1 //===- AsmWriter.cpp - Printing LLVM as an assembly file ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This library implements `print` family of functions in classes like
10 // Module, Function, Value, etc. In-memory representation of those classes is
11 // converted to IR strings.
12 //
13 // Note that these routines must be extremely tolerant of various errors in the
14 // LLVM code, because it can be used for debugging transformations.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/None.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SetVector.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallString.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/ADT/iterator_range.h"
32 #include "llvm/BinaryFormat/Dwarf.h"
33 #include "llvm/Config/llvm-config.h"
34 #include "llvm/IR/Argument.h"
35 #include "llvm/IR/AssemblyAnnotationWriter.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/CallingConv.h"
40 #include "llvm/IR/Comdat.h"
41 #include "llvm/IR/Constant.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DebugInfoMetadata.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/GlobalAlias.h"
47 #include "llvm/IR/GlobalIFunc.h"
48 #include "llvm/IR/GlobalObject.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/IR/GlobalVariable.h"
51 #include "llvm/IR/IRPrintingPasses.h"
52 #include "llvm/IR/InlineAsm.h"
53 #include "llvm/IR/InstrTypes.h"
54 #include "llvm/IR/Instruction.h"
55 #include "llvm/IR/Instructions.h"
56 #include "llvm/IR/IntrinsicInst.h"
57 #include "llvm/IR/LLVMContext.h"
58 #include "llvm/IR/Metadata.h"
59 #include "llvm/IR/Module.h"
60 #include "llvm/IR/ModuleSlotTracker.h"
61 #include "llvm/IR/ModuleSummaryIndex.h"
62 #include "llvm/IR/Operator.h"
63 #include "llvm/IR/Type.h"
64 #include "llvm/IR/TypeFinder.h"
65 #include "llvm/IR/Use.h"
66 #include "llvm/IR/User.h"
67 #include "llvm/IR/Value.h"
68 #include "llvm/Support/AtomicOrdering.h"
69 #include "llvm/Support/Casting.h"
70 #include "llvm/Support/Compiler.h"
71 #include "llvm/Support/Debug.h"
72 #include "llvm/Support/ErrorHandling.h"
73 #include "llvm/Support/Format.h"
74 #include "llvm/Support/FormattedStream.h"
75 #include "llvm/Support/SaveAndRestore.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include <algorithm>
78 #include <cassert>
79 #include <cctype>
80 #include <cstddef>
81 #include <cstdint>
82 #include <iterator>
83 #include <memory>
84 #include <string>
85 #include <tuple>
86 #include <utility>
87 #include <vector>
88 
89 using namespace llvm;
90 
91 // Make virtual table appear in this compilation unit.
92 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() = default;
93 
94 //===----------------------------------------------------------------------===//
95 // Helper Functions
96 //===----------------------------------------------------------------------===//
97 
98 using OrderMap = MapVector<const Value *, unsigned>;
99 
100 using UseListOrderMap =
101     DenseMap<const Function *, MapVector<const Value *, std::vector<unsigned>>>;
102 
103 /// Look for a value that might be wrapped as metadata, e.g. a value in a
104 /// metadata operand. Returns the input value as-is if it is not wrapped.
105 static const Value *skipMetadataWrapper(const Value *V) {
106   if (const auto *MAV = dyn_cast<MetadataAsValue>(V))
107     if (const auto *VAM = dyn_cast<ValueAsMetadata>(MAV->getMetadata()))
108       return VAM->getValue();
109   return V;
110 }
111 
112 static void orderValue(const Value *V, OrderMap &OM) {
113   if (OM.lookup(V))
114     return;
115 
116   if (const Constant *C = dyn_cast<Constant>(V))
117     if (C->getNumOperands() && !isa<GlobalValue>(C))
118       for (const Value *Op : C->operands())
119         if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
120           orderValue(Op, OM);
121 
122   // Note: we cannot cache this lookup above, since inserting into the map
123   // changes the map's size, and thus affects the other IDs.
124   unsigned ID = OM.size() + 1;
125   OM[V] = ID;
126 }
127 
128 static OrderMap orderModule(const Module *M) {
129   OrderMap OM;
130 
131   for (const GlobalVariable &G : M->globals()) {
132     if (G.hasInitializer())
133       if (!isa<GlobalValue>(G.getInitializer()))
134         orderValue(G.getInitializer(), OM);
135     orderValue(&G, OM);
136   }
137   for (const GlobalAlias &A : M->aliases()) {
138     if (!isa<GlobalValue>(A.getAliasee()))
139       orderValue(A.getAliasee(), OM);
140     orderValue(&A, OM);
141   }
142   for (const GlobalIFunc &I : M->ifuncs()) {
143     if (!isa<GlobalValue>(I.getResolver()))
144       orderValue(I.getResolver(), OM);
145     orderValue(&I, OM);
146   }
147   for (const Function &F : *M) {
148     for (const Use &U : F.operands())
149       if (!isa<GlobalValue>(U.get()))
150         orderValue(U.get(), OM);
151 
152     orderValue(&F, OM);
153 
154     if (F.isDeclaration())
155       continue;
156 
157     for (const Argument &A : F.args())
158       orderValue(&A, OM);
159     for (const BasicBlock &BB : F) {
160       orderValue(&BB, OM);
161       for (const Instruction &I : BB) {
162         for (const Value *Op : I.operands()) {
163           Op = skipMetadataWrapper(Op);
164           if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
165               isa<InlineAsm>(*Op))
166             orderValue(Op, OM);
167         }
168         orderValue(&I, OM);
169       }
170     }
171   }
172   return OM;
173 }
174 
175 static std::vector<unsigned>
176 predictValueUseListOrder(const Value *V, unsigned ID, const OrderMap &OM) {
177   // Predict use-list order for this one.
