1 //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLoweringBase class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/BitVector.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/StringExtras.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/Analysis/Loads.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/CodeGen/Analysis.h"
22 #include "llvm/CodeGen/ISDOpcodes.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstr.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineMemOperand.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/MachineValueType.h"
32 #include "llvm/CodeGen/RuntimeLibcalls.h"
33 #include "llvm/CodeGen/StackMaps.h"
34 #include "llvm/CodeGen/TargetLowering.h"
35 #include "llvm/CodeGen/TargetOpcodes.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/ValueTypes.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/CallingConv.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/GlobalValue.h"
44 #include "llvm/IR/GlobalVariable.h"
45 #include "llvm/IR/IRBuilder.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Compiler.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/MathExtras.h"
53 #include "llvm/Target/TargetMachine.h"
54 #include "llvm/Target/TargetOptions.h"
55 #include "llvm/TargetParser/Triple.h"
56 #include "llvm/Transforms/Utils/SizeOpts.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <cstdint>
60 #include <cstring>
61 #include <iterator>
62 #include <string>
63 #include <tuple>
64 #include <utility>
65 
66 using namespace llvm;
67 
68 static cl::opt<bool> JumpIsExpensiveOverride(
69     "jump-is-expensive", cl::init(false),
70     cl::desc("Do not create extra branches to split comparison logic."),
71     cl::Hidden);
72 
73 static cl::opt<unsigned> MinimumJumpTableEntries
74   ("min-jump-table-entries", cl::init(4), cl::Hidden,
75    cl::desc("Set minimum number of entries to use a jump table."));
76 
77 static cl::opt<unsigned> MaximumJumpTableSize
78   ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden,
79    cl::desc("Set maximum size of jump tables."));
80 
81 /// Minimum jump table density for normal functions.
82 static cl::opt<unsigned>
83     JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
84                      cl::desc("Minimum density for building a jump table in "
85                               "a normal function"));
86 
87 /// Minimum jump table density for -Os or -Oz functions.
88 static cl::opt<unsigned> OptsizeJumpTableDensity(
89     "optsize-jump-table-density", cl::init(40), cl::Hidden,
90     cl::desc("Minimum density for building a jump table in "
91              "an optsize function"));
92 
93 // FIXME: This option is only to test if the strict fp operation processed
94 // correctly by preventing mutating strict fp operation to normal fp operation
95 // during development. When the backend supports strict float operation, this
96 // option will be meaningless.
97 static cl::opt<bool> DisableStrictNodeMutation("disable-strictnode-mutation",
98        cl::desc("Don't mutate strict-float node to a legalize node"),
99        cl::init(false), cl::Hidden);
100 
101 static bool darwinHasSinCos(const Triple &TT) {
102   assert(TT.isOSDarwin() && "should be called with darwin triple");
103   // Don't bother with 32 bit x86.
104   if (TT.getArch() == Triple::x86)
105     return false;
106   // Macos < 10.9 has no sincos_stret.
107   if (TT.isMacOSX())
108     return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit();
109   // iOS < 7.0 has no sincos_stret.
110   if (TT.isiOS())
111     return !TT.isOSVersionLT(7, 0);
112   // Any other darwin such as WatchOS/TvOS is new enough.
113   return true;
114 }
115 
116 void TargetLoweringBase::InitLibcalls(const Triple &TT) {
117 #define HANDLE_LIBCALL(code, name) \
118   setLibcallName(RTLIB::code, name);
119 #include "llvm/IR/RuntimeLibcalls.def"
120 #undef HANDLE_LIBCALL
121   // Initialize calling conventions to their default.
122   for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC)
123     setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C);
124 
125   // For IEEE quad-precision libcall names, PPC uses "kf" instead of "tf".
126   if (TT.isPPC()) {
127     setLibcallName(RTLIB::ADD_F128, "__addkf3");
128     setLibcallName(RTLIB::SUB_F128, "__subkf3");
129     setLibcallName(RTLIB::MUL_F128, "__mulkf3");
130     setLibcallName(RTLIB::DIV_F128, "__divkf3");
131     setLibcallName(RTLIB::POWI_F128, "__powikf2");
132     setLibcallName(RTLIB::FPEXT_F32_F128, "__extendsfkf2");
133     setLibcallName(RTLIB::FPEXT_F64_F128, "__extenddfkf2");
134     setLibcallName(RTLIB::FPROUND_F128_F32, "__trunckfsf2");
135     setLibcallName(RTLIB::FPROUND_F128_F64, "__trunckfdf2");
136     setLibcallName(RTLIB::FPTOSINT_F128_I32, "__fixkfsi");
137     setLibcallName(RTLIB::FPTOSINT_F128_I64, "__fixkfdi");
138     setLibcallName(RTLIB::FPTOSINT_F128_I128, "__fixkfti");
139     setLibcallName(RTLIB::FPTOUINT_F128_I32, "__fixunskfsi");
140     setLibcallName(RTLIB::FPTOUINT_F128_I64, "__fixunskfdi");
141     setLibcallName(RTLIB::FPTOUINT_F128_I128, "__fixunskfti");
142     setLibcallName(RTLIB::SINTTOFP_I32_F128, "__floatsikf");
143     setLibcallName(RTLIB::SINTTOFP_I64_F128, "__floatdikf");
144     setLibcallName(RTLIB::SINTTOFP_I128_F128, "__floattikf");
145     setLibcallName(RTLIB::UINTTOFP_I32_F128, "__floatunsikf");
146     setLibcallName(RTLIB::UINTTOFP_I64_F128, "__floatundikf");
147     setLibcallName(RTLIB::UINTTOFP_I128_F128, "__floatuntikf");
148     setLibcallName(RTLIB::OEQ_F128, "__eqkf2");
149     setLibcallName(RTLIB::UNE_F128, "__nekf2");
150     setLibcallName(RTLIB::OGE_F128, "__gekf2");
151     setLibcallName(RTLIB::OLT_F128, "__ltkf2");
152     setLibcallName(RTLIB::OLE_F128, "__lekf2");
153     setLibcallName(RTLIB::OGT_F128, "__gtkf2");
154     setLibcallName(RTLIB::UO_F128, "__unordkf2");
155   }
156 
157   // A few names are different on particular architectures or environments.
158   if (TT.isOSDarwin()) {
159     // For f16/f32 conversions, Darwin uses the standard naming scheme, instead
160     // of the gnueabi-style __gnu_*_ieee.
161     // FIXME: What about other targets?
162     setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
163     setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
164 
165     // Some darwins have an optimized __bzero/bzero function.
166     switch (TT.getArch()) {
167     case Triple::x86:
168     case Triple::x86_64:
169       if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6))
170         setLibcallName(RTLIB::BZERO, "__bzero");
171       break;
172     case Triple::aarch64:
173     case Triple::aarch64_32:
174       setLibcallName(RTLIB::BZERO, "bzero");
175       break;
176     default:
177       break;
178     }
179 
180     if (darwinHasSinCos(TT)) {
181       setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret");
182       setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret");
183       if (TT.isWatchABI()) {
184         setLibcallCallingConv(RTLIB::SINCOS_STRET_F32,
185                               CallingConv::ARM_AAPCS_VFP);
186         setLibcallCallingConv(RTLIB::SINCOS_STRET_F64,
187                               CallingConv::ARM_AAPCS_VFP);
188       }
189     }
190   } else {
191     setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee");
192     setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee");
193   }
194 
195   if (TT.isGNUEnvironment() || TT.isOSFuchsia() ||
196       (TT.isAndroid() && !TT.isAndroidVersionLT(9))) {
197     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
198     setLibcallName(RTLIB::SINCOS_F64, "sincos");
199     setLibcallName(RTLIB::SINCOS_F80, "sincosl");
200     setLibcallName(RTLIB::SINCOS_F128, "sincosl");
201     setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl");
202   }
203 
204   if (TT.isPS()) {
205     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
206     setLibcallName(RTLIB::SINCOS_F64, "sincos");
207   }
208 
209   if (TT.isOSOpenBSD()) {
210     setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr);
211   }
212 
213   if (TT.isOSWindows() && !TT.isOSCygMing()) {
214     setLibcallName(RTLIB::LDEXP_F32, nullptr);
215     setLibcallName(RTLIB::LDEXP_F80, nullptr);
216     setLibcallName(RTLIB::LDEXP_F128, nullptr);
217     setLibcallName(RTLIB::LDEXP_PPCF128, nullptr);
218 
219     setLibcallName(RTLIB::FREXP_F32, nullptr);
220     setLibcallName(RTLIB::FREXP_F80, nullptr);
221     setLibcallName(RTLIB::FREXP_F128, nullptr);
222     setLibcallName(RTLIB::FREXP_PPCF128, nullptr);
223   }
224 }
225 
226 /// GetFPLibCall - Helper to return the right libcall for the given floating
227 /// point type, or UNKNOWN_LIBCALL if there is none.
228 RTLIB::Libcall RTLIB::getFPLibCall(EVT VT,
229                                    RTLIB::Libcall Call_F32,
230                                    RTLIB::Libcall Call_F64,
231                                    RTLIB::Libcall Call_F80,
232                                    RTLIB::Libcall Call_F128,
233                                    RTLIB::Libcall Call_PPCF128) {
234   return
235     VT == MVT::f32 ? Call_F32 :
236     VT == MVT::f64 ? Call_F64 :
237     VT == MVT::f80 ? Call_F80 :
238     VT == MVT::f128 ? Call_F128 :
239     VT == MVT::ppcf128 ? Call_PPCF128 :
240     RTLIB::UNKNOWN_LIBCALL;
241 }
242 
243 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
244 /// UNKNOWN_LIBCALL if there is none.
245 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
246   if (OpVT == MVT::f16) {
247     if (RetVT == MVT::f32)
248       return FPEXT_F16_F32;
249     if (RetVT == MVT::f64)
250       return FPEXT_F16_F64;
251     if (RetVT == MVT::f80)
252       return FPEXT_F16_F80;
253     if (RetVT == MVT::f128)
254       return FPEXT_F16_F128;
255   } else if (OpVT == MVT::f32) {
256     if (RetVT == MVT::f64)
257       return FPEXT_F32_F64;
258     if (RetVT == MVT::f128)
259       return FPEXT_F32_F128;
260     if (RetVT == MVT::ppcf128)
261       return FPEXT_F32_PPCF128;
262   } else if (OpVT == MVT::f64) {
263     if (RetVT == MVT::f128)
264       return FPEXT_F64_F128;
265     else if (RetVT == MVT::ppcf128)
266       return FPEXT_F64_PPCF128;
267   } else if (OpVT == MVT::f80) {
268     if (RetVT == MVT::f128)
269       return FPEXT_F80_F128;
270   }
271 
272   return UNKNOWN_LIBCALL;
273 }
274 
275 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
276 /// UNKNOWN_LIBCALL if there is none.
277 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
278   if (RetVT == MVT::f16) {
279     if (OpVT == MVT::f32)
280       return FPROUND_F32_F16;
281     if (OpVT == MVT::f64)
282       return FPROUND_F64_F16;
283     if (OpVT == MVT::f80)
284       return FPROUND_F80_F16;
285     if (OpVT == MVT::f128)
286       return FPROUND_F128_F16;
287     if (OpVT == MVT::ppcf128)
288       return FPROUND_PPCF128_F16;
289   } else if (RetVT == MVT::bf16) {
290     if (OpVT == MVT::f32)
291       return FPROUND_F32_BF16;
292     if (OpVT == MVT::f64)
293       return FPROUND_F64_BF16;
294   } else if (RetVT == MVT::f32) {
295     if (OpVT == MVT::f64)
296       return FPROUND_F64_F32;
297     if (OpVT == MVT::f80)
298       return FPROUND_F80_F32;
299     if (OpVT == MVT::f128)
300       return FPROUND_F128_F32;
301     if (OpVT == MVT::ppcf128)
302       return FPROUND_PPCF128_F32;
303   } else if (RetVT == MVT::f64) {
304     if (OpVT == MVT::f80)
305       return FPROUND_F80_F64;
306     if (OpVT == MVT::f128)
307       return FPROUND_F128_F64;
308     if (OpVT == MVT::ppcf128)
309       return FPROUND_PPCF128_F64;
310   } else if (RetVT == MVT::f80) {
311     if (OpVT == MVT::f128)
312       return FPROUND_F128_F80;
313   }
314 
315   return UNKNOWN_LIBCALL;
316 }
317 
318 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
319 /// UNKNOWN_LIBCALL if there is none.
