRI) ||
1280       BaseOps.size() != 1)
1281     return false;
1282   BaseOp = BaseOps.front();
1283   return true;
1284 }
1285 
1286 //===----------------------------------------------------------------------===//
1287 //  SelectionDAG latency interface.
1288 //===----------------------------------------------------------------------===//
1289 
1290 int
1291 TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
1292                                    SDNode *DefNode, unsigned DefIdx,
1293                                    SDNode *UseNode, unsigned UseIdx) const {
1294   if (!ItinData || ItinData->isEmpty())
1295     return -1;
1296 
1297   if (!DefNode->isMachineOpcode())
1298     return -1;
1299 
1300   unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass();
1301   if (!UseNode->isMachineOpcode())
1302     return ItinData->getOperandCycle(DefClass, DefIdx);
1303   unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass();
1304   return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
1305 }
1306 
1307 int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
1308                                      SDNode *N) const {
1309   if (!ItinData || ItinData->isEmpty())
1310     return 1;
1311 
1312   if (!N->isMachineOpcode())
1313     return 1;
1314 
1315   return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass());
1316 }
1317 
1318 //===----------------------------------------------------------------------===//
1319 //  MachineInstr latency interface.
1320 //===----------------------------------------------------------------------===//
1321 
1322 unsigned TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
1323                                          const MachineInstr &MI) const {
1324   if (!ItinData || ItinData->isEmpty())
1325     return 1;
1326 
1327   unsigned Class = MI.getDesc().getSchedClass();
1328   int UOps = ItinData->Itineraries[Class].NumMicroOps;
1329   if (UOps >= 0)
1330     return UOps;
1331 
1332   // The # of u-ops is dynamically determined. The specific target should
1333   // override this function to return the right number.
1334   return 1;
1335 }
1336 
1337 /// Return the default expected latency for a def based on it's opcode.
1338 unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel,
1339                                             const MachineInstr &DefMI) const {
1340   if (DefMI.isTransient())
1341     return 0;
1342   if (DefMI.mayLoad())
1343     return SchedModel.LoadLatency;
1344   if (isHighLatencyDef(DefMI.getOpcode()))
1345     return SchedModel.HighLatency;
1346   return 1;
1347 }
1348 
1349 unsigned TargetInstrInfo::getPredicationCost(const MachineInstr &) const {
1350   return 0;
1351 }
1352 
1353 unsigned TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
1354                                           const MachineInstr &MI,
1355                                           unsigned *PredCost) const {
1356   // Default to one cycle for no itinerary. However, an "empty" itinerary may
1357   // still have a MinLatency property, which getStageLatency checks.
1358   if (!ItinData)
1359     return MI.mayLoad() ? 2 : 1;
1360 
1361   return ItinData->getStageLatency(MI.getDesc().getSchedClass());
1362 }
1363 
1364 bool TargetInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
1365                                        const MachineInstr &DefMI,
1366                                        unsigned DefIdx) const {
1367   const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
1368   if (!ItinData || ItinData->isEmpty())
1369     return false;
1370 
1371   unsigned DefClass = DefMI.getDesc().getSchedClass();
1372   int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
1373   return (DefCycle != -1 && DefCycle <= 1);
1374 }
1375 
1376 std::optional<ParamLoadedValue>
1377 TargetInstrInfo::describeLoadedValue(const MachineInstr &MI,
1378                                      Register Reg) const {
1379   const MachineFunction *MF = MI.getMF();
1380   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1381   DIExpression *Expr = DIExpression::get(MF->getFunction().getContext(), {});
1382   int64_t Offset;
1383   bool OffsetIsScalable;
1384 
1385   // To simplify the sub-register handling, verify that we only need to
1386   // consider physical registers.
1387   assert(MF->getProperties().hasProperty(
1388       MachineFunctionProperties::Property::NoVRegs));
1389 
1390   if (auto DestSrc = isCopyInstr(MI)) {
1391     Register DestReg = DestSrc->Destination->getReg();
1392 
1393     // If the copy destination is the forwarding reg, describe the forwarding
1394     // reg using the copy source as the backup location. Example:
1395     //
1396     //   x0 = MOV x7
1397     //   call callee(x0)      ; x0 described as x7
1398     if (Reg == DestReg)
1399       return ParamLoadedValue(*DestSrc->Source, Expr);
1400 
1401     // If the target's hook couldn't describe this copy, give up.
1402     return std::nullopt;
1403   } else if (auto RegImm = isAddImmediate(MI, Reg)) {
1404     Register SrcReg = RegImm->Reg;
1405     Offset = RegImm->Imm;
1406     Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset, Offset);
1407     return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
1408   } else if (MI.hasOneMemOperand()) {
1409     // Only describe memory which provably does not escape the function. As
1410     // described in llvm.org/PR43343, escaped memory may be clobbered by the
1411     // callee (or by another thread).
