1 //===-- WinEHPrepare - Prepare exception handling for code generation ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass lowers LLVM IR exception handling into something closer to what the
10 // backend wants for functions using a personality function from a runtime
11 // provided by MSVC. Functions with other personality functions are left alone
12 // and may be prepared by other passes. In particular, all supported MSVC
13 // personality functions require cleanup code to be outlined, and the C++
14 // personality requires catch handler code to be outlined.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/CodeGen/MachineBasicBlock.h"
22 #include "llvm/CodeGen/Passes.h"
23 #include "llvm/CodeGen/WinEHFuncInfo.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/EHPersonalities.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/Verifier.h"
28 #include "llvm/InitializePasses.h"
29 #include "llvm/Pass.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/TargetParser/Triple.h"
34 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
35 #include "llvm/Transforms/Utils/Cloning.h"
36 #include "llvm/Transforms/Utils/Local.h"
37 #include "llvm/Transforms/Utils/SSAUpdater.h"
38 
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "winehprepare"
42 
43 static cl::opt<bool> DisableDemotion(
44     "disable-demotion", cl::Hidden,
45     cl::desc(
46         "Clone multicolor basic blocks but do not demote cross scopes"),
47     cl::init(false));
48 
49 static cl::opt<bool> DisableCleanups(
50     "disable-cleanups", cl::Hidden,
51     cl::desc("Do not remove implausible terminators or other similar cleanups"),
52     cl::init(false));
53 
54 static cl::opt<bool> DemoteCatchSwitchPHIOnlyOpt(
55     "demote-catchswitch-only", cl::Hidden,
56     cl::desc("Demote catchswitch BBs only (for wasm EH)"), cl::init(false));
57 
58 namespace {
59 
60 class WinEHPrepare : public FunctionPass {
61 public:
62   static char ID; // Pass identification, replacement for typeid.
63   WinEHPrepare(bool DemoteCatchSwitchPHIOnly = false)
64       : FunctionPass(ID), DemoteCatchSwitchPHIOnly(DemoteCatchSwitchPHIOnly) {}
65 
66   bool runOnFunction(Function &Fn) override;
67 
68   bool doFinalization(Module &M) override;
69 
70   void getAnalysisUsage(AnalysisUsage &AU) const override;
71 
72   StringRef getPassName() const override {
73     return "Windows exception handling preparation";
74   }
75 
76 private:
77   void insertPHIStores(PHINode *OriginalPHI, AllocaInst *SpillSlot);
78   void
79   insertPHIStore(BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot,
80                  SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist);
81   AllocaInst *insertPHILoads(PHINode *PN, Function &F);
82   void replaceUseWithLoad(Value *V, Use &U, AllocaInst *&SpillSlot,
83                           DenseMap<BasicBlock *, Value *> &Loads, Function &F);
84   bool prepareExplicitEH(Function &F);
85   void colorFunclets(Function &F);
86 
87   void demotePHIsOnFunclets(Function &F, bool DemoteCatchSwitchPHIOnly);
88   void cloneCommonBlocks(Function &F);
89   void removeImplausibleInstructions(Function &F);
90   void cleanupPreparedFunclets(Function &F);
91   void verifyPreparedFunclets(Function &F);
92 
93   bool DemoteCatchSwitchPHIOnly;
94 
95   // All fields are reset by runOnFunction.
96   EHPersonality Personality = EHPersonality::Unknown;
97 
98   const DataLayout *DL = nullptr;
99   DenseMap<BasicBlock *, ColorVector> BlockColors;
100   MapVector<BasicBlock *, std::vector<BasicBlock *>> FuncletBlocks;
101 };
102 
103 } // end anonymous namespace
104 
105 char WinEHPrepare::ID = 0;
106 INITIALIZE_PASS(WinEHPrepare, DEBUG_TYPE, "Prepare Windows exceptions",
107                 false, false)
108 
109 FunctionPass *llvm::createWinEHPass(bool DemoteCatchSwitchPHIOnly) {
110   return new WinEHPrepare(DemoteCatchSwitchPHIOnly);
111 }
112 
113 bool WinEHPrepare::runOnFunction(Function &Fn) {
114   if (!Fn.hasPersonalityFn())
115     return false;
116 
117   // Classify the personality to see what kind of preparation we need.
118   Personality = classifyEHPersonality(Fn.getPersonalityFn());
119 
120   // Do nothing if this is not a scope-based personality.
121   if (!isScopedEHPersonality(Personality))
122     return false;
123 
124   DL = &Fn.getParent()->getDataLayout();
125   return prepareExplicitEH(Fn);
126 }
127 
128 bool WinEHPrepare::doFinalization(Module &M) { return false; }
129 
130 void WinEHPrepare::getAnalysisUsage(AnalysisUsage &AU) const {}
131 
132 static int addUnwindMapEntry(WinEHFuncInfo &FuncInfo, int ToState,
133                              const BasicBlock *BB) {
134   CxxUnwindMapEntry UME;
135   UME.ToState = ToState;
136   UME.Cleanup = BB;
137   FuncInfo.CxxUnwindMap.push_back(UME);
138   return FuncInfo.getLastStateNumber();
139 }
140 
141 static void addTryBlockMapEntry(WinEHFuncInfo &FuncInfo, int TryLow,
142                                 int TryHigh, int CatchHigh,
143                                 ArrayRef<const CatchPadInst *> Handlers) {
144   WinEHTryBlockMapEntry TBME;
145   TBME.TryLow = TryLow;
146   TBME.TryHigh = TryHigh;
147   TBME.CatchHigh = CatchHigh;
148   assert(TBME.TryLow <= TBME.TryHigh);
149   for (const CatchPadInst *CPI : Handlers) {
150     WinEHHandlerType HT;
151     Constant *TypeInfo = cast<Constant>(CPI->getArgOperand(0));
152     if (TypeInfo->isNullValue())
153       HT.TypeDescriptor = nullptr;
154     else
155       HT.TypeDescriptor = cast<GlobalVariable>(TypeInfo->stripPointerCasts());
156     HT.Adjectives = cast<ConstantInt>(CPI->getArgOperand(1))->getZExtValue();
157     HT.Handler = CPI->getParent();
158     if (auto *AI =
159             dyn_cast<AllocaInst>(CPI->getArgOperand(2)->stripPointerCasts()))
160       HT.CatchObj.Alloca = AI;
161     else
162       HT.CatchObj.Alloca = nullptr;
163     TBME.HandlerArray.push_back(HT);
164   }
165   FuncInfo.TryBlockMap.push_back(TBME);
166 }
167 
168 static BasicBlock *getCleanupRetUnwindDest(const CleanupPadInst *CleanupPad) {
169   for (const User *U : CleanupPad->users())
170     if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
171       return CRI->getUnwindDest();
172   return nullptr;
173 }
174 
175 static void calculateStateNumbersForInvokes(const Function *Fn,
176                                             WinEHFuncInfo &FuncInfo) {
177   auto *F = const_cast<Function *>(Fn);
178   DenseMap<BasicBlock *, ColorVector> BlockColors = colorEHFunclets(*F);
179   for (BasicBlock &BB : *F) {
180     auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
181     if (!II)
182       continue;
183 
184     auto &BBColors = BlockColors[&BB];
185     assert(BBColors.size() == 1 && "multi-color BB not removed by preparation");
186     BasicBlock *FuncletEntryBB = BBColors.front();
187 
188     BasicBlock *FuncletUnwindDest;
189     auto *FuncletPad =
190         dyn_cast<FuncletPadInst>(FuncletEntryBB->getFirstNonPHI());
191     assert(FuncletPad || FuncletEntryBB == &Fn->getEntryBlock());
192     if (!FuncletPad)
193       FuncletUnwindDest = nullptr;
194     else if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
195       FuncletUnwindDest = CatchPad->getCatchSwitch()->getUnwindDest();
196     else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(FuncletPad))
197       FuncletUnwindDest = getCleanupRetUnwindDest(CleanupPad);
198     else
199       llvm_unreachable("unexpected funclet pad!");
200 
201     BasicBlock *InvokeUnwindDest = II->getUnwindDest();
202     int BaseState = -1;
203     if (FuncletUnwindDest == InvokeUnwindDest) {
204       auto BaseStateI = FuncInfo.FuncletBaseStateMap.find(FuncletPad);
205       if (BaseStateI != FuncInfo.FuncletBaseStateMap.end())
206         BaseState = BaseStateI->second;
207     }
208 
209     if (BaseState != -1) {
210       FuncInfo.InvokeStateMap[II] = BaseState;
211     } else {
212       Instruction *PadInst = InvokeUnwindDest->getFirstNonPHI();
213       assert(FuncInfo.EHPadStateMap.count(PadInst) && "EH Pad has no state!");
214       FuncInfo.InvokeStateMap[II] = FuncInfo.EHPadStateMap[PadInst];
215     }
216   }
217 }
218 
219 // See comments below for calculateSEHStateForAsynchEH().