320 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
321   if (OpVT == MVT::f16) {
322     if (RetVT == MVT::i32)
323       return FPTOSINT_F16_I32;
324     if (RetVT == MVT::i64)
325       return FPTOSINT_F16_I64;
326     if (RetVT == MVT::i128)
327       return FPTOSINT_F16_I128;
328   } else if (OpVT == MVT::f32) {
329     if (RetVT == MVT::i32)
330       return FPTOSINT_F32_I32;
331     if (RetVT == MVT::i64)
332       return FPTOSINT_F32_I64;
333     if (RetVT == MVT::i128)
334       return FPTOSINT_F32_I128;
335   } else if (OpVT == MVT::f64) {
336     if (RetVT == MVT::i32)
337       return FPTOSINT_F64_I32;
338     if (RetVT == MVT::i64)
339       return FPTOSINT_F64_I64;
340     if (RetVT == MVT::i128)
341       return FPTOSINT_F64_I128;
342   } else if (OpVT == MVT::f80) {
343     if (RetVT == MVT::i32)
344       return FPTOSINT_F80_I32;
345     if (RetVT == MVT::i64)
346       return FPTOSINT_F80_I64;
347     if (RetVT == MVT::i128)
348       return FPTOSINT_F80_I128;
349   } else if (OpVT == MVT::f128) {
350     if (RetVT == MVT::i32)
351       return FPTOSINT_F128_I32;
352     if (RetVT == MVT::i64)
353       return FPTOSINT_F128_I64;
354     if (RetVT == MVT::i128)
355       return FPTOSINT_F128_I128;
356   } else if (OpVT == MVT::ppcf128) {
357     if (RetVT == MVT::i32)
358       return FPTOSINT_PPCF128_I32;
359     if (RetVT == MVT::i64)
360       return FPTOSINT_PPCF128_I64;
361     if (RetVT == MVT::i128)
362       return FPTOSINT_PPCF128_I128;
363   }
364   return UNKNOWN_LIBCALL;
365 }
366 
367 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
368 /// UNKNOWN_LIBCALL if there is none.
369 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
370   if (OpVT == MVT::f16) {
371     if (RetVT == MVT::i32)
372       return FPTOUINT_F16_I32;
373     if (RetVT == MVT::i64)
374       return FPTOUINT_F16_I64;
375     if (RetVT == MVT::i128)
376       return FPTOUINT_F16_I128;
377   } else if (OpVT == MVT::f32) {
378     if (RetVT == MVT::i32)
379       return FPTOUINT_F32_I32;
380     if (RetVT == MVT::i64)
381       return FPTOUINT_F32_I64;
382     if (RetVT == MVT::i128)
383       return FPTOUINT_F32_I128;
384   } else if (OpVT == MVT::f64) {
385     if (RetVT == MVT::i32)
386       return FPTOUINT_F64_I32;
387     if (RetVT == MVT::i64)
388       return FPTOUINT_F64_I64;
389     if (RetVT == MVT::i128)
390       return FPTOUINT_F64_I128;
391   } else if (OpVT == MVT::f80) {
392     if (RetVT == MVT::i32)
393       return FPTOUINT_F80_I32;
394     if (RetVT == MVT::i64)
395       return FPTOUINT_F80_I64;
396     if (RetVT == MVT::i128)
397       return FPTOUINT_F80_I128;
398   } else if (OpVT == MVT::f128) {
399     if (RetVT == MVT::i32)
400       return FPTOUINT_F128_I32;
401     if (RetVT == MVT::i64)
402       return FPTOUINT_F128_I64;
403     if (RetVT == MVT::i128)
404       return FPTOUINT_F128_I128;
405   } else if (OpVT == MVT::ppcf128) {
406     if (RetVT == MVT::i32)
407       return FPTOUINT_PPCF128_I32;
408     if (RetVT == MVT::i64)
409       return FPTOUINT_PPCF128_I64;
410     if (RetVT == MVT::i128)
411       return FPTOUINT_PPCF128_I128;
412   }
413   return UNKNOWN_LIBCALL;
414 }
415 
416 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
417 /// UNKNOWN_LIBCALL if there is none.
418 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
419   if (OpVT == MVT::i32) {
420     if (RetVT == MVT::f16)
421       return SINTTOFP_I32_F16;
422     if (RetVT == MVT::f32)
423       return SINTTOFP_I32_F32;
424     if (RetVT == MVT::f64)
425       return SINTTOFP_I32_F64;
426     if (RetVT == MVT::f80)
427       return SINTTOFP_I32_F80;
428     if (RetVT == MVT::f128)
429       return SINTTOFP_I32_F128;
430     if (RetVT == MVT::ppcf128)
431       return SINTTOFP_I32_PPCF128;
432   } else if (OpVT == MVT::i64) {
433     if (RetVT == MVT::f16)
434       return SINTTOFP_I64_F16;
435     if (RetVT == MVT::f32)
436       return SINTTOFP_I64_F32;
437     if (RetVT == MVT::f64)
438       return SINTTOFP_I64_F64;
439     if (RetVT == MVT::f80)
440       return SINTTOFP_I64_F80;
441     if (RetVT == MVT::f128)
442       return SINTTOFP_I64_F128;
443     if (RetVT == MVT::ppcf128)
444       return SINTTOFP_I64_PPCF128;
445   } else if (OpVT == MVT::i128) {
446     if (RetVT == MVT::f16)
447       return SINTTOFP_I128_F16;
448     if (RetVT == MVT::f32)
449       return SINTTOFP_I128_F32;
450     if (RetVT == MVT::f64)
451       return SINTTOFP_I128_F64;
452     if (RetVT == MVT::f80)
453       return SINTTOFP_I128_F80;
454     if (RetVT == MVT::f128)
455       return SINTTOFP_I128_F128;
456     if (RetVT == MVT::ppcf128)
457       return SINTTOFP_I128_PPCF128;
458   }
459   return UNKNOWN_LIBCALL;
460 }
461 
462 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
463 /// UNKNOWN_LIBCALL if there is none.
464 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
465   if (OpVT == MVT::i32) {
466     if (RetVT == MVT::f16)
467       return UINTTOFP_I32_F16;
468     if (RetVT == MVT::f32)
469       return UINTTOFP_I32_F32;
470     if (RetVT == MVT::f64)
471       return UINTTOFP_I32_F64;
472     if (RetVT == MVT::f80)
473       return UINTTOFP_I32_F80;
474     if (RetVT == MVT::f128)
475       return UINTTOFP_I32_F128;
476     if (RetVT == MVT::ppcf128)
477       return UINTTOFP_I32_PPCF128;
478   } else if (OpVT == MVT::i64) {
479     if (RetVT == MVT::f16)
480       return UINTTOFP_I64_F16;
481     if (RetVT == MVT::f32)
482       return UINTTOFP_I64_F32;
483     if (RetVT == MVT::f64)
484       return UINTTOFP_I64_F64;
485     if (RetVT == MVT::f80)
486       return UINTTOFP_I64_F80;
487     if (RetVT == MVT::f128)
488       return UINTTOFP_I64_F128;
489     if (RetVT == MVT::ppcf128)
490       return UINTTOFP_I64_PPCF128;
491   } else if (OpVT == MVT::i128) {
492     if (RetVT == MVT::f16)
493       return UINTTOFP_I128_F16;
494     if (RetVT == MVT::f32)
495       return UINTTOFP_I128_F32;
496     if (RetVT == MVT::f64)
497       return UINTTOFP_I128_F64;
498     if (RetVT == MVT::f80)
499       return UINTTOFP_I128_F80;
500     if (RetVT == MVT::f128)
501       return UINTTOFP_I128_F128;
502     if (RetVT == MVT::ppcf128)
503       return UINTTOFP_I128_PPCF128;
504   }
505   return UNKNOWN_LIBCALL;
506 }
507 
508 RTLIB::Libcall RTLIB::getPOWI(EVT RetVT) {
509   return getFPLibCall(RetVT, POWI_F32, POWI_F64, POWI_F80, POWI_F128,
510                       POWI_PPCF128);
511 }
512 
513 RTLIB::Libcall RTLIB::getLDEXP(EVT RetVT) {
514   return getFPLibCall(RetVT, LDEXP_F32, LDEXP_F64, LDEXP_F80, LDEXP_F128,
515                       LDEXP_PPCF128);
516 }
517 
518 RTLIB::Libcall RTLIB::getFREXP(EVT RetVT) {
519   return getFPLibCall(RetVT, FREXP_F32, FREXP_F64, FREXP_F80, FREXP_F128,
520                       FREXP_PPCF128);
521 }
522 
523 RTLIB::Libcall RTLIB::getOutlineAtomicHelper(const Libcall (&LC)[5][4],
524                                              AtomicOrdering Order,
525                                              uint64_t MemSize) {
526   unsigned ModeN, ModelN;
527   switch (MemSize) {
528   case 1:
529     ModeN = 0;
530     break;
531   case 2:
532     ModeN = 1;
533     break;
534   case 4:
535     ModeN = 2;
536     break;
537   case 8:
538     ModeN = 3;
539     break;
540   case 16:
541     ModeN = 4;
542     break;
543   default:
544     return RTLIB::UNKNOWN_LIBCALL;
545   }
546 
547   switch (Order) {
548   case AtomicOrdering::Monotonic:
549     ModelN = 0;
550     break;
551   case AtomicOrdering::Acquire:
552     ModelN = 1;
553     break;
554   case AtomicOrdering::Release:
555     ModelN = 2;
556     break;
557   case AtomicOrdering::AcquireRelease:
558   case AtomicOrdering::SequentiallyConsistent:
559     ModelN = 3;
560     break;
561   default:
562     return UNKNOWN_LIBCALL;
563   }
564 
565   return LC[ModeN][ModelN];
566 }
567 
568 RTLIB::Libcall RTLIB::getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order,
569                                         MVT VT) {
570   if (!VT.isScalarInteger())
571     return UNKNOWN_LIBCALL;
572   uint64_t MemSize = VT.getScalarSizeInBits() / 8;
573 
574 #define LCALLS(A, B)                                                           \
575   { A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL }
576 #define LCALL5(A)                                                              \
577   LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16)
578   switch (Opc) {
579   case ISD::ATOMIC_CMP_SWAP: {
580     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_CAS)};
581     return getOutlineAtomicHelper(LC, Order, MemSize);
582   }
583   case ISD::ATOMIC_SWAP: {
584     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_SWP)};
585     return getOutlineAtomicHelper(LC, Order, MemSize);
586   }
587   case ISD::ATOMIC_LOAD_ADD: {
588     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDADD)};
589     return getOutlineAtomicHelper(LC, Order, MemSize);
590   }
591   case ISD::ATOMIC_LOAD_OR: {
592     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDSET)};
593     return getOutlineAtomicHelper(LC, Order, MemSize);
594   }
595   case ISD::ATOMIC_LOAD_CLR: {
596     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDCLR)};
597     return getOutlineAtomicHelper(LC, Order, MemSize);
598   }
599   case ISD::ATOMIC_LOAD_XOR: {
600     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDEOR)};
601     return getOutlineAtomicHelper(LC, Order, MemSize);
602   }
603   default:
604     return UNKNOWN_LIBCALL;
605   }
606 #undef LCALLS
607 #undef LCALL5
608 }
609 
610 RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
611 #define OP_TO_LIBCALL(Name, Enum)                                              \
612   case Name:                                                                   \
613     switch (VT.SimpleTy) {                                                     \
614     default:                                                                   \
615       return UNKNOWN_LIBCALL;                                                  \
616     case MVT::i8:                                                              \
617       return Enum##_1;                                                         \
618     case MVT::i16:                                                             \
619       return Enum##_2;                                                         \
620     case MVT::i32:                                                             \
621       return Enum##_4;                                                         \
622     case MVT::i64:                                                             \
623       return Enum##_8;                                                         \
624     case MVT::i128:                                                            \
625       return Enum##_16;                                                        \
626     }
627 
628   switch (Opc) {
629     OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
630     OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
631     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
632     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
633     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
634     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
635     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
636     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
637     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
638     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
639     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
640     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
641   }
642 
643 #undef OP_TO_LIBCALL
644 
645   return UNKNOWN_LIBCALL;
646 }
647 
648 RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
649   switch (ElementSize) {
650   case 1:
651     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
652   case 2:
653     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
654   case 4:
655     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
656   case 8:
657     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
658   case 16:
659     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
660   default:
661     return UNKNOWN_LIBCALL;
662   }
663 }
664 
665 RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
666   switch (ElementSize) {
667   case 1:
668     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
669   case 2:
670     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
671   case 4:
672     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
673   case 8:
674     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
675   case 16:
676     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
677   default:
678     return UNKNOWN_LIBCALL;
679   }
680 }
681 
682 RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
683   switch (ElementSize) {
684   case 1:
685     return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
686   case 2:
687     return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
688   case 4:
689     return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
690   case 8:
691     return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
692   case 16:
693     return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
694   default:
695     return UNKNOWN_LIBCALL;
696   }
697 }
698 
699 /// InitCmpLibcallCCs - Set default comparison libcall CC.