1412     const auto &TII = MF->getSubtarget().getInstrInfo();
1413     const MachineFrameInfo &MFI = MF->getFrameInfo();
1414     const MachineMemOperand *MMO = MI.memoperands()[0];
1415     const PseudoSourceValue *PSV = MMO->getPseudoValue();
1416 
1417     // If the address points to "special" memory (e.g. a spill slot), it's
1418     // sufficient to check that it isn't aliased by any high-level IR value.
1419     if (!PSV || PSV->mayAlias(&MFI))
1420       return std::nullopt;
1421 
1422     const MachineOperand *BaseOp;
1423     if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable,
1424                                       TRI))
1425       return std::nullopt;
1426 
1427     // FIXME: Scalable offsets are not yet handled in the offset code below.
1428     if (OffsetIsScalable)
1429       return std::nullopt;
1430 
1431     // TODO: Can currently only handle mem instructions with a single define.
1432     // An example from the x86 target:
1433     //    ...
1434     //    DIV64m $rsp, 1, $noreg, 24, $noreg, implicit-def dead $rax, implicit-def $rdx
1435     //    ...
1436     //
1437     if (MI.getNumExplicitDefs() != 1)
1438       return std::nullopt;
1439 
1440     // TODO: In what way do we need to take Reg into consideration here?
1441 
1442     SmallVector<uint64_t, 8> Ops;
1443     DIExpression::appendOffset(Ops, Offset);
1444     Ops.push_back(dwarf::DW_OP_deref_size);
1445     Ops.push_back(MMO->getSize());
1446     Expr = DIExpression::prependOpcodes(Expr, Ops);
1447     return ParamLoadedValue(*BaseOp, Expr);
1448   }
1449 
1450   return std::nullopt;
1451 }
1452 
1453 /// Both DefMI and UseMI must be valid.  By default, call directly to the
1454 /// itinerary. This may be overriden by the target.
1455 int TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
1456                                        const MachineInstr &DefMI,
1457                                        unsigned DefIdx,
1458                                        const MachineInstr &UseMI,
1459                                        unsigned UseIdx) const {
1460   unsigned DefClass = DefMI.getDesc().getSchedClass();
1461   unsigned UseClass = UseMI.getDesc().getSchedClass();
1462   return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
1463 }
1464 
1465 bool TargetInstrInfo::getRegSequenceInputs(
1466     const MachineInstr &MI, unsigned DefIdx,
1467     SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
1468   assert((MI.isRegSequence() ||
1469           MI.isRegSequenceLike()) && "Instruction do not have the proper type");
1470 
1471   if (!MI.isRegSequence())
1472     return getRegSequenceLikeInputs(MI, DefIdx, InputRegs);
1473 
1474   // We are looking at:
1475   // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
1476   assert(DefIdx == 0 && "REG_SEQUENCE only has one def");
1477   for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx;
1478        OpIdx += 2) {
1479     const MachineOperand &MOReg = MI.getOperand(OpIdx);
1480     if (MOReg.isUndef())
1481       continue;
1482     const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1);
1483     assert(MOSubIdx.isImm() &&
1484            "One of the subindex of the reg_sequence is not an immediate");
1485     // Record Reg:SubReg, SubIdx.
1486     InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(),
1487                                             (unsigned)MOSubIdx.getImm()));
1488   }
1489   return true;
1490 }
1491 
1492 bool TargetInstrInfo::getExtractSubregInputs(
1493     const MachineInstr &MI, unsigned DefIdx,
1494     RegSubRegPairAndIdx &InputReg) const {
1495   assert((MI.isExtractSubreg() ||
1496       MI.isExtractSubregLike()) && "Instruction do not have the proper type");
1497 
1498   if (!MI.isExtractSubreg())
1499     return getExtractSubregLikeInputs(MI, DefIdx, InputReg);
1500 
1501   // We are looking at:
1502   // Def = EXTRACT_SUBREG v0.sub1, sub0.
1503   assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def");
1504   const MachineOperand &MOReg = MI.getOperand(1);
1505   if (MOReg.isUndef())
1506     return false;
1507   const MachineOperand &MOSubIdx = MI.getOperand(2);
1508   assert(MOSubIdx.isImm() &&
1509          "The subindex of the extract_subreg is not an immediate");
1510 
1511   InputReg.Reg = MOReg.getReg();
1512   InputReg.SubReg = MOReg.getSubReg();
1513   InputReg.SubIdx = (unsigned)MOSubIdx.getImm();
1514   return true;
1515 }
1516 
1517 bool TargetInstrInfo::getInsertSubregInputs(
1518     const MachineInstr &MI, unsigned DefIdx,
1519     RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const {
1520   assert((MI.isInsertSubreg() ||
1521       MI.isInsertSubregLike()) && "Instruction do not have the proper type");
1522 
1523   if (!MI.isInsertSubreg())
1524     return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg);
1525 
1526   // We are looking at:
1527   // Def = INSERT_SEQUENCE v0, v1, sub0.
