1 //===- TwoAddressInstructionPass.cpp - Two-Address instruction pass -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the TwoAddress instruction pass which is used
10 // by most register allocators. Two-Address instructions are rewritten
11 // from:
12 //
13 //     A = B op C
14 //
15 // to:
16 //
17 //     A = B
18 //     A op= C
19 //
20 // Note that if a register allocator chooses to use this pass, that it
21 // has to be capable of handling the non-SSA nature of these rewritten
22 // virtual registers.
23 //
24 // It is also worth noting that the duplicate operand of the two
25 // address instruction is removed.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/ADT/iterator_range.h"
35 #include "llvm/Analysis/AliasAnalysis.h"
36 #include "llvm/CodeGen/LiveInterval.h"
37 #include "llvm/CodeGen/LiveIntervals.h"
38 #include "llvm/CodeGen/LiveVariables.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFunction.h"
41 #include "llvm/CodeGen/MachineFunctionPass.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineOperand.h"
45 #include "llvm/CodeGen/MachineRegisterInfo.h"
46 #include "llvm/CodeGen/Passes.h"
47 #include "llvm/CodeGen/SlotIndexes.h"
48 #include "llvm/CodeGen/TargetInstrInfo.h"
49 #include "llvm/CodeGen/TargetOpcodes.h"
50 #include "llvm/CodeGen/TargetRegisterInfo.h"
51 #include "llvm/CodeGen/TargetSubtargetInfo.h"
52 #include "llvm/MC/MCInstrDesc.h"
53 #include "llvm/MC/MCInstrItineraries.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/CodeGen.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include "llvm/Target/TargetMachine.h"
61 #include <cassert>
62 #include <iterator>
63 #include <utility>
64 
65 using namespace llvm;
66 
67 #define DEBUG_TYPE "twoaddressinstruction"
68 
69 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
70 STATISTIC(NumCommuted        , "Number of instructions commuted to coalesce");
71 STATISTIC(NumAggrCommuted    , "Number of instructions aggressively commuted");
72 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
73 STATISTIC(Num3AddrSunk,        "Number of 3-address instructions sunk");
74 STATISTIC(NumReSchedUps,       "Number of instructions re-scheduled up");
75 STATISTIC(NumReSchedDowns,     "Number of instructions re-scheduled down");
76 
77 // Temporary flag to disable rescheduling.
78 static cl::opt<bool>
79 EnableRescheduling("twoaddr-reschedule",
80                    cl::desc("Coalesce copies by rescheduling (default=true)"),
81                    cl::init(true), cl::Hidden);
82 
83 // Limit the number of dataflow edges to traverse when evaluating the benefit
84 // of commuting operands.
85 static cl::opt<unsigned> MaxDataFlowEdge(
86     "dataflow-edge-limit", cl::Hidden, cl::init(3),
87     cl::desc("Maximum number of dataflow edges to traverse when evaluating "
88              "the benefit of commuting operands"));
89 
90 namespace {
91 
92 class TwoAddressInstructionPass : public MachineFunctionPass {
93   MachineFunction *MF;
94   const TargetInstrInfo *TII;
95   const TargetRegisterInfo *TRI;
96   const InstrItineraryData *InstrItins;
97   MachineRegisterInfo *MRI;
98   LiveVariables *LV;
99   LiveIntervals *LIS;
100   AliasAnalysis *AA;
101   CodeGenOpt::Level OptLevel;
102 
103   // The current basic block being processed.
104   MachineBasicBlock *MBB;
105 
106   // Keep track the distance of a MI from the start of the current basic block.
107   DenseMap<MachineInstr*, unsigned> DistanceMap;
108 
109   // Set of already processed instructions in the current block.
110   SmallPtrSet<MachineInstr*, 8> Processed;
111 
112   // Set of instructions converted to three-address by target and then sunk
113   // down current basic block.
114   SmallPtrSet<MachineInstr*, 8> SunkInstrs;
115 
116   // A map from virtual registers to physical registers which are likely targets
117   // to be coalesced to due to copies from physical registers to virtual
118   // registers. e.g. v1024 = move r0.
119   DenseMap<unsigned, unsigned> SrcRegMap;
120 
121   // A map from virtual registers to physical registers which are likely targets
122   // to be coalesced to due to copies to physical registers from virtual
123   // registers. e.g. r1 = move v1024.
124   DenseMap<unsigned, unsigned> DstRegMap;
125 
126   bool sink3AddrInstruction(MachineInstr *MI, unsigned Reg,
127                             MachineBasicBlock::iterator OldPos);
128 
129   bool isRevCopyChain(unsigned FromReg, unsigned ToReg, int Maxlen);
130 
131   bool noUseAfterLastDef(unsigned Reg, unsigned Dist, unsigned &LastDef);
132 
133   bool isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC,
134                              MachineInstr *MI, unsigned Dist);
135 
136   bool commuteInstruction(MachineInstr *MI, unsigned DstIdx,
137                           unsigned RegBIdx, unsigned RegCIdx, unsigned Dist);
138 
139   bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB);
140 
141   bool convertInstTo3Addr(MachineBasicBlock::iterator &mi,
142                           MachineBasicBlock::iterator &nmi,
143                           unsigned RegA, unsigned RegB, unsigned Dist);
144 
145   bool isDefTooClose(unsigned Reg, unsigned Dist, MachineInstr *MI);
146 
147   bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi,
148                              MachineBasicBlock::iterator &nmi,
149                              unsigned Reg);
150   bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi,
151                              MachineBasicBlock::iterator &nmi,
152                              unsigned Reg);
153 
154   bool tryInstructionTransform(MachineBasicBlock::iterator &mi,
155                                MachineBasicBlock::iterator &nmi,
156                                unsigned SrcIdx, unsigned DstIdx,
157                                unsigned Dist, bool shouldOnlyCommute);
158 
159   bool tryInstructionCommute(MachineInstr *MI,
160                              unsigned DstOpIdx,
161                              unsigned BaseOpIdx,
162                              bool BaseOpKilled,
163                              unsigned Dist);
164   void scanUses(unsigned DstReg);
165 
166   void processCopy(MachineInstr *MI);
167 
168   using TiedPairList = SmallVector<std::pair<unsigned, unsigned>, 4>;
169   using TiedOperandMap = SmallDenseMap<unsigned, TiedPairList>;
170 
171   bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&);
172   void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist);
173   void eliminateRegSequence(MachineBasicBlock::iterator&);
174 
175 public:
176   static char ID; // Pass identification, replacement for typeid
177 
178   TwoAddressInstructionPass() : MachineFunctionPass(ID) {
179     initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry());
180   }
181 
182   void getAnalysisUsage(AnalysisUsage &AU) const override {
183     AU.setPreservesCFG();
184     AU.addUsedIfAvailable<AAResultsWrapperPass>();
185     AU.addUsedIfAvailable<LiveVariables>();
186     AU.addPreserved<LiveVariables>();
187     AU.addPreserved<SlotIndexes>();
188     AU.addPreserved<LiveIntervals>();
189     AU.addPreservedID(MachineLoopInfoID);
190     AU.addPreservedID(MachineDominatorsID);
191     MachineFunctionPass::getAnalysisUsage(AU);
192   }
193 
194   /// Pass entry point.
195   bool runOnMachineFunction(MachineFunction&) override;
196 };
197 
198 } // end anonymous namespace
199 
200 char TwoAddressInstructionPass::ID = 0;
201 
202 char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID;
203 
204 INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, DEBUG_TYPE,
205                 "Two-Address instruction pass", false, false)
206 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
207 INITIALIZE_PASS_END(TwoAddressInstructionPass, DEBUG_TYPE,
208                 "Two-Address instruction pass", false, false)
209 
210 static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg, LiveIntervals *LIS);
211 
212 /// A two-address instruction has been converted to a three-address instruction
213 /// to avoid clobbering a register. Try to sink it past the instruction that
214 /// would kill the above mentioned register to reduce register pressure.
215 bool TwoAddressInstructionPass::
216 sink3AddrInstruction(MachineInstr *MI, unsigned SavedReg,
217                      MachineBasicBlock::iterator OldPos) {
218   // FIXME: Shouldn't we be trying to do this before we three-addressify the
219   // instruction?  After this transformation is done, we no longer need
220   // the instruction to be in three-address form.
221 
222   // Check if it's safe to move this instruction.
223   bool SeenStore = true; // Be conservative.
224   if (!MI->isSafeToMove(AA, SeenStore))
225     return false;
226 
227   unsigned DefReg = 0;
228   SmallSet<unsigned, 4> UseRegs;
229 
230   for (const MachineOperand &MO : MI->operands()) {
231     if (!MO.isReg())
232       continue;
233     Register MOReg = MO.getReg();
234     if (!MOReg)
235       continue;
236     if (MO.isUse() && MOReg != SavedReg)
237       UseRegs.insert(MO.getReg());
238     if (!MO.isDef())
239       continue;
240     if (MO.isImplicit())
241       // Don't try to move it if it implicitly defines a register.
242       return false;
243     if (DefReg)
244       // For now, don't move any instructions that define multiple registers.
245       return false;
246     DefReg = MO.getReg();
247   }
248 
249   // Find the instruction that kills SavedReg.
