1 //===----- TypePromotion.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This is an opcode based type promotion pass for small types that would
11 /// otherwise be promoted during legalisation. This works around the limitations
12 /// of selection dag for cyclic regions. The search begins from icmp
13 /// instructions operands where a tree, consisting of non-wrapping or safe
14 /// wrapping instructions, is built, checked and promoted if possible.
15 ///
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/CodeGen/Passes.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/CodeGen/TargetPassConfig.h"
24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/IRBuilder.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/InstrTypes.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/IntrinsicsARM.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/IR/Verifier.h"
39 #include "llvm/InitializePasses.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Target/TargetMachine.h"
44 
45 #define DEBUG_TYPE "type-promotion"
46 #define PASS_NAME "Type Promotion"
47 
48 using namespace llvm;
49 
50 static cl::opt<bool>
51 DisablePromotion("disable-type-promotion", cl::Hidden, cl::init(false),
52                  cl::desc("Disable type promotion pass"));
53 
54 // The goal of this pass is to enable more efficient code generation for
55 // operations on narrow types (i.e. types with < 32-bits) and this is a
56 // motivating IR code example:
57 //
58 //   define hidden i32 @cmp(i8 zeroext) {
59 //     %2 = add i8 %0, -49
60 //     %3 = icmp ult i8 %2, 3
61 //     ..
62 //   }
63 //
64 // The issue here is that i8 is type-legalized to i32 because i8 is not a
65 // legal type. Thus, arithmetic is done in integer-precision, but then the
66 // byte value is masked out as follows:
67 //
68 //   t19: i32 = add t4, Constant:i32<-49>
69 //     t24: i32 = and t19, Constant:i32<255>
70 //
71 // Consequently, we generate code like this:
72 //
73 //   subs  r0, #49
74 //   uxtb  r1, r0
75 //   cmp r1, #3
76 //
77 // This shows that masking out the byte value results in generation of
78 // the UXTB instruction. This is not optimal as r0 already contains the byte
79 // value we need, and so instead we can just generate:
80 //
81 //   sub.w r1, r0, #49
82 //   cmp r1, #3
83 //
84 // We achieve this by type promoting the IR to i32 like so for this example:
85 //
86 //   define i32 @cmp(i8 zeroext %c) {
87 //     %0 = zext i8 %c to i32
88 //     %c.off = add i32 %0, -49
89 //     %1 = icmp ult i32 %c.off, 3
90 //     ..
91 //   }
92 //
93 // For this to be valid and legal, we need to prove that the i32 add is
94 // producing the same value as the i8 addition, and that e.g. no overflow
95 // happens.
96 //
97 // A brief sketch of the algorithm and some terminology.
98 // We pattern match interesting IR patterns:
99 // - which have "sources": instructions producing narrow values (i8, i16), and
100 // - they have "sinks": instructions consuming these narrow values.
101 //
102 // We collect all instruction connecting sources and sinks in a worklist, so
103 // that we can mutate these instruction and perform type promotion when it is
104 // legal to do so.
105 
106 namespace {
107 class IRPromoter {
108   LLVMContext &Ctx;
109   IntegerType *OrigTy = nullptr;
110   unsigned PromotedWidth = 0;
111   SetVector<Value*> &Visited;
112   SetVector<Value*> &Sources;
113   SetVector<Instruction*> &Sinks;
114   SmallVectorImpl<Instruction*> &SafeWrap;
115   IntegerType *ExtTy = nullptr;
116   SmallPtrSet<Value*, 8> NewInsts;
117   SmallPtrSet<Instruction*, 4> InstsToRemove;
118   DenseMap<Value*, SmallVector<Type*, 4>> TruncTysMap;
119   SmallPtrSet<Value*, 8> Promoted;
120 
121   void ReplaceAllUsersOfWith(Value *From, Value *To);
122   void PrepareWrappingAdds(void);
123   void ExtendSources(void);
124   void ConvertTruncs(void);
125   void PromoteTree(void);
126   void TruncateSinks(void);
127   void Cleanup(void);
128 
129 public:
130   IRPromoter(LLVMContext &C, IntegerType *Ty, unsigned Width,
131              SetVector<Value*> &visited, SetVector<Value*> &sources,
132              SetVector<Instruction*> &sinks,
133              SmallVectorImpl<Instruction*> &wrap) :
134     Ctx(C), OrigTy(Ty), PromotedWidth(Width), Visited(visited),
135     Sources(sources), Sinks(sinks), SafeWrap(wrap) {
136     ExtTy = IntegerType::get(Ctx, PromotedWidth);
137     assert(OrigTy->getPrimitiveSizeInBits().getFixedSize() <
138                ExtTy->getPrimitiveSizeInBits().getFixedSize() &&
139            "Original type not smaller than extended type");
140   }
141 
142   void Mutate();
143 };
144 
145 class TypePromotion : public FunctionPass {
146   unsigned TypeSize = 0;
147   LLVMContext *Ctx = nullptr;
148   unsigned RegisterBitWidth = 0;
149   SmallPtrSet<Value*, 16> AllVisited;
150   SmallPtrSet<Instruction*, 8> SafeToPromote;
151   SmallVector<Instruction*, 4> SafeWrap;
152 
153   // Does V have the same size result type as TypeSize.