1528   assert(DefIdx == 0 && "INSERT_SUBREG only has one def");
1529   const MachineOperand &MOBaseReg = MI.getOperand(1);
1530   const MachineOperand &MOInsertedReg = MI.getOperand(2);
1531   if (MOInsertedReg.isUndef())
1532     return false;
1533   const MachineOperand &MOSubIdx = MI.getOperand(3);
1534   assert(MOSubIdx.isImm() &&
1535          "One of the subindex of the reg_sequence is not an immediate");
1536   BaseReg.Reg = MOBaseReg.getReg();
1537   BaseReg.SubReg = MOBaseReg.getSubReg();
1538 
1539   InsertedReg.Reg = MOInsertedReg.getReg();
1540   InsertedReg.SubReg = MOInsertedReg.getSubReg();
1541   InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm();
1542   return true;
1543 }
1544 
1545 // Returns a MIRPrinter comment for this machine operand.
1546 std::string TargetInstrInfo::createMIROperandComment(
1547     const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx,
1548     const TargetRegisterInfo *TRI) const {
1549 
1550   if (!MI.isInlineAsm())
1551     return "";
1552 
1553   std::string Flags;
1554   raw_string_ostream OS(Flags);
1555 
1556   if (OpIdx == InlineAsm::MIOp_ExtraInfo) {
1557     // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1558     unsigned ExtraInfo = Op.getImm();
1559     bool First = true;
1560     for (StringRef Info : InlineAsm::getExtraInfoNames(ExtraInfo)) {
1561       if (!First)
1562         OS << " ";
1563       First = false;
1564       OS << Info;
1565     }
1566 
1567     return OS.str();
1568   }
1569 
1570   int FlagIdx = MI.findInlineAsmFlagIdx(OpIdx);
1571   if (FlagIdx < 0 || (unsigned)FlagIdx != OpIdx)
1572     return "";
1573 
1574   assert(Op.isImm() && "Expected flag operand to be an immediate");
1575   // Pretty print the inline asm operand descriptor.
1576   unsigned Flag = Op.getImm();
1577   unsigned Kind = InlineAsm::getKind(Flag);
1578   OS << InlineAsm::getKindName(Kind);
1579 
1580   unsigned RCID = 0;
1581   if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
1582       InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1583     if (TRI) {
1584       OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1585     } else
1586       OS << ":RC" << RCID;
1587   }
1588 
1589   if (InlineAsm::isMemKind(Flag)) {
1590     unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
1591     OS << ":" << InlineAsm::getMemConstraintName(MCID);
1592   }
1593 
1594   unsigned TiedTo = 0;
1595   if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1596     OS << " tiedto:$" << TiedTo;
1597 
1598   return OS.str();
1599 }
1600 
1601 TargetInstrInfo::PipelinerLoopInfo::~PipelinerLoopInfo() = default;
1602 
1603 void TargetInstrInfo::mergeOutliningCandidateAttributes(
1604     Function &F, std::vector<outliner::Candidate> &Candidates) const {
1605   // Include target features from an arbitrary candidate for the outlined
1606   // function. This makes sure the outlined function knows what kinds of
1607   // instructions are going into it. This is fine, since all parent functions
1608   // must necessarily support the instructions that are in the outlined region.
1609   outliner::Candidate &FirstCand = Candidates.front();
1610   const Function &ParentFn = FirstCand.getMF()->getFunction();
1611   if (ParentFn.hasFnAttribute("target-features"))
1612     F.addFnAttr(ParentFn.getFnAttribute("target-features"));
1613   if (ParentFn.hasFnAttribute("target-cpu"))
1614     F.addFnAttr(ParentFn.getFnAttribute("target-cpu"));
1615 
1616   // Set nounwind, so we don't generate eh_frame.
1617   if (llvm::all_of(Candidates, [](const outliner::Candidate &C) {
1618         return C.getMF()->getFunction().hasFnAttribute(Attribute::NoUnwind);
1619       }))
1620     F.addFnAttr(Attribute::NoUnwind);
1621 }
1622 
1623 outliner::InstrType TargetInstrInfo::getOutliningType(
1624     MachineBasicBlock::iterator &MIT, unsigned Flags) const {
1625   MachineInstr &MI = *MIT;
1626 
1627   // NOTE: MI.isMetaInstruction() will match CFI_INSTRUCTION, but some targets
1628   // have support for outlining those. Special-case that here.
