1 //===-- WinEHPrepare - Prepare exception handling for code generation ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass lowers LLVM IR exception handling into something closer to what the
10 // backend wants for functions using a personality function from a runtime
11 // provided by MSVC. Functions with other personality functions are left alone
12 // and may be prepared by other passes. In particular, all supported MSVC
13 // personality functions require cleanup code to be outlined, and the C++
14 // personality requires catch handler code to be outlined.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/Analysis/CFG.h"
22 #include "llvm/Analysis/EHPersonalities.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/Passes.h"
25 #include "llvm/CodeGen/WinEHFuncInfo.h"
26 #include "llvm/IR/Verifier.h"
27 #include "llvm/InitializePasses.h"
28 #include "llvm/MC/MCSymbol.h"
29 #include "llvm/Pass.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
34 #include "llvm/Transforms/Utils/Cloning.h"
35 #include "llvm/Transforms/Utils/Local.h"
36 #include "llvm/Transforms/Utils/SSAUpdater.h"
37 
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "winehprepare"
41 
42 static cl::opt<bool> DisableDemotion(
43     "disable-demotion", cl::Hidden,
44     cl::desc(
45         "Clone multicolor basic blocks but do not demote cross scopes"),
46     cl::init(false));
47 
48 static cl::opt<bool> DisableCleanups(
49     "disable-cleanups", cl::Hidden,
50     cl::desc("Do not remove implausible terminators or other similar cleanups"),
51     cl::init(false));
52 
53 static cl::opt<bool> DemoteCatchSwitchPHIOnlyOpt(
54     "demote-catchswitch-only", cl::Hidden,
55     cl::desc("Demote catchswitch BBs only (for wasm EH)"), cl::init(false));
56 
57 namespace {
58 
59 class WinEHPrepare : public FunctionPass {
60 public:
61   static char ID; // Pass identification, replacement for typeid.
62   WinEHPrepare(bool DemoteCatchSwitchPHIOnly = false)
63       : FunctionPass(ID), DemoteCatchSwitchPHIOnly(DemoteCatchSwitchPHIOnly) {}
64 
65   bool runOnFunction(Function &Fn) override;
66 
67   bool doFinalization(Module &M) override;
68 
69   void getAnalysisUsage(AnalysisUsage &AU) const override;
70 
71   StringRef getPassName() const override {
72     return "Windows exception handling preparation";
73   }
74 
75 private:
76   void insertPHIStores(PHINode *OriginalPHI, AllocaInst *SpillSlot);
77   void
78   insertPHIStore(BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot,
79                  SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist);
80   AllocaInst *insertPHILoads(PHINode *PN, Function &F);
81   void replaceUseWithLoad(Value *V, Use &U, AllocaInst *&SpillSlot,
82                           DenseMap<BasicBlock *, Value *> &Loads, Function &F);
83   bool prepareExplicitEH(Function &F);
84   void colorFunclets(Function &F);
85 
86   void demotePHIsOnFunclets(Function &F, bool DemoteCatchSwitchPHIOnly);
87   void cloneCommonBlocks(Function &F);
88   void removeImplausibleInstructions(Function &F);
89   void cleanupPreparedFunclets(Function &F);
90   void verifyPreparedFunclets(Function &F);
91 
92   bool DemoteCatchSwitchPHIOnly;
93 
94   // All fields are reset by runOnFunction.
95   EHPersonality Personality = EHPersonality::Unknown;
96 
97   const DataLayout *DL = nullptr;
98   DenseMap<BasicBlock *, ColorVector> BlockColors;
99   MapVector<BasicBlock *, std::vector<BasicBlock *>> FuncletBlocks;
100 };
101 
102 } // end anonymous namespace
103 
104 char WinEHPrepare::ID = 0;
105 INITIALIZE_PASS(WinEHPrepare, DEBUG_TYPE, "Prepare Windows exceptions",
106                 false, false)
107 
108 FunctionPass *llvm::createWinEHPass(bool DemoteCatchSwitchPHIOnly) {
109   return new WinEHPrepare(DemoteCatchSwitchPHIOnly);
110 }
111 
112 bool WinEHPrepare::runOnFunction(Function &Fn) {
113   if (!Fn.hasPersonalityFn())
114     return false;
115 
116   // Classify the personality to see what kind of preparation we need.
117   Personality = classifyEHPersonality(Fn.getPersonalityFn());
118 
119   // Do nothing if this is not a scope-based personality.
120   if (!isScopedEHPersonality(Personality))
121     return false;
122 
123   DL = &Fn.getParent()->getDataLayout();
124   return prepareExplicitEH(Fn);
125 }
126 
127 bool WinEHPrepare::doFinalization(Module &M) { return false; }
128 
129 void WinEHPrepare::getAnalysisUsage(AnalysisUsage &AU) const {}
130 
131 static int addUnwindMapEntry(WinEHFuncInfo &FuncInfo, int ToState,
132                              const BasicBlock *BB) {
133   CxxUnwindMapEntry UME;
134   UME.ToState = ToState;
135   UME.Cleanup = BB;
136   FuncInfo.CxxUnwindMap.push_back(UME);
137   return FuncInfo.getLastStateNumber();
138 }
139 
140 static void addTryBlockMapEntry(WinEHFuncInfo &FuncInfo, int TryLow,
141                                 int TryHigh, int CatchHigh,
142                                 ArrayRef<const CatchPadInst *> Handlers) {
143   WinEHTryBlockMapEntry TBME;
144   TBME.TryLow = TryLow;
145   TBME.TryHigh = TryHigh;
146   TBME.CatchHigh = CatchHigh;
147   assert(TBME.TryLow <= TBME.TryHigh);
148   for (const CatchPadInst *CPI : Handlers) {
149     WinEHHandlerType HT;
150     Constant *TypeInfo = cast<Constant>(CPI->getArgOperand(0));
151     if (TypeInfo->isNullValue())
152       HT.TypeDescriptor = nullptr;
153     else
154       HT.TypeDescriptor = cast<GlobalVariable>(TypeInfo->stripPointerCasts());
155     HT.Adjectives = cast<ConstantInt>(CPI->getArgOperand(1))->getZExtValue();
156     HT.Handler = CPI->getParent();
157     if (auto *AI =
158             dyn_cast<AllocaInst>(CPI->getArgOperand(2)->stripPointerCasts()))
159       HT.CatchObj.Alloca = AI;
160     else
161       HT.CatchObj.Alloca = nullptr;
162     TBME.HandlerArray.push_back(HT);
163   }
164   FuncInfo.TryBlockMap.push_back(TBME);
165 }
166 
167 static BasicBlock *getCleanupRetUnwindDest(const CleanupPadInst *CleanupPad) {
168   for (const User *U : CleanupPad->users())
169     if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
170       return CRI->getUnwindDest();
171   return nullptr;
172 }
173 
174 static void calculateStateNumbersForInvokes(const Function *Fn,
175                                             WinEHFuncInfo &FuncInfo) {
176   auto *F = const_cast<Function *>(Fn);
177   DenseMap<BasicBlock *, ColorVector> BlockColors = colorEHFunclets(*F);
178   for (BasicBlock &BB : *F) {
179     auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
180     if (!II)
181       continue;
182 
183     auto &BBColors = BlockColors[&BB];
184     assert(BBColors.size() == 1 && "multi-color BB not removed by preparation");
185     BasicBlock *FuncletEntryBB = BBColors.front();
186 
187     BasicBlock *FuncletUnwindDest;
188     auto *FuncletPad =
189         dyn_cast<FuncletPadInst>(FuncletEntryBB->getFirstNonPHI());
190     assert(FuncletPad || FuncletEntryBB == &Fn->getEntryBlock());
191     if (!FuncletPad)
192       FuncletUnwindDest = nullptr;
193     else if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
194       FuncletUnwindDest = CatchPad->getCatchSwitch()->getUnwindDest();
195     else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(FuncletPad))
196       FuncletUnwindDest = getCleanupRetUnwindDest(CleanupPad);
197     else
198       llvm_unreachable("unexpected funclet pad!");
199 
200     BasicBlock *InvokeUnwindDest = II->getUnwindDest();
201     int BaseState = -1;
202     if (FuncletUnwindDest == InvokeUnwindDest) {
203       auto BaseStateI = FuncInfo.FuncletBaseStateMap.find(FuncletPad);
204       if (BaseStateI != FuncInfo.FuncletBaseStateMap.end())
205         BaseState = BaseStateI->second;
206     }
207 
208     if (BaseState != -1) {
209       FuncInfo.InvokeStateMap[II] = BaseState;
210     } else {
211       Instruction *PadInst = InvokeUnwindDest->getFirstNonPHI();
212       assert(FuncInfo.EHPadStateMap.count(PadInst) && "EH Pad has no state!");
213       FuncInfo.InvokeStateMap[II] = FuncInfo.EHPadStateMap[PadInst];
214     }
215   }
216 }
217 
218 // Given BB which ends in an unwind edge, return the EHPad that this BB belongs
219 // to. If the unwind edge came from an invoke, return null.