250   MachineInstr *KillMI = nullptr;
251   if (LIS) {
252     LiveInterval &LI = LIS->getInterval(SavedReg);
253     assert(LI.end() != LI.begin() &&
254            "Reg should not have empty live interval.");
255 
256     SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
257     LiveInterval::const_iterator I = LI.find(MBBEndIdx);
258     if (I != LI.end() && I->start < MBBEndIdx)
259       return false;
260 
261     --I;
262     KillMI = LIS->getInstructionFromIndex(I->end);
263   }
264   if (!KillMI) {
265     for (MachineOperand &UseMO : MRI->use_nodbg_operands(SavedReg)) {
266       if (!UseMO.isKill())
267         continue;
268       KillMI = UseMO.getParent();
269       break;
270     }
271   }
272 
273   // If we find the instruction that kills SavedReg, and it is in an
274   // appropriate location, we can try to sink the current instruction
275   // past it.
276   if (!KillMI || KillMI->getParent() != MBB || KillMI == MI ||
277       MachineBasicBlock::iterator(KillMI) == OldPos || KillMI->isTerminator())
278     return false;
279 
280   // If any of the definitions are used by another instruction between the
281   // position and the kill use, then it's not safe to sink it.
282   //
283   // FIXME: This can be sped up if there is an easy way to query whether an
284   // instruction is before or after another instruction. Then we can use
285   // MachineRegisterInfo def / use instead.
286   MachineOperand *KillMO = nullptr;
287   MachineBasicBlock::iterator KillPos = KillMI;
288   ++KillPos;
289 
290   unsigned NumVisited = 0;
291   for (MachineInstr &OtherMI : make_range(std::next(OldPos), KillPos)) {
292     // Debug instructions cannot be counted against the limit.
293     if (OtherMI.isDebugInstr())
294       continue;
295     if (NumVisited > 30)  // FIXME: Arbitrary limit to reduce compile time cost.
296       return false;
297     ++NumVisited;
298     for (unsigned i = 0, e = OtherMI.getNumOperands(); i != e; ++i) {
299       MachineOperand &MO = OtherMI.getOperand(i);
300       if (!MO.isReg())
301         continue;
302       Register MOReg = MO.getReg();
303       if (!MOReg)
304         continue;
305       if (DefReg == MOReg)
306         return false;
307 
308       if (MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS))) {
309         if (&OtherMI == KillMI && MOReg == SavedReg)
310           // Save the operand that kills the register. We want to unset the kill
311           // marker if we can sink MI past it.
312           KillMO = &MO;
313         else if (UseRegs.count(MOReg))
314           // One of the uses is killed before the destination.
315           return false;
316       }
317     }
318   }
319   assert(KillMO && "Didn't find kill");
320 
321   if (!LIS) {
322     // Update kill and LV information.
323     KillMO->setIsKill(false);
324     KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
325     KillMO->setIsKill(true);
326 
327     if (LV)
328       LV->replaceKillInstruction(SavedReg, *KillMI, *MI);
329   }
330 
331   // Move instruction to its destination.
332   MBB->remove(MI);
333   MBB->insert(KillPos, MI);
334 
335   if (LIS)
336     LIS->handleMove(*MI);
337 
338   ++Num3AddrSunk;
339   return true;
340 }
341 
342 /// Return the MachineInstr* if it is the single def of the Reg in current BB.
343 static MachineInstr *getSingleDef(unsigned Reg, MachineBasicBlock *BB,
344                                   const MachineRegisterInfo *MRI) {
345   MachineInstr *Ret = nullptr;
346   for (MachineInstr &DefMI : MRI->def_instructions(Reg)) {
347     if (DefMI.getParent() != BB || DefMI.isDebugValue())
348       continue;
349     if (!Ret)
350       Ret = &DefMI;
351     else if (Ret != &DefMI)
352       return nullptr;
353   }
354   return Ret;
355 }
356 
357 /// Check if there is a reversed copy chain from FromReg to ToReg:
358 /// %Tmp1 = copy %Tmp2;
359 /// %FromReg = copy %Tmp1;
360 /// %ToReg = add %FromReg ...
361 /// %Tmp2 = copy %ToReg;
362 /// MaxLen specifies the maximum length of the copy chain the func
363 /// can walk through.
364 bool TwoAddressInstructionPass::isRevCopyChain(unsigned FromReg, unsigned ToReg,
365                                                int Maxlen) {
366   unsigned TmpReg = FromReg;
367   for (int i = 0; i < Maxlen; i++) {
368     MachineInstr *Def = getSingleDef(TmpReg, MBB, MRI);
369     if (!Def || !Def->isCopy())
370       return false;
371 
372     TmpReg = Def->getOperand(1).getReg();
373 
374     if (TmpReg == ToReg)
375       return true;
376   }
377   return false;
378 }
379 
380 /// Return true if there are no intervening uses between the last instruction
381 /// in the MBB that defines the specified register and the two-address
382 /// instruction which is being processed. It also returns the last def location
383 /// by reference.
384 bool TwoAddressInstructionPass::noUseAfterLastDef(unsigned Reg, unsigned Dist,
385                                                   unsigned &LastDef) {
386   LastDef = 0;
387   unsigned LastUse = Dist;
388   for (MachineOperand &MO : MRI->reg_operands(Reg)) {
389     MachineInstr *MI = MO.getParent();
390     if (MI->getParent() != MBB || MI->isDebugValue())
391       continue;
392     DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
393     if (DI == DistanceMap.end())
394       continue;
395     if (MO.isUse() && DI->second < LastUse)
396       LastUse = DI->second;
397     if (MO.isDef() && DI->second > LastDef)
398       LastDef = DI->second;
399   }
400 
401   return !(LastUse > LastDef && LastUse < Dist);
402 }
403 
404 /// Return true if the specified MI is a copy instruction or an extract_subreg
405 /// instruction. It also returns the source and destination registers and
406 /// whether they are physical registers by reference.
407 static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
408                         unsigned &SrcReg, unsigned &DstReg,
409                         bool &IsSrcPhys, bool &IsDstPhys) {
410   SrcReg = 0;
411   DstReg = 0;
412   if (MI.isCopy()) {
413     DstReg = MI.getOperand(0).getReg();
414     SrcReg = MI.getOperand(1).getReg();
415   } else if (MI.isInsertSubreg() || MI.isSubregToReg()) {
416     DstReg = MI.getOperand(0).getReg();
417     SrcReg = MI.getOperand(2).getReg();
418   } else
419     return false;
420 
421   IsSrcPhys = Register::isPhysicalRegister(SrcReg);
422   IsDstPhys = Register::isPhysicalRegister(DstReg);
423   return true;
424 }
425 
426 /// Test if the given register value, which is used by the
427 /// given instruction, is killed by the given instruction.
428 static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg,
429                             LiveIntervals *LIS) {
430   if (LIS && Register::isVirtualRegister(Reg) && !LIS->isNotInMIMap(*MI)) {
431     // FIXME: Sometimes tryInstructionTransform() will add instructions and
432     // test whether they can be folded before keeping them. In this case it
433     // sets a kill before recursively calling tryInstructionTransform() again.
434     // If there is no interval available, we assume that this instruction is
435     // one of those. A kill flag is manually inserted on the operand so the
436     // check below will handle it.
437     LiveInterval &LI = LIS->getInterval(Reg);
438     // This is to match the kill flag version where undefs don't have kill
439     // flags.
440     if (!LI.hasAtLeastOneValue())
441       return false;
442 
443     SlotIndex useIdx = LIS->getInstructionIndex(*MI);
444     LiveInterval::const_iterator I = LI.find(useIdx);
445     assert(I != LI.end() && "Reg must be live-in to use.");
446     return !I->end.isBlock() && SlotIndex::isSameInstr(I->end, useIdx);
447   }
448 
449   return MI->killsRegister(Reg);
450 }
451 
452 /// Test if the given register value, which is used by the given
453 /// instruction, is killed by the given instruction. This looks through
454 /// coalescable copies to see if the original value is potentially not killed.
455 ///
456 /// For example, in this code:
457 ///
458 ///   %reg1034 = copy %reg1024
459 ///   %reg1035 = copy killed %reg1025
460 ///   %reg1036 = add killed %reg1034, killed %reg1035
461 ///
462 /// %reg1034 is not considered to be killed, since it is copied from a
463 /// register which is not killed. Treating it as not killed lets the
464 /// normal heuristics commute the (two-address) add, which lets
465 /// coalescing eliminate the extra copy.
466 ///
467 /// If allowFalsePositives is true then likely kills are treated as kills even
468 /// if it can't be proven that they are kills.
469 static bool isKilled(MachineInstr &MI, unsigned Reg,
470                      const MachineRegisterInfo *MRI,
471                      const TargetInstrInfo *TII,
472                      LiveIntervals *LIS,
473                      bool allowFalsePositives) {
474   MachineInstr *DefMI = &MI;
475   while (true) {
476     // All uses of physical registers are likely to be kills.
477     if (Register::isPhysicalRegister(Reg) &&
478         (allowFalsePositives || MRI->hasOneUse(Reg)))
479       return true;
480     if (!isPlainlyKilled(DefMI, Reg, LIS))
481       return false;
482     if (Register::isPhysicalRegister(Reg))
483       return true;
484     MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
485     // If there are multiple defs, we can't do a simple analysis, so just
486     // go with what the kill flag says.