1629   if (MI.isCFIInstruction())
1630     // Just go right to the target implementation.
1631     return getOutliningTypeImpl(MIT, Flags);
1632 
1633   // Be conservative about inline assembly.
1634   if (MI.isInlineAsm())
1635     return outliner::InstrType::Illegal;
1636 
1637   // Labels generally can't safely be outlined.
1638   if (MI.isLabel())
1639     return outliner::InstrType::Illegal;
1640 
1641   // Don't let debug instructions impact analysis.
1642   if (MI.isDebugInstr())
1643     return outliner::InstrType::Invisible;
1644 
1645   // Some other special cases.
1646   switch (MI.getOpcode()) {
1647     case TargetOpcode::IMPLICIT_DEF:
1648     case TargetOpcode::KILL:
1649     case TargetOpcode::LIFETIME_START:
1650     case TargetOpcode::LIFETIME_END:
1651       return outliner::InstrType::Invisible;
1652     default:
1653       break;
1654   }
1655 
1656   // Is this a terminator for a basic block?
1657   if (MI.isTerminator()) {
1658     // If this is a branch to another block, we can't outline it.
1659     if (!MI.getParent()->succ_empty())
1660       return outliner::InstrType::Illegal;
1661 
1662     // Don't outline if the branch is not unconditional.
1663     if (isPredicated(MI))
1664       return outliner::InstrType::Illegal;
1665   }
1666 
1667   // Make sure none of the operands of this instruction do anything that
1668   // might break if they're moved outside their current function.
1669   // This includes MachineBasicBlock references, BlockAddressses,
1670   // Constant pool indices and jump table indices.
1671   //
1672   // A quick note on MO_TargetIndex:
1673   // This doesn't seem to be used in any of the architectures that the
1674   // MachineOutliner supports, but it was still filtered out in all of them.
1675   // There was one exception (RISC-V), but MO_TargetIndex also isn't used there.
1676   // As such, this check is removed both here and in the target-specific
1677   // implementations. Instead, we assert to make sure this doesn't
1678   // catch anyone off-guard somewhere down the line.
1679   for (const MachineOperand &MOP : MI.operands()) {
1680     // If you hit this assertion, please remove it and adjust
1681     // `getOutliningTypeImpl` for your target appropriately if necessary.
1682     // Adding the assertion back to other supported architectures
1683     // would be nice too :)
1684     assert(!MOP.isTargetIndex() && "This isn't used quite yet!");
1685 
1686     // CFI instructions should already have been filtered out at this point.
1687     assert(!MOP.isCFIIndex() && "CFI instructions handled elsewhere!");
1688 
1689     // PrologEpilogInserter should've already run at this point.
1690     assert(!MOP.isFI() && "FrameIndex instructions should be gone by now!");
1691 
1692     if (MOP.isMBB() || MOP.isBlockAddress() || MOP.isCPI() || MOP.isJTI())
1693       return outliner::InstrType::Illegal;
1694   }
1695 
1696   // If we don't know, delegate to the target-specific hook.
1697   return getOutliningTypeImpl(MIT, Flags);
1698 }
1699 
1700 bool TargetInstrInfo::isMBBSafeToOutlineFrom(MachineBasicBlock &MBB,
1701                                              unsigned &Flags) const {
1702   // Some instrumentations create special TargetOpcode at the start which
1703   // expands to special code sequences which must be present.
1704   auto First = MBB.getFirstNonDebugInstr();
1705   if (First == MBB.end())
1706     return true;
1707 
1708   if (First->getOpcode() == TargetOpcode::FENTRY_CALL ||
1709       First->getOpcode() == TargetOpcode::PATCHABLE_FUNCTION_ENTER)
1710     return false;
1711 
1712   // Some instrumentations create special pseudo-instructions at or just before
1713   // the end that must be present.
1714   auto Last = MBB.getLastNonDebugInstr();
1715   if (Last->getOpcode() == TargetOpcode::PATCHABLE_RET ||
1716       Last->getOpcode() == TargetOpcode::PATCHABLE_TAIL_CALL)
1717     return false;
1718 
1719   if (Last != First && Last->isReturn()) {
1720     --Last;
1721     if (Last->getOpcode() == TargetOpcode::PATCHABLE_FUNCTION_EXIT ||
1722         Last->getOpcode() == TargetOpcode::PATCHABLE_TAIL_CALL)
1723       return false;
1724   }
1725   return true;
1726 }
1727