220 static const BasicBlock *getEHPadFromPredecessor(const BasicBlock *BB,
221                                                  Value *ParentPad) {
222   const Instruction *TI = BB->getTerminator();
223   if (isa<InvokeInst>(TI))
224     return nullptr;
225   if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
226     if (CatchSwitch->getParentPad() != ParentPad)
227       return nullptr;
228     return BB;
229   }
230   assert(!TI->isEHPad() && "unexpected EHPad!");
231   auto *CleanupPad = cast<CleanupReturnInst>(TI)->getCleanupPad();
232   if (CleanupPad->getParentPad() != ParentPad)
233     return nullptr;
234   return CleanupPad->getParent();
235 }
236 
237 static void calculateCXXStateNumbers(WinEHFuncInfo &FuncInfo,
238                                      const Instruction *FirstNonPHI,
239                                      int ParentState) {
240   const BasicBlock *BB = FirstNonPHI->getParent();
241   assert(BB->isEHPad() && "not a funclet!");
242 
243   if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FirstNonPHI)) {
244     assert(FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 &&
245            "shouldn't revist catch funclets!");
246 
247     SmallVector<const CatchPadInst *, 2> Handlers;
248     for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
249       auto *CatchPad = cast<CatchPadInst>(CatchPadBB->getFirstNonPHI());
250       Handlers.push_back(CatchPad);
251     }
252     int TryLow = addUnwindMapEntry(FuncInfo, ParentState, nullptr);
253     FuncInfo.EHPadStateMap[CatchSwitch] = TryLow;
254     for (const BasicBlock *PredBlock : predecessors(BB))
255       if ((PredBlock = getEHPadFromPredecessor(PredBlock,
256                                                CatchSwitch->getParentPad())))
257         calculateCXXStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
258                                  TryLow);
259     int CatchLow = addUnwindMapEntry(FuncInfo, ParentState, nullptr);
260 
261     // catchpads are separate funclets in C++ EH due to the way rethrow works.
262     int TryHigh = CatchLow - 1;
263     for (const auto *CatchPad : Handlers) {
264       FuncInfo.FuncletBaseStateMap[CatchPad] = CatchLow;
265       for (const User *U : CatchPad->users()) {
266         const auto *UserI = cast<Instruction>(U);
267         if (auto *InnerCatchSwitch = dyn_cast<CatchSwitchInst>(UserI)) {
268           BasicBlock *UnwindDest = InnerCatchSwitch->getUnwindDest();
269           if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
270             calculateCXXStateNumbers(FuncInfo, UserI, CatchLow);
271         }
272         if (auto *InnerCleanupPad = dyn_cast<CleanupPadInst>(UserI)) {
273           BasicBlock *UnwindDest = getCleanupRetUnwindDest(InnerCleanupPad);
274           // If a nested cleanup pad reports a null unwind destination and the
275           // enclosing catch pad doesn't it must be post-dominated by an
276           // unreachable instruction.
277           if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
278             calculateCXXStateNumbers(FuncInfo, UserI, CatchLow);
279         }
280       }
281     }
282     int CatchHigh = FuncInfo.getLastStateNumber();
283     addTryBlockMapEntry(FuncInfo, TryLow, TryHigh, CatchHigh, Handlers);
284     LLVM_DEBUG(dbgs() << "TryLow[" << BB->getName() << "]: " << TryLow << '\n');
285     LLVM_DEBUG(dbgs() << "TryHigh[" << BB->getName() << "]: " << TryHigh
286                       << '\n');
287     LLVM_DEBUG(dbgs() << "CatchHigh[" << BB->getName() << "]: " << CatchHigh
288                       << '\n');
289   } else {
290     auto *CleanupPad = cast<CleanupPadInst>(FirstNonPHI);
291 
292     // It's possible for a cleanup to be visited twice: it might have multiple
293     // cleanupret instructions.
294     if (FuncInfo.EHPadStateMap.count(CleanupPad))
295       return;
296 
297     int CleanupState = addUnwindMapEntry(FuncInfo, ParentState, BB);
298     FuncInfo.EHPadStateMap[CleanupPad] = CleanupState;
299     LLVM_DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB "
300                       << BB->getName() << '\n');
301     for (const BasicBlock *PredBlock : predecessors(BB)) {
302       if ((PredBlock = getEHPadFromPredecessor(PredBlock,
303                                                CleanupPad->getParentPad()))) {
304         calculateCXXStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
305                                  CleanupState);
306       }
307     }
308     for (const User *U : CleanupPad->users()) {
309       const auto *UserI = cast<Instruction>(U);
310       if (UserI->isEHPad())
311         report_fatal_error("Cleanup funclets for the MSVC++ personality cannot "
312                            "contain exceptional actions");
313     }
314   }
315 }
316 
317 static int addSEHExcept(WinEHFuncInfo &FuncInfo, int ParentState,
318                         const Function *Filter, const BasicBlock *Handler) {
319   SEHUnwindMapEntry Entry;
320   Entry.ToState = ParentState;
321   Entry.IsFinally = false;
322   Entry.Filter = Filter;
323   Entry.Handler = Handler;
324   FuncInfo.SEHUnwindMap.push_back(Entry);
325   return FuncInfo.SEHUnwindMap.size() - 1;
326 }
327 
328 static int addSEHFinally(WinEHFuncInfo &FuncInfo, int ParentState,
329                          const BasicBlock *Handler) {
330   SEHUnwindMapEntry Entry;
331   Entry.ToState = ParentState;
332   Entry.IsFinally = true;
333   Entry.Filter = nullptr;
334   Entry.Handler = Handler;
335   FuncInfo.SEHUnwindMap.push_back(Entry);
336   return FuncInfo.SEHUnwindMap.size() - 1;
337 }
338 
339 static void calculateSEHStateNumbers(WinEHFuncInfo &FuncInfo,
340                                      const Instruction *FirstNonPHI,
341                                      int ParentState) {
342   const BasicBlock *BB = FirstNonPHI->getParent();
343   assert(BB->isEHPad() && "no a funclet!");
344 
345   if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FirstNonPHI)) {
346     assert(FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 &&
347            "shouldn't revist catch funclets!");
348 
349     // Extract the filter function and the __except basic block and create a
350     // state for them.