487     if (std::next(Begin) != MRI->def_end())
488       return true;
489     DefMI = Begin->getParent();
490     bool IsSrcPhys, IsDstPhys;
491     unsigned SrcReg,  DstReg;
492     // If the def is something other than a copy, then it isn't going to
493     // be coalesced, so follow the kill flag.
494     if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
495       return true;
496     Reg = SrcReg;
497   }
498 }
499 
500 /// Return true if the specified MI uses the specified register as a two-address
501 /// use. If so, return the destination register by reference.
502 static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) {
503   for (unsigned i = 0, NumOps = MI.getNumOperands(); i != NumOps; ++i) {
504     const MachineOperand &MO = MI.getOperand(i);
505     if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
506       continue;
507     unsigned ti;
508     if (MI.isRegTiedToDefOperand(i, &ti)) {
509       DstReg = MI.getOperand(ti).getReg();
510       return true;
511     }
512   }
513   return false;
514 }
515 
516 /// Given a register, if has a single in-basic block use, return the use
517 /// instruction if it's a copy or a two-address use.
518 static
519 MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB,
520                                      MachineRegisterInfo *MRI,
521                                      const TargetInstrInfo *TII,
522                                      bool &IsCopy,
523                                      unsigned &DstReg, bool &IsDstPhys) {
524   if (!MRI->hasOneNonDBGUse(Reg))
525     // None or more than one use.
526     return nullptr;
527   MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(Reg);
528   if (UseMI.getParent() != MBB)
529     return nullptr;
530   unsigned SrcReg;
531   bool IsSrcPhys;
532   if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
533     IsCopy = true;
534     return &UseMI;
535   }
536   IsDstPhys = false;
537   if (isTwoAddrUse(UseMI, Reg, DstReg)) {
538     IsDstPhys = Register::isPhysicalRegister(DstReg);
539     return &UseMI;
540   }
541   return nullptr;
542 }
543 
544 /// Return the physical register the specified virtual register might be mapped
545 /// to.
546 static unsigned
547 getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) {
548   while (Register::isVirtualRegister(Reg)) {
549     DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg);
550     if (SI == RegMap.end())
551       return 0;
552     Reg = SI->second;
553   }
554   if (Register::isPhysicalRegister(Reg))
555     return Reg;
556   return 0;
557 }
558 
559 /// Return true if the two registers are equal or aliased.
560 static bool
561 regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) {
562   if (RegA == RegB)
563     return true;
564   if (!RegA || !RegB)
565     return false;
566   return TRI->regsOverlap(RegA, RegB);
567 }
568 
569 // Returns true if Reg is equal or aliased to at least one register in Set.
570 static bool regOverlapsSet(const SmallVectorImpl<unsigned> &Set, unsigned Reg,
571                            const TargetRegisterInfo *TRI) {
572   for (unsigned R : Set)
573     if (TRI->regsOverlap(R, Reg))
574       return true;
575 
576   return false;
577 }
578 
579 /// Return true if it's potentially profitable to commute the two-address
580 /// instruction that's being processed.
581 bool
582 TwoAddressInstructionPass::
583 isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC,
584                       MachineInstr *MI, unsigned Dist) {
585   if (OptLevel == CodeGenOpt::None)
586     return false;
587 
588   // Determine if it's profitable to commute this two address instruction. In
589   // general, we want no uses between this instruction and the definition of
590   // the two-address register.
591   // e.g.
592   // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1
593   // %reg1029 = COPY %reg1028
594   // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags
595   // insert => %reg1030 = COPY %reg1028
596   // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags
597   // In this case, it might not be possible to coalesce the second COPY
598   // instruction if the first one is coalesced. So it would be profitable to
599   // commute it:
600   // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1
601   // %reg1029 = COPY %reg1028
602   // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags
603   // insert => %reg1030 = COPY %reg1029
604   // %reg1030 = ADD8rr killed %reg1029, killed %reg1028, implicit dead %eflags
605 
606   if (!isPlainlyKilled(MI, regC, LIS))
607     return false;
608 
609   // Ok, we have something like:
610   // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags
611   // let's see if it's worth commuting it.
612 
613   // Look for situations like this:
614   // %reg1024 = MOV r1
615   // %reg1025 = MOV r0
616   // %reg1026 = ADD %reg1024, %reg1025
617   // r0            = MOV %reg1026
618   // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
619   unsigned ToRegA = getMappedReg(regA, DstRegMap);
620   if (ToRegA) {
621     unsigned FromRegB = getMappedReg(regB, SrcRegMap);
622     unsigned FromRegC = getMappedReg(regC, SrcRegMap);
623     bool CompB = FromRegB && regsAreCompatible(FromRegB, ToRegA, TRI);
624     bool CompC = FromRegC && regsAreCompatible(FromRegC, ToRegA, TRI);
625 
626     // Compute if any of the following are true:
627     // -RegB is not tied to a register and RegC is compatible with RegA.
628     // -RegB is tied to the wrong physical register, but RegC is.
629     // -RegB is tied to the wrong physical register, and RegC isn't tied.
630     if ((!FromRegB && CompC) || (FromRegB && !CompB && (!FromRegC || CompC)))
631       return true;
632     // Don't compute if any of the following are true:
633     // -RegC is not tied to a register and RegB is compatible with RegA.
634     // -RegC is tied to the wrong physical register, but RegB is.
635     // -RegC is tied to the wrong physical register, and RegB isn't tied.
636     if ((!FromRegC && CompB) || (FromRegC && !CompC && (!FromRegB || CompB)))
637       return false;
638   }
639 
640   // If there is a use of regC between its last def (could be livein) and this
641   // instruction, then bail.
642   unsigned LastDefC = 0;
643   if (!noUseAfterLastDef(regC, Dist, LastDefC))
644     return false;
645 
646   // If there is a use of regB between its last def (could be livein) and this
647   // instruction, then go ahead and make this transformation.
648   unsigned LastDefB = 0;
649   if (!noUseAfterLastDef(regB, Dist, LastDefB))
650     return true;
651 
652   // Look for situation like this:
653   // %reg101 = MOV %reg100
654   // %reg102 = ...
655   // %reg103 = ADD %reg102, %reg101
656   // ... = %reg103 ...
657   // %reg100 = MOV %reg103
658   // If there is a reversed copy chain from reg101 to reg103, commute the ADD
659   // to eliminate an otherwise unavoidable copy.
660   // FIXME:
661   // We can extend the logic further: If an pair of operands in an insn has
662   // been merged, the insn could be regarded as a virtual copy, and the virtual
663   // copy could also be used to construct a copy chain.
664   // To more generally minimize register copies, ideally the logic of two addr
665   // instruction pass should be integrated with register allocation pass where
666   // interference graph is available.
667   if (isRevCopyChain(regC, regA, MaxDataFlowEdge))
668     return true;
669 
670   if (isRevCopyChain(regB, regA, MaxDataFlowEdge))
671     return false;
672 
673   // Since there are no intervening uses for both registers, then commute
674   // if the def of regC is closer. Its live interval is shorter.
675   return LastDefB && LastDefC && LastDefC > LastDefB;
676 }
677 
678 /// Commute a two-address instruction and update the basic block, distance map,
679 /// and live variables if needed. Return true if it is successful.
680 bool TwoAddressInstructionPass::commuteInstruction(MachineInstr *MI,
681                                                    unsigned DstIdx,
682                                                    unsigned RegBIdx,
683                                                    unsigned RegCIdx,
684                                                    unsigned Dist) {
685   Register RegC = MI->getOperand(RegCIdx).getReg();
686   LLVM_DEBUG(dbgs() << "2addr: COMMUTING  : " << *MI);
687   MachineInstr *NewMI = TII->commuteInstruction(*MI, false, RegBIdx, RegCIdx);
688 
689   if (NewMI == nullptr) {
690     LLVM_DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
691     return false;
692   }
693 
694   LLVM_DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI);
695   assert(NewMI == MI &&
696          "TargetInstrInfo::commuteInstruction() should not return a new "
697          "instruction unless it was requested.");
698 
699   // Update source register map.
700   unsigned FromRegC = getMappedReg(RegC, SrcRegMap);
701   if (FromRegC) {
702     Register RegA = MI->getOperand(DstIdx).getReg();
703     SrcRegMap[RegA] = FromRegC;
704   }
705 
706   return true;
707 }
708 
709 /// Return true if it is profitable to convert the given 2-address instruction
710 /// to a 3-address one.
711 bool
712 TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA,unsigned RegB){
713   // Look for situations like this:
714   // %reg1024 = MOV r1
715   // %reg1025 = MOV r0
716   // %reg1026 = ADD %reg1024, %reg1025
717   // r2            = MOV %reg1026
718   // Turn ADD into a 3-address instruction to avoid a copy.
719   unsigned FromRegB = getMappedReg(RegB, SrcRegMap);
720   if (!FromRegB)
721     return false;
722   unsigned ToRegA = getMappedReg(RegA, DstRegMap);
723   return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI));
724 }
725 
726 /// Convert the specified two-address instruction into a three address one.
727 /// Return true if this transformation was successful.
728 bool
729 TwoAddressInstructionPass::convertInstTo3Addr(MachineBasicBlock::iterator &mi,
730                                               MachineBasicBlock::iterator &nmi,
731                                               unsigned RegA, unsigned RegB,
732                                               unsigned Dist) {
733   // FIXME: Why does convertToThreeAddress() need an iterator reference?
