1 //===- AsmWriter.cpp - Printing LLVM as an assembly file ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This library implements `print` family of functions in classes like
10 // Module, Function, Value, etc. In-memory representation of those classes is
11 // converted to IR strings.
12 //
13 // Note that these routines must be extremely tolerant of various errors in the
14 // LLVM code, because it can be used for debugging transformations.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/None.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SetVector.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/iterator_range.h"
31 #include "llvm/BinaryFormat/Dwarf.h"
32 #include "llvm/Config/llvm-config.h"
33 #include "llvm/IR/Argument.h"
34 #include "llvm/IR/AssemblyAnnotationWriter.h"
35 #include "llvm/IR/Attributes.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/CallingConv.h"
39 #include "llvm/IR/Comdat.h"
40 #include "llvm/IR/Constant.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DebugInfoMetadata.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GlobalAlias.h"
46 #include "llvm/IR/GlobalIFunc.h"
47 #include "llvm/IR/GlobalIndirectSymbol.h"
48 #include "llvm/IR/GlobalObject.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/IR/GlobalVariable.h"
51 #include "llvm/IR/IRPrintingPasses.h"
52 #include "llvm/IR/InlineAsm.h"
53 #include "llvm/IR/InstrTypes.h"
54 #include "llvm/IR/Instruction.h"
55 #include "llvm/IR/Instructions.h"
56 #include "llvm/IR/IntrinsicInst.h"
57 #include "llvm/IR/LLVMContext.h"
58 #include "llvm/IR/Metadata.h"
59 #include "llvm/IR/Module.h"
60 #include "llvm/IR/ModuleSlotTracker.h"
61 #include "llvm/IR/ModuleSummaryIndex.h"
62 #include "llvm/IR/Operator.h"
63 #include "llvm/IR/Type.h"
64 #include "llvm/IR/TypeFinder.h"
65 #include "llvm/IR/Use.h"
66 #include "llvm/IR/User.h"
67 #include "llvm/IR/Value.h"
68 #include "llvm/Support/AtomicOrdering.h"
69 #include "llvm/Support/Casting.h"
70 #include "llvm/Support/Compiler.h"
71 #include "llvm/Support/Debug.h"
72 #include "llvm/Support/ErrorHandling.h"
73 #include "llvm/Support/Format.h"
74 #include "llvm/Support/FormattedStream.h"
75 #include "llvm/Support/raw_ostream.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <cctype>
79 #include <cstddef>
80 #include <cstdint>
81 #include <iterator>
82 #include <memory>
83 #include <string>
84 #include <tuple>
85 #include <utility>
86 #include <vector>
87 
88 using namespace llvm;
89 
90 // Make virtual table appear in this compilation unit.
91 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() = default;
92 
93 //===----------------------------------------------------------------------===//
94 // Helper Functions
95 //===----------------------------------------------------------------------===//
96 
97 using OrderMap = MapVector<const Value *, unsigned>;
98 
99 using UseListOrderMap =
100     DenseMap<const Function *, MapVector<const Value *, std::vector<unsigned>>>;
101 
102 /// Look for a value that might be wrapped as metadata, e.g. a value in a
103 /// metadata operand. Returns the input value as-is if it is not wrapped.
104 static const Value *skipMetadataWrapper(const Value *V) {
105   if (const auto *MAV = dyn_cast<MetadataAsValue>(V))
106     if (const auto *VAM = dyn_cast<ValueAsMetadata>(MAV->getMetadata()))
107       return VAM->getValue();
108   return V;
109 }
110 
111 static void orderValue(const Value *V, OrderMap &OM) {
112   if (OM.lookup(V))
113     return;
114 
115   if (const Constant *C = dyn_cast<Constant>(V))
116     if (C->getNumOperands() && !isa<GlobalValue>(C))
117       for (const Value *Op : C->operands())
118         if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
119           orderValue(Op, OM);
120 
121   // Note: we cannot cache this lookup above, since inserting into the map
122   // changes the map's size, and thus affects the other IDs.
123   unsigned ID = OM.size() + 1;
124   OM[V] = ID;
125 }
126 
127 static OrderMap orderModule(const Module *M) {
128   OrderMap OM;
129 
130   for (const GlobalVariable &G : M->globals()) {
131     if (G.hasInitializer())
132       if (!isa<GlobalValue>(G.getInitializer()))
133         orderValue(G.getInitializer(), OM);
134     orderValue(&G, OM);
135   }
136   for (const GlobalAlias &A : M->aliases()) {
137     if (!isa<GlobalValue>(A.getAliasee()))
138       orderValue(A.getAliasee(), OM);
139     orderValue(&A, OM);
140   }
141   for (const GlobalIFunc &I : M->ifuncs()) {
142     if (!isa<GlobalValue>(I.getResolver()))
143       orderValue(I.getResolver(), OM);
144     orderValue(&I, OM);
145   }
146   for (const Function &F : *M) {
147     for (const Use &U : F.operands())
148       if (!isa<GlobalValue>(U.get()))
149         orderValue(U.get(), OM);
150 
151     orderValue(&F, OM);
152 
153     if (F.isDeclaration())
154       continue;
155 
156     for (const Argument &A : F.args())
157       orderValue(&A, OM);
158     for (const BasicBlock &BB : F) {
159       orderValue(&BB, OM);
160       for (const Instruction &I : BB) {
161         for (const Value *Op : I.operands()) {
162           Op = skipMetadataWrapper(Op);
163           if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
164               isa<InlineAsm>(*Op))
165             orderValue(Op, OM);
166         }
167         orderValue(&I, OM);
168       }
169     }
170   }
171   return OM;
172 }
173 
174 static std::vector<unsigned>
175 predictValueUseListOrder(const Value *V, unsigned ID, const OrderMap &OM) {
176   // Predict use-list order for this one.
177   using Entry = std::pair<const Use *, unsigned>;
178   SmallVector<Entry, 64> List;
179   for (const Use &U : V->uses())
180     // Check if this user will be serialized.
181     if (OM.lookup(U.getUser()))
182       List.push_back(std::make_pair(&U, List.size()));
183 
184   if (List.size() < 2)
185     // We may have lost some users.
186     return {};
187 
188   // When referencing a value before its declaration, a temporary value is
189   // created, which will later be RAUWed with the actual value. This reverses
190   // the use list. This happens for all values apart from basic blocks.
191   bool GetsReversed = !isa<BasicBlock>(V);
192   if (auto *BA = dyn_cast<BlockAddress>(V))
193     ID = OM.lookup(BA->getBasicBlock());
194   llvm::sort(List, [&](const Entry &L, const Entry &R) {
195     const Use *LU = L.first;
196     const Use *RU = R.first;
197     if (LU == RU)
198       return false;
199 
200     auto LID = OM.lookup(LU->getUser());
201     auto RID = OM.lookup(RU->getUser());
202 
203     // If ID is 4, then expect: 7 6 5 1 2 3.
204     if (LID < RID) {
205       if (GetsReversed)
206         if (RID <= ID)
207           return true;
208       return false;
209     }
210     if (RID < LID) {
211       if (GetsReversed)
212         if (LID <= ID)
213           return false;
214       return true;
215     }
216 
217     // LID and RID are equal, so we have different operands of the same user.
218     // Assume operands are added in order for all instructions.
219     if (GetsReversed)
220       if (LID <= ID)
221         return LU->getOperandNo() < RU->getOperandNo();
222     return LU->getOperandNo() > RU->getOperandNo();
223   });
224 
225   if (llvm::is_sorted(List, [](const Entry &L, const Entry &R) {
226         return L.second < R.second;
227       }))
228     // Order is already correct.
229     return {};
230 
231   // Store the shuffle.
232   std::vector<unsigned> Shuffle(List.size());
233   for (size_t I = 0, E = List.size(); I != E; ++I)
234     Shuffle[I] = List[I].second;
235   return Shuffle;
236 }
237 
238 static UseListOrderMap predictUseListOrder(const Module *M) {
239   OrderMap OM = orderModule(M);
240   UseListOrderMap ULOM;
241   for (const auto &Pair : OM) {
242     const Value *V = Pair.first;
243     if (V->use_empty() || std::next(V->use_begin()) == V->use_end())
244       continue;
245 
246     std::vector<unsigned> Shuffle =
247         predictValueUseListOrder(V, Pair.second, OM);
248     if (Shuffle.empty())
249       continue;
250 
251     const Function *F = nullptr;
252     if (auto *I = dyn_cast<Instruction>(V))
253       F = I->getFunction();
254     if (auto *A = dyn_cast<Argument>(V))
255       F = A->getParent();
256     if (auto *BB = dyn_cast<BasicBlock>(V))
257       F = BB->getParent();
258     ULOM[F][V] = std::move(Shuffle);
259   }
260   return ULOM;
261 }
262 
263 static const Module *getModuleFromVal(const Value *V) {
264   if (const Argument *MA = dyn_cast<Argument>(V))
265     return MA->getParent() ? MA->getParent()->getParent() : nullptr;
266 
267   if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
268     return BB->getParent() ? BB->getParent()->getParent() : nullptr;
269 
270   if (const Instruction *I = dyn_cast<Instruction>(V)) {
271     const Function *M = I->getParent() ? I->getParent()->getParent() : nullptr;
272     return M ? M->getParent() : nullptr;
273   }
274 
275   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
276     return GV->getParent();
277 
278   if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) {
279     for (const User *U : MAV->users())
280       if (isa<Instruction>(U))
281         if (const Module *M = getModuleFromVal(U))
282           return M;
283     return nullptr;
284   }
285 
286   return nullptr;
287 }
288 
289 static void PrintCallingConv(unsigned cc, raw_ostream &Out) {
290   switch (cc) {
291   default:                         Out << "cc" << cc; break;
292   case CallingConv::Fast:          Out << "fastcc"; break;
293   case CallingConv::Cold:          Out << "coldcc"; break;
294   case CallingConv::WebKit_JS:     Out << "webkit_jscc"; break;
295   case CallingConv::AnyReg:        Out << "anyregcc"; break;
296   case CallingConv::PreserveMost:  Out << "preserve_mostcc"; break;
297   case CallingConv::PreserveAll:   Out << "preserve_allcc"; break;
298   case CallingConv::CXX_FAST_TLS:  Out << "cxx_fast_tlscc"; break;
299   case CallingConv::GHC:           Out << "ghccc"; break;
300   case CallingConv::Tail:          Out << "tailcc"; break;
301   case CallingConv::CFGuard_Check: Out << "cfguard_checkcc"; break;
302   case CallingConv::X86_StdCall:   Out << "x86_stdcallcc"; break;
303   case CallingConv::X86_FastCall:  Out << "x86_fastcallcc"; break;
304   case CallingConv::X86_ThisCall:  Out << "x86_thiscallcc"; break;
305   case CallingConv::X86_RegCall:   Out << "x86_regcallcc"; break;
306   case CallingConv::X86_VectorCall:Out << "x86_vectorcallcc"; break;
307   case CallingConv::Intel_OCL_BI:  Out << "intel_ocl_bicc"; break;
308   case CallingConv::ARM_APCS:      Out << "arm_apcscc"; break;
309   case CallingConv::ARM_AAPCS:     Out << "arm_aapcscc"; break;
310   case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break;
311   case CallingConv::AArch64_VectorCall: Out << "aarch64_vector_pcs"; break;
312   case CallingConv::AArch64_SVE_VectorCall:
313     Out << "aarch64_sve_vector_pcs";
314     break;
315   case CallingConv::MSP430_INTR:   Out << "msp430_intrcc"; break;
316   case CallingConv::AVR_INTR:      Out << "avr_intrcc "; break;
317   case CallingConv::AVR_SIGNAL:    Out << "avr_signalcc "; break;
318   case CallingConv::PTX_Kernel:    Out << "ptx_kernel"; break;
319   case CallingConv::PTX_Device:    Out << "ptx_device"; break;
320   case CallingConv::X86_64_SysV:   Out << "x86_64_sysvcc"; break;
321   case CallingConv::Win64:         Out << "win64cc"; break;
322   case CallingConv::SPIR_FUNC:     Out << "spir_func"; break;
323   case CallingConv::SPIR_KERNEL:   Out << "spir_kernel"; break;
324   case CallingConv::Swift:         Out << "swiftcc"; break;
325   case CallingConv::SwiftTail:     Out << "swifttailcc"; break;
326   case CallingConv::X86_INTR:      Out << "x86_intrcc"; break;
327   case CallingConv::HHVM:          Out << "hhvmcc"; break;
328   case CallingConv::HHVM_C:        Out << "hhvm_ccc"; break;
329   case CallingConv::AMDGPU_VS:     Out << "amdgpu_vs"; break;
330   case CallingConv::AMDGPU_LS:     Out << "amdgpu_ls"; break;
331   case CallingConv::AMDGPU_HS:     Out << "amdgpu_hs"; break;
332   case CallingConv::AMDGPU_ES:     Out << "amdgpu_es"; break;
333   case CallingConv::AMDGPU_GS:     Out << "amdgpu_gs"; break;
334   case CallingConv::AMDGPU_PS:     Out << "amdgpu_ps"; break;
335   case CallingConv::AMDGPU_CS:     Out << "amdgpu_cs"; break;
336   case CallingConv::AMDGPU_KERNEL: Out << "amdgpu_kernel"; break;
337   case CallingConv::AMDGPU_Gfx:    Out << "amdgpu_gfx"; break;
338   }
339 }
340 
341 enum PrefixType {
342   GlobalPrefix,
343   ComdatPrefix,
344   LabelPrefix,
345   LocalPrefix,
346   NoPrefix
347 };
348 
349 void llvm::printLLVMNameWithoutPrefix(raw_ostream &OS, StringRef Name) {
350   assert(!Name.empty() && "Cannot get empty name!");
351 
352   // Scan the name to see if it needs quotes first.
353   bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0]));
354   if (!NeedsQuotes) {
355     for (unsigned i = 0, e = Name.size(); i != e; ++i) {
356       // By making this unsigned, the value passed in to isalnum will always be
357       // in the range 0-255.  This is important when building with MSVC because
358       // its implementation will assert.  This situation can arise when dealing
359       // with UTF-8 multibyte characters.
360       unsigned char C = Name[i];
361       if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' &&
362           C != '_') {
363         NeedsQuotes = true;
364         break;
365       }
366     }
367   }
368 
369   // If we didn't need any quotes, just write out the name in one blast.
370   if (!NeedsQuotes) {
371     OS << Name;
372     return;
373   }
374 
375   // Okay, we need quotes.  Output the quotes and escape any scary characters as
376   // needed.
377   OS << '"';
378   printEscapedString(Name, OS);
379   OS << '"';
380 }
381 
382 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
383 /// (if the string only contains simple characters) or is surrounded with ""'s
384 /// (if it has special chars in it). Print it out.
385 static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
386   switch (Prefix) {
387   case NoPrefix:
388     break;
389   case GlobalPrefix:
390     OS << '@';
391     break;
392   case ComdatPrefix:
393     OS << '$';
394     break;
395   case LabelPrefix:
396     break;
397   case LocalPrefix:
398     OS << '%';
399     break;
400   }
401   printLLVMNameWithoutPrefix(OS, Name);
402 }
403 
404 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
405 /// (if the string only contains simple characters) or is surrounded with ""'s
406 /// (if it has special chars in it). Print it out.
407 static void PrintLLVMName(raw_ostream &OS, const Value *V) {
408   PrintLLVMName(OS, V->getName(),
409                 isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
410 }
411 
412 static void PrintShuffleMask(raw_ostream &Out, Type *Ty, ArrayRef<int> Mask) {
413   Out << ", <";
414   if (isa<ScalableVectorType>(Ty))
415     Out << "vscale x ";
416   Out << Mask.size() << " x i32> ";
417   bool FirstElt = true;
418   if (all_of(Mask, [](int Elt) { return Elt == 0; })) {
419     Out << "zeroinitializer";
420   } else if (all_of(Mask, [](int Elt) { return Elt == UndefMaskElem; })) {
421     Out << "undef";
422   } else {
423     Out << "<";
424     for (int Elt : Mask) {
425       if (FirstElt)
426         FirstElt = false;
427       else
428         Out << ", ";
429       Out << "i32 ";
430       if (Elt == UndefMaskElem)
431         Out << "undef";
432       else
433         Out << Elt;
434     }
435     Out << ">";
436   }
437 }
438 
439 namespace {
440 
441 class TypePrinting {
442 public:
443   TypePrinting(const Module *M = nullptr) : DeferredM(M) {}
444 
445   TypePrinting(const TypePrinting &) = delete;
446   TypePrinting &operator=(const TypePrinting &) = delete;
447 
448   /// The named types that are used by the current module.
449   TypeFinder &getNamedTypes();
450 
451   /// The numbered types, number to type mapping.
452   std::vector<StructType *> &getNumberedTypes();
453 
454   bool empty();
455 
456   void print(Type *Ty, raw_ostream &OS);
457 
458   void printStructBody(StructType *Ty, raw_ostream &OS);
459 
460 private:
461   void incorporateTypes();
462 
463   /// A module to process lazily when needed. Set to nullptr as soon as used.
464   const Module *DeferredM;
465 
466   TypeFinder NamedTypes;
467 
468   // The numbered types, along with their value.
469   DenseMap<StructType *, unsigned> Type2Number;
470 
471   std::vector<StructType *> NumberedTypes;
472 };
473 
474 } // end anonymous namespace
475 
476 TypeFinder &TypePrinting::getNamedTypes() {
477   incorporateTypes();
478   return NamedTypes;
479 }
480 
481 std::vector<StructType *> &TypePrinting::getNumberedTypes() {
482   incorporateTypes();
483 
484   // We know all the numbers that each type is used and we know that it is a
485   // dense assignment. Convert the map to an index table, if it's not done
486   // already (judging from the sizes):
487   if (NumberedTypes.size() == Type2Number.size())
488     return NumberedTypes;
489 
490   NumberedTypes.resize(Type2Number.size());
491   for (const auto &P : Type2Number) {
492     assert(P.second < NumberedTypes.size() && "Didn't get a dense numbering?");
493     assert(!NumberedTypes[P.second] && "Didn't get a unique numbering?");
494     NumberedTypes[P.second] = P.first;
495   }
496   return NumberedTypes;
497 }
498 
499 bool TypePrinting::empty() {
500   incorporateTypes();
501   return NamedTypes.empty() && Type2Number.empty();
502 }
503 
504 void TypePrinting::incorporateTypes() {
505   if (!DeferredM)
506     return;
507 
508   NamedTypes.run(*DeferredM, false);
509   DeferredM = nullptr;
510 
511   // The list of struct types we got back includes all the struct types, split
512   // the unnamed ones out to a numbering and remove the anonymous structs.
513   unsigned NextNumber = 0;
514 
515   std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E;
516   for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) {
517     StructType *STy = *I;
518 
519     // Ignore anonymous types.
520     if (STy->isLiteral())
521       continue;
522 
523     if (STy->getName().empty())
524       Type2Number[STy] = NextNumber++;
525     else
526       *NextToUse++ = STy;
527   }
528 
529   NamedTypes.erase(NextToUse, NamedTypes.end());
530 }
531 
532 /// Write the specified type to the specified raw_ostream, making use of type
533 /// names or up references to shorten the type name where possible.
534 void TypePrinting::print(Type *Ty, raw_ostream &OS) {
535   switch (Ty->getTypeID()) {
536   case Type::VoidTyID:      OS << "void"; return;
537   case Type::HalfTyID:      OS << "half"; return;
538   case Type::BFloatTyID:    OS << "bfloat"; return;
539   case Type::FloatTyID:     OS << "float"; return;
540   case Type::DoubleTyID:    OS << "double"; return;
541   case Type::X86_FP80TyID:  OS << "x86_fp80"; return;
542   case Type::FP128TyID:     OS << "fp128"; return;
543   case Type::PPC_FP128TyID: OS << "ppc_fp128"; return;
544   case Type::LabelTyID:     OS << "label"; return;
545   case Type::MetadataTyID:  OS << "metadata"; return;
546   case Type::X86_MMXTyID:   OS << "x86_mmx"; return;
547   case Type::X86_AMXTyID:   OS << "x86_amx"; return;
548   case Type::TokenTyID:     OS << "token"; return;
549   case Type::IntegerTyID:
550     OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
551     return;
552 
553   case Type::FunctionTyID: {
554     FunctionType *FTy = cast<FunctionType>(Ty);
555     print(FTy->getReturnType(), OS);
556     OS << " (";
557     for (FunctionType::param_iterator I = FTy->param_begin(),
558          E = FTy->param_end(); I != E; ++I) {
559       if (I != FTy->param_begin())
560         OS << ", ";
561       print(*I, OS);
562     }
563     if (FTy->isVarArg()) {
564       if (FTy->getNumParams()) OS << ", ";
565       OS << "...";
566     }
567     OS << ')';
568     return;
569   }
570   case Type::StructTyID: {
571     StructType *STy = cast<StructType>(Ty);
572 
573     if (STy->isLiteral())
574       return printStructBody(STy, OS);
575 
576     if (!STy->getName().empty())
577       return PrintLLVMName(OS, STy->getName(), LocalPrefix);
578 
579     incorporateTypes();
580     const auto I = Type2Number.find(STy);
581     if (I != Type2Number.end())
582       OS << '%' << I->second;
583     else  // Not enumerated, print the hex address.
584       OS << "%\"type " << STy << '\"';
585     return;
586   }
587   case Type::PointerTyID: {
588     PointerType *PTy = cast<PointerType>(Ty);
589     if (PTy->isOpaque()) {
590       OS << "ptr";
591       if (unsigned AddressSpace = PTy->getAddressSpace())
592         OS << " addrspace(" << AddressSpace << ')';
593       return;
594     }
595     print(PTy->getElementType(), OS);
596     if (unsigned AddressSpace = PTy->getAddressSpace())
597       OS << " addrspace(" << AddressSpace << ')';
598     OS << '*';
599     return;
600   }
601   case Type::ArrayTyID: {
602     ArrayType *ATy = cast<ArrayType>(Ty);
603     OS << '[' << ATy->getNumElements() << " x ";
604     print(ATy->getElementType(), OS);
605     OS << ']';
606     return;
607   }
608   case Type::FixedVectorTyID:
609   case Type::ScalableVectorTyID: {
610     VectorType *PTy = cast<VectorType>(Ty);
611     ElementCount EC = PTy->getElementCount();
612     OS << "<";
613     if (EC.isScalable())
614       OS << "vscale x ";
615     OS << EC.getKnownMinValue() << " x ";
616     print(PTy->getElementType(), OS);
617     OS << '>';
618     return;
619   }
620   }
621   llvm_unreachable("Invalid TypeID");
622 }
623 
624 void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
625   if (STy->isOpaque()) {
626     OS << "opaque";
627     return;
628   }
629 
630   if (STy->isPacked())
631     OS << '<';
632 
633   if (STy->getNumElements() == 0) {
634     OS << "{}";
635   } else {
636     StructType::element_iterator I = STy->element_begin();
637     OS << "{ ";
638     print(*I++, OS);
639     for (StructType::element_iterator E = STy->element_end(); I != E; ++I) {
640       OS << ", ";
641       print(*I, OS);
642     }
643 
644     OS << " }";
645   }
646   if (STy->isPacked())
647     OS << '>';
648 }
649 
650 AbstractSlotTrackerStorage::~AbstractSlotTrackerStorage() {}
651 
652 namespace llvm {
653 
654 //===----------------------------------------------------------------------===//
655 // SlotTracker Class: Enumerate slot numbers for unnamed values
656 //===----------------------------------------------------------------------===//
657 /// This class provides computation of slot numbers for LLVM Assembly writing.
