1 //===- TwoAddressInstructionPass.cpp - Two-Address instruction pass -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the TwoAddress instruction pass which is used
10 // by most register allocators. Two-Address instructions are rewritten
11 // from:
12 //
13 //     A = B op C
14 //
15 // to:
16 //
17 //     A = B
18 //     A op= C
19 //
20 // Note that if a register allocator chooses to use this pass, that it
21 // has to be capable of handling the non-SSA nature of these rewritten
22 // virtual registers.
23 //
24 // It is also worth noting that the duplicate operand of the two
25 // address instruction is removed.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/ADT/iterator_range.h"
35 #include "llvm/Analysis/AliasAnalysis.h"
36 #include "llvm/CodeGen/LiveInterval.h"
37 #include "llvm/CodeGen/LiveIntervals.h"
38 #include "llvm/CodeGen/LiveVariables.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFunction.h"
41 #include "llvm/CodeGen/MachineFunctionPass.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineOperand.h"
45 #include "llvm/CodeGen/MachineRegisterInfo.h"
46 #include "llvm/CodeGen/Passes.h"
47 #include "llvm/CodeGen/SlotIndexes.h"
48 #include "llvm/CodeGen/TargetInstrInfo.h"
49 #include "llvm/CodeGen/TargetOpcodes.h"
50 #include "llvm/CodeGen/TargetRegisterInfo.h"
51 #include "llvm/CodeGen/TargetSubtargetInfo.h"
52 #include "llvm/MC/MCInstrDesc.h"
53 #include "llvm/MC/MCInstrItineraries.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/CodeGen.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include "llvm/Target/TargetMachine.h"
61 #include <cassert>
62 #include <iterator>
63 #include <utility>
64 
65 using namespace llvm;
66 
67 #define DEBUG_TYPE "twoaddressinstruction"
68 
69 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
70 STATISTIC(NumCommuted        , "Number of instructions commuted to coalesce");
71 STATISTIC(NumAggrCommuted    , "Number of instructions aggressively commuted");
72 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
73 STATISTIC(NumReSchedUps,       "Number of instructions re-scheduled up");
74 STATISTIC(NumReSchedDowns,     "Number of instructions re-scheduled down");
75 
76 // Temporary flag to disable rescheduling.
77 static cl::opt<bool>
78 EnableRescheduling("twoaddr-reschedule",
79                    cl::desc("Coalesce copies by rescheduling (default=true)"),
80                    cl::init(true), cl::Hidden);
81 
82 // Limit the number of dataflow edges to traverse when evaluating the benefit
83 // of commuting operands.
84 static cl::opt<unsigned> MaxDataFlowEdge(
85     "dataflow-edge-limit", cl::Hidden, cl::init(3),
86     cl::desc("Maximum number of dataflow edges to traverse when evaluating "
87              "the benefit of commuting operands"));
88 
89 namespace {
90 
91 class TwoAddressInstructionPass : public MachineFunctionPass {
92   MachineFunction *MF;
93   const TargetInstrInfo *TII;
94   const TargetRegisterInfo *TRI;
95   const InstrItineraryData *InstrItins;
96   MachineRegisterInfo *MRI;
97   LiveVariables *LV;
98   LiveIntervals *LIS;
99   AliasAnalysis *AA;
100   CodeGenOpt::Level OptLevel;
101 
102   // The current basic block being processed.
103   MachineBasicBlock *MBB;
104 
105   // Keep track the distance of a MI from the start of the current basic block.
106   DenseMap<MachineInstr*, unsigned> DistanceMap;
107 
108   // Set of already processed instructions in the current block.
109   SmallPtrSet<MachineInstr*, 8> Processed;
110 
111   // A map from virtual registers to physical registers which are likely targets
112   // to be coalesced to due to copies from physical registers to virtual
113   // registers. e.g. v1024 = move r0.
114   DenseMap<Register, Register> SrcRegMap;
115 
116   // A map from virtual registers to physical registers which are likely targets
117   // to be coalesced to due to copies to physical registers from virtual
118   // registers. e.g. r1 = move v1024.
119   DenseMap<Register, Register> DstRegMap;
120 
121   bool isRevCopyChain(Register FromReg, Register ToReg, int Maxlen);
122 
123   bool noUseAfterLastDef(Register Reg, unsigned Dist, unsigned &LastDef);
124 
125   bool isProfitableToCommute(Register RegA, Register RegB, Register RegC,
126                              MachineInstr *MI, unsigned Dist);
127 
128   bool commuteInstruction(MachineInstr *MI, unsigned DstIdx,
129                           unsigned RegBIdx, unsigned RegCIdx, unsigned Dist);
130 
131   bool isProfitableToConv3Addr(Register RegA, Register RegB);
132 
133   bool convertInstTo3Addr(MachineBasicBlock::iterator &mi,
134                           MachineBasicBlock::iterator &nmi, Register RegA,
135                           Register RegB, unsigned Dist);
136 
137   bool isDefTooClose(Register Reg, unsigned Dist, MachineInstr *MI);
138 
139   bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi,
140                              MachineBasicBlock::iterator &nmi, Register Reg);
141   bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi,
142                              MachineBasicBlock::iterator &nmi, Register Reg);
143 
144   bool tryInstructionTransform(MachineBasicBlock::iterator &mi,
145                                MachineBasicBlock::iterator &nmi,
146                                unsigned SrcIdx, unsigned DstIdx,
147                                unsigned Dist, bool shouldOnlyCommute);
148 
149   bool tryInstructionCommute(MachineInstr *MI,
150                              unsigned DstOpIdx,
151                              unsigned BaseOpIdx,
152                              bool BaseOpKilled,
153                              unsigned Dist);
154   void scanUses(Register DstReg);
155 
156   void processCopy(MachineInstr *MI);
157 
158   using TiedPairList = SmallVector<std::pair<unsigned, unsigned>, 4>;
159   using TiedOperandMap = SmallDenseMap<unsigned, TiedPairList>;
160 
161   bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&);
162   void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist);
163   void eliminateRegSequence(MachineBasicBlock::iterator&);
164 
165 public:
166   static char ID; // Pass identification, replacement for typeid
167 
168   TwoAddressInstructionPass() : MachineFunctionPass(ID) {
169     initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry());
170   }
171 
172   void getAnalysisUsage(AnalysisUsage &AU) const override {
173     AU.setPreservesCFG();
174     AU.addUsedIfAvailable<AAResultsWrapperPass>();
175     AU.addUsedIfAvailable<LiveVariables>();
176     AU.addPreserved<LiveVariables>();
177     AU.addPreserved<SlotIndexes>();
178     AU.addPreserved<LiveIntervals>();
179     AU.addPreservedID(MachineLoopInfoID);
180     AU.addPreservedID(MachineDominatorsID);
181     MachineFunctionPass::getAnalysisUsage(AU);
182   }
183 
184   /// Pass entry point.
185   bool runOnMachineFunction(MachineFunction&) override;
186 };
187 
188 } // end anonymous namespace
189 
190 char TwoAddressInstructionPass::ID = 0;
191 
192 char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID;
193 
194 INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, DEBUG_TYPE,
195                 "Two-Address instruction pass", false, false)
196 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
197 INITIALIZE_PASS_END(TwoAddressInstructionPass, DEBUG_TYPE,
198                 "Two-Address instruction pass", false, false)
199 
200 static bool isPlainlyKilled(MachineInstr *MI, Register Reg, LiveIntervals *LIS);
201 
202 /// Return the MachineInstr* if it is the single def of the Reg in current BB.
203 static MachineInstr *getSingleDef(Register Reg, MachineBasicBlock *BB,
204                                   const MachineRegisterInfo *MRI) {
205   MachineInstr *Ret = nullptr;
206   for (MachineInstr &DefMI : MRI->def_instructions(Reg)) {
207     if (DefMI.getParent() != BB || DefMI.isDebugValue())
208       continue;
209     if (!Ret)
210       Ret = &DefMI;
211     else if (Ret != &DefMI)
212       return nullptr;
213   }
214   return Ret;
215 }
216 
217 /// Check if there is a reversed copy chain from FromReg to ToReg:
218 /// %Tmp1 = copy %Tmp2;
219 /// %FromReg = copy %Tmp1;
220 /// %ToReg = add %FromReg ...
221 /// %Tmp2 = copy %ToReg;
222 /// MaxLen specifies the maximum length of the copy chain the func
223 /// can walk through.