154   bool EqualTypeSize(Value *V);
155   // Does V have the same size, or narrower, result type as TypeSize.
156   bool LessOrEqualTypeSize(Value *V);
157   // Does V have a result type that is wider than TypeSize.
158   bool GreaterThanTypeSize(Value *V);
159   // Does V have a result type that is narrower than TypeSize.
160   bool LessThanTypeSize(Value *V);
161   // Should V be a leaf in the promote tree?
162   bool isSource(Value *V);
163   // Should V be a root in the promotion tree?
164   bool isSink(Value *V);
165   // Should we change the result type of V? It will result in the users of V
166   // being visited.
167   bool shouldPromote(Value *V);
168   // Is I an add or a sub, which isn't marked as nuw, but where a wrapping
169   // result won't affect the computation?
170   bool isSafeWrap(Instruction *I);
171   // Can V have its integer type promoted, or can the type be ignored.
172   bool isSupportedType(Value *V);
173   // Is V an instruction with a supported opcode or another value that we can
174   // handle, such as constants and basic blocks.
175   bool isSupportedValue(Value *V);
176   // Is V an instruction thats result can trivially promoted, or has safe
177   // wrapping.
178   bool isLegalToPromote(Value *V);
179   bool TryToPromote(Value *V, unsigned PromotedWidth);
180 
181 public:
182   static char ID;
183 
184   TypePromotion() : FunctionPass(ID) {}
185 
186   void getAnalysisUsage(AnalysisUsage &AU) const override {
187     AU.addRequired<TargetTransformInfoWrapperPass>();
188     AU.addRequired<TargetPassConfig>();
189   }
190 
191   StringRef getPassName() const override { return PASS_NAME; }
192 
193   bool runOnFunction(Function &F) override;
194 };
195 
196 }
197 
198 static bool GenerateSignBits(Value *V) {
199   if (!isa<Instruction>(V))
200     return false;
201 
202   unsigned Opc = cast<Instruction>(V)->getOpcode();
203   return Opc == Instruction::AShr || Opc == Instruction::SDiv ||
204          Opc == Instruction::SRem || Opc == Instruction::SExt;
205 }
206 
207 bool TypePromotion::EqualTypeSize(Value *V) {
208   return V->getType()->getScalarSizeInBits() == TypeSize;
209 }
210 
211 bool TypePromotion::LessOrEqualTypeSize(Value *V) {
212   return V->getType()->getScalarSizeInBits() <= TypeSize;
213 }
214 
215 bool TypePromotion::GreaterThanTypeSize(Value *V) {
216   return V->getType()->getScalarSizeInBits() > TypeSize;
217 }
218 
219 bool TypePromotion::LessThanTypeSize(Value *V) {
220   return V->getType()->getScalarSizeInBits() < TypeSize;
221 }
222 
223 /// Return true if the given value is a source in the use-def chain, producing
224 /// a narrow 'TypeSize' value. These values will be zext to start the promotion
225 /// of the tree to i32. We guarantee that these won't populate the upper bits
226 /// of the register. ZExt on the loads will be free, and the same for call
227 /// return values because we only accept ones that guarantee a zeroext ret val.
228 /// Many arguments will have the zeroext attribute too, so those would be free
229 /// too.
230 bool TypePromotion::isSource(Value *V) {
231   if (!isa<IntegerType>(V->getType()))
232     return false;
233 
234   // TODO Allow zext to be sources.
235   if (isa<Argument>(V))
236     return true;
237   else if (isa<LoadInst>(V))
238     return true;
239   else if (isa<BitCastInst>(V))
240     return true;
241   else if (auto *Call = dyn_cast<CallInst>(V))
242     return Call->hasRetAttr(Attribute::AttrKind::ZExt);
243   else if (auto *Trunc = dyn_cast<TruncInst>(V))
244     return EqualTypeSize(Trunc);
245   return false;
246 }
247 
248 /// Return true if V will require any promoted values to be truncated for the
249 /// the IR to remain valid. We can't mutate the value type of these
250 /// instructions.
251 bool TypePromotion::isSink(Value *V) {
252   // TODO The truncate also isn't actually necessary because we would already
253   // proved that the data value is kept within the range of the original data
254   // type.
255 
256   // Sinks are:
257   // - points where the value in the register is being observed, such as an
258   //   icmp, switch or store.
259   // - points where value types have to match, such as calls and returns.
260   // - zext are included to ease the transformation and are generally removed
261   //   later on.
262   if (auto *Store = dyn_cast<StoreInst>(V))
263     return LessOrEqualTypeSize(Store->getValueOperand());
264   if (auto *Return = dyn_cast<ReturnInst>(V))
265     return LessOrEqualTypeSize(Return->getReturnValue());
266   if (auto *ZExt = dyn_cast<ZExtInst>(V))
267     return GreaterThanTypeSize(ZExt);
268   if (auto *Switch = dyn_cast<SwitchInst>(V))
269     return LessThanTypeSize(Switch->getCondition());
270   if (auto *ICmp = dyn_cast<ICmpInst>(V))
271     return ICmp->isSigned() || LessThanTypeSize(ICmp->getOperand(0));
272 
273   return isa<CallInst>(V);
274 }
275 
276 /// Return whether this instruction can safely wrap.