734   MachineFunction::iterator MFI = MBB->getIterator();
735   MachineInstr *NewMI = TII->convertToThreeAddress(MFI, *mi, LV);
736   assert(MBB->getIterator() == MFI &&
737          "convertToThreeAddress changed iterator reference");
738   if (!NewMI)
739     return false;
740 
741   LLVM_DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi);
742   LLVM_DEBUG(dbgs() << "2addr:         TO 3-ADDR: " << *NewMI);
743   bool Sunk = false;
744 
745   if (LIS)
746     LIS->ReplaceMachineInstrInMaps(*mi, *NewMI);
747 
748   if (NewMI->findRegisterUseOperand(RegB, false, TRI))
749     // FIXME: Temporary workaround. If the new instruction doesn't
750     // uses RegB, convertToThreeAddress must have created more
751     // then one instruction.
752     Sunk = sink3AddrInstruction(NewMI, RegB, mi);
753 
754   MBB->erase(mi); // Nuke the old inst.
755 
756   if (!Sunk) {
757     DistanceMap.insert(std::make_pair(NewMI, Dist));
758     mi = NewMI;
759     nmi = std::next(mi);
760   }
761   else
762     SunkInstrs.insert(NewMI);
763 
764   // Update source and destination register maps.
765   SrcRegMap.erase(RegA);
766   DstRegMap.erase(RegB);
767   return true;
768 }
769 
770 /// Scan forward recursively for only uses, update maps if the use is a copy or
771 /// a two-address instruction.
772 void
773 TwoAddressInstructionPass::scanUses(unsigned DstReg) {
774   SmallVector<unsigned, 4> VirtRegPairs;
775   bool IsDstPhys;
776   bool IsCopy = false;
777   unsigned NewReg = 0;
778   unsigned Reg = DstReg;
779   while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy,
780                                                       NewReg, IsDstPhys)) {
781     if (IsCopy && !Processed.insert(UseMI).second)
782       break;
783 
784     DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
785     if (DI != DistanceMap.end())
786       // Earlier in the same MBB.Reached via a back edge.
787       break;
788 
789     if (IsDstPhys) {
790       VirtRegPairs.push_back(NewReg);
791       break;
792     }
793     bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second;
794     if (!isNew)
795       assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!");
796     VirtRegPairs.push_back(NewReg);
797     Reg = NewReg;
798   }
799 
800   if (!VirtRegPairs.empty()) {
801     unsigned ToReg = VirtRegPairs.back();
802     VirtRegPairs.pop_back();
803     while (!VirtRegPairs.empty()) {
804       unsigned FromReg = VirtRegPairs.back();
805       VirtRegPairs.pop_back();
806       bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
807       if (!isNew)
808         assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!");
809       ToReg = FromReg;
810     }
811     bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second;
812     if (!isNew)
813       assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!");
814   }
815 }
816 
817 /// If the specified instruction is not yet processed, process it if it's a
818 /// copy. For a copy instruction, we find the physical registers the
819 /// source and destination registers might be mapped to. These are kept in
820 /// point-to maps used to determine future optimizations. e.g.
821 /// v1024 = mov r0
822 /// v1025 = mov r1
823 /// v1026 = add v1024, v1025
824 /// r1    = mov r1026
825 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially
826 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
827 /// potentially joined with r1 on the output side. It's worthwhile to commute
828 /// 'add' to eliminate a copy.
829 void TwoAddressInstructionPass::processCopy(MachineInstr *MI) {
830   if (Processed.count(MI))
831     return;
832 
833   bool IsSrcPhys, IsDstPhys;
834   unsigned SrcReg, DstReg;
835   if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
836     return;
837 
838   if (IsDstPhys && !IsSrcPhys)
839     DstRegMap.insert(std::make_pair(SrcReg, DstReg));
840   else if (!IsDstPhys && IsSrcPhys) {
841     bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
842     if (!isNew)
843       assert(SrcRegMap[DstReg] == SrcReg &&
844              "Can't map to two src physical registers!");
845 
846     scanUses(DstReg);
847   }
848 
849   Processed.insert(MI);
850 }
851 
852 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg,
853 /// consider moving the instruction below the kill instruction in order to
854 /// eliminate the need for the copy.
855 bool TwoAddressInstructionPass::
856 rescheduleMIBelowKill(MachineBasicBlock::iterator &mi,
857                       MachineBasicBlock::iterator &nmi,
858                       unsigned Reg) {
859   // Bail immediately if we don't have LV or LIS available. We use them to find
860   // kills efficiently.
861   if (!LV && !LIS)
862     return false;
863 
864   MachineInstr *MI = &*mi;
865   DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
866   if (DI == DistanceMap.end())
867     // Must be created from unfolded load. Don't waste time trying this.
868     return false;
869 
870   MachineInstr *KillMI = nullptr;
871   if (LIS) {
872     LiveInterval &LI = LIS->getInterval(Reg);
873     assert(LI.end() != LI.begin() &&
874            "Reg should not have empty live interval.");
875 
876     SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
877     LiveInterval::const_iterator I = LI.find(MBBEndIdx);
878     if (I != LI.end() && I->start < MBBEndIdx)
879       return false;
880 
881     --I;
882     KillMI = LIS->getInstructionFromIndex(I->end);
883   } else {
884     KillMI = LV->getVarInfo(Reg).findKill(MBB);
885   }
886   if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike())
887     // Don't mess with copies, they may be coalesced later.
888     return false;
889 
890   if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() ||
891       KillMI->isBranch() || KillMI->isTerminator())
892     // Don't move pass calls, etc.
893     return false;
894 
895   unsigned DstReg;
896   if (isTwoAddrUse(*KillMI, Reg, DstReg))
897     return false;
898 
899   bool SeenStore = true;
900   if (!MI->isSafeToMove(AA, SeenStore))
901     return false;
902 
903   if (TII->getInstrLatency(InstrItins, *MI) > 1)
904     // FIXME: Needs more sophisticated heuristics.
905     return false;
906 
907   SmallVector<unsigned, 2> Uses;
908   SmallVector<unsigned, 2> Kills;
909   SmallVector<unsigned, 2> Defs;
910   for (const MachineOperand &MO : MI->operands()) {
911     if (!MO.isReg())
912       continue;
913     Register MOReg = MO.getReg();
914     if (!MOReg)
915       continue;
916     if (MO.isDef())
917       Defs.push_back(MOReg);
918     else {
919       Uses.push_back(MOReg);
920       if (MOReg != Reg && (MO.isKill() ||
921                            (LIS && isPlainlyKilled(MI, MOReg, LIS))))
922         Kills.push_back(MOReg);
923     }
924   }
925 
926   // Move the copies connected to MI down as well.
927   MachineBasicBlock::iterator Begin = MI;
928   MachineBasicBlock::iterator AfterMI = std::next(Begin);
929   MachineBasicBlock::iterator End = AfterMI;
930   while (End != MBB->end()) {
931     End = skipDebugInstructionsForward(End, MBB->end());
932     if (End->isCopy() && regOverlapsSet(Defs, End->getOperand(1).getReg(), TRI))
933       Defs.push_back(End->getOperand(0).getReg());
934     else
935       break;
936     ++End;
937   }
938 
939   // Check if the reschedule will not break dependencies.
940   unsigned NumVisited = 0;
941   MachineBasicBlock::iterator KillPos = KillMI;
942   ++KillPos;
943   for (MachineInstr &OtherMI : make_range(End, KillPos)) {
944     // Debug instructions cannot be counted against the limit.
945     if (OtherMI.isDebugInstr())
946       continue;
947     if (NumVisited > 10)  // FIXME: Arbitrary limit to reduce compile time cost.
948       return false;
949     ++NumVisited;
950     if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() ||
951         OtherMI.isBranch() || OtherMI.isTerminator())
952       // Don't move pass calls, etc.
953       return false;
954     for (const MachineOperand &MO : OtherMI.operands()) {
955       if (!MO.isReg())
956         continue;
957       Register MOReg = MO.getReg();
958       if (!MOReg)
959         continue;
960       if (MO.isDef()) {
961         if (regOverlapsSet(Uses, MOReg, TRI))
962           // Physical register use would be clobbered.
963           return false;
964         if (!MO.isDead() && regOverlapsSet(Defs, MOReg, TRI))
965           // May clobber a physical register def.
966           // FIXME: This may be too conservative. It's ok if the instruction
967           // is sunken completely below the use.
968           return false;
969       } else {
970         if (regOverlapsSet(Defs, MOReg, TRI))
971           return false;
972         bool isKill =
973             MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS));
974         if (MOReg != Reg && ((isKill && regOverlapsSet(Uses, MOReg, TRI)) ||
975                              regOverlapsSet(Kills, MOReg, TRI)))
976           // Don't want to extend other live ranges and update kills.
977           return false;
978         if (MOReg == Reg && !isKill)
979           // We can't schedule across a use of the register in question.
980           return false;
981         // Ensure that if this is register in question, its the kill we expect.
982         assert((MOReg != Reg || &OtherMI == KillMI) &&
983                "Found multiple kills of a register in a basic block");
984       }
985     }
986   }
987 
988   // Move debug info as well.
989   while (Begin != MBB->begin() && std::prev(Begin)->isDebugInstr())
990     --Begin;
991 
992   nmi = End;
993   MachineBasicBlock::iterator InsertPos = KillPos;
994   if (LIS) {
995     // We have to move the copies first so that the MBB is still well-formed
996     // when calling handleMove().