351     assert(CatchSwitch->getNumHandlers() == 1 &&
352            "SEH doesn't have multiple handlers per __try");
353     const auto *CatchPad =
354         cast<CatchPadInst>((*CatchSwitch->handler_begin())->getFirstNonPHI());
355     const BasicBlock *CatchPadBB = CatchPad->getParent();
356     const Constant *FilterOrNull =
357         cast<Constant>(CatchPad->getArgOperand(0)->stripPointerCasts());
358     const Function *Filter = dyn_cast<Function>(FilterOrNull);
359     assert((Filter || FilterOrNull->isNullValue()) &&
360            "unexpected filter value");
361     int TryState = addSEHExcept(FuncInfo, ParentState, Filter, CatchPadBB);
362 
363     // Everything in the __try block uses TryState as its parent state.
364     FuncInfo.EHPadStateMap[CatchSwitch] = TryState;
365     LLVM_DEBUG(dbgs() << "Assigning state #" << TryState << " to BB "
366                       << CatchPadBB->getName() << '\n');
367     for (const BasicBlock *PredBlock : predecessors(BB))
368       if ((PredBlock = getEHPadFromPredecessor(PredBlock,
369                                                CatchSwitch->getParentPad())))
370         calculateSEHStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
371                                  TryState);
372 
373     // Everything in the __except block unwinds to ParentState, just like code
374     // outside the __try.
375     for (const User *U : CatchPad->users()) {
376       const auto *UserI = cast<Instruction>(U);
377       if (auto *InnerCatchSwitch = dyn_cast<CatchSwitchInst>(UserI)) {
378         BasicBlock *UnwindDest = InnerCatchSwitch->getUnwindDest();
379         if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
380           calculateSEHStateNumbers(FuncInfo, UserI, ParentState);
381       }
382       if (auto *InnerCleanupPad = dyn_cast<CleanupPadInst>(UserI)) {
383         BasicBlock *UnwindDest = getCleanupRetUnwindDest(InnerCleanupPad);
384         // If a nested cleanup pad reports a null unwind destination and the
385         // enclosing catch pad doesn't it must be post-dominated by an
386         // unreachable instruction.
387         if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
388           calculateSEHStateNumbers(FuncInfo, UserI, ParentState);
389       }
390     }
391   } else {
392     auto *CleanupPad = cast<CleanupPadInst>(FirstNonPHI);
393 
394     // It's possible for a cleanup to be visited twice: it might have multiple
395     // cleanupret instructions.
396     if (FuncInfo.EHPadStateMap.count(CleanupPad))
397       return;
398 
399     int CleanupState = addSEHFinally(FuncInfo, ParentState, BB);
400     FuncInfo.EHPadStateMap[CleanupPad] = CleanupState;
401     LLVM_DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB "
402                       << BB->getName() << '\n');
403     for (const BasicBlock *PredBlock : predecessors(BB))
404       if ((PredBlock =
405                getEHPadFromPredecessor(PredBlock, CleanupPad->getParentPad())))
406         calculateSEHStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
407                                  CleanupState);
408     for (const User *U : CleanupPad->users()) {
409       const auto *UserI = cast<Instruction>(U);
410       if (UserI->isEHPad())
411         report_fatal_error("Cleanup funclets for the SEH personality cannot "
412                            "contain exceptional actions");
413     }
414   }
415 }
416 
417 static bool isTopLevelPadForMSVC(const Instruction *EHPad) {
418   if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(EHPad))
419     return isa<ConstantTokenNone>(CatchSwitch->getParentPad()) &&
420            CatchSwitch->unwindsToCaller();
421   if (auto *CleanupPad = dyn_cast<CleanupPadInst>(EHPad))
422     return isa<ConstantTokenNone>(CleanupPad->getParentPad()) &&
423            getCleanupRetUnwindDest(CleanupPad) == nullptr;
424   if (isa<CatchPadInst>(EHPad))
425     return false;
426   llvm_unreachable("unexpected EHPad!");
427 }
428 
429 void llvm::calculateSEHStateNumbers(const Function *Fn,
430                                     WinEHFuncInfo &FuncInfo) {
431   // Don't compute state numbers twice.
432   if (!FuncInfo.SEHUnwindMap.empty())
433     return;
434 
435   for (const BasicBlock &BB : *Fn) {
436     if (!BB.isEHPad())
437       continue;
438     const Instruction *FirstNonPHI = BB.getFirstNonPHI();
439     if (!isTopLevelPadForMSVC(FirstNonPHI))
440       continue;
441     ::calculateSEHStateNumbers(FuncInfo, FirstNonPHI, -1);
442   }
443 
444   calculateStateNumbersForInvokes(Fn, FuncInfo);
445 }
446 
447 void llvm::calculateWinCXXEHStateNumbers(const Function *Fn,
448                                          WinEHFuncInfo &FuncInfo) {
449   // Return if it's already been done.
450   if (!FuncInfo.EHPadStateMap.empty())
451     return;
452 
453   for (const BasicBlock &BB : *Fn) {
454     if (!BB.isEHPad())
455       continue;
456     const Instruction *FirstNonPHI = BB.getFirstNonPHI();
457     if (!isTopLevelPadForMSVC(FirstNonPHI))
458       continue;
459     calculateCXXStateNumbers(FuncInfo, FirstNonPHI, -1);
460   }
461 
462   calculateStateNumbersForInvokes(Fn, FuncInfo);
463 }
464 
465 static int addClrEHHandler(WinEHFuncInfo &FuncInfo, int HandlerParentState,
466                            int TryParentState, ClrHandlerType HandlerType,
467                            uint32_t TypeToken, const BasicBlock *Handler) {
468   ClrEHUnwindMapEntry Entry;
469   Entry.HandlerParentState = HandlerParentState;
470   Entry.TryParentState = TryParentState;
471   Entry.Handler = Handler;
472   Entry.HandlerType = HandlerType;
473   Entry.TypeToken = TypeToken;
474   FuncInfo.ClrEHUnwindMap.push_back(Entry);
475   return FuncInfo.ClrEHUnwindMap.size() - 1;
476 }
477 
478 void llvm::calculateClrEHStateNumbers(const Function *Fn,
479                                       WinEHFuncInfo &FuncInfo) {
480   // Return if it's already been done.
481   if (!FuncInfo.EHPadStateMap.empty())
482     return;
483 
484   // This numbering assigns one state number to each catchpad and cleanuppad.