277 bool TypePromotion::isSafeWrap(Instruction *I) {
278   // We can support a, potentially, wrapping instruction (I) if:
279   // - It is only used by an unsigned icmp.
280   // - The icmp uses a constant.
281   // - The wrapping value (I) is decreasing, i.e would underflow - wrapping
282   //   around zero to become a larger number than before.
283   // - The wrapping instruction (I) also uses a constant.
284   //
285   // We can then use the two constants to calculate whether the result would
286   // wrap in respect to itself in the original bitwidth. If it doesn't wrap,
287   // just underflows the range, the icmp would give the same result whether the
288   // result has been truncated or not. We calculate this by:
289   // - Zero extending both constants, if needed, to 32-bits.
290   // - Take the absolute value of I's constant, adding this to the icmp const.
291   // - Check that this value is not out of range for small type. If it is, it
292   //   means that it has underflowed enough to wrap around the icmp constant.
293   //
294   // For example:
295   //
296   // %sub = sub i8 %a, 2
297   // %cmp = icmp ule i8 %sub, 254
298   //
299   // If %a = 0, %sub = -2 == FE == 254
300   // But if this is evalulated as a i32
301   // %sub = -2 == FF FF FF FE == 4294967294
302   // So the unsigned compares (i8 and i32) would not yield the same result.
303   //
304   // Another way to look at it is:
305   // %a - 2 <= 254
306   // %a + 2 <= 254 + 2
307   // %a <= 256
308   // And we can't represent 256 in the i8 format, so we don't support it.
309   //
310   // Whereas:
311   //
312   // %sub i8 %a, 1
313   // %cmp = icmp ule i8 %sub, 254
314   //
315   // If %a = 0, %sub = -1 == FF == 255
316   // As i32:
317   // %sub = -1 == FF FF FF FF == 4294967295
318   //
319   // In this case, the unsigned compare results would be the same and this
320   // would also be true for ult, uge and ugt:
321   // - (255 < 254) == (0xFFFFFFFF < 254) == false
322   // - (255 <= 254) == (0xFFFFFFFF <= 254) == false
323   // - (255 > 254) == (0xFFFFFFFF > 254) == true
324   // - (255 >= 254) == (0xFFFFFFFF >= 254) == true
325   //
326   // To demonstrate why we can't handle increasing values:
327   //
328   // %add = add i8 %a, 2
329   // %cmp = icmp ult i8 %add, 127
330   //
331   // If %a = 254, %add = 256 == (i8 1)
332   // As i32:
333   // %add = 256
334   //
335   // (1 < 127) != (256 < 127)
336 
337   unsigned Opc = I->getOpcode();
338   if (Opc != Instruction::Add && Opc != Instruction::Sub)
339     return false;
340 
341   if (!I->hasOneUse() ||
342       !isa<ICmpInst>(*I->user_begin()) ||
343       !isa<ConstantInt>(I->getOperand(1)))
344     return false;
345 
346   ConstantInt *OverflowConst = cast<ConstantInt>(I->getOperand(1));
347   bool NegImm = OverflowConst->isNegative();
348   bool IsDecreasing = ((Opc == Instruction::Sub) && !NegImm) ||
349                        ((Opc == Instruction::Add) && NegImm);
350   if (!IsDecreasing)
351     return false;
352 
353   // Don't support an icmp that deals with sign bits.
354   auto *CI = cast<ICmpInst>(*I->user_begin());
355   if (CI->isSigned() || CI->isEquality())
356     return false;
357 
358   ConstantInt *ICmpConst = nullptr;
359   if (auto *Const = dyn_cast<ConstantInt>(CI->getOperand(0)))
360     ICmpConst = Const;
361   else if (auto *Const = dyn_cast<ConstantInt>(CI->getOperand(1)))
362     ICmpConst = Const;
363   else
364     return false;
365 
366   // Now check that the result can't wrap on itself.
367   APInt Total = ICmpConst->getValue().getBitWidth() < 32 ?
368     ICmpConst->getValue().zext(32) : ICmpConst->getValue();
369 
370   Total += OverflowConst->getValue().getBitWidth() < 32 ?
371     OverflowConst->getValue().abs().zext(32) : OverflowConst->getValue().abs();
372 
373   APInt Max = APInt::getAllOnesValue(TypePromotion::TypeSize);
374 
375   if (Total.getBitWidth() > Max.getBitWidth()) {
376     if (Total.ugt(Max.zext(Total.getBitWidth())))
377       return false;
378   } else if (Max.getBitWidth() > Total.getBitWidth()) {
379     if (Total.zext(Max.getBitWidth()).ugt(Max))
380       return false;
381   } else if (Total.ugt(Max))
382     return false;
383 
384   LLVM_DEBUG(dbgs() << "IR Promotion: Allowing safe overflow for "
385              << *I << "\n");
386   SafeWrap.push_back(I);
387   return true;
388 }
389 
390 bool TypePromotion::shouldPromote(Value *V) {
391   if (!isa<IntegerType>(V->getType()) || isSink(V))
392     return false;
393 
394   if (isSource(V))
395     return true;
396 
397   auto *I = dyn_cast<Instruction>(V);
398   if (!I)
399     return false;
400 
401   if (isa<ICmpInst>(I))
402     return false;
403 
404   return true;
405 }
406 
407 /// Return whether we can safely mutate V's type to ExtTy without having to be
408 /// concerned with zero extending or truncation.