997     for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) {
998       auto CopyMI = MBBI++;
999       MBB->splice(InsertPos, MBB, CopyMI);
1000       LIS->handleMove(*CopyMI);
1001       InsertPos = CopyMI;
1002     }
1003     End = std::next(MachineBasicBlock::iterator(MI));
1004   }
1005 
1006   // Copies following MI may have been moved as well.
1007   MBB->splice(InsertPos, MBB, Begin, End);
1008   DistanceMap.erase(DI);
1009 
1010   // Update live variables
1011   if (LIS) {
1012     LIS->handleMove(*MI);
1013   } else {
1014     LV->removeVirtualRegisterKilled(Reg, *KillMI);
1015     LV->addVirtualRegisterKilled(Reg, *MI);
1016   }
1017 
1018   LLVM_DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI);
1019   return true;
1020 }
1021 
1022 /// Return true if the re-scheduling will put the given instruction too close
1023 /// to the defs of its register dependencies.
1024 bool TwoAddressInstructionPass::isDefTooClose(unsigned Reg, unsigned Dist,
1025                                               MachineInstr *MI) {
1026   for (MachineInstr &DefMI : MRI->def_instructions(Reg)) {
1027     if (DefMI.getParent() != MBB || DefMI.isCopy() || DefMI.isCopyLike())
1028       continue;
1029     if (&DefMI == MI)
1030       return true; // MI is defining something KillMI uses
1031     DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(&DefMI);
1032     if (DDI == DistanceMap.end())
1033       return true;  // Below MI
1034     unsigned DefDist = DDI->second;
1035     assert(Dist > DefDist && "Visited def already?");
1036     if (TII->getInstrLatency(InstrItins, DefMI) > (Dist - DefDist))
1037       return true;
1038   }
1039   return false;
1040 }
1041 
1042 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg,
1043 /// consider moving the kill instruction above the current two-address
1044 /// instruction in order to eliminate the need for the copy.
1045 bool TwoAddressInstructionPass::
1046 rescheduleKillAboveMI(MachineBasicBlock::iterator &mi,
1047                       MachineBasicBlock::iterator &nmi,
1048                       unsigned Reg) {
1049   // Bail immediately if we don't have LV or LIS available. We use them to find
1050   // kills efficiently.
1051   if (!LV && !LIS)
1052     return false;
1053 
1054   MachineInstr *MI = &*mi;
1055   DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
1056   if (DI == DistanceMap.end())
1057     // Must be created from unfolded load. Don't waste time trying this.
1058     return false;
1059 
1060   MachineInstr *KillMI = nullptr;
1061   if (LIS) {
1062     LiveInterval &LI = LIS->getInterval(Reg);
1063     assert(LI.end() != LI.begin() &&
1064            "Reg should not have empty live interval.");
1065 
1066     SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
1067     LiveInterval::const_iterator I = LI.find(MBBEndIdx);
1068     if (I != LI.end() && I->start < MBBEndIdx)
1069       return false;
1070 
1071     --I;
1072     KillMI = LIS->getInstructionFromIndex(I->end);
1073   } else {
1074     KillMI = LV->getVarInfo(Reg).findKill(MBB);
1075   }
1076   if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike())
1077     // Don't mess with copies, they may be coalesced later.
1078     return false;
1079 
1080   unsigned DstReg;
1081   if (isTwoAddrUse(*KillMI, Reg, DstReg))
1082     return false;
1083 
1084   bool SeenStore = true;
1085   if (!KillMI->isSafeToMove(AA, SeenStore))
1086     return false;
1087 
1088   SmallSet<unsigned, 2> Uses;
1089   SmallSet<unsigned, 2> Kills;
1090   SmallSet<unsigned, 2> Defs;
1091   SmallSet<unsigned, 2> LiveDefs;
1092   for (const MachineOperand &MO : KillMI->operands()) {
1093     if (!MO.isReg())
1094       continue;
1095     Register MOReg = MO.getReg();
1096     if (MO.isUse()) {
1097       if (!MOReg)
1098         continue;
1099       if (isDefTooClose(MOReg, DI->second, MI))
1100         return false;
1101       bool isKill = MO.isKill() || (LIS && isPlainlyKilled(KillMI, MOReg, LIS));
1102       if (MOReg == Reg && !isKill)
1103         return false;
1104       Uses.insert(MOReg);
1105       if (isKill && MOReg != Reg)
1106         Kills.insert(MOReg);
1107     } else if (Register::isPhysicalRegister(MOReg)) {
1108       Defs.insert(MOReg);
1109       if (!MO.isDead())
1110         LiveDefs.insert(MOReg);
1111     }
1112   }
1113 
1114   // Check if the reschedule will not break depedencies.
1115   unsigned NumVisited = 0;
1116   for (MachineInstr &OtherMI :
1117        make_range(mi, MachineBasicBlock::iterator(KillMI))) {
1118     // Debug instructions cannot be counted against the limit.
1119     if (OtherMI.isDebugInstr())
1120       continue;
1121     if (NumVisited > 10)  // FIXME: Arbitrary limit to reduce compile time cost.
1122       return false;
1123     ++NumVisited;
1124     if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() ||
1125         OtherMI.isBranch() || OtherMI.isTerminator())
1126       // Don't move pass calls, etc.
1127       return false;
1128     SmallVector<unsigned, 2> OtherDefs;
1129     for (const MachineOperand &MO : OtherMI.operands()) {
1130       if (!MO.isReg())
1131         continue;
1132       Register MOReg = MO.getReg();
1133       if (!MOReg)
1134         continue;
1135       if (MO.isUse()) {
1136         if (Defs.count(MOReg))
1137           // Moving KillMI can clobber the physical register if the def has
1138           // not been seen.
1139           return false;
1140         if (Kills.count(MOReg))
1141           // Don't want to extend other live ranges and update kills.
1142           return false;
1143         if (&OtherMI != MI && MOReg == Reg &&
1144             !(MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS))))
1145           // We can't schedule across a use of the register in question.
1146           return false;
1147       } else {
1148         OtherDefs.push_back(MOReg);
1149       }
1150     }
1151 
1152     for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) {
1153       unsigned MOReg = OtherDefs[i];
1154       if (Uses.count(MOReg))
1155         return false;
1156       if (Register::isPhysicalRegister(MOReg) && LiveDefs.count(MOReg))
1157         return false;
1158       // Physical register def is seen.
1159       Defs.erase(MOReg);
1160     }
1161   }
1162 
1163   // Move the old kill above MI, don't forget to move debug info as well.
1164   MachineBasicBlock::iterator InsertPos = mi;
1165   while (InsertPos != MBB->begin() && std::prev(InsertPos)->isDebugInstr())
1166     --InsertPos;
1167   MachineBasicBlock::iterator From = KillMI;
1168   MachineBasicBlock::iterator To = std::next(From);
1169   while (std::prev(From)->isDebugInstr())
1170     --From;
1171   MBB->splice(InsertPos, MBB, From, To);
1172 
1173   nmi = std::prev(InsertPos); // Backtrack so we process the moved instr.
1174   DistanceMap.erase(DI);
1175 
1176   // Update live variables
1177   if (LIS) {
1178     LIS->handleMove(*KillMI);
1179   } else {
1180     LV->removeVirtualRegisterKilled(Reg, *KillMI);
1181     LV->addVirtualRegisterKilled(Reg, *MI);
1182   }
1183 
1184   LLVM_DEBUG(dbgs() << "\trescheduled kill: " << *KillMI);
1185   return true;
1186 }
1187 
1188 /// Tries to commute the operand 'BaseOpIdx' and some other operand in the
1189 /// given machine instruction to improve opportunities for coalescing and
1190 /// elimination of a register to register copy.
1191 ///
1192 /// 'DstOpIdx' specifies the index of MI def operand.
1193 /// 'BaseOpKilled' specifies if the register associated with 'BaseOpIdx'
1194 /// operand is killed by the given instruction.
1195 /// The 'Dist' arguments provides the distance of MI from the start of the
1196 /// current basic block and it is used to determine if it is profitable
1197 /// to commute operands in the instruction.
1198 ///
1199 /// Returns true if the transformation happened. Otherwise, returns false.
1200 bool TwoAddressInstructionPass::tryInstructionCommute(MachineInstr *MI,
1201                                                       unsigned DstOpIdx,
1202                                                       unsigned BaseOpIdx,
1203                                                       bool BaseOpKilled,
1204                                                       unsigned Dist) {
1205   if (!MI->isCommutable())
1206     return false;
1207 
1208   bool MadeChange = false;
1209   Register DstOpReg = MI->getOperand(DstOpIdx).getReg();
1210   Register BaseOpReg = MI->getOperand(BaseOpIdx).getReg();
1211   unsigned OpsNum = MI->getDesc().getNumOperands();
1212   unsigned OtherOpIdx = MI->getDesc().getNumDefs();
1213   for (; OtherOpIdx < OpsNum; OtherOpIdx++) {
1214     // The call of findCommutedOpIndices below only checks if BaseOpIdx
1215     // and OtherOpIdx are commutable, it does not really search for
1216     // other commutable operands and does not change the values of passed
1217     // variables.