485   // It also computes two tree-like relations over states:
486   // 1) Each state has a "HandlerParentState", which is the state of the next
487   //    outer handler enclosing this state's handler (same as nearest ancestor
488   //    per the ParentPad linkage on EH pads, but skipping over catchswitches).
489   // 2) Each state has a "TryParentState", which:
490   //    a) for a catchpad that's not the last handler on its catchswitch, is
491   //       the state of the next catchpad on that catchswitch
492   //    b) for all other pads, is the state of the pad whose try region is the
493   //       next outer try region enclosing this state's try region.  The "try
494   //       regions are not present as such in the IR, but will be inferred
495   //       based on the placement of invokes and pads which reach each other
496   //       by exceptional exits
497   // Catchswitches do not get their own states, but each gets mapped to the
498   // state of its first catchpad.
499 
500   // Step one: walk down from outermost to innermost funclets, assigning each
501   // catchpad and cleanuppad a state number.  Add an entry to the
502   // ClrEHUnwindMap for each state, recording its HandlerParentState and
503   // handler attributes.  Record the TryParentState as well for each catchpad
504   // that's not the last on its catchswitch, but initialize all other entries'
505   // TryParentStates to a sentinel -1 value that the next pass will update.
506 
507   // Seed a worklist with pads that have no parent.
508   SmallVector<std::pair<const Instruction *, int>, 8> Worklist;
509   for (const BasicBlock &BB : *Fn) {
510     const Instruction *FirstNonPHI = BB.getFirstNonPHI();
511     const Value *ParentPad;
512     if (const auto *CPI = dyn_cast<CleanupPadInst>(FirstNonPHI))
513       ParentPad = CPI->getParentPad();
514     else if (const auto *CSI = dyn_cast<CatchSwitchInst>(FirstNonPHI))
515       ParentPad = CSI->getParentPad();
516     else
517       continue;
518     if (isa<ConstantTokenNone>(ParentPad))
519       Worklist.emplace_back(FirstNonPHI, -1);
520   }
521 
522   // Use the worklist to visit all pads, from outer to inner.  Record
523   // HandlerParentState for all pads.  Record TryParentState only for catchpads
524   // that aren't the last on their catchswitch (setting all other entries'
525   // TryParentStates to an initial value of -1).  This loop is also responsible
526   // for setting the EHPadStateMap entry for all catchpads, cleanuppads, and
527   // catchswitches.
528   while (!Worklist.empty()) {
529     const Instruction *Pad;
530     int HandlerParentState;
531     std::tie(Pad, HandlerParentState) = Worklist.pop_back_val();
532 
533     if (const auto *Cleanup = dyn_cast<CleanupPadInst>(Pad)) {
534       // Create the entry for this cleanup with the appropriate handler
535       // properties.  Finally and fault handlers are distinguished by arity.
536       ClrHandlerType HandlerType =
537           (Cleanup->getNumArgOperands() ? ClrHandlerType::Fault
538                                         : ClrHandlerType::Finally);
539       int CleanupState = addClrEHHandler(FuncInfo, HandlerParentState, -1,
540                                          HandlerType, 0, Pad->getParent());
541       // Queue any child EH pads on the worklist.
542       for (const User *U : Cleanup->users())
543         if (const auto *I = dyn_cast<Instruction>(U))
544           if (I->isEHPad())
545             Worklist.emplace_back(I, CleanupState);
546       // Remember this pad's state.
547       FuncInfo.EHPadStateMap[Cleanup] = CleanupState;
548     } else {
549       // Walk the handlers of this catchswitch in reverse order since all but
550       // the last need to set the following one as its TryParentState.
551       const auto *CatchSwitch = cast<CatchSwitchInst>(Pad);
552       int CatchState = -1, FollowerState = -1;
553       SmallVector<const BasicBlock *, 4> CatchBlocks(CatchSwitch->handlers());
554       for (auto CBI = CatchBlocks.rbegin(), CBE = CatchBlocks.rend();
555            CBI != CBE; ++CBI, FollowerState = CatchState) {
556         const BasicBlock *CatchBlock = *CBI;
557         // Create the entry for this catch with the appropriate handler
558         // properties.
559         const auto *Catch = cast<CatchPadInst>(CatchBlock->getFirstNonPHI());
560         uint32_t TypeToken = static_cast<uint32_t>(
561             cast<ConstantInt>(Catch->getArgOperand(0))->getZExtValue());
562         CatchState =
563             addClrEHHandler(FuncInfo, HandlerParentState, FollowerState,
564                             ClrHandlerType::Catch, TypeToken, CatchBlock);
565         // Queue any child EH pads on the worklist.
566         for (const User *U : Catch->users())
567           if (const auto *I = dyn_cast<Instruction>(U))
568             if (I->isEHPad())
569               Worklist.emplace_back(I, CatchState);
570         // Remember this catch's state.
571         FuncInfo.EHPadStateMap[Catch] = CatchState;
572       }
573       // Associate the catchswitch with the state of its first catch.
574       assert(CatchSwitch->getNumHandlers());
575       FuncInfo.EHPadStateMap[CatchSwitch] = CatchState;
576     }
577   }
578 
579   // Step two: record the TryParentState of each state.  For cleanuppads that
580   // don't have cleanuprets, we may need to infer this from their child pads,
581   // so visit pads in descendant-most to ancestor-most order.
582   for (auto Entry = FuncInfo.ClrEHUnwindMap.rbegin(),
583             End = FuncInfo.ClrEHUnwindMap.rend();
584        Entry != End; ++Entry) {
585     const Instruction *Pad =
586         Entry->Handler.get<const BasicBlock *>()->getFirstNonPHI();
587     // For most pads, the TryParentState is the state associated with the
588     // unwind dest of exceptional exits from it.
589     const BasicBlock *UnwindDest;
590     if (const auto *Catch = dyn_cast<CatchPadInst>(Pad)) {
591       // If a catch is not the last in its catchswitch, its TryParentState is
592       // the state associated with the next catch in the switch, even though
593       // that's not the unwind dest of exceptions escaping the catch.  Those
594       // cases were already assigned a TryParentState in the first pass, so
595       // skip them.
596       if (Entry->TryParentState != -1)
597         continue;
598       // Otherwise, get the unwind dest from the catchswitch.
599       UnwindDest = Catch->getCatchSwitch()->getUnwindDest();
600     } else {
601       const auto *Cleanup = cast<CleanupPadInst>(Pad);
602       UnwindDest = nullptr;
603       for (const User *U : Cleanup->users()) {
604         if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
605           // Common and unambiguous case -- cleanupret indicates cleanup's
606           // unwind dest.
607           UnwindDest = CleanupRet->getUnwindDest();
608           break;
609         }
610 
611         // Get an unwind dest for the user
612         const BasicBlock *UserUnwindDest = nullptr;
613         if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
614           UserUnwindDest = Invoke->getUnwindDest();
615         } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(U)) {
616           UserUnwindDest = CatchSwitch->getUnwindDest();
617         } else if (auto *ChildCleanup = dyn_cast<CleanupPadInst>(U)) {
618           int UserState = FuncInfo.EHPadStateMap[ChildCleanup];
619           int UserUnwindState =
620               FuncInfo.ClrEHUnwindMap[UserState].TryParentState;
621           if (UserUnwindState != -1)
622             UserUnwindDest = FuncInfo.ClrEHUnwindMap[UserUnwindState]
623                                  .Handler.get<const BasicBlock *>();
624         }
625 
626         // Not having an unwind dest for this user might indicate that it
627         // doesn't unwind, so can't be taken as proof that the cleanup itself
628         // may unwind to caller (see e.g. SimplifyUnreachable and
629         // RemoveUnwindEdge).