658 ///
659 class SlotTracker : public AbstractSlotTrackerStorage {
660 public:
661   /// ValueMap - A mapping of Values to slot numbers.
662   using ValueMap = DenseMap<const Value *, unsigned>;
663 
664 private:
665   /// TheModule - The module for which we are holding slot numbers.
666   const Module* TheModule;
667 
668   /// TheFunction - The function for which we are holding slot numbers.
669   const Function* TheFunction = nullptr;
670   bool FunctionProcessed = false;
671   bool ShouldInitializeAllMetadata;
672 
673   std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>
674       ProcessModuleHookFn;
675   std::function<void(AbstractSlotTrackerStorage *, const Function *, bool)>
676       ProcessFunctionHookFn;
677 
678   /// The summary index for which we are holding slot numbers.
679   const ModuleSummaryIndex *TheIndex = nullptr;
680 
681   /// mMap - The slot map for the module level data.
682   ValueMap mMap;
683   unsigned mNext = 0;
684 
685   /// fMap - The slot map for the function level data.
686   ValueMap fMap;
687   unsigned fNext = 0;
688 
689   /// mdnMap - Map for MDNodes.
690   DenseMap<const MDNode*, unsigned> mdnMap;
691   unsigned mdnNext = 0;
692 
693   /// asMap - The slot map for attribute sets.
694   DenseMap<AttributeSet, unsigned> asMap;
695   unsigned asNext = 0;
696 
697   /// ModulePathMap - The slot map for Module paths used in the summary index.
698   StringMap<unsigned> ModulePathMap;
699   unsigned ModulePathNext = 0;
700 
701   /// GUIDMap - The slot map for GUIDs used in the summary index.
702   DenseMap<GlobalValue::GUID, unsigned> GUIDMap;
703   unsigned GUIDNext = 0;
704 
705   /// TypeIdMap - The slot map for type ids used in the summary index.
706   StringMap<unsigned> TypeIdMap;
707   unsigned TypeIdNext = 0;
708 
709 public:
710   /// Construct from a module.
711   ///
712   /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
713   /// functions, giving correct numbering for metadata referenced only from
714   /// within a function (even if no functions have been initialized).
715   explicit SlotTracker(const Module *M,
716                        bool ShouldInitializeAllMetadata = false);
717 
718   /// Construct from a function, starting out in incorp state.
719   ///
720   /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
721   /// functions, giving correct numbering for metadata referenced only from
722   /// within a function (even if no functions have been initialized).
723   explicit SlotTracker(const Function *F,
724                        bool ShouldInitializeAllMetadata = false);
725 
726   /// Construct from a module summary index.
727   explicit SlotTracker(const ModuleSummaryIndex *Index);
728 
729   SlotTracker(const SlotTracker &) = delete;
730   SlotTracker &operator=(const SlotTracker &) = delete;
731 
732   ~SlotTracker() = default;
733 
734   void setProcessHook(
735       std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>);
736   void setProcessHook(std::function<void(AbstractSlotTrackerStorage *,
737                                          const Function *, bool)>);
738 
739   unsigned getNextMetadataSlot() override { return mdnNext; }
740 
741   void createMetadataSlot(const MDNode *N) override;
742 
743   /// Return the slot number of the specified value in it's type
744   /// plane.  If something is not in the SlotTracker, return -1.
745   int getLocalSlot(const Value *V);
746   int getGlobalSlot(const GlobalValue *V);
747   int getMetadataSlot(const MDNode *N) override;
748   int getAttributeGroupSlot(AttributeSet AS);
749   int getModulePathSlot(StringRef Path);
750   int getGUIDSlot(GlobalValue::GUID GUID);
751   int getTypeIdSlot(StringRef Id);
752 
753   /// If you'd like to deal with a function instead of just a module, use
754   /// this method to get its data into the SlotTracker.
755   void incorporateFunction(const Function *F) {
756     TheFunction = F;
757     FunctionProcessed = false;
758   }
759 
760   const Function *getFunction() const { return TheFunction; }
761 
762   /// After calling incorporateFunction, use this method to remove the
763   /// most recently incorporated function from the SlotTracker. This
764   /// will reset the state of the machine back to just the module contents.
765   void purgeFunction();
766 
767   /// MDNode map iterators.
768   using mdn_iterator = DenseMap<const MDNode*, unsigned>::iterator;
769 
770   mdn_iterator mdn_begin() { return mdnMap.begin(); }
771   mdn_iterator mdn_end() { return mdnMap.end(); }
772   unsigned mdn_size() const { return mdnMap.size(); }
773   bool mdn_empty() const { return mdnMap.empty(); }
774 
775   /// AttributeSet map iterators.
776   using as_iterator = DenseMap<AttributeSet, unsigned>::iterator;
777 
778   as_iterator as_begin()   { return asMap.begin(); }
779   as_iterator as_end()     { return asMap.end(); }
780   unsigned as_size() const { return asMap.size(); }
781   bool as_empty() const    { return asMap.empty(); }
782 
783   /// GUID map iterators.
784   using guid_iterator = DenseMap<GlobalValue::GUID, unsigned>::iterator;
785 
786   /// These functions do the actual initialization.
787   inline void initializeIfNeeded();
788   int initializeIndexIfNeeded();
789 
790   // Implementation Details
791 private:
792   /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
793   void CreateModuleSlot(const GlobalValue *V);
794 
795   /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
796   void CreateMetadataSlot(const MDNode *N);
797 
798   /// CreateFunctionSlot - Insert the specified Value* into the slot table.
799   void CreateFunctionSlot(const Value *V);
800 
801   /// Insert the specified AttributeSet into the slot table.
802   void CreateAttributeSetSlot(AttributeSet AS);
803 
804   inline void CreateModulePathSlot(StringRef Path);
805   void CreateGUIDSlot(GlobalValue::GUID GUID);
806   void CreateTypeIdSlot(StringRef Id);
807 
808   /// Add all of the module level global variables (and their initializers)
809   /// and function declarations, but not the contents of those functions.
810   void processModule();
811   // Returns number of allocated slots
812   int processIndex();
813 
814   /// Add all of the functions arguments, basic blocks, and instructions.
815   void processFunction();
816 
817   /// Add the metadata directly attached to a GlobalObject.
818   void processGlobalObjectMetadata(const GlobalObject &GO);
819 
820   /// Add all of the metadata from a function.
821   void processFunctionMetadata(const Function &F);
822 
823   /// Add all of the metadata from an instruction.
824   void processInstructionMetadata(const Instruction &I);
825 };
826 
827 } // end namespace llvm
828 
829 ModuleSlotTracker::ModuleSlotTracker(SlotTracker &Machine, const Module *M,
830                                      const Function *F)
831     : M(M), F(F), Machine(&Machine) {}
832 
833 ModuleSlotTracker::ModuleSlotTracker(const Module *M,
834                                      bool ShouldInitializeAllMetadata)
835     : ShouldCreateStorage(M),
836       ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), M(M) {}
837 
838 ModuleSlotTracker::~ModuleSlotTracker() = default;
839 
840 SlotTracker *ModuleSlotTracker::getMachine() {
841   if (!ShouldCreateStorage)
842     return Machine;
843 
844   ShouldCreateStorage = false;
845   MachineStorage =
846       std::make_unique<SlotTracker>(M, ShouldInitializeAllMetadata);
847   Machine = MachineStorage.get();
848   if (ProcessModuleHookFn)
849     Machine->setProcessHook(ProcessModuleHookFn);
850   if (ProcessFunctionHookFn)
851     Machine->setProcessHook(ProcessFunctionHookFn);
852   return Machine;
853 }
854 
855 void ModuleSlotTracker::incorporateFunction(const Function &F) {
856   // Using getMachine() may lazily create the slot tracker.
857   if (!getMachine())
858     return;
859 
860   // Nothing to do if this is the right function already.
861   if (this->F == &F)
862     return;
863   if (this->F)
864     Machine->purgeFunction();
865   Machine->incorporateFunction(&F);
866   this->F = &F;
867 }
868 
869 int ModuleSlotTracker::getLocalSlot(const Value *V) {
870   assert(F && "No function incorporated");
871   return Machine->getLocalSlot(V);
872 }
873 
874 void ModuleSlotTracker::setProcessHook(
875     std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>
876         Fn) {
877   ProcessModuleHookFn = Fn;
878 }
879 
880 void ModuleSlotTracker::setProcessHook(
881     std::function<void(AbstractSlotTrackerStorage *, const Function *, bool)>
882         Fn) {
883   ProcessFunctionHookFn = Fn;
884 }
885 
886 static SlotTracker *createSlotTracker(const Value *V) {
887   if (const Argument *FA = dyn_cast<Argument>(V))
888     return new SlotTracker(FA->getParent());
889 
890   if (const Instruction *I = dyn_cast<Instruction>(V))
891     if (I->getParent())
892       return new SlotTracker(I->getParent()->getParent());
893 
894   if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
895     return new SlotTracker(BB->getParent());
896 
897   if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
898     return new SlotTracker(GV->getParent());
899 
900   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
901     return new SlotTracker(GA->getParent());
902 
903   if (const GlobalIFunc *GIF = dyn_cast<GlobalIFunc>(V))
904     return new SlotTracker(GIF->getParent());
905 
906   if (const Function *Func = dyn_cast<Function>(V))
907     return new SlotTracker(Func);
908 
909   return nullptr;
910 }
911 
912 #if 0
913 #define ST_DEBUG(X) dbgs() << X
914 #else
915 #define ST_DEBUG(X)
916 #endif
917 
918 // Module level constructor. Causes the contents of the Module (sans functions)
919 // to be added to the slot table.
920 SlotTracker::SlotTracker(const Module *M, bool ShouldInitializeAllMetadata)
921     : TheModule(M), ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
922 
923 // Function level constructor. Causes the contents of the Module and the one
924 // function provided to be added to the slot table.
925 SlotTracker::SlotTracker(const Function *F, bool ShouldInitializeAllMetadata)
926     : TheModule(F ? F->getParent() : nullptr), TheFunction(F),
927       ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
928 
929 SlotTracker::SlotTracker(const ModuleSummaryIndex *Index)
930     : TheModule(nullptr), ShouldInitializeAllMetadata(false), TheIndex(Index) {}
931 
932 inline void SlotTracker::initializeIfNeeded() {
933   if (TheModule) {
934     processModule();
935     TheModule = nullptr; ///< Prevent re-processing next time we're called.
936   }
937 
938   if (TheFunction && !FunctionProcessed)
939     processFunction();
940 }
941 
942 int SlotTracker::initializeIndexIfNeeded() {
943   if (!TheIndex)
944     return 0;
945   int NumSlots = processIndex();
946   TheIndex = nullptr; ///< Prevent re-processing next time we're called.
947   return NumSlots;
948 }
949 
950 // Iterate through all the global variables, functions, and global
951 // variable initializers and create slots for them.
952 void SlotTracker::processModule() {
953   ST_DEBUG("begin processModule!\n");
954 
955   // Add all of the unnamed global variables to the value table.
956   for (const GlobalVariable &Var : TheModule->globals()) {
957     if (!Var.hasName())
958       CreateModuleSlot(&Var);
959     processGlobalObjectMetadata(Var);
960     auto Attrs = Var.getAttributes();
961     if (Attrs.hasAttributes())
962       CreateAttributeSetSlot(Attrs);
963   }
964 
965   for (const GlobalAlias &A : TheModule->aliases()) {
966     if (!A.hasName())
967       CreateModuleSlot(&A);
968   }
969 
970   for (const GlobalIFunc &I : TheModule->ifuncs()) {
971     if (!I.hasName())
972       CreateModuleSlot(&I);
973   }
974 
975   // Add metadata used by named metadata.
976   for (const NamedMDNode &NMD : TheModule->named_metadata()) {
977     for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i)
978       CreateMetadataSlot(NMD.getOperand(i));
979   }
980 
981   for (const Function &F : *TheModule) {
982     if (!F.hasName())
983       // Add all the unnamed functions to the table.
984       CreateModuleSlot(&F);
985 
986     if (ShouldInitializeAllMetadata)
987       processFunctionMetadata(F);
988 
989     // Add all the function attributes to the table.
990     // FIXME: Add attributes of other objects?
991     AttributeSet FnAttrs = F.getAttributes().getFnAttributes();
992     if (FnAttrs.hasAttributes())
993       CreateAttributeSetSlot(FnAttrs);
994   }
995 
996   if (ProcessModuleHookFn)
997     ProcessModuleHookFn(this, TheModule, ShouldInitializeAllMetadata);
998 
999   ST_DEBUG("end processModule!\n");
1000 }
1001 
1002 // Process the arguments, basic blocks, and instructions  of a function.
1003 void SlotTracker::processFunction() {
1004   ST_DEBUG("begin processFunction!\n");
1005   fNext = 0;
1006 
1007   // Process function metadata if it wasn't hit at the module-level.
1008   if (!ShouldInitializeAllMetadata)
1009     processFunctionMetadata(*TheFunction);
1010 
1011   // Add all the function arguments with no names.
1012   for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
1013       AE = TheFunction->arg_end(); AI != AE; ++AI)
1014     if (!AI->hasName())
1015       CreateFunctionSlot(&*AI);
1016 
1017   ST_DEBUG("Inserting Instructions:\n");
1018 
1019   // Add all of the basic blocks and instructions with no names.
1020   for (auto &BB : *TheFunction) {
1021     if (!BB.hasName())
1022       CreateFunctionSlot(&BB);
1023 
1024     for (auto &I : BB) {
1025       if (!I.getType()->isVoidTy() && !I.hasName())
1026         CreateFunctionSlot(&I);
1027 
1028       // We allow direct calls to any llvm.foo function here, because the
1029       // target may not be linked into the optimizer.
1030       if (const auto *Call = dyn_cast<CallBase>(&I)) {
1031         // Add all the call attributes to the table.
1032         AttributeSet Attrs = Call->getAttributes().getFnAttributes();
1033         if (Attrs.hasAttributes())
1034           CreateAttributeSetSlot(Attrs);
1035       }
1036     }
1037   }
1038 
1039   if (ProcessFunctionHookFn)
1040     ProcessFunctionHookFn(this, TheFunction, ShouldInitializeAllMetadata);
1041 
1042   FunctionProcessed = true;
1043 
1044   ST_DEBUG("end processFunction!\n");
1045 }
1046 
1047 // Iterate through all the GUID in the index and create slots for them.
1048 int SlotTracker::processIndex() {
1049   ST_DEBUG("begin processIndex!\n");
1050   assert(TheIndex);
1051 
1052   // The first block of slots are just the module ids, which start at 0 and are
1053   // assigned consecutively. Since the StringMap iteration order isn't
1054   // guaranteed, use a std::map to order by module ID before assigning slots.
1055   std::map<uint64_t, StringRef> ModuleIdToPathMap;
1056   for (auto &ModPath : TheIndex->modulePaths())
1057     ModuleIdToPathMap[ModPath.second.first] = ModPath.first();
1058   for (auto &ModPair : ModuleIdToPathMap)
1059     CreateModulePathSlot(ModPair.second);
1060 
1061   // Start numbering the GUIDs after the module ids.
1062   GUIDNext = ModulePathNext;
1063 
1064   for (auto &GlobalList : *TheIndex)
1065     CreateGUIDSlot(GlobalList.first);
1066 
1067   for (auto &TId : TheIndex->typeIdCompatibleVtableMap())
1068     CreateGUIDSlot(GlobalValue::getGUID(TId.first));
1069 
1070   // Start numbering the TypeIds after the GUIDs.
1071   TypeIdNext = GUIDNext;
1072   for (const auto &TID : TheIndex->typeIds())
1073     CreateTypeIdSlot(TID.second.first);
1074 
1075   ST_DEBUG("end processIndex!\n");
1076   return TypeIdNext;
1077 }
1078 
1079 void SlotTracker::processGlobalObjectMetadata(const GlobalObject &GO) {
1080   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1081   GO.getAllMetadata(MDs);
1082   for (auto &MD : MDs)
1083     CreateMetadataSlot(MD.second);
1084 }
1085 
1086 void SlotTracker::processFunctionMetadata(const Function &F) {
1087   processGlobalObjectMetadata(F);
1088   for (auto &BB : F) {
1089     for (auto &I : BB)
1090       processInstructionMetadata(I);
1091   }
1092 }
1093 
1094 void SlotTracker::processInstructionMetadata(const Instruction &I) {
1095   // Process metadata used directly by intrinsics.
1096   if (const CallInst *CI = dyn_cast<CallInst>(&I))
1097     if (Function *F = CI->getCalledFunction())
1098       if (F->isIntrinsic())
1099         for (auto &Op : I.operands())
1100           if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
1101             if (MDNode *N = dyn_cast<MDNode>(V->getMetadata()))
1102               CreateMetadataSlot(N);
1103 
1104   // Process metadata attached to this instruction.
1105   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1106   I.getAllMetadata(MDs);
1107   for (auto &MD : MDs)
1108     CreateMetadataSlot(MD.second);
1109 }
1110 
1111 /// Clean up after incorporating a function. This is the only way to get out of
1112 /// the function incorporation state that affects get*Slot/Create*Slot. Function
1113 /// incorporation state is indicated by TheFunction != 0.
1114 void SlotTracker::purgeFunction() {
1115   ST_DEBUG("begin purgeFunction!\n");
1116   fMap.clear(); // Simply discard the function level map
1117   TheFunction = nullptr;
1118   FunctionProcessed = false;
1119   ST_DEBUG("end purgeFunction!\n");
1120 }
1121 
1122 /// getGlobalSlot - Get the slot number of a global value.
1123 int SlotTracker::getGlobalSlot(const GlobalValue *V) {
1124   // Check for uninitialized state and do lazy initialization.
1125   initializeIfNeeded();
1126 
1127   // Find the value in the module map
1128   ValueMap::iterator MI = mMap.find(V);
1129   return MI == mMap.end() ? -1 : (int)MI->second;
1130 }
1131 
1132 void SlotTracker::setProcessHook(
1133     std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>
1134         Fn) {
1135   ProcessModuleHookFn = Fn;
1136 }
1137 
1138 void SlotTracker::setProcessHook(
1139     std::function<void(AbstractSlotTrackerStorage *, const Function *, bool)>
1140         Fn) {
1141   ProcessFunctionHookFn = Fn;
1142 }
1143 
1144 /// getMetadataSlot - Get the slot number of a MDNode.
1145 void SlotTracker::createMetadataSlot(const MDNode *N) { CreateMetadataSlot(N); }
1146 
1147 /// getMetadataSlot - Get the slot number of a MDNode.
1148 int SlotTracker::getMetadataSlot(const MDNode *N) {
1149   // Check for uninitialized state and do lazy initialization.
1150   initializeIfNeeded();
1151 
1152   // Find the MDNode in the module map
1153   mdn_iterator MI = mdnMap.find(N);
1154   return MI == mdnMap.end() ? -1 : (int)MI->second;
1155 }
1156 
1157 /// getLocalSlot - Get the slot number for a value that is local to a function.
1158 int SlotTracker::getLocalSlot(const Value *V) {
1159   assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
1160 
1161   // Check for uninitialized state and do lazy initialization.
1162   initializeIfNeeded();
1163 
1164   ValueMap::iterator FI = fMap.find(V);
1165   return FI == fMap.end() ? -1 : (int)FI->second;
1166 }
1167 
1168 int SlotTracker::getAttributeGroupSlot(AttributeSet AS) {
1169   // Check for uninitialized state and do lazy initialization.
1170   initializeIfNeeded();
1171 
1172   // Find the AttributeSet in the module map.
1173   as_iterator AI = asMap.find(AS);
1174   return AI == asMap.end() ? -1 : (int)AI->second;
1175 }
1176 
1177 int SlotTracker::getModulePathSlot(StringRef Path) {
1178   // Check for uninitialized state and do lazy initialization.
1179   initializeIndexIfNeeded();
1180 
1181   // Find the Module path in the map
1182   auto I = ModulePathMap.find(Path);
1183   return I == ModulePathMap.end() ? -1 : (int)I->second;
1184 }
1185 
1186 int SlotTracker::getGUIDSlot(GlobalValue::GUID GUID) {
1187   // Check for uninitialized state and do lazy initialization.
1188   initializeIndexIfNeeded();
1189 
1190   // Find the GUID in the map
1191   guid_iterator I = GUIDMap.find(GUID);
1192   return I == GUIDMap.end() ? -1 : (int)I->second;
1193 }
1194 
1195 int SlotTracker::getTypeIdSlot(StringRef Id) {
1196   // Check for uninitialized state and do lazy initialization.
1197   initializeIndexIfNeeded();
1198 
1199   // Find the TypeId string in the map
1200   auto I = TypeIdMap.find(Id);
1201   return I == TypeIdMap.end() ? -1 : (int)I->second;
1202 }
1203 
1204 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
1205 void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
1206   assert(V && "Can't insert a null Value into SlotTracker!");
1207   assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
1208   assert(!V->hasName() && "Doesn't need a slot!");
1209 
1210   unsigned DestSlot = mNext++;
1211   mMap[V] = DestSlot;
1212 
1213   ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1214            DestSlot << " [");
1215   // G = Global, F = Function, A = Alias, I = IFunc, o = other
1216   ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
1217             (isa<Function>(V) ? 'F' :
1218              (isa<GlobalAlias>(V) ? 'A' :
1219               (isa<GlobalIFunc>(V) ? 'I' : 'o')))) << "]\n");
1220 }
1221 
1222 /// CreateSlot - Create a new slot for the specified value if it has no name.
1223 void SlotTracker::CreateFunctionSlot(const Value *V) {
1224   assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
1225 
1226   unsigned DestSlot = fNext++;
1227   fMap[V] = DestSlot;
1228 
1229   // G = Global, F = Function, o = other
1230   ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1231            DestSlot << " [o]\n");
1232 }
1233 
1234 /// CreateModuleSlot - Insert the specified MDNode* into the slot table.
1235 void SlotTracker::CreateMetadataSlot(const MDNode *N) {
1236   assert(N && "Can't insert a null Value into SlotTracker!");
1237 
1238   // Don't make slots for DIExpressions or DIArgLists. We just print them inline
1239   // everywhere.
1240   if (isa<DIExpression>(N) || isa<DIArgList>(N))
1241     return;
1242 
1243   unsigned DestSlot = mdnNext;
1244   if (!mdnMap.insert(std::make_pair(N, DestSlot)).second)
1245     return;
1246   ++mdnNext;
1247 
1248   // Recursively add any MDNodes referenced by operands.