409 static bool isPromotedResultSafe(Value *V) {
410   if (GenerateSignBits(V))
411     return false;
412 
413   if (!isa<Instruction>(V))
414     return true;
415 
416   if (!isa<OverflowingBinaryOperator>(V))
417     return true;
418 
419   return cast<Instruction>(V)->hasNoUnsignedWrap();
420 }
421 
422 void IRPromoter::ReplaceAllUsersOfWith(Value *From, Value *To) {
423   SmallVector<Instruction*, 4> Users;
424   Instruction *InstTo = dyn_cast<Instruction>(To);
425   bool ReplacedAll = true;
426 
427   LLVM_DEBUG(dbgs() << "IR Promotion: Replacing " << *From << " with " << *To
428              << "\n");
429 
430   for (Use &U : From->uses()) {
431     auto *User = cast<Instruction>(U.getUser());
432     if (InstTo && User->isIdenticalTo(InstTo)) {
433       ReplacedAll = false;
434       continue;
435     }
436     Users.push_back(User);
437   }
438 
439   for (auto *U : Users)
440     U->replaceUsesOfWith(From, To);
441 
442   if (ReplacedAll)
443     if (auto *I = dyn_cast<Instruction>(From))
444       InstsToRemove.insert(I);
445 }
446 
447 void IRPromoter::PrepareWrappingAdds() {
448   LLVM_DEBUG(dbgs() << "IR Promotion: Prepare wrapping adds.\n");
449   IRBuilder<> Builder{Ctx};
450 
451   // For adds that safely wrap and use a negative immediate as operand 1, we
452   // create an equivalent instruction using a positive immediate.
453   // That positive immediate can then be zext along with all the other
454   // immediates later.
455   for (auto *I : SafeWrap) {
456     if (I->getOpcode() != Instruction::Add)
457       continue;
458 
459     LLVM_DEBUG(dbgs() << "IR Promotion: Adjusting " << *I << "\n");
460     assert((isa<ConstantInt>(I->getOperand(1)) &&
461             cast<ConstantInt>(I->getOperand(1))->isNegative()) &&
462            "Wrapping should have a negative immediate as the second operand");
463 
464     auto Const = cast<ConstantInt>(I->getOperand(1));
465     auto *NewConst = ConstantInt::get(Ctx, Const->getValue().abs());
466     Builder.SetInsertPoint(I);
467     Value *NewVal = Builder.CreateSub(I->getOperand(0), NewConst);
468     if (auto *NewInst = dyn_cast<Instruction>(NewVal)) {
469       NewInst->copyIRFlags(I);
470       NewInsts.insert(NewInst);
471     }
472     InstsToRemove.insert(I);
473     I->replaceAllUsesWith(NewVal);
474     LLVM_DEBUG(dbgs() << "IR Promotion: New equivalent: " << *NewVal << "\n");
475   }
476   for (auto *I : NewInsts)
477     Visited.insert(I);
478 }
479 
480 void IRPromoter::ExtendSources() {
481   IRBuilder<> Builder{Ctx};
482 
483   auto InsertZExt = [&](Value *V, Instruction *InsertPt) {
484     assert(V->getType() != ExtTy && "zext already extends to i32");
485     LLVM_DEBUG(dbgs() << "IR Promotion: Inserting ZExt for " << *V << "\n");
486     Builder.SetInsertPoint(InsertPt);
487     if (auto *I = dyn_cast<Instruction>(V))
488       Builder.SetCurrentDebugLocation(I->getDebugLoc());
489 
490     Value *ZExt = Builder.CreateZExt(V, ExtTy);
491     if (auto *I = dyn_cast<Instruction>(ZExt)) {
492       if (isa<Argument>(V))
493         I->moveBefore(InsertPt);
494       else
495         I->moveAfter(InsertPt);
496       NewInsts.insert(I);
497     }
498 
499     ReplaceAllUsersOfWith(V, ZExt);
500   };
501 
502   // Now, insert extending instructions between the sources and their users.