700 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
701   std::fill(CCs, CCs + RTLIB::UNKNOWN_LIBCALL, ISD::SETCC_INVALID);
702   CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
703   CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
704   CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
705   CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ;
706   CCs[RTLIB::UNE_F32] = ISD::SETNE;
707   CCs[RTLIB::UNE_F64] = ISD::SETNE;
708   CCs[RTLIB::UNE_F128] = ISD::SETNE;
709   CCs[RTLIB::UNE_PPCF128] = ISD::SETNE;
710   CCs[RTLIB::OGE_F32] = ISD::SETGE;
711   CCs[RTLIB::OGE_F64] = ISD::SETGE;
712   CCs[RTLIB::OGE_F128] = ISD::SETGE;
713   CCs[RTLIB::OGE_PPCF128] = ISD::SETGE;
714   CCs[RTLIB::OLT_F32] = ISD::SETLT;
715   CCs[RTLIB::OLT_F64] = ISD::SETLT;
716   CCs[RTLIB::OLT_F128] = ISD::SETLT;
717   CCs[RTLIB::OLT_PPCF128] = ISD::SETLT;
718   CCs[RTLIB::OLE_F32] = ISD::SETLE;
719   CCs[RTLIB::OLE_F64] = ISD::SETLE;
720   CCs[RTLIB::OLE_F128] = ISD::SETLE;
721   CCs[RTLIB::OLE_PPCF128] = ISD::SETLE;
722   CCs[RTLIB::OGT_F32] = ISD::SETGT;
723   CCs[RTLIB::OGT_F64] = ISD::SETGT;
724   CCs[RTLIB::OGT_F128] = ISD::SETGT;
725   CCs[RTLIB::OGT_PPCF128] = ISD::SETGT;
726   CCs[RTLIB::UO_F32] = ISD::SETNE;
727   CCs[RTLIB::UO_F64] = ISD::SETNE;
728   CCs[RTLIB::UO_F128] = ISD::SETNE;
729   CCs[RTLIB::UO_PPCF128] = ISD::SETNE;
730 }
731 
732 /// NOTE: The TargetMachine owns TLOF.
733 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
734   initActions();
735 
736   // Perform these initializations only once.
737   MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove =
738       MaxLoadsPerMemcmp = 8;
739   MaxGluedStoresPerMemcpy = 0;
740   MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize =
741       MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4;
742   HasMultipleConditionRegisters = false;
743   HasExtractBitsInsn = false;
744   JumpIsExpensive = JumpIsExpensiveOverride;
745   PredictableSelectIsExpensive = false;
746   EnableExtLdPromotion = false;
747   StackPointerRegisterToSaveRestore = 0;
748   BooleanContents = UndefinedBooleanContent;
749   BooleanFloatContents = UndefinedBooleanContent;
750   BooleanVectorContents = UndefinedBooleanContent;
751   SchedPreferenceInfo = Sched::ILP;
752   GatherAllAliasesMaxDepth = 18;
753   IsStrictFPEnabled = DisableStrictNodeMutation;
754   MaxBytesForAlignment = 0;
755   MaxAtomicSizeInBitsSupported = 0;
756 
757   // Assume that even with libcalls, no target supports wider than 128 bit
758   // division.
759   MaxDivRemBitWidthSupported = 128;
760 
761   MaxLargeFPConvertBitWidthSupported = llvm::IntegerType::MAX_INT_BITS;
762 
763   MinCmpXchgSizeInBits = 0;
764   SupportsUnalignedAtomics = false;
765 
766   std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr);
767 
768   InitLibcalls(TM.getTargetTriple());
769   InitCmpLibcallCCs(CmpLibcallCCs);
770 }
771 
772 void TargetLoweringBase::initActions() {
773   // All operations default to being supported.
774   memset(OpActions, 0, sizeof(OpActions));
775   memset(LoadExtActions, 0, sizeof(LoadExtActions));
776   memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
777   memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
778   memset(CondCodeActions, 0, sizeof(CondCodeActions));
779   std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr);
780   std::fill(std::begin(TargetDAGCombineArray),
781             std::end(TargetDAGCombineArray), 0);
782 
783   // We're somewhat special casing MVT::i2 and MVT::i4. Ideally we want to
784   // remove this and targets should individually set these types if not legal.
785   for (ISD::NodeType NT : enum_seq(ISD::DELETED_NODE, ISD::BUILTIN_OP_END,
786                                    force_iteration_on_noniterable_enum)) {
787     for (MVT VT : {MVT::i2, MVT::i4})
788       OpActions[(unsigned)VT.SimpleTy][NT] = Expand;
789   }
790   for (MVT AVT : MVT::all_valuetypes()) {
791     for (MVT VT : {MVT::i2, MVT::i4, MVT::v128i2, MVT::v64i4}) {
792       setTruncStoreAction(AVT, VT, Expand);
793       setLoadExtAction(ISD::EXTLOAD, AVT, VT, Expand);
794       setLoadExtAction(ISD::ZEXTLOAD, AVT, VT, Expand);
795     }
796   }
797   for (unsigned IM = (unsigned)ISD::PRE_INC;
798        IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
799     for (MVT VT : {MVT::i2, MVT::i4}) {
800       setIndexedLoadAction(IM, VT, Expand);
801       setIndexedStoreAction(IM, VT, Expand);
802       setIndexedMaskedLoadAction(IM, VT, Expand);
803       setIndexedMaskedStoreAction(IM, VT, Expand);
804     }
805   }
806 
807   for (MVT VT : MVT::fp_valuetypes()) {
808     MVT IntVT = MVT::getIntegerVT(VT.getFixedSizeInBits());
809     if (IntVT.isValid()) {
810       setOperationAction(ISD::ATOMIC_SWAP, VT, Promote);
811       AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT);
812     }
813   }
814 
815   // Set default actions for various operations.
816   for (MVT VT : MVT::all_valuetypes()) {
817     // Default all indexed load / store to expand.
818     for (unsigned IM = (unsigned)ISD::PRE_INC;
819          IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
820       setIndexedLoadAction(IM, VT, Expand);
821       setIndexedStoreAction(IM, VT, Expand);
822       setIndexedMaskedLoadAction(IM, VT, Expand);
823       setIndexedMaskedStoreAction(IM, VT, Expand);
824     }
825 
826     // Most backends expect to see the node which just returns the value loaded.
827     setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
828 
829     // These operations default to expand.
830     setOperationAction({ISD::FGETSIGN,       ISD::CONCAT_VECTORS,
831                         ISD::FMINNUM,        ISD::FMAXNUM,
832                         ISD::FMINNUM_IEEE,   ISD::FMAXNUM_IEEE,
833                         ISD::FMINIMUM,       ISD::FMAXIMUM,
834                         ISD::FMAD,           ISD::SMIN,
835                         ISD::SMAX,           ISD::UMIN,
836                         ISD::UMAX,           ISD::ABS,
837                         ISD::FSHL,           ISD::FSHR,
838                         ISD::SADDSAT,        ISD::UADDSAT,
839                         ISD::SSUBSAT,        ISD::USUBSAT,
840                         ISD::SSHLSAT,        ISD::USHLSAT,
841                         ISD::SMULFIX,        ISD::SMULFIXSAT,
842                         ISD::UMULFIX,        ISD::UMULFIXSAT,
843                         ISD::SDIVFIX,        ISD::SDIVFIXSAT,
844                         ISD::UDIVFIX,        ISD::UDIVFIXSAT,
845                         ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT,
846                         ISD::IS_FPCLASS},
847                        VT, Expand);
848 
849     // Overflow operations default to expand
850     setOperationAction({ISD::SADDO, ISD::SSUBO, ISD::UADDO, ISD::USUBO,
851                         ISD::SMULO, ISD::UMULO},
852                        VT, Expand);
853 
854     // Carry-using overflow operations default to expand.
855     setOperationAction({ISD::UADDO_CARRY, ISD::USUBO_CARRY, ISD::SETCCCARRY,
856                         ISD::SADDO_CARRY, ISD::SSUBO_CARRY},
857                        VT, Expand);
858 
859     // ADDC/ADDE/SUBC/SUBE default to expand.
860     setOperationAction({ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}, VT,
861                        Expand);
862 
863     // Halving adds
864     setOperationAction(
865         {ISD::AVGFLOORS, ISD::AVGFLOORU, ISD::AVGCEILS, ISD::AVGCEILU}, VT,
866         Expand);
867 
868     // Absolute difference
869     setOperationAction({ISD::ABDS, ISD::ABDU}, VT, Expand);
870 
871     // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
872     setOperationAction({ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT,
873                        Expand);
874 
875     setOperationAction({ISD::BITREVERSE, ISD::PARITY}, VT, Expand);
876 
877     // These library functions default to expand.
878     setOperationAction({ISD::FROUND, ISD::FPOWI, ISD::FLDEXP, ISD::FFREXP}, VT,
879                        Expand);
880 
881     // These operations default to expand for vector types.
882     if (VT.isVector())
883       setOperationAction(
884           {ISD::FCOPYSIGN, ISD::SIGN_EXTEND_INREG, ISD::ANY_EXTEND_VECTOR_INREG,
885            ISD::SIGN_EXTEND_VECTOR_INREG, ISD::ZERO_EXTEND_VECTOR_INREG,
886            ISD::SPLAT_VECTOR, ISD::LRINT, ISD::LLRINT},
887           VT, Expand);
888 
889       // Constrained floating-point operations default to expand.
890 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
891     setOperationAction(ISD::STRICT_##DAGN, VT, Expand);
892 #include "llvm/IR/ConstrainedOps.def"
893 
894     // For most targets @llvm.get.dynamic.area.offset just returns 0.
895     setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
896 
897     // Vector reduction default to expand.
898     setOperationAction(
899         {ISD::VECREDUCE_FADD, ISD::VECREDUCE_FMUL, ISD::VECREDUCE_ADD,
900          ISD::VECREDUCE_MUL, ISD::VECREDUCE_AND, ISD::VECREDUCE_OR,
901          ISD::VECREDUCE_XOR, ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN,
902          ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN, ISD::VECREDUCE_FMAX,
903          ISD::VECREDUCE_FMIN, ISD::VECREDUCE_FMAXIMUM, ISD::VECREDUCE_FMINIMUM,
904          ISD::VECREDUCE_SEQ_FADD, ISD::VECREDUCE_SEQ_FMUL},
905         VT, Expand);
906 
907     // Named vector shuffles default to expand.
908     setOperationAction(ISD::VECTOR_SPLICE, VT, Expand);
909 
910     // VP operations default to expand.
911 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...)                                   \
912     setOperationAction(ISD::SDOPC, VT, Expand);
913 #include "llvm/IR/VPIntrinsics.def"
914 
915     // FP environment operations default to expand.
916     setOperationAction(ISD::GET_FPENV, VT, Expand);
917     setOperationAction(ISD::SET_FPENV, VT, Expand);
918     setOperationAction(ISD::RESET_FPENV, VT, Expand);
919   }
920 
921   // Most targets ignore the @llvm.prefetch intrinsic.
922   setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
923 
924   // Most targets also ignore the @llvm.readcyclecounter intrinsic.