630         if (!UserUnwindDest)
631           continue;
632 
633         // Now we have an unwind dest for the user, but we need to see if it
634         // unwinds all the way out of the cleanup or if it stays within it.
635         const Instruction *UserUnwindPad = UserUnwindDest->getFirstNonPHI();
636         const Value *UserUnwindParent;
637         if (auto *CSI = dyn_cast<CatchSwitchInst>(UserUnwindPad))
638           UserUnwindParent = CSI->getParentPad();
639         else
640           UserUnwindParent =
641               cast<CleanupPadInst>(UserUnwindPad)->getParentPad();
642 
643         // The unwind stays within the cleanup iff it targets a child of the
644         // cleanup.
645         if (UserUnwindParent == Cleanup)
646           continue;
647 
648         // This unwind exits the cleanup, so its dest is the cleanup's dest.
649         UnwindDest = UserUnwindDest;
650         break;
651       }
652     }
653 
654     // Record the state of the unwind dest as the TryParentState.
655     int UnwindDestState;
656 
657     // If UnwindDest is null at this point, either the pad in question can
658     // be exited by unwind to caller, or it cannot be exited by unwind.  In
659     // either case, reporting such cases as unwinding to caller is correct.
660     // This can lead to EH tables that "look strange" -- if this pad's is in
661     // a parent funclet which has other children that do unwind to an enclosing
662     // pad, the try region for this pad will be missing the "duplicate" EH
663     // clause entries that you'd expect to see covering the whole parent.  That
664     // should be benign, since the unwind never actually happens.  If it were
665     // an issue, we could add a subsequent pass that pushes unwind dests down
666     // from parents that have them to children that appear to unwind to caller.
667     if (!UnwindDest) {
668       UnwindDestState = -1;
669     } else {
670       UnwindDestState = FuncInfo.EHPadStateMap[UnwindDest->getFirstNonPHI()];
671     }
672 
673     Entry->TryParentState = UnwindDestState;
674   }
675 
676   // Step three: transfer information from pads to invokes.
677   calculateStateNumbersForInvokes(Fn, FuncInfo);
678 }
679 
680 void WinEHPrepare::colorFunclets(Function &F) {
681   BlockColors = colorEHFunclets(F);
682 
683   // Invert the map from BB to colors to color to BBs.
684   for (BasicBlock &BB : F) {
685     ColorVector &Colors = BlockColors[&BB];
686     for (BasicBlock *Color : Colors)
687       FuncletBlocks[Color].push_back(&BB);
688   }
689 }
690 
691 void WinEHPrepare::demotePHIsOnFunclets(Function &F,
692                                         bool DemoteCatchSwitchPHIOnly) {
693   // Strip PHI nodes off of EH pads.
694   SmallVector<PHINode *, 16> PHINodes;
695   for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE;) {
696     BasicBlock *BB = &*FI++;
697     if (!BB->isEHPad())
698       continue;
699     if (DemoteCatchSwitchPHIOnly && !isa<CatchSwitchInst>(BB->getFirstNonPHI()))
700       continue;
701 
702     for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) {
703       Instruction *I = &*BI++;
704       auto *PN = dyn_cast<PHINode>(I);
705       // Stop at the first non-PHI.
706       if (!PN)
707         break;
708 
709       AllocaInst *SpillSlot = insertPHILoads(PN, F);
710       if (SpillSlot)
711         insertPHIStores(PN, SpillSlot);
712 
713       PHINodes.push_back(PN);
714     }
715   }
716 
717   for (auto *PN : PHINodes) {
718     // There may be lingering uses on other EH PHIs being removed
719     PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
720     PN->eraseFromParent();
721   }
722 }
723 
724 void WinEHPrepare::cloneCommonBlocks(Function &F) {
725   // We need to clone all blocks which belong to multiple funclets.  Values are
726   // remapped throughout the funclet to propagate both the new instructions
727   // *and* the new basic blocks themselves.
728   for (auto &Funclets : FuncletBlocks) {
729     BasicBlock *FuncletPadBB = Funclets.first;
730     std::vector<BasicBlock *> &BlocksInFunclet = Funclets.second;
731     Value *FuncletToken;
732     if (FuncletPadBB == &F.getEntryBlock())
733       FuncletToken = ConstantTokenNone::get(F.getContext());
734     else
735       FuncletToken = FuncletPadBB->getFirstNonPHI();
736 
737     std::vector<std::pair<BasicBlock *, BasicBlock *>> Orig2Clone;
738     ValueToValueMapTy VMap;
739     for (BasicBlock *BB : BlocksInFunclet) {
740       ColorVector &ColorsForBB = BlockColors[BB];
741       // We don't need to do anything if the block is monochromatic.
742       size_t NumColorsForBB = ColorsForBB.size();
743       if (NumColorsForBB == 1)
744         continue;
745 
746       DEBUG_WITH_TYPE("winehprepare-coloring",
747                       dbgs() << "  Cloning block \'" << BB->getName()
748                               << "\' for funclet \'" << FuncletPadBB->getName()
749                               << "\'.\n");
750 
751       // Create a new basic block and copy instructions into it!
752       BasicBlock *CBB =
753           CloneBasicBlock(BB, VMap, Twine(".for.", FuncletPadBB->getName()));
754       // Insert the clone immediately after the original to ensure determinism
755       // and to keep the same relative ordering of any funclet's blocks.
756       CBB->insertInto(&F, BB->getNextNode());
757 
758       // Add basic block mapping.
759       VMap[BB] = CBB;
760 
761       // Record delta operations that we need to perform to our color mappings.
762       Orig2Clone.emplace_back(BB, CBB);
763     }
764 
765     // If nothing was cloned, we're done cloning in this funclet.
766     if (Orig2Clone.empty())
767       continue;
768 
769     // Update our color mappings to reflect that one block has lost a color and
770     // another has gained a color.
771     for (auto &BBMapping : Orig2Clone) {
772       BasicBlock *OldBlock = BBMapping.first;
773       BasicBlock *NewBlock = BBMapping.second;
774 
775       BlocksInFunclet.push_back(NewBlock);
776       ColorVector &NewColors = BlockColors[NewBlock];
777       assert(NewColors.empty() && "A new block should only have one color!");
778       NewColors.push_back(FuncletPadBB);
779 
780       DEBUG_WITH_TYPE("winehprepare-coloring",
781                       dbgs() << "  Assigned color \'" << FuncletPadBB->getName()
782                               << "\' to block \'" << NewBlock->getName()
783                               << "\'.\n");
784 
785       BlocksInFunclet.erase(
786           std::remove(BlocksInFunclet.begin(), BlocksInFunclet.end(), OldBlock),
787           BlocksInFunclet.end());
788       ColorVector &OldColors = BlockColors[OldBlock];
789       OldColors.erase(
790           std::remove(OldColors.begin(), OldColors.end(), FuncletPadBB),
791           OldColors.end());
792 
793       DEBUG_WITH_TYPE("winehprepare-coloring",
794                       dbgs() << "  Removed color \'" << FuncletPadBB->getName()
795                               << "\' from block \'" << OldBlock->getName()
796                               << "\'.\n");
797     }
798 
799     // Loop over all of the instructions in this funclet, fixing up operand
800     // references as we go.  This uses VMap to do all the hard work.