503   LLVM_DEBUG(dbgs() << "IR Promotion: Promoting sources:\n");
504   for (auto V : Sources) {
505     LLVM_DEBUG(dbgs() << " - " << *V << "\n");
506     if (auto *I = dyn_cast<Instruction>(V))
507       InsertZExt(I, I);
508     else if (auto *Arg = dyn_cast<Argument>(V)) {
509       BasicBlock &BB = Arg->getParent()->front();
510       InsertZExt(Arg, &*BB.getFirstInsertionPt());
511     } else {
512       llvm_unreachable("unhandled source that needs extending");
513     }
514     Promoted.insert(V);
515   }
516 }
517 
518 void IRPromoter::PromoteTree() {
519   LLVM_DEBUG(dbgs() << "IR Promotion: Mutating the tree..\n");
520 
521   IRBuilder<> Builder{Ctx};
522 
523   // Mutate the types of the instructions within the tree. Here we handle
524   // constant operands.
525   for (auto *V : Visited) {
526     if (Sources.count(V))
527       continue;
528 
529     auto *I = cast<Instruction>(V);
530     if (Sinks.count(I))
531       continue;
532 
533     for (unsigned i = 0, e = I->getNumOperands(); i < e; ++i) {
534       Value *Op = I->getOperand(i);
535       if ((Op->getType() == ExtTy) || !isa<IntegerType>(Op->getType()))
536         continue;
537 
538       if (auto *Const = dyn_cast<ConstantInt>(Op)) {
539         Constant *NewConst = ConstantExpr::getZExt(Const, ExtTy);
540         I->setOperand(i, NewConst);
541       } else if (isa<UndefValue>(Op))
542         I->setOperand(i, UndefValue::get(ExtTy));
543     }
544 
545     // Mutate the result type, unless this is an icmp.
546     if (!isa<ICmpInst>(I)) {
547       I->mutateType(ExtTy);
548       Promoted.insert(I);
549     }
550   }
551 }
552 
553 void IRPromoter::TruncateSinks() {
554   LLVM_DEBUG(dbgs() << "IR Promotion: Fixing up the sinks:\n");
555 
556   IRBuilder<> Builder{Ctx};
557 
558   auto InsertTrunc = [&](Value *V, Type *TruncTy) -> Instruction* {
559     if (!isa<Instruction>(V) || !isa<IntegerType>(V->getType()))
560       return nullptr;
561 
562     if ((!Promoted.count(V) && !NewInsts.count(V)) || Sources.count(V))
563       return nullptr;
564 
565     LLVM_DEBUG(dbgs() << "IR Promotion: Creating " << *TruncTy << " Trunc for "
566                << *V << "\n");
567     Builder.SetInsertPoint(cast<Instruction>(V));
568     auto *Trunc = dyn_cast<Instruction>(Builder.CreateTrunc(V, TruncTy));
569     if (Trunc)
570       NewInsts.insert(Trunc);
571     return Trunc;
572   };
573 
574   // Fix up any stores or returns that use the results of the promoted
575   // chain.
576   for (auto I : Sinks) {
577     LLVM_DEBUG(dbgs() << "IR Promotion: For Sink: " << *I << "\n");
578 
579     // Handle calls separately as we need to iterate over arg operands.
580     if (auto *Call = dyn_cast<CallInst>(I)) {
581       for (unsigned i = 0; i < Call->getNumArgOperands(); ++i) {
582         Value *Arg = Call->getArgOperand(i);
583         Type *Ty = TruncTysMap[Call][i];
584         if (Instruction *Trunc = InsertTrunc(Arg, Ty)) {
585           Trunc->moveBefore(Call);
586           Call->setArgOperand(i, Trunc);
587         }
588       }
589       continue;
590     }
591 
592     // Special case switches because we need to truncate the condition.
593     if (auto *Switch = dyn_cast<SwitchInst>(I)) {
594       Type *Ty = TruncTysMap[Switch][0];
595       if (Instruction *Trunc = InsertTrunc(Switch->getCondition(), Ty)) {
596         Trunc->moveBefore(Switch);
597         Switch->setCondition(Trunc);
598       }
599       continue;
600     }
601 
602     // Now handle the others.
603     for (unsigned i = 0; i < I->getNumOperands(); ++i) {
604       Type *Ty = TruncTysMap[I][i];
605       if (Instruction *Trunc = InsertTrunc(I->getOperand(i), Ty)) {
606         Trunc->moveBefore(I);
607         I->setOperand(i, Trunc);
608       }
609     }
610   }
611 }
612 
613 void IRPromoter::Cleanup() {
614   LLVM_DEBUG(dbgs() << "IR Promotion: Cleanup..\n");
615   // Some zexts will now have become redundant, along with their trunc
616   // operands, so remove them
617   for (auto V : Visited) {
618     if (!isa<ZExtInst>(V))
619       continue;
620 
621     auto ZExt = cast<ZExtInst>(V);
622     if (ZExt->getDestTy() != ExtTy)
623       continue;
624 
625     Value *Src = ZExt->getOperand(0);
626     if (ZExt->getSrcTy() == ZExt->getDestTy()) {
627       LLVM_DEBUG(dbgs() << "IR Promotion: Removing unnecessary cast: " << *ZExt
628                  << "\n");
629       ReplaceAllUsersOfWith(ZExt, Src);
630       continue;
631     }
632 
633     // Unless they produce a value that is narrower than ExtTy, we can
634     // replace the result of the zext with the input of a newly inserted
635     // trunc.