925   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
926 
927   // ConstantFP nodes default to expand.  Targets can either change this to
928   // Legal, in which case all fp constants are legal, or use isFPImmLegal()
929   // to optimize expansions for certain constants.
930   setOperationAction(ISD::ConstantFP,
931                      {MVT::bf16, MVT::f16, MVT::f32, MVT::f64, MVT::f80, MVT::f128},
932                      Expand);
933 
934   // These library functions default to expand.
935   setOperationAction({ISD::FCBRT, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, ISD::FEXP,
936                       ISD::FEXP2, ISD::FEXP10, ISD::FFLOOR, ISD::FNEARBYINT,
937                       ISD::FCEIL, ISD::FRINT, ISD::FTRUNC, ISD::LROUND,
938                       ISD::LLROUND, ISD::LRINT, ISD::LLRINT, ISD::FROUNDEVEN},
939                      {MVT::f32, MVT::f64, MVT::f128}, Expand);
940 
941   // Default ISD::TRAP to expand (which turns it into abort).
942   setOperationAction(ISD::TRAP, MVT::Other, Expand);
943 
944   // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
945   // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
946   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
947 
948   setOperationAction(ISD::UBSANTRAP, MVT::Other, Expand);
949 
950   setOperationAction(ISD::GET_FPENV_MEM, MVT::Other, Expand);
951   setOperationAction(ISD::SET_FPENV_MEM, MVT::Other, Expand);
952 
953   for (MVT VT : {MVT::i8, MVT::i16, MVT::i32, MVT::i64}) {
954     setOperationAction(ISD::GET_FPMODE, VT, Expand);
955     setOperationAction(ISD::SET_FPMODE, VT, Expand);
956   }
957   setOperationAction(ISD::RESET_FPMODE, MVT::Other, Expand);
958 }
959 
960 MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL,
961                                                EVT) const {
962   return MVT::getIntegerVT(DL.getPointerSizeInBits(0));
963 }
964 
965 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL,
966                                          bool LegalTypes) const {
967   assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
968   if (LHSTy.isVector())
969     return LHSTy;
970   MVT ShiftVT =
971       LegalTypes ? getScalarShiftAmountTy(DL, LHSTy) : getPointerTy(DL);
972   // If any possible shift value won't fit in the prefered type, just use
973   // something safe. Assume it will be legalized when the shift is expanded.
974   if (ShiftVT.getSizeInBits() < Log2_32_Ceil(LHSTy.getSizeInBits()))
975     ShiftVT = MVT::i32;
976   assert(ShiftVT.getSizeInBits() >= Log2_32_Ceil(LHSTy.getSizeInBits()) &&
977          "ShiftVT is still too small!");
978   return ShiftVT;
979 }
980 
981 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
982   assert(isTypeLegal(VT));
983   switch (Op) {
984   default:
985     return false;
986   case ISD::SDIV:
987   case ISD::UDIV:
988   case ISD::SREM:
989   case ISD::UREM:
990     return true;
991   }
992 }
993 
994 bool TargetLoweringBase::isFreeAddrSpaceCast(unsigned SrcAS,
995                                              unsigned DestAS) const {
996   return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
997 }
998 
999 void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) {
1000   // If the command-line option was specified, ignore this request.
1001   if (!JumpIsExpensiveOverride.getNumOccurrences())
1002     JumpIsExpensive = isExpensive;
1003 }
1004 
1005 TargetLoweringBase::LegalizeKind
1006 TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
1007   // If this is a simple type, use the ComputeRegisterProp mechanism.
1008   if (VT.isSimple()) {
1009     MVT SVT = VT.getSimpleVT();
1010     assert((unsigned)SVT.SimpleTy < std::size(TransformToType));
1011     MVT NVT = TransformToType[SVT.SimpleTy];
1012     LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
1013 
1014     assert((LA == TypeLegal || LA == TypeSoftenFloat ||
1015             LA == TypeSoftPromoteHalf ||
1016             (NVT.isVector() ||
1017              ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) &&
1018            "Promote may not follow Expand or Promote");
1019 
1020     if (LA == TypeSplitVector)
1021       return LegalizeKind(LA, EVT(SVT).getHalfNumVectorElementsVT(Context));
1022     if (LA == TypeScalarizeVector)
1023       return LegalizeKind(LA, SVT.getVectorElementType());
1024     return LegalizeKind(LA, NVT);
1025   }
1026 
1027   // Handle Extended Scalar Types.
1028   if (!VT.isVector()) {
1029     assert(VT.isInteger() && "Float types must be simple");
1030     unsigned BitSize = VT.getSizeInBits();
1031     // First promote to a power-of-two size, then expand if necessary.
1032     if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
1033       EVT NVT = VT.getRoundIntegerType(Context);
1034       assert(NVT != VT && "Unable to round integer VT");
1035       LegalizeKind NextStep = getTypeConversion(Context, NVT);
1036       // Avoid multi-step promotion.
1037       if (NextStep.first == TypePromoteInteger)
1038         return NextStep;
1039       // Return rounded integer type.
1040       return LegalizeKind(TypePromoteInteger, NVT);
1041     }
1042 
1043     return LegalizeKind(TypeExpandInteger,
1044                         EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
1045   }
1046 
1047   // Handle vector types.
1048   ElementCount NumElts = VT.getVectorElementCount();
1049   EVT EltVT = VT.getVectorElementType();
1050 
1051   // Vectors with only one element are always scalarized.
1052   if (NumElts.isScalar())
1053     return LegalizeKind(TypeScalarizeVector, EltVT);
1054 
1055   // Try to widen vector elements until the element type is a power of two and
1056   // promote it to a legal type later on, for example:
1057   // <3 x i8> -> <4 x i8> -> <4 x i32>
1058   if (EltVT.isInteger()) {
1059     // Vectors with a number of elements that is not a power of two are always
1060     // widened, for example <3 x i8> -> <4 x i8>.
1061     if (!VT.isPow2VectorType()) {
1062       NumElts = NumElts.coefficientNextPowerOf2();
1063       EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
1064       return LegalizeKind(TypeWidenVector, NVT);
1065     }
1066 
1067     // Examine the element type.
1068     LegalizeKind LK = getTypeConversion(Context, EltVT);
1069 
1070     // If type is to be expanded, split the vector.
1071     //  <4 x i140> -> <2 x i140>
1072     if (LK.first == TypeExpandInteger) {
1073       if (VT.getVectorElementCount().isScalable())
1074         return LegalizeKind(TypeScalarizeScalableVector, EltVT);
1075       return LegalizeKind(TypeSplitVector,
1076                           VT.getHalfNumVectorElementsVT(Context));
1077     }
1078 
1079     // Promote the integer element types until a legal vector type is found
1080     // or until the element integer type is too big. If a legal type was not
1081     // found, fallback to the usual mechanism of widening/splitting the
1082     // vector.
1083     EVT OldEltVT = EltVT;
1084     while (true) {
1085       // Increase the bitwidth of the element to the next pow-of-two
1086       // (which is greater than 8 bits).
1087       EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
1088                   .getRoundIntegerType(Context);
1089 
1090       // Stop trying when getting a non-simple element type.
1091       // Note that vector elements may be greater than legal vector element
1092       // types. Example: X86 XMM registers hold 64bit element on 32bit
1093       // systems.
1094       if (!EltVT.isSimple())
1095         break;
1096 
1097       // Build a new vector type and check if it is legal.
1098       MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1099       // Found a legal promoted vector type.
1100       if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
1101         return LegalizeKind(TypePromoteInteger,
1102                             EVT::getVectorVT(Context, EltVT, NumElts));
1103     }
1104 
1105     // Reset the type to the unexpanded type if we did not find a legal vector
1106     // type with a promoted vector element type.
1107     EltVT = OldEltVT;
1108   }
1109 
1110   // Try to widen the vector until a legal type is found.
1111   // If there is no wider legal type, split the vector.
1112   while (true) {
1113     // Round up to the next power of 2.
1114     NumElts = NumElts.coefficientNextPowerOf2();
1115 
1116     // If there is no simple vector type with this many elements then there
1117     // cannot be a larger legal vector type.  Note that this assumes that
1118     // there are no skipped intermediate vector types in the simple types.
1119     if (!EltVT.isSimple())
1120       break;
1121     MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1122     if (LargerVector == MVT())
1123       break;
1124 
1125     // If this type is legal then widen the vector.
1126     if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
1127       return LegalizeKind(TypeWidenVector, LargerVector);
1128   }
1129 
1130   // Widen odd vectors to next power of two.
1131   if (!VT.isPow2VectorType()) {
1132     EVT NVT = VT.getPow2VectorType(Context);
1133     return LegalizeKind(TypeWidenVector, NVT);
1134   }
1135 
1136   if (VT.getVectorElementCount() == ElementCount::getScalable(1))
1137     return LegalizeKind(TypeScalarizeScalableVector, EltVT);
1138 
1139   // Vectors with illegal element types are expanded.
1140   EVT NVT = EVT::getVectorVT(Context, EltVT,
1141                              VT.getVectorElementCount().divideCoefficientBy(2));
1142   return LegalizeKind(TypeSplitVector, NVT);
1143 }
1144 
1145 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
1146                                           unsigned &NumIntermediates,
1147                                           MVT &RegisterVT,
1148                                           TargetLoweringBase *TLI) {
1149   // Figure out the right, legal destination reg to copy into.
1150   ElementCount EC = VT.getVectorElementCount();
1151   MVT EltTy = VT.getVectorElementType();
1152 
1153   unsigned NumVectorRegs = 1;
1154 
1155   // Scalable vectors cannot be scalarized, so splitting or widening is
1156   // required.
1157   if (VT.isScalableVector() && !isPowerOf2_32(EC.getKnownMinValue()))
1158     llvm_unreachable(
1159         "Splitting or widening of non-power-of-2 MVTs is not implemented.");
1160 
1161   // FIXME: We don't support non-power-of-2-sized vectors for now.
1162   // Ideally we could break down into LHS/RHS like LegalizeDAG does.
1163   if (!isPowerOf2_32(EC.getKnownMinValue())) {
1164     // Split EC to unit size (scalable property is preserved).
1165     NumVectorRegs = EC.getKnownMinValue();
1166     EC = ElementCount::getFixed(1);
1167   }
1168 
1169   // Divide the input until we get to a supported size. This will
1170   // always end up with an EC that represent a scalar or a scalable
1171   // scalar.
1172   while (EC.getKnownMinValue() > 1 &&
1173          !TLI->isTypeLegal(MVT::getVectorVT(EltTy, EC))) {
1174     EC = EC.divideCoefficientBy(2);
1175     NumVectorRegs <<= 1;
1176   }
1177 
1178   NumIntermediates = NumVectorRegs;
1179 
1180   MVT NewVT = MVT::getVectorVT(EltTy, EC);
1181   if (!TLI->isTypeLegal(NewVT))
1182     NewVT = EltTy;
1183   IntermediateVT = NewVT;
1184 
1185   unsigned LaneSizeInBits = NewVT.getScalarSizeInBits();
1186 
1187   // Convert sizes such as i33 to i64.
1188   LaneSizeInBits = llvm::bit_ceil(LaneSizeInBits);
1189 
1190   MVT DestVT = TLI->getRegisterType(NewVT);
1191   RegisterVT = DestVT;
1192   if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
1193     return NumVectorRegs * (LaneSizeInBits / DestVT.getScalarSizeInBits());
1194 
1195   // Otherwise, promotion or legal types use the same number of registers as
1196   // the vector decimated to the appropriate level.
1197   return NumVectorRegs;
1198 }
1199 
1200 /// isLegalRC - Return true if the value types that can be represented by the
1201 /// specified register class are all legal.
1202 bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI,
1203                                    const TargetRegisterClass &RC) const {
1204   for (const auto *I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I)
1205     if (isTypeLegal(*I))
1206       return true;
1207   return false;
1208 }
1209 
1210 /// Replace/modify any TargetFrameIndex operands with a targte-dependent
1211 /// sequence of memory operands that is recognized by PrologEpilogInserter.