801     for (BasicBlock *BB : BlocksInFunclet)
802       // Loop over all instructions, fixing each one as we find it...
803       for (Instruction &I : *BB)
804         RemapInstruction(&I, VMap,
805                          RF_IgnoreMissingLocals | RF_NoModuleLevelChanges);
806 
807     // Catchrets targeting cloned blocks need to be updated separately from
808     // the loop above because they are not in the current funclet.
809     SmallVector<CatchReturnInst *, 2> FixupCatchrets;
810     for (auto &BBMapping : Orig2Clone) {
811       BasicBlock *OldBlock = BBMapping.first;
812       BasicBlock *NewBlock = BBMapping.second;
813 
814       FixupCatchrets.clear();
815       for (BasicBlock *Pred : predecessors(OldBlock))
816         if (auto *CatchRet = dyn_cast<CatchReturnInst>(Pred->getTerminator()))
817           if (CatchRet->getCatchSwitchParentPad() == FuncletToken)
818             FixupCatchrets.push_back(CatchRet);
819 
820       for (CatchReturnInst *CatchRet : FixupCatchrets)
821         CatchRet->setSuccessor(NewBlock);
822     }
823 
824     auto UpdatePHIOnClonedBlock = [&](PHINode *PN, bool IsForOldBlock) {
825       unsigned NumPreds = PN->getNumIncomingValues();
826       for (unsigned PredIdx = 0, PredEnd = NumPreds; PredIdx != PredEnd;
827            ++PredIdx) {
828         BasicBlock *IncomingBlock = PN->getIncomingBlock(PredIdx);
829         bool EdgeTargetsFunclet;
830         if (auto *CRI =
831                 dyn_cast<CatchReturnInst>(IncomingBlock->getTerminator())) {
832           EdgeTargetsFunclet = (CRI->getCatchSwitchParentPad() == FuncletToken);
833         } else {
834           ColorVector &IncomingColors = BlockColors[IncomingBlock];
835           assert(!IncomingColors.empty() && "Block not colored!");
836           assert((IncomingColors.size() == 1 ||
837                   llvm::all_of(IncomingColors,
838                                [&](BasicBlock *Color) {
839                                  return Color != FuncletPadBB;
840                                })) &&
841                  "Cloning should leave this funclet's blocks monochromatic");
842           EdgeTargetsFunclet = (IncomingColors.front() == FuncletPadBB);
843         }
844         if (IsForOldBlock != EdgeTargetsFunclet)
845           continue;
846         PN->removeIncomingValue(IncomingBlock, /*DeletePHIIfEmpty=*/false);
847         // Revisit the next entry.
848         --PredIdx;
849         --PredEnd;
850       }
851     };
852 
853     for (auto &BBMapping : Orig2Clone) {
854       BasicBlock *OldBlock = BBMapping.first;
855       BasicBlock *NewBlock = BBMapping.second;
856       for (PHINode &OldPN : OldBlock->phis()) {
857         UpdatePHIOnClonedBlock(&OldPN, /*IsForOldBlock=*/true);
858       }
859       for (PHINode &NewPN : NewBlock->phis()) {
860         UpdatePHIOnClonedBlock(&NewPN, /*IsForOldBlock=*/false);
861       }
862     }
863 
864     // Check to see if SuccBB has PHI nodes. If so, we need to add entries to
865     // the PHI nodes for NewBB now.
866     for (auto &BBMapping : Orig2Clone) {
867       BasicBlock *OldBlock = BBMapping.first;
868       BasicBlock *NewBlock = BBMapping.second;
869       for (BasicBlock *SuccBB : successors(NewBlock)) {
870         for (PHINode &SuccPN : SuccBB->phis()) {
871           // Ok, we have a PHI node.  Figure out what the incoming value was for
872           // the OldBlock.
873           int OldBlockIdx = SuccPN.getBasicBlockIndex(OldBlock);
874           if (OldBlockIdx == -1)
875             break;
876           Value *IV = SuccPN.getIncomingValue(OldBlockIdx);
877 
878           // Remap the value if necessary.
879           if (auto *Inst = dyn_cast<Instruction>(IV)) {
880             ValueToValueMapTy::iterator I = VMap.find(Inst);
881             if (I != VMap.end())
882               IV = I->second;
883           }
884 
885           SuccPN.addIncoming(IV, NewBlock);
886         }
887       }
888     }
889 
890     for (ValueToValueMapTy::value_type VT : VMap) {
891       // If there were values defined in BB that are used outside the funclet,
892       // then we now have to update all uses of the value to use either the
893       // original value, the cloned value, or some PHI derived value.  This can
894       // require arbitrary PHI insertion, of which we are prepared to do, clean
895       // these up now.
896       SmallVector<Use *, 16> UsesToRename;
897 
898       auto *OldI = dyn_cast<Instruction>(const_cast<Value *>(VT.first));
899       if (!OldI)
900         continue;
901       auto *NewI = cast<Instruction>(VT.second);
902       // Scan all uses of this instruction to see if it is used outside of its
903       // funclet, and if so, record them in UsesToRename.
904       for (Use &U : OldI->uses()) {
905         Instruction *UserI = cast<Instruction>(U.getUser());
906         BasicBlock *UserBB = UserI->getParent();
907         ColorVector &ColorsForUserBB = BlockColors[UserBB];
908         assert(!ColorsForUserBB.empty());
909         if (ColorsForUserBB.size() > 1 ||
910             *ColorsForUserBB.begin() != FuncletPadBB)
911           UsesToRename.push_back(&U);
912       }
913 
914       // If there are no uses outside the block, we're done with this
915       // instruction.
916       if (UsesToRename.empty())
917         continue;
918 
919       // We found a use of OldI outside of the funclet.  Rename all uses of OldI
920       // that are outside its funclet to be uses of the appropriate PHI node
921       // etc.
922       SSAUpdater SSAUpdate;
923       SSAUpdate.Initialize(OldI->getType(), OldI->getName());
924       SSAUpdate.AddAvailableValue(OldI->getParent(), OldI);
925       SSAUpdate.AddAvailableValue(NewI->getParent(), NewI);
926 
927       while (!UsesToRename.empty())
928         SSAUpdate.RewriteUseAfterInsertions(*UsesToRename.pop_back_val());
929     }
930   }
931 }
932 
933 void WinEHPrepare::removeImplausibleInstructions(Function &F) {
934   // Remove implausible terminators and replace them with UnreachableInst.