178   using Entry = std::pair<const Use *, unsigned>;
179   SmallVector<Entry, 64> List;
180   for (const Use &U : V->uses())
181     // Check if this user will be serialized.
182     if (OM.lookup(U.getUser()))
183       List.push_back(std::make_pair(&U, List.size()));
184 
185   if (List.size() < 2)
186     // We may have lost some users.
187     return {};
188 
189   // When referencing a value before its declaration, a temporary value is
190   // created, which will later be RAUWed with the actual value. This reverses
191   // the use list. This happens for all values apart from basic blocks.
192   bool GetsReversed = !isa<BasicBlock>(V);
193   if (auto *BA = dyn_cast<BlockAddress>(V))
194     ID = OM.lookup(BA->getBasicBlock());
195   llvm::sort(List, [&](const Entry &L, const Entry &R) {
196     const Use *LU = L.first;
197     const Use *RU = R.first;
198     if (LU == RU)
199       return false;
200 
201     auto LID = OM.lookup(LU->getUser());
202     auto RID = OM.lookup(RU->getUser());
203 
204     // If ID is 4, then expect: 7 6 5 1 2 3.
205     if (LID < RID) {
206       if (GetsReversed)
207         if (RID <= ID)
208           return true;
209       return false;
210     }
211     if (RID < LID) {
212       if (GetsReversed)
213         if (LID <= ID)
214           return false;
215       return true;
216     }
217 
218     // LID and RID are equal, so we have different operands of the same user.
219     // Assume operands are added in order for all instructions.
220     if (GetsReversed)
221       if (LID <= ID)
222         return LU->getOperandNo() < RU->getOperandNo();
223     return LU->getOperandNo() > RU->getOperandNo();
224   });
225 
226   if (llvm::is_sorted(List, llvm::less_second()))
227     // Order is already correct.
228     return {};
229 
230   // Store the shuffle.
231   std::vector<unsigned> Shuffle(List.size());
232   for (size_t I = 0, E = List.size(); I != E; ++I)
233     Shuffle[I] = List[I].second;
234   return Shuffle;
235 }
236 
237 static UseListOrderMap predictUseListOrder(const Module *M) {
238   OrderMap OM = orderModule(M);
239   UseListOrderMap ULOM;
240   for (const auto &Pair : OM) {
241     const Value *V = Pair.first;
242     if (V->use_empty() || std::next(V->use_begin()) == V->use_end())
243       continue;
244 
245     std::vector<unsigned> Shuffle =
246         predictValueUseListOrder(V, Pair.second, OM);
247     if (Shuffle.empty())
248       continue;
249 
250     const Function *F = nullptr;
251     if (auto *I = dyn_cast<Instruction>(V))
252       F = I->getFunction();
253     if (auto *A = dyn_cast<Argument>(V))
254       F = A->getParent();
255     if (auto *BB = dyn_cast<BasicBlock>(V))
256       F = BB->getParent();
257     ULOM[F][V] = std::move(Shuffle);
258   }
259   return ULOM;
260 }
261 
262 static const Module *getModuleFromVal(const Value *V) {
263   if (const Argument *MA = dyn_cast<Argument>(V))
264     return MA->getParent() ? MA->getParent()->getParent() : nullptr;
265 
266   if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
267     return BB->getParent() ? BB->getParent()->getParent() : nullptr;
268 
269   if (const Instruction *I = dyn_cast<Instruction>(V)) {
270     const Function *M = I->getParent() ? I->getParent()->getParent() : nullptr;
271     return M ? M->getParent() : nullptr;
272   }
273 
274   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
275     return GV->getParent();
276 
277   if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) {
278     for (const User *U : MAV->users())
279       if (isa<Instruction>(U))
280         if (const Module *M = getModuleFromVal(U))
281           return M;
282     return nullptr;
283   }
284 
285   return nullptr;
286 }
287 
288 static void PrintCallingConv(unsigned cc, raw_ostream &Out) {
289   switch (cc) {
290   default:                         Out << "cc" << cc; break;
291   case CallingConv::Fast:          Out << "fastcc"; break;
292   case CallingConv::Cold:          Out << "coldcc"; break;
293   case CallingConv::WebKit_JS:     Out << "webkit_jscc"; break;
294   case CallingConv::AnyReg:        Out << "anyregcc"; break;
295   case CallingConv::PreserveMost:  Out << "preserve_mostcc"; break;
296   case CallingConv::PreserveAll:   Out << "preserve_allcc"; break;
