1 //===-- LVType.cpp --------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the LVType class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/DebugInfo/LogicalView/Core/LVType.h"
14 #include "llvm/DebugInfo/LogicalView/Core/LVCompare.h"
15 #include "llvm/DebugInfo/LogicalView/Core/LVReader.h"
16 #include "llvm/DebugInfo/LogicalView/Core/LVScope.h"
17 
18 using namespace llvm;
19 using namespace llvm::logicalview;
20 
21 #define DEBUG_TYPE "Type"
22 
23 namespace {
24 const char *const KindBaseType = "BaseType";
25 const char *const KindConst = "Const";
26 const char *const KindEnumerator = "Enumerator";
27 const char *const KindImport = "Import";
28 const char *const KindPointer = "Pointer";
29 const char *const KindPointerMember = "PointerMember";
30 const char *const KindReference = "Reference";
31 const char *const KindRestrict = "Restrict";
32 const char *const KindRvalueReference = "RvalueReference";
33 const char *const KindSubrange = "Subrange";
34 const char *const KindTemplateTemplate = "TemplateTemplate";
35 const char *const KindTemplateType = "TemplateType";
36 const char *const KindTemplateValue = "TemplateValue";
37 const char *const KindTypeAlias = "TypeAlias";
38 const char *const KindUndefined = "Undefined";
39 const char *const KindUnaligned = "Unaligned";
40 const char *const KindUnspecified = "Unspecified";
41 const char *const KindVolatile = "Volatile";
42 } // end anonymous namespace
43 
44 //===----------------------------------------------------------------------===//
45 // DWARF Type.
46 //===----------------------------------------------------------------------===//
47 // Return a string representation for the type kind.
48 const char *LVType::kind() const {
49   const char *Kind = KindUndefined;
50   if (getIsBase())
51     Kind = KindBaseType;
52   else if (getIsConst())
53     Kind = KindConst;
54   else if (getIsEnumerator())
55     Kind = KindEnumerator;
56   else if (getIsImport())
57     Kind = KindImport;
58   else if (getIsPointerMember())
59     Kind = KindPointerMember;
60   else if (getIsPointer())
61     Kind = KindPointer;
62   else if (getIsReference())
63     Kind = KindReference;
64   else if (getIsRestrict())
65     Kind = KindRestrict;
66   else if (getIsRvalueReference())
67     Kind = KindRvalueReference;
68   else if (getIsSubrange())
69     Kind = KindSubrange;
70   else if (getIsTemplateTypeParam())
71     Kind = KindTemplateType;
72   else if (getIsTemplateValueParam())
73     Kind = KindTemplateValue;
74   else if (getIsTemplateTemplateParam())
75     Kind = KindTemplateTemplate;
76   else if (getIsTypedef())
77     Kind = KindTypeAlias;
78   else if (getIsUnaligned())
79     Kind = KindUnaligned;
80   else if (getIsUnspecified())
81     Kind = KindUnspecified;
82   else if (getIsVolatile())
83     Kind = KindVolatile;
84   return Kind;
85 }
86 
87 LVTypeDispatch LVType::Dispatch = {
88     {LVTypeKind::IsBase, &LVType::getIsBase},
89     {LVTypeKind::IsConst, &LVType::getIsConst},
90     {LVTypeKind::IsEnumerator, &LVType::getIsEnumerator},
91     {LVTypeKind::IsImport, &LVType::getIsImport},
92     {LVTypeKind::IsImportDeclaration, &LVType::getIsImportDeclaration},
93     {LVTypeKind::IsImportModule, &LVType::getIsImportModule},
94     {LVTypeKind::IsPointer, &LVType::getIsPointer},
95     {LVTypeKind::IsPointerMember, &LVType::getIsPointerMember},
96     {LVTypeKind::IsReference, &LVType::getIsReference},
97     {LVTypeKind::IsRestrict, &LVType::getIsRestrict},
98     {LVTypeKind::IsRvalueReference, &LVType::getIsRvalueReference},
99     {LVTypeKind::IsSubrange, &LVType::getIsSubrange},
100     {LVTypeKind::IsTemplateParam, &LVType::getIsTemplateParam},
101     {LVTypeKind::IsTemplateTemplateParam, &LVType::getIsTemplateTemplateParam},
102     {LVTypeKind::IsTemplateTypeParam, &LVType::getIsTemplateTypeParam},
103     {LVTypeKind::IsTemplateValueParam, &LVType::getIsTemplateValueParam},
104     {LVTypeKind::IsTypedef, &LVType::getIsTypedef},
105     {LVTypeKind::IsUnaligned, &LVType::getIsUnaligned},
106     {LVTypeKind::IsUnspecified, &LVType::getIsUnspecified},
107     {LVTypeKind::IsVolatile, &LVType::getIsVolatile}};
108 
109 void LVType::resolveReferences() {
110   // Some DWARF tags are the representation of types. However, we associate
111   // some of them to scopes. The ones associated with types, do not have
112   // any reference tags, such as DW_AT_specification, DW_AT_abstract_origin,
113   // DW_AT_extension.