220 // State - incoming State of normal paths
221 struct WorkItem {
222   const BasicBlock *Block;
223   int State;
224   WorkItem(const BasicBlock *BB, int St) {
225     Block = BB;
226     State = St;
227   }
228 };
229 void llvm::calculateCXXStateForAsynchEH(const BasicBlock *BB, int State,
230                                         WinEHFuncInfo &EHInfo) {
231   SmallVector<struct WorkItem *, 8> WorkList;
232   struct WorkItem *WI = new WorkItem(BB, State);
233   WorkList.push_back(WI);
234 
235   while (!WorkList.empty()) {
236     WI = WorkList.pop_back_val();
237     const BasicBlock *BB = WI->Block;
238     int State = WI->State;
239     delete WI;
240     if (EHInfo.BlockToStateMap.count(BB) && EHInfo.BlockToStateMap[BB] <= State)
241       continue; // skip blocks already visited by lower State
242 
243     const llvm::Instruction *I = BB->getFirstNonPHI();
244     const llvm::Instruction *TI = BB->getTerminator();
245     if (I->isEHPad())
246       State = EHInfo.EHPadStateMap[I];
247     EHInfo.BlockToStateMap[BB] = State; // Record state, also flag visiting
248 
249     if ((isa<CleanupReturnInst>(TI) || isa<CatchReturnInst>(TI)) && State > 0) {
250       // Retrive the new State
251       State = EHInfo.CxxUnwindMap[State].ToState; // Retrive next State
252     } else if (isa<InvokeInst>(TI)) {
253       auto *Call = cast<CallBase>(TI);
254       const Function *Fn = Call->getCalledFunction();
255       if (Fn && Fn->isIntrinsic() &&
256           (Fn->getIntrinsicID() == Intrinsic::seh_scope_begin ||
257            Fn->getIntrinsicID() == Intrinsic::seh_try_begin))
258         // Retrive the new State from seh_scope_begin
259         State = EHInfo.InvokeStateMap[cast<InvokeInst>(TI)];
260       else if (Fn && Fn->isIntrinsic() &&
261                (Fn->getIntrinsicID() == Intrinsic::seh_scope_end ||
262                 Fn->getIntrinsicID() == Intrinsic::seh_try_end)) {
263         // In case of conditional ctor, let's retrieve State from Invoke
264         State = EHInfo.InvokeStateMap[cast<InvokeInst>(TI)];
265         // end of current state, retrive new state from UnwindMap
266         State = EHInfo.CxxUnwindMap[State].ToState;
267       }
268     }
269     // Continue push successors into worklist
270     for (auto *SuccBB : successors(BB)) {
271       WI = new WorkItem(SuccBB, State);
272       WorkList.push_back(WI);
273     }
274   }
275 }
276 
277 // The central theory of this routine is based on the following:
278 //   A _try scope is always a SEME (Single Entry Multiple Exits) region
279 //     as jumping into a _try is not allowed
280 //   The single entry must start with a seh_try_begin() invoke with a
281 //     correct State number that is the initial state of the SEME.
282 //   Through control-flow, state number is propagated into all blocks.
283 //   Side exits marked by seh_try_end() will unwind to parent state via
284 //     existing SEHUnwindMap[].
285 //   Side exits can ONLY jump into parent scopes (lower state number).
286 //   Thus, when a block succeeds various states from its predecessors,
287 //     the lowest State trumphs others.
288 //   If some exits flow to unreachable, propagation on those paths terminate,
289 //     not affecting remaining blocks.
290 void llvm::calculateSEHStateForAsynchEH(const BasicBlock *BB, int State,
291                                         WinEHFuncInfo &EHInfo) {
292   SmallVector<struct WorkItem *, 8> WorkList;
293   struct WorkItem *WI = new WorkItem(BB, State);
294   WorkList.push_back(WI);
295 
296   while (!WorkList.empty()) {
297     WI = WorkList.pop_back_val();
298     const BasicBlock *BB = WI->Block;
299     int State = WI->State;
300     delete WI;
301     if (EHInfo.BlockToStateMap.count(BB) && EHInfo.BlockToStateMap[BB] <= State)
302       continue; // skip blocks already visited by lower State
303 
304     const llvm::Instruction *I = BB->getFirstNonPHI();
305     const llvm::Instruction *TI = BB->getTerminator();
306     if (I->isEHPad())
307       State = EHInfo.EHPadStateMap[I];
308     EHInfo.BlockToStateMap[BB] = State; // Record state
309 
310     if (isa<CatchPadInst>(I) && isa<CatchReturnInst>(TI)) {
311       const Constant *FilterOrNull = cast<Constant>(
312           cast<CatchPadInst>(I)->getArgOperand(0)->stripPointerCasts());
313       const Function *Filter = dyn_cast<Function>(FilterOrNull);
314       if (!Filter || !Filter->getName().startswith("__IsLocalUnwind"))
315         State = EHInfo.SEHUnwindMap[State].ToState; // Retrive next State
316     } else if ((isa<CleanupReturnInst>(TI) || isa<CatchReturnInst>(TI)) &&
317                State > 0) {
318       // Retrive the new State.
319       State = EHInfo.SEHUnwindMap[State].ToState; // Retrive next State
320     } else if (isa<InvokeInst>(TI)) {
321       auto *Call = cast<CallBase>(TI);
322       const Function *Fn = Call->getCalledFunction();
323       if (Fn && Fn->isIntrinsic() &&
324           Fn->getIntrinsicID() == Intrinsic::seh_try_begin)
325         // Retrive the new State from seh_try_begin
326         State = EHInfo.InvokeStateMap[cast<InvokeInst>(TI)];
327       else if (Fn && Fn->isIntrinsic() &&
328                Fn->getIntrinsicID() == Intrinsic::seh_try_end)
329         // end of current state, retrive new state from UnwindMap
330         State = EHInfo.SEHUnwindMap[State].ToState;
331     }
332     // Continue push successors into worklist
333     for (auto *SuccBB : successors(BB)) {
334       WI = new WorkItem(SuccBB, State);
335       WorkList.push_back(WI);
336     }
337   }
338 }
339 
340 // Given BB which ends in an unwind edge, return the EHPad that this BB belongs
341 // to. If the unwind edge came from an invoke, return null.
342 static const BasicBlock *getEHPadFromPredecessor(const BasicBlock *BB,
343                                                  Value *ParentPad) {
344   const Instruction *TI = BB->getTerminator();
345   if (isa<InvokeInst>(TI))
346     return nullptr;
347   if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
348     if (CatchSwitch->getParentPad() != ParentPad)
349       return nullptr;
350     return BB;
351   }
352   assert(!TI->isEHPad() && "unexpected EHPad!");
353   auto *CleanupPad = cast<CleanupReturnInst>(TI)->getCleanupPad();
354   if (CleanupPad->getParentPad() != ParentPad)
355     return nullptr;
356   return CleanupPad->getParent();
357 }
358 
359 // Starting from a EHPad, Backward walk through control-flow graph
360 // to produce two primary outputs:
361 //      FuncInfo.EHPadStateMap[] and FuncInfo.CxxUnwindMap[]
362 static void calculateCXXStateNumbers(WinEHFuncInfo &FuncInfo,
363                                      const Instruction *FirstNonPHI,
364                                      int ParentState) {
365   const BasicBlock *BB = FirstNonPHI->getParent();
366   assert(BB->isEHPad() && "not a funclet!");
367 
368   if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FirstNonPHI)) {
369     assert(FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 &&
370            "shouldn't revist catch funclets!");
371 
372     SmallVector<const CatchPadInst *, 2> Handlers;
373     for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
374       auto *CatchPad = cast<CatchPadInst>(CatchPadBB->getFirstNonPHI());
375       Handlers.push_back(CatchPad);
376     }
377     int TryLow = addUnwindMapEntry(FuncInfo, ParentState, nullptr);
378     FuncInfo.EHPadStateMap[CatchSwitch] = TryLow;
379     for (const BasicBlock *PredBlock : predecessors(BB))
380       if ((PredBlock = getEHPadFromPredecessor(PredBlock,
381                                                CatchSwitch->getParentPad())))
382         calculateCXXStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
383                                  TryLow);
384     int CatchLow = addUnwindMapEntry(FuncInfo, ParentState, nullptr);
385 
386     // catchpads are separate funclets in C++ EH due to the way rethrow works.