224 bool TwoAddressInstructionPass::isRevCopyChain(Register FromReg, Register ToReg,
225                                                int Maxlen) {
226   Register TmpReg = FromReg;
227   for (int i = 0; i < Maxlen; i++) {
228     MachineInstr *Def = getSingleDef(TmpReg, MBB, MRI);
229     if (!Def || !Def->isCopy())
230       return false;
231 
232     TmpReg = Def->getOperand(1).getReg();
233 
234     if (TmpReg == ToReg)
235       return true;
236   }
237   return false;
238 }
239 
240 /// Return true if there are no intervening uses between the last instruction
241 /// in the MBB that defines the specified register and the two-address
242 /// instruction which is being processed. It also returns the last def location
243 /// by reference.
244 bool TwoAddressInstructionPass::noUseAfterLastDef(Register Reg, unsigned Dist,
245                                                   unsigned &LastDef) {
246   LastDef = 0;
247   unsigned LastUse = Dist;
248   for (MachineOperand &MO : MRI->reg_operands(Reg)) {
249     MachineInstr *MI = MO.getParent();
250     if (MI->getParent() != MBB || MI->isDebugValue())
251       continue;
252     DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
253     if (DI == DistanceMap.end())
254       continue;
255     if (MO.isUse() && DI->second < LastUse)
256       LastUse = DI->second;
257     if (MO.isDef() && DI->second > LastDef)
258       LastDef = DI->second;
259   }
260 
261   return !(LastUse > LastDef && LastUse < Dist);
262 }
263 
264 /// Return true if the specified MI is a copy instruction or an extract_subreg
265 /// instruction. It also returns the source and destination registers and
266 /// whether they are physical registers by reference.
267 static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
268                         Register &SrcReg, Register &DstReg, bool &IsSrcPhys,
269                         bool &IsDstPhys) {
270   SrcReg = 0;
271   DstReg = 0;
272   if (MI.isCopy()) {
273     DstReg = MI.getOperand(0).getReg();
274     SrcReg = MI.getOperand(1).getReg();
275   } else if (MI.isInsertSubreg() || MI.isSubregToReg()) {
276     DstReg = MI.getOperand(0).getReg();
277     SrcReg = MI.getOperand(2).getReg();
278   } else {
279     return false;
280   }
281 
282   IsSrcPhys = SrcReg.isPhysical();
283   IsDstPhys = DstReg.isPhysical();
284   return true;
285 }
286 
287 /// Test if the given register value, which is used by the
288 /// given instruction, is killed by the given instruction.
289 static bool isPlainlyKilled(MachineInstr *MI, Register Reg,
290                             LiveIntervals *LIS) {
291   if (LIS && Reg.isVirtual() && !LIS->isNotInMIMap(*MI)) {
292     // FIXME: Sometimes tryInstructionTransform() will add instructions and
293     // test whether they can be folded before keeping them. In this case it
294     // sets a kill before recursively calling tryInstructionTransform() again.
295     // If there is no interval available, we assume that this instruction is
296     // one of those. A kill flag is manually inserted on the operand so the
297     // check below will handle it.
298     LiveInterval &LI = LIS->getInterval(Reg);
299     // This is to match the kill flag version where undefs don't have kill
300     // flags.
301     if (!LI.hasAtLeastOneValue())
302       return false;
303 
304     SlotIndex useIdx = LIS->getInstructionIndex(*MI);
305     LiveInterval::const_iterator I = LI.find(useIdx);
306     assert(I != LI.end() && "Reg must be live-in to use.");
307     return !I->end.isBlock() && SlotIndex::isSameInstr(I->end, useIdx);
308   }
309 
310   return MI->killsRegister(Reg);
311 }
312 
313 /// Test if the given register value, which is used by the given
314 /// instruction, is killed by the given instruction. This looks through
315 /// coalescable copies to see if the original value is potentially not killed.
316 ///
317 /// For example, in this code:
318 ///
319 ///   %reg1034 = copy %reg1024
320 ///   %reg1035 = copy killed %reg1025
321 ///   %reg1036 = add killed %reg1034, killed %reg1035
322 ///
323 /// %reg1034 is not considered to be killed, since it is copied from a
324 /// register which is not killed. Treating it as not killed lets the
325 /// normal heuristics commute the (two-address) add, which lets
326 /// coalescing eliminate the extra copy.
327 ///
328 /// If allowFalsePositives is true then likely kills are treated as kills even
329 /// if it can't be proven that they are kills.
330 static bool isKilled(MachineInstr &MI, Register Reg,
331                      const MachineRegisterInfo *MRI, const TargetInstrInfo *TII,
332                      LiveIntervals *LIS, bool allowFalsePositives) {
333   MachineInstr *DefMI = &MI;
334   while (true) {
335     // All uses of physical registers are likely to be kills.
336     if (Reg.isPhysical() && (allowFalsePositives || MRI->hasOneUse(Reg)))
337       return true;
338     if (!isPlainlyKilled(DefMI, Reg, LIS))
339       return false;
340     if (Reg.isPhysical())
341       return true;
342     MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
343     // If there are multiple defs, we can't do a simple analysis, so just
344     // go with what the kill flag says.
345     if (std::next(Begin) != MRI->def_end())
346       return true;
347     DefMI = Begin->getParent();
348     bool IsSrcPhys, IsDstPhys;
349     Register SrcReg, DstReg;
350     // If the def is something other than a copy, then it isn't going to
351     // be coalesced, so follow the kill flag.
352     if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
353       return true;
354     Reg = SrcReg;
355   }
356 }
357 
358 /// Return true if the specified MI uses the specified register as a two-address
359 /// use. If so, return the destination register by reference.
360 static bool isTwoAddrUse(MachineInstr &MI, Register Reg, Register &DstReg) {
361   for (unsigned i = 0, NumOps = MI.getNumOperands(); i != NumOps; ++i) {
362     const MachineOperand &MO = MI.getOperand(i);
363     if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
364       continue;
365     unsigned ti;
366     if (MI.isRegTiedToDefOperand(i, &ti)) {
367       DstReg = MI.getOperand(ti).getReg();
368       return true;
369     }
370   }
371   return false;
372 }
373 
374 /// Given a register, if has a single in-basic block use, return the use
375 /// instruction if it's a copy or a two-address use.
376 static MachineInstr *
377 findOnlyInterestingUse(Register Reg, MachineBasicBlock *MBB,
378                        MachineRegisterInfo *MRI, const TargetInstrInfo *TII,
379                        bool &IsCopy, Register &DstReg, bool &IsDstPhys) {
380   if (!MRI->hasOneNonDBGUse(Reg))
381     // None or more than one use.
382     return nullptr;
383   MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(Reg);
384   if (UseMI.getParent() != MBB)
385     return nullptr;
386   Register SrcReg;
387   bool IsSrcPhys;
388   if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
389     IsCopy = true;
390     return &UseMI;
391   }
392   IsDstPhys = false;
393   if (isTwoAddrUse(UseMI, Reg, DstReg)) {
394     IsDstPhys = DstReg.isPhysical();
395     return &UseMI;
396   }
397   return nullptr;
398 }
399 
400 /// Return the physical register the specified virtual register might be mapped
401 /// to.
402 static MCRegister getMappedReg(Register Reg,
403                                DenseMap<Register, Register> &RegMap) {
404   while (Reg.isVirtual()) {
405     DenseMap<Register, Register>::iterator SI = RegMap.find(Reg);
406     if (SI == RegMap.end())
407       return 0;
408     Reg = SI->second;
409   }
410   if (Reg.isPhysical())
411     return Reg;
412   return 0;
413 }
414 
415 /// Return true if the two registers are equal or aliased.
416 static bool regsAreCompatible(Register RegA, Register RegB,
417                               const TargetRegisterInfo *TRI) {
418   if (RegA == RegB)
419     return true;
420   if (!RegA || !RegB)
421     return false;
422   return TRI->regsOverlap(RegA, RegB);
423 }
424 
425 // Returns true if Reg is equal or aliased to at least one register in Set.
426 static bool regOverlapsSet(const SmallVectorImpl<Register> &Set, Register Reg,
427                            const TargetRegisterInfo *TRI) {
428   for (unsigned R : Set)
429     if (TRI->regsOverlap(R, Reg))
430       return true;
431 
432   return false;
433 }
434 
435 /// Return true if it's potentially profitable to commute the two-address
436 /// instruction that's being processed.
437 bool TwoAddressInstructionPass::isProfitableToCommute(Register RegA,
438                                                       Register RegB,
439                                                       Register RegC,
440                                                       MachineInstr *MI,
441                                                       unsigned Dist) {
442   if (OptLevel == CodeGenOpt::None)
443     return false;
444 
445   // Determine if it's profitable to commute this two address instruction. In
446   // general, we want no uses between this instruction and the definition of
447   // the two-address register.
448   // e.g.