1249   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1250     if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
1251       CreateMetadataSlot(Op);
1252 }
1253 
1254 void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) {
1255   assert(AS.hasAttributes() && "Doesn't need a slot!");
1256 
1257   as_iterator I = asMap.find(AS);
1258   if (I != asMap.end())
1259     return;
1260 
1261   unsigned DestSlot = asNext++;
1262   asMap[AS] = DestSlot;
1263 }
1264 
1265 /// Create a new slot for the specified Module
1266 void SlotTracker::CreateModulePathSlot(StringRef Path) {
1267   ModulePathMap[Path] = ModulePathNext++;
1268 }
1269 
1270 /// Create a new slot for the specified GUID
1271 void SlotTracker::CreateGUIDSlot(GlobalValue::GUID GUID) {
1272   GUIDMap[GUID] = GUIDNext++;
1273 }
1274 
1275 /// Create a new slot for the specified Id
1276 void SlotTracker::CreateTypeIdSlot(StringRef Id) {
1277   TypeIdMap[Id] = TypeIdNext++;
1278 }
1279 
1280 //===----------------------------------------------------------------------===//
1281 // AsmWriter Implementation
1282 //===----------------------------------------------------------------------===//
1283 
1284 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1285                                    TypePrinting *TypePrinter,
1286                                    SlotTracker *Machine,
1287                                    const Module *Context);
1288 
1289 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
1290                                    TypePrinting *TypePrinter,
1291                                    SlotTracker *Machine, const Module *Context,
1292                                    bool FromValue = false);
1293 
1294 static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
1295   if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U)) {
1296     // 'Fast' is an abbreviation for all fast-math-flags.
1297     if (FPO->isFast())
1298       Out << " fast";
1299     else {
1300       if (FPO->hasAllowReassoc())
1301         Out << " reassoc";
1302       if (FPO->hasNoNaNs())
1303         Out << " nnan";
1304       if (FPO->hasNoInfs())
1305         Out << " ninf";
1306       if (FPO->hasNoSignedZeros())
1307         Out << " nsz";
1308       if (FPO->hasAllowReciprocal())
1309         Out << " arcp";
1310       if (FPO->hasAllowContract())
1311         Out << " contract";
1312       if (FPO->hasApproxFunc())
1313         Out << " afn";
1314     }
1315   }
1316 
1317   if (const OverflowingBinaryOperator *OBO =
1318         dyn_cast<OverflowingBinaryOperator>(U)) {
1319     if (OBO->hasNoUnsignedWrap())
1320       Out << " nuw";
1321     if (OBO->hasNoSignedWrap())
1322       Out << " nsw";
1323   } else if (const PossiblyExactOperator *Div =
1324                dyn_cast<PossiblyExactOperator>(U)) {
1325     if (Div->isExact())
1326       Out << " exact";
1327   } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
1328     if (GEP->isInBounds())
1329       Out << " inbounds";
1330   }
1331 }
1332 
1333 static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
1334                                   TypePrinting &TypePrinter,
1335                                   SlotTracker *Machine,
1336                                   const Module *Context) {
1337   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1338     if (CI->getType()->isIntegerTy(1)) {
1339       Out << (CI->getZExtValue() ? "true" : "false");
1340       return;
1341     }
1342     Out << CI->getValue();
1343     return;
1344   }
1345 
1346   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1347     const APFloat &APF = CFP->getValueAPF();
1348     if (&APF.getSemantics() == &APFloat::IEEEsingle() ||
1349         &APF.getSemantics() == &APFloat::IEEEdouble()) {
1350       // We would like to output the FP constant value in exponential notation,
1351       // but we cannot do this if doing so will lose precision.  Check here to
1352       // make sure that we only output it in exponential format if we can parse
1353       // the value back and get the same value.
1354       //
1355       bool ignored;
1356       bool isDouble = &APF.getSemantics() == &APFloat::IEEEdouble();
1357       bool isInf = APF.isInfinity();
1358       bool isNaN = APF.isNaN();
1359       if (!isInf && !isNaN) {
1360         double Val = APF.convertToDouble();
1361         SmallString<128> StrVal;
1362         APF.toString(StrVal, 6, 0, false);
1363         // Check to make sure that the stringized number is not some string like
1364         // "Inf" or NaN, that atof will accept, but the lexer will not.  Check
1365         // that the string matches the "[-+]?[0-9]" regex.
1366         //
1367         assert((isDigit(StrVal[0]) || ((StrVal[0] == '-' || StrVal[0] == '+') &&
1368                                        isDigit(StrVal[1]))) &&
1369                "[-+]?[0-9] regex does not match!");
1370         // Reparse stringized version!
1371         if (APFloat(APFloat::IEEEdouble(), StrVal).convertToDouble() == Val) {
1372           Out << StrVal;
1373           return;
1374         }
1375       }
1376       // Otherwise we could not reparse it to exactly the same value, so we must
1377       // output the string in hexadecimal format!  Note that loading and storing
1378       // floating point types changes the bits of NaNs on some hosts, notably
1379       // x86, so we must not use these types.
1380       static_assert(sizeof(double) == sizeof(uint64_t),
1381                     "assuming that double is 64 bits!");
1382       APFloat apf = APF;
1383       // Floats are represented in ASCII IR as double, convert.
1384       // FIXME: We should allow 32-bit hex float and remove this.
1385       if (!isDouble) {
1386         // A signaling NaN is quieted on conversion, so we need to recreate the
1387         // expected value after convert (quiet bit of the payload is clear).
1388         bool IsSNAN = apf.isSignaling();
1389         apf.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
1390                     &ignored);
1391         if (IsSNAN) {
1392           APInt Payload = apf.bitcastToAPInt();
1393           apf = APFloat::getSNaN(APFloat::IEEEdouble(), apf.isNegative(),
1394                                  &Payload);
1395         }
1396       }
1397       Out << format_hex(apf.bitcastToAPInt().getZExtValue(), 0, /*Upper=*/true);
1398       return;
1399     }
1400 
1401     // Either half, bfloat or some form of long double.
1402     // These appear as a magic letter identifying the type, then a
1403     // fixed number of hex digits.
1404     Out << "0x";
1405     APInt API = APF.bitcastToAPInt();
1406     if (&APF.getSemantics() == &APFloat::x87DoubleExtended()) {
1407       Out << 'K';
1408       Out << format_hex_no_prefix(API.getHiBits(16).getZExtValue(), 4,
1409                                   /*Upper=*/true);
1410       Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1411                                   /*Upper=*/true);
1412       return;
1413     } else if (&APF.getSemantics() == &APFloat::IEEEquad()) {
1414       Out << 'L';
1415       Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1416                                   /*Upper=*/true);
1417       Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1418                                   /*Upper=*/true);
1419     } else if (&APF.getSemantics() == &APFloat::PPCDoubleDouble()) {
1420       Out << 'M';
1421       Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1422                                   /*Upper=*/true);
1423       Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1424                                   /*Upper=*/true);
1425     } else if (&APF.getSemantics() == &APFloat::IEEEhalf()) {
1426       Out << 'H';
1427       Out << format_hex_no_prefix(API.getZExtValue(), 4,
1428                                   /*Upper=*/true);
1429     } else if (&APF.getSemantics() == &APFloat::BFloat()) {
1430       Out << 'R';
1431       Out << format_hex_no_prefix(API.getZExtValue(), 4,
1432                                   /*Upper=*/true);
1433     } else
1434       llvm_unreachable("Unsupported floating point type");
1435     return;
1436   }
1437 
1438   if (isa<ConstantAggregateZero>(CV)) {
1439     Out << "zeroinitializer";
1440     return;
1441   }
1442 
1443   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
1444     Out << "blockaddress(";
1445     WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine,
1446                            Context);
1447     Out << ", ";
1448     WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine,
1449                            Context);
1450     Out << ")";
1451     return;
1452   }
1453 
1454   if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV)) {
1455     Out << "dso_local_equivalent ";
1456     WriteAsOperandInternal(Out, Equiv->getGlobalValue(), &TypePrinter, Machine,
1457                            Context);
1458     return;
1459   }
1460 
1461   if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
1462     Type *ETy = CA->getType()->getElementType();
1463     Out << '[';
1464     TypePrinter.print(ETy, Out);
1465     Out << ' ';
1466     WriteAsOperandInternal(Out, CA->getOperand(0),
1467                            &TypePrinter, Machine,
1468                            Context);
1469     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1470       Out << ", ";
1471       TypePrinter.print(ETy, Out);
1472       Out << ' ';
1473       WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine,
1474                              Context);
1475     }
1476     Out << ']';
1477     return;
1478   }
1479 
1480   if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
1481     // As a special case, print the array as a string if it is an array of
1482     // i8 with ConstantInt values.
1483     if (CA->isString()) {
1484       Out << "c\"";
1485       printEscapedString(CA->getAsString(), Out);
1486       Out << '"';
1487       return;
1488     }
1489 
1490     Type *ETy = CA->getType()->getElementType();
1491     Out << '[';
1492     TypePrinter.print(ETy, Out);
1493     Out << ' ';
1494     WriteAsOperandInternal(Out, CA->getElementAsConstant(0),
1495                            &TypePrinter, Machine,
1496                            Context);
1497     for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
1498       Out << ", ";
1499       TypePrinter.print(ETy, Out);
1500       Out << ' ';
1501       WriteAsOperandInternal(Out, CA->getElementAsConstant(i), &TypePrinter,
1502                              Machine, Context);
1503     }
1504     Out << ']';
1505     return;
1506   }
1507 
1508   if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
1509     if (CS->getType()->isPacked())
1510       Out << '<';
1511     Out << '{';
1512     unsigned N = CS->getNumOperands();
1513     if (N) {
1514       Out << ' ';
1515       TypePrinter.print(CS->getOperand(0)->getType(), Out);
1516       Out << ' ';
1517 
1518       WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine,
1519                              Context);
1520 
1521       for (unsigned i = 1; i < N; i++) {
1522         Out << ", ";
1523         TypePrinter.print(CS->getOperand(i)->getType(), Out);
1524         Out << ' ';
1525 
1526         WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine,
1527                                Context);
1528       }
1529       Out << ' ';
1530     }
1531 
1532     Out << '}';
1533     if (CS->getType()->isPacked())
1534       Out << '>';
1535     return;
1536   }
1537 
1538   if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
1539     auto *CVVTy = cast<FixedVectorType>(CV->getType());
1540     Type *ETy = CVVTy->getElementType();
1541     Out << '<';
1542     TypePrinter.print(ETy, Out);
1543     Out << ' ';
1544     WriteAsOperandInternal(Out, CV->getAggregateElement(0U), &TypePrinter,
1545                            Machine, Context);
1546     for (unsigned i = 1, e = CVVTy->getNumElements(); i != e; ++i) {
1547       Out << ", ";
1548       TypePrinter.print(ETy, Out);
1549       Out << ' ';
1550       WriteAsOperandInternal(Out, CV->getAggregateElement(i), &TypePrinter,
1551                              Machine, Context);
1552     }
1553     Out << '>';
1554     return;
1555   }
1556 
1557   if (isa<ConstantPointerNull>(CV)) {
1558     Out << "null";
1559     return;
1560   }
1561 
1562   if (isa<ConstantTokenNone>(CV)) {
1563     Out << "none";
1564     return;
1565   }
1566 
1567   if (isa<PoisonValue>(CV)) {
1568     Out << "poison";
1569     return;
1570   }
1571 
1572   if (isa<UndefValue>(CV)) {
1573     Out << "undef";
1574     return;
1575   }
1576 
1577   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1578     Out << CE->getOpcodeName();
1579     WriteOptimizationInfo(Out, CE);
1580     if (CE->isCompare())
1581       Out << ' ' << CmpInst::getPredicateName(
1582                         static_cast<CmpInst::Predicate>(CE->getPredicate()));
1583     Out << " (";
1584 
1585     Optional<unsigned> InRangeOp;
1586     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) {
1587       TypePrinter.print(GEP->getSourceElementType(), Out);
1588       Out << ", ";
1589       InRangeOp = GEP->getInRangeIndex();
1590       if (InRangeOp)
1591         ++*InRangeOp;
1592     }
1593 
1594     for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
1595       if (InRangeOp && unsigned(OI - CE->op_begin()) == *InRangeOp)
1596         Out << "inrange ";
1597       TypePrinter.print((*OI)->getType(), Out);
1598       Out << ' ';
1599       WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context);
1600       if (OI+1 != CE->op_end())
1601         Out << ", ";
1602     }
1603 
1604     if (CE->hasIndices()) {
1605       ArrayRef<unsigned> Indices = CE->getIndices();
1606       for (unsigned i = 0, e = Indices.size(); i != e; ++i)
1607         Out << ", " << Indices[i];
1608     }
1609 
1610     if (CE->isCast()) {
1611       Out << " to ";
1612       TypePrinter.print(CE->getType(), Out);
1613     }
1614 
1615     if (CE->getOpcode() == Instruction::ShuffleVector)
1616       PrintShuffleMask(Out, CE->getType(), CE->getShuffleMask());
1617 
1618     Out << ')';
1619     return;
1620   }
1621 
1622   Out << "<placeholder or erroneous Constant>";
1623 }
1624 
1625 static void writeMDTuple(raw_ostream &Out, const MDTuple *Node,
1626                          TypePrinting *TypePrinter, SlotTracker *Machine,
1627                          const Module *Context) {
1628   Out << "!{";
1629   for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
1630     const Metadata *MD = Node->getOperand(mi);
1631     if (!MD)
1632       Out << "null";
1633     else if (auto *MDV = dyn_cast<ValueAsMetadata>(MD)) {
1634       Value *V = MDV->getValue();
1635       TypePrinter->print(V->getType(), Out);
1636       Out << ' ';
1637       WriteAsOperandInternal(Out, V, TypePrinter, Machine, Context);
1638     } else {
1639       WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
1640     }
1641     if (mi + 1 != me)
1642       Out << ", ";
1643   }
1644 
1645   Out << "}";
1646 }
1647 
1648 namespace {
1649 
1650 struct FieldSeparator {
1651   bool Skip = true;
1652   const char *Sep;
1653 
1654   FieldSeparator(const char *Sep = ", ") : Sep(Sep) {}
1655 };
1656 
1657 raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) {
1658   if (FS.Skip) {
1659     FS.Skip = false;
1660     return OS;
1661   }
1662   return OS << FS.Sep;
1663 }
1664 
1665 struct MDFieldPrinter {
1666   raw_ostream &Out;
1667   FieldSeparator FS;
1668   TypePrinting *TypePrinter = nullptr;
1669   SlotTracker *Machine = nullptr;
1670   const Module *Context = nullptr;
1671 
1672   explicit MDFieldPrinter(raw_ostream &Out) : Out(Out) {}
1673   MDFieldPrinter(raw_ostream &Out, TypePrinting *TypePrinter,
1674                  SlotTracker *Machine, const Module *Context)
1675       : Out(Out), TypePrinter(TypePrinter), Machine(Machine), Context(Context) {
1676   }
1677 
1678   void printTag(const DINode *N);
1679   void printMacinfoType(const DIMacroNode *N);
1680   void printChecksum(const DIFile::ChecksumInfo<StringRef> &N);
1681   void printString(StringRef Name, StringRef Value,
1682                    bool ShouldSkipEmpty = true);
1683   void printMetadata(StringRef Name, const Metadata *MD,
1684                      bool ShouldSkipNull = true);
1685   template <class IntTy>
1686   void printInt(StringRef Name, IntTy Int, bool ShouldSkipZero = true);
1687   void printAPInt(StringRef Name, const APInt &Int, bool IsUnsigned,
1688                   bool ShouldSkipZero);
1689   void printBool(StringRef Name, bool Value, Optional<bool> Default = None);
1690   void printDIFlags(StringRef Name, DINode::DIFlags Flags);
1691   void printDISPFlags(StringRef Name, DISubprogram::DISPFlags Flags);
1692   template <class IntTy, class Stringifier>
1693   void printDwarfEnum(StringRef Name, IntTy Value, Stringifier toString,
1694                       bool ShouldSkipZero = true);
1695   void printEmissionKind(StringRef Name, DICompileUnit::DebugEmissionKind EK);
1696   void printNameTableKind(StringRef Name,
1697                           DICompileUnit::DebugNameTableKind NTK);
1698 };
1699 
1700 } // end anonymous namespace
1701 
1702 void MDFieldPrinter::printTag(const DINode *N) {
1703   Out << FS << "tag: ";
1704   auto Tag = dwarf::TagString(N->getTag());
1705   if (!Tag.empty())
1706     Out << Tag;
1707   else
1708     Out << N->getTag();
1709 }
1710 
1711 void MDFieldPrinter::printMacinfoType(const DIMacroNode *N) {
1712   Out << FS << "type: ";
1713   auto Type = dwarf::MacinfoString(N->getMacinfoType());
1714   if (!Type.empty())
1715     Out << Type;
1716   else
1717     Out << N->getMacinfoType();
1718 }
1719 
1720 void MDFieldPrinter::printChecksum(
1721     const DIFile::ChecksumInfo<StringRef> &Checksum) {
1722   Out << FS << "checksumkind: " << Checksum.getKindAsString();
1723   printString("checksum", Checksum.Value, /* ShouldSkipEmpty */ false);
1724 }
1725 
1726 void MDFieldPrinter::printString(StringRef Name, StringRef Value,
1727                                  bool ShouldSkipEmpty) {
1728   if (ShouldSkipEmpty && Value.empty())
1729     return;
1730 
1731   Out << FS << Name << ": \"";
1732   printEscapedString(Value, Out);
1733   Out << "\"";
1734 }
1735 
1736 static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD,
1737                                    TypePrinting *TypePrinter,
1738                                    SlotTracker *Machine,
1739                                    const Module *Context) {
1740   if (!MD) {
1741     Out << "null";
1742     return;
1743   }
1744   WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
1745 }
1746 
1747 void MDFieldPrinter::printMetadata(StringRef Name, const Metadata *MD,
1748                                    bool ShouldSkipNull) {
1749   if (ShouldSkipNull && !MD)
1750     return;
1751 
1752   Out << FS << Name << ": ";
1753   writeMetadataAsOperand(Out, MD, TypePrinter, Machine, Context);
1754 }
1755 
1756 template <class IntTy>
1757 void MDFieldPrinter::printInt(StringRef Name, IntTy Int, bool ShouldSkipZero) {
1758   if (ShouldSkipZero && !Int)
1759     return;
1760 
1761   Out << FS << Name << ": " << Int;
1762 }
1763 
1764 void MDFieldPrinter::printAPInt(StringRef Name, const APInt &Int,
1765                                 bool IsUnsigned, bool ShouldSkipZero) {
1766   if (ShouldSkipZero && Int.isNullValue())
1767     return;
1768 
1769   Out << FS << Name << ": ";
1770   Int.print(Out, !IsUnsigned);
1771 }
1772 
1773 void MDFieldPrinter::printBool(StringRef Name, bool Value,
1774                                Optional<bool> Default) {
1775   if (Default && Value == *Default)
1776     return;
1777   Out << FS << Name << ": " << (Value ? "true" : "false");
1778 }
1779 
1780 void MDFieldPrinter::printDIFlags(StringRef Name, DINode::DIFlags Flags) {
1781   if (!Flags)
1782     return;
1783 
1784   Out << FS << Name << ": ";
1785 
1786   SmallVector<DINode::DIFlags, 8> SplitFlags;
1787   auto Extra = DINode::splitFlags(Flags, SplitFlags);
1788 
1789   FieldSeparator FlagsFS(" | ");
1790   for (auto F : SplitFlags) {
1791     auto StringF = DINode::getFlagString(F);
1792     assert(!StringF.empty() && "Expected valid flag");
1793     Out << FlagsFS << StringF;
1794   }
1795   if (Extra || SplitFlags.empty())
1796     Out << FlagsFS << Extra;
1797 }
1798 
1799 void MDFieldPrinter::printDISPFlags(StringRef Name,
1800                                     DISubprogram::DISPFlags Flags) {
1801   // Always print this field, because no flags in the IR at all will be
1802   // interpreted as old-style isDefinition: true.
1803   Out << FS << Name << ": ";
1804 
1805   if (!Flags) {
1806     Out << 0;
1807     return;
1808   }
1809 
1810   SmallVector<DISubprogram::DISPFlags, 8> SplitFlags;
1811   auto Extra = DISubprogram::splitFlags(Flags, SplitFlags);
1812 
1813   FieldSeparator FlagsFS(" | ");
1814   for (auto F : SplitFlags) {
1815     auto StringF = DISubprogram::getFlagString(F);
1816     assert(!StringF.empty() && "Expected valid flag");
1817     Out << FlagsFS << StringF;
1818   }
1819   if (Extra || SplitFlags.empty())
1820     Out << FlagsFS << Extra;
1821 }
1822 
1823 void MDFieldPrinter::printEmissionKind(StringRef Name,
1824                                        DICompileUnit::DebugEmissionKind EK) {
1825   Out << FS << Name << ": " << DICompileUnit::emissionKindString(EK);
1826 }
1827 
1828 void MDFieldPrinter::printNameTableKind(StringRef Name,
1829                                         DICompileUnit::DebugNameTableKind NTK) {
1830   if (NTK == DICompileUnit::DebugNameTableKind::Default)
1831     return;
1832   Out << FS << Name << ": " << DICompileUnit::nameTableKindString(NTK);
1833 }
1834 
1835 template <class IntTy, class Stringifier>
1836 void MDFieldPrinter::printDwarfEnum(StringRef Name, IntTy Value,
1837                                     Stringifier toString, bool ShouldSkipZero) {
1838   if (!Value)
1839     return;
1840 
1841   Out << FS << Name << ": ";
1842   auto S = toString(Value);
1843   if (!S.empty())
1844     Out << S;
1845   else
1846     Out << Value;
1847 }
1848 
1849 static void writeGenericDINode(raw_ostream &Out, const GenericDINode *N,
1850                                TypePrinting *TypePrinter, SlotTracker *Machine,
1851                                const Module *Context) {
1852   Out << "!GenericDINode(";
1853   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1854   Printer.printTag(N);
1855   Printer.printString("header", N->getHeader());
1856   if (N->getNumDwarfOperands()) {
1857     Out << Printer.FS << "operands: {";
1858     FieldSeparator IFS;
1859     for (auto &I : N->dwarf_operands()) {
1860       Out << IFS;
1861       writeMetadataAsOperand(Out, I, TypePrinter, Machine, Context);
1862     }
1863     Out << "}";
1864   }
1865   Out << ")";
1866 }
1867 
1868 static void writeDILocation(raw_ostream &Out, const DILocation *DL,
1869                             TypePrinting *TypePrinter, SlotTracker *Machine,
1870                             const Module *Context) {
1871   Out << "!DILocation(";
1872   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1873   // Always output the line, since 0 is a relevant and important value for it.
1874   Printer.printInt("line", DL->getLine(), /* ShouldSkipZero */ false);
1875   Printer.printInt("column", DL->getColumn());
1876   Printer.printMetadata("scope", DL->getRawScope(), /* ShouldSkipNull */ false);
1877   Printer.printMetadata("inlinedAt", DL->getRawInlinedAt());
1878   Printer.printBool("isImplicitCode", DL->isImplicitCode(),
1879                     /* Default */ false);
1880   Out << ")";
1881 }
1882 
1883 static void writeDISubrange(raw_ostream &Out, const DISubrange *N,
1884                             TypePrinting *TypePrinter, SlotTracker *Machine,
1885                             const Module *Context) {
1886   Out << "!DISubrange(";
1887   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1888 
1889   auto *Count = N->getRawCountNode();
1890   if (auto *CE = dyn_cast_or_null<ConstantAsMetadata>(Count)) {
1891     auto *CV = cast<ConstantInt>(CE->getValue());
1892     Printer.printInt("count", CV->getSExtValue(),
1893                      /* ShouldSkipZero */ false);
1894   } else
1895     Printer.printMetadata("count", Count, /*ShouldSkipNull */ true);
1896 
1897   // A lowerBound of constant 0 should not be skipped, since it is different
1898   // from an unspecified lower bound (= nullptr).