636     if (NewInsts.count(Src) && isa<TruncInst>(Src) &&
637         Src->getType() == OrigTy) {
638       auto *Trunc = cast<TruncInst>(Src);
639       assert(Trunc->getOperand(0)->getType() == ExtTy &&
640              "expected inserted trunc to be operating on i32");
641       ReplaceAllUsersOfWith(ZExt, Trunc->getOperand(0));
642     }
643   }
644 
645   for (auto *I : InstsToRemove) {
646     LLVM_DEBUG(dbgs() << "IR Promotion: Removing " << *I << "\n");
647     I->dropAllReferences();
648     I->eraseFromParent();
649   }
650 }
651 
652 void IRPromoter::ConvertTruncs() {
653   LLVM_DEBUG(dbgs() << "IR Promotion: Converting truncs..\n");
654   IRBuilder<> Builder{Ctx};
655 
656   for (auto *V : Visited) {
657     if (!isa<TruncInst>(V) || Sources.count(V))
658       continue;
659 
660     auto *Trunc = cast<TruncInst>(V);
661     Builder.SetInsertPoint(Trunc);
662     IntegerType *SrcTy = cast<IntegerType>(Trunc->getOperand(0)->getType());
663     IntegerType *DestTy = cast<IntegerType>(TruncTysMap[Trunc][0]);
664 
665     unsigned NumBits = DestTy->getScalarSizeInBits();
666     ConstantInt *Mask =
667       ConstantInt::get(SrcTy, APInt::getMaxValue(NumBits).getZExtValue());
668     Value *Masked = Builder.CreateAnd(Trunc->getOperand(0), Mask);
669 
670     if (auto *I = dyn_cast<Instruction>(Masked))
671       NewInsts.insert(I);
672 
673     ReplaceAllUsersOfWith(Trunc, Masked);
674   }
675 }
676 
677 void IRPromoter::Mutate() {
678   LLVM_DEBUG(dbgs() << "IR Promotion: Promoting use-def chains from "
679              << OrigTy->getBitWidth() << " to " << PromotedWidth << "-bits\n");
680 
681   // Cache original types of the values that will likely need truncating
682   for (auto *I : Sinks) {
683     if (auto *Call = dyn_cast<CallInst>(I)) {
684       for (unsigned i = 0; i < Call->getNumArgOperands(); ++i) {
685         Value *Arg = Call->getArgOperand(i);
686         TruncTysMap[Call].push_back(Arg->getType());
687       }
688     } else if (auto *Switch = dyn_cast<SwitchInst>(I))
689       TruncTysMap[I].push_back(Switch->getCondition()->getType());
690     else {
691       for (unsigned i = 0; i < I->getNumOperands(); ++i)
692         TruncTysMap[I].push_back(I->getOperand(i)->getType());
693     }
694   }
695   for (auto *V : Visited) {
696     if (!isa<TruncInst>(V) || Sources.count(V))
697       continue;
698     auto *Trunc = cast<TruncInst>(V);
699     TruncTysMap[Trunc].push_back(Trunc->getDestTy());
700   }
701 
702   // Convert adds using negative immediates to equivalent instructions that use
703   // positive constants.
704   PrepareWrappingAdds();
705 
706   // Insert zext instructions between sources and their users.
707   ExtendSources();
708 
709   // Promote visited instructions, mutating their types in place.
710   PromoteTree();
711 
712   // Convert any truncs, that aren't sources, into AND masks.
713   ConvertTruncs();
714 
715   // Insert trunc instructions for use by calls, stores etc...
716   TruncateSinks();
717 
718   // Finally, remove unecessary zexts and truncs, delete old instructions and
719   // clear the data structures.
720   Cleanup();
721 
722   LLVM_DEBUG(dbgs() << "IR Promotion: Mutation complete\n");
723 }
724 
725 /// We disallow booleans to make life easier when dealing with icmps but allow
726 /// any other integer that fits in a scalar register. Void types are accepted
727 /// so we can handle switches.
728 bool TypePromotion::isSupportedType(Value *V) {
729   Type *Ty = V->getType();
730 
731   // Allow voids and pointers, these won't be promoted.
732   if (Ty->isVoidTy() || Ty->isPointerTy())
733     return true;
734 
735   if (!isa<IntegerType>(Ty) ||
736       cast<IntegerType>(Ty)->getBitWidth() == 1 ||
737       cast<IntegerType>(Ty)->getBitWidth() > RegisterBitWidth)
738     return false;
739 
740   return LessOrEqualTypeSize(V);
741 }
742 
743 /// We accept most instructions, as well as Arguments and ConstantInsts. We
744 /// Disallow casts other than zext and truncs and only allow calls if their
745 /// return value is zeroext. We don't allow opcodes that can introduce sign
746 /// bits.