387     int TryHigh = CatchLow - 1;
388 
389     // MSVC FrameHandler3/4 on x64&Arm64 expect Catch Handlers in $tryMap$
390     //  stored in pre-order (outer first, inner next), not post-order
391     //  Add to map here.  Fix the CatchHigh after children are processed
392     const Module *Mod = BB->getParent()->getParent();
393     bool IsPreOrder = Triple(Mod->getTargetTriple()).isArch64Bit();
394     if (IsPreOrder)
395       addTryBlockMapEntry(FuncInfo, TryLow, TryHigh, CatchLow, Handlers);
396     unsigned TBMEIdx = FuncInfo.TryBlockMap.size() - 1;
397 
398     for (const auto *CatchPad : Handlers) {
399       FuncInfo.FuncletBaseStateMap[CatchPad] = CatchLow;
400       FuncInfo.EHPadStateMap[CatchPad] = CatchLow;
401       for (const User *U : CatchPad->users()) {
402         const auto *UserI = cast<Instruction>(U);
403         if (auto *InnerCatchSwitch = dyn_cast<CatchSwitchInst>(UserI)) {
404           BasicBlock *UnwindDest = InnerCatchSwitch->getUnwindDest();
405           if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
406             calculateCXXStateNumbers(FuncInfo, UserI, CatchLow);
407         }
408         if (auto *InnerCleanupPad = dyn_cast<CleanupPadInst>(UserI)) {
409           BasicBlock *UnwindDest = getCleanupRetUnwindDest(InnerCleanupPad);
410           // If a nested cleanup pad reports a null unwind destination and the
411           // enclosing catch pad doesn't it must be post-dominated by an
412           // unreachable instruction.
413           if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
414             calculateCXXStateNumbers(FuncInfo, UserI, CatchLow);
415         }
416       }
417     }
418     int CatchHigh = FuncInfo.getLastStateNumber();
419     // Now child Catches are processed, update CatchHigh
420     if (IsPreOrder)
421       FuncInfo.TryBlockMap[TBMEIdx].CatchHigh = CatchHigh;
422     else // PostOrder
423       addTryBlockMapEntry(FuncInfo, TryLow, TryHigh, CatchHigh, Handlers);
424 
425     LLVM_DEBUG(dbgs() << "TryLow[" << BB->getName() << "]: " << TryLow << '\n');
426     LLVM_DEBUG(dbgs() << "TryHigh[" << BB->getName() << "]: " << TryHigh
427                       << '\n');
428     LLVM_DEBUG(dbgs() << "CatchHigh[" << BB->getName() << "]: " << CatchHigh
429                       << '\n');
430   } else {
431     auto *CleanupPad = cast<CleanupPadInst>(FirstNonPHI);
432 
433     // It's possible for a cleanup to be visited twice: it might have multiple
434     // cleanupret instructions.
435     if (FuncInfo.EHPadStateMap.count(CleanupPad))
436       return;
437 
438     int CleanupState = addUnwindMapEntry(FuncInfo, ParentState, BB);
439     FuncInfo.EHPadStateMap[CleanupPad] = CleanupState;
440     LLVM_DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB "
441                       << BB->getName() << '\n');
442     for (const BasicBlock *PredBlock : predecessors(BB)) {
443       if ((PredBlock = getEHPadFromPredecessor(PredBlock,
444                                                CleanupPad->getParentPad()))) {
445         calculateCXXStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
446                                  CleanupState);
447       }
448     }
449     for (const User *U : CleanupPad->users()) {
450       const auto *UserI = cast<Instruction>(U);
451       if (UserI->isEHPad())
452         report_fatal_error("Cleanup funclets for the MSVC++ personality cannot "
453                            "contain exceptional actions");
454     }
455   }
456 }
457 
458 static int addSEHExcept(WinEHFuncInfo &FuncInfo, int ParentState,
459                         const Function *Filter, const BasicBlock *Handler) {
460   SEHUnwindMapEntry Entry;
461   Entry.ToState = ParentState;
462   Entry.IsFinally = false;
463   Entry.Filter = Filter;
464   Entry.Handler = Handler;
465   FuncInfo.SEHUnwindMap.push_back(Entry);
466   return FuncInfo.SEHUnwindMap.size() - 1;
467 }
468 
469 static int addSEHFinally(WinEHFuncInfo &FuncInfo, int ParentState,
470                          const BasicBlock *Handler) {
471   SEHUnwindMapEntry Entry;
472   Entry.ToState = ParentState;
473   Entry.IsFinally = true;
474   Entry.Filter = nullptr;
475   Entry.Handler = Handler;
476   FuncInfo.SEHUnwindMap.push_back(Entry);
477   return FuncInfo.SEHUnwindMap.size() - 1;
478 }
479 
480 // Starting from a EHPad, Backward walk through control-flow graph
481 // to produce two primary outputs:
482 //      FuncInfo.EHPadStateMap[] and FuncInfo.SEHUnwindMap[]
483 static void calculateSEHStateNumbers(WinEHFuncInfo &FuncInfo,
484                                      const Instruction *FirstNonPHI,
485                                      int ParentState) {
486   const BasicBlock *BB = FirstNonPHI->getParent();
487   assert(BB->isEHPad() && "no a funclet!");
488 
489   if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FirstNonPHI)) {
490     assert(FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 &&
491            "shouldn't revist catch funclets!");
492 
493     // Extract the filter function and the __except basic block and create a
494     // state for them.
495     assert(CatchSwitch->getNumHandlers() == 1 &&
496            "SEH doesn't have multiple handlers per __try");
497     const auto *CatchPad =
498         cast<CatchPadInst>((*CatchSwitch->handler_begin())->getFirstNonPHI());
499     const BasicBlock *CatchPadBB = CatchPad->getParent();
500     const Constant *FilterOrNull =
501         cast<Constant>(CatchPad->getArgOperand(0)->stripPointerCasts());
502     const Function *Filter = dyn_cast<Function>(FilterOrNull);
503     assert((Filter || FilterOrNull->isNullValue()) &&
504            "unexpected filter value");
505     int TryState = addSEHExcept(FuncInfo, ParentState, Filter, CatchPadBB);
506 
507     // Everything in the __try block uses TryState as its parent state.
508     FuncInfo.EHPadStateMap[CatchSwitch] = TryState;
509     FuncInfo.EHPadStateMap[CatchPad] = TryState;
510     LLVM_DEBUG(dbgs() << "Assigning state #" << TryState << " to BB "
511                       << CatchPadBB->getName() << '\n');
512     for (const BasicBlock *PredBlock : predecessors(BB))
513       if ((PredBlock = getEHPadFromPredecessor(PredBlock,
514                                                CatchSwitch->getParentPad())))
515         calculateSEHStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
516                                  TryState);
517 
518     // Everything in the __except block unwinds to ParentState, just like code
519     // outside the __try.
520     for (const User *U : CatchPad->users()) {
521       const auto *UserI = cast<Instruction>(U);
522       if (auto *InnerCatchSwitch = dyn_cast<CatchSwitchInst>(UserI)) {
523         BasicBlock *UnwindDest = InnerCatchSwitch->getUnwindDest();
524         if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
525           calculateSEHStateNumbers(FuncInfo, UserI, ParentState);
526       }
527       if (auto *InnerCleanupPad = dyn_cast<CleanupPadInst>(UserI)) {
528         BasicBlock *UnwindDest = getCleanupRetUnwindDest(InnerCleanupPad);
529         // If a nested cleanup pad reports a null unwind destination and the
530         // enclosing catch pad doesn't it must be post-dominated by an
531         // unreachable instruction.