1212 MachineBasicBlock *
1213 TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI,
1214                                    MachineBasicBlock *MBB) const {
1215   MachineInstr *MI = &InitialMI;
1216   MachineFunction &MF = *MI->getMF();
1217   MachineFrameInfo &MFI = MF.getFrameInfo();
1218 
1219   // We're handling multiple types of operands here:
1220   // PATCHPOINT MetaArgs - live-in, read only, direct
1221   // STATEPOINT Deopt Spill - live-through, read only, indirect
1222   // STATEPOINT Deopt Alloca - live-through, read only, direct
1223   // (We're currently conservative and mark the deopt slots read/write in
1224   // practice.)
1225   // STATEPOINT GC Spill - live-through, read/write, indirect
1226   // STATEPOINT GC Alloca - live-through, read/write, direct
1227   // The live-in vs live-through is handled already (the live through ones are
1228   // all stack slots), but we need to handle the different type of stackmap
1229   // operands and memory effects here.
1230 
1231   if (llvm::none_of(MI->operands(),
1232                     [](MachineOperand &Operand) { return Operand.isFI(); }))
1233     return MBB;
1234 
1235   MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
1236 
1237   // Inherit previous memory operands.
1238   MIB.cloneMemRefs(*MI);
1239 
1240   for (unsigned i = 0; i < MI->getNumOperands(); ++i) {
1241     MachineOperand &MO = MI->getOperand(i);
1242     if (!MO.isFI()) {
1243       // Index of Def operand this Use it tied to.
1244       // Since Defs are coming before Uses, if Use is tied, then
1245       // index of Def must be smaller that index of that Use.
1246       // Also, Defs preserve their position in new MI.
1247       unsigned TiedTo = i;
1248       if (MO.isReg() && MO.isTied())
1249         TiedTo = MI->findTiedOperandIdx(i);
1250       MIB.add(MO);
1251       if (TiedTo < i)
1252         MIB->tieOperands(TiedTo, MIB->getNumOperands() - 1);
1253       continue;
1254     }
1255 
1256     // foldMemoryOperand builds a new MI after replacing a single FI operand
1257     // with the canonical set of five x86 addressing-mode operands.
1258     int FI = MO.getIndex();
1259 
1260     // Add frame index operands recognized by stackmaps.cpp
1261     if (MFI.isStatepointSpillSlotObjectIndex(FI)) {
1262       // indirect-mem-ref tag, size, #FI, offset.
1263       // Used for spills inserted by StatepointLowering.  This codepath is not
1264       // used for patchpoints/stackmaps at all, for these spilling is done via
1265       // foldMemoryOperand callback only.
1266       assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
1267       MIB.addImm(StackMaps::IndirectMemRefOp);
1268       MIB.addImm(MFI.getObjectSize(FI));
1269       MIB.add(MO);
1270       MIB.addImm(0);
1271     } else {
1272       // direct-mem-ref tag, #FI, offset.
1273       // Used by patchpoint, and direct alloca arguments to statepoints
1274       MIB.addImm(StackMaps::DirectMemRefOp);
1275       MIB.add(MO);
1276       MIB.addImm(0);
1277     }
1278 
1279     assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
1280 
1281     // Add a new memory operand for this FI.
1282     assert(MFI.getObjectOffset(FI) != -1);
1283 
1284     // Note: STATEPOINT MMOs are added during SelectionDAG.  STACKMAP, and
1285     // PATCHPOINT should be updated to do the same. (TODO)
1286     if (MI->getOpcode() != TargetOpcode::STATEPOINT) {
1287       auto Flags = MachineMemOperand::MOLoad;
1288       MachineMemOperand *MMO = MF.getMachineMemOperand(
1289           MachinePointerInfo::getFixedStack(MF, FI), Flags,
1290           MF.getDataLayout().getPointerSize(), MFI.getObjectAlign(FI));
1291       MIB->addMemOperand(MF, MMO);
1292     }
1293   }
1294   MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1295   MI->eraseFromParent();
1296   return MBB;
1297 }
1298 
1299 /// findRepresentativeClass - Return the largest legal super-reg register class
1300 /// of the register class for the specified type and its associated "cost".
1301 // This function is in TargetLowering because it uses RegClassForVT which would
1302 // need to be moved to TargetRegisterInfo and would necessitate moving
1303 // isTypeLegal over as well - a massive change that would just require
1304 // TargetLowering having a TargetRegisterInfo class member that it would use.
1305 std::pair<const TargetRegisterClass *, uint8_t>
1306 TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
1307                                             MVT VT) const {
1308   const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1309   if (!RC)
1310     return std::make_pair(RC, 0);
1311 
1312   // Compute the set of all super-register classes.
1313   BitVector SuperRegRC(TRI->getNumRegClasses());
1314   for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
1315     SuperRegRC.setBitsInMask(RCI.getMask());
1316 
1317   // Find the first legal register class with the largest spill size.
1318   const TargetRegisterClass *BestRC = RC;
1319   for (unsigned i : SuperRegRC.set_bits()) {
1320     const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
1321     // We want the largest possible spill size.
1322     if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC))
1323       continue;
1324     if (!isLegalRC(*TRI, *SuperRC))
1325       continue;
1326     BestRC = SuperRC;
1327   }
1328   return std::make_pair(BestRC, 1);
1329 }
1330 
1331 /// computeRegisterProperties - Once all of the register classes are added,
1332 /// this allows us to compute derived properties we expose.
1333 void TargetLoweringBase::computeRegisterProperties(
1334     const TargetRegisterInfo *TRI) {
1335   static_assert(MVT::VALUETYPE_SIZE <= MVT::MAX_ALLOWED_VALUETYPE,
1336                 "Too many value types for ValueTypeActions to hold!");
1337 
1338   // Everything defaults to needing one register.
1339   for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) {
1340     NumRegistersForVT[i] = 1;
1341     RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1342   }
1343   // ...except isVoid, which doesn't need any registers.
1344   NumRegistersForVT[MVT::isVoid] = 0;
1345 
1346   // Find the largest integer register class.
1347   unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1348   for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1349     assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1350 
1351   // Every integer value type larger than this largest register takes twice as
1352   // many registers to represent as the previous ValueType.
1353   for (unsigned ExpandedReg = LargestIntReg + 1;
1354        ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1355     NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1356     RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1357     TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1358     ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1359                                    TypeExpandInteger);
1360   }
1361 
1362   // Inspect all of the ValueType's smaller than the largest integer
1363   // register to see which ones need promotion.
1364   unsigned LegalIntReg = LargestIntReg;
1365   for (unsigned IntReg = LargestIntReg - 1;
1366        IntReg >= (unsigned)MVT::i1; --IntReg) {
1367     MVT IVT = (MVT::SimpleValueType)IntReg;
1368     if (isTypeLegal(IVT)) {
1369       LegalIntReg = IntReg;
1370     } else {
1371       RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1372         (MVT::SimpleValueType)LegalIntReg;
1373       ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1374     }
1375   }
1376 
1377   // ppcf128 type is really two f64's.
1378   if (!isTypeLegal(MVT::ppcf128)) {
1379     if (isTypeLegal(MVT::f64)) {
1380       NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1381       RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1382       TransformToType[MVT::ppcf128] = MVT::f64;
1383       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1384     } else {
1385       NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1386       RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1387       TransformToType[MVT::ppcf128] = MVT::i128;
1388       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
1389     }
1390   }
1391 
1392   // Decide how to handle f128. If the target does not have native f128 support,
1393   // expand it to i128 and we will be generating soft float library calls.
1394   if (!isTypeLegal(MVT::f128)) {
1395     NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1396     RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1397     TransformToType[MVT::f128] = MVT::i128;
1398     ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1399   }
1400 
1401   // Decide how to handle f80. If the target does not have native f80 support,
1402   // expand it to i96 and we will be generating soft float library calls.
1403   if (!isTypeLegal(MVT::f80)) {
1404     NumRegistersForVT[MVT::f80] = 3*NumRegistersForVT[MVT::i32];
1405     RegisterTypeForVT[MVT::f80] = RegisterTypeForVT[MVT::i32];
1406     TransformToType[MVT::f80] = MVT::i32;
1407     ValueTypeActions.setTypeAction(MVT::f80, TypeSoftenFloat);
1408   }
1409 
1410   // Decide how to handle f64. If the target does not have native f64 support,
1411   // expand it to i64 and we will be generating soft float library calls.
1412   if (!isTypeLegal(MVT::f64)) {
1413     NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1414     RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1415     TransformToType[MVT::f64] = MVT::i64;
1416     ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1417   }
1418 
1419   // Decide how to handle f32. If the target does not have native f32 support,
1420   // expand it to i32 and we will be generating soft float library calls.
1421   if (!isTypeLegal(MVT::f32)) {
1422     NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1423     RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1424     TransformToType[MVT::f32] = MVT::i32;
1425     ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1426   }
1427 
1428   // Decide how to handle f16. If the target does not have native f16 support,
1429   // promote it to f32, because there are no f16 library calls (except for
1430   // conversions).
1431   if (!isTypeLegal(MVT::f16)) {
1432     // Allow targets to control how we legalize half.
1433     if (softPromoteHalfType()) {
1434       NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16];
1435       RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16];
1436       TransformToType[MVT::f16] = MVT::f32;
1437       ValueTypeActions.setTypeAction(MVT::f16, TypeSoftPromoteHalf);
1438     } else {
1439       NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1440       RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1441       TransformToType[MVT::f16] = MVT::f32;
1442       ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
1443     }
1444   }
1445 
1446   // Decide how to handle bf16. If the target does not have native bf16 support,
1447   // promote it to f32, because there are no bf16 library calls (except for
1448   // converting from f32 to bf16).
1449   if (!isTypeLegal(MVT::bf16)) {
1450     NumRegistersForVT[MVT::bf16] = NumRegistersForVT[MVT::f32];
1451     RegisterTypeForVT[MVT::bf16] = RegisterTypeForVT[MVT::f32];
1452     TransformToType[MVT::bf16] = MVT::f32;
1453     ValueTypeActions.setTypeAction(MVT::bf16, TypeSoftPromoteHalf);
1454   }
1455 
1456   // Loop over all of the vector value types to see which need transformations.
1457   for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1458        i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1459     MVT VT = (MVT::SimpleValueType) i;
1460     if (isTypeLegal(VT))
1461       continue;
1462 
1463     MVT EltVT = VT.getVectorElementType();
1464     ElementCount EC = VT.getVectorElementCount();
1465     bool IsLegalWiderType = false;
1466     bool IsScalable = VT.isScalableVector();
1467     LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
1468     switch (PreferredAction) {
1469     case TypePromoteInteger: {
1470       MVT::SimpleValueType EndVT = IsScalable ?
1471                                    MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE :
1472                                    MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE;
1473       // Try to promote the elements of integer vectors. If no legal
1474       // promotion was found, fall through to the widen-vector method.
1475       for (unsigned nVT = i + 1;
1476            (MVT::SimpleValueType)nVT <= EndVT; ++nVT) {
1477         MVT SVT = (MVT::SimpleValueType) nVT;
1478         // Promote vectors of integers to vectors with the same number
1479         // of elements, with a wider element type.
1480         if (SVT.getScalarSizeInBits() > EltVT.getFixedSizeInBits() &&
1481             SVT.getVectorElementCount() == EC && isTypeLegal(SVT)) {
1482           TransformToType[i] = SVT;
1483           RegisterTypeForVT[i] = SVT;
1484           NumRegistersForVT[i] = 1;
1485           ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1486           IsLegalWiderType = true;
1487           break;
1488         }
1489       }
1490       if (IsLegalWiderType)
1491         break;
1492       [[fallthrough]];
1493     }
1494 
1495     case TypeWidenVector:
1496       if (isPowerOf2_32(EC.getKnownMinValue())) {
1497         // Try to widen the vector.
1498         for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1499           MVT SVT = (MVT::SimpleValueType) nVT;
1500           if (SVT.getVectorElementType() == EltVT &&
1501               SVT.isScalableVector() == IsScalable &&
1502               SVT.getVectorElementCount().getKnownMinValue() >
1503                   EC.getKnownMinValue() &&
1504               isTypeLegal(SVT)) {
1505             TransformToType[i] = SVT;
1506             RegisterTypeForVT[i] = SVT;
1507             NumRegistersForVT[i] = 1;
1508             ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1509             IsLegalWiderType = true;
1510             break;
1511           }
1512         }
1513         if (IsLegalWiderType)
1514           break;
1515       } else {
1516         // Only widen to the next power of 2 to keep consistency with EVT.