449   // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1
450   // %reg1029 = COPY %reg1028
451   // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags
452   // insert => %reg1030 = COPY %reg1028
453   // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags
454   // In this case, it might not be possible to coalesce the second COPY
455   // instruction if the first one is coalesced. So it would be profitable to
456   // commute it:
457   // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1
458   // %reg1029 = COPY %reg1028
459   // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags
460   // insert => %reg1030 = COPY %reg1029
461   // %reg1030 = ADD8rr killed %reg1029, killed %reg1028, implicit dead %eflags
462 
463   if (!isPlainlyKilled(MI, RegC, LIS))
464     return false;
465 
466   // Ok, we have something like:
467   // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags
468   // let's see if it's worth commuting it.
469 
470   // Look for situations like this:
471   // %reg1024 = MOV r1
472   // %reg1025 = MOV r0
473   // %reg1026 = ADD %reg1024, %reg1025
474   // r0            = MOV %reg1026
475   // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
476   MCRegister ToRegA = getMappedReg(RegA, DstRegMap);
477   if (ToRegA) {
478     MCRegister FromRegB = getMappedReg(RegB, SrcRegMap);
479     MCRegister FromRegC = getMappedReg(RegC, SrcRegMap);
480     bool CompB = FromRegB && regsAreCompatible(FromRegB, ToRegA, TRI);
481     bool CompC = FromRegC && regsAreCompatible(FromRegC, ToRegA, TRI);
482 
483     // Compute if any of the following are true:
484     // -RegB is not tied to a register and RegC is compatible with RegA.
485     // -RegB is tied to the wrong physical register, but RegC is.
486     // -RegB is tied to the wrong physical register, and RegC isn't tied.
487     if ((!FromRegB && CompC) || (FromRegB && !CompB && (!FromRegC || CompC)))
488       return true;
489     // Don't compute if any of the following are true:
490     // -RegC is not tied to a register and RegB is compatible with RegA.
491     // -RegC is tied to the wrong physical register, but RegB is.
492     // -RegC is tied to the wrong physical register, and RegB isn't tied.
493     if ((!FromRegC && CompB) || (FromRegC && !CompC && (!FromRegB || CompB)))
494       return false;
495   }
496 
497   // If there is a use of RegC between its last def (could be livein) and this
498   // instruction, then bail.
499   unsigned LastDefC = 0;
500   if (!noUseAfterLastDef(RegC, Dist, LastDefC))
501     return false;
502 
503   // If there is a use of RegB between its last def (could be livein) and this
504   // instruction, then go ahead and make this transformation.
505   unsigned LastDefB = 0;
506   if (!noUseAfterLastDef(RegB, Dist, LastDefB))
507     return true;
508 
509   // Look for situation like this:
510   // %reg101 = MOV %reg100
511   // %reg102 = ...
512   // %reg103 = ADD %reg102, %reg101
513   // ... = %reg103 ...
514   // %reg100 = MOV %reg103
515   // If there is a reversed copy chain from reg101 to reg103, commute the ADD
516   // to eliminate an otherwise unavoidable copy.
517   // FIXME:
518   // We can extend the logic further: If an pair of operands in an insn has
519   // been merged, the insn could be regarded as a virtual copy, and the virtual
520   // copy could also be used to construct a copy chain.
521   // To more generally minimize register copies, ideally the logic of two addr
522   // instruction pass should be integrated with register allocation pass where
523   // interference graph is available.
524   if (isRevCopyChain(RegC, RegA, MaxDataFlowEdge))
525     return true;
526 
527   if (isRevCopyChain(RegB, RegA, MaxDataFlowEdge))
528     return false;
529 
530   // Since there are no intervening uses for both registers, then commute
531   // if the def of RegC is closer. Its live interval is shorter.
532   return LastDefB && LastDefC && LastDefC > LastDefB;
533 }
534 
535 /// Commute a two-address instruction and update the basic block, distance map,
536 /// and live variables if needed. Return true if it is successful.
537 bool TwoAddressInstructionPass::commuteInstruction(MachineInstr *MI,
538                                                    unsigned DstIdx,
539                                                    unsigned RegBIdx,
540                                                    unsigned RegCIdx,
541                                                    unsigned Dist) {
542   Register RegC = MI->getOperand(RegCIdx).getReg();
543   LLVM_DEBUG(dbgs() << "2addr: COMMUTING  : " << *MI);
544   MachineInstr *NewMI = TII->commuteInstruction(*MI, false, RegBIdx, RegCIdx);
545 
546   if (NewMI == nullptr) {
547     LLVM_DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
548     return false;
549   }
550 
551   LLVM_DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI);
552   assert(NewMI == MI &&
553          "TargetInstrInfo::commuteInstruction() should not return a new "
554          "instruction unless it was requested.");
555 
556   // Update source register map.
557   MCRegister FromRegC = getMappedReg(RegC, SrcRegMap);
558   if (FromRegC) {
559     Register RegA = MI->getOperand(DstIdx).getReg();
560     SrcRegMap[RegA] = FromRegC;
561   }
562 
563   return true;
564 }
565 
566 /// Return true if it is profitable to convert the given 2-address instruction
567 /// to a 3-address one.
568 bool TwoAddressInstructionPass::isProfitableToConv3Addr(Register RegA,
569                                                         Register RegB) {
570   // Look for situations like this:
571   // %reg1024 = MOV r1
572   // %reg1025 = MOV r0
573   // %reg1026 = ADD %reg1024, %reg1025
574   // r2            = MOV %reg1026
575   // Turn ADD into a 3-address instruction to avoid a copy.
576   MCRegister FromRegB = getMappedReg(RegB, SrcRegMap);
577   if (!FromRegB)
578     return false;
579   MCRegister ToRegA = getMappedReg(RegA, DstRegMap);
580   return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI));
581 }
582 
583 /// Convert the specified two-address instruction into a three address one.
584 /// Return true if this transformation was successful.
585 bool TwoAddressInstructionPass::convertInstTo3Addr(
586     MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi,
587     Register RegA, Register RegB, unsigned Dist) {
588   // FIXME: Why does convertToThreeAddress() need an iterator reference?
589   MachineFunction::iterator MFI = MBB->getIterator();
590   MachineInstr *NewMI = TII->convertToThreeAddress(MFI, *mi, LV);
591   assert(MBB->getIterator() == MFI &&
592          "convertToThreeAddress changed iterator reference");
593   if (!NewMI)
594     return false;
595 
596   LLVM_DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi);
597   LLVM_DEBUG(dbgs() << "2addr:         TO 3-ADDR: " << *NewMI);
598 
599   if (LIS)
600     LIS->ReplaceMachineInstrInMaps(*mi, *NewMI);
601 
602   // If the old instruction is debug value tracked, an update is required.
603   if (auto OldInstrNum = mi->peekDebugInstrNum()) {
604     // Sanity check.
605     assert(mi->getNumExplicitDefs() == 1);
606     assert(NewMI->getNumExplicitDefs() == 1);
607 
608     // Find the old and new def location.
609     auto OldIt = mi->defs().begin();
610     auto NewIt = NewMI->defs().begin();
611     unsigned OldIdx = mi->getOperandNo(OldIt);
612     unsigned NewIdx = NewMI->getOperandNo(NewIt);
613 
614     // Record that one def has been replaced by the other.
615     unsigned NewInstrNum = NewMI->getDebugInstrNum();
616     MF->makeDebugValueSubstitution(std::make_pair(OldInstrNum, OldIdx),
617                                    std::make_pair(NewInstrNum, NewIdx));
618   }
619 
620   MBB->erase(mi); // Nuke the old inst.
621 
622   DistanceMap.insert(std::make_pair(NewMI, Dist));
623   mi = NewMI;
624   nmi = std::next(mi);
625 
626   // Update source and destination register maps.
627   SrcRegMap.erase(RegA);
628   DstRegMap.erase(RegB);
629   return true;
630 }
631 
632 /// Scan forward recursively for only uses, update maps if the use is a copy or
633 /// a two-address instruction.
634 void TwoAddressInstructionPass::scanUses(Register DstReg) {
635   SmallVector<Register, 4> VirtRegPairs;
636   bool IsDstPhys;
637   bool IsCopy = false;
638   Register NewReg;
639   Register Reg = DstReg;
640   while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy,
641                                                       NewReg, IsDstPhys)) {
642     if (IsCopy && !Processed.insert(UseMI).second)
643       break;
644 
645     DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
646     if (DI != DistanceMap.end())
647       // Earlier in the same MBB.Reached via a back edge.