935   for (auto &Funclet : FuncletBlocks) {
936     BasicBlock *FuncletPadBB = Funclet.first;
937     std::vector<BasicBlock *> &BlocksInFunclet = Funclet.second;
938     Instruction *FirstNonPHI = FuncletPadBB->getFirstNonPHI();
939     auto *FuncletPad = dyn_cast<FuncletPadInst>(FirstNonPHI);
940     auto *CatchPad = dyn_cast_or_null<CatchPadInst>(FuncletPad);
941     auto *CleanupPad = dyn_cast_or_null<CleanupPadInst>(FuncletPad);
942 
943     for (BasicBlock *BB : BlocksInFunclet) {
944       for (Instruction &I : *BB) {
945         CallSite CS(&I);
946         if (!CS)
947           continue;
948 
949         Value *FuncletBundleOperand = nullptr;
950         if (auto BU = CS.getOperandBundle(LLVMContext::OB_funclet))
951           FuncletBundleOperand = BU->Inputs.front();
952 
953         if (FuncletBundleOperand == FuncletPad)
954           continue;
955 
956         // Skip call sites which are nounwind intrinsics or inline asm.
957         auto *CalledFn =
958             dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
959         if (CalledFn && ((CalledFn->isIntrinsic() && CS.doesNotThrow()) ||
960                          CS.isInlineAsm()))
961           continue;
962 
963         // This call site was not part of this funclet, remove it.
964         if (CS.isInvoke()) {
965           // Remove the unwind edge if it was an invoke.
966           removeUnwindEdge(BB);
967           // Get a pointer to the new call.
968           BasicBlock::iterator CallI =
969               std::prev(BB->getTerminator()->getIterator());
970           auto *CI = cast<CallInst>(&*CallI);
971           changeToUnreachable(CI, /*UseLLVMTrap=*/false);
972         } else {
973           changeToUnreachable(&I, /*UseLLVMTrap=*/false);
974         }
975 
976         // There are no more instructions in the block (except for unreachable),
977         // we are done.
978         break;
979       }
980 
981       Instruction *TI = BB->getTerminator();
982       // CatchPadInst and CleanupPadInst can't transfer control to a ReturnInst.
983       bool IsUnreachableRet = isa<ReturnInst>(TI) && FuncletPad;
984       // The token consumed by a CatchReturnInst must match the funclet token.
985       bool IsUnreachableCatchret = false;
986       if (auto *CRI = dyn_cast<CatchReturnInst>(TI))
987         IsUnreachableCatchret = CRI->getCatchPad() != CatchPad;
988       // The token consumed by a CleanupReturnInst must match the funclet token.
989       bool IsUnreachableCleanupret = false;
990       if (auto *CRI = dyn_cast<CleanupReturnInst>(TI))
991         IsUnreachableCleanupret = CRI->getCleanupPad() != CleanupPad;
992       if (IsUnreachableRet || IsUnreachableCatchret ||
993           IsUnreachableCleanupret) {
994         changeToUnreachable(TI, /*UseLLVMTrap=*/false);
995       } else if (isa<InvokeInst>(TI)) {
996         if (Personality == EHPersonality::MSVC_CXX && CleanupPad) {
997           // Invokes within a cleanuppad for the MSVC++ personality never
998           // transfer control to their unwind edge: the personality will
999           // terminate the program.
1000           removeUnwindEdge(BB);
1001         }
1002       }
1003     }
1004   }
1005 }
1006 
1007 void WinEHPrepare::cleanupPreparedFunclets(Function &F) {
1008   // Clean-up some of the mess we made by removing useles PHI nodes, trivial
1009   // branches, etc.
1010   for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE;) {
1011     BasicBlock *BB = &*FI++;
1012     SimplifyInstructionsInBlock(BB);
1013     ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true);
1014     MergeBlockIntoPredecessor(BB);
1015   }
1016 
1017   // We might have some unreachable blocks after cleaning up some impossible
1018   // control flow.
1019   removeUnreachableBlocks(F);
1020 }
1021 
1022 #ifndef NDEBUG
1023 void WinEHPrepare::verifyPreparedFunclets(Function &F) {
1024   for (BasicBlock &BB : F) {
1025     size_t NumColors = BlockColors[&BB].size();
1026     assert(NumColors == 1 && "Expected monochromatic BB!");
1027     if (NumColors == 0)
1028       report_fatal_error("Uncolored BB!");
1029     if (NumColors > 1)
1030       report_fatal_error("Multicolor BB!");
1031     assert((DisableDemotion || !(BB.isEHPad() && isa<PHINode>(BB.begin()))) &&
1032            "EH Pad still has a PHI!");
1033   }
1034 }
1035 #endif
1036 
1037 bool WinEHPrepare::prepareExplicitEH(Function &F) {
1038   // Remove unreachable blocks.  It is not valuable to assign them a color and
1039   // their existence can trick us into thinking values are alive when they are
1040   // not.
1041   removeUnreachableBlocks(F);
1042 
1043   // Determine which blocks are reachable from which funclet entries.
1044   colorFunclets(F);
1045 
1046   cloneCommonBlocks(F);
1047 
1048   if (!DisableDemotion)
1049     demotePHIsOnFunclets(F, DemoteCatchSwitchPHIOnly ||
1050                                 DemoteCatchSwitchPHIOnlyOpt);
1051 
1052   if (!DisableCleanups) {
1053     LLVM_DEBUG(verifyFunction(F));
1054     removeImplausibleInstructions(F);
1055 
1056     LLVM_DEBUG(verifyFunction(F));
1057     cleanupPreparedFunclets(F);
1058   }
1059 
1060   LLVM_DEBUG(verifyPreparedFunclets(F));
1061   // Recolor the CFG to verify that all is well.
1062   LLVM_DEBUG(colorFunclets(F));
1063   LLVM_DEBUG(verifyPreparedFunclets(F));
1064 
1065   BlockColors.clear();
1066   FuncletBlocks.clear();
1067 
1068   return true;
1069 }
1070 
1071 // TODO: Share loads when one use dominates another, or when a catchpad exit
1072 // dominates uses (needs dominators).
1073 AllocaInst *WinEHPrepare::insertPHILoads(PHINode *PN, Function &F) {
1074   BasicBlock *PHIBlock = PN->getParent();
1075   AllocaInst *SpillSlot = nullptr;
1076   Instruction *EHPad = PHIBlock->getFirstNonPHI();
1077 
1078   if (!EHPad->isTerminator()) {
1079     // If the EHPad isn't a terminator, then we can insert a load in this block
1080     // that will dominate all uses.
1081     SpillSlot = new AllocaInst(PN->getType(), DL->getAllocaAddrSpace(), nullptr,
1082                                Twine(PN->getName(), ".wineh.spillslot"),
1083                                &F.getEntryBlock().front());
1084     Value *V = new LoadInst(PN->getType(), SpillSlot,
1085                             Twine(PN->getName(), ".wineh.reload"),
1086                             &*PHIBlock->getFirstInsertionPt());
1087     PN->replaceAllUsesWith(V);
1088     return SpillSlot;
1089   }
1090 
1091   // Otherwise, we have a PHI on a terminator EHPad, and we give up and insert
1092   // loads of the slot before every use.
1093   DenseMap<BasicBlock *, Value *> Loads;
1094   for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
1095        UI != UE;) {
1096     Use &U = *UI++;
1097     auto *UsingInst = cast<Instruction>(U.getUser());
1098     if (isa<PHINode>(UsingInst) && UsingInst->getParent()->isEHPad()) {
1099       // Use is on an EH pad phi.  Leave it alone; we'll insert loads and
1100       // stores for it separately.