1899   auto *LBound = N->getRawLowerBound();
1900   if (auto *LE = dyn_cast_or_null<ConstantAsMetadata>(LBound)) {
1901     auto *LV = cast<ConstantInt>(LE->getValue());
1902     Printer.printInt("lowerBound", LV->getSExtValue(),
1903                      /* ShouldSkipZero */ false);
1904   } else
1905     Printer.printMetadata("lowerBound", LBound, /*ShouldSkipNull */ true);
1906 
1907   auto *UBound = N->getRawUpperBound();
1908   if (auto *UE = dyn_cast_or_null<ConstantAsMetadata>(UBound)) {
1909     auto *UV = cast<ConstantInt>(UE->getValue());
1910     Printer.printInt("upperBound", UV->getSExtValue(),
1911                      /* ShouldSkipZero */ false);
1912   } else
1913     Printer.printMetadata("upperBound", UBound, /*ShouldSkipNull */ true);
1914 
1915   auto *Stride = N->getRawStride();
1916   if (auto *SE = dyn_cast_or_null<ConstantAsMetadata>(Stride)) {
1917     auto *SV = cast<ConstantInt>(SE->getValue());
1918     Printer.printInt("stride", SV->getSExtValue(), /* ShouldSkipZero */ false);
1919   } else
1920     Printer.printMetadata("stride", Stride, /*ShouldSkipNull */ true);
1921 
1922   Out << ")";
1923 }
1924 
1925 static void writeDIGenericSubrange(raw_ostream &Out, const DIGenericSubrange *N,
1926                                    TypePrinting *TypePrinter,
1927                                    SlotTracker *Machine,
1928                                    const Module *Context) {
1929   Out << "!DIGenericSubrange(";
1930   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1931 
1932   auto IsConstant = [&](Metadata *Bound) -> bool {
1933     if (auto *BE = dyn_cast_or_null<DIExpression>(Bound)) {
1934       return BE->isConstant()
1935                  ? DIExpression::SignedOrUnsignedConstant::SignedConstant ==
1936                        *BE->isConstant()
1937                  : false;
1938     }
1939     return false;
1940   };
1941 
1942   auto GetConstant = [&](Metadata *Bound) -> int64_t {
1943     assert(IsConstant(Bound) && "Expected constant");
1944     auto *BE = dyn_cast_or_null<DIExpression>(Bound);
1945     return static_cast<int64_t>(BE->getElement(1));
1946   };
1947 
1948   auto *Count = N->getRawCountNode();
1949   if (IsConstant(Count))
1950     Printer.printInt("count", GetConstant(Count),
1951                      /* ShouldSkipZero */ false);
1952   else
1953     Printer.printMetadata("count", Count, /*ShouldSkipNull */ true);
1954 
1955   auto *LBound = N->getRawLowerBound();
1956   if (IsConstant(LBound))
1957     Printer.printInt("lowerBound", GetConstant(LBound),
1958                      /* ShouldSkipZero */ false);
1959   else
1960     Printer.printMetadata("lowerBound", LBound, /*ShouldSkipNull */ true);
1961 
1962   auto *UBound = N->getRawUpperBound();
1963   if (IsConstant(UBound))
1964     Printer.printInt("upperBound", GetConstant(UBound),
1965                      /* ShouldSkipZero */ false);
1966   else
1967     Printer.printMetadata("upperBound", UBound, /*ShouldSkipNull */ true);
1968 
1969   auto *Stride = N->getRawStride();
1970   if (IsConstant(Stride))
1971     Printer.printInt("stride", GetConstant(Stride),
1972                      /* ShouldSkipZero */ false);
1973   else
1974     Printer.printMetadata("stride", Stride, /*ShouldSkipNull */ true);
1975 
1976   Out << ")";
1977 }
1978 
1979 static void writeDIEnumerator(raw_ostream &Out, const DIEnumerator *N,
1980                               TypePrinting *, SlotTracker *, const Module *) {
1981   Out << "!DIEnumerator(";
1982   MDFieldPrinter Printer(Out);
1983   Printer.printString("name", N->getName(), /* ShouldSkipEmpty */ false);
1984   Printer.printAPInt("value", N->getValue(), N->isUnsigned(),
1985                      /*ShouldSkipZero=*/false);
1986   if (N->isUnsigned())
1987     Printer.printBool("isUnsigned", true);
1988   Out << ")";
1989 }
1990 
1991 static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N,
1992                              TypePrinting *, SlotTracker *, const Module *) {
1993   Out << "!DIBasicType(";
1994   MDFieldPrinter Printer(Out);
1995   if (N->getTag() != dwarf::DW_TAG_base_type)
1996     Printer.printTag(N);
1997   Printer.printString("name", N->getName());
1998   Printer.printInt("size", N->getSizeInBits());
1999   Printer.printInt("align", N->getAlignInBits());
2000   Printer.printDwarfEnum("encoding", N->getEncoding(),
2001                          dwarf::AttributeEncodingString);
2002   Printer.printDIFlags("flags", N->getFlags());
2003   Out << ")";
2004 }
2005 
2006 static void writeDIStringType(raw_ostream &Out, const DIStringType *N,
2007                               TypePrinting *TypePrinter, SlotTracker *Machine,
2008                               const Module *Context) {
2009   Out << "!DIStringType(";
2010   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2011   if (N->getTag() != dwarf::DW_TAG_string_type)
2012     Printer.printTag(N);
2013   Printer.printString("name", N->getName());
2014   Printer.printMetadata("stringLength", N->getRawStringLength());
2015   Printer.printMetadata("stringLengthExpression", N->getRawStringLengthExp());
2016   Printer.printInt("size", N->getSizeInBits());
2017   Printer.printInt("align", N->getAlignInBits());
2018   Printer.printDwarfEnum("encoding", N->getEncoding(),
2019                          dwarf::AttributeEncodingString);
2020   Out << ")";
2021 }
2022 
2023 static void writeDIDerivedType(raw_ostream &Out, const DIDerivedType *N,
2024                                TypePrinting *TypePrinter, SlotTracker *Machine,
2025                                const Module *Context) {
2026   Out << "!DIDerivedType(";
2027   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2028   Printer.printTag(N);
2029   Printer.printString("name", N->getName());
2030   Printer.printMetadata("scope", N->getRawScope());
2031   Printer.printMetadata("file", N->getRawFile());
2032   Printer.printInt("line", N->getLine());
2033   Printer.printMetadata("baseType", N->getRawBaseType(),
2034                         /* ShouldSkipNull */ false);
2035   Printer.printInt("size", N->getSizeInBits());
2036   Printer.printInt("align", N->getAlignInBits());
2037   Printer.printInt("offset", N->getOffsetInBits());
2038   Printer.printDIFlags("flags", N->getFlags());
2039   Printer.printMetadata("extraData", N->getRawExtraData());
2040   if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
2041     Printer.printInt("dwarfAddressSpace", *DWARFAddressSpace,
2042                      /* ShouldSkipZero */ false);
2043   Out << ")";
2044 }
2045 
2046 static void writeDICompositeType(raw_ostream &Out, const DICompositeType *N,
2047                                  TypePrinting *TypePrinter,
2048                                  SlotTracker *Machine, const Module *Context) {
2049   Out << "!DICompositeType(";
2050   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2051   Printer.printTag(N);
2052   Printer.printString("name", N->getName());
2053   Printer.printMetadata("scope", N->getRawScope());
2054   Printer.printMetadata("file", N->getRawFile());
2055   Printer.printInt("line", N->getLine());
2056   Printer.printMetadata("baseType", N->getRawBaseType());
2057   Printer.printInt("size", N->getSizeInBits());
2058   Printer.printInt("align", N->getAlignInBits());
2059   Printer.printInt("offset", N->getOffsetInBits());
2060   Printer.printDIFlags("flags", N->getFlags());
2061   Printer.printMetadata("elements", N->getRawElements());
2062   Printer.printDwarfEnum("runtimeLang", N->getRuntimeLang(),
2063                          dwarf::LanguageString);
2064   Printer.printMetadata("vtableHolder", N->getRawVTableHolder());
2065   Printer.printMetadata("templateParams", N->getRawTemplateParams());
2066   Printer.printString("identifier", N->getIdentifier());
2067   Printer.printMetadata("discriminator", N->getRawDiscriminator());
2068   Printer.printMetadata("dataLocation", N->getRawDataLocation());
2069   Printer.printMetadata("associated", N->getRawAssociated());
2070   Printer.printMetadata("allocated", N->getRawAllocated());
2071   if (auto *RankConst = N->getRankConst())
2072     Printer.printInt("rank", RankConst->getSExtValue(),
2073                      /* ShouldSkipZero */ false);
2074   else
2075     Printer.printMetadata("rank", N->getRawRank(), /*ShouldSkipNull */ true);
2076   Out << ")";
2077 }
2078 
2079 static void writeDISubroutineType(raw_ostream &Out, const DISubroutineType *N,
2080                                   TypePrinting *TypePrinter,
2081                                   SlotTracker *Machine, const Module *Context) {
2082   Out << "!DISubroutineType(";
2083   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2084   Printer.printDIFlags("flags", N->getFlags());
2085   Printer.printDwarfEnum("cc", N->getCC(), dwarf::ConventionString);
2086   Printer.printMetadata("types", N->getRawTypeArray(),
2087                         /* ShouldSkipNull */ false);
2088   Out << ")";
2089 }
2090 
2091 static void writeDIFile(raw_ostream &Out, const DIFile *N, TypePrinting *,
2092                         SlotTracker *, const Module *) {
2093   Out << "!DIFile(";
2094   MDFieldPrinter Printer(Out);
2095   Printer.printString("filename", N->getFilename(),
2096                       /* ShouldSkipEmpty */ false);
2097   Printer.printString("directory", N->getDirectory(),
2098                       /* ShouldSkipEmpty */ false);
2099   // Print all values for checksum together, or not at all.
2100   if (N->getChecksum())
2101     Printer.printChecksum(*N->getChecksum());
2102   Printer.printString("source", N->getSource().getValueOr(StringRef()),
2103                       /* ShouldSkipEmpty */ true);
2104   Out << ")";
2105 }
2106 
2107 static void writeDICompileUnit(raw_ostream &Out, const DICompileUnit *N,
2108                                TypePrinting *TypePrinter, SlotTracker *Machine,
2109                                const Module *Context) {
2110   Out << "!DICompileUnit(";
2111   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2112   Printer.printDwarfEnum("language", N->getSourceLanguage(),
2113                          dwarf::LanguageString, /* ShouldSkipZero */ false);
2114   Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
2115   Printer.printString("producer", N->getProducer());
2116   Printer.printBool("isOptimized", N->isOptimized());
2117   Printer.printString("flags", N->getFlags());
2118   Printer.printInt("runtimeVersion", N->getRuntimeVersion(),
2119                    /* ShouldSkipZero */ false);
2120   Printer.printString("splitDebugFilename", N->getSplitDebugFilename());
2121   Printer.printEmissionKind("emissionKind", N->getEmissionKind());
2122   Printer.printMetadata("enums", N->getRawEnumTypes());
2123   Printer.printMetadata("retainedTypes", N->getRawRetainedTypes());
2124   Printer.printMetadata("globals", N->getRawGlobalVariables());
2125   Printer.printMetadata("imports", N->getRawImportedEntities());
2126   Printer.printMetadata("macros", N->getRawMacros());
2127   Printer.printInt("dwoId", N->getDWOId());
2128   Printer.printBool("splitDebugInlining", N->getSplitDebugInlining(), true);
2129   Printer.printBool("debugInfoForProfiling", N->getDebugInfoForProfiling(),
2130                     false);
2131   Printer.printNameTableKind("nameTableKind", N->getNameTableKind());
2132   Printer.printBool("rangesBaseAddress", N->getRangesBaseAddress(), false);
2133   Printer.printString("sysroot", N->getSysRoot());
2134   Printer.printString("sdk", N->getSDK());
2135   Out << ")";
2136 }
2137 
2138 static void writeDISubprogram(raw_ostream &Out, const DISubprogram *N,
2139                               TypePrinting *TypePrinter, SlotTracker *Machine,
2140                               const Module *Context) {
2141   Out << "!DISubprogram(";
2142   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2143   Printer.printString("name", N->getName());
2144   Printer.printString("linkageName", N->getLinkageName());
2145   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2146   Printer.printMetadata("file", N->getRawFile());
2147   Printer.printInt("line", N->getLine());
2148   Printer.printMetadata("type", N->getRawType());
2149   Printer.printInt("scopeLine", N->getScopeLine());
2150   Printer.printMetadata("containingType", N->getRawContainingType());
2151   if (N->getVirtuality() != dwarf::DW_VIRTUALITY_none ||
2152       N->getVirtualIndex() != 0)
2153     Printer.printInt("virtualIndex", N->getVirtualIndex(), false);
2154   Printer.printInt("thisAdjustment", N->getThisAdjustment());
2155   Printer.printDIFlags("flags", N->getFlags());
2156   Printer.printDISPFlags("spFlags", N->getSPFlags());
2157   Printer.printMetadata("unit", N->getRawUnit());
2158   Printer.printMetadata("templateParams", N->getRawTemplateParams());
2159   Printer.printMetadata("declaration", N->getRawDeclaration());
2160   Printer.printMetadata("retainedNodes", N->getRawRetainedNodes());
2161   Printer.printMetadata("thrownTypes", N->getRawThrownTypes());
2162   Out << ")";
2163 }
2164 
2165 static void writeDILexicalBlock(raw_ostream &Out, const DILexicalBlock *N,
2166                                 TypePrinting *TypePrinter, SlotTracker *Machine,
2167                                 const Module *Context) {
2168   Out << "!DILexicalBlock(";
2169   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2170   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2171   Printer.printMetadata("file", N->getRawFile());
2172   Printer.printInt("line", N->getLine());
2173   Printer.printInt("column", N->getColumn());
2174   Out << ")";
2175 }
2176 
2177 static void writeDILexicalBlockFile(raw_ostream &Out,
2178                                     const DILexicalBlockFile *N,
2179                                     TypePrinting *TypePrinter,
2180                                     SlotTracker *Machine,
2181                                     const Module *Context) {
2182   Out << "!DILexicalBlockFile(";
2183   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2184   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2185   Printer.printMetadata("file", N->getRawFile());
2186   Printer.printInt("discriminator", N->getDiscriminator(),
2187                    /* ShouldSkipZero */ false);
2188   Out << ")";
2189 }
2190 
2191 static void writeDINamespace(raw_ostream &Out, const DINamespace *N,
2192                              TypePrinting *TypePrinter, SlotTracker *Machine,
2193                              const Module *Context) {
2194   Out << "!DINamespace(";
2195   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2196   Printer.printString("name", N->getName());
2197   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2198   Printer.printBool("exportSymbols", N->getExportSymbols(), false);
2199   Out << ")";
2200 }
2201 
2202 static void writeDICommonBlock(raw_ostream &Out, const DICommonBlock *N,
2203                                TypePrinting *TypePrinter, SlotTracker *Machine,
2204                                const Module *Context) {
2205   Out << "!DICommonBlock(";
2206   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2207   Printer.printMetadata("scope", N->getRawScope(), false);
2208   Printer.printMetadata("declaration", N->getRawDecl(), false);
2209   Printer.printString("name", N->getName());
2210   Printer.printMetadata("file", N->getRawFile());
2211   Printer.printInt("line", N->getLineNo());
2212   Out << ")";
2213 }
2214 
2215 static void writeDIMacro(raw_ostream &Out, const DIMacro *N,
2216                          TypePrinting *TypePrinter, SlotTracker *Machine,
2217                          const Module *Context) {
2218   Out << "!DIMacro(";
2219   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2220   Printer.printMacinfoType(N);
2221   Printer.printInt("line", N->getLine());
2222   Printer.printString("name", N->getName());
2223   Printer.printString("value", N->getValue());
2224   Out << ")";
2225 }
2226 
2227 static void writeDIMacroFile(raw_ostream &Out, const DIMacroFile *N,
2228                              TypePrinting *TypePrinter, SlotTracker *Machine,
2229                              const Module *Context) {
2230   Out << "!DIMacroFile(";
2231   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2232   Printer.printInt("line", N->getLine());
2233   Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
2234   Printer.printMetadata("nodes", N->getRawElements());
2235   Out << ")";
2236 }
2237 
2238 static void writeDIModule(raw_ostream &Out, const DIModule *N,
2239                           TypePrinting *TypePrinter, SlotTracker *Machine,
2240                           const Module *Context) {
2241   Out << "!DIModule(";
2242   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2243   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2244   Printer.printString("name", N->getName());
2245   Printer.printString("configMacros", N->getConfigurationMacros());
2246   Printer.printString("includePath", N->getIncludePath());
2247   Printer.printString("apinotes", N->getAPINotesFile());
2248   Printer.printMetadata("file", N->getRawFile());
2249   Printer.printInt("line", N->getLineNo());
2250   Printer.printBool("isDecl", N->getIsDecl(), /* Default */ false);
2251   Out << ")";
2252 }
2253 
2254 
2255 static void writeDITemplateTypeParameter(raw_ostream &Out,
2256                                          const DITemplateTypeParameter *N,
2257                                          TypePrinting *TypePrinter,
2258                                          SlotTracker *Machine,
2259                                          const Module *Context) {
2260   Out << "!DITemplateTypeParameter(";
2261   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2262   Printer.printString("name", N->getName());
2263   Printer.printMetadata("type", N->getRawType(), /* ShouldSkipNull */ false);
2264   Printer.printBool("defaulted", N->isDefault(), /* Default= */ false);
2265   Out << ")";
2266 }
2267 
2268 static void writeDITemplateValueParameter(raw_ostream &Out,
2269                                           const DITemplateValueParameter *N,
2270                                           TypePrinting *TypePrinter,
2271                                           SlotTracker *Machine,
2272                                           const Module *Context) {
2273   Out << "!DITemplateValueParameter(";
2274   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2275   if (N->getTag() != dwarf::DW_TAG_template_value_parameter)
2276     Printer.printTag(N);
2277   Printer.printString("name", N->getName());
2278   Printer.printMetadata("type", N->getRawType());
2279   Printer.printBool("defaulted", N->isDefault(), /* Default= */ false);
2280   Printer.printMetadata("value", N->getValue(), /* ShouldSkipNull */ false);
2281   Out << ")";
2282 }
2283 
2284 static void writeDIGlobalVariable(raw_ostream &Out, const DIGlobalVariable *N,
2285                                   TypePrinting *TypePrinter,
2286                                   SlotTracker *Machine, const Module *Context) {
2287   Out << "!DIGlobalVariable(";
2288   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2289   Printer.printString("name", N->getName());
2290   Printer.printString("linkageName", N->getLinkageName());
2291   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2292   Printer.printMetadata("file", N->getRawFile());
2293   Printer.printInt("line", N->getLine());
2294   Printer.printMetadata("type", N->getRawType());
2295   Printer.printBool("isLocal", N->isLocalToUnit());
2296   Printer.printBool("isDefinition", N->isDefinition());
2297   Printer.printMetadata("declaration", N->getRawStaticDataMemberDeclaration());
2298   Printer.printMetadata("templateParams", N->getRawTemplateParams());
2299   Printer.printInt("align", N->getAlignInBits());
2300   Out << ")";
2301 }
2302 
2303 static void writeDILocalVariable(raw_ostream &Out, const DILocalVariable *N,
2304                                  TypePrinting *TypePrinter,
2305                                  SlotTracker *Machine, const Module *Context) {
2306   Out << "!DILocalVariable(";
2307   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2308   Printer.printString("name", N->getName());
2309   Printer.printInt("arg", N->getArg());
2310   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2311   Printer.printMetadata("file", N->getRawFile());
2312   Printer.printInt("line", N->getLine());
2313   Printer.printMetadata("type", N->getRawType());
2314   Printer.printDIFlags("flags", N->getFlags());
2315   Printer.printInt("align", N->getAlignInBits());
2316   Out << ")";
2317 }
2318 
2319 static void writeDILabel(raw_ostream &Out, const DILabel *N,
2320                          TypePrinting *TypePrinter,
2321                          SlotTracker *Machine, const Module *Context) {
2322   Out << "!DILabel(";
2323   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2324   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2325   Printer.printString("name", N->getName());
2326   Printer.printMetadata("file", N->getRawFile());
2327   Printer.printInt("line", N->getLine());
2328   Out << ")";
2329 }
2330 
2331 static void writeDIExpression(raw_ostream &Out, const DIExpression *N,
2332                               TypePrinting *TypePrinter, SlotTracker *Machine,
2333                               const Module *Context) {
2334   Out << "!DIExpression(";
2335   FieldSeparator FS;
2336   if (N->isValid()) {
2337     for (const DIExpression::ExprOperand &Op : N->expr_ops()) {
2338       auto OpStr = dwarf::OperationEncodingString(Op.getOp());
2339       assert(!OpStr.empty() && "Expected valid opcode");
2340 
2341       Out << FS << OpStr;
2342       if (Op.getOp() == dwarf::DW_OP_LLVM_convert) {
2343         Out << FS << Op.getArg(0);
2344         Out << FS << dwarf::AttributeEncodingString(Op.getArg(1));
2345       } else {
2346         for (unsigned A = 0, AE = Op.getNumArgs(); A != AE; ++A)
2347           Out << FS << Op.getArg(A);
2348       }
2349     }
2350   } else {
2351     for (const auto &I : N->getElements())
2352       Out << FS << I;
2353   }
2354   Out << ")";
2355 }
2356 
2357 static void writeDIArgList(raw_ostream &Out, const DIArgList *N,
2358                            TypePrinting *TypePrinter, SlotTracker *Machine,
2359                            const Module *Context, bool FromValue = false) {
2360   assert(FromValue &&
2361          "Unexpected DIArgList metadata outside of value argument");
2362   Out << "!DIArgList(";
2363   FieldSeparator FS;
2364   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2365   for (Metadata *Arg : N->getArgs()) {
2366     Out << FS;
2367     WriteAsOperandInternal(Out, Arg, TypePrinter, Machine, Context, true);
2368   }
2369   Out << ")";
2370 }
2371 
2372 static void writeDIGlobalVariableExpression(raw_ostream &Out,
2373                                             const DIGlobalVariableExpression *N,
2374                                             TypePrinting *TypePrinter,
2375                                             SlotTracker *Machine,
2376                                             const Module *Context) {
2377   Out << "!DIGlobalVariableExpression(";
2378   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2379   Printer.printMetadata("var", N->getVariable());
2380   Printer.printMetadata("expr", N->getExpression());
2381   Out << ")";
2382 }
2383 
2384 static void writeDIObjCProperty(raw_ostream &Out, const DIObjCProperty *N,
2385                                 TypePrinting *TypePrinter, SlotTracker *Machine,
2386                                 const Module *Context) {
2387   Out << "!DIObjCProperty(";
2388   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2389   Printer.printString("name", N->getName());
2390   Printer.printMetadata("file", N->getRawFile());
2391   Printer.printInt("line", N->getLine());
2392   Printer.printString("setter", N->getSetterName());
2393   Printer.printString("getter", N->getGetterName());
2394   Printer.printInt("attributes", N->getAttributes());
2395   Printer.printMetadata("type", N->getRawType());
2396   Out << ")";
2397 }
2398 
2399 static void writeDIImportedEntity(raw_ostream &Out, const DIImportedEntity *N,
2400                                   TypePrinting *TypePrinter,
2401                                   SlotTracker *Machine, const Module *Context) {
2402   Out << "!DIImportedEntity(";
2403   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2404   Printer.printTag(N);
2405   Printer.printString("name", N->getName());
2406   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2407   Printer.printMetadata("entity", N->getRawEntity());
2408   Printer.printMetadata("file", N->getRawFile());
2409   Printer.printInt("line", N->getLine());
2410   Out << ")";
2411 }
2412 
2413 static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
2414                                     TypePrinting *TypePrinter,
2415                                     SlotTracker *Machine,
2416                                     const Module *Context) {
2417   if (Node->isDistinct())
2418     Out << "distinct ";
2419   else if (Node->isTemporary())
2420     Out << "<temporary!> "; // Handle broken code.
2421 
2422   switch (Node->getMetadataID()) {
2423   default:
2424     llvm_unreachable("Expected uniquable MDNode");
2425 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
2426   case Metadata::CLASS##Kind:                                                  \
2427     write##CLASS(Out, cast<CLASS>(Node), TypePrinter, Machine, Context);       \
2428     break;
2429 #include "llvm/IR/Metadata.def"
2430   }
2431 }
2432 
2433 // Full implementation of printing a Value as an operand with support for
2434 // TypePrinting, etc.