648       break;
649 
650     if (IsDstPhys) {
651       VirtRegPairs.push_back(NewReg);
652       break;
653     }
654     bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second;
655     if (!isNew)
656       assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!");
657     VirtRegPairs.push_back(NewReg);
658     Reg = NewReg;
659   }
660 
661   if (!VirtRegPairs.empty()) {
662     unsigned ToReg = VirtRegPairs.back();
663     VirtRegPairs.pop_back();
664     while (!VirtRegPairs.empty()) {
665       unsigned FromReg = VirtRegPairs.back();
666       VirtRegPairs.pop_back();
667       bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
668       if (!isNew)
669         assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!");
670       ToReg = FromReg;
671     }
672     bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second;
673     if (!isNew)
674       assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!");
675   }
676 }
677 
678 /// If the specified instruction is not yet processed, process it if it's a
679 /// copy. For a copy instruction, we find the physical registers the
680 /// source and destination registers might be mapped to. These are kept in
681 /// point-to maps used to determine future optimizations. e.g.
682 /// v1024 = mov r0
683 /// v1025 = mov r1
684 /// v1026 = add v1024, v1025
685 /// r1    = mov r1026
686 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially
687 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
688 /// potentially joined with r1 on the output side. It's worthwhile to commute
689 /// 'add' to eliminate a copy.
690 void TwoAddressInstructionPass::processCopy(MachineInstr *MI) {
691   if (Processed.count(MI))
692     return;
693 
694   bool IsSrcPhys, IsDstPhys;
695   Register SrcReg, DstReg;
696   if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
697     return;
698 
699   if (IsDstPhys && !IsSrcPhys) {
700     DstRegMap.insert(std::make_pair(SrcReg, DstReg));
701   } else if (!IsDstPhys && IsSrcPhys) {
702     bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
703     if (!isNew)
704       assert(SrcRegMap[DstReg] == SrcReg &&
705              "Can't map to two src physical registers!");
706 
707     scanUses(DstReg);
708   }
709 
710   Processed.insert(MI);
711 }
712 
713 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg,
714 /// consider moving the instruction below the kill instruction in order to
715 /// eliminate the need for the copy.
716 bool TwoAddressInstructionPass::rescheduleMIBelowKill(
717     MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi,
718     Register Reg) {
719   // Bail immediately if we don't have LV or LIS available. We use them to find
720   // kills efficiently.
721   if (!LV && !LIS)
722     return false;
723 
724   MachineInstr *MI = &*mi;
725   DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
726   if (DI == DistanceMap.end())
727     // Must be created from unfolded load. Don't waste time trying this.
728     return false;
729 
730   MachineInstr *KillMI = nullptr;
731   if (LIS) {
732     LiveInterval &LI = LIS->getInterval(Reg);
733     assert(LI.end() != LI.begin() &&
734            "Reg should not have empty live interval.");
735 
736     SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
737     LiveInterval::const_iterator I = LI.find(MBBEndIdx);
738     if (I != LI.end() && I->start < MBBEndIdx)
739       return false;
740 
741     --I;
742     KillMI = LIS->getInstructionFromIndex(I->end);
743   } else {
744     KillMI = LV->getVarInfo(Reg).findKill(MBB);
745   }
746   if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike())
747     // Don't mess with copies, they may be coalesced later.
748     return false;
749 
750   if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() ||
751       KillMI->isBranch() || KillMI->isTerminator())
752     // Don't move pass calls, etc.
753     return false;
754 
755   Register DstReg;
756   if (isTwoAddrUse(*KillMI, Reg, DstReg))
757     return false;
758 
759   bool SeenStore = true;
760   if (!MI->isSafeToMove(AA, SeenStore))
761     return false;
762 
763   if (TII->getInstrLatency(InstrItins, *MI) > 1)
764     // FIXME: Needs more sophisticated heuristics.
765     return false;
766 
767   SmallVector<Register, 2> Uses;
768   SmallVector<Register, 2> Kills;
769   SmallVector<Register, 2> Defs;
770   for (const MachineOperand &MO : MI->operands()) {
771     if (!MO.isReg())
772       continue;
773     Register MOReg = MO.getReg();
774     if (!MOReg)
775       continue;
776     if (MO.isDef())
777       Defs.push_back(MOReg);
778     else {
779       Uses.push_back(MOReg);
780       if (MOReg != Reg && (MO.isKill() ||
781                            (LIS && isPlainlyKilled(MI, MOReg, LIS))))
782         Kills.push_back(MOReg);
783     }
784   }
785 
786   // Move the copies connected to MI down as well.
787   MachineBasicBlock::iterator Begin = MI;
788   MachineBasicBlock::iterator AfterMI = std::next(Begin);
789   MachineBasicBlock::iterator End = AfterMI;
790   while (End != MBB->end()) {
791     End = skipDebugInstructionsForward(End, MBB->end());
792     if (End->isCopy() && regOverlapsSet(Defs, End->getOperand(1).getReg(), TRI))
793       Defs.push_back(End->getOperand(0).getReg());
794     else
795       break;
796     ++End;
797   }
798 
799   // Check if the reschedule will not break dependencies.
800   unsigned NumVisited = 0;
801   MachineBasicBlock::iterator KillPos = KillMI;
802   ++KillPos;
803   for (MachineInstr &OtherMI : make_range(End, KillPos)) {
804     // Debug or pseudo instructions cannot be counted against the limit.
805     if (OtherMI.isDebugOrPseudoInstr())
806       continue;
807     if (NumVisited > 10)  // FIXME: Arbitrary limit to reduce compile time cost.
808       return false;
809     ++NumVisited;
810     if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() ||
811         OtherMI.isBranch() || OtherMI.isTerminator())
812       // Don't move pass calls, etc.
813       return false;
814     for (const MachineOperand &MO : OtherMI.operands()) {
815       if (!MO.isReg())
816         continue;
817       Register MOReg = MO.getReg();
818       if (!MOReg)
819         continue;
820       if (MO.isDef()) {
821         if (regOverlapsSet(Uses, MOReg, TRI))
822           // Physical register use would be clobbered.
823           return false;
824         if (!MO.isDead() && regOverlapsSet(Defs, MOReg, TRI))
825           // May clobber a physical register def.
826           // FIXME: This may be too conservative. It's ok if the instruction
827           // is sunken completely below the use.
828           return false;
829       } else {
830         if (regOverlapsSet(Defs, MOReg, TRI))
831           return false;
832         bool isKill =
833             MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS));
834         if (MOReg != Reg && ((isKill && regOverlapsSet(Uses, MOReg, TRI)) ||
835                              regOverlapsSet(Kills, MOReg, TRI)))
836           // Don't want to extend other live ranges and update kills.
837           return false;
838         if (MOReg == Reg && !isKill)
839           // We can't schedule across a use of the register in question.
840           return false;
841         // Ensure that if this is register in question, its the kill we expect.
842         assert((MOReg != Reg || &OtherMI == KillMI) &&
843                "Found multiple kills of a register in a basic block");
844       }
845     }
846   }
847 
848   // Move debug info as well.
849   while (Begin != MBB->begin() && std::prev(Begin)->isDebugInstr())
850     --Begin;
851 
852   nmi = End;
853   MachineBasicBlock::iterator InsertPos = KillPos;
854   if (LIS) {
855     // We have to move the copies first so that the MBB is still well-formed
856     // when calling handleMove().
857     for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) {
858       auto CopyMI = MBBI++;
859       MBB->splice(InsertPos, MBB, CopyMI);
860       LIS->handleMove(*CopyMI);
861       InsertPos = CopyMI;
862     }
863     End = std::next(MachineBasicBlock::iterator(MI));
864   }
865 
866   // Copies following MI may have been moved as well.
867   MBB->splice(InsertPos, MBB, Begin, End);
868   DistanceMap.erase(DI);
869 
870   // Update live variables
871   if (LIS) {
872     LIS->handleMove(*MI);
873   } else {
874     LV->removeVirtualRegisterKilled(Reg, *KillMI);
875     LV->addVirtualRegisterKilled(Reg, *MI);
876   }
877 
878   LLVM_DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI);
879   return true;
880 }
881 
882 /// Return true if the re-scheduling will put the given instruction too close
883 /// to the defs of its register dependencies.
884 bool TwoAddressInstructionPass::isDefTooClose(Register Reg, unsigned Dist,
885                                               MachineInstr *MI) {
886   for (MachineInstr &DefMI : MRI->def_instructions(Reg)) {
887     if (DefMI.getParent() != MBB || DefMI.isCopy() || DefMI.isCopyLike())
888       continue;
889     if (&DefMI == MI)
890       return true; // MI is defining something KillMI uses
891     DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(&DefMI);
892     if (DDI == DistanceMap.end())
893       return true;  // Below MI
894     unsigned DefDist = DDI->second;
895     assert(Dist > DefDist && "Visited def already?");
896     if (TII->getInstrLatency(InstrItins, DefMI) > (Dist - DefDist))
897       return true;
898   }
899   return false;
900 }
901 
902 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg,
903 /// consider moving the kill instruction above the current two-address
904 /// instruction in order to eliminate the need for the copy.