1517         MVT NVT = VT.getPow2VectorType();
1518         if (isTypeLegal(NVT)) {
1519           TransformToType[i] = NVT;
1520           ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1521           RegisterTypeForVT[i] = NVT;
1522           NumRegistersForVT[i] = 1;
1523           break;
1524         }
1525       }
1526       [[fallthrough]];
1527 
1528     case TypeSplitVector:
1529     case TypeScalarizeVector: {
1530       MVT IntermediateVT;
1531       MVT RegisterVT;
1532       unsigned NumIntermediates;
1533       unsigned NumRegisters = getVectorTypeBreakdownMVT(VT, IntermediateVT,
1534           NumIntermediates, RegisterVT, this);
1535       NumRegistersForVT[i] = NumRegisters;
1536       assert(NumRegistersForVT[i] == NumRegisters &&
1537              "NumRegistersForVT size cannot represent NumRegisters!");
1538       RegisterTypeForVT[i] = RegisterVT;
1539 
1540       MVT NVT = VT.getPow2VectorType();
1541       if (NVT == VT) {
1542         // Type is already a power of 2.  The default action is to split.
1543         TransformToType[i] = MVT::Other;
1544         if (PreferredAction == TypeScalarizeVector)
1545           ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
1546         else if (PreferredAction == TypeSplitVector)
1547           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1548         else if (EC.getKnownMinValue() > 1)
1549           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1550         else
1551           ValueTypeActions.setTypeAction(VT, EC.isScalable()
1552                                                  ? TypeScalarizeScalableVector
1553                                                  : TypeScalarizeVector);
1554       } else {
1555         TransformToType[i] = NVT;
1556         ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1557       }
1558       break;
1559     }
1560     default:
1561       llvm_unreachable("Unknown vector legalization action!");
1562     }
1563   }
1564 
1565   // Determine the 'representative' register class for each value type.
1566   // An representative register class is the largest (meaning one which is
1567   // not a sub-register class / subreg register class) legal register class for
1568   // a group of value types. For example, on i386, i8, i16, and i32
1569   // representative would be GR32; while on x86_64 it's GR64.
1570   for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) {
1571     const TargetRegisterClass* RRC;
1572     uint8_t Cost;
1573     std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i);
1574     RepRegClassForVT[i] = RRC;
1575     RepRegClassCostForVT[i] = Cost;
1576   }
1577 }
1578 
1579 EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1580                                            EVT VT) const {
1581   assert(!VT.isVector() && "No default SetCC type for vectors!");
1582   return getPointerTy(DL).SimpleTy;
1583 }
1584 
1585 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
1586   return MVT::i32; // return the default value
1587 }
1588 
1589 /// getVectorTypeBreakdown - Vector types are broken down into some number of
1590 /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
1591 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1592 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1593 ///
1594 /// This method returns the number of registers needed, and the VT for each
1595 /// register.  It also returns the VT and quantity of the intermediate values
1596 /// before they are promoted/expanded.
1597 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context,
1598                                                     EVT VT, EVT &IntermediateVT,
1599                                                     unsigned &NumIntermediates,
1600                                                     MVT &RegisterVT) const {
1601   ElementCount EltCnt = VT.getVectorElementCount();
1602 
1603   // If there is a wider vector type with the same element type as this one,
1604   // or a promoted vector type that has the same number of elements which
1605   // are wider, then we should convert to that legal vector type.
1606   // This handles things like <2 x float> -> <4 x float> and
1607   // <4 x i1> -> <4 x i32>.
1608   LegalizeTypeAction TA = getTypeAction(Context, VT);
1609   if (!EltCnt.isScalar() &&
1610       (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1611     EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1612     if (isTypeLegal(RegisterEVT)) {
1613       IntermediateVT = RegisterEVT;
1614       RegisterVT = RegisterEVT.getSimpleVT();
1615       NumIntermediates = 1;
1616       return 1;
1617     }
1618   }
1619 
1620   // Figure out the right, legal destination reg to copy into.
1621   EVT EltTy = VT.getVectorElementType();
1622 
1623   unsigned NumVectorRegs = 1;
1624 
1625   // Scalable vectors cannot be scalarized, so handle the legalisation of the
1626   // types like done elsewhere in SelectionDAG.
1627   if (EltCnt.isScalable()) {
1628     LegalizeKind LK;
1629     EVT PartVT = VT;
1630     do {
1631       // Iterate until we've found a legal (part) type to hold VT.
1632       LK = getTypeConversion(Context, PartVT);
1633       PartVT = LK.second;
1634     } while (LK.first != TypeLegal);
1635 
1636     if (!PartVT.isVector()) {
1637       report_fatal_error(
1638           "Don't know how to legalize this scalable vector type");
1639     }
1640 
1641     NumIntermediates =
1642         divideCeil(VT.getVectorElementCount().getKnownMinValue(),
1643                    PartVT.getVectorElementCount().getKnownMinValue());
1644     IntermediateVT = PartVT;
1645     RegisterVT = getRegisterType(Context, IntermediateVT);
1646     return NumIntermediates;
1647   }
1648 
1649   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally
1650   // we could break down into LHS/RHS like LegalizeDAG does.
1651   if (!isPowerOf2_32(EltCnt.getKnownMinValue())) {
1652     NumVectorRegs = EltCnt.getKnownMinValue();
1653     EltCnt = ElementCount::getFixed(1);
1654   }
1655 
1656   // Divide the input until we get to a supported size.  This will always
1657   // end with a scalar if the target doesn't support vectors.
1658   while (EltCnt.getKnownMinValue() > 1 &&
1659          !isTypeLegal(EVT::getVectorVT(Context, EltTy, EltCnt))) {
1660     EltCnt = EltCnt.divideCoefficientBy(2);
1661     NumVectorRegs <<= 1;
1662   }
1663 
1664   NumIntermediates = NumVectorRegs;
1665 
1666   EVT NewVT = EVT::getVectorVT(Context, EltTy, EltCnt);
1667   if (!isTypeLegal(NewVT))
1668     NewVT = EltTy;
1669   IntermediateVT = NewVT;
1670 
1671   MVT DestVT = getRegisterType(Context, NewVT);
1672   RegisterVT = DestVT;
1673 
1674   if (EVT(DestVT).bitsLT(NewVT)) {  // Value is expanded, e.g. i64 -> i16.
1675     TypeSize NewVTSize = NewVT.getSizeInBits();
1676     // Convert sizes such as i33 to i64.
1677     if (!llvm::has_single_bit<uint32_t>(NewVTSize.getKnownMinValue()))
1678       NewVTSize = NewVTSize.coefficientNextPowerOf2();
1679     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1680   }
1681 
1682   // Otherwise, promotion or legal types use the same number of registers as
1683   // the vector decimated to the appropriate level.
1684   return NumVectorRegs;
1685 }
1686 
1687 bool TargetLoweringBase::isSuitableForJumpTable(const SwitchInst *SI,
1688                                                 uint64_t NumCases,
1689                                                 uint64_t Range,
1690                                                 ProfileSummaryInfo *PSI,
1691                                                 BlockFrequencyInfo *BFI) const {
1692   // FIXME: This function check the maximum table size and density, but the
1693   // minimum size is not checked. It would be nice if the minimum size is
1694   // also combined within this function. Currently, the minimum size check is
1695   // performed in findJumpTable() in SelectionDAGBuiler and
1696   // getEstimatedNumberOfCaseClusters() in BasicTTIImpl.
1697   const bool OptForSize =
1698       SI->getParent()->getParent()->hasOptSize() ||
1699       llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI);
1700   const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize);
1701   const unsigned MaxJumpTableSize = getMaximumJumpTableSize();
1702 
1703   // Check whether the number of cases is small enough and
1704   // the range is dense enough for a jump table.
1705   return (OptForSize || Range <= MaxJumpTableSize) &&
1706          (NumCases * 100 >= Range * MinDensity);
1707 }
1708 
1709 MVT TargetLoweringBase::getPreferredSwitchConditionType(LLVMContext &Context,
1710                                                         EVT ConditionVT) const {
1711   return getRegisterType(Context, ConditionVT);
1712 }
1713 
1714 /// Get the EVTs and ArgFlags collections that represent the legalized return
1715 /// type of the given function.  This does not require a DAG or a return value,
1716 /// and is suitable for use before any DAGs for the function are constructed.
1717 /// TODO: Move this out of TargetLowering.cpp.
1718 void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType,
1719                          AttributeList attr,
1720                          SmallVectorImpl<ISD::OutputArg> &Outs,
1721                          const TargetLowering &TLI, const DataLayout &DL) {
1722   SmallVector<EVT, 4> ValueVTs;
1723   ComputeValueVTs(TLI, DL, ReturnType, ValueVTs);
1724   unsigned NumValues = ValueVTs.size();
1725   if (NumValues == 0) return;
1726 
1727   for (unsigned j = 0, f = NumValues; j != f; ++j) {
1728     EVT VT = ValueVTs[j];
1729     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1730 
1731     if (attr.hasRetAttr(Attribute::SExt))
1732       ExtendKind = ISD::SIGN_EXTEND;
1733     else if (attr.hasRetAttr(Attribute::ZExt))
1734       ExtendKind = ISD::ZERO_EXTEND;
1735 
1736     // FIXME: C calling convention requires the return type to be promoted to
1737     // at least 32-bit. But this is not necessary for non-C calling
1738     // conventions. The frontend should mark functions whose return values
1739     // require promoting with signext or zeroext attributes.
1740     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1741       MVT MinVT = TLI.getRegisterType(MVT::i32);
1742       if (VT.bitsLT(MinVT))
1743         VT = MinVT;
1744     }
1745 
1746     unsigned NumParts =
1747         TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT);
1748     MVT PartVT =
1749         TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT);
1750 
1751     // 'inreg' on function refers to return value
1752     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1753     if (attr.hasRetAttr(Attribute::InReg))
1754       Flags.setInReg();
1755 
1756     // Propagate extension type if any
1757     if (attr.hasRetAttr(Attribute::SExt))
1758       Flags.setSExt();
1759     else if (attr.hasRetAttr(Attribute::ZExt))
1760       Flags.setZExt();
1761 
1762     for (unsigned i = 0; i < NumParts; ++i)
1763       Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isfixed=*/true, 0, 0));
1764   }
1765 }
1766 
1767 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1768 /// function arguments in the caller parameter area.  This is the actual
1769 /// alignment, not its logarithm.
1770 uint64_t TargetLoweringBase::getByValTypeAlignment(Type *Ty,
1771                                                    const DataLayout &DL) const {
1772   return DL.getABITypeAlign(Ty).value();
1773 }
1774 
1775 bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1776     LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
1777     Align Alignment, MachineMemOperand::Flags Flags, unsigned *Fast) const {
1778   // Check if the specified alignment is sufficient based on the data layout.
1779   // TODO: While using the data layout works in practice, a better solution
1780   // would be to implement this check directly (make this a virtual function).
1781   // For example, the ABI alignment may change based on software platform while
1782   // this function should only be affected by hardware implementation.
1783   Type *Ty = VT.getTypeForEVT(Context);
1784   if (VT.isZeroSized() || Alignment >= DL.getABITypeAlign(Ty)) {
1785     // Assume that an access that meets the ABI-specified alignment is fast.
1786     if (Fast != nullptr)
1787       *Fast = 1;
1788     return true;
1789   }
1790 
1791   // This is a misaligned access.