1218     if (OtherOpIdx == BaseOpIdx || !MI->getOperand(OtherOpIdx).isReg() ||
1219         !TII->findCommutedOpIndices(*MI, BaseOpIdx, OtherOpIdx))
1220       continue;
1221 
1222     Register OtherOpReg = MI->getOperand(OtherOpIdx).getReg();
1223     bool AggressiveCommute = false;
1224 
1225     // If OtherOp dies but BaseOp does not, swap the OtherOp and BaseOp
1226     // operands. This makes the live ranges of DstOp and OtherOp joinable.
1227     bool OtherOpKilled = isKilled(*MI, OtherOpReg, MRI, TII, LIS, false);
1228     bool DoCommute = !BaseOpKilled && OtherOpKilled;
1229 
1230     if (!DoCommute &&
1231         isProfitableToCommute(DstOpReg, BaseOpReg, OtherOpReg, MI, Dist)) {
1232       DoCommute = true;
1233       AggressiveCommute = true;
1234     }
1235 
1236     // If it's profitable to commute, try to do so.
1237     if (DoCommute && commuteInstruction(MI, DstOpIdx, BaseOpIdx, OtherOpIdx,
1238                                         Dist)) {
1239       MadeChange = true;
1240       ++NumCommuted;
1241       if (AggressiveCommute) {
1242         ++NumAggrCommuted;
1243         // There might be more than two commutable operands, update BaseOp and
1244         // continue scanning.
1245         // FIXME: This assumes that the new instruction's operands are in the
1246         // same positions and were simply swapped.
1247         BaseOpReg = OtherOpReg;
1248         BaseOpKilled = OtherOpKilled;
1249         // Resamples OpsNum in case the number of operands was reduced. This
1250         // happens with X86.
1251         OpsNum = MI->getDesc().getNumOperands();
1252         continue;
1253       }
1254       // If this was a commute based on kill, we won't do better continuing.
1255       return MadeChange;
1256     }
1257   }
1258   return MadeChange;
1259 }
1260 
1261 /// For the case where an instruction has a single pair of tied register
1262 /// operands, attempt some transformations that may either eliminate the tied
1263 /// operands or improve the opportunities for coalescing away the register copy.
1264 /// Returns true if no copy needs to be inserted to untie mi's operands
1265 /// (either because they were untied, or because mi was rescheduled, and will
1266 /// be visited again later). If the shouldOnlyCommute flag is true, only
1267 /// instruction commutation is attempted.
1268 bool TwoAddressInstructionPass::
1269 tryInstructionTransform(MachineBasicBlock::iterator &mi,
1270                         MachineBasicBlock::iterator &nmi,
1271                         unsigned SrcIdx, unsigned DstIdx,
1272                         unsigned Dist, bool shouldOnlyCommute) {
1273   if (OptLevel == CodeGenOpt::None)
1274     return false;
1275 
1276   MachineInstr &MI = *mi;
1277   Register regA = MI.getOperand(DstIdx).getReg();
1278   Register regB = MI.getOperand(SrcIdx).getReg();
1279 
1280   assert(Register::isVirtualRegister(regB) &&
1281          "cannot make instruction into two-address form");
1282   bool regBKilled = isKilled(MI, regB, MRI, TII, LIS, true);
1283 
1284   if (Register::isVirtualRegister(regA))
1285     scanUses(regA);
1286 
1287   bool Commuted = tryInstructionCommute(&MI, DstIdx, SrcIdx, regBKilled, Dist);
1288 
1289   // If the instruction is convertible to 3 Addr, instead
1290   // of returning try 3 Addr transformation aggressively and
1291   // use this variable to check later. Because it might be better.
1292   // For example, we can just use `leal (%rsi,%rdi), %eax` and `ret`
1293   // instead of the following code.
1294   //   addl     %esi, %edi
1295   //   movl     %edi, %eax
1296   //   ret
1297   if (Commuted && !MI.isConvertibleTo3Addr())
1298     return false;
1299 
1300   if (shouldOnlyCommute)
1301     return false;
1302 
1303   // If there is one more use of regB later in the same MBB, consider
1304   // re-schedule this MI below it.
1305   if (!Commuted && EnableRescheduling && rescheduleMIBelowKill(mi, nmi, regB)) {
1306     ++NumReSchedDowns;
1307     return true;
1308   }
1309 
1310   // If we commuted, regB may have changed so we should re-sample it to avoid
1311   // confusing the three address conversion below.
1312   if (Commuted) {
1313     regB = MI.getOperand(SrcIdx).getReg();
1314     regBKilled = isKilled(MI, regB, MRI, TII, LIS, true);
1315   }
1316 
1317   if (MI.isConvertibleTo3Addr()) {
1318     // This instruction is potentially convertible to a true
1319     // three-address instruction.  Check if it is profitable.
1320     if (!regBKilled || isProfitableToConv3Addr(regA, regB)) {
1321       // Try to convert it.
1322       if (convertInstTo3Addr(mi, nmi, regA, regB, Dist)) {
1323         ++NumConvertedTo3Addr;
1324         return true; // Done with this instruction.
1325       }
1326     }
1327   }
1328 
1329   // Return if it is commuted but 3 addr conversion is failed.
1330   if (Commuted)
1331     return false;
1332 
1333   // If there is one more use of regB later in the same MBB, consider
1334   // re-schedule it before this MI if it's legal.
1335   if (EnableRescheduling && rescheduleKillAboveMI(mi, nmi, regB)) {
1336     ++NumReSchedUps;
1337     return true;
1338   }
1339 
1340   // If this is an instruction with a load folded into it, try unfolding
1341   // the load, e.g. avoid this:
1342   //   movq %rdx, %rcx
1343   //   addq (%rax), %rcx
1344   // in favor of this:
1345   //   movq (%rax), %rcx
1346   //   addq %rdx, %rcx
1347   // because it's preferable to schedule a load than a register copy.
1348   if (MI.mayLoad() && !regBKilled) {
1349     // Determine if a load can be unfolded.
1350     unsigned LoadRegIndex;
1351     unsigned NewOpc =
1352       TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
1353                                       /*UnfoldLoad=*/true,
1354                                       /*UnfoldStore=*/false,
1355                                       &LoadRegIndex);
1356     if (NewOpc != 0) {
1357       const MCInstrDesc &UnfoldMCID = TII->get(NewOpc);
1358       if (UnfoldMCID.getNumDefs() == 1) {
1359         // Unfold the load.
1360         LLVM_DEBUG(dbgs() << "2addr:   UNFOLDING: " << MI);
1361         const TargetRegisterClass *RC =
1362           TRI->getAllocatableClass(
1363             TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, *MF));
1364         Register Reg = MRI->createVirtualRegister(RC);
1365         SmallVector<MachineInstr *, 2> NewMIs;
1366         if (!TII->unfoldMemoryOperand(*MF, MI, Reg,
1367                                       /*UnfoldLoad=*/true,
1368                                       /*UnfoldStore=*/false, NewMIs)) {
1369           LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1370           return false;
1371         }
1372         assert(NewMIs.size() == 2 &&
1373                "Unfolded a load into multiple instructions!");
1374         // The load was previously folded, so this is the only use.
1375         NewMIs[1]->addRegisterKilled(Reg, TRI);
1376 
1377         // Tentatively insert the instructions into the block so that they
1378         // look "normal" to the transformation logic.
1379         MBB->insert(mi, NewMIs[0]);
1380         MBB->insert(mi, NewMIs[1]);
1381 
1382         LLVM_DEBUG(dbgs() << "2addr:    NEW LOAD: " << *NewMIs[0]
1383                           << "2addr:    NEW INST: " << *NewMIs[1]);
1384 
1385         // Transform the instruction, now that it no longer has a load.
1386         unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA);
1387         unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB);
1388         MachineBasicBlock::iterator NewMI = NewMIs[1];
1389         bool TransformResult =
1390           tryInstructionTransform(NewMI, mi, NewSrcIdx, NewDstIdx, Dist, true);
1391         (void)TransformResult;
1392         assert(!TransformResult &&
1393                "tryInstructionTransform() should return false.");
1394         if (NewMIs[1]->getOperand(NewSrcIdx).isKill()) {
1395           // Success, or at least we made an improvement. Keep the unfolded
1396           // instructions and discard the original.
1397           if (LV) {
1398             for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1399               MachineOperand &MO = MI.getOperand(i);
1400               if (MO.isReg() && Register::isVirtualRegister(MO.getReg())) {
1401                 if (MO.isUse()) {
1402                   if (MO.isKill()) {
1403                     if (NewMIs[0]->killsRegister(MO.getReg()))
1404                       LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[0]);
1405                     else {
1406                       assert(NewMIs[1]->killsRegister(MO.getReg()) &&
1407                              "Kill missing after load unfold!");
1408                       LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[1]);
1409                     }
1410                   }
1411                 } else if (LV->removeVirtualRegisterDead(MO.getReg(), MI)) {
1412                   if (NewMIs[1]->registerDefIsDead(MO.getReg()))
1413                     LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[1]);
1414                   else {
1415                     assert(NewMIs[0]->registerDefIsDead(MO.getReg()) &&
1416                            "Dead flag missing after load unfold!");
1417                     LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[0]);
1418                   }
1419                 }
1420               }
1421             }
1422             LV->addVirtualRegisterKilled(Reg, *NewMIs[1]);
1423           }
1424 
1425           SmallVector<unsigned, 4> OrigRegs;
1426           if (LIS) {
1427             for (const MachineOperand &MO : MI.operands()) {
1428               if (MO.isReg())
1429                 OrigRegs.push_back(MO.getReg());
1430             }
1431           }
1432 
1433           MI.eraseFromParent();
1434 
1435           // Update LiveIntervals.