532         if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
533           calculateSEHStateNumbers(FuncInfo, UserI, ParentState);
534       }
535     }
536   } else {
537     auto *CleanupPad = cast<CleanupPadInst>(FirstNonPHI);
538 
539     // It's possible for a cleanup to be visited twice: it might have multiple
540     // cleanupret instructions.
541     if (FuncInfo.EHPadStateMap.count(CleanupPad))
542       return;
543 
544     int CleanupState = addSEHFinally(FuncInfo, ParentState, BB);
545     FuncInfo.EHPadStateMap[CleanupPad] = CleanupState;
546     LLVM_DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB "
547                       << BB->getName() << '\n');
548     for (const BasicBlock *PredBlock : predecessors(BB))
549       if ((PredBlock =
550                getEHPadFromPredecessor(PredBlock, CleanupPad->getParentPad())))
551         calculateSEHStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
552                                  CleanupState);
553     for (const User *U : CleanupPad->users()) {
554       const auto *UserI = cast<Instruction>(U);
555       if (UserI->isEHPad())
556         report_fatal_error("Cleanup funclets for the SEH personality cannot "
557                            "contain exceptional actions");
558     }
559   }
560 }
561 
562 static bool isTopLevelPadForMSVC(const Instruction *EHPad) {
563   if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(EHPad))
564     return isa<ConstantTokenNone>(CatchSwitch->getParentPad()) &&
565            CatchSwitch->unwindsToCaller();
566   if (auto *CleanupPad = dyn_cast<CleanupPadInst>(EHPad))
567     return isa<ConstantTokenNone>(CleanupPad->getParentPad()) &&
568            getCleanupRetUnwindDest(CleanupPad) == nullptr;
569   if (isa<CatchPadInst>(EHPad))
570     return false;
571   llvm_unreachable("unexpected EHPad!");
572 }
573 
574 void llvm::calculateSEHStateNumbers(const Function *Fn,
575                                     WinEHFuncInfo &FuncInfo) {
576   // Don't compute state numbers twice.
577   if (!FuncInfo.SEHUnwindMap.empty())
578     return;
579 
580   for (const BasicBlock &BB : *Fn) {
581     if (!BB.isEHPad())
582       continue;
583     const Instruction *FirstNonPHI = BB.getFirstNonPHI();
584     if (!isTopLevelPadForMSVC(FirstNonPHI))
585       continue;
586     ::calculateSEHStateNumbers(FuncInfo, FirstNonPHI, -1);
587   }
588 
589   calculateStateNumbersForInvokes(Fn, FuncInfo);
590 
591   bool IsEHa = Fn->getParent()->getModuleFlag("eh-asynch");
592   if (IsEHa) {
593     const BasicBlock *EntryBB = &(Fn->getEntryBlock());
594     calculateSEHStateForAsynchEH(EntryBB, -1, FuncInfo);
595   }
596 }
597 
598 void llvm::calculateWinCXXEHStateNumbers(const Function *Fn,
599                                          WinEHFuncInfo &FuncInfo) {
600   // Return if it's already been done.
601   if (!FuncInfo.EHPadStateMap.empty())
602     return;
603 
604   for (const BasicBlock &BB : *Fn) {
605     if (!BB.isEHPad())
606       continue;
607     const Instruction *FirstNonPHI = BB.getFirstNonPHI();
608     if (!isTopLevelPadForMSVC(FirstNonPHI))
609       continue;
610     calculateCXXStateNumbers(FuncInfo, FirstNonPHI, -1);
611   }
612 
613   calculateStateNumbersForInvokes(Fn, FuncInfo);
614 
615   bool IsEHa = Fn->getParent()->getModuleFlag("eh-asynch");
616   if (IsEHa) {
617     const BasicBlock *EntryBB = &(Fn->getEntryBlock());
618     calculateCXXStateForAsynchEH(EntryBB, -1, FuncInfo);
619   }
620 }
621 
622 static int addClrEHHandler(WinEHFuncInfo &FuncInfo, int HandlerParentState,
623                            int TryParentState, ClrHandlerType HandlerType,
624                            uint32_t TypeToken, const BasicBlock *Handler) {
625   ClrEHUnwindMapEntry Entry;
626   Entry.HandlerParentState = HandlerParentState;
627   Entry.TryParentState = TryParentState;
628   Entry.Handler = Handler;
629   Entry.HandlerType = HandlerType;
630   Entry.TypeToken = TypeToken;
631   FuncInfo.ClrEHUnwindMap.push_back(Entry);
632   return FuncInfo.ClrEHUnwindMap.size() - 1;
633 }
634 
635 void llvm::calculateClrEHStateNumbers(const Function *Fn,
636                                       WinEHFuncInfo &FuncInfo) {
637   // Return if it's already been done.
638   if (!FuncInfo.EHPadStateMap.empty())
639     return;
640 
641   // This numbering assigns one state number to each catchpad and cleanuppad.
642   // It also computes two tree-like relations over states:
643   // 1) Each state has a "HandlerParentState", which is the state of the next
644   //    outer handler enclosing this state's handler (same as nearest ancestor
645   //    per the ParentPad linkage on EH pads, but skipping over catchswitches).
646   // 2) Each state has a "TryParentState", which:
647   //    a) for a catchpad that's not the last handler on its catchswitch, is
648   //       the state of the next catchpad on that catchswitch
649   //    b) for all other pads, is the state of the pad whose try region is the
650   //       next outer try region enclosing this state's try region.  The "try
651   //       regions are not present as such in the IR, but will be inferred
652   //       based on the placement of invokes and pads which reach each other
653   //       by exceptional exits
654   // Catchswitches do not get their own states, but each gets mapped to the
655   // state of its first catchpad.
656 
657   // Step one: walk down from outermost to innermost funclets, assigning each
658   // catchpad and cleanuppad a state number.  Add an entry to the
659   // ClrEHUnwindMap for each state, recording its HandlerParentState and
660   // handler attributes.  Record the TryParentState as well for each catchpad
661   // that's not the last on its catchswitch, but initialize all other entries'
662   // TryParentStates to a sentinel -1 value that the next pass will update.
663 
664   // Seed a worklist with pads that have no parent.
665   SmallVector<std::pair<const Instruction *, int>, 8> Worklist;
666   for (const BasicBlock &BB : *Fn) {
667     const Instruction *FirstNonPHI = BB.getFirstNonPHI();
668     const Value *ParentPad;
669     if (const auto *CPI = dyn_cast<CleanupPadInst>(FirstNonPHI))
670       ParentPad = CPI->getParentPad();
671     else if (const auto *CSI = dyn_cast<CatchSwitchInst>(FirstNonPHI))
672       ParentPad = CSI->getParentPad();
673     else
674       continue;
675     if (isa<ConstantTokenNone>(ParentPad))
676       Worklist.emplace_back(FirstNonPHI, -1);
677   }
678 
679   // Use the worklist to visit all pads, from outer to inner.  Record
680   // HandlerParentState for all pads.  Record TryParentState only for catchpads
681   // that aren't the last on their catchswitch (setting all other entries'
682   // TryParentStates to an initial value of -1).  This loop is also responsible
683   // for setting the EHPadStateMap entry for all catchpads, cleanuppads, and
684   // catchswitches.
685   while (!Worklist.empty()) {
686     const Instruction *Pad;
687     int HandlerParentState;
688     std::tie(Pad, HandlerParentState) = Worklist.pop_back_val();
689 
690     if (const auto *Cleanup = dyn_cast<CleanupPadInst>(Pad)) {
691       // Create the entry for this cleanup with the appropriate handler
692       // properties.  Finally and fault handlers are distinguished by arity.
693       ClrHandlerType HandlerType =
694           (Cleanup->arg_size() ? ClrHandlerType::Fault
695                                : ClrHandlerType::Finally);
696       int CleanupState = addClrEHHandler(FuncInfo, HandlerParentState, -1,
697                                          HandlerType, 0, Pad->getParent());
698       // Queue any child EH pads on the worklist.
699       for (const User *U : Cleanup->users())
700         if (const auto *I = dyn_cast<Instruction>(U))
701           if (I->isEHPad())
702             Worklist.emplace_back(I, CleanupState);
703       // Remember this pad's state.