905 bool TwoAddressInstructionPass::rescheduleKillAboveMI(
906     MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi,
907     Register Reg) {
908   // Bail immediately if we don't have LV or LIS available. We use them to find
909   // kills efficiently.
910   if (!LV && !LIS)
911     return false;
912 
913   MachineInstr *MI = &*mi;
914   DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
915   if (DI == DistanceMap.end())
916     // Must be created from unfolded load. Don't waste time trying this.
917     return false;
918 
919   MachineInstr *KillMI = nullptr;
920   if (LIS) {
921     LiveInterval &LI = LIS->getInterval(Reg);
922     assert(LI.end() != LI.begin() &&
923            "Reg should not have empty live interval.");
924 
925     SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
926     LiveInterval::const_iterator I = LI.find(MBBEndIdx);
927     if (I != LI.end() && I->start < MBBEndIdx)
928       return false;
929 
930     --I;
931     KillMI = LIS->getInstructionFromIndex(I->end);
932   } else {
933     KillMI = LV->getVarInfo(Reg).findKill(MBB);
934   }
935   if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike())
936     // Don't mess with copies, they may be coalesced later.
937     return false;
938 
939   Register DstReg;
940   if (isTwoAddrUse(*KillMI, Reg, DstReg))
941     return false;
942 
943   bool SeenStore = true;
944   if (!KillMI->isSafeToMove(AA, SeenStore))
945     return false;
946 
947   SmallVector<Register, 2> Uses;
948   SmallVector<Register, 2> Kills;
949   SmallVector<Register, 2> Defs;
950   SmallVector<Register, 2> LiveDefs;
951   for (const MachineOperand &MO : KillMI->operands()) {
952     if (!MO.isReg())
953       continue;
954     Register MOReg = MO.getReg();
955     if (MO.isUse()) {
956       if (!MOReg)
957         continue;
958       if (isDefTooClose(MOReg, DI->second, MI))
959         return false;
960       bool isKill = MO.isKill() || (LIS && isPlainlyKilled(KillMI, MOReg, LIS));
961       if (MOReg == Reg && !isKill)
962         return false;
963       Uses.push_back(MOReg);
964       if (isKill && MOReg != Reg)
965         Kills.push_back(MOReg);
966     } else if (MOReg.isPhysical()) {
967       Defs.push_back(MOReg);
968       if (!MO.isDead())
969         LiveDefs.push_back(MOReg);
970     }
971   }
972 
973   // Check if the reschedule will not break depedencies.
974   unsigned NumVisited = 0;
975   for (MachineInstr &OtherMI :
976        make_range(mi, MachineBasicBlock::iterator(KillMI))) {
977     // Debug or pseudo instructions cannot be counted against the limit.
978     if (OtherMI.isDebugOrPseudoInstr())
979       continue;
980     if (NumVisited > 10)  // FIXME: Arbitrary limit to reduce compile time cost.
981       return false;
982     ++NumVisited;
983     if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() ||
984         OtherMI.isBranch() || OtherMI.isTerminator())
985       // Don't move pass calls, etc.
986       return false;
987     SmallVector<Register, 2> OtherDefs;
988     for (const MachineOperand &MO : OtherMI.operands()) {
989       if (!MO.isReg())
990         continue;
991       Register MOReg = MO.getReg();
992       if (!MOReg)
993         continue;
994       if (MO.isUse()) {
995         if (regOverlapsSet(Defs, MOReg, TRI))
996           // Moving KillMI can clobber the physical register if the def has
997           // not been seen.
998           return false;
999         if (regOverlapsSet(Kills, MOReg, TRI))
1000           // Don't want to extend other live ranges and update kills.
1001           return false;
1002         if (&OtherMI != MI && MOReg == Reg &&
1003             !(MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS))))
1004           // We can't schedule across a use of the register in question.
1005           return false;
1006       } else {
1007         OtherDefs.push_back(MOReg);
1008       }
1009     }
1010 
1011     for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) {
1012       Register MOReg = OtherDefs[i];
1013       if (regOverlapsSet(Uses, MOReg, TRI))
1014         return false;
1015       if (MOReg.isPhysical() && regOverlapsSet(LiveDefs, MOReg, TRI))
1016         return false;
1017       // Physical register def is seen.
1018       llvm::erase_value(Defs, MOReg);
1019     }
1020   }
1021 
1022   // Move the old kill above MI, don't forget to move debug info as well.
1023   MachineBasicBlock::iterator InsertPos = mi;
1024   while (InsertPos != MBB->begin() && std::prev(InsertPos)->isDebugInstr())
1025     --InsertPos;
1026   MachineBasicBlock::iterator From = KillMI;
1027   MachineBasicBlock::iterator To = std::next(From);
1028   while (std::prev(From)->isDebugInstr())
1029     --From;
1030   MBB->splice(InsertPos, MBB, From, To);
1031 
1032   nmi = std::prev(InsertPos); // Backtrack so we process the moved instr.
1033   DistanceMap.erase(DI);
1034 
1035   // Update live variables
1036   if (LIS) {
1037     LIS->handleMove(*KillMI);
1038   } else {
1039     LV->removeVirtualRegisterKilled(Reg, *KillMI);
1040     LV->addVirtualRegisterKilled(Reg, *MI);
1041   }
1042 
1043   LLVM_DEBUG(dbgs() << "\trescheduled kill: " << *KillMI);
1044   return true;
1045 }
1046 
1047 /// Tries to commute the operand 'BaseOpIdx' and some other operand in the
1048 /// given machine instruction to improve opportunities for coalescing and
1049 /// elimination of a register to register copy.
1050 ///
1051 /// 'DstOpIdx' specifies the index of MI def operand.
1052 /// 'BaseOpKilled' specifies if the register associated with 'BaseOpIdx'
1053 /// operand is killed by the given instruction.
1054 /// The 'Dist' arguments provides the distance of MI from the start of the
1055 /// current basic block and it is used to determine if it is profitable
1056 /// to commute operands in the instruction.
1057 ///
1058 /// Returns true if the transformation happened. Otherwise, returns false.
1059 bool TwoAddressInstructionPass::tryInstructionCommute(MachineInstr *MI,
1060                                                       unsigned DstOpIdx,
1061                                                       unsigned BaseOpIdx,
1062                                                       bool BaseOpKilled,
1063                                                       unsigned Dist) {
1064   if (!MI->isCommutable())
1065     return false;
1066 
1067   bool MadeChange = false;
1068   Register DstOpReg = MI->getOperand(DstOpIdx).getReg();
1069   Register BaseOpReg = MI->getOperand(BaseOpIdx).getReg();
1070   unsigned OpsNum = MI->getDesc().getNumOperands();
1071   unsigned OtherOpIdx = MI->getDesc().getNumDefs();
1072   for (; OtherOpIdx < OpsNum; OtherOpIdx++) {
1073     // The call of findCommutedOpIndices below only checks if BaseOpIdx
1074     // and OtherOpIdx are commutable, it does not really search for
1075     // other commutable operands and does not change the values of passed
1076     // variables.
1077     if (OtherOpIdx == BaseOpIdx || !MI->getOperand(OtherOpIdx).isReg() ||
1078         !TII->findCommutedOpIndices(*MI, BaseOpIdx, OtherOpIdx))
1079       continue;
1080 
1081     Register OtherOpReg = MI->getOperand(OtherOpIdx).getReg();
1082     bool AggressiveCommute = false;
1083 
1084     // If OtherOp dies but BaseOp does not, swap the OtherOp and BaseOp
1085     // operands. This makes the live ranges of DstOp and OtherOp joinable.
1086     bool OtherOpKilled = isKilled(*MI, OtherOpReg, MRI, TII, LIS, false);
1087     bool DoCommute = !BaseOpKilled && OtherOpKilled;
1088 
1089     if (!DoCommute &&
1090         isProfitableToCommute(DstOpReg, BaseOpReg, OtherOpReg, MI, Dist)) {
1091       DoCommute = true;
1092       AggressiveCommute = true;
1093     }
1094 
1095     // If it's profitable to commute, try to do so.
1096     if (DoCommute && commuteInstruction(MI, DstOpIdx, BaseOpIdx, OtherOpIdx,
1097                                         Dist)) {
1098       MadeChange = true;
1099       ++NumCommuted;
1100       if (AggressiveCommute)
1101         ++NumAggrCommuted;
1102 
1103       // There might be more than two commutable operands, update BaseOp and
1104       // continue scanning.
1105       // FIXME: This assumes that the new instruction's operands are in the
1106       // same positions and were simply swapped.
1107       BaseOpReg = OtherOpReg;
1108       BaseOpKilled = OtherOpKilled;
1109       // Resamples OpsNum in case the number of operands was reduced. This
1110       // happens with X86.