747 bool TypePromotion::isSupportedValue(Value *V) {
748   if (auto *I = dyn_cast<Instruction>(V)) {
749     switch (I->getOpcode()) {
750     default:
751       return isa<BinaryOperator>(I) && isSupportedType(I) &&
752              !GenerateSignBits(I);
753     case Instruction::GetElementPtr:
754     case Instruction::Store:
755     case Instruction::Br:
756     case Instruction::Switch:
757       return true;
758     case Instruction::PHI:
759     case Instruction::Select:
760     case Instruction::Ret:
761     case Instruction::Load:
762     case Instruction::Trunc:
763     case Instruction::BitCast:
764       return isSupportedType(I);
765     case Instruction::ZExt:
766       return isSupportedType(I->getOperand(0));
767     case Instruction::ICmp:
768       // Now that we allow small types than TypeSize, only allow icmp of
769       // TypeSize because they will require a trunc to be legalised.
770       // TODO: Allow icmp of smaller types, and calculate at the end
771       // whether the transform would be beneficial.
772       if (isa<PointerType>(I->getOperand(0)->getType()))
773         return true;
774       return EqualTypeSize(I->getOperand(0));
775     case Instruction::Call: {
776       // Special cases for calls as we need to check for zeroext
777       // TODO We should accept calls even if they don't have zeroext, as they
778       // can still be sinks.
779       auto *Call = cast<CallInst>(I);
780       return isSupportedType(Call) &&
781              Call->hasRetAttr(Attribute::AttrKind::ZExt);
782     }
783     }
784   } else if (isa<Constant>(V) && !isa<ConstantExpr>(V)) {
785     return isSupportedType(V);
786   } else if (isa<Argument>(V))
787     return isSupportedType(V);
788 
789   return isa<BasicBlock>(V);
790 }
791 
792 /// Check that the type of V would be promoted and that the original type is
793 /// smaller than the targeted promoted type. Check that we're not trying to
794 /// promote something larger than our base 'TypeSize' type.
795 bool TypePromotion::isLegalToPromote(Value *V) {
796 
797   auto *I = dyn_cast<Instruction>(V);
798   if (!I)
799     return true;
800 
801   if (SafeToPromote.count(I))
802    return true;
803 
804   if (isPromotedResultSafe(V) || isSafeWrap(I)) {
805     SafeToPromote.insert(I);
806     return true;
807   }
808   return false;
809 }
810 
811 bool TypePromotion::TryToPromote(Value *V, unsigned PromotedWidth) {
812   Type *OrigTy = V->getType();
813   TypeSize = OrigTy->getPrimitiveSizeInBits().getFixedSize();
814   SafeToPromote.clear();
815   SafeWrap.clear();
816 
817   if (!isSupportedValue(V) || !shouldPromote(V) || !isLegalToPromote(V))
818     return false;
819 
820   LLVM_DEBUG(dbgs() << "IR Promotion: TryToPromote: " << *V << ", from "
821              << TypeSize << " bits to " << PromotedWidth << "\n");
822 
823   SetVector<Value*> WorkList;
824   SetVector<Value*> Sources;
825   SetVector<Instruction*> Sinks;
826   SetVector<Value*> CurrentVisited;
827   WorkList.insert(V);
828 
829   // Return true if V was added to the worklist as a supported instruction,
830   // if it was already visited, or if we don't need to explore it (e.g.
831   // pointer values and GEPs), and false otherwise.
832   auto AddLegalInst = [&](Value *V) {
833     if (CurrentVisited.count(V))
834       return true;
835 
836     // Ignore GEPs because they don't need promoting and the constant indices
837     // will prevent the transformation.
838     if (isa<GetElementPtrInst>(V))
839       return true;
840 
841     if (!isSupportedValue(V) || (shouldPromote(V) && !isLegalToPromote(V))) {
842       LLVM_DEBUG(dbgs() << "IR Promotion: Can't handle: " << *V << "\n");
843       return false;
844     }
845 
846     WorkList.insert(V);
847     return true;
848   };
849 
850   // Iterate through, and add to, a tree of operands and users in the use-def.
851   while (!WorkList.empty()) {
852     Value *V = WorkList.pop_back_val();
853     if (CurrentVisited.count(V))
854       continue;
855 
856     // Ignore non-instructions, other than arguments.
857     if (!isa<Instruction>(V) && !isSource(V))
858       continue;
859 
860     // If we've already visited this value from somewhere, bail now because
861     // the tree has already been explored.
862     // TODO: This could limit the transform, ie if we try to promote something
863     // from an i8 and fail first, before trying an i16.
864     if (AllVisited.count(V))
865       return false;
866 
867     CurrentVisited.insert(V);
868     AllVisited.insert(V);
869 
870     // Calls can be both sources and sinks.
871     if (isSink(V))
872       Sinks.insert(cast<Instruction>(V));
873 
874     if (isSource(V))
875       Sources.insert(V);
876 
877     if (!isSink(V) && !isSource(V)) {
878       if (auto *I = dyn_cast<Instruction>(V)) {
879         // Visit operands of any instruction visited.
880         for (auto &U : I->operands()) {
881           if (!AddLegalInst(U))
882             return false;
883         }
884       }
885     }
886 
887     // Don't visit users of a node which isn't going to be mutated unless its a
888     // source.