704       FuncInfo.EHPadStateMap[Cleanup] = CleanupState;
705     } else {
706       // Walk the handlers of this catchswitch in reverse order since all but
707       // the last need to set the following one as its TryParentState.
708       const auto *CatchSwitch = cast<CatchSwitchInst>(Pad);
709       int CatchState = -1, FollowerState = -1;
710       SmallVector<const BasicBlock *, 4> CatchBlocks(CatchSwitch->handlers());
711       for (const BasicBlock *CatchBlock : llvm::reverse(CatchBlocks)) {
712         // Create the entry for this catch with the appropriate handler
713         // properties.
714         const auto *Catch = cast<CatchPadInst>(CatchBlock->getFirstNonPHI());
715         uint32_t TypeToken = static_cast<uint32_t>(
716             cast<ConstantInt>(Catch->getArgOperand(0))->getZExtValue());
717         CatchState =
718             addClrEHHandler(FuncInfo, HandlerParentState, FollowerState,
719                             ClrHandlerType::Catch, TypeToken, CatchBlock);
720         // Queue any child EH pads on the worklist.
721         for (const User *U : Catch->users())
722           if (const auto *I = dyn_cast<Instruction>(U))
723             if (I->isEHPad())
724               Worklist.emplace_back(I, CatchState);
725         // Remember this catch's state.
726         FuncInfo.EHPadStateMap[Catch] = CatchState;
727         FollowerState = CatchState;
728       }
729       // Associate the catchswitch with the state of its first catch.
730       assert(CatchSwitch->getNumHandlers());
731       FuncInfo.EHPadStateMap[CatchSwitch] = CatchState;
732     }
733   }
734 
735   // Step two: record the TryParentState of each state.  For cleanuppads that
736   // don't have cleanuprets, we may need to infer this from their child pads,
737   // so visit pads in descendant-most to ancestor-most order.
738   for (ClrEHUnwindMapEntry &Entry : llvm::reverse(FuncInfo.ClrEHUnwindMap)) {
739     const Instruction *Pad =
740         cast<const BasicBlock *>(Entry.Handler)->getFirstNonPHI();
741     // For most pads, the TryParentState is the state associated with the
742     // unwind dest of exceptional exits from it.
743     const BasicBlock *UnwindDest;
744     if (const auto *Catch = dyn_cast<CatchPadInst>(Pad)) {
745       // If a catch is not the last in its catchswitch, its TryParentState is
746       // the state associated with the next catch in the switch, even though
747       // that's not the unwind dest of exceptions escaping the catch.  Those
748       // cases were already assigned a TryParentState in the first pass, so
749       // skip them.
750       if (Entry.TryParentState != -1)
751         continue;
752       // Otherwise, get the unwind dest from the catchswitch.
753       UnwindDest = Catch->getCatchSwitch()->getUnwindDest();
754     } else {
755       const auto *Cleanup = cast<CleanupPadInst>(Pad);
756       UnwindDest = nullptr;
757       for (const User *U : Cleanup->users()) {
758         if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
759           // Common and unambiguous case -- cleanupret indicates cleanup's
760           // unwind dest.
761           UnwindDest = CleanupRet->getUnwindDest();
762           break;
763         }
764 
765         // Get an unwind dest for the user
766         const BasicBlock *UserUnwindDest = nullptr;
767         if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
768           UserUnwindDest = Invoke->getUnwindDest();
769         } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(U)) {
770           UserUnwindDest = CatchSwitch->getUnwindDest();
771         } else if (auto *ChildCleanup = dyn_cast<CleanupPadInst>(U)) {
772           int UserState = FuncInfo.EHPadStateMap[ChildCleanup];
773           int UserUnwindState =
774               FuncInfo.ClrEHUnwindMap[UserState].TryParentState;
775           if (UserUnwindState != -1)
776             UserUnwindDest = cast<const BasicBlock *>(
777                 FuncInfo.ClrEHUnwindMap[UserUnwindState].Handler);
778         }
779 
780         // Not having an unwind dest for this user might indicate that it
781         // doesn't unwind, so can't be taken as proof that the cleanup itself
782         // may unwind to caller (see e.g. SimplifyUnreachable and
783         // RemoveUnwindEdge).
784         if (!UserUnwindDest)
785           continue;
786 
787         // Now we have an unwind dest for the user, but we need to see if it
788         // unwinds all the way out of the cleanup or if it stays within it.
789         const Instruction *UserUnwindPad = UserUnwindDest->getFirstNonPHI();
790         const Value *UserUnwindParent;
791         if (auto *CSI = dyn_cast<CatchSwitchInst>(UserUnwindPad))
792           UserUnwindParent = CSI->getParentPad();
793         else
794           UserUnwindParent =
795               cast<CleanupPadInst>(UserUnwindPad)->getParentPad();
796 
797         // The unwind stays within the cleanup iff it targets a child of the
798         // cleanup.
799         if (UserUnwindParent == Cleanup)
800           continue;
801 
802         // This unwind exits the cleanup, so its dest is the cleanup's dest.
803         UnwindDest = UserUnwindDest;
804         break;
805       }
806     }
807 
808     // Record the state of the unwind dest as the TryParentState.
809     int UnwindDestState;
810 
811     // If UnwindDest is null at this point, either the pad in question can
812     // be exited by unwind to caller, or it cannot be exited by unwind.  In
813     // either case, reporting such cases as unwinding to caller is correct.
814     // This can lead to EH tables that "look strange" -- if this pad's is in
815     // a parent funclet which has other children that do unwind to an enclosing
816     // pad, the try region for this pad will be missing the "duplicate" EH
817     // clause entries that you'd expect to see covering the whole parent.  That
818     // should be benign, since the unwind never actually happens.  If it were
819     // an issue, we could add a subsequent pass that pushes unwind dests down
820     // from parents that have them to children that appear to unwind to caller.
821     if (!UnwindDest) {
822       UnwindDestState = -1;
823     } else {
824       UnwindDestState = FuncInfo.EHPadStateMap[UnwindDest->getFirstNonPHI()];
825     }
826 
827     Entry.TryParentState = UnwindDestState;
828   }
829 
830   // Step three: transfer information from pads to invokes.
831   calculateStateNumbersForInvokes(Fn, FuncInfo);
832 }
833 
834 void WinEHPrepare::colorFunclets(Function &F) {
835   BlockColors = colorEHFunclets(F);
836 
837   // Invert the map from BB to colors to color to BBs.
838   for (BasicBlock &BB : F) {
839     ColorVector &Colors = BlockColors[&BB];
840     for (BasicBlock *Color : Colors)
841       FuncletBlocks[Color].push_back(&BB);
842   }
843 }
844 
845 void WinEHPrepare::demotePHIsOnFunclets(Function &F,
846                                         bool DemoteCatchSwitchPHIOnly) {
847   // Strip PHI nodes off of EH pads.
848   SmallVector<PHINode *, 16> PHINodes;
849   for (BasicBlock &BB : make_early_inc_range(F)) {
850     if (!BB.isEHPad())
851       continue;
852     if (DemoteCatchSwitchPHIOnly && !isa<CatchSwitchInst>(BB.getFirstNonPHI()))
853       continue;
854 
855     for (Instruction &I : make_early_inc_range(BB)) {
856       auto *PN = dyn_cast<PHINode>(&I);
857       // Stop at the first non-PHI.
858       if (!PN)
859         break;
860 
861       AllocaInst *SpillSlot = insertPHILoads(PN, F);
862       if (SpillSlot)
863         insertPHIStores(PN, SpillSlot);
864 
865       PHINodes.push_back(PN);
866     }
867   }
868 
869   for (auto *PN : PHINodes) {
870     // There may be lingering uses on other EH PHIs being removed
871     PN->replaceAllUsesWith(PoisonValue::get(PN->getType()));
872     PN->eraseFromParent();
873   }
874 }
875 
876 void WinEHPrepare::cloneCommonBlocks(Function &F) {
877   // We need to clone all blocks which belong to multiple funclets.  Values are
878   // remapped throughout the funclet to propagate both the new instructions
879   // *and* the new basic blocks themselves.