114 
115   // Set the file/line information using the Debug Information entry.
116   setFile(/*Reference=*/nullptr);
117 
118   if (LVElement *Element = getType())
119     Element->resolve();
120 }
121 
122 void LVType::resolveName() {
123   if (getIsResolvedName())
124     return;
125   setIsResolvedName();
126 
127   // The templates are recorded as normal DWARF objects relationships;
128   // the template parameters are preserved to show the types used during
129   // the instantiation; however if a compare have been requested, those
130   // parameters needs to be resolved, so no conflicts are generated.
131   // The following DWARF illustrates this issue:
132   //
133   // a) Template Parameters are preserved:
134   //      {Class} 'ConstArray<AtomTable>'
135   //        {Inherits} -> 'ArrayBase'
136   //        {TemplateType} 'taTYPE' -> 'AtomTable'
137   //        {Member} 'mData' -> '* taTYPE'
138   //
139   // b) Template Parameters are resolved:
140   //      {Class} 'ConstArray<AtomTable>'
141   //        {Inherits} -> 'ArrayBase'
142   //        {TemplateType} 'taTYPE' -> 'AtomTable'
143   //        {Member} 'mData' -> '* AtomTable'
144   //
145   // In (b), the {Member} type have been resolved to use the real type.
146 
147   LVElement *BaseType = getType();
148   if (BaseType && options().getAttributeArgument())
149     if (BaseType->isTemplateParam())
150       BaseType = BaseType->getType();
151 
152   if (BaseType && !BaseType->getIsResolvedName())
153     BaseType->resolveName();
154   resolveFullname(BaseType, getName());
155 
156   // In the case of unnamed types, try to generate a name for it, using
157   // the parents name and the line information. Ignore the template parameters.
158   if (!isNamed() && !getIsTemplateParam())
159     generateName();
160 
161   LVElement::resolveName();
162 
163   // Resolve any given pattern.
164   patterns().resolvePatternMatch(this);
165 }
166 
167 StringRef LVType::resolveReferencesChain() {
168   // The types do not have a DW_AT_specification or DW_AT_abstract_origin
169   // reference. Just return the type name.
170   return getName();
171 }
172 
173 void LVType::markMissingParents(const LVTypes *References,
174                                 const LVTypes *Targets) {
175   if (!(References && Targets))
176     return;
177 
178   LLVM_DEBUG({
179     dbgs() << "\n[LVType::markMissingParents]\n";
180     for (const LVType *Reference : *References)
181       dbgs() << "References: "
182              << "Kind = " << formattedKind(Reference->kind()) << ", "
183              << "Name = " << formattedName(Reference->getName()) << "\n";
184     for (const LVType *Target : *Targets)
185       dbgs() << "Targets   : "
186              << "Kind = " << formattedKind(Target->kind()) << ", "
187              << "Name = " << formattedName(Target->getName()) << "\n";
188   });
189 
190   for (LVType *Reference : *References) {
191     LLVM_DEBUG({
192       dbgs() << "Search Reference: Name = "
193              << formattedName(Reference->getName()) << "\n";
194     });
195     if (!Reference->findIn(Targets))
196       Reference->markBranchAsMissing();
197   }
198 }
199 
200 LVType *LVType::findIn(const LVTypes *Targets) const {
201   if (!Targets)
202     return nullptr;
203 
204   LLVM_DEBUG({
205     dbgs() << "\n[LVType::findIn]\n"
206            << "Reference: "
207            << "Level = " << getLevel() << ", "
208            << "Kind = " << formattedKind(kind()) << ", "
209            << "Name = " << formattedName(getName()) << "\n";
210     for (const LVType *Target : *Targets)
211       dbgs() << "Target   : "
212              << "Level = " << Target->getLevel() << ", "
213              << "Kind = " << formattedKind(Target->kind()) << ", "
214              << "Name = " << formattedName(Target->getName()) << "\n";
215   });
216 
217   for (LVType *Target : *Targets)
218     if (equals(Target))
219       return Target;
220 
221   return nullptr;
222 }
223 
224 // Check for a match on the arguments of a function.