1436           if (LIS) {
1437             MachineBasicBlock::iterator Begin(NewMIs[0]);
1438             MachineBasicBlock::iterator End(NewMIs[1]);
1439             LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs);
1440           }
1441 
1442           mi = NewMIs[1];
1443         } else {
1444           // Transforming didn't eliminate the tie and didn't lead to an
1445           // improvement. Clean up the unfolded instructions and keep the
1446           // original.
1447           LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1448           NewMIs[0]->eraseFromParent();
1449           NewMIs[1]->eraseFromParent();
1450         }
1451       }
1452     }
1453   }
1454 
1455   return false;
1456 }
1457 
1458 // Collect tied operands of MI that need to be handled.
1459 // Rewrite trivial cases immediately.
1460 // Return true if any tied operands where found, including the trivial ones.
1461 bool TwoAddressInstructionPass::
1462 collectTiedOperands(MachineInstr *MI, TiedOperandMap &TiedOperands) {
1463   const MCInstrDesc &MCID = MI->getDesc();
1464   bool AnyOps = false;
1465   unsigned NumOps = MI->getNumOperands();
1466 
1467   for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
1468     unsigned DstIdx = 0;
1469     if (!MI->isRegTiedToDefOperand(SrcIdx, &DstIdx))
1470       continue;
1471     AnyOps = true;
1472     MachineOperand &SrcMO = MI->getOperand(SrcIdx);
1473     MachineOperand &DstMO = MI->getOperand(DstIdx);
1474     Register SrcReg = SrcMO.getReg();
1475     Register DstReg = DstMO.getReg();
1476     // Tied constraint already satisfied?
1477     if (SrcReg == DstReg)
1478       continue;
1479 
1480     assert(SrcReg && SrcMO.isUse() && "two address instruction invalid");
1481 
1482     // Deal with undef uses immediately - simply rewrite the src operand.
1483     if (SrcMO.isUndef() && !DstMO.getSubReg()) {
1484       // Constrain the DstReg register class if required.
1485       if (Register::isVirtualRegister(DstReg))
1486         if (const TargetRegisterClass *RC = TII->getRegClass(MCID, SrcIdx,
1487                                                              TRI, *MF))
1488           MRI->constrainRegClass(DstReg, RC);
1489       SrcMO.setReg(DstReg);
1490       SrcMO.setSubReg(0);
1491       LLVM_DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI);
1492       continue;
1493     }
1494     TiedOperands[SrcReg].push_back(std::make_pair(SrcIdx, DstIdx));
1495   }
1496   return AnyOps;
1497 }
1498 
1499 // Process a list of tied MI operands that all use the same source register.
1500 // The tied pairs are of the form (SrcIdx, DstIdx).
1501 void
1502 TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI,
1503                                             TiedPairList &TiedPairs,
1504                                             unsigned &Dist) {
1505   bool IsEarlyClobber = false;
1506   for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
1507     const MachineOperand &DstMO = MI->getOperand(TiedPairs[tpi].second);
1508     IsEarlyClobber |= DstMO.isEarlyClobber();
1509   }
1510 
1511   bool RemovedKillFlag = false;
1512   bool AllUsesCopied = true;
1513   unsigned LastCopiedReg = 0;
1514   SlotIndex LastCopyIdx;
1515   unsigned RegB = 0;
1516   unsigned SubRegB = 0;
1517   for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
1518     unsigned SrcIdx = TiedPairs[tpi].first;
1519     unsigned DstIdx = TiedPairs[tpi].second;
1520 
1521     const MachineOperand &DstMO = MI->getOperand(DstIdx);
1522     Register RegA = DstMO.getReg();
1523 
1524     // Grab RegB from the instruction because it may have changed if the
1525     // instruction was commuted.
1526     RegB = MI->getOperand(SrcIdx).getReg();
1527     SubRegB = MI->getOperand(SrcIdx).getSubReg();
1528 
1529     if (RegA == RegB) {
1530       // The register is tied to multiple destinations (or else we would
1531       // not have continued this far), but this use of the register
1532       // already matches the tied destination.  Leave it.
1533       AllUsesCopied = false;
1534       continue;
1535     }
1536     LastCopiedReg = RegA;
1537 
1538     assert(Register::isVirtualRegister(RegB) &&
1539            "cannot make instruction into two-address form");
1540 
1541 #ifndef NDEBUG
1542     // First, verify that we don't have a use of "a" in the instruction
1543     // (a = b + a for example) because our transformation will not
1544     // work. This should never occur because we are in SSA form.
1545     for (unsigned i = 0; i != MI->getNumOperands(); ++i)
1546       assert(i == DstIdx ||
1547              !MI->getOperand(i).isReg() ||
1548              MI->getOperand(i).getReg() != RegA);
1549 #endif
1550 
1551     // Emit a copy.
1552     MachineInstrBuilder MIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1553                                       TII->get(TargetOpcode::COPY), RegA);
1554     // If this operand is folding a truncation, the truncation now moves to the
1555     // copy so that the register classes remain valid for the operands.
1556     MIB.addReg(RegB, 0, SubRegB);
1557     const TargetRegisterClass *RC = MRI->getRegClass(RegB);
1558     if (SubRegB) {
1559       if (Register::isVirtualRegister(RegA)) {
1560         assert(TRI->getMatchingSuperRegClass(RC, MRI->getRegClass(RegA),
1561                                              SubRegB) &&
1562                "tied subregister must be a truncation");
1563         // The superreg class will not be used to constrain the subreg class.
1564         RC = nullptr;
1565       } else {
1566         assert(TRI->getMatchingSuperReg(RegA, SubRegB, MRI->getRegClass(RegB))
1567                && "tied subregister must be a truncation");
1568       }
1569     }
1570 
1571     // Update DistanceMap.
1572     MachineBasicBlock::iterator PrevMI = MI;
1573     --PrevMI;
1574     DistanceMap.insert(std::make_pair(&*PrevMI, Dist));
1575     DistanceMap[MI] = ++Dist;
1576 
1577     if (LIS) {
1578       LastCopyIdx = LIS->InsertMachineInstrInMaps(*PrevMI).getRegSlot();
1579 
1580       if (Register::isVirtualRegister(RegA)) {
1581         LiveInterval &LI = LIS->getInterval(RegA);
1582         VNInfo *VNI = LI.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator());
1583         SlotIndex endIdx =
1584             LIS->getInstructionIndex(*MI).getRegSlot(IsEarlyClobber);
1585         LI.addSegment(LiveInterval::Segment(LastCopyIdx, endIdx, VNI));
1586       }
1587     }
1588 
1589     LLVM_DEBUG(dbgs() << "\t\tprepend:\t" << *MIB);
1590 
1591     MachineOperand &MO = MI->getOperand(SrcIdx);
1592     assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() &&
1593            "inconsistent operand info for 2-reg pass");
1594     if (MO.isKill()) {
1595       MO.setIsKill(false);
1596       RemovedKillFlag = true;
1597     }
1598 
1599     // Make sure regA is a legal regclass for the SrcIdx operand.
1600     if (Register::isVirtualRegister(RegA) && Register::isVirtualRegister(RegB))
1601       MRI->constrainRegClass(RegA, RC);
1602     MO.setReg(RegA);
1603     // The getMatchingSuper asserts guarantee that the register class projected
1604     // by SubRegB is compatible with RegA with no subregister. So regardless of
1605     // whether the dest oper writes a subreg, the source oper should not.
1606     MO.setSubReg(0);
1607 
1608     // Propagate SrcRegMap.
1609     SrcRegMap[RegA] = RegB;
1610   }
1611 
1612   if (AllUsesCopied) {
1613     bool ReplacedAllUntiedUses = true;
1614     if (!IsEarlyClobber) {
1615       // Replace other (un-tied) uses of regB with LastCopiedReg.
1616       for (MachineOperand &MO : MI->operands()) {
1617         if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) {
1618           if (MO.getSubReg() == SubRegB) {
1619             if (MO.isKill()) {
1620               MO.setIsKill(false);
1621               RemovedKillFlag = true;
1622             }
1623             MO.setReg(LastCopiedReg);
1624             MO.setSubReg(0);
1625           } else {
1626             ReplacedAllUntiedUses = false;
1627           }
1628         }
1629       }
1630     }
1631 
1632     // Update live variables for regB.
1633     if (RemovedKillFlag && ReplacedAllUntiedUses &&
1634         LV && LV->getVarInfo(RegB).removeKill(*MI)) {
1635       MachineBasicBlock::iterator PrevMI = MI;
1636       --PrevMI;
1637       LV->addVirtualRegisterKilled(RegB, *PrevMI);
1638     }
1639 
1640     // Update LiveIntervals.