880   for (auto &Funclets : FuncletBlocks) {
881     BasicBlock *FuncletPadBB = Funclets.first;
882     std::vector<BasicBlock *> &BlocksInFunclet = Funclets.second;
883     Value *FuncletToken;
884     if (FuncletPadBB == &F.getEntryBlock())
885       FuncletToken = ConstantTokenNone::get(F.getContext());
886     else
887       FuncletToken = FuncletPadBB->getFirstNonPHI();
888 
889     std::vector<std::pair<BasicBlock *, BasicBlock *>> Orig2Clone;
890     ValueToValueMapTy VMap;
891     for (BasicBlock *BB : BlocksInFunclet) {
892       ColorVector &ColorsForBB = BlockColors[BB];
893       // We don't need to do anything if the block is monochromatic.
894       size_t NumColorsForBB = ColorsForBB.size();
895       if (NumColorsForBB == 1)
896         continue;
897 
898       DEBUG_WITH_TYPE("winehprepare-coloring",
899                       dbgs() << "  Cloning block \'" << BB->getName()
900                               << "\' for funclet \'" << FuncletPadBB->getName()
901                               << "\'.\n");
902 
903       // Create a new basic block and copy instructions into it!
904       BasicBlock *CBB =
905           CloneBasicBlock(BB, VMap, Twine(".for.", FuncletPadBB->getName()));
906       // Insert the clone immediately after the original to ensure determinism
907       // and to keep the same relative ordering of any funclet's blocks.
908       CBB->insertInto(&F, BB->getNextNode());
909 
910       // Add basic block mapping.
911       VMap[BB] = CBB;
912 
913       // Record delta operations that we need to perform to our color mappings.
914       Orig2Clone.emplace_back(BB, CBB);
915     }
916 
917     // If nothing was cloned, we're done cloning in this funclet.
918     if (Orig2Clone.empty())
919       continue;
920 
921     // Update our color mappings to reflect that one block has lost a color and
922     // another has gained a color.
923     for (auto &BBMapping : Orig2Clone) {
924       BasicBlock *OldBlock = BBMapping.first;
925       BasicBlock *NewBlock = BBMapping.second;
926 
927       BlocksInFunclet.push_back(NewBlock);
928       ColorVector &NewColors = BlockColors[NewBlock];
929       assert(NewColors.empty() && "A new block should only have one color!");
930       NewColors.push_back(FuncletPadBB);
931 
932       DEBUG_WITH_TYPE("winehprepare-coloring",
933                       dbgs() << "  Assigned color \'" << FuncletPadBB->getName()
934                               << "\' to block \'" << NewBlock->getName()
935                               << "\'.\n");
936 
937       llvm::erase_value(BlocksInFunclet, OldBlock);
938       ColorVector &OldColors = BlockColors[OldBlock];
939       llvm::erase_value(OldColors, FuncletPadBB);
940 
941       DEBUG_WITH_TYPE("winehprepare-coloring",
942                       dbgs() << "  Removed color \'" << FuncletPadBB->getName()
943                               << "\' from block \'" << OldBlock->getName()
944                               << "\'.\n");
945     }
946 
947     // Loop over all of the instructions in this funclet, fixing up operand
948     // references as we go.  This uses VMap to do all the hard work.
949     for (BasicBlock *BB : BlocksInFunclet)
950       // Loop over all instructions, fixing each one as we find it...
951       for (Instruction &I : *BB)
952         RemapInstruction(&I, VMap,
953                          RF_IgnoreMissingLocals | RF_NoModuleLevelChanges);
954 
955     // Catchrets targeting cloned blocks need to be updated separately from
956     // the loop above because they are not in the current funclet.
957     SmallVector<CatchReturnInst *, 2> FixupCatchrets;
958     for (auto &BBMapping : Orig2Clone) {
959       BasicBlock *OldBlock = BBMapping.first;
960       BasicBlock *NewBlock = BBMapping.second;
961 
962       FixupCatchrets.clear();
963       for (BasicBlock *Pred : predecessors(OldBlock))
964         if (auto *CatchRet = dyn_cast<CatchReturnInst>(Pred->getTerminator()))
965           if (CatchRet->getCatchSwitchParentPad() == FuncletToken)
966             FixupCatchrets.push_back(CatchRet);
967 
968       for (CatchReturnInst *CatchRet : FixupCatchrets)
969         CatchRet->setSuccessor(NewBlock);
970     }
971 
972     auto UpdatePHIOnClonedBlock = [&](PHINode *PN, bool IsForOldBlock) {
973       unsigned NumPreds = PN->getNumIncomingValues();
974       for (unsigned PredIdx = 0, PredEnd = NumPreds; PredIdx != PredEnd;
975            ++PredIdx) {
976         BasicBlock *IncomingBlock = PN->getIncomingBlock(PredIdx);
977         bool EdgeTargetsFunclet;
978         if (auto *CRI =
979                 dyn_cast<CatchReturnInst>(IncomingBlock->getTerminator())) {
980           EdgeTargetsFunclet = (CRI->getCatchSwitchParentPad() == FuncletToken);
981         } else {
982           ColorVector &IncomingColors = BlockColors[IncomingBlock];
983           assert(!IncomingColors.empty() && "Block not colored!");
984           assert((IncomingColors.size() == 1 ||
985                   !llvm::is_contained(IncomingColors, FuncletPadBB)) &&
986                  "Cloning should leave this funclet's blocks monochromatic");
987           EdgeTargetsFunclet = (IncomingColors.front() == FuncletPadBB);
988         }
989         if (IsForOldBlock != EdgeTargetsFunclet)
990           continue;
991         PN->removeIncomingValue(IncomingBlock, /*DeletePHIIfEmpty=*/false);
992         // Revisit the next entry.
993         --PredIdx;
994         --PredEnd;
995       }
996     };
997 
998     for (auto &BBMapping : Orig2Clone) {
999       BasicBlock *OldBlock = BBMapping.first;
1000       BasicBlock *NewBlock = BBMapping.second;
1001       for (PHINode &OldPN : OldBlock->phis()) {
1002         UpdatePHIOnClonedBlock(&OldPN, /*IsForOldBlock=*/true);
1003       }
1004       for (PHINode &NewPN : NewBlock->phis()) {
1005         UpdatePHIOnClonedBlock(&NewPN, /*IsForOldBlock=*/false);
1006       }
1007     }
1008 
1009     // Check to see if SuccBB has PHI nodes. If so, we need to add entries to
1010     // the PHI nodes for NewBB now.
1011     for (auto &BBMapping : Orig2Clone) {
1012       BasicBlock *OldBlock = BBMapping.first;
1013       BasicBlock *NewBlock = BBMapping.second;
1014       for (BasicBlock *SuccBB : successors(NewBlock)) {
1015         for (PHINode &SuccPN : SuccBB->phis()) {
1016           // Ok, we have a PHI node.  Figure out what the incoming value was for
1017           // the OldBlock.
1018           int OldBlockIdx = SuccPN.getBasicBlockIndex(OldBlock);
1019           if (OldBlockIdx == -1)
1020             break;
1021           Value *IV = SuccPN.getIncomingValue(OldBlockIdx);
1022 
1023           // Remap the value if necessary.
1024           if (auto *Inst = dyn_cast<Instruction>(IV)) {
1025             ValueToValueMapTy::iterator I = VMap.find(Inst);
1026             if (I != VMap.end())
1027               IV = I->second;
1028           }
1029 
1030           SuccPN.addIncoming(IV, NewBlock);
1031         }
1032       }
1033     }
1034 
1035     for (ValueToValueMapTy::value_type VT : VMap) {
1036       // If there were values defined in BB that are used outside the funclet,
1037       // then we now have to update all uses of the value to use either the
1038       // original value, the cloned value, or some PHI derived value.  This can
1039       // require arbitrary PHI insertion, of which we are prepared to do, clean
1040       // these up now.
1041       SmallVector<Use *, 16> UsesToRename;
1042 
1043       auto *OldI = dyn_cast<Instruction>(const_cast<Value *>(VT.first));
1044       if (!OldI)
1045         continue;
1046       auto *NewI = cast<Instruction>(VT.second);
1047       // Scan all uses of this instruction to see if it is used outside of its
1048       // funclet, and if so, record them in UsesToRename.