2435 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
2436                                    TypePrinting *TypePrinter,
2437                                    SlotTracker *Machine,
2438                                    const Module *Context) {
2439   if (V->hasName()) {
2440     PrintLLVMName(Out, V);
2441     return;
2442   }
2443 
2444   const Constant *CV = dyn_cast<Constant>(V);
2445   if (CV && !isa<GlobalValue>(CV)) {
2446     assert(TypePrinter && "Constants require TypePrinting!");
2447     WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context);
2448     return;
2449   }
2450 
2451   if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2452     Out << "asm ";
2453     if (IA->hasSideEffects())
2454       Out << "sideeffect ";
2455     if (IA->isAlignStack())
2456       Out << "alignstack ";
2457     // We don't emit the AD_ATT dialect as it's the assumed default.
2458     if (IA->getDialect() == InlineAsm::AD_Intel)
2459       Out << "inteldialect ";
2460     if (IA->canThrow())
2461       Out << "unwind ";
2462     Out << '"';
2463     printEscapedString(IA->getAsmString(), Out);
2464     Out << "\", \"";
2465     printEscapedString(IA->getConstraintString(), Out);
2466     Out << '"';
2467     return;
2468   }
2469 
2470   if (auto *MD = dyn_cast<MetadataAsValue>(V)) {
2471     WriteAsOperandInternal(Out, MD->getMetadata(), TypePrinter, Machine,
2472                            Context, /* FromValue */ true);
2473     return;
2474   }
2475 
2476   char Prefix = '%';
2477   int Slot;
2478   // If we have a SlotTracker, use it.
2479   if (Machine) {
2480     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2481       Slot = Machine->getGlobalSlot(GV);
2482       Prefix = '@';
2483     } else {
2484       Slot = Machine->getLocalSlot(V);
2485 
2486       // If the local value didn't succeed, then we may be referring to a value
2487       // from a different function.  Translate it, as this can happen when using
2488       // address of blocks.
2489       if (Slot == -1)
2490         if ((Machine = createSlotTracker(V))) {
2491           Slot = Machine->getLocalSlot(V);
2492           delete Machine;
2493         }
2494     }
2495   } else if ((Machine = createSlotTracker(V))) {
2496     // Otherwise, create one to get the # and then destroy it.
2497     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2498       Slot = Machine->getGlobalSlot(GV);
2499       Prefix = '@';
2500     } else {
2501       Slot = Machine->getLocalSlot(V);
2502     }
2503     delete Machine;
2504     Machine = nullptr;
2505   } else {
2506     Slot = -1;
2507   }
2508 
2509   if (Slot != -1)
2510     Out << Prefix << Slot;
2511   else
2512     Out << "<badref>";
2513 }
2514 
2515 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
2516                                    TypePrinting *TypePrinter,
2517                                    SlotTracker *Machine, const Module *Context,
2518                                    bool FromValue) {
2519   // Write DIExpressions and DIArgLists inline when used as a value. Improves
2520   // readability of debug info intrinsics.
2521   if (const DIExpression *Expr = dyn_cast<DIExpression>(MD)) {
2522     writeDIExpression(Out, Expr, TypePrinter, Machine, Context);
2523     return;
2524   }
2525   if (const DIArgList *ArgList = dyn_cast<DIArgList>(MD)) {
2526     writeDIArgList(Out, ArgList, TypePrinter, Machine, Context, FromValue);
2527     return;
2528   }
2529 
2530   if (const MDNode *N = dyn_cast<MDNode>(MD)) {
2531     std::unique_ptr<SlotTracker> MachineStorage;
2532     if (!Machine) {
2533       MachineStorage = std::make_unique<SlotTracker>(Context);
2534       Machine = MachineStorage.get();
2535     }
2536     int Slot = Machine->getMetadataSlot(N);
2537     if (Slot == -1) {
2538       if (const DILocation *Loc = dyn_cast<DILocation>(N)) {
2539         writeDILocation(Out, Loc, TypePrinter, Machine, Context);
2540         return;
2541       }
2542       // Give the pointer value instead of "badref", since this comes up all
2543       // the time when debugging.
2544       Out << "<" << N << ">";
2545     } else
2546       Out << '!' << Slot;
2547     return;
2548   }
2549 
2550   if (const MDString *MDS = dyn_cast<MDString>(MD)) {
2551     Out << "!\"";
2552     printEscapedString(MDS->getString(), Out);
2553     Out << '"';
2554     return;
2555   }
2556 
2557   auto *V = cast<ValueAsMetadata>(MD);
2558   assert(TypePrinter && "TypePrinter required for metadata values");
2559   assert((FromValue || !isa<LocalAsMetadata>(V)) &&
2560          "Unexpected function-local metadata outside of value argument");
2561 
2562   TypePrinter->print(V->getValue()->getType(), Out);
2563   Out << ' ';
2564   WriteAsOperandInternal(Out, V->getValue(), TypePrinter, Machine, Context);
2565 }
2566 
2567 namespace {
2568 
2569 class AssemblyWriter {
2570   formatted_raw_ostream &Out;
2571   const Module *TheModule = nullptr;
2572   const ModuleSummaryIndex *TheIndex = nullptr;
2573   std::unique_ptr<SlotTracker> SlotTrackerStorage;
2574   SlotTracker &Machine;
2575   TypePrinting TypePrinter;
2576   AssemblyAnnotationWriter *AnnotationWriter = nullptr;
2577   SetVector<const Comdat *> Comdats;
2578   bool IsForDebug;
2579   bool ShouldPreserveUseListOrder;
2580   UseListOrderMap UseListOrders;
2581   SmallVector<StringRef, 8> MDNames;
2582   /// Synchronization scope names registered with LLVMContext.
2583   SmallVector<StringRef, 8> SSNs;
2584   DenseMap<const GlobalValueSummary *, GlobalValue::GUID> SummaryToGUIDMap;
2585 
2586 public:
2587   /// Construct an AssemblyWriter with an external SlotTracker
2588   AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const Module *M,
2589                  AssemblyAnnotationWriter *AAW, bool IsForDebug,
2590                  bool ShouldPreserveUseListOrder = false);
2591 
2592   AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2593                  const ModuleSummaryIndex *Index, bool IsForDebug);
2594 
2595   void printMDNodeBody(const MDNode *MD);
2596   void printNamedMDNode(const NamedMDNode *NMD);
2597 
2598   void printModule(const Module *M);
2599 
2600   void writeOperand(const Value *Op, bool PrintType);
2601   void writeParamOperand(const Value *Operand, AttributeSet Attrs);
2602   void writeOperandBundles(const CallBase *Call);
2603   void writeSyncScope(const LLVMContext &Context,
2604                       SyncScope::ID SSID);
2605   void writeAtomic(const LLVMContext &Context,
2606                    AtomicOrdering Ordering,
2607                    SyncScope::ID SSID);
2608   void writeAtomicCmpXchg(const LLVMContext &Context,
2609                           AtomicOrdering SuccessOrdering,
2610                           AtomicOrdering FailureOrdering,
2611                           SyncScope::ID SSID);
2612 
2613   void writeAllMDNodes();
2614   void writeMDNode(unsigned Slot, const MDNode *Node);
2615   void writeAttribute(const Attribute &Attr, bool InAttrGroup = false);
2616   void writeAttributeSet(const AttributeSet &AttrSet, bool InAttrGroup = false);
2617   void writeAllAttributeGroups();
2618 
2619   void printTypeIdentities();
2620   void printGlobal(const GlobalVariable *GV);
2621   void printIndirectSymbol(const GlobalIndirectSymbol *GIS);
2622   void printComdat(const Comdat *C);
2623   void printFunction(const Function *F);
2624   void printArgument(const Argument *FA, AttributeSet Attrs);
2625   void printBasicBlock(const BasicBlock *BB);
2626   void printInstructionLine(const Instruction &I);
2627   void printInstruction(const Instruction &I);
2628 
2629   void printUseListOrder(const Value *V, const std::vector<unsigned> &Shuffle);
2630   void printUseLists(const Function *F);
2631 
2632   void printModuleSummaryIndex();
2633   void printSummaryInfo(unsigned Slot, const ValueInfo &VI);
2634   void printSummary(const GlobalValueSummary &Summary);
2635   void printAliasSummary(const AliasSummary *AS);
2636   void printGlobalVarSummary(const GlobalVarSummary *GS);
2637   void printFunctionSummary(const FunctionSummary *FS);
2638   void printTypeIdSummary(const TypeIdSummary &TIS);
2639   void printTypeIdCompatibleVtableSummary(const TypeIdCompatibleVtableInfo &TI);
2640   void printTypeTestResolution(const TypeTestResolution &TTRes);
2641   void printArgs(const std::vector<uint64_t> &Args);
2642   void printWPDRes(const WholeProgramDevirtResolution &WPDRes);
2643   void printTypeIdInfo(const FunctionSummary::TypeIdInfo &TIDInfo);
2644   void printVFuncId(const FunctionSummary::VFuncId VFId);
2645   void
2646   printNonConstVCalls(const std::vector<FunctionSummary::VFuncId> &VCallList,
2647                       const char *Tag);
2648   void
2649   printConstVCalls(const std::vector<FunctionSummary::ConstVCall> &VCallList,
2650                    const char *Tag);
2651 
2652 private:
2653   /// Print out metadata attachments.
2654   void printMetadataAttachments(
2655       const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
2656       StringRef Separator);
2657 
2658   // printInfoComment - Print a little comment after the instruction indicating
2659   // which slot it occupies.
2660   void printInfoComment(const Value &V);
2661 
2662   // printGCRelocateComment - print comment after call to the gc.relocate
2663   // intrinsic indicating base and derived pointer names.
2664   void printGCRelocateComment(const GCRelocateInst &Relocate);
2665 };
2666 
2667 } // end anonymous namespace
2668 
2669 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2670                                const Module *M, AssemblyAnnotationWriter *AAW,
2671                                bool IsForDebug, bool ShouldPreserveUseListOrder)
2672     : Out(o), TheModule(M), Machine(Mac), TypePrinter(M), AnnotationWriter(AAW),
2673       IsForDebug(IsForDebug),
2674       ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
2675   if (!TheModule)
2676     return;
2677   for (const GlobalObject &GO : TheModule->global_objects())
2678     if (const Comdat *C = GO.getComdat())
2679       Comdats.insert(C);
2680 }
2681 
2682 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2683                                const ModuleSummaryIndex *Index, bool IsForDebug)
2684     : Out(o), TheIndex(Index), Machine(Mac), TypePrinter(/*Module=*/nullptr),
2685       IsForDebug(IsForDebug), ShouldPreserveUseListOrder(false) {}
2686 
2687 void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
2688   if (!Operand) {
2689     Out << "<null operand!>";
2690     return;
2691   }
2692   if (PrintType) {
2693     TypePrinter.print(Operand->getType(), Out);
2694     Out << ' ';
2695   }
2696   WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
2697 }
2698 
2699 void AssemblyWriter::writeSyncScope(const LLVMContext &Context,
2700                                     SyncScope::ID SSID) {
2701   switch (SSID) {
2702   case SyncScope::System: {
2703     break;
2704   }
2705   default: {
2706     if (SSNs.empty())
2707       Context.getSyncScopeNames(SSNs);
2708 
2709     Out << " syncscope(\"";
2710     printEscapedString(SSNs[SSID], Out);
2711     Out << "\")";
2712     break;
2713   }
2714   }
2715 }
2716 
2717 void AssemblyWriter::writeAtomic(const LLVMContext &Context,
2718                                  AtomicOrdering Ordering,
2719                                  SyncScope::ID SSID) {
2720   if (Ordering == AtomicOrdering::NotAtomic)
2721     return;
2722 
2723   writeSyncScope(Context, SSID);
2724   Out << " " << toIRString(Ordering);
2725 }
2726 
2727 void AssemblyWriter::writeAtomicCmpXchg(const LLVMContext &Context,
2728                                         AtomicOrdering SuccessOrdering,
2729                                         AtomicOrdering FailureOrdering,
2730                                         SyncScope::ID SSID) {
2731   assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
2732          FailureOrdering != AtomicOrdering::NotAtomic);
2733 
2734   writeSyncScope(Context, SSID);
2735   Out << " " << toIRString(SuccessOrdering);
2736   Out << " " << toIRString(FailureOrdering);
2737 }
2738 
2739 void AssemblyWriter::writeParamOperand(const Value *Operand,
2740                                        AttributeSet Attrs) {
2741   if (!Operand) {
2742     Out << "<null operand!>";
2743     return;
2744   }
2745 
2746   // Print the type
2747   TypePrinter.print(Operand->getType(), Out);
2748   // Print parameter attributes list
2749   if (Attrs.hasAttributes()) {
2750     Out << ' ';
2751     writeAttributeSet(Attrs);
2752   }
2753   Out << ' ';
2754   // Print the operand
2755   WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
2756 }
2757 
2758 void AssemblyWriter::writeOperandBundles(const CallBase *Call) {
2759   if (!Call->hasOperandBundles())
2760     return;
2761 
2762   Out << " [ ";
2763 
2764   bool FirstBundle = true;
2765   for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i) {
2766     OperandBundleUse BU = Call->getOperandBundleAt(i);
2767 
2768     if (!FirstBundle)
2769       Out << ", ";
2770     FirstBundle = false;
2771 
2772     Out << '"';
2773     printEscapedString(BU.getTagName(), Out);
2774     Out << '"';
2775 
2776     Out << '(';
2777 
2778     bool FirstInput = true;
2779     for (const auto &Input : BU.Inputs) {
2780       if (!FirstInput)
2781         Out << ", ";
2782       FirstInput = false;
2783 
2784       TypePrinter.print(Input->getType(), Out);
2785       Out << " ";
2786       WriteAsOperandInternal(Out, Input, &TypePrinter, &Machine, TheModule);
2787     }
2788 
2789     Out << ')';
2790   }
2791 
2792   Out << " ]";
2793 }
2794 
2795 void AssemblyWriter::printModule(const Module *M) {
2796   Machine.initializeIfNeeded();
2797 
2798   if (ShouldPreserveUseListOrder)
2799     UseListOrders = predictUseListOrder(M);
2800 
2801   if (!M->getModuleIdentifier().empty() &&
2802       // Don't print the ID if it will start a new line (which would
2803       // require a comment char before it).
2804       M->getModuleIdentifier().find('\n') == std::string::npos)
2805     Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
2806 
2807   if (!M->getSourceFileName().empty()) {
2808     Out << "source_filename = \"";
2809     printEscapedString(M->getSourceFileName(), Out);
2810     Out << "\"\n";
2811   }
2812 
2813   const std::string &DL = M->getDataLayoutStr();
2814   if (!DL.empty())
2815     Out << "target datalayout = \"" << DL << "\"\n";
2816   if (!M->getTargetTriple().empty())
2817     Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
2818 
2819   if (!M->getModuleInlineAsm().empty()) {
2820     Out << '\n';
2821 
2822     // Split the string into lines, to make it easier to read the .ll file.
2823     StringRef Asm = M->getModuleInlineAsm();
2824     do {
2825       StringRef Front;
2826       std::tie(Front, Asm) = Asm.split('\n');
2827 
2828       // We found a newline, print the portion of the asm string from the
2829       // last newline up to this newline.
2830       Out << "module asm \"";
2831       printEscapedString(Front, Out);
2832       Out << "\"\n";
2833     } while (!Asm.empty());
2834   }
2835 
2836   printTypeIdentities();
2837 
2838   // Output all comdats.
2839   if (!Comdats.empty())
2840     Out << '\n';
2841   for (const Comdat *C : Comdats) {
2842     printComdat(C);
2843     if (C != Comdats.back())
2844       Out << '\n';
2845   }
2846 
2847   // Output all globals.
2848   if (!M->global_empty()) Out << '\n';
2849   for (const GlobalVariable &GV : M->globals()) {
2850     printGlobal(&GV); Out << '\n';
2851   }
2852 
2853   // Output all aliases.
2854   if (!M->alias_empty()) Out << "\n";
2855   for (const GlobalAlias &GA : M->aliases())
2856     printIndirectSymbol(&GA);
2857 
2858   // Output all ifuncs.
2859   if (!M->ifunc_empty()) Out << "\n";
2860   for (const GlobalIFunc &GI : M->ifuncs())
2861     printIndirectSymbol(&GI);
2862 
2863   // Output all of the functions.
2864   for (const Function &F : *M) {
2865     Out << '\n';
2866     printFunction(&F);
2867   }
2868 
2869   // Output global use-lists.
2870   printUseLists(nullptr);
2871 
2872   // Output all attribute groups.
2873   if (!Machine.as_empty()) {
2874     Out << '\n';
2875     writeAllAttributeGroups();
2876   }
2877 
2878   // Output named metadata.
2879   if (!M->named_metadata_empty()) Out << '\n';
2880 
2881   for (const NamedMDNode &Node : M->named_metadata())
2882     printNamedMDNode(&Node);
2883 
2884   // Output metadata.
2885   if (!Machine.mdn_empty()) {
2886     Out << '\n';
2887     writeAllMDNodes();
2888   }
2889 }
2890 
2891 void AssemblyWriter::printModuleSummaryIndex() {
2892   assert(TheIndex);
2893   int NumSlots = Machine.initializeIndexIfNeeded();
2894 
2895   Out << "\n";
2896 
2897   // Print module path entries. To print in order, add paths to a vector
2898   // indexed by module slot.
2899   std::vector<std::pair<std::string, ModuleHash>> moduleVec;
2900   std::string RegularLTOModuleName =
2901       ModuleSummaryIndex::getRegularLTOModuleName();
2902   moduleVec.resize(TheIndex->modulePaths().size());
2903   for (auto &ModPath : TheIndex->modulePaths())
2904     moduleVec[Machine.getModulePathSlot(ModPath.first())] = std::make_pair(
2905         // A module id of -1 is a special entry for a regular LTO module created
2906         // during the thin link.
2907         ModPath.second.first == -1u ? RegularLTOModuleName
2908                                     : (std::string)std::string(ModPath.first()),
2909         ModPath.second.second);
2910 
2911   unsigned i = 0;
2912   for (auto &ModPair : moduleVec) {
2913     Out << "^" << i++ << " = module: (";
2914     Out << "path: \"";
2915     printEscapedString(ModPair.first, Out);
2916     Out << "\", hash: (";
2917     FieldSeparator FS;
2918     for (auto Hash : ModPair.second)
2919       Out << FS << Hash;
2920     Out << "))\n";
2921   }
2922 
2923   // FIXME: Change AliasSummary to hold a ValueInfo instead of summary pointer
2924   // for aliasee (then update BitcodeWriter.cpp and remove get/setAliaseeGUID).
2925   for (auto &GlobalList : *TheIndex) {
2926     auto GUID = GlobalList.first;
2927     for (auto &Summary : GlobalList.second.SummaryList)
2928       SummaryToGUIDMap[Summary.get()] = GUID;
2929   }
2930 
2931   // Print the global value summary entries.
2932   for (auto &GlobalList : *TheIndex) {
2933     auto GUID = GlobalList.first;
2934     auto VI = TheIndex->getValueInfo(GlobalList);
2935     printSummaryInfo(Machine.getGUIDSlot(GUID), VI);
2936   }
2937 
2938   // Print the TypeIdMap entries.
2939   for (const auto &TID : TheIndex->typeIds()) {
2940     Out << "^" << Machine.getTypeIdSlot(TID.second.first)
2941         << " = typeid: (name: \"" << TID.second.first << "\"";
2942     printTypeIdSummary(TID.second.second);
2943     Out << ") ; guid = " << TID.first << "\n";
2944   }
2945 
2946   // Print the TypeIdCompatibleVtableMap entries.
2947   for (auto &TId : TheIndex->typeIdCompatibleVtableMap()) {
2948     auto GUID = GlobalValue::getGUID(TId.first);
2949     Out << "^" << Machine.getGUIDSlot(GUID)
2950         << " = typeidCompatibleVTable: (name: \"" << TId.first << "\"";
2951     printTypeIdCompatibleVtableSummary(TId.second);
2952     Out << ") ; guid = " << GUID << "\n";
2953   }
2954 
2955   // Don't emit flags when it's not really needed (value is zero by default).
2956   if (TheIndex->getFlags()) {
2957     Out << "^" << NumSlots << " = flags: " << TheIndex->getFlags() << "\n";
2958     ++NumSlots;
2959   }
2960 
2961   Out << "^" << NumSlots << " = blockcount: " << TheIndex->getBlockCount()
2962       << "\n";
2963 }
2964 
2965 static const char *
2966 getWholeProgDevirtResKindName(WholeProgramDevirtResolution::Kind K) {
2967   switch (K) {
2968   case WholeProgramDevirtResolution::Indir:
2969     return "indir";
2970   case WholeProgramDevirtResolution::SingleImpl:
2971     return "singleImpl";
2972   case WholeProgramDevirtResolution::BranchFunnel:
2973     return "branchFunnel";
2974   }
2975   llvm_unreachable("invalid WholeProgramDevirtResolution kind");
2976 }
2977 
2978 static const char *getWholeProgDevirtResByArgKindName(
2979     WholeProgramDevirtResolution::ByArg::Kind K) {
2980   switch (K) {
2981   case WholeProgramDevirtResolution::ByArg::Indir:
2982     return "indir";
2983   case WholeProgramDevirtResolution::ByArg::UniformRetVal:
2984     return "uniformRetVal";
2985   case WholeProgramDevirtResolution::ByArg::UniqueRetVal:
2986     return "uniqueRetVal";
2987   case WholeProgramDevirtResolution::ByArg::VirtualConstProp:
2988     return "virtualConstProp";
2989   }
2990   llvm_unreachable("invalid WholeProgramDevirtResolution::ByArg kind");
2991 }
2992 
2993 static const char *getTTResKindName(TypeTestResolution::Kind K) {
2994   switch (K) {
2995   case TypeTestResolution::Unknown:
2996     return "unknown";
2997   case TypeTestResolution::Unsat:
2998     return "unsat";
2999   case TypeTestResolution::ByteArray:
3000     return "byteArray";
3001   case TypeTestResolution::Inline:
3002     return "inline";
3003   case TypeTestResolution::Single:
3004     return "single";
3005   case TypeTestResolution::AllOnes:
3006     return "allOnes";
3007   }
3008   llvm_unreachable("invalid TypeTestResolution kind");
3009 }
3010 
3011 void AssemblyWriter::printTypeTestResolution(const TypeTestResolution &TTRes) {
3012   Out << "typeTestRes: (kind: " << getTTResKindName(TTRes.TheKind)
3013       << ", sizeM1BitWidth: " << TTRes.SizeM1BitWidth;
3014 
3015   // The following fields are only used if the target does not support the use
3016   // of absolute symbols to store constants. Print only if non-zero.