889     if (isSource(V) || shouldPromote(V)) {
890       for (Use &U : V->uses()) {
891         if (!AddLegalInst(U.getUser()))
892           return false;
893       }
894     }
895   }
896 
897   LLVM_DEBUG(dbgs() << "IR Promotion: Visited nodes:\n";
898              for (auto *I : CurrentVisited)
899                I->dump();
900              );
901 
902   unsigned ToPromote = 0;
903   unsigned NonFreeArgs = 0;
904   SmallPtrSet<BasicBlock*, 4> Blocks;
905   for (auto *V : CurrentVisited) {
906     if (auto *I = dyn_cast<Instruction>(V))
907       Blocks.insert(I->getParent());
908 
909     if (Sources.count(V)) {
910       if (auto *Arg = dyn_cast<Argument>(V))
911         if (!Arg->hasZExtAttr() && !Arg->hasSExtAttr())
912           ++NonFreeArgs;
913       continue;
914     }
915 
916     if (Sinks.count(cast<Instruction>(V)))
917       continue;
918      ++ToPromote;
919    }
920 
921   // DAG optimizations should be able to handle these cases better, especially
922   // for function arguments.
923   if (ToPromote < 2 || (Blocks.size() == 1 && (NonFreeArgs > SafeWrap.size())))
924     return false;
925 
926   if (ToPromote < 2)
927     return false;
928 
929   IRPromoter Promoter(*Ctx, cast<IntegerType>(OrigTy), PromotedWidth,
930                       CurrentVisited, Sources, Sinks, SafeWrap);
931   Promoter.Mutate();
932   return true;
933 }
934 
935 bool TypePromotion::runOnFunction(Function &F) {
936   if (skipFunction(F) || DisablePromotion)
937     return false;
938 
939   LLVM_DEBUG(dbgs() << "IR Promotion: Running on " << F.getName() << "\n");
940 
941   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
942   if (!TPC)
943     return false;
944 
945   AllVisited.clear();
946   SafeToPromote.clear();
947   SafeWrap.clear();
948   bool MadeChange = false;
949   const DataLayout &DL = F.getParent()->getDataLayout();
950   const TargetMachine &TM = TPC->getTM<TargetMachine>();
951   const TargetSubtargetInfo *SubtargetInfo = TM.getSubtargetImpl(F);
952   const TargetLowering *TLI = SubtargetInfo->getTargetLowering();
953   const TargetTransformInfo &TII =
954     getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
955   RegisterBitWidth = TII.getRegisterBitWidth(false);
956   Ctx = &F.getParent()->getContext();
957 
958   // Search up from icmps to try to promote their operands.
959   for (BasicBlock &BB : F) {
960     for (auto &I : BB) {
961       if (AllVisited.count(&I))
962         continue;
963 
964       if (!isa<ICmpInst>(&I))
965         continue;
966 
967       auto *ICmp = cast<ICmpInst>(&I);
968       // Skip signed or pointer compares
969       if (ICmp->isSigned() ||
970           !isa<IntegerType>(ICmp->getOperand(0)->getType()))
971         continue;
972 
973       LLVM_DEBUG(dbgs() << "IR Promotion: Searching from: " << *ICmp << "\n");
974 
975       for (auto &Op : ICmp->operands()) {
976         if (auto *I = dyn_cast<Instruction>(Op)) {
977           EVT SrcVT = TLI->getValueType(DL, I->getType());
978           if (SrcVT.isSimple() && TLI->isTypeLegal(SrcVT.getSimpleVT()))
979             break;
980 
981           if (TLI->getTypeAction(ICmp->getContext(), SrcVT) !=
982               TargetLowering::TypePromoteInteger)
983             break;
984           EVT PromotedVT = TLI->getTypeToTransformTo(ICmp->getContext(), SrcVT);
985           if (RegisterBitWidth < PromotedVT.getFixedSizeInBits()) {
986             LLVM_DEBUG(dbgs() << "IR Promotion: Couldn't find target register "
987                        << "for promoted type\n");
988             break;
989           }
990 
991           MadeChange |= TryToPromote(I, PromotedVT.getFixedSizeInBits());
992           break;
993         }
994       }
995     }
996     LLVM_DEBUG(if (verifyFunction(F, &dbgs())) {
997                 dbgs() << F;
998                 report_fatal_error("Broken function after type promotion");
999                });
1000   }
1001   if (MadeChange)
1002     LLVM_DEBUG(dbgs() << "After TypePromotion: " << F << "\n");
1003 
1004   AllVisited.clear();
1005   SafeToPromote.clear();
1006   SafeWrap.clear();
1007 
1008   return MadeChange;
1009 }
1010 
1011 INITIALIZE_PASS_BEGIN(TypePromotion, DEBUG_TYPE, PASS_NAME, false, false)
1012 INITIALIZE_PASS_END(TypePromotion, DEBUG_TYPE, PASS_NAME, false, false)
1013 
1014 char TypePromotion::ID = 0;
1015 
1016 FunctionPass *llvm::createTypePromotionPass() {
1017   return new TypePromotion();
1018 }
1019