1049       for (Use &U : OldI->uses()) {
1050         Instruction *UserI = cast<Instruction>(U.getUser());
1051         BasicBlock *UserBB = UserI->getParent();
1052         ColorVector &ColorsForUserBB = BlockColors[UserBB];
1053         assert(!ColorsForUserBB.empty());
1054         if (ColorsForUserBB.size() > 1 ||
1055             *ColorsForUserBB.begin() != FuncletPadBB)
1056           UsesToRename.push_back(&U);
1057       }
1058 
1059       // If there are no uses outside the block, we're done with this
1060       // instruction.
1061       if (UsesToRename.empty())
1062         continue;
1063 
1064       // We found a use of OldI outside of the funclet.  Rename all uses of OldI
1065       // that are outside its funclet to be uses of the appropriate PHI node
1066       // etc.
1067       SSAUpdater SSAUpdate;
1068       SSAUpdate.Initialize(OldI->getType(), OldI->getName());
1069       SSAUpdate.AddAvailableValue(OldI->getParent(), OldI);
1070       SSAUpdate.AddAvailableValue(NewI->getParent(), NewI);
1071 
1072       while (!UsesToRename.empty())
1073         SSAUpdate.RewriteUseAfterInsertions(*UsesToRename.pop_back_val());
1074     }
1075   }
1076 }
1077 
1078 void WinEHPrepare::removeImplausibleInstructions(Function &F) {
1079   // Remove implausible terminators and replace them with UnreachableInst.
1080   for (auto &Funclet : FuncletBlocks) {
1081     BasicBlock *FuncletPadBB = Funclet.first;
1082     std::vector<BasicBlock *> &BlocksInFunclet = Funclet.second;
1083     Instruction *FirstNonPHI = FuncletPadBB->getFirstNonPHI();
1084     auto *FuncletPad = dyn_cast<FuncletPadInst>(FirstNonPHI);
1085     auto *CatchPad = dyn_cast_or_null<CatchPadInst>(FuncletPad);
1086     auto *CleanupPad = dyn_cast_or_null<CleanupPadInst>(FuncletPad);
1087 
1088     for (BasicBlock *BB : BlocksInFunclet) {
1089       for (Instruction &I : *BB) {
1090         auto *CB = dyn_cast<CallBase>(&I);
1091         if (!CB)
1092           continue;
1093 
1094         Value *FuncletBundleOperand = nullptr;
1095         if (auto BU = CB->getOperandBundle(LLVMContext::OB_funclet))
1096           FuncletBundleOperand = BU->Inputs.front();
1097 
1098         if (FuncletBundleOperand == FuncletPad)
1099           continue;
1100 
1101         // Skip call sites which are nounwind intrinsics or inline asm.
1102         auto *CalledFn =
1103             dyn_cast<Function>(CB->getCalledOperand()->stripPointerCasts());
1104         if (CalledFn && ((CalledFn->isIntrinsic() && CB->doesNotThrow()) ||
1105                          CB->isInlineAsm()))
1106           continue;
1107 
1108         // This call site was not part of this funclet, remove it.
1109         if (isa<InvokeInst>(CB)) {
1110           // Remove the unwind edge if it was an invoke.
1111           removeUnwindEdge(BB);
1112           // Get a pointer to the new call.
1113           BasicBlock::iterator CallI =
1114               std::prev(BB->getTerminator()->getIterator());
1115           auto *CI = cast<CallInst>(&*CallI);
1116           changeToUnreachable(CI);
1117         } else {
1118           changeToUnreachable(&I);
1119         }
1120 
1121         // There are no more instructions in the block (except for unreachable),
1122         // we are done.
1123         break;
1124       }
1125 
1126       Instruction *TI = BB->getTerminator();
1127       // CatchPadInst and CleanupPadInst can't transfer control to a ReturnInst.
1128       bool IsUnreachableRet = isa<ReturnInst>(TI) && FuncletPad;
1129       // The token consumed by a CatchReturnInst must match the funclet token.
1130       bool IsUnreachableCatchret = false;
1131       if (auto *CRI = dyn_cast<CatchReturnInst>(TI))
1132         IsUnreachableCatchret = CRI->getCatchPad() != CatchPad;
1133       // The token consumed by a CleanupReturnInst must match the funclet token.
1134       bool IsUnreachableCleanupret = false;
1135       if (auto *CRI = dyn_cast<CleanupReturnInst>(TI))
1136         IsUnreachableCleanupret = CRI->getCleanupPad() != CleanupPad;
1137       if (IsUnreachableRet || IsUnreachableCatchret ||
1138           IsUnreachableCleanupret) {
1139         changeToUnreachable(TI);
1140       } else if (isa<InvokeInst>(TI)) {
1141         if (Personality == EHPersonality::MSVC_CXX && CleanupPad) {
1142           // Invokes within a cleanuppad for the MSVC++ personality never
1143           // transfer control to their unwind edge: the personality will
1144           // terminate the program.
1145           removeUnwindEdge(BB);
1146         }
1147       }
1148     }
1149   }
1150 }
1151 
1152 void WinEHPrepare::cleanupPreparedFunclets(Function &F) {
1153   // Clean-up some of the mess we made by removing useles PHI nodes, trivial
1154   // branches, etc.
1155   for (BasicBlock &BB : llvm::make_early_inc_range(F)) {
1156     SimplifyInstructionsInBlock(&BB);
1157     ConstantFoldTerminator(&BB, /*DeleteDeadConditions=*/true);
1158     MergeBlockIntoPredecessor(&BB);
1159   }
1160 
1161   // We might have some unreachable blocks after cleaning up some impossible
1162   // control flow.
1163   removeUnreachableBlocks(F);
1164 }
1165 
1166 #ifndef NDEBUG
1167 void WinEHPrepare::verifyPreparedFunclets(Function &F) {
1168   for (BasicBlock &BB : F) {
1169     size_t NumColors = BlockColors[&BB].size();
1170     assert(NumColors == 1 && "Expected monochromatic BB!");
1171     if (NumColors == 0)
1172       report_fatal_error("Uncolored BB!");
1173     if (NumColors > 1)
1174       report_fatal_error("Multicolor BB!");
1175     assert((DisableDemotion || !(BB.isEHPad() && isa<PHINode>(BB.begin()))) &&
1176            "EH Pad still has a PHI!");
1177   }
1178 }
1179 #endif
1180 
1181 bool WinEHPrepare::prepareExplicitEH(Function &F) {
1182   // Remove unreachable blocks.  It is not valuable to assign them a color and
1183   // their existence can trick us into thinking values are alive when they are
1184   // not.
1185   removeUnreachableBlocks(F);
1186 
1187   // Determine which blocks are reachable from which funclet entries.
1188   colorFunclets(F);
1189 
1190   cloneCommonBlocks(F);
1191 
1192   if (!DisableDemotion)
1193     demotePHIsOnFunclets(F, DemoteCatchSwitchPHIOnly ||
1194                                 DemoteCatchSwitchPHIOnlyOpt);
1195 
1196   if (!DisableCleanups) {
1197     assert(!verifyFunction(F, &dbgs()));
1198     removeImplausibleInstructions(F);
1199 
1200     assert(!verifyFunction(F, &dbgs()));
1201     cleanupPreparedFunclets(F);
1202   }
1203 
1204   LLVM_DEBUG(verifyPreparedFunclets(F));
1205   // Recolor the CFG to verify that all is well.
1206   LLVM_DEBUG(colorFunclets(F));
1207   LLVM_DEBUG(verifyPreparedFunclets(F));
1208 
1209   BlockColors.clear();
1210   FuncletBlocks.clear();
1211 
1212   return true;
1213 }
1214 
1215 // TODO: Share loads when one use dominates another, or when a catchpad exit
1216 // dominates uses (needs dominators).
1217 AllocaInst *WinEHPrepare::insertPHILoads(PHINode *PN, Function &F) {
1218   BasicBlock *PHIBlock = PN->getParent();
1219   AllocaInst *SpillSlot = nullptr;
1220   Instruction *EHPad = PHIBlock->getFirstNonPHI();
1221 
1222   if (!EHPad->isTerminator()) {
1223     // If the EHPad isn't a terminator, then we can insert a load in this block
1224     // that will dominate all uses.