225 bool LVType::parametersMatch(const LVTypes *References,
226                              const LVTypes *Targets) {
227   if (!References && !Targets)
228     return true;
229   if (References && Targets) {
230     LVTypes ReferenceTypes;
231     LVScopes ReferenceScopes;
232     getParameters(References, &ReferenceTypes, &ReferenceScopes);
233     LVTypes TargetTypes;
234     LVScopes TargetScopes;
235     getParameters(Targets, &TargetTypes, &TargetScopes);
236     if (!LVType::equals(&ReferenceTypes, &TargetTypes) ||
237         !LVScope::equals(&ReferenceScopes, &TargetScopes))
238       return false;
239     return true;
240   }
241   return false;
242 }
243 
244 // Return the types which are parameters.
245 void LVType::getParameters(const LVTypes *Types, LVTypes *TypesParam,
246                            LVScopes *ScopesParam) {
247   if (!Types)
248     return;
249 
250   // During a compare task, the template parameters are expanded to
251   // point to their real types, to avoid compare conflicts.
252   for (LVType *Type : *Types) {
253     if (!Type->getIsTemplateParam())
254       continue;
255     if (options().getAttributeArgument()) {
256       LVScope *Scope = nullptr;
257       if (Type->getIsKindType())
258         Type = Type->getTypeAsType();
259       else {
260         if (Type->getIsKindScope()) {
261           Scope = Type->getTypeAsScope();
262           Type = nullptr;
263         }
264       }
265       Type ? TypesParam->push_back(Type) : ScopesParam->push_back(Scope);
266     } else
267       TypesParam->push_back(Type);
268   }
269 }
270 
271 bool LVType::equals(const LVType *Type) const {
272   return LVElement::equals(Type);
273 }
274 
275 bool LVType::equals(const LVTypes *References, const LVTypes *Targets) {
276   if (!References && !Targets)
277     return true;
278   if (References && Targets && References->size() == Targets->size()) {
279     for (const LVType *Reference : *References)
280       if (!Reference->findIn(Targets))
281         return false;
282     return true;
283   }
284   return false;
285 }
286 
287 void LVType::report(LVComparePass Pass) {
288   getComparator().printItem(this, Pass);
289 }
290 
291 void LVType::print(raw_ostream &OS, bool Full) const {
292   if (getIncludeInPrint() &&
293       (getIsReference() || getReader().doPrintType(this))) {
294     getReaderCompileUnit()->incrementPrintedTypes();
295     LVElement::print(OS, Full);
296     printExtra(OS, Full);
297   }
298 }
299 
300 void LVType::printExtra(raw_ostream &OS, bool Full) const {
301   OS << formattedKind(kind()) << " " << formattedName(getName()) << "\n";
302 }
303 
304 //===----------------------------------------------------------------------===//
305 // DWARF typedef.
306 //===----------------------------------------------------------------------===//
307 // Return the underlying type for a typedef, which can be a type or scope.
308 LVElement *LVTypeDefinition::getUnderlyingType() {
309   LVElement *BaseType = getTypeAsScope();
310   if (BaseType)
311     // Underlying type is a scope.