1111       OpsNum = MI->getDesc().getNumOperands();
1112     }
1113   }
1114   return MadeChange;
1115 }
1116 
1117 /// For the case where an instruction has a single pair of tied register
1118 /// operands, attempt some transformations that may either eliminate the tied
1119 /// operands or improve the opportunities for coalescing away the register copy.
1120 /// Returns true if no copy needs to be inserted to untie mi's operands
1121 /// (either because they were untied, or because mi was rescheduled, and will
1122 /// be visited again later). If the shouldOnlyCommute flag is true, only
1123 /// instruction commutation is attempted.
1124 bool TwoAddressInstructionPass::
1125 tryInstructionTransform(MachineBasicBlock::iterator &mi,
1126                         MachineBasicBlock::iterator &nmi,
1127                         unsigned SrcIdx, unsigned DstIdx,
1128                         unsigned Dist, bool shouldOnlyCommute) {
1129   if (OptLevel == CodeGenOpt::None)
1130     return false;
1131 
1132   MachineInstr &MI = *mi;
1133   Register regA = MI.getOperand(DstIdx).getReg();
1134   Register regB = MI.getOperand(SrcIdx).getReg();
1135 
1136   assert(regB.isVirtual() && "cannot make instruction into two-address form");
1137   bool regBKilled = isKilled(MI, regB, MRI, TII, LIS, true);
1138 
1139   if (regA.isVirtual())
1140     scanUses(regA);
1141 
1142   bool Commuted = tryInstructionCommute(&MI, DstIdx, SrcIdx, regBKilled, Dist);
1143 
1144   // If the instruction is convertible to 3 Addr, instead
1145   // of returning try 3 Addr transformation aggressively and
1146   // use this variable to check later. Because it might be better.
1147   // For example, we can just use `leal (%rsi,%rdi), %eax` and `ret`
1148   // instead of the following code.
1149   //   addl     %esi, %edi
1150   //   movl     %edi, %eax
1151   //   ret
1152   if (Commuted && !MI.isConvertibleTo3Addr())
1153     return false;
1154 
1155   if (shouldOnlyCommute)
1156     return false;
1157 
1158   // If there is one more use of regB later in the same MBB, consider
1159   // re-schedule this MI below it.
1160   if (!Commuted && EnableRescheduling && rescheduleMIBelowKill(mi, nmi, regB)) {
1161     ++NumReSchedDowns;
1162     return true;
1163   }
1164 
1165   // If we commuted, regB may have changed so we should re-sample it to avoid
1166   // confusing the three address conversion below.
1167   if (Commuted) {
1168     regB = MI.getOperand(SrcIdx).getReg();
1169     regBKilled = isKilled(MI, regB, MRI, TII, LIS, true);
1170   }
1171 
1172   if (MI.isConvertibleTo3Addr()) {
1173     // This instruction is potentially convertible to a true
1174     // three-address instruction.  Check if it is profitable.
1175     if (!regBKilled || isProfitableToConv3Addr(regA, regB)) {
1176       // Try to convert it.
1177       if (convertInstTo3Addr(mi, nmi, regA, regB, Dist)) {
1178         ++NumConvertedTo3Addr;
1179         return true; // Done with this instruction.
1180       }
1181     }
1182   }
1183 
1184   // Return if it is commuted but 3 addr conversion is failed.
1185   if (Commuted)
1186     return false;
1187 
1188   // If there is one more use of regB later in the same MBB, consider
1189   // re-schedule it before this MI if it's legal.
1190   if (EnableRescheduling && rescheduleKillAboveMI(mi, nmi, regB)) {
1191     ++NumReSchedUps;
1192     return true;
1193   }
1194 
1195   // If this is an instruction with a load folded into it, try unfolding
1196   // the load, e.g. avoid this:
1197   //   movq %rdx, %rcx
1198   //   addq (%rax), %rcx
1199   // in favor of this:
1200   //   movq (%rax), %rcx
1201   //   addq %rdx, %rcx
1202   // because it's preferable to schedule a load than a register copy.
1203   if (MI.mayLoad() && !regBKilled) {
1204     // Determine if a load can be unfolded.
1205     unsigned LoadRegIndex;
1206     unsigned NewOpc =
1207       TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
1208                                       /*UnfoldLoad=*/true,
1209                                       /*UnfoldStore=*/false,
1210                                       &LoadRegIndex);
1211     if (NewOpc != 0) {
1212       const MCInstrDesc &UnfoldMCID = TII->get(NewOpc);
1213       if (UnfoldMCID.getNumDefs() == 1) {
1214         // Unfold the load.
1215         LLVM_DEBUG(dbgs() << "2addr:   UNFOLDING: " << MI);
1216         const TargetRegisterClass *RC =
1217           TRI->getAllocatableClass(
1218             TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, *MF));
1219         Register Reg = MRI->createVirtualRegister(RC);
1220         SmallVector<MachineInstr *, 2> NewMIs;
1221         if (!TII->unfoldMemoryOperand(*MF, MI, Reg,
1222                                       /*UnfoldLoad=*/true,
1223                                       /*UnfoldStore=*/false, NewMIs)) {
1224           LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1225           return false;
1226         }
1227         assert(NewMIs.size() == 2 &&
1228                "Unfolded a load into multiple instructions!");
1229         // The load was previously folded, so this is the only use.
1230         NewMIs[1]->addRegisterKilled(Reg, TRI);
1231 
1232         // Tentatively insert the instructions into the block so that they
1233         // look "normal" to the transformation logic.
1234         MBB->insert(mi, NewMIs[0]);
1235         MBB->insert(mi, NewMIs[1]);
1236 
1237         LLVM_DEBUG(dbgs() << "2addr:    NEW LOAD: " << *NewMIs[0]
1238                           << "2addr:    NEW INST: " << *NewMIs[1]);
1239 
1240         // Transform the instruction, now that it no longer has a load.
1241         unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA);
1242         unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB);
1243         MachineBasicBlock::iterator NewMI = NewMIs[1];
1244         bool TransformResult =
1245           tryInstructionTransform(NewMI, mi, NewSrcIdx, NewDstIdx, Dist, true);
1246         (void)TransformResult;
1247         assert(!TransformResult &&
1248                "tryInstructionTransform() should return false.");
1249         if (NewMIs[1]->getOperand(NewSrcIdx).isKill()) {
1250           // Success, or at least we made an improvement. Keep the unfolded
1251           // instructions and discard the original.
1252           if (LV) {
1253             for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1254               MachineOperand &MO = MI.getOperand(i);
1255               if (MO.isReg() && MO.getReg().isVirtual()) {
1256                 if (MO.isUse()) {
1257                   if (MO.isKill()) {
1258                     if (NewMIs[0]->killsRegister(MO.getReg()))
1259                       LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[0]);
1260                     else {
1261                       assert(NewMIs[1]->killsRegister(MO.getReg()) &&
1262                              "Kill missing after load unfold!");
1263                       LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[1]);
1264                     }
1265                   }
1266                 } else if (LV->removeVirtualRegisterDead(MO.getReg(), MI)) {
1267                   if (NewMIs[1]->registerDefIsDead(MO.getReg()))
1268                     LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[1]);
1269                   else {
1270                     assert(NewMIs[0]->registerDefIsDead(MO.getReg()) &&
1271                            "Dead flag missing after load unfold!");
1272                     LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[0]);
1273                   }
1274                 }
1275               }
1276             }
1277             LV->addVirtualRegisterKilled(Reg, *NewMIs[1]);
1278           }
1279 
1280           SmallVector<Register, 4> OrigRegs;
1281           if (LIS) {
1282             for (const MachineOperand &MO : MI.operands()) {
1283               if (MO.isReg())
1284                 OrigRegs.push_back(MO.getReg());
1285             }
1286           }
1287 
1288           MI.eraseFromParent();
1289 
1290           // Update LiveIntervals.
1291           if (LIS) {
1292             MachineBasicBlock::iterator Begin(NewMIs[0]);
1293             MachineBasicBlock::iterator End(NewMIs[1]);
1294             LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs);
1295           }
1296 
1297           mi = NewMIs[1];
1298         } else {
1299           // Transforming didn't eliminate the tie and didn't lead to an
1300           // improvement. Clean up the unfolded instructions and keep the
1301           // original.
1302           LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1303           NewMIs[0]->eraseFromParent();
1304           NewMIs[1]->eraseFromParent();
1305         }
1306       }
1307     }
1308   }
1309 
1310   return false;
1311 }
1312 
1313 // Collect tied operands of MI that need to be handled.
1314 // Rewrite trivial cases immediately.
1315 // Return true if any tied operands where found, including the trivial ones.