1225     SpillSlot = new AllocaInst(PN->getType(), DL->getAllocaAddrSpace(), nullptr,
1226                                Twine(PN->getName(), ".wineh.spillslot"),
1227                                &F.getEntryBlock().front());
1228     Value *V = new LoadInst(PN->getType(), SpillSlot,
1229                             Twine(PN->getName(), ".wineh.reload"),
1230                             &*PHIBlock->getFirstInsertionPt());
1231     PN->replaceAllUsesWith(V);
1232     return SpillSlot;
1233   }
1234 
1235   // Otherwise, we have a PHI on a terminator EHPad, and we give up and insert
1236   // loads of the slot before every use.
1237   DenseMap<BasicBlock *, Value *> Loads;
1238   for (Use &U : llvm::make_early_inc_range(PN->uses())) {
1239     auto *UsingInst = cast<Instruction>(U.getUser());
1240     if (isa<PHINode>(UsingInst) && UsingInst->getParent()->isEHPad()) {
1241       // Use is on an EH pad phi.  Leave it alone; we'll insert loads and
1242       // stores for it separately.
1243       continue;
1244     }
1245     replaceUseWithLoad(PN, U, SpillSlot, Loads, F);
1246   }
1247   return SpillSlot;
1248 }
1249 
1250 // TODO: improve store placement.  Inserting at def is probably good, but need
1251 // to be careful not to introduce interfering stores (needs liveness analysis).
1252 // TODO: identify related phi nodes that can share spill slots, and share them
1253 // (also needs liveness).
1254 void WinEHPrepare::insertPHIStores(PHINode *OriginalPHI,
1255                                    AllocaInst *SpillSlot) {
1256   // Use a worklist of (Block, Value) pairs -- the given Value needs to be
1257   // stored to the spill slot by the end of the given Block.
1258   SmallVector<std::pair<BasicBlock *, Value *>, 4> Worklist;
1259 
1260   Worklist.push_back({OriginalPHI->getParent(), OriginalPHI});
1261 
1262   while (!Worklist.empty()) {
1263     BasicBlock *EHBlock;
1264     Value *InVal;
1265     std::tie(EHBlock, InVal) = Worklist.pop_back_val();
1266 
1267     PHINode *PN = dyn_cast<PHINode>(InVal);
1268     if (PN && PN->getParent() == EHBlock) {
1269       // The value is defined by another PHI we need to remove, with no room to
1270       // insert a store after the PHI, so each predecessor needs to store its
1271       // incoming value.
1272       for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) {
1273         Value *PredVal = PN->getIncomingValue(i);
1274 
1275         // Undef can safely be skipped.
1276         if (isa<UndefValue>(PredVal))
1277           continue;
1278 
1279         insertPHIStore(PN->getIncomingBlock(i), PredVal, SpillSlot, Worklist);
1280       }
1281     } else {
1282       // We need to store InVal, which dominates EHBlock, but can't put a store
1283       // in EHBlock, so need to put stores in each predecessor.
1284       for (BasicBlock *PredBlock : predecessors(EHBlock)) {
1285         insertPHIStore(PredBlock, InVal, SpillSlot, Worklist);
1286       }
1287     }
1288   }
1289 }
1290 
1291 void WinEHPrepare::insertPHIStore(
1292     BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot,
1293     SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist) {
1294 
1295   if (PredBlock->isEHPad() && PredBlock->getFirstNonPHI()->isTerminator()) {
1296     // Pred is unsplittable, so we need to queue it on the worklist.
1297     Worklist.push_back({PredBlock, PredVal});
1298     return;
1299   }
1300 
1301   // Otherwise, insert the store at the end of the basic block.
1302   new StoreInst(PredVal, SpillSlot, PredBlock->getTerminator());
1303 }
1304 
1305 void WinEHPrepare::replaceUseWithLoad(Value *V, Use &U, AllocaInst *&SpillSlot,
1306                                       DenseMap<BasicBlock *, Value *> &Loads,
1307                                       Function &F) {
1308   // Lazilly create the spill slot.
1309   if (!SpillSlot)
1310     SpillSlot = new AllocaInst(V->getType(), DL->getAllocaAddrSpace(), nullptr,
1311                                Twine(V->getName(), ".wineh.spillslot"),
1312                                &F.getEntryBlock().front());
1313 
1314   auto *UsingInst = cast<Instruction>(U.getUser());
1315   if (auto *UsingPHI = dyn_cast<PHINode>(UsingInst)) {
1316     // If this is a PHI node, we can't insert a load of the value before
1317     // the use.  Instead insert the load in the predecessor block
1318     // corresponding to the incoming value.
1319     //
1320     // Note that if there are multiple edges from a basic block to this
1321     // PHI node that we cannot have multiple loads.  The problem is that
1322     // the resulting PHI node will have multiple values (from each load)
1323     // coming in from the same block, which is illegal SSA form.
1324     // For this reason, we keep track of and reuse loads we insert.
1325     BasicBlock *IncomingBlock = UsingPHI->getIncomingBlock(U);
1326     if (auto *CatchRet =
1327             dyn_cast<CatchReturnInst>(IncomingBlock->getTerminator())) {
1328       // Putting a load above a catchret and use on the phi would still leave
1329       // a cross-funclet def/use.  We need to split the edge, change the
1330       // catchret to target the new block, and put the load there.
1331       BasicBlock *PHIBlock = UsingInst->getParent();
1332       BasicBlock *NewBlock = SplitEdge(IncomingBlock, PHIBlock);
1333       // SplitEdge gives us:
1334       //   IncomingBlock:
1335       //     ...
1336       //     br label %NewBlock
1337       //   NewBlock:
1338       //     catchret label %PHIBlock
1339       // But we need:
1340       //   IncomingBlock:
1341       //     ...
1342       //     catchret label %NewBlock
1343       //   NewBlock:
1344       //     br label %PHIBlock
1345       // So move the terminators to each others' blocks and swap their
1346       // successors.
1347       BranchInst *Goto = cast<BranchInst>(IncomingBlock->getTerminator());
1348       Goto->removeFromParent();
1349       CatchRet->removeFromParent();
1350       CatchRet->insertInto(IncomingBlock, IncomingBlock->end());
1351       Goto->insertInto(NewBlock, NewBlock->end());
1352       Goto->setSuccessor(0, PHIBlock);
1353       CatchRet->setSuccessor(NewBlock);
1354       // Update the color mapping for the newly split edge.
1355       // Grab a reference to the ColorVector to be inserted before getting the
1356       // reference to the vector we are copying because inserting the new
1357       // element in BlockColors might cause the map to be reallocated.
1358       ColorVector &ColorsForNewBlock = BlockColors[NewBlock];
1359       ColorVector &ColorsForPHIBlock = BlockColors[PHIBlock];
1360       ColorsForNewBlock = ColorsForPHIBlock;
1361       for (BasicBlock *FuncletPad : ColorsForPHIBlock)
1362         FuncletBlocks[FuncletPad].push_back(NewBlock);
1363       // Treat the new block as incoming for load insertion.
1364       IncomingBlock = NewBlock;
1365     }
1366     Value *&Load = Loads[IncomingBlock];
1367     // Insert the load into the predecessor block
1368     if (!Load)
1369       Load = new LoadInst(V->getType(), SpillSlot,
1370                           Twine(V->getName(), ".wineh.reload"),
1371                           /*isVolatile=*/false, IncomingBlock->getTerminator());
1372 
1373     U.set(Load);
1374   } else {
1375     // Reload right before the old use.
1376     auto *Load = new LoadInst(V->getType(), SpillSlot,
1377                               Twine(V->getName(), ".wineh.reload"),
1378                               /*isVolatile=*/false, UsingInst);
1379     U.set(Load);
1380   }
1381 }
1382 
1383 void WinEHFuncInfo::addIPToStateRange(const InvokeInst *II,
1384                                       MCSymbol *InvokeBegin,
1385                                       MCSymbol *InvokeEnd) {
1386   assert(InvokeStateMap.count(II) &&
1387          "should get invoke with precomputed state");
1388   LabelToStateMap[InvokeBegin] = std::make_pair(InvokeStateMap[II], InvokeEnd);
1389 }
1390 
1391 void WinEHFuncInfo::addIPToStateRange(int State, MCSymbol* InvokeBegin,
1392     MCSymbol* InvokeEnd) {
1393     LabelToStateMap[InvokeBegin] = std::make_pair(State, InvokeEnd);
1394 }
1395 
1396 WinEHFuncInfo::WinEHFuncInfo() = default;
1397