312     return BaseType;
313 
314   LVType *Type = getTypeAsType();
315   assert(Type && "Type definition does not have a type.");
316 
317   BaseType = Type;
318   while (Type->getIsTypedef()) {
319     BaseType = Type->getTypeAsScope();
320     if (BaseType)
321       // Underlying type is a scope.
322       return BaseType;
323 
324     Type = Type->getTypeAsType();
325     if (Type)
326       BaseType = Type;
327   }
328 
329   return BaseType;
330 }
331 
332 void LVTypeDefinition::resolveExtra() {
333   // Set the reference to the typedef type.
334   if (options().getAttributeUnderlying()) {
335     setUnderlyingType(getUnderlyingType());
336     setIsTypedefReduced();
337     if (LVElement *Type = getType()) {
338       Type->resolveName();
339       resolveFullname(Type);
340     }
341   }
342 
343   // For the case of typedef'd anonymous structures:
344   //   typedef struct { ... } Name;
345   // Propagate the typedef name to the anonymous structure.
346   LVScope *Aggregate = getTypeAsScope();
347   if (Aggregate && Aggregate->getIsAnonymous())
348     Aggregate->setName(getName());
349 }
350 
351 bool LVTypeDefinition::equals(const LVType *Type) const {
352   return LVType::equals(Type);
353 }
354 
355 void LVTypeDefinition::printExtra(raw_ostream &OS, bool Full) const {
356   OS << formattedKind(kind()) << " " << formattedName(getName()) << " -> "
357      << typeOffsetAsString()
358      << formattedName((getType() ? getType()->getName() : "")) << "\n";
359 }
360 
361 //===----------------------------------------------------------------------===//
362 // DWARF enumerator (DW_TAG_enumerator).
363 //===----------------------------------------------------------------------===//
364 bool LVTypeEnumerator::equals(const LVType *Type) const {
365   return LVType::equals(Type);
366 }
367 
368 void LVTypeEnumerator::printExtra(raw_ostream &OS, bool Full) const {
369   OS << formattedKind(kind()) << " '" << getName()
370      << "' = " << formattedName(getValue()) << "\n";
371 }
372 
373 //===----------------------------------------------------------------------===//
374 // DWARF import (DW_TAG_imported_module / DW_TAG_imported_declaration).
375 //===----------------------------------------------------------------------===//
376 bool LVTypeImport::equals(const LVType *Type) const {
377   return LVType::equals(Type);
378 }
379 
380 void LVTypeImport::printExtra(raw_ostream &OS, bool Full) const {
381   std::string Attributes =
382       formatAttributes(virtualityString(), accessibilityString());
383 
384   OS << formattedKind(kind()) << " " << typeOffsetAsString() << Attributes
385      << formattedName((getType() ? getType()->getName() : "")) << "\n";
386 }
387 
388 //===----------------------------------------------------------------------===//
389 // DWARF Template parameter holder (type or param).
390 //===----------------------------------------------------------------------===//
391 LVTypeParam::LVTypeParam() : LVType() {
392   options().getAttributeTypename() ? setIncludeInPrint()
393                                    : resetIncludeInPrint();
394 }
395 
396 // Encode the specific template argument.
397 void LVTypeParam::encodeTemplateArgument(std::string &Name) const {
398   // The incoming type is a template parameter; we have 3 kinds of parameters:
399   // - type parameter: resolve the instance (type);
400   // - value parameter: resolve the constant value
401   // - template parameter: resolve the name of the template.
402   // If the parameter type is a template instance (STL sample), we need to
403   // expand the type (template template case). For the following variable
404   // declarations:
405   //   std::type<float> a_float;
406   //   std::type<int> a_int;
407   // We must generate names like:
408   //   "std::type<float,std::less<float>,std::allocator<float>,false>"
409   //   "std::type<int,std::less<int>,std::allocator<int>,false>"
410   // Instead of the incomplete names:
411   //   "type<float,less,allocator,false>"
412   //   "type<int,less,allocator,false>"
413 
414   if (getIsTemplateTypeParam()) {
415     // Get the type instance recorded in the template type; it can be a
416     // reference to a type or to a scope.