1641     if (LIS) {
1642       LiveInterval &LI = LIS->getInterval(RegB);
1643       SlotIndex MIIdx = LIS->getInstructionIndex(*MI);
1644       LiveInterval::const_iterator I = LI.find(MIIdx);
1645       assert(I != LI.end() && "RegB must be live-in to use.");
1646 
1647       SlotIndex UseIdx = MIIdx.getRegSlot(IsEarlyClobber);
1648       if (I->end == UseIdx)
1649         LI.removeSegment(LastCopyIdx, UseIdx);
1650     }
1651   } else if (RemovedKillFlag) {
1652     // Some tied uses of regB matched their destination registers, so
1653     // regB is still used in this instruction, but a kill flag was
1654     // removed from a different tied use of regB, so now we need to add
1655     // a kill flag to one of the remaining uses of regB.
1656     for (MachineOperand &MO : MI->operands()) {
1657       if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) {
1658         MO.setIsKill(true);
1659         break;
1660       }
1661     }
1662   }
1663 }
1664 
1665 /// Reduce two-address instructions to two operands.
1666 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) {
1667   MF = &Func;
1668   const TargetMachine &TM = MF->getTarget();
1669   MRI = &MF->getRegInfo();
1670   TII = MF->getSubtarget().getInstrInfo();
1671   TRI = MF->getSubtarget().getRegisterInfo();
1672   InstrItins = MF->getSubtarget().getInstrItineraryData();
1673   LV = getAnalysisIfAvailable<LiveVariables>();
1674   LIS = getAnalysisIfAvailable<LiveIntervals>();
1675   if (auto *AAPass = getAnalysisIfAvailable<AAResultsWrapperPass>())
1676     AA = &AAPass->getAAResults();
1677   else
1678     AA = nullptr;
1679   OptLevel = TM.getOptLevel();
1680   // Disable optimizations if requested. We cannot skip the whole pass as some
1681   // fixups are necessary for correctness.
1682   if (skipFunction(Func.getFunction()))
1683     OptLevel = CodeGenOpt::None;
1684 
1685   bool MadeChange = false;
1686 
1687   LLVM_DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
1688   LLVM_DEBUG(dbgs() << "********** Function: " << MF->getName() << '\n');
1689 
1690   // This pass takes the function out of SSA form.
1691   MRI->leaveSSA();
1692 
1693   TiedOperandMap TiedOperands;
1694   for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end();
1695        MBBI != MBBE; ++MBBI) {
1696     MBB = &*MBBI;
1697     unsigned Dist = 0;
1698     DistanceMap.clear();
1699     SrcRegMap.clear();
1700     DstRegMap.clear();
1701     Processed.clear();
1702     SunkInstrs.clear();
1703     for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end();
1704          mi != me; ) {
1705       MachineBasicBlock::iterator nmi = std::next(mi);
1706       // Don't revisit an instruction previously converted by target. It may
1707       // contain undef register operands (%noreg), which are not handled.
1708       if (mi->isDebugInstr() || SunkInstrs.count(&*mi)) {
1709         mi = nmi;
1710         continue;
1711       }
1712 
1713       // Expand REG_SEQUENCE instructions. This will position mi at the first
1714       // expanded instruction.
1715       if (mi->isRegSequence())
1716         eliminateRegSequence(mi);
1717 
1718       DistanceMap.insert(std::make_pair(&*mi, ++Dist));
1719 
1720       processCopy(&*mi);
1721 
1722       // First scan through all the tied register uses in this instruction
1723       // and record a list of pairs of tied operands for each register.
1724       if (!collectTiedOperands(&*mi, TiedOperands)) {
1725         mi = nmi;
1726         continue;
1727       }
1728 
1729       ++NumTwoAddressInstrs;
1730       MadeChange = true;
1731       LLVM_DEBUG(dbgs() << '\t' << *mi);
1732 
1733       // If the instruction has a single pair of tied operands, try some
1734       // transformations that may either eliminate the tied operands or
1735       // improve the opportunities for coalescing away the register copy.
1736       if (TiedOperands.size() == 1) {
1737         SmallVectorImpl<std::pair<unsigned, unsigned>> &TiedPairs
1738           = TiedOperands.begin()->second;
1739         if (TiedPairs.size() == 1) {
1740           unsigned SrcIdx = TiedPairs[0].first;
1741           unsigned DstIdx = TiedPairs[0].second;
1742           Register SrcReg = mi->getOperand(SrcIdx).getReg();
1743           Register DstReg = mi->getOperand(DstIdx).getReg();
1744           if (SrcReg != DstReg &&
1745               tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, false)) {
1746             // The tied operands have been eliminated or shifted further down
1747             // the block to ease elimination. Continue processing with 'nmi'.
1748             TiedOperands.clear();
1749             mi = nmi;
1750             continue;
1751           }
1752         }
1753       }
1754 
1755       // Now iterate over the information collected above.
1756       for (auto &TO : TiedOperands) {
1757         processTiedPairs(&*mi, TO.second, Dist);
1758         LLVM_DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
1759       }
1760 
1761       // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form.
1762       if (mi->isInsertSubreg()) {
1763         // From %reg = INSERT_SUBREG %reg, %subreg, subidx
1764         // To   %reg:subidx = COPY %subreg
1765         unsigned SubIdx = mi->getOperand(3).getImm();
1766         mi->RemoveOperand(3);
1767         assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx");
1768         mi->getOperand(0).setSubReg(SubIdx);
1769         mi->getOperand(0).setIsUndef(mi->getOperand(1).isUndef());
1770         mi->RemoveOperand(1);
1771         mi->setDesc(TII->get(TargetOpcode::COPY));
1772         LLVM_DEBUG(dbgs() << "\t\tconvert to:\t" << *mi);
1773       }
1774 
1775       // Clear TiedOperands here instead of at the top of the loop
1776       // since most instructions do not have tied operands.
1777       TiedOperands.clear();
1778       mi = nmi;
1779     }
1780   }
1781 
1782   if (LIS)
1783     MF->verify(this, "After two-address instruction pass");
1784 
1785   return MadeChange;
1786 }
1787 
1788 /// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process.
1789 ///
1790 /// The instruction is turned into a sequence of sub-register copies:
1791 ///
1792 ///   %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1
1793 ///
1794 /// Becomes:
1795 ///
1796 ///   undef %dst:ssub0 = COPY %v1
1797 ///   %dst:ssub1 = COPY %v2
1798 void TwoAddressInstructionPass::
1799 eliminateRegSequence(MachineBasicBlock::iterator &MBBI) {
1800   MachineInstr &MI = *MBBI;
1801   Register DstReg = MI.getOperand(0).getReg();
1802   if (MI.getOperand(0).getSubReg() || Register::isPhysicalRegister(DstReg) ||
1803       !(MI.getNumOperands() & 1)) {
1804     LLVM_DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << MI);
1805     llvm_unreachable(nullptr);
1806   }
1807 
1808   SmallVector<unsigned, 4> OrigRegs;
1809   if (LIS) {
1810     OrigRegs.push_back(MI.getOperand(0).getReg());
1811     for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2)
1812       OrigRegs.push_back(MI.getOperand(i).getReg());
1813   }
1814 
1815   bool DefEmitted = false;
1816   for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) {
1817     MachineOperand &UseMO = MI.getOperand(i);
1818     Register SrcReg = UseMO.getReg();
1819     unsigned SubIdx = MI.getOperand(i+1).getImm();
1820     // Nothing needs to be inserted for undef operands.
1821     if (UseMO.isUndef())
1822       continue;
1823 
1824     // Defer any kill flag to the last operand using SrcReg. Otherwise, we
1825     // might insert a COPY that uses SrcReg after is was killed.
1826     bool isKill = UseMO.isKill();
1827     if (isKill)
1828       for (unsigned j = i + 2; j < e; j += 2)
1829         if (MI.getOperand(j).getReg() == SrcReg) {
1830           MI.getOperand(j).setIsKill();
1831           UseMO.setIsKill(false);
1832           isKill = false;
1833           break;
1834         }
1835 
1836     // Insert the sub-register copy.
1837     MachineInstr *CopyMI = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
1838                                    TII->get(TargetOpcode::COPY))
1839                                .addReg(DstReg, RegState::Define, SubIdx)
1840                                .add(UseMO);
1841 
1842     // The first def needs an undef flag because there is no live register
1843     // before it.
1844     if (!DefEmitted) {
1845       CopyMI->getOperand(0).setIsUndef(true);
1846       // Return an iterator pointing to the first inserted instr.
1847       MBBI = CopyMI;
1848     }
1849     DefEmitted = true;
1850 
1851     // Update LiveVariables' kill info.
1852     if (LV && isKill && !Register::isPhysicalRegister(SrcReg))
1853       LV->replaceKillInstruction(SrcReg, MI, *CopyMI);
1854 
1855     LLVM_DEBUG(dbgs() << "Inserted: " << *CopyMI);
1856   }
1857 
1858   MachineBasicBlock::iterator EndMBBI =
1859       std::next(MachineBasicBlock::iterator(MI));
1860 
1861   if (!DefEmitted) {
1862     LLVM_DEBUG(dbgs() << "Turned: " << MI << " into an IMPLICIT_DEF");
1863     MI.setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1864     for (int j = MI.getNumOperands() - 1, ee = 0; j > ee; --j)
1865       MI.RemoveOperand(j);
1866   } else {
1867     LLVM_DEBUG(dbgs() << "Eliminated: " << MI);
1868     MI.eraseFromParent();
1869   }
1870 
1871   // Udpate LiveIntervals.
1872   if (LIS)
1873     LIS->repairIntervalsInRange(MBB, MBBI, EndMBBI, OrigRegs);
1874 }
1875