1792   return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Flags, Fast);
1793 }
1794 
1795 bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1796     LLVMContext &Context, const DataLayout &DL, EVT VT,
1797     const MachineMemOperand &MMO, unsigned *Fast) const {
1798   return allowsMemoryAccessForAlignment(Context, DL, VT, MMO.getAddrSpace(),
1799                                         MMO.getAlign(), MMO.getFlags(), Fast);
1800 }
1801 
1802 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1803                                             const DataLayout &DL, EVT VT,
1804                                             unsigned AddrSpace, Align Alignment,
1805                                             MachineMemOperand::Flags Flags,
1806                                             unsigned *Fast) const {
1807   return allowsMemoryAccessForAlignment(Context, DL, VT, AddrSpace, Alignment,
1808                                         Flags, Fast);
1809 }
1810 
1811 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1812                                             const DataLayout &DL, EVT VT,
1813                                             const MachineMemOperand &MMO,
1814                                             unsigned *Fast) const {
1815   return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(),
1816                             MMO.getFlags(), Fast);
1817 }
1818 
1819 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1820                                             const DataLayout &DL, LLT Ty,
1821                                             const MachineMemOperand &MMO,
1822                                             unsigned *Fast) const {
1823   EVT VT = getApproximateEVTForLLT(Ty, DL, Context);
1824   return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(),
1825                             MMO.getFlags(), Fast);
1826 }
1827 
1828 //===----------------------------------------------------------------------===//
1829 //  TargetTransformInfo Helpers
1830 //===----------------------------------------------------------------------===//
1831 
1832 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
1833   enum InstructionOpcodes {
1834 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1835 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1836 #include "llvm/IR/Instruction.def"
1837   };
1838   switch (static_cast<InstructionOpcodes>(Opcode)) {
1839   case Ret:            return 0;
1840   case Br:             return 0;
1841   case Switch:         return 0;
1842   case IndirectBr:     return 0;
1843   case Invoke:         return 0;
1844   case CallBr:         return 0;
1845   case Resume:         return 0;
1846   case Unreachable:    return 0;
1847   case CleanupRet:     return 0;
1848   case CatchRet:       return 0;
1849   case CatchPad:       return 0;
1850   case CatchSwitch:    return 0;
1851   case CleanupPad:     return 0;
1852   case FNeg:           return ISD::FNEG;
1853   case Add:            return ISD::ADD;
1854   case FAdd:           return ISD::FADD;
1855   case Sub:            return ISD::SUB;
1856   case FSub:           return ISD::FSUB;
1857   case Mul:            return ISD::MUL;
1858   case FMul:           return ISD::FMUL;
1859   case UDiv:           return ISD::UDIV;
1860   case SDiv:           return ISD::SDIV;
1861   case FDiv:           return ISD::FDIV;
1862   case URem:           return ISD::UREM;
1863   case SRem:           return ISD::SREM;
1864   case FRem:           return ISD::FREM;
1865   case Shl:            return ISD::SHL;
1866   case LShr:           return ISD::SRL;
1867   case AShr:           return ISD::SRA;
1868   case And:            return ISD::AND;
1869   case Or:             return ISD::OR;
1870   case Xor:            return ISD::XOR;
1871   case Alloca:         return 0;
1872   case Load:           return ISD::LOAD;
1873   case Store:          return ISD::STORE;
1874   case GetElementPtr:  return 0;
1875   case Fence:          return 0;
1876   case AtomicCmpXchg:  return 0;
1877   case AtomicRMW:      return 0;
1878   case Trunc:          return ISD::TRUNCATE;
1879   case ZExt:           return ISD::ZERO_EXTEND;
1880   case SExt:           return ISD::SIGN_EXTEND;
1881   case FPToUI:         return ISD::FP_TO_UINT;
1882   case FPToSI:         return ISD::FP_TO_SINT;
1883   case UIToFP:         return ISD::UINT_TO_FP;
1884   case SIToFP:         return ISD::SINT_TO_FP;
1885   case FPTrunc:        return ISD::FP_ROUND;
1886   case FPExt:          return ISD::FP_EXTEND;
1887   case PtrToInt:       return ISD::BITCAST;
1888   case IntToPtr:       return ISD::BITCAST;
1889   case BitCast:        return ISD::BITCAST;
1890   case AddrSpaceCast:  return ISD::ADDRSPACECAST;
1891   case ICmp:           return ISD::SETCC;
1892   case FCmp:           return ISD::SETCC;
1893   case PHI:            return 0;
1894   case Call:           return 0;
1895   case Select:         return ISD::SELECT;
1896   case UserOp1:        return 0;
1897   case UserOp2:        return 0;
1898   case VAArg:          return 0;
1899   case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1900   case InsertElement:  return ISD::INSERT_VECTOR_ELT;
1901   case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
1902   case ExtractValue:   return ISD::MERGE_VALUES;
1903   case InsertValue:    return ISD::MERGE_VALUES;
1904   case LandingPad:     return 0;
1905   case Freeze:         return ISD::FREEZE;
1906   }
1907 
1908   llvm_unreachable("Unknown instruction type encountered!");
1909 }
1910 
1911 Value *
1912 TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilderBase &IRB,
1913                                                        bool UseTLS) const {
1914   // compiler-rt provides a variable with a magic name.  Targets that do not
1915   // link with compiler-rt may also provide such a variable.
1916   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1917   const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
1918   auto UnsafeStackPtr =
1919       dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar));
1920 
1921   Type *StackPtrTy = PointerType::getUnqual(M->getContext());
1922 
1923   if (!UnsafeStackPtr) {
1924     auto TLSModel = UseTLS ?
1925         GlobalValue::InitialExecTLSModel :
1926         GlobalValue::NotThreadLocal;
1927     // The global variable is not defined yet, define it ourselves.
1928     // We use the initial-exec TLS model because we do not support the
1929     // variable living anywhere other than in the main executable.
1930     UnsafeStackPtr = new GlobalVariable(
1931         *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
1932         UnsafeStackPtrVar, nullptr, TLSModel);
1933   } else {
1934     // The variable exists, check its type and attributes.
1935     if (UnsafeStackPtr->getValueType() != StackPtrTy)
1936       report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
1937     if (UseTLS != UnsafeStackPtr->isThreadLocal())
1938       report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
1939                          (UseTLS ? "" : "not ") + "be thread-local");
1940   }
1941   return UnsafeStackPtr;
1942 }
1943 
1944 Value *
1945 TargetLoweringBase::getSafeStackPointerLocation(IRBuilderBase &IRB) const {
1946   if (!TM.getTargetTriple().isAndroid())
1947     return getDefaultSafeStackPointerLocation(IRB, true);
1948 
1949   // Android provides a libc function to retrieve the address of the current
1950   // thread's unsafe stack pointer.
1951   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1952   auto *PtrTy = PointerType::getUnqual(M->getContext());
1953   FunctionCallee Fn =
1954       M->getOrInsertFunction("__safestack_pointer_address", PtrTy);
1955   return IRB.CreateCall(Fn);
1956 }
1957 
1958 //===----------------------------------------------------------------------===//
1959 //  Loop Strength Reduction hooks
1960 //===----------------------------------------------------------------------===//
1961 
1962 /// isLegalAddressingMode - Return true if the addressing mode represented
1963 /// by AM is legal for this target, for a load/store of the specified type.
1964 bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL,
1965                                                const AddrMode &AM, Type *Ty,
1966                                                unsigned AS, Instruction *I) const {
1967   // The default implementation of this implements a conservative RISCy, r+r and
1968   // r+i addr mode.
1969 
1970   // Allows a sign-extended 16-bit immediate field.
1971   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1972     return false;
1973 
1974   // No global is ever allowed as a base.
1975   if (AM.BaseGV)
1976     return false;
1977 
1978   // Only support r+r,
1979   switch (AM.Scale) {
1980   case 0:  // "r+i" or just "i", depending on HasBaseReg.
1981     break;
1982   case 1:
1983     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1984       return false;
1985     // Otherwise we have r+r or r+i.
1986     break;
1987   case 2:
1988     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1989       return false;
1990     // Allow 2*r as r+r.
1991     break;
1992   default: // Don't allow n * r
1993     return false;
1994   }
1995 
1996   return true;
1997 }
1998 
1999 //===----------------------------------------------------------------------===//
2000 //  Stack Protector
2001 //===----------------------------------------------------------------------===//
2002 
2003 // For OpenBSD return its special guard variable. Otherwise return nullptr,
2004 // so that SelectionDAG handle SSP.
2005 Value *TargetLoweringBase::getIRStackGuard(IRBuilderBase &IRB) const {
2006   if (getTargetMachine().getTargetTriple().isOSOpenBSD()) {
2007     Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
2008     PointerType *PtrTy = PointerType::getUnqual(M.getContext());
2009     Constant *C = M.getOrInsertGlobal("__guard_local", PtrTy);
2010     if (GlobalVariable *G = dyn_cast_or_null<GlobalVariable>(C))
2011       G->setVisibility(GlobalValue::HiddenVisibility);
2012     return C;
2013   }
2014   return nullptr;
2015 }
2016 
2017 // Currently only support "standard" __stack_chk_guard.
2018 // TODO: add LOAD_STACK_GUARD support.
2019 void TargetLoweringBase::insertSSPDeclarations(Module &M) const {
2020   if (!M.getNamedValue("__stack_chk_guard")) {
2021     auto *GV = new GlobalVariable(M, PointerType::getUnqual(M.getContext()),
2022                                   false, GlobalVariable::ExternalLinkage,
2023                                   nullptr, "__stack_chk_guard");
2024 
2025     // FreeBSD has "__stack_chk_guard" defined externally on libc.so
2026     if (M.getDirectAccessExternalData() &&
2027         !TM.getTargetTriple().isWindowsGNUEnvironment() &&
2028         !(TM.getTargetTriple().isPPC64() && TM.getTargetTriple().isOSFreeBSD()) &&
2029         (!TM.getTargetTriple().isOSDarwin() ||
2030          TM.getRelocationModel() == Reloc::Static))
2031       GV->setDSOLocal(true);
2032   }
2033 }
2034 
2035 // Currently only support "standard" __stack_chk_guard.
2036 // TODO: add LOAD_STACK_GUARD support.
2037 Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const {
2038   return M.getNamedValue("__stack_chk_guard");
2039 }
2040 
2041 Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const {
2042   return nullptr;
2043 }
2044 
2045 unsigned TargetLoweringBase::getMinimumJumpTableEntries() const {
2046   return MinimumJumpTableEntries;
2047 }
2048 
2049 void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) {
2050   MinimumJumpTableEntries = Val;
2051 }
2052 
2053 unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const {
2054   return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
2055 }
2056 
2057 unsigned TargetLoweringBase::getMaximumJumpTableSize() const {
2058   return MaximumJumpTableSize;
2059 }
2060 
2061 void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) {
2062   MaximumJumpTableSize = Val;
2063 }
2064 
2065 bool TargetLoweringBase::isJumpTableRelative() const {
2066   return getTargetMachine().isPositionIndependent();
2067 }
2068 
2069 Align TargetLoweringBase::getPrefLoopAlignment(MachineLoop *ML) const {
2070   if (TM.Options.LoopAlignment)
2071     return Align(TM.Options.LoopAlignment);
2072   return PrefLoopAlignment;
2073 }
2074 
2075 unsigned TargetLoweringBase::getMaxPermittedBytesForAlignment(
2076     MachineBasicBlock *MBB) const {
2077   return MaxBytesForAlignment;
2078 }
2079 
2080 //===----------------------------------------------------------------------===//
2081 //  Reciprocal Estimates
2082 //===----------------------------------------------------------------------===//
2083 
2084 /// Get the reciprocal estimate attribute string for a function that will
2085 /// override the target defaults.
2086 static StringRef getRecipEstimateForFunc(MachineFunction &MF) {
2087   const Function &F = MF.getFunction();
2088   return F.getFnAttribute("reciprocal-estimates").getValueAsString();
2089 }
2090 
2091 /// Construct a string for the given reciprocal operation of the given type.
2092 /// This string should match the corresponding option to the front-end's
2093 /// "-mrecip" flag assuming those strings have been passed through in an
2094 /// attribute string. For example, "vec-divf" for a division of a vXf32.
2095 static std::string getReciprocalOpName(bool IsSqrt, EVT VT) {
2096   std::string Name = VT.isVector() ? "vec-" : "";
2097 
2098   Name += IsSqrt ? "sqrt" : "div";
2099 
2100   // TODO: Handle other float types?
2101   if (VT.getScalarType() == MVT::f64) {
2102     Name += "d";
2103   } else if (VT.getScalarType() == MVT::f16) {
2104     Name += "h";
2105   } else {
2106     assert(VT.getScalarType() == MVT::f32 &&
2107            "Unexpected FP type for reciprocal estimate");
2108     Name += "f";
2109   }
2110 
2111   return Name;
2112 }
2113 
2114 /// Return the character position and value (a single numeric character) of a
2115 /// customized refinement operation in the input string if it exists. Return
2116 /// false if there is no customized refinement step count.