417 
418     if (getIsKindType()) {
419       // The argument types always are qualified.
420       Name.append(std::string(getTypeQualifiedName()));
421 
422       LVType *ArgType = getTypeAsType();
423       // For template arguments that are typedefs, use the underlying type,
424       // which can be a type or scope.
425       if (ArgType->getIsTypedef()) {
426         LVObject *BaseType = ArgType->getUnderlyingType();
427         Name.append(std::string(BaseType->getName()));
428       } else {
429         Name.append(std::string(ArgType->getName()));
430       }
431     } else {
432       if (getIsKindScope()) {
433         LVScope *ArgScope = getTypeAsScope();
434         // If the scope is a template, we have to resolve that template,
435         // by recursively traversing its arguments.
436         if (ArgScope->getIsTemplate())
437           ArgScope->encodeTemplateArguments(Name);
438         else {
439           // The argument types always are qualified.
440           Name.append(std::string(getTypeQualifiedName()));
441           Name.append(std::string(ArgScope->getName()));
442         }
443       }
444     }
445   } else
446     // Template value parameter or template template parameter.
447     Name.append(getValue());
448 }
449 
450 bool LVTypeParam::equals(const LVType *Type) const {
451   if (!LVType::equals(Type))
452     return false;
453 
454   // Checks the kind of template argument.
455   if (getIsTemplateTypeParam() && Type->getIsTemplateTypeParam())
456     return getType()->equals(Type->getType());
457 
458   if ((getIsTemplateValueParam() && Type->getIsTemplateValueParam()) ||
459       (getIsTemplateTemplateParam() && Type->getIsTemplateTemplateParam()))
460     return getValueIndex() == Type->getValueIndex();
461 
462   return false;
463 }
464 
465 void LVTypeParam::printExtra(raw_ostream &OS, bool Full) const {
466   OS << formattedKind(kind()) << " " << formattedName(getName()) << " -> "
467      << typeOffsetAsString();
468 
469   // Depending on the type of parameter, the print includes different
470   // information: type, value or reference to a template.
471   if (getIsTemplateTypeParam()) {
472     OS << formattedNames(getTypeQualifiedName(), getTypeName()) << "\n";
473     return;
474   }
475   if (getIsTemplateValueParam()) {
476     OS << formattedName(getValue()) << " " << formattedName(getName()) << "\n";
477     return;
478   }
479   if (getIsTemplateTemplateParam())
480     OS << formattedName(getValue()) << "\n";
481 }
482 
483 //===----------------------------------------------------------------------===//
484 // DW_TAG_subrange_type
485 //===----------------------------------------------------------------------===//
486 void LVTypeSubrange::resolveExtra() {
487   // There are 2 cases to represent the bounds information for an array:
488   // 1) DW_TAG_subrange_type
489   //      DW_AT_type --> ref_type (type of count)
490   //      DW_AT_count --> value (number of elements in subrange)
491 
492   // 2) DW_TAG_subrange_type
493   //      DW_AT_lower_bound --> value
494   //      DW_AT_upper_bound --> value
495 
496   // The idea is to represent the bounds as a string, depending on the format:
497   // 1) [count]
498   // 2) [lower..upper]
499 
500   // Subrange information.
501   std::string String;
502 
503   // Check if we have DW_AT_count subrange style.
504   if (getIsSubrangeCount())
505     // Get count subrange value. Assume 0 if missing.
506     raw_string_ostream(String) << "[" << getCount() << "]";
507   else
508     raw_string_ostream(String)
509         << "[" << getLowerBound() << ".." << getUpperBound() << "]";
510 
511   setName(String);
512 }
513 
514 bool LVTypeSubrange::equals(const LVType *Type) const {
515   if (!LVType::equals(Type))
516     return false;
517 
518   return getTypeName() == Type->getTypeName() && getName() == Type->getName();
519 }
520 
521 void LVTypeSubrange::printExtra(raw_ostream &OS, bool Full) const {
522   OS << formattedKind(kind()) << " -> " << typeOffsetAsString()
523      << formattedName(getTypeName()) << " " << formattedName(getName()) << "\n";
524 }
525