3017   if (TTRes.AlignLog2)
3018     Out << ", alignLog2: " << TTRes.AlignLog2;
3019   if (TTRes.SizeM1)
3020     Out << ", sizeM1: " << TTRes.SizeM1;
3021   if (TTRes.BitMask)
3022     // BitMask is uint8_t which causes it to print the corresponding char.
3023     Out << ", bitMask: " << (unsigned)TTRes.BitMask;
3024   if (TTRes.InlineBits)
3025     Out << ", inlineBits: " << TTRes.InlineBits;
3026 
3027   Out << ")";
3028 }
3029 
3030 void AssemblyWriter::printTypeIdSummary(const TypeIdSummary &TIS) {
3031   Out << ", summary: (";
3032   printTypeTestResolution(TIS.TTRes);
3033   if (!TIS.WPDRes.empty()) {
3034     Out << ", wpdResolutions: (";
3035     FieldSeparator FS;
3036     for (auto &WPDRes : TIS.WPDRes) {
3037       Out << FS;
3038       Out << "(offset: " << WPDRes.first << ", ";
3039       printWPDRes(WPDRes.second);
3040       Out << ")";
3041     }
3042     Out << ")";
3043   }
3044   Out << ")";
3045 }
3046 
3047 void AssemblyWriter::printTypeIdCompatibleVtableSummary(
3048     const TypeIdCompatibleVtableInfo &TI) {
3049   Out << ", summary: (";
3050   FieldSeparator FS;
3051   for (auto &P : TI) {
3052     Out << FS;
3053     Out << "(offset: " << P.AddressPointOffset << ", ";
3054     Out << "^" << Machine.getGUIDSlot(P.VTableVI.getGUID());
3055     Out << ")";
3056   }
3057   Out << ")";
3058 }
3059 
3060 void AssemblyWriter::printArgs(const std::vector<uint64_t> &Args) {
3061   Out << "args: (";
3062   FieldSeparator FS;
3063   for (auto arg : Args) {
3064     Out << FS;
3065     Out << arg;
3066   }
3067   Out << ")";
3068 }
3069 
3070 void AssemblyWriter::printWPDRes(const WholeProgramDevirtResolution &WPDRes) {
3071   Out << "wpdRes: (kind: ";
3072   Out << getWholeProgDevirtResKindName(WPDRes.TheKind);
3073 
3074   if (WPDRes.TheKind == WholeProgramDevirtResolution::SingleImpl)
3075     Out << ", singleImplName: \"" << WPDRes.SingleImplName << "\"";
3076 
3077   if (!WPDRes.ResByArg.empty()) {
3078     Out << ", resByArg: (";
3079     FieldSeparator FS;
3080     for (auto &ResByArg : WPDRes.ResByArg) {
3081       Out << FS;
3082       printArgs(ResByArg.first);
3083       Out << ", byArg: (kind: ";
3084       Out << getWholeProgDevirtResByArgKindName(ResByArg.second.TheKind);
3085       if (ResByArg.second.TheKind ==
3086               WholeProgramDevirtResolution::ByArg::UniformRetVal ||
3087           ResByArg.second.TheKind ==
3088               WholeProgramDevirtResolution::ByArg::UniqueRetVal)
3089         Out << ", info: " << ResByArg.second.Info;
3090 
3091       // The following fields are only used if the target does not support the
3092       // use of absolute symbols to store constants. Print only if non-zero.
3093       if (ResByArg.second.Byte || ResByArg.second.Bit)
3094         Out << ", byte: " << ResByArg.second.Byte
3095             << ", bit: " << ResByArg.second.Bit;
3096 
3097       Out << ")";
3098     }
3099     Out << ")";
3100   }
3101   Out << ")";
3102 }
3103 
3104 static const char *getSummaryKindName(GlobalValueSummary::SummaryKind SK) {
3105   switch (SK) {
3106   case GlobalValueSummary::AliasKind:
3107     return "alias";
3108   case GlobalValueSummary::FunctionKind:
3109     return "function";
3110   case GlobalValueSummary::GlobalVarKind:
3111     return "variable";
3112   }
3113   llvm_unreachable("invalid summary kind");
3114 }
3115 
3116 void AssemblyWriter::printAliasSummary(const AliasSummary *AS) {
3117   Out << ", aliasee: ";
3118   // The indexes emitted for distributed backends may not include the
3119   // aliasee summary (only if it is being imported directly). Handle
3120   // that case by just emitting "null" as the aliasee.
3121   if (AS->hasAliasee())
3122     Out << "^" << Machine.getGUIDSlot(SummaryToGUIDMap[&AS->getAliasee()]);
3123   else
3124     Out << "null";
3125 }
3126 
3127 void AssemblyWriter::printGlobalVarSummary(const GlobalVarSummary *GS) {
3128   auto VTableFuncs = GS->vTableFuncs();
3129   Out << ", varFlags: (readonly: " << GS->VarFlags.MaybeReadOnly << ", "
3130       << "writeonly: " << GS->VarFlags.MaybeWriteOnly << ", "
3131       << "constant: " << GS->VarFlags.Constant;
3132   if (!VTableFuncs.empty())
3133     Out << ", "
3134         << "vcall_visibility: " << GS->VarFlags.VCallVisibility;
3135   Out << ")";
3136 
3137   if (!VTableFuncs.empty()) {
3138     Out << ", vTableFuncs: (";
3139     FieldSeparator FS;
3140     for (auto &P : VTableFuncs) {
3141       Out << FS;
3142       Out << "(virtFunc: ^" << Machine.getGUIDSlot(P.FuncVI.getGUID())
3143           << ", offset: " << P.VTableOffset;
3144       Out << ")";
3145     }
3146     Out << ")";
3147   }
3148 }
3149 
3150 static std::string getLinkageName(GlobalValue::LinkageTypes LT) {
3151   switch (LT) {
3152   case GlobalValue::ExternalLinkage:
3153     return "external";
3154   case GlobalValue::PrivateLinkage:
3155     return "private";
3156   case GlobalValue::InternalLinkage:
3157     return "internal";
3158   case GlobalValue::LinkOnceAnyLinkage:
3159     return "linkonce";
3160   case GlobalValue::LinkOnceODRLinkage:
3161     return "linkonce_odr";
3162   case GlobalValue::WeakAnyLinkage:
3163     return "weak";
3164   case GlobalValue::WeakODRLinkage:
3165     return "weak_odr";
3166   case GlobalValue::CommonLinkage:
3167     return "common";
3168   case GlobalValue::AppendingLinkage:
3169     return "appending";
3170   case GlobalValue::ExternalWeakLinkage:
3171     return "extern_weak";
3172   case GlobalValue::AvailableExternallyLinkage:
3173     return "available_externally";
3174   }
3175   llvm_unreachable("invalid linkage");
3176 }
3177 
3178 // When printing the linkage types in IR where the ExternalLinkage is
3179 // not printed, and other linkage types are expected to be printed with
3180 // a space after the name.
3181 static std::string getLinkageNameWithSpace(GlobalValue::LinkageTypes LT) {
3182   if (LT == GlobalValue::ExternalLinkage)
3183     return "";
3184   return getLinkageName(LT) + " ";
3185 }
3186 
3187 static const char *getVisibilityName(GlobalValue::VisibilityTypes Vis) {
3188   switch (Vis) {
3189   case GlobalValue::DefaultVisibility:
3190     return "default";
3191   case GlobalValue::HiddenVisibility:
3192     return "hidden";
3193   case GlobalValue::ProtectedVisibility:
3194     return "protected";
3195   }
3196   llvm_unreachable("invalid visibility");
3197 }
3198 
3199 void AssemblyWriter::printFunctionSummary(const FunctionSummary *FS) {
3200   Out << ", insts: " << FS->instCount();
3201 
3202   FunctionSummary::FFlags FFlags = FS->fflags();
3203   if (FFlags.ReadNone | FFlags.ReadOnly | FFlags.NoRecurse |
3204       FFlags.ReturnDoesNotAlias | FFlags.NoInline | FFlags.AlwaysInline) {
3205     Out << ", funcFlags: (";
3206     Out << "readNone: " << FFlags.ReadNone;
3207     Out << ", readOnly: " << FFlags.ReadOnly;
3208     Out << ", noRecurse: " << FFlags.NoRecurse;
3209     Out << ", returnDoesNotAlias: " << FFlags.ReturnDoesNotAlias;
3210     Out << ", noInline: " << FFlags.NoInline;
3211     Out << ", alwaysInline: " << FFlags.AlwaysInline;
3212     Out << ")";
3213   }
3214   if (!FS->calls().empty()) {
3215     Out << ", calls: (";
3216     FieldSeparator IFS;
3217     for (auto &Call : FS->calls()) {
3218       Out << IFS;
3219       Out << "(callee: ^" << Machine.getGUIDSlot(Call.first.getGUID());
3220       if (Call.second.getHotness() != CalleeInfo::HotnessType::Unknown)
3221         Out << ", hotness: " << getHotnessName(Call.second.getHotness());
3222       else if (Call.second.RelBlockFreq)
3223         Out << ", relbf: " << Call.second.RelBlockFreq;
3224       Out << ")";
3225     }
3226     Out << ")";
3227   }
3228 
3229   if (const auto *TIdInfo = FS->getTypeIdInfo())
3230     printTypeIdInfo(*TIdInfo);
3231 
3232   auto PrintRange = [&](const ConstantRange &Range) {
3233     Out << "[" << Range.getSignedMin() << ", " << Range.getSignedMax() << "]";
3234   };
3235 
3236   if (!FS->paramAccesses().empty()) {
3237     Out << ", params: (";
3238     FieldSeparator IFS;
3239     for (auto &PS : FS->paramAccesses()) {
3240       Out << IFS;
3241       Out << "(param: " << PS.ParamNo;
3242       Out << ", offset: ";
3243       PrintRange(PS.Use);
3244       if (!PS.Calls.empty()) {
3245         Out << ", calls: (";
3246         FieldSeparator IFS;
3247         for (auto &Call : PS.Calls) {
3248           Out << IFS;
3249           Out << "(callee: ^" << Machine.getGUIDSlot(Call.Callee.getGUID());
3250           Out << ", param: " << Call.ParamNo;
3251           Out << ", offset: ";
3252           PrintRange(Call.Offsets);
3253           Out << ")";
3254         }
3255         Out << ")";
3256       }
3257       Out << ")";
3258     }
3259     Out << ")";
3260   }
3261 }
3262 
3263 void AssemblyWriter::printTypeIdInfo(
3264     const FunctionSummary::TypeIdInfo &TIDInfo) {
3265   Out << ", typeIdInfo: (";
3266   FieldSeparator TIDFS;
3267   if (!TIDInfo.TypeTests.empty()) {
3268     Out << TIDFS;
3269     Out << "typeTests: (";
3270     FieldSeparator FS;
3271     for (auto &GUID : TIDInfo.TypeTests) {
3272       auto TidIter = TheIndex->typeIds().equal_range(GUID);
3273       if (TidIter.first == TidIter.second) {
3274         Out << FS;
3275         Out << GUID;
3276         continue;
3277       }
3278       // Print all type id that correspond to this GUID.
3279       for (auto It = TidIter.first; It != TidIter.second; ++It) {
3280         Out << FS;
3281         auto Slot = Machine.getTypeIdSlot(It->second.first);
3282         assert(Slot != -1);
3283         Out << "^" << Slot;
3284       }
3285     }
3286     Out << ")";
3287   }
3288   if (!TIDInfo.TypeTestAssumeVCalls.empty()) {
3289     Out << TIDFS;
3290     printNonConstVCalls(TIDInfo.TypeTestAssumeVCalls, "typeTestAssumeVCalls");
3291   }
3292   if (!TIDInfo.TypeCheckedLoadVCalls.empty()) {
3293     Out << TIDFS;
3294     printNonConstVCalls(TIDInfo.TypeCheckedLoadVCalls, "typeCheckedLoadVCalls");
3295   }
3296   if (!TIDInfo.TypeTestAssumeConstVCalls.empty()) {
3297     Out << TIDFS;
3298     printConstVCalls(TIDInfo.TypeTestAssumeConstVCalls,
3299                      "typeTestAssumeConstVCalls");
3300   }
3301   if (!TIDInfo.TypeCheckedLoadConstVCalls.empty()) {
3302     Out << TIDFS;
3303     printConstVCalls(TIDInfo.TypeCheckedLoadConstVCalls,
3304                      "typeCheckedLoadConstVCalls");
3305   }
3306   Out << ")";
3307 }
3308 
3309 void AssemblyWriter::printVFuncId(const FunctionSummary::VFuncId VFId) {
3310   auto TidIter = TheIndex->typeIds().equal_range(VFId.GUID);
3311   if (TidIter.first == TidIter.second) {
3312     Out << "vFuncId: (";
3313     Out << "guid: " << VFId.GUID;
3314     Out << ", offset: " << VFId.Offset;
3315     Out << ")";
3316     return;
3317   }
3318   // Print all type id that correspond to this GUID.
3319   FieldSeparator FS;
3320   for (auto It = TidIter.first; It != TidIter.second; ++It) {
3321     Out << FS;
3322     Out << "vFuncId: (";
3323     auto Slot = Machine.getTypeIdSlot(It->second.first);
3324     assert(Slot != -1);
3325     Out << "^" << Slot;
3326     Out << ", offset: " << VFId.Offset;
3327     Out << ")";
3328   }
3329 }
3330 
3331 void AssemblyWriter::printNonConstVCalls(
3332     const std::vector<FunctionSummary::VFuncId> &VCallList, const char *Tag) {
3333   Out << Tag << ": (";
3334   FieldSeparator FS;
3335   for (auto &VFuncId : VCallList) {
3336     Out << FS;
3337     printVFuncId(VFuncId);
3338   }
3339   Out << ")";
3340 }
3341 
3342 void AssemblyWriter::printConstVCalls(
3343     const std::vector<FunctionSummary::ConstVCall> &VCallList,
3344     const char *Tag) {
3345   Out << Tag << ": (";
3346   FieldSeparator FS;
3347   for (auto &ConstVCall : VCallList) {
3348     Out << FS;
3349     Out << "(";
3350     printVFuncId(ConstVCall.VFunc);
3351     if (!ConstVCall.Args.empty()) {
3352       Out << ", ";
3353       printArgs(ConstVCall.Args);
3354     }
3355     Out << ")";
3356   }
3357   Out << ")";
3358 }
3359 
3360 void AssemblyWriter::printSummary(const GlobalValueSummary &Summary) {
3361   GlobalValueSummary::GVFlags GVFlags = Summary.flags();
3362   GlobalValue::LinkageTypes LT = (GlobalValue::LinkageTypes)GVFlags.Linkage;
3363   Out << getSummaryKindName(Summary.getSummaryKind()) << ": ";
3364   Out << "(module: ^" << Machine.getModulePathSlot(Summary.modulePath())
3365       << ", flags: (";
3366   Out << "linkage: " << getLinkageName(LT);
3367   Out << ", visibility: "
3368       << getVisibilityName((GlobalValue::VisibilityTypes)GVFlags.Visibility);
3369   Out << ", notEligibleToImport: " << GVFlags.NotEligibleToImport;
3370   Out << ", live: " << GVFlags.Live;
3371   Out << ", dsoLocal: " << GVFlags.DSOLocal;
3372   Out << ", canAutoHide: " << GVFlags.CanAutoHide;
3373   Out << ")";
3374 
3375   if (Summary.getSummaryKind() == GlobalValueSummary::AliasKind)
3376     printAliasSummary(cast<AliasSummary>(&Summary));
3377   else if (Summary.getSummaryKind() == GlobalValueSummary::FunctionKind)
3378     printFunctionSummary(cast<FunctionSummary>(&Summary));
3379   else
3380     printGlobalVarSummary(cast<GlobalVarSummary>(&Summary));
3381 
3382   auto RefList = Summary.refs();
3383   if (!RefList.empty()) {
3384     Out << ", refs: (";
3385     FieldSeparator FS;
3386     for (auto &Ref : RefList) {
3387       Out << FS;
3388       if (Ref.isReadOnly())
3389         Out << "readonly ";
3390       else if (Ref.isWriteOnly())
3391         Out << "writeonly ";
3392       Out << "^" << Machine.getGUIDSlot(Ref.getGUID());
3393     }
3394     Out << ")";
3395   }
3396 
3397   Out << ")";
3398 }
3399 
3400 void AssemblyWriter::printSummaryInfo(unsigned Slot, const ValueInfo &VI) {
3401   Out << "^" << Slot << " = gv: (";
3402   if (!VI.name().empty())
3403     Out << "name: \"" << VI.name() << "\"";
3404   else
3405     Out << "guid: " << VI.getGUID();
3406   if (!VI.getSummaryList().empty()) {
3407     Out << ", summaries: (";
3408     FieldSeparator FS;
3409     for (auto &Summary : VI.getSummaryList()) {
3410       Out << FS;
3411       printSummary(*Summary);
3412     }
3413     Out << ")";
3414   }
3415   Out << ")";
3416   if (!VI.name().empty())
3417     Out << " ; guid = " << VI.getGUID();
3418   Out << "\n";
3419 }
3420 
3421 static void printMetadataIdentifier(StringRef Name,
3422                                     formatted_raw_ostream &Out) {
3423   if (Name.empty()) {
3424     Out << "<empty name> ";
3425   } else {
3426     if (isalpha(static_cast<unsigned char>(Name[0])) || Name[0] == '-' ||
3427         Name[0] == '$' || Name[0] == '.' || Name[0] == '_')
3428       Out << Name[0];
3429     else
3430       Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F);
3431     for (unsigned i = 1, e = Name.size(); i != e; ++i) {
3432       unsigned char C = Name[i];
3433       if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' ||
3434           C == '.' || C == '_')
3435         Out << C;
3436       else
3437         Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
3438     }
3439   }
3440 }
3441 
3442 void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
3443   Out << '!';
3444   printMetadataIdentifier(NMD->getName(), Out);
3445   Out << " = !{";
3446   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
3447     if (i)
3448       Out << ", ";
3449 
3450     // Write DIExpressions inline.
3451     // FIXME: Ban DIExpressions in NamedMDNodes, they will serve no purpose.
3452     MDNode *Op = NMD->getOperand(i);
3453     assert(!isa<DIArgList>(Op) &&
3454            "DIArgLists should not appear in NamedMDNodes");
3455     if (auto *Expr = dyn_cast<DIExpression>(Op)) {
3456       writeDIExpression(Out, Expr, nullptr, nullptr, nullptr);
3457       continue;
3458     }
3459 
3460     int Slot = Machine.getMetadataSlot(Op);
3461     if (Slot == -1)
3462       Out << "<badref>";
3463     else
3464       Out << '!' << Slot;
3465   }
3466   Out << "}\n";
3467 }
3468 
3469 static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
3470                             formatted_raw_ostream &Out) {
3471   switch (Vis) {
3472   case GlobalValue::DefaultVisibility: break;
3473   case GlobalValue::HiddenVisibility:    Out << "hidden "; break;
3474   case GlobalValue::ProtectedVisibility: Out << "protected "; break;
3475   }
3476 }
3477 
3478 static void PrintDSOLocation(const GlobalValue &GV,
3479                              formatted_raw_ostream &Out) {
3480   if (GV.isDSOLocal() && !GV.isImplicitDSOLocal())
3481     Out << "dso_local ";
3482 }
3483 
3484 static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT,
3485                                  formatted_raw_ostream &Out) {
3486   switch (SCT) {
3487   case GlobalValue::DefaultStorageClass: break;
3488   case GlobalValue::DLLImportStorageClass: Out << "dllimport "; break;
3489   case GlobalValue::DLLExportStorageClass: Out << "dllexport "; break;
3490   }
3491 }
3492 
3493 static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
3494                                   formatted_raw_ostream &Out) {
3495   switch (TLM) {
3496     case GlobalVariable::NotThreadLocal:
3497       break;
3498     case GlobalVariable::GeneralDynamicTLSModel:
3499       Out << "thread_local ";
3500       break;
3501     case GlobalVariable::LocalDynamicTLSModel:
3502       Out << "thread_local(localdynamic) ";
3503       break;
3504     case GlobalVariable::InitialExecTLSModel:
3505       Out << "thread_local(initialexec) ";
3506       break;
3507     case GlobalVariable::LocalExecTLSModel:
3508       Out << "thread_local(localexec) ";
3509       break;
3510   }
3511 }
3512 
3513 static StringRef getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA) {
3514   switch (UA) {
3515   case GlobalVariable::UnnamedAddr::None:
3516     return "";
3517   case GlobalVariable::UnnamedAddr::Local:
3518     return "local_unnamed_addr";
3519   case GlobalVariable::UnnamedAddr::Global:
3520     return "unnamed_addr";
3521   }
3522   llvm_unreachable("Unknown UnnamedAddr");
3523 }
3524 
3525 static void maybePrintComdat(formatted_raw_ostream &Out,
3526                              const GlobalObject &GO) {
3527   const Comdat *C = GO.getComdat();
3528   if (!C)
3529     return;
3530 
3531   if (isa<GlobalVariable>(GO))
3532     Out << ',';
3533   Out << " comdat";
3534 
3535   if (GO.getName() == C->getName())
3536     return;
3537 
3538   Out << '(';
3539   PrintLLVMName(Out, C->getName(), ComdatPrefix);
3540   Out << ')';
3541 }
3542 
3543 void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
3544   if (GV->isMaterializable())
3545     Out << "; Materializable\n";
3546 
3547   WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent());
3548   Out << " = ";
3549 
3550   if (!GV->hasInitializer() && GV->hasExternalLinkage())
3551     Out << "external ";
3552 
3553   Out << getLinkageNameWithSpace(GV->getLinkage());
3554   PrintDSOLocation(*GV, Out);
3555   PrintVisibility(GV->getVisibility(), Out);
3556   PrintDLLStorageClass(GV->getDLLStorageClass(), Out);
3557   PrintThreadLocalModel(GV->getThreadLocalMode(), Out);
3558   StringRef UA = getUnnamedAddrEncoding(GV->getUnnamedAddr());
3559   if (!UA.empty())
3560       Out << UA << ' ';
3561 
3562   if (unsigned AddressSpace = GV->getType()->getAddressSpace())
3563     Out << "addrspace(" << AddressSpace << ") ";
3564   if (GV->isExternallyInitialized()) Out << "externally_initialized ";
3565   Out << (GV->isConstant() ? "constant " : "global ");
3566   TypePrinter.print(GV->getValueType(), Out);
3567 
3568   if (GV->hasInitializer()) {
3569     Out << ' ';
3570     writeOperand(GV->getInitializer(), false);
3571   }
3572 
3573   if (GV->hasSection()) {
3574     Out << ", section \"";
3575     printEscapedString(GV->getSection(), Out);
3576     Out << '"';
3577   }
3578   if (GV->hasPartition()) {
3579     Out << ", partition \"";
3580     printEscapedString(GV->getPartition(), Out);
3581     Out << '"';
3582   }
3583 
3584   maybePrintComdat(Out, *GV);
3585   if (GV->getAlignment())
3586     Out << ", align " << GV->getAlignment();
3587 
3588   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3589   GV->getAllMetadata(MDs);
3590   printMetadataAttachments(MDs, ", ");
3591 
3592   auto Attrs = GV->getAttributes();
3593   if (Attrs.hasAttributes())
3594     Out << " #" << Machine.getAttributeGroupSlot(Attrs);
3595 
3596   printInfoComment(*GV);
3597 }
3598 
3599 void AssemblyWriter::printIndirectSymbol(const GlobalIndirectSymbol *GIS) {
3600   if (GIS->isMaterializable())
3601     Out << "; Materializable\n";
3602 
3603   WriteAsOperandInternal(Out, GIS, &TypePrinter, &Machine, GIS->getParent());
3604   Out << " = ";
3605 
3606   Out << getLinkageNameWithSpace(GIS->getLinkage());
3607   PrintDSOLocation(*GIS, Out);
3608   PrintVisibility(GIS->getVisibility(), Out);
3609   PrintDLLStorageClass(GIS->getDLLStorageClass(), Out);
3610   PrintThreadLocalModel(GIS->getThreadLocalMode(), Out);
3611   StringRef UA = getUnnamedAddrEncoding(GIS->getUnnamedAddr());
3612   if (!UA.empty())
3613       Out << UA << ' ';
3614 
3615   if (isa<GlobalAlias>(GIS))
3616     Out << "alias ";
3617   else if (isa<GlobalIFunc>(GIS))
3618     Out << "ifunc ";
3619   else
3620     llvm_unreachable("Not an alias or ifunc!");
3621 
3622   TypePrinter.print(GIS->getValueType(), Out);
3623 
3624   Out << ", ";
3625 
3626   const Constant *IS = GIS->getIndirectSymbol();
3627 
3628   if (!IS) {
3629     TypePrinter.print(GIS->getType(), Out);
3630     Out << " <<NULL ALIASEE>>";
3631   } else {
3632     writeOperand(IS, !isa<ConstantExpr>(IS));
3633   }
3634 
3635   if (GIS->hasPartition()) {
3636     Out << ", partition \"";
3637     printEscapedString(GIS->getPartition(), Out);
3638     Out << '"';
3639   }
3640 
3641   printInfoComment(*GIS);
3642   Out << '\n';
3643 }
3644 
3645 void AssemblyWriter::printComdat(const Comdat *C) {
3646   C->print(Out);
3647 }
3648 
3649 void AssemblyWriter::printTypeIdentities() {
3650   if (TypePrinter.empty())
3651     return;
3652 
3653   Out << '\n';
3654 
3655   // Emit all numbered types.