1101       continue;
1102     }
1103     replaceUseWithLoad(PN, U, SpillSlot, Loads, F);
1104   }
1105   return SpillSlot;
1106 }
1107 
1108 // TODO: improve store placement.  Inserting at def is probably good, but need
1109 // to be careful not to introduce interfering stores (needs liveness analysis).
1110 // TODO: identify related phi nodes that can share spill slots, and share them
1111 // (also needs liveness).
1112 void WinEHPrepare::insertPHIStores(PHINode *OriginalPHI,
1113                                    AllocaInst *SpillSlot) {
1114   // Use a worklist of (Block, Value) pairs -- the given Value needs to be
1115   // stored to the spill slot by the end of the given Block.
1116   SmallVector<std::pair<BasicBlock *, Value *>, 4> Worklist;
1117 
1118   Worklist.push_back({OriginalPHI->getParent(), OriginalPHI});
1119 
1120   while (!Worklist.empty()) {
1121     BasicBlock *EHBlock;
1122     Value *InVal;
1123     std::tie(EHBlock, InVal) = Worklist.pop_back_val();
1124 
1125     PHINode *PN = dyn_cast<PHINode>(InVal);
1126     if (PN && PN->getParent() == EHBlock) {
1127       // The value is defined by another PHI we need to remove, with no room to
1128       // insert a store after the PHI, so each predecessor needs to store its
1129       // incoming value.
1130       for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) {
1131         Value *PredVal = PN->getIncomingValue(i);
1132 
1133         // Undef can safely be skipped.
1134         if (isa<UndefValue>(PredVal))
1135           continue;
1136 
1137         insertPHIStore(PN->getIncomingBlock(i), PredVal, SpillSlot, Worklist);
1138       }
1139     } else {
1140       // We need to store InVal, which dominates EHBlock, but can't put a store
1141       // in EHBlock, so need to put stores in each predecessor.
1142       for (BasicBlock *PredBlock : predecessors(EHBlock)) {
1143         insertPHIStore(PredBlock, InVal, SpillSlot, Worklist);
1144       }
1145     }
1146   }
1147 }
1148 
1149 void WinEHPrepare::insertPHIStore(
1150     BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot,
1151     SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist) {
1152 
1153   if (PredBlock->isEHPad() && PredBlock->getFirstNonPHI()->isTerminator()) {
1154     // Pred is unsplittable, so we need to queue it on the worklist.
1155     Worklist.push_back({PredBlock, PredVal});
1156     return;
1157   }
1158 
1159   // Otherwise, insert the store at the end of the basic block.
1160   new StoreInst(PredVal, SpillSlot, PredBlock->getTerminator());
1161 }
1162 
1163 void WinEHPrepare::replaceUseWithLoad(Value *V, Use &U, AllocaInst *&SpillSlot,
1164                                       DenseMap<BasicBlock *, Value *> &Loads,
1165                                       Function &F) {
1166   // Lazilly create the spill slot.
1167   if (!SpillSlot)
1168     SpillSlot = new AllocaInst(V->getType(), DL->getAllocaAddrSpace(), nullptr,
1169                                Twine(V->getName(), ".wineh.spillslot"),
1170                                &F.getEntryBlock().front());
1171 
1172   auto *UsingInst = cast<Instruction>(U.getUser());
1173   if (auto *UsingPHI = dyn_cast<PHINode>(UsingInst)) {
1174     // If this is a PHI node, we can't insert a load of the value before
1175     // the use.  Instead insert the load in the predecessor block
1176     // corresponding to the incoming value.
1177     //
1178     // Note that if there are multiple edges from a basic block to this
1179     // PHI node that we cannot have multiple loads.  The problem is that
1180     // the resulting PHI node will have multiple values (from each load)
1181     // coming in from the same block, which is illegal SSA form.
1182     // For this reason, we keep track of and reuse loads we insert.
1183     BasicBlock *IncomingBlock = UsingPHI->getIncomingBlock(U);
1184     if (auto *CatchRet =
1185             dyn_cast<CatchReturnInst>(IncomingBlock->getTerminator())) {
1186       // Putting a load above a catchret and use on the phi would still leave
1187       // a cross-funclet def/use.  We need to split the edge, change the
1188       // catchret to target the new block, and put the load there.
1189       BasicBlock *PHIBlock = UsingInst->getParent();
1190       BasicBlock *NewBlock = SplitEdge(IncomingBlock, PHIBlock);
1191       // SplitEdge gives us:
1192       //   IncomingBlock:
1193       //     ...
1194       //     br label %NewBlock
1195       //   NewBlock:
1196       //     catchret label %PHIBlock
1197       // But we need:
1198       //   IncomingBlock:
1199       //     ...
1200       //     catchret label %NewBlock
1201       //   NewBlock:
1202       //     br label %PHIBlock
1203       // So move the terminators to each others' blocks and swap their
1204       // successors.
1205       BranchInst *Goto = cast<BranchInst>(IncomingBlock->getTerminator());
1206       Goto->removeFromParent();
1207       CatchRet->removeFromParent();
1208       IncomingBlock->getInstList().push_back(CatchRet);
1209       NewBlock->getInstList().push_back(Goto);
1210       Goto->setSuccessor(0, PHIBlock);
1211       CatchRet->setSuccessor(NewBlock);
1212       // Update the color mapping for the newly split edge.
1213       // Grab a reference to the ColorVector to be inserted before getting the
1214       // reference to the vector we are copying because inserting the new
1215       // element in BlockColors might cause the map to be reallocated.
1216       ColorVector &ColorsForNewBlock = BlockColors[NewBlock];
1217       ColorVector &ColorsForPHIBlock = BlockColors[PHIBlock];
1218       ColorsForNewBlock = ColorsForPHIBlock;
1219       for (BasicBlock *FuncletPad : ColorsForPHIBlock)
1220         FuncletBlocks[FuncletPad].push_back(NewBlock);
1221       // Treat the new block as incoming for load insertion.
1222       IncomingBlock = NewBlock;
1223     }
1224     Value *&Load = Loads[IncomingBlock];
1225     // Insert the load into the predecessor block
1226     if (!Load)
1227       Load = new LoadInst(V->getType(), SpillSlot,
1228                           Twine(V->getName(), ".wineh.reload"),
1229                           /*isVolatile=*/false, IncomingBlock->getTerminator());
1230 
1231     U.set(Load);
1232   } else {
1233     // Reload right before the old use.
1234     auto *Load = new LoadInst(V->getType(), SpillSlot,
1235                               Twine(V->getName(), ".wineh.reload"),
1236                               /*isVolatile=*/false, UsingInst);
1237     U.set(Load);
1238   }
1239 }
1240 
1241 void WinEHFuncInfo::addIPToStateRange(const InvokeInst *II,
1242                                       MCSymbol *InvokeBegin,
1243                                       MCSymbol *InvokeEnd) {
1244   assert(InvokeStateMap.count(II) &&
1245          "should get invoke with precomputed state");
1246   LabelToStateMap[InvokeBegin] = std::make_pair(InvokeStateMap[II], InvokeEnd);
1247 }
1248 
1249 WinEHFuncInfo::WinEHFuncInfo() {}
1250