1316 bool TwoAddressInstructionPass::
1317 collectTiedOperands(MachineInstr *MI, TiedOperandMap &TiedOperands) {
1318   const MCInstrDesc &MCID = MI->getDesc();
1319   bool AnyOps = false;
1320   unsigned NumOps = MI->getNumOperands();
1321 
1322   for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
1323     unsigned DstIdx = 0;
1324     if (!MI->isRegTiedToDefOperand(SrcIdx, &DstIdx))
1325       continue;
1326     AnyOps = true;
1327     MachineOperand &SrcMO = MI->getOperand(SrcIdx);
1328     MachineOperand &DstMO = MI->getOperand(DstIdx);
1329     Register SrcReg = SrcMO.getReg();
1330     Register DstReg = DstMO.getReg();
1331     // Tied constraint already satisfied?
1332     if (SrcReg == DstReg)
1333       continue;
1334 
1335     assert(SrcReg && SrcMO.isUse() && "two address instruction invalid");
1336 
1337     // Deal with undef uses immediately - simply rewrite the src operand.
1338     if (SrcMO.isUndef() && !DstMO.getSubReg()) {
1339       // Constrain the DstReg register class if required.
1340       if (DstReg.isVirtual())
1341         if (const TargetRegisterClass *RC = TII->getRegClass(MCID, SrcIdx,
1342                                                              TRI, *MF))
1343           MRI->constrainRegClass(DstReg, RC);
1344       SrcMO.setReg(DstReg);
1345       SrcMO.setSubReg(0);
1346       LLVM_DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI);
1347       continue;
1348     }
1349     TiedOperands[SrcReg].push_back(std::make_pair(SrcIdx, DstIdx));
1350   }
1351   return AnyOps;
1352 }
1353 
1354 // Process a list of tied MI operands that all use the same source register.
1355 // The tied pairs are of the form (SrcIdx, DstIdx).
1356 void
1357 TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI,
1358                                             TiedPairList &TiedPairs,
1359                                             unsigned &Dist) {
1360   bool IsEarlyClobber = false;
1361   for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
1362     const MachineOperand &DstMO = MI->getOperand(TiedPairs[tpi].second);
1363     IsEarlyClobber |= DstMO.isEarlyClobber();
1364   }
1365 
1366   bool RemovedKillFlag = false;
1367   bool AllUsesCopied = true;
1368   unsigned LastCopiedReg = 0;
1369   SlotIndex LastCopyIdx;
1370   Register RegB = 0;
1371   unsigned SubRegB = 0;
1372   for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
1373     unsigned SrcIdx = TiedPairs[tpi].first;
1374     unsigned DstIdx = TiedPairs[tpi].second;
1375 
1376     const MachineOperand &DstMO = MI->getOperand(DstIdx);
1377     Register RegA = DstMO.getReg();
1378 
1379     // Grab RegB from the instruction because it may have changed if the
1380     // instruction was commuted.
1381     RegB = MI->getOperand(SrcIdx).getReg();
1382     SubRegB = MI->getOperand(SrcIdx).getSubReg();
1383 
1384     if (RegA == RegB) {
1385       // The register is tied to multiple destinations (or else we would
1386       // not have continued this far), but this use of the register
1387       // already matches the tied destination.  Leave it.
1388       AllUsesCopied = false;
1389       continue;
1390     }
1391     LastCopiedReg = RegA;
1392 
1393     assert(RegB.isVirtual() && "cannot make instruction into two-address form");
1394 
1395 #ifndef NDEBUG
1396     // First, verify that we don't have a use of "a" in the instruction
1397     // (a = b + a for example) because our transformation will not
1398     // work. This should never occur because we are in SSA form.
1399     for (unsigned i = 0; i != MI->getNumOperands(); ++i)
1400       assert(i == DstIdx ||
1401              !MI->getOperand(i).isReg() ||
1402              MI->getOperand(i).getReg() != RegA);
1403 #endif
1404 
1405     // Emit a copy.
1406     MachineInstrBuilder MIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1407                                       TII->get(TargetOpcode::COPY), RegA);
1408     // If this operand is folding a truncation, the truncation now moves to the
1409     // copy so that the register classes remain valid for the operands.
1410     MIB.addReg(RegB, 0, SubRegB);
1411     const TargetRegisterClass *RC = MRI->getRegClass(RegB);
1412     if (SubRegB) {
1413       if (RegA.isVirtual()) {
1414         assert(TRI->getMatchingSuperRegClass(RC, MRI->getRegClass(RegA),
1415                                              SubRegB) &&
1416                "tied subregister must be a truncation");
1417         // The superreg class will not be used to constrain the subreg class.
1418         RC = nullptr;
1419       } else {
1420         assert(TRI->getMatchingSuperReg(RegA, SubRegB, MRI->getRegClass(RegB))
1421                && "tied subregister must be a truncation");
1422       }
1423     }
1424 
1425     // Update DistanceMap.
1426     MachineBasicBlock::iterator PrevMI = MI;
1427     --PrevMI;
1428     DistanceMap.insert(std::make_pair(&*PrevMI, Dist));
1429     DistanceMap[MI] = ++Dist;
1430 
1431     if (LIS) {
1432       LastCopyIdx = LIS->InsertMachineInstrInMaps(*PrevMI).getRegSlot();
1433 
1434       if (RegA.isVirtual()) {
1435         LiveInterval &LI = LIS->getInterval(RegA);
1436         VNInfo *VNI = LI.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator());
1437         SlotIndex endIdx =
1438             LIS->getInstructionIndex(*MI).getRegSlot(IsEarlyClobber);
1439         LI.addSegment(LiveInterval::Segment(LastCopyIdx, endIdx, VNI));
1440       }
1441     }
1442 
1443     LLVM_DEBUG(dbgs() << "\t\tprepend:\t" << *MIB);
1444 
1445     MachineOperand &MO = MI->getOperand(SrcIdx);
1446     assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() &&
1447            "inconsistent operand info for 2-reg pass");
1448     if (MO.isKill()) {
1449       MO.setIsKill(false);
1450       RemovedKillFlag = true;
1451     }
1452 
1453     // Make sure regA is a legal regclass for the SrcIdx operand.
1454     if (RegA.isVirtual() && RegB.isVirtual())
1455       MRI->constrainRegClass(RegA, RC);
1456     MO.setReg(RegA);
1457     // The getMatchingSuper asserts guarantee that the register class projected
1458     // by SubRegB is compatible with RegA with no subregister. So regardless of
1459     // whether the dest oper writes a subreg, the source oper should not.
1460     MO.setSubReg(0);
1461 
1462     // Propagate SrcRegMap.
1463     SrcRegMap[RegA] = RegB;
1464   }
1465 
1466   if (AllUsesCopied) {
1467     bool ReplacedAllUntiedUses = true;
1468     if (!IsEarlyClobber) {
1469       // Replace other (un-tied) uses of regB with LastCopiedReg.
1470       for (MachineOperand &MO : MI->operands()) {
1471         if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) {
1472           if (MO.getSubReg() == SubRegB) {
1473             if (MO.isKill()) {
1474               MO.setIsKill(false);
1475               RemovedKillFlag = true;
1476             }
1477             MO.setReg(LastCopiedReg);
1478             MO.setSubReg(0);
1479           } else {
1480             ReplacedAllUntiedUses = false;
1481           }
1482         }
1483       }
1484     }
1485 
1486     // Update live variables for regB.
1487     if (RemovedKillFlag && ReplacedAllUntiedUses &&
1488         LV && LV->getVarInfo(RegB).removeKill(*MI)) {
1489       MachineBasicBlock::iterator PrevMI = MI;
1490       --PrevMI;
1491       LV->addVirtualRegisterKilled(RegB, *PrevMI);
1492     }
1493 
1494     // Update LiveIntervals.
1495     if (LIS) {
1496       LiveInterval &LI = LIS->getInterval(RegB);
1497       SlotIndex MIIdx = LIS->getInstructionIndex(*MI);
1498       LiveInterval::const_iterator I = LI.find(MIIdx);
1499       assert(I != LI.end() && "RegB must be live-in to use.");
1500 
1501       SlotIndex UseIdx = MIIdx.getRegSlot(IsEarlyClobber);
1502       if (I->end == UseIdx)
1503         LI.removeSegment(LastCopyIdx, UseIdx);
1504     }
1505   } else if (RemovedKillFlag) {
1506     // Some tied uses of regB matched their destination registers, so
1507     // regB is still used in this instruction, but a kill flag was
1508     // removed from a different tied use of regB, so now we need to add
1509     // a kill flag to one of the remaining uses of regB.
1510     for (MachineOperand &MO : MI->operands()) {
1511       if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) {
1512         MO.setIsKill(true);
1513         break;
1514       }
1515     }
1516   }
1517 }
1518 
1519 /// Reduce two-address instructions to two operands.