2117 static bool parseRefinementStep(StringRef In, size_t &Position,
2118                                 uint8_t &Value) {
2119   const char RefStepToken = ':';
2120   Position = In.find(RefStepToken);
2121   if (Position == StringRef::npos)
2122     return false;
2123 
2124   StringRef RefStepString = In.substr(Position + 1);
2125   // Allow exactly one numeric character for the additional refinement
2126   // step parameter.
2127   if (RefStepString.size() == 1) {
2128     char RefStepChar = RefStepString[0];
2129     if (isDigit(RefStepChar)) {
2130       Value = RefStepChar - '0';
2131       return true;
2132     }
2133   }
2134   report_fatal_error("Invalid refinement step for -recip.");
2135 }
2136 
2137 /// For the input attribute string, return one of the ReciprocalEstimate enum
2138 /// status values (enabled, disabled, or not specified) for this operation on
2139 /// the specified data type.
2140 static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) {
2141   if (Override.empty())
2142     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2143 
2144   SmallVector<StringRef, 4> OverrideVector;
2145   Override.split(OverrideVector, ',');
2146   unsigned NumArgs = OverrideVector.size();
2147 
2148   // Check if "all", "none", or "default" was specified.
2149   if (NumArgs == 1) {
2150     // Look for an optional setting of the number of refinement steps needed
2151     // for this type of reciprocal operation.
2152     size_t RefPos;
2153     uint8_t RefSteps;
2154     if (parseRefinementStep(Override, RefPos, RefSteps)) {
2155       // Split the string for further processing.
2156       Override = Override.substr(0, RefPos);
2157     }
2158 
2159     // All reciprocal types are enabled.
2160     if (Override == "all")
2161       return TargetLoweringBase::ReciprocalEstimate::Enabled;
2162 
2163     // All reciprocal types are disabled.
2164     if (Override == "none")
2165       return TargetLoweringBase::ReciprocalEstimate::Disabled;
2166 
2167     // Target defaults for enablement are used.
2168     if (Override == "default")
2169       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2170   }
2171 
2172   // The attribute string may omit the size suffix ('f'/'d').
2173   std::string VTName = getReciprocalOpName(IsSqrt, VT);
2174   std::string VTNameNoSize = VTName;
2175   VTNameNoSize.pop_back();
2176   static const char DisabledPrefix = '!';
2177 
2178   for (StringRef RecipType : OverrideVector) {
2179     size_t RefPos;
2180     uint8_t RefSteps;
2181     if (parseRefinementStep(RecipType, RefPos, RefSteps))
2182       RecipType = RecipType.substr(0, RefPos);
2183 
2184     // Ignore the disablement token for string matching.
2185     bool IsDisabled = RecipType[0] == DisabledPrefix;
2186     if (IsDisabled)
2187       RecipType = RecipType.substr(1);
2188 
2189     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
2190       return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled
2191                         : TargetLoweringBase::ReciprocalEstimate::Enabled;
2192   }
2193 
2194   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2195 }
2196 
2197 /// For the input attribute string, return the customized refinement step count
2198 /// for this operation on the specified data type. If the step count does not
2199 /// exist, return the ReciprocalEstimate enum value for unspecified.
2200 static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) {
2201   if (Override.empty())
2202     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2203 
2204   SmallVector<StringRef, 4> OverrideVector;
2205   Override.split(OverrideVector, ',');
2206   unsigned NumArgs = OverrideVector.size();
2207 
2208   // Check if "all", "default", or "none" was specified.
2209   if (NumArgs == 1) {
2210     // Look for an optional setting of the number of refinement steps needed
2211     // for this type of reciprocal operation.
2212     size_t RefPos;
2213     uint8_t RefSteps;
2214     if (!parseRefinementStep(Override, RefPos, RefSteps))
2215       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2216 
2217     // Split the string for further processing.
2218     Override = Override.substr(0, RefPos);
2219     assert(Override != "none" &&
2220            "Disabled reciprocals, but specifed refinement steps?");
2221 
2222     // If this is a general override, return the specified number of steps.
2223     if (Override == "all" || Override == "default")
2224       return RefSteps;
2225   }
2226 
2227   // The attribute string may omit the size suffix ('f'/'d').
2228   std::string VTName = getReciprocalOpName(IsSqrt, VT);
2229   std::string VTNameNoSize = VTName;
2230   VTNameNoSize.pop_back();
2231 
2232   for (StringRef RecipType : OverrideVector) {
2233     size_t RefPos;
2234     uint8_t RefSteps;
2235     if (!parseRefinementStep(RecipType, RefPos, RefSteps))
2236       continue;
2237 
2238     RecipType = RecipType.substr(0, RefPos);
2239     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
2240       return RefSteps;
2241   }
2242 
2243   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2244 }
2245 
2246 int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT,
2247                                                     MachineFunction &MF) const {
2248   return getOpEnabled(true, VT, getRecipEstimateForFunc(MF));
2249 }
2250 
2251 int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT,
2252                                                    MachineFunction &MF) const {
2253   return getOpEnabled(false, VT, getRecipEstimateForFunc(MF));
2254 }
2255 
2256 int TargetLoweringBase::getSqrtRefinementSteps(EVT VT,
2257                                                MachineFunction &MF) const {
2258   return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF));
2259 }
2260 
2261 int TargetLoweringBase::getDivRefinementSteps(EVT VT,
2262                                               MachineFunction &MF) const {
2263   return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF));
2264 }
2265 
2266 bool TargetLoweringBase::isLoadBitCastBeneficial(
2267     EVT LoadVT, EVT BitcastVT, const SelectionDAG &DAG,
2268     const MachineMemOperand &MMO) const {
2269   // Single-element vectors are scalarized, so we should generally avoid having
2270   // any memory operations on such types, as they would get scalarized too.
2271   if (LoadVT.isFixedLengthVector() && BitcastVT.isFixedLengthVector() &&
2272       BitcastVT.getVectorNumElements() == 1)
2273     return false;
2274 
2275   // Don't do if we could do an indexed load on the original type, but not on
2276   // the new one.
2277   if (!LoadVT.isSimple() || !BitcastVT.isSimple())
2278     return true;
2279 
2280   MVT LoadMVT = LoadVT.getSimpleVT();
2281 
2282   // Don't bother doing this if it's just going to be promoted again later, as
2283   // doing so might interfere with other combines.
2284   if (getOperationAction(ISD::LOAD, LoadMVT) == Promote &&
2285       getTypeToPromoteTo(ISD::LOAD, LoadMVT) == BitcastVT.getSimpleVT())
2286     return false;
2287 
2288   unsigned Fast = 0;
2289   return allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), BitcastVT,
2290                             MMO, &Fast) &&
2291          Fast;
2292 }
2293 
2294 void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const {
2295   MF.getRegInfo().freezeReservedRegs(MF);
2296 }
2297 
2298 MachineMemOperand::Flags TargetLoweringBase::getLoadMemOperandFlags(
2299     const LoadInst &LI, const DataLayout &DL, AssumptionCache *AC,
2300     const TargetLibraryInfo *LibInfo) const {
2301   MachineMemOperand::Flags Flags = MachineMemOperand::MOLoad;
2302   if (LI.isVolatile())
2303     Flags |= MachineMemOperand::MOVolatile;
2304 
2305   if (LI.hasMetadata(LLVMContext::MD_nontemporal))
2306     Flags |= MachineMemOperand::MONonTemporal;
2307 
2308   if (LI.hasMetadata(LLVMContext::MD_invariant_load))
2309     Flags |= MachineMemOperand::MOInvariant;
2310 
2311   if (isDereferenceableAndAlignedPointer(LI.getPointerOperand(), LI.getType(),
2312                                          LI.getAlign(), DL, &LI, AC,
2313                                          /*DT=*/nullptr, LibInfo))
2314     Flags |= MachineMemOperand::MODereferenceable;
2315 
2316   Flags |= getTargetMMOFlags(LI);
2317   return Flags;
2318 }
2319 
2320 MachineMemOperand::Flags
2321 TargetLoweringBase::getStoreMemOperandFlags(const StoreInst &SI,
2322                                             const DataLayout &DL) const {
2323   MachineMemOperand::Flags Flags = MachineMemOperand::MOStore;
2324 
2325   if (SI.isVolatile())
2326     Flags |= MachineMemOperand::MOVolatile;
2327 
2328   if (SI.hasMetadata(LLVMContext::MD_nontemporal))
2329     Flags |= MachineMemOperand::MONonTemporal;
2330 
2331   // FIXME: Not preserving dereferenceable
2332   Flags |= getTargetMMOFlags(SI);
2333   return Flags;
2334 }
2335 
2336 MachineMemOperand::Flags
2337 TargetLoweringBase::getAtomicMemOperandFlags(const Instruction &AI,
2338                                              const DataLayout &DL) const {
2339   auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
2340 
2341   if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(&AI)) {
2342     if (RMW->isVolatile())
2343       Flags |= MachineMemOperand::MOVolatile;
2344   } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(&AI)) {
2345     if (CmpX->isVolatile())
2346       Flags |= MachineMemOperand::MOVolatile;
2347   } else
2348     llvm_unreachable("not an atomic instruction");
2349 
2350   // FIXME: Not preserving dereferenceable
2351   Flags |= getTargetMMOFlags(AI);
2352   return Flags;
2353 }
2354 
2355 Instruction *TargetLoweringBase::emitLeadingFence(IRBuilderBase &Builder,
2356                                                   Instruction *Inst,
2357                                                   AtomicOrdering Ord) const {
2358   if (isReleaseOrStronger(Ord) && Inst->hasAtomicStore())
2359     return Builder.CreateFence(Ord);
2360   else
2361     return nullptr;
2362 }
2363 
2364 Instruction *TargetLoweringBase::emitTrailingFence(IRBuilderBase &Builder,
2365                                                    Instruction *Inst,
2366                                                    AtomicOrdering Ord) const {
2367   if (isAcquireOrStronger(Ord))
2368     return Builder.CreateFence(Ord);
2369   else
2370     return nullptr;
2371 }
2372 
2373 //===----------------------------------------------------------------------===//
2374 //  GlobalISel Hooks
2375 //===----------------------------------------------------------------------===//
2376 
2377 bool TargetLoweringBase::shouldLocalize(const MachineInstr &MI,
2378                                         const TargetTransformInfo *TTI) const {
2379   auto &MF = *MI.getMF();
2380   auto &MRI = MF.getRegInfo();
2381   // Assuming a spill and reload of a value has a cost of 1 instruction each,
2382   // this helper function computes the maximum number of uses we should consider
2383   // for remat. E.g. on arm64 global addresses take 2 insts to materialize. We
2384   // break even in terms of code size when the original MI has 2 users vs
2385   // choosing to potentially spill. Any more than 2 users we we have a net code
2386   // size increase. This doesn't take into account register pressure though.
2387   auto maxUses = [](unsigned RematCost) {
2388     // A cost of 1 means remats are basically free.
2389     if (RematCost == 1)
2390       return std::numeric_limits<unsigned>::max();
2391     if (RematCost == 2)
2392       return 2U;
2393 
2394     // Remat is too expensive, only sink if there's one user.
2395     if (RematCost > 2)
2396       return 1U;
2397     llvm_unreachable("Unexpected remat cost");
2398   };
2399 
2400   switch (MI.getOpcode()) {
2401   default:
2402     return false;
2403   // Constants-like instructions should be close to their users.
2404   // We don't want long live-ranges for them.
2405   case TargetOpcode::G_CONSTANT:
2406   case TargetOpcode::G_FCONSTANT:
2407   case TargetOpcode::G_FRAME_INDEX:
2408   case TargetOpcode::G_INTTOPTR:
2409     return true;
2410   case TargetOpcode::G_GLOBAL_VALUE: {
2411     unsigned RematCost = TTI->getGISelRematGlobalCost();
2412     Register Reg = MI.getOperand(0).getReg();
2413     unsigned MaxUses = maxUses(RematCost);
2414     if (MaxUses == UINT_MAX)
2415       return true; // Remats are "free" so always localize.
2416     return MRI.hasAtMostUserInstrs(Reg, MaxUses);
2417   }
2418   }
2419 }
2420