3656   auto &NumberedTypes = TypePrinter.getNumberedTypes();
3657   for (unsigned I = 0, E = NumberedTypes.size(); I != E; ++I) {
3658     Out << '%' << I << " = type ";
3659 
3660     // Make sure we print out at least one level of the type structure, so
3661     // that we do not get %2 = type %2
3662     TypePrinter.printStructBody(NumberedTypes[I], Out);
3663     Out << '\n';
3664   }
3665 
3666   auto &NamedTypes = TypePrinter.getNamedTypes();
3667   for (unsigned I = 0, E = NamedTypes.size(); I != E; ++I) {
3668     PrintLLVMName(Out, NamedTypes[I]->getName(), LocalPrefix);
3669     Out << " = type ";
3670 
3671     // Make sure we print out at least one level of the type structure, so
3672     // that we do not get %FILE = type %FILE
3673     TypePrinter.printStructBody(NamedTypes[I], Out);
3674     Out << '\n';
3675   }
3676 }
3677 
3678 /// printFunction - Print all aspects of a function.
3679 void AssemblyWriter::printFunction(const Function *F) {
3680   if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
3681 
3682   if (F->isMaterializable())
3683     Out << "; Materializable\n";
3684 
3685   const AttributeList &Attrs = F->getAttributes();
3686   if (Attrs.hasAttributes(AttributeList::FunctionIndex)) {
3687     AttributeSet AS = Attrs.getFnAttributes();
3688     std::string AttrStr;
3689 
3690     for (const Attribute &Attr : AS) {
3691       if (!Attr.isStringAttribute()) {
3692         if (!AttrStr.empty()) AttrStr += ' ';
3693         AttrStr += Attr.getAsString();
3694       }
3695     }
3696 
3697     if (!AttrStr.empty())
3698       Out << "; Function Attrs: " << AttrStr << '\n';
3699   }
3700 
3701   Machine.incorporateFunction(F);
3702 
3703   if (F->isDeclaration()) {
3704     Out << "declare";
3705     SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3706     F->getAllMetadata(MDs);
3707     printMetadataAttachments(MDs, " ");
3708     Out << ' ';
3709   } else
3710     Out << "define ";
3711 
3712   Out << getLinkageNameWithSpace(F->getLinkage());
3713   PrintDSOLocation(*F, Out);
3714   PrintVisibility(F->getVisibility(), Out);
3715   PrintDLLStorageClass(F->getDLLStorageClass(), Out);
3716 
3717   // Print the calling convention.
3718   if (F->getCallingConv() != CallingConv::C) {
3719     PrintCallingConv(F->getCallingConv(), Out);
3720     Out << " ";
3721   }
3722 
3723   FunctionType *FT = F->getFunctionType();
3724   if (Attrs.hasAttributes(AttributeList::ReturnIndex))
3725     Out << Attrs.getAsString(AttributeList::ReturnIndex) << ' ';
3726   TypePrinter.print(F->getReturnType(), Out);
3727   Out << ' ';
3728   WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent());
3729   Out << '(';
3730 
3731   // Loop over the arguments, printing them...
3732   if (F->isDeclaration() && !IsForDebug) {
3733     // We're only interested in the type here - don't print argument names.
3734     for (unsigned I = 0, E = FT->getNumParams(); I != E; ++I) {
3735       // Insert commas as we go... the first arg doesn't get a comma
3736       if (I)
3737         Out << ", ";
3738       // Output type...
3739       TypePrinter.print(FT->getParamType(I), Out);
3740 
3741       AttributeSet ArgAttrs = Attrs.getParamAttributes(I);
3742       if (ArgAttrs.hasAttributes()) {
3743         Out << ' ';
3744         writeAttributeSet(ArgAttrs);
3745       }
3746     }
3747   } else {
3748     // The arguments are meaningful here, print them in detail.
3749     for (const Argument &Arg : F->args()) {
3750       // Insert commas as we go... the first arg doesn't get a comma
3751       if (Arg.getArgNo() != 0)
3752         Out << ", ";
3753       printArgument(&Arg, Attrs.getParamAttributes(Arg.getArgNo()));
3754     }
3755   }
3756 
3757   // Finish printing arguments...
3758   if (FT->isVarArg()) {
3759     if (FT->getNumParams()) Out << ", ";
3760     Out << "...";  // Output varargs portion of signature!
3761   }
3762   Out << ')';
3763   StringRef UA = getUnnamedAddrEncoding(F->getUnnamedAddr());
3764   if (!UA.empty())
3765     Out << ' ' << UA;
3766   // We print the function address space if it is non-zero or if we are writing
3767   // a module with a non-zero program address space or if there is no valid
3768   // Module* so that the file can be parsed without the datalayout string.
3769   const Module *Mod = F->getParent();
3770   if (F->getAddressSpace() != 0 || !Mod ||
3771       Mod->getDataLayout().getProgramAddressSpace() != 0)
3772     Out << " addrspace(" << F->getAddressSpace() << ")";
3773   if (Attrs.hasAttributes(AttributeList::FunctionIndex))
3774     Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttributes());
3775   if (F->hasSection()) {
3776     Out << " section \"";
3777     printEscapedString(F->getSection(), Out);
3778     Out << '"';
3779   }
3780   if (F->hasPartition()) {
3781     Out << " partition \"";
3782     printEscapedString(F->getPartition(), Out);
3783     Out << '"';
3784   }
3785   maybePrintComdat(Out, *F);
3786   if (F->getAlignment())
3787     Out << " align " << F->getAlignment();
3788   if (F->hasGC())
3789     Out << " gc \"" << F->getGC() << '"';
3790   if (F->hasPrefixData()) {
3791     Out << " prefix ";
3792     writeOperand(F->getPrefixData(), true);
3793   }
3794   if (F->hasPrologueData()) {
3795     Out << " prologue ";
3796     writeOperand(F->getPrologueData(), true);
3797   }
3798   if (F->hasPersonalityFn()) {
3799     Out << " personality ";
3800     writeOperand(F->getPersonalityFn(), /*PrintType=*/true);
3801   }
3802 
3803   if (F->isDeclaration()) {
3804     Out << '\n';
3805   } else {
3806     SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3807     F->getAllMetadata(MDs);
3808     printMetadataAttachments(MDs, " ");
3809 
3810     Out << " {";
3811     // Output all of the function's basic blocks.
3812     for (const BasicBlock &BB : *F)
3813       printBasicBlock(&BB);
3814 
3815     // Output the function's use-lists.
3816     printUseLists(F);
3817 
3818     Out << "}\n";
3819   }
3820 
3821   Machine.purgeFunction();
3822 }
3823 
3824 /// printArgument - This member is called for every argument that is passed into
3825 /// the function.  Simply print it out
3826 void AssemblyWriter::printArgument(const Argument *Arg, AttributeSet Attrs) {
3827   // Output type...
3828   TypePrinter.print(Arg->getType(), Out);
3829 
3830   // Output parameter attributes list
3831   if (Attrs.hasAttributes()) {
3832     Out << ' ';
3833     writeAttributeSet(Attrs);
3834   }
3835 
3836   // Output name, if available...
3837   if (Arg->hasName()) {
3838     Out << ' ';
3839     PrintLLVMName(Out, Arg);
3840   } else {
3841     int Slot = Machine.getLocalSlot(Arg);
3842     assert(Slot != -1 && "expect argument in function here");
3843     Out << " %" << Slot;
3844   }
3845 }
3846 
3847 /// printBasicBlock - This member is called for each basic block in a method.
3848 void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
3849   bool IsEntryBlock = BB->getParent() && BB->isEntryBlock();
3850   if (BB->hasName()) {              // Print out the label if it exists...
3851     Out << "\n";
3852     PrintLLVMName(Out, BB->getName(), LabelPrefix);
3853     Out << ':';
3854   } else if (!IsEntryBlock) {
3855     Out << "\n";
3856     int Slot = Machine.getLocalSlot(BB);
3857     if (Slot != -1)
3858       Out << Slot << ":";
3859     else
3860       Out << "<badref>:";
3861   }
3862 
3863   if (!IsEntryBlock) {
3864     // Output predecessors for the block.
3865     Out.PadToColumn(50);
3866     Out << ";";
3867     const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
3868 
3869     if (PI == PE) {
3870       Out << " No predecessors!";
3871     } else {
3872       Out << " preds = ";
3873       writeOperand(*PI, false);
3874       for (++PI; PI != PE; ++PI) {
3875         Out << ", ";
3876         writeOperand(*PI, false);
3877       }
3878     }
3879   }
3880 
3881   Out << "\n";
3882 
3883   if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
3884 
3885   // Output all of the instructions in the basic block...
3886   for (const Instruction &I : *BB) {
3887     printInstructionLine(I);
3888   }
3889 
3890   if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
3891 }
3892 
3893 /// printInstructionLine - Print an instruction and a newline character.
3894 void AssemblyWriter::printInstructionLine(const Instruction &I) {
3895   printInstruction(I);
3896   Out << '\n';
3897 }
3898 
3899 /// printGCRelocateComment - print comment after call to the gc.relocate
3900 /// intrinsic indicating base and derived pointer names.
3901 void AssemblyWriter::printGCRelocateComment(const GCRelocateInst &Relocate) {
3902   Out << " ; (";
3903   writeOperand(Relocate.getBasePtr(), false);
3904   Out << ", ";
3905   writeOperand(Relocate.getDerivedPtr(), false);
3906   Out << ")";
3907 }
3908 
3909 /// printInfoComment - Print a little comment after the instruction indicating
3910 /// which slot it occupies.
3911 void AssemblyWriter::printInfoComment(const Value &V) {
3912   if (const auto *Relocate = dyn_cast<GCRelocateInst>(&V))
3913     printGCRelocateComment(*Relocate);
3914 
3915   if (AnnotationWriter)
3916     AnnotationWriter->printInfoComment(V, Out);
3917 }
3918 
3919 static void maybePrintCallAddrSpace(const Value *Operand, const Instruction *I,
3920                                     raw_ostream &Out) {
3921   // We print the address space of the call if it is non-zero.
3922   unsigned CallAddrSpace = Operand->getType()->getPointerAddressSpace();
3923   bool PrintAddrSpace = CallAddrSpace != 0;
3924   if (!PrintAddrSpace) {
3925     const Module *Mod = getModuleFromVal(I);
3926     // We also print it if it is zero but not equal to the program address space
3927     // or if we can't find a valid Module* to make it possible to parse
3928     // the resulting file even without a datalayout string.
3929     if (!Mod || Mod->getDataLayout().getProgramAddressSpace() != 0)
3930       PrintAddrSpace = true;
3931   }
3932   if (PrintAddrSpace)
3933     Out << " addrspace(" << CallAddrSpace << ")";
3934 }
3935 
3936 // This member is called for each Instruction in a function..
3937 void AssemblyWriter::printInstruction(const Instruction &I) {
3938   if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
3939 
3940   // Print out indentation for an instruction.
3941   Out << "  ";
3942 
3943   // Print out name if it exists...
3944   if (I.hasName()) {
3945     PrintLLVMName(Out, &I);
3946     Out << " = ";
3947   } else if (!I.getType()->isVoidTy()) {
3948     // Print out the def slot taken.
3949     int SlotNum = Machine.getLocalSlot(&I);
3950     if (SlotNum == -1)
3951       Out << "<badref> = ";
3952     else
3953       Out << '%' << SlotNum << " = ";
3954   }
3955 
3956   if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
3957     if (CI->isMustTailCall())
3958       Out << "musttail ";
3959     else if (CI->isTailCall())
3960       Out << "tail ";
3961     else if (CI->isNoTailCall())
3962       Out << "notail ";
3963   }
3964 
3965   // Print out the opcode...
3966   Out << I.getOpcodeName();
3967 
3968   // If this is an atomic load or store, print out the atomic marker.
3969   if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isAtomic()) ||
3970       (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
3971     Out << " atomic";
3972 
3973   if (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isWeak())
3974     Out << " weak";
3975 
3976   // If this is a volatile operation, print out the volatile marker.
3977   if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
3978       (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
3979       (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
3980       (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
3981     Out << " volatile";
3982 
3983   // Print out optimization information.
3984   WriteOptimizationInfo(Out, &I);
3985 
3986   // Print out the compare instruction predicates
3987   if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
3988     Out << ' ' << CmpInst::getPredicateName(CI->getPredicate());
3989 
3990   // Print out the atomicrmw operation
3991   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
3992     Out << ' ' << AtomicRMWInst::getOperationName(RMWI->getOperation());
3993 
3994   // Print out the type of the operands...
3995   const Value *Operand = I.getNumOperands() ? I.getOperand(0) : nullptr;
3996 
3997   // Special case conditional branches to swizzle the condition out to the front
3998   if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
3999     const BranchInst &BI(cast<BranchInst>(I));
4000     Out << ' ';
4001     writeOperand(BI.getCondition(), true);
4002     Out << ", ";
4003     writeOperand(BI.getSuccessor(0), true);
4004     Out << ", ";
4005     writeOperand(BI.getSuccessor(1), true);
4006 
4007   } else if (isa<SwitchInst>(I)) {
4008     const SwitchInst& SI(cast<SwitchInst>(I));
4009     // Special case switch instruction to get formatting nice and correct.
4010     Out << ' ';
4011     writeOperand(SI.getCondition(), true);
4012     Out << ", ";
4013     writeOperand(SI.getDefaultDest(), true);
4014     Out << " [";
4015     for (auto Case : SI.cases()) {
4016       Out << "\n    ";
4017       writeOperand(Case.getCaseValue(), true);
4018       Out << ", ";
4019       writeOperand(Case.getCaseSuccessor(), true);
4020     }
4021     Out << "\n  ]";
4022   } else if (isa<IndirectBrInst>(I)) {
4023     // Special case indirectbr instruction to get formatting nice and correct.
4024     Out << ' ';
4025     writeOperand(Operand, true);
4026     Out << ", [";
4027 
4028     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
4029       if (i != 1)
4030         Out << ", ";
4031       writeOperand(I.getOperand(i), true);
4032     }
4033     Out << ']';
4034   } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
4035     Out << ' ';
4036     TypePrinter.print(I.getType(), Out);
4037     Out << ' ';
4038 
4039     for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
4040       if (op) Out << ", ";
4041       Out << "[ ";
4042       writeOperand(PN->getIncomingValue(op), false); Out << ", ";
4043       writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
4044     }
4045   } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
4046     Out << ' ';
4047     writeOperand(I.getOperand(0), true);
4048     for (unsigned i : EVI->indices())
4049       Out << ", " << i;
4050   } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
4051     Out << ' ';
4052     writeOperand(I.getOperand(0), true); Out << ", ";
4053     writeOperand(I.getOperand(1), true);
4054     for (unsigned i : IVI->indices())
4055       Out << ", " << i;
4056   } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
4057     Out << ' ';
4058     TypePrinter.print(I.getType(), Out);
4059     if (LPI->isCleanup() || LPI->getNumClauses() != 0)
4060       Out << '\n';
4061 
4062     if (LPI->isCleanup())
4063       Out << "          cleanup";
4064 
4065     for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
4066       if (i != 0 || LPI->isCleanup()) Out << "\n";
4067       if (LPI->isCatch(i))
4068         Out << "          catch ";
4069       else
4070         Out << "          filter ";
4071 
4072       writeOperand(LPI->getClause(i), true);
4073     }
4074   } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(&I)) {
4075     Out << " within ";
4076     writeOperand(CatchSwitch->getParentPad(), /*PrintType=*/false);
4077     Out << " [";
4078     unsigned Op = 0;
4079     for (const BasicBlock *PadBB : CatchSwitch->handlers()) {
4080       if (Op > 0)
4081         Out << ", ";
4082       writeOperand(PadBB, /*PrintType=*/true);
4083       ++Op;
4084     }
4085     Out << "] unwind ";
4086     if (const BasicBlock *UnwindDest = CatchSwitch->getUnwindDest())
4087       writeOperand(UnwindDest, /*PrintType=*/true);
4088     else
4089       Out << "to caller";
4090   } else if (const auto *FPI = dyn_cast<FuncletPadInst>(&I)) {
4091     Out << " within ";
4092     writeOperand(FPI->getParentPad(), /*PrintType=*/false);
4093     Out << " [";
4094     for (unsigned Op = 0, NumOps = FPI->getNumArgOperands(); Op < NumOps;
4095          ++Op) {
4096       if (Op > 0)
4097         Out << ", ";
4098       writeOperand(FPI->getArgOperand(Op), /*PrintType=*/true);
4099     }
4100     Out << ']';
4101   } else if (isa<ReturnInst>(I) && !Operand) {
4102     Out << " void";
4103   } else if (const auto *CRI = dyn_cast<CatchReturnInst>(&I)) {
4104     Out << " from ";
4105     writeOperand(CRI->getOperand(0), /*PrintType=*/false);
4106 
4107     Out << " to ";
4108     writeOperand(CRI->getOperand(1), /*PrintType=*/true);
4109   } else if (const auto *CRI = dyn_cast<CleanupReturnInst>(&I)) {
4110     Out << " from ";
4111     writeOperand(CRI->getOperand(0), /*PrintType=*/false);
4112 
4113     Out << " unwind ";
4114     if (CRI->hasUnwindDest())
4115       writeOperand(CRI->getOperand(1), /*PrintType=*/true);
4116     else
4117       Out << "to caller";
4118   } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
4119     // Print the calling convention being used.
4120     if (CI->getCallingConv() != CallingConv::C) {
4121       Out << " ";
4122       PrintCallingConv(CI->getCallingConv(), Out);
4123     }
4124 
4125     Operand = CI->getCalledOperand();
4126     FunctionType *FTy = CI->getFunctionType();
4127     Type *RetTy = FTy->getReturnType();
4128     const AttributeList &PAL = CI->getAttributes();
4129 
4130     if (PAL.hasAttributes(AttributeList::ReturnIndex))
4131       Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
4132 
4133     // Only print addrspace(N) if necessary:
4134     maybePrintCallAddrSpace(Operand, &I, Out);
4135 
4136     // If possible, print out the short form of the call instruction.  We can
4137     // only do this if the first argument is a pointer to a nonvararg function,
4138     // and if the return type is not a pointer to a function.
4139     //
4140     Out << ' ';
4141     TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4142     Out << ' ';
4143     writeOperand(Operand, false);
4144     Out << '(';
4145     for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) {
4146       if (op > 0)
4147         Out << ", ";
4148       writeParamOperand(CI->getArgOperand(op), PAL.getParamAttributes(op));
4149     }
4150 
4151     // Emit an ellipsis if this is a musttail call in a vararg function.  This
4152     // is only to aid readability, musttail calls forward varargs by default.
4153     if (CI->isMustTailCall() && CI->getParent() &&
4154         CI->getParent()->getParent() &&
4155         CI->getParent()->getParent()->isVarArg())
4156       Out << ", ...";
4157 
4158     Out << ')';
4159     if (PAL.hasAttributes(AttributeList::FunctionIndex))
4160       Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
4161 
4162     writeOperandBundles(CI);
4163   } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
4164     Operand = II->getCalledOperand();
4165     FunctionType *FTy = II->getFunctionType();
4166     Type *RetTy = FTy->getReturnType();
4167     const AttributeList &PAL = II->getAttributes();
4168 
4169     // Print the calling convention being used.
4170     if (II->getCallingConv() != CallingConv::C) {
4171       Out << " ";
4172       PrintCallingConv(II->getCallingConv(), Out);
4173     }
4174 
4175     if (PAL.hasAttributes(AttributeList::ReturnIndex))
4176       Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
4177 
4178     // Only print addrspace(N) if necessary:
4179     maybePrintCallAddrSpace(Operand, &I, Out);
4180 
4181     // If possible, print out the short form of the invoke instruction. We can
4182     // only do this if the first argument is a pointer to a nonvararg function,
4183     // and if the return type is not a pointer to a function.