1520 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) {
1521   MF = &Func;
1522   const TargetMachine &TM = MF->getTarget();
1523   MRI = &MF->getRegInfo();
1524   TII = MF->getSubtarget().getInstrInfo();
1525   TRI = MF->getSubtarget().getRegisterInfo();
1526   InstrItins = MF->getSubtarget().getInstrItineraryData();
1527   LV = getAnalysisIfAvailable<LiveVariables>();
1528   LIS = getAnalysisIfAvailable<LiveIntervals>();
1529   if (auto *AAPass = getAnalysisIfAvailable<AAResultsWrapperPass>())
1530     AA = &AAPass->getAAResults();
1531   else
1532     AA = nullptr;
1533   OptLevel = TM.getOptLevel();
1534   // Disable optimizations if requested. We cannot skip the whole pass as some
1535   // fixups are necessary for correctness.
1536   if (skipFunction(Func.getFunction()))
1537     OptLevel = CodeGenOpt::None;
1538 
1539   bool MadeChange = false;
1540 
1541   LLVM_DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
1542   LLVM_DEBUG(dbgs() << "********** Function: " << MF->getName() << '\n');
1543 
1544   // This pass takes the function out of SSA form.
1545   MRI->leaveSSA();
1546 
1547   // This pass will rewrite the tied-def to meet the RegConstraint.
1548   MF->getProperties()
1549       .set(MachineFunctionProperties::Property::TiedOpsRewritten);
1550 
1551   TiedOperandMap TiedOperands;
1552   for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end();
1553        MBBI != MBBE; ++MBBI) {
1554     MBB = &*MBBI;
1555     unsigned Dist = 0;
1556     DistanceMap.clear();
1557     SrcRegMap.clear();
1558     DstRegMap.clear();
1559     Processed.clear();
1560     for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end();
1561          mi != me; ) {
1562       MachineBasicBlock::iterator nmi = std::next(mi);
1563       // Skip debug instructions.
1564       if (mi->isDebugInstr()) {
1565         mi = nmi;
1566         continue;
1567       }
1568 
1569       // Expand REG_SEQUENCE instructions. This will position mi at the first
1570       // expanded instruction.
1571       if (mi->isRegSequence())
1572         eliminateRegSequence(mi);
1573 
1574       DistanceMap.insert(std::make_pair(&*mi, ++Dist));
1575 
1576       processCopy(&*mi);
1577 
1578       // First scan through all the tied register uses in this instruction
1579       // and record a list of pairs of tied operands for each register.
1580       if (!collectTiedOperands(&*mi, TiedOperands)) {
1581         mi = nmi;
1582         continue;
1583       }
1584 
1585       ++NumTwoAddressInstrs;
1586       MadeChange = true;
1587       LLVM_DEBUG(dbgs() << '\t' << *mi);
1588 
1589       // If the instruction has a single pair of tied operands, try some
1590       // transformations that may either eliminate the tied operands or
1591       // improve the opportunities for coalescing away the register copy.
1592       if (TiedOperands.size() == 1) {
1593         SmallVectorImpl<std::pair<unsigned, unsigned>> &TiedPairs
1594           = TiedOperands.begin()->second;
1595         if (TiedPairs.size() == 1) {
1596           unsigned SrcIdx = TiedPairs[0].first;
1597           unsigned DstIdx = TiedPairs[0].second;
1598           Register SrcReg = mi->getOperand(SrcIdx).getReg();
1599           Register DstReg = mi->getOperand(DstIdx).getReg();
1600           if (SrcReg != DstReg &&
1601               tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, false)) {
1602             // The tied operands have been eliminated or shifted further down
1603             // the block to ease elimination. Continue processing with 'nmi'.
1604             TiedOperands.clear();
1605             mi = nmi;
1606             continue;
1607           }
1608         }
1609       }
1610 
1611       // Now iterate over the information collected above.
1612       for (auto &TO : TiedOperands) {
1613         processTiedPairs(&*mi, TO.second, Dist);
1614         LLVM_DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
1615       }
1616 
1617       // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form.
1618       if (mi->isInsertSubreg()) {
1619         // From %reg = INSERT_SUBREG %reg, %subreg, subidx
1620         // To   %reg:subidx = COPY %subreg
1621         unsigned SubIdx = mi->getOperand(3).getImm();
1622         mi->RemoveOperand(3);
1623         assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx");
1624         mi->getOperand(0).setSubReg(SubIdx);
1625         mi->getOperand(0).setIsUndef(mi->getOperand(1).isUndef());
1626         mi->RemoveOperand(1);
1627         mi->setDesc(TII->get(TargetOpcode::COPY));
1628         LLVM_DEBUG(dbgs() << "\t\tconvert to:\t" << *mi);
1629       }
1630 
1631       // Clear TiedOperands here instead of at the top of the loop
1632       // since most instructions do not have tied operands.
1633       TiedOperands.clear();
1634       mi = nmi;
1635     }
1636   }
1637 
1638   if (LIS)
1639     MF->verify(this, "After two-address instruction pass");
1640 
1641   return MadeChange;
1642 }
1643 
1644 /// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process.
1645 ///
1646 /// The instruction is turned into a sequence of sub-register copies:
1647 ///
1648 ///   %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1
1649 ///
1650 /// Becomes:
1651 ///
1652 ///   undef %dst:ssub0 = COPY %v1
1653 ///   %dst:ssub1 = COPY %v2
1654 void TwoAddressInstructionPass::
1655 eliminateRegSequence(MachineBasicBlock::iterator &MBBI) {
1656   MachineInstr &MI = *MBBI;
1657   Register DstReg = MI.getOperand(0).getReg();
1658   if (MI.getOperand(0).getSubReg() || DstReg.isPhysical() ||
1659       !(MI.getNumOperands() & 1)) {
1660     LLVM_DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << MI);
1661     llvm_unreachable(nullptr);
1662   }
1663 
1664   SmallVector<Register, 4> OrigRegs;
1665   if (LIS) {
1666     OrigRegs.push_back(MI.getOperand(0).getReg());
1667     for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2)
1668       OrigRegs.push_back(MI.getOperand(i).getReg());
1669   }
1670 
1671   bool DefEmitted = false;
1672   for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) {
1673     MachineOperand &UseMO = MI.getOperand(i);
1674     Register SrcReg = UseMO.getReg();
1675     unsigned SubIdx = MI.getOperand(i+1).getImm();
1676     // Nothing needs to be inserted for undef operands.
1677     if (UseMO.isUndef())
1678       continue;
1679 
1680     // Defer any kill flag to the last operand using SrcReg. Otherwise, we
1681     // might insert a COPY that uses SrcReg after is was killed.
1682     bool isKill = UseMO.isKill();
1683     if (isKill)
1684       for (unsigned j = i + 2; j < e; j += 2)
1685         if (MI.getOperand(j).getReg() == SrcReg) {
1686           MI.getOperand(j).setIsKill();
1687           UseMO.setIsKill(false);
1688           isKill = false;
1689           break;
1690         }
1691 
1692     // Insert the sub-register copy.
1693     MachineInstr *CopyMI = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
1694                                    TII->get(TargetOpcode::COPY))
1695                                .addReg(DstReg, RegState::Define, SubIdx)
1696                                .add(UseMO);
1697 
1698     // The first def needs an undef flag because there is no live register
1699     // before it.
1700     if (!DefEmitted) {
1701       CopyMI->getOperand(0).setIsUndef(true);
1702       // Return an iterator pointing to the first inserted instr.
1703       MBBI = CopyMI;
1704     }
1705     DefEmitted = true;
1706 
1707     // Update LiveVariables' kill info.
1708     if (LV && isKill && !SrcReg.isPhysical())
1709       LV->replaceKillInstruction(SrcReg, MI, *CopyMI);
1710 
1711     LLVM_DEBUG(dbgs() << "Inserted: " << *CopyMI);
1712   }
1713 
1714   MachineBasicBlock::iterator EndMBBI =
1715       std::next(MachineBasicBlock::iterator(MI));
1716 
1717   if (!DefEmitted) {
1718     LLVM_DEBUG(dbgs() << "Turned: " << MI << " into an IMPLICIT_DEF");
1719     MI.setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1720     for (int j = MI.getNumOperands() - 1, ee = 0; j > ee; --j)
1721       MI.RemoveOperand(j);
1722   } else {
1723     LLVM_DEBUG(dbgs() << "Eliminated: " << MI);
1724     MI.eraseFromParent();
1725   }
1726 
1727   // Udpate LiveIntervals.
1728   if (LIS)
1729     LIS->repairIntervalsInRange(MBB, MBBI, EndMBBI, OrigRegs);
1730 }
1731