4184     //
4185     Out << ' ';
4186     TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4187     Out << ' ';
4188     writeOperand(Operand, false);
4189     Out << '(';
4190     for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) {
4191       if (op)
4192         Out << ", ";
4193       writeParamOperand(II->getArgOperand(op), PAL.getParamAttributes(op));
4194     }
4195 
4196     Out << ')';
4197     if (PAL.hasAttributes(AttributeList::FunctionIndex))
4198       Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
4199 
4200     writeOperandBundles(II);
4201 
4202     Out << "\n          to ";
4203     writeOperand(II->getNormalDest(), true);
4204     Out << " unwind ";
4205     writeOperand(II->getUnwindDest(), true);
4206   } else if (const CallBrInst *CBI = dyn_cast<CallBrInst>(&I)) {
4207     Operand = CBI->getCalledOperand();
4208     FunctionType *FTy = CBI->getFunctionType();
4209     Type *RetTy = FTy->getReturnType();
4210     const AttributeList &PAL = CBI->getAttributes();
4211 
4212     // Print the calling convention being used.
4213     if (CBI->getCallingConv() != CallingConv::C) {
4214       Out << " ";
4215       PrintCallingConv(CBI->getCallingConv(), Out);
4216     }
4217 
4218     if (PAL.hasAttributes(AttributeList::ReturnIndex))
4219       Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
4220 
4221     // If possible, print out the short form of the callbr instruction. We can
4222     // only do this if the first argument is a pointer to a nonvararg function,
4223     // and if the return type is not a pointer to a function.
4224     //
4225     Out << ' ';
4226     TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4227     Out << ' ';
4228     writeOperand(Operand, false);
4229     Out << '(';
4230     for (unsigned op = 0, Eop = CBI->getNumArgOperands(); op < Eop; ++op) {
4231       if (op)
4232         Out << ", ";
4233       writeParamOperand(CBI->getArgOperand(op), PAL.getParamAttributes(op));
4234     }
4235 
4236     Out << ')';
4237     if (PAL.hasAttributes(AttributeList::FunctionIndex))
4238       Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
4239 
4240     writeOperandBundles(CBI);
4241 
4242     Out << "\n          to ";
4243     writeOperand(CBI->getDefaultDest(), true);
4244     Out << " [";
4245     for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) {
4246       if (i != 0)
4247         Out << ", ";
4248       writeOperand(CBI->getIndirectDest(i), true);
4249     }
4250     Out << ']';
4251   } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
4252     Out << ' ';
4253     if (AI->isUsedWithInAlloca())
4254       Out << "inalloca ";
4255     if (AI->isSwiftError())
4256       Out << "swifterror ";
4257     TypePrinter.print(AI->getAllocatedType(), Out);
4258 
4259     // Explicitly write the array size if the code is broken, if it's an array
4260     // allocation, or if the type is not canonical for scalar allocations.  The
4261     // latter case prevents the type from mutating when round-tripping through
4262     // assembly.
4263     if (!AI->getArraySize() || AI->isArrayAllocation() ||
4264         !AI->getArraySize()->getType()->isIntegerTy(32)) {
4265       Out << ", ";
4266       writeOperand(AI->getArraySize(), true);
4267     }
4268     if (AI->getAlignment()) {
4269       Out << ", align " << AI->getAlignment();
4270     }
4271 
4272     unsigned AddrSpace = AI->getType()->getAddressSpace();
4273     if (AddrSpace != 0) {
4274       Out << ", addrspace(" << AddrSpace << ')';
4275     }
4276   } else if (isa<CastInst>(I)) {
4277     if (Operand) {
4278       Out << ' ';
4279       writeOperand(Operand, true);   // Work with broken code
4280     }
4281     Out << " to ";
4282     TypePrinter.print(I.getType(), Out);
4283   } else if (isa<VAArgInst>(I)) {
4284     if (Operand) {
4285       Out << ' ';
4286       writeOperand(Operand, true);   // Work with broken code
4287     }
4288     Out << ", ";
4289     TypePrinter.print(I.getType(), Out);
4290   } else if (Operand) {   // Print the normal way.
4291     if (const auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
4292       Out << ' ';
4293       TypePrinter.print(GEP->getSourceElementType(), Out);
4294       Out << ',';
4295     } else if (const auto *LI = dyn_cast<LoadInst>(&I)) {
4296       Out << ' ';
4297       TypePrinter.print(LI->getType(), Out);
4298       Out << ',';
4299     }
4300 
4301     // PrintAllTypes - Instructions who have operands of all the same type
4302     // omit the type from all but the first operand.  If the instruction has
4303     // different type operands (for example br), then they are all printed.
4304     bool PrintAllTypes = false;
4305     Type *TheType = Operand->getType();
4306 
4307     // Select, Store and ShuffleVector always print all types.
4308     if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
4309         || isa<ReturnInst>(I)) {
4310       PrintAllTypes = true;
4311     } else {
4312       for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
4313         Operand = I.getOperand(i);
4314         // note that Operand shouldn't be null, but the test helps make dump()
4315         // more tolerant of malformed IR
4316         if (Operand && Operand->getType() != TheType) {
4317           PrintAllTypes = true;    // We have differing types!  Print them all!
4318           break;
4319         }
4320       }
4321     }
4322 
4323     if (!PrintAllTypes) {
4324       Out << ' ';
4325       TypePrinter.print(TheType, Out);
4326     }
4327 
4328     Out << ' ';
4329     for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
4330       if (i) Out << ", ";
4331       writeOperand(I.getOperand(i), PrintAllTypes);
4332     }
4333   }
4334 
4335   // Print atomic ordering/alignment for memory operations
4336   if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
4337     if (LI->isAtomic())
4338       writeAtomic(LI->getContext(), LI->getOrdering(), LI->getSyncScopeID());
4339     if (LI->getAlignment())
4340       Out << ", align " << LI->getAlignment();
4341   } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
4342     if (SI->isAtomic())
4343       writeAtomic(SI->getContext(), SI->getOrdering(), SI->getSyncScopeID());
4344     if (SI->getAlignment())
4345       Out << ", align " << SI->getAlignment();
4346   } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
4347     writeAtomicCmpXchg(CXI->getContext(), CXI->getSuccessOrdering(),
4348                        CXI->getFailureOrdering(), CXI->getSyncScopeID());
4349     Out << ", align " << CXI->getAlign().value();
4350   } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
4351     writeAtomic(RMWI->getContext(), RMWI->getOrdering(),
4352                 RMWI->getSyncScopeID());
4353     Out << ", align " << RMWI->getAlign().value();
4354   } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
4355     writeAtomic(FI->getContext(), FI->getOrdering(), FI->getSyncScopeID());
4356   } else if (const ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(&I)) {
4357     PrintShuffleMask(Out, SVI->getType(), SVI->getShuffleMask());
4358   }
4359 
4360   // Print Metadata info.
4361   SmallVector<std::pair<unsigned, MDNode *>, 4> InstMD;
4362   I.getAllMetadata(InstMD);
4363   printMetadataAttachments(InstMD, ", ");
4364 
4365   // Print a nice comment.
4366   printInfoComment(I);
4367 }
4368 
4369 void AssemblyWriter::printMetadataAttachments(
4370     const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
4371     StringRef Separator) {
4372   if (MDs.empty())
4373     return;
4374 
4375   if (MDNames.empty())
4376     MDs[0].second->getContext().getMDKindNames(MDNames);
4377 
4378   for (const auto &I : MDs) {
4379     unsigned Kind = I.first;
4380     Out << Separator;
4381     if (Kind < MDNames.size()) {
4382       Out << "!";
4383       printMetadataIdentifier(MDNames[Kind], Out);
4384     } else
4385       Out << "!<unknown kind #" << Kind << ">";
4386     Out << ' ';
4387     WriteAsOperandInternal(Out, I.second, &TypePrinter, &Machine, TheModule);
4388   }
4389 }
4390 
4391 void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) {
4392   Out << '!' << Slot << " = ";
4393   printMDNodeBody(Node);
4394   Out << "\n";
4395 }
4396 
4397 void AssemblyWriter::writeAllMDNodes() {
4398   SmallVector<const MDNode *, 16> Nodes;
4399   Nodes.resize(Machine.mdn_size());
4400   for (auto &I : llvm::make_range(Machine.mdn_begin(), Machine.mdn_end()))
4401     Nodes[I.second] = cast<MDNode>(I.first);
4402 
4403   for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4404     writeMDNode(i, Nodes[i]);
4405   }
4406 }
4407 
4408 void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
4409   WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule);
4410 }
4411 
4412 void AssemblyWriter::writeAttribute(const Attribute &Attr, bool InAttrGroup) {
4413   if (!Attr.isTypeAttribute()) {
4414     Out << Attr.getAsString(InAttrGroup);
4415     return;
4416   }
4417 
4418   Out << Attribute::getNameFromAttrKind(Attr.getKindAsEnum());
4419   if (Type *Ty = Attr.getValueAsType()) {
4420     Out << '(';
4421     TypePrinter.print(Ty, Out);
4422     Out << ')';
4423   }
4424 }
4425 
4426 void AssemblyWriter::writeAttributeSet(const AttributeSet &AttrSet,
4427                                        bool InAttrGroup) {
4428   bool FirstAttr = true;
4429   for (const auto &Attr : AttrSet) {
4430     if (!FirstAttr)
4431       Out << ' ';
4432     writeAttribute(Attr, InAttrGroup);
4433     FirstAttr = false;
4434   }
4435 }
4436 
4437 void AssemblyWriter::writeAllAttributeGroups() {
4438   std::vector<std::pair<AttributeSet, unsigned>> asVec;
4439   asVec.resize(Machine.as_size());
4440 
4441   for (auto &I : llvm::make_range(Machine.as_begin(), Machine.as_end()))
4442     asVec[I.second] = I;
4443 
4444   for (const auto &I : asVec)
4445     Out << "attributes #" << I.second << " = { "
4446         << I.first.getAsString(true) << " }\n";
4447 }
4448 
4449 void AssemblyWriter::printUseListOrder(const Value *V,
4450                                        const std::vector<unsigned> &Shuffle) {
4451   bool IsInFunction = Machine.getFunction();
4452   if (IsInFunction)
4453     Out << "  ";
4454 
4455   Out << "uselistorder";
4456   if (const BasicBlock *BB = IsInFunction ? nullptr : dyn_cast<BasicBlock>(V)) {
4457     Out << "_bb ";
4458     writeOperand(BB->getParent(), false);
4459     Out << ", ";
4460     writeOperand(BB, false);
4461   } else {
4462     Out << " ";
4463     writeOperand(V, true);
4464   }
4465   Out << ", { ";
4466 
4467   assert(Shuffle.size() >= 2 && "Shuffle too small");
4468   Out << Shuffle[0];
4469   for (unsigned I = 1, E = Shuffle.size(); I != E; ++I)
4470     Out << ", " << Shuffle[I];
4471   Out << " }\n";
4472 }
4473 
4474 void AssemblyWriter::printUseLists(const Function *F) {
4475   auto It = UseListOrders.find(F);
4476   if (It == UseListOrders.end())
4477     return;
4478 
4479   Out << "\n; uselistorder directives\n";
4480   for (const auto &Pair : It->second)
4481     printUseListOrder(Pair.first, Pair.second);
4482 }
4483 
4484 //===----------------------------------------------------------------------===//
4485 //                       External Interface declarations
4486 //===----------------------------------------------------------------------===//
4487 
4488 void Function::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4489                      bool ShouldPreserveUseListOrder,
4490                      bool IsForDebug) const {
4491   SlotTracker SlotTable(this->getParent());
4492   formatted_raw_ostream OS(ROS);
4493   AssemblyWriter W(OS, SlotTable, this->getParent(), AAW,
4494                    IsForDebug,
4495                    ShouldPreserveUseListOrder);
4496   W.printFunction(this);
4497 }
4498 
4499 void BasicBlock::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4500                      bool ShouldPreserveUseListOrder,
4501                      bool IsForDebug) const {
4502   SlotTracker SlotTable(this->getParent());
4503   formatted_raw_ostream OS(ROS);
4504   AssemblyWriter W(OS, SlotTable, this->getModule(), AAW,
4505                    IsForDebug,
4506                    ShouldPreserveUseListOrder);
4507   W.printBasicBlock(this);
4508 }
4509 
4510 void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4511                    bool ShouldPreserveUseListOrder, bool IsForDebug) const {
4512   SlotTracker SlotTable(this);
4513   formatted_raw_ostream OS(ROS);
4514   AssemblyWriter W(OS, SlotTable, this, AAW, IsForDebug,
4515                    ShouldPreserveUseListOrder);
4516   W.printModule(this);
4517 }
4518 
4519 void NamedMDNode::print(raw_ostream &ROS, bool IsForDebug) const {
4520   SlotTracker SlotTable(getParent());
4521   formatted_raw_ostream OS(ROS);
4522   AssemblyWriter W(OS, SlotTable, getParent(), nullptr, IsForDebug);
4523   W.printNamedMDNode(this);
4524 }
4525 
4526 void NamedMDNode::print(raw_ostream &ROS, ModuleSlotTracker &MST,
4527                         bool IsForDebug) const {
4528   Optional<SlotTracker> LocalST;
4529   SlotTracker *SlotTable;
4530   if (auto *ST = MST.getMachine())
4531     SlotTable = ST;
4532   else {
4533     LocalST.emplace(getParent());
4534     SlotTable = &*LocalST;
4535   }
4536 
4537   formatted_raw_ostream OS(ROS);
4538   AssemblyWriter W(OS, *SlotTable, getParent(), nullptr, IsForDebug);
4539   W.printNamedMDNode(this);
4540 }
4541 
4542 void Comdat::print(raw_ostream &ROS, bool /*IsForDebug*/) const {
4543   PrintLLVMName(ROS, getName(), ComdatPrefix);
4544   ROS << " = comdat ";
4545 
4546   switch (getSelectionKind()) {
4547   case Comdat::Any:
4548     ROS << "any";
4549     break;
4550   case Comdat::ExactMatch:
4551     ROS << "exactmatch";
4552     break;
4553   case Comdat::Largest:
4554     ROS << "largest";
4555     break;
4556   case Comdat::NoDeduplicate:
4557     ROS << "nodeduplicate";
4558     break;
4559   case Comdat::SameSize:
4560     ROS << "samesize";
4561     break;
4562   }
4563 
4564   ROS << '\n';
4565 }
4566 
4567 void Type::print(raw_ostream &OS, bool /*IsForDebug*/, bool NoDetails) const {
4568   TypePrinting TP;
4569   TP.print(const_cast<Type*>(this), OS);
4570 
4571   if (NoDetails)
4572     return;
4573 
4574   // If the type is a named struct type, print the body as well.
4575   if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
4576     if (!STy->isLiteral()) {
4577       OS << " = type ";
4578       TP.printStructBody(STy, OS);
4579     }
4580 }
4581 
4582 static bool isReferencingMDNode(const Instruction &I) {
4583   if (const auto *CI = dyn_cast<CallInst>(&I))
4584     if (Function *F = CI->getCalledFunction())
4585       if (F->isIntrinsic())
4586         for (auto &Op : I.operands())
4587           if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
4588             if (isa<MDNode>(V->getMetadata()))
4589               return true;
4590   return false;
4591 }
4592 
4593 void Value::print(raw_ostream &ROS, bool IsForDebug) const {
4594   bool ShouldInitializeAllMetadata = false;
4595   if (auto *I = dyn_cast<Instruction>(this))
4596     ShouldInitializeAllMetadata = isReferencingMDNode(*I);
4597   else if (isa<Function>(this) || isa<MetadataAsValue>(this))
4598     ShouldInitializeAllMetadata = true;
4599 
4600   ModuleSlotTracker MST(getModuleFromVal(this), ShouldInitializeAllMetadata);
4601   print(ROS, MST, IsForDebug);
4602 }
4603 
4604 void Value::print(raw_ostream &ROS, ModuleSlotTracker &MST,
4605                   bool IsForDebug) const {
4606   formatted_raw_ostream OS(ROS);
4607   SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
4608   SlotTracker &SlotTable =
4609       MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
4610   auto incorporateFunction = [&](const Function *F) {
4611     if (F)
4612       MST.incorporateFunction(*F);
4613   };
4614 
4615   if (const Instruction *I = dyn_cast<Instruction>(this)) {
4616     incorporateFunction(I->getParent() ? I->getParent()->getParent() : nullptr);
4617     AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), nullptr, IsForDebug);
4618     W.printInstruction(*I);
4619   } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
4620     incorporateFunction(BB->getParent());
4621     AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), nullptr, IsForDebug);
4622     W.printBasicBlock(BB);
4623   } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
4624     AssemblyWriter W(OS, SlotTable, GV->getParent(), nullptr, IsForDebug);
4625     if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
4626       W.printGlobal(V);
4627     else if (const Function *F = dyn_cast<Function>(GV))
4628       W.printFunction(F);
4629     else
4630       W.printIndirectSymbol(cast<GlobalIndirectSymbol>(GV));
4631   } else if (const MetadataAsValue *V = dyn_cast<MetadataAsValue>(this)) {
4632     V->getMetadata()->print(ROS, MST, getModuleFromVal(V));
4633   } else if (const Constant *C = dyn_cast<Constant>(this)) {
4634     TypePrinting TypePrinter;
4635     TypePrinter.print(C->getType(), OS);
4636     OS << ' ';
4637     WriteConstantInternal(OS, C, TypePrinter, MST.getMachine(), nullptr);
4638   } else if (isa<InlineAsm>(this) || isa<Argument>(this)) {
4639     this->printAsOperand(OS, /* PrintType */ true, MST);
4640   } else {
4641     llvm_unreachable("Unknown value to print out!");
4642   }
4643 }
4644 
4645 /// Print without a type, skipping the TypePrinting object.
4646 ///
4647 /// \return \c true iff printing was successful.
4648 static bool printWithoutType(const Value &V, raw_ostream &O,
4649                              SlotTracker *Machine, const Module *M) {
4650   if (V.hasName() || isa<GlobalValue>(V) ||
4651       (!isa<Constant>(V) && !isa<MetadataAsValue>(V))) {
4652     WriteAsOperandInternal(O, &V, nullptr, Machine, M);
4653     return true;
4654   }
4655   return false;
4656 }
4657 
4658 static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType,
4659                                ModuleSlotTracker &MST) {
4660   TypePrinting TypePrinter(MST.getModule());
4661   if (PrintType) {
4662     TypePrinter.print(V.getType(), O);
4663     O << ' ';
4664   }
4665 
4666   WriteAsOperandInternal(O, &V, &TypePrinter, MST.getMachine(),
4667                          MST.getModule());
4668 }
4669 
4670 void Value::printAsOperand(raw_ostream &O, bool PrintType,
4671                            const Module *M) const {
4672   if (!M)
4673     M = getModuleFromVal(this);
4674 
4675   if (!PrintType)
4676     if (printWithoutType(*this, O, nullptr, M))
4677       return;
4678 
4679   SlotTracker Machine(
4680       M, /* ShouldInitializeAllMetadata */ isa<MetadataAsValue>(this));
4681   ModuleSlotTracker MST(Machine, M);
4682   printAsOperandImpl(*this, O, PrintType, MST);
4683 }
4684 
4685 void Value::printAsOperand(raw_ostream &O, bool PrintType,
4686                            ModuleSlotTracker &MST) const {
4687   if (!PrintType)
4688     if (printWithoutType(*this, O, MST.getMachine(), MST.getModule()))
4689       return;
4690 
4691   printAsOperandImpl(*this, O, PrintType, MST);
4692 }
4693 
4694 static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD,
4695                               ModuleSlotTracker &MST, const Module *M,
4696                               bool OnlyAsOperand) {
4697   formatted_raw_ostream OS(ROS);
4698 
4699   TypePrinting TypePrinter(M);
4700 
4701   WriteAsOperandInternal(OS, &MD, &TypePrinter, MST.getMachine(), M,
4702                          /* FromValue */ true);
4703 
4704   auto *N = dyn_cast<MDNode>(&MD);
4705   if (OnlyAsOperand || !N || isa<DIExpression>(MD) || isa<DIArgList>(MD))
4706     return;
4707 
4708   OS << " = ";
4709   WriteMDNodeBodyInternal(OS, N, &TypePrinter, MST.getMachine(), M);
4710 }
4711 
4712 void Metadata::printAsOperand(raw_ostream &OS, const Module *M) const {
4713   ModuleSlotTracker MST(M, isa<MDNode>(this));
4714   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
4715 }
4716 
4717 void Metadata::printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
4718                               const Module *M) const {
4719   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
4720 }
4721 
4722 void Metadata::print(raw_ostream &OS, const Module *M,
4723                      bool /*IsForDebug*/) const {
4724   ModuleSlotTracker MST(M, isa<MDNode>(this));
4725   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
4726 }
4727 
4728 void Metadata::print(raw_ostream &OS, ModuleSlotTracker &MST,
4729                      const Module *M, bool /*IsForDebug*/) const {
4730   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
4731 }
4732 
4733 void ModuleSummaryIndex::print(raw_ostream &ROS, bool IsForDebug) const {
4734   SlotTracker SlotTable(this);
4735   formatted_raw_ostream OS(ROS);
4736   AssemblyWriter W(OS, SlotTable, this, IsForDebug);
4737   W.printModuleSummaryIndex();
4738 }
4739 
4740 void ModuleSlotTracker::collectMDNodes(MachineMDNodeListType &L, unsigned LB,
4741                                        unsigned UB) const {
4742   SlotTracker *ST = MachineStorage.get();
4743   if (!ST)
4744     return;
4745 
4746   for (auto &I : llvm::make_range(ST->mdn_begin(), ST->mdn_end()))
4747     if (I.second >= LB && I.second < UB)
4748       L.push_back(std::make_pair(I.second, I.first));
4749 }
4750 
4751 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4752 // Value::dump - allow easy printing of Values from the debugger.
4753 LLVM_DUMP_METHOD
4754 void Value::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
4755 
4756 // Type::dump - allow easy printing of Types from the debugger.
4757 LLVM_DUMP_METHOD
4758 void Type::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
4759 
4760 // Module::dump() - Allow printing of Modules from the debugger.
4761 LLVM_DUMP_METHOD
4762 void Module::dump() const {
4763   print(dbgs(), nullptr,
4764         /*ShouldPreserveUseListOrder=*/false, /*IsForDebug=*/true);
4765 }
4766 
4767 // Allow printing of Comdats from the debugger.
4768 LLVM_DUMP_METHOD
4769 void Comdat::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4770 
4771 // NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
4772 LLVM_DUMP_METHOD
4773 void NamedMDNode::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4774 
4775 LLVM_DUMP_METHOD
4776 void Metadata::dump() const { dump(nullptr); }
4777 
4778 LLVM_DUMP_METHOD
4779 void Metadata::dump(const Module *M) const {
4780   print(dbgs(), M, /*IsForDebug=*/true);
4781   dbgs() << '\n';
4782 }
4783 
4784 // Allow printing of ModuleSummaryIndex from the debugger.
4785 LLVM_DUMP_METHOD
4786 void ModuleSummaryIndex::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4787 #endif
4788