297   case CallingConv::CXX_FAST_TLS:  Out << "cxx_fast_tlscc"; break;
298   case CallingConv::GHC:           Out << "ghccc"; break;
299   case CallingConv::Tail:          Out << "tailcc"; break;
300   case CallingConv::CFGuard_Check: Out << "cfguard_checkcc"; break;
301   case CallingConv::X86_StdCall:   Out << "x86_stdcallcc"; break;
302   case CallingConv::X86_FastCall:  Out << "x86_fastcallcc"; break;
303   case CallingConv::X86_ThisCall:  Out << "x86_thiscallcc"; break;
304   case CallingConv::X86_RegCall:   Out << "x86_regcallcc"; break;
305   case CallingConv::X86_VectorCall:Out << "x86_vectorcallcc"; break;
306   case CallingConv::Intel_OCL_BI:  Out << "intel_ocl_bicc"; break;
307   case CallingConv::ARM_APCS:      Out << "arm_apcscc"; break;
308   case CallingConv::ARM_AAPCS:     Out << "arm_aapcscc"; break;
309   case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break;
310   case CallingConv::AArch64_VectorCall: Out << "aarch64_vector_pcs"; break;
311   case CallingConv::AArch64_SVE_VectorCall:
312     Out << "aarch64_sve_vector_pcs";
313     break;
314   case CallingConv::MSP430_INTR:   Out << "msp430_intrcc"; break;
315   case CallingConv::AVR_INTR:      Out << "avr_intrcc "; break;
316   case CallingConv::AVR_SIGNAL:    Out << "avr_signalcc "; break;
317   case CallingConv::PTX_Kernel:    Out << "ptx_kernel"; break;
318   case CallingConv::PTX_Device:    Out << "ptx_device"; break;
319   case CallingConv::X86_64_SysV:   Out << "x86_64_sysvcc"; break;
320   case CallingConv::Win64:         Out << "win64cc"; break;
321   case CallingConv::SPIR_FUNC:     Out << "spir_func"; break;
322   case CallingConv::SPIR_KERNEL:   Out << "spir_kernel"; break;
323   case CallingConv::Swift:         Out << "swiftcc"; break;
324   case CallingConv::SwiftTail:     Out << "swifttailcc"; break;
325   case CallingConv::X86_INTR:      Out << "x86_intrcc"; break;
326   case CallingConv::HHVM:          Out << "hhvmcc"; break;
327   case CallingConv::HHVM_C:        Out << "hhvm_ccc"; break;
328   case CallingConv::AMDGPU_VS:     Out << "amdgpu_vs"; break;
329   case CallingConv::AMDGPU_LS:     Out << "amdgpu_ls"; break;
330   case CallingConv::AMDGPU_HS:     Out << "amdgpu_hs"; break;
331   case CallingConv::AMDGPU_ES:     Out << "amdgpu_es"; break;
332   case CallingConv::AMDGPU_GS:     Out << "amdgpu_gs"; break;
333   case CallingConv::AMDGPU_PS:     Out << "amdgpu_ps"; break;
334   case CallingConv::AMDGPU_CS:     Out << "amdgpu_cs"; break;
335   case CallingConv::AMDGPU_KERNEL: Out << "amdgpu_kernel"; break;
336   case CallingConv::AMDGPU_Gfx:    Out << "amdgpu_gfx"; break;
337   }
338 }
339 
340 enum PrefixType {
341   GlobalPrefix,
342   ComdatPrefix,
343   LabelPrefix,
344   LocalPrefix,
345   NoPrefix
346 };
347 
348 void llvm::printLLVMNameWithoutPrefix(raw_ostream &OS, StringRef Name) {
349   assert(!Name.empty() && "Cannot get empty name!");
350 
351   // Scan the name to see if it needs quotes first.
352   bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0]));
353   if (!NeedsQuotes) {
354     for (unsigned char C : Name) {
355       // By making this unsigned, the value passed in to isalnum will always be
356       // in the range 0-255.  This is important when building with MSVC because
357       // its implementation will assert.  This situation can arise when dealing
358       // with UTF-8 multibyte characters.
359       if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' &&
360           C != '_') {
361         NeedsQuotes = true;
362         break;
363       }
364     }
365   }
366 
367   // If we didn't need any quotes, just write out the name in one blast.
368   if (!NeedsQuotes) {
369     OS << Name;
370     return;
371   }
372 
373   // Okay, we need quotes.  Output the quotes and escape any scary characters as
374   // needed.
375   OS << '"';
376   printEscapedString(Name, OS);
377   OS << '"';
378 }
379 
380 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
381 /// (if the string only contains simple characters) or is surrounded with ""'s
382 /// (if it has special chars in it). Print it out.
383 static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
384   switch (Prefix) {
385   case NoPrefix:
386     break;
387   case GlobalPrefix:
388     OS << '@';
389     break;
390   case ComdatPrefix:
391     OS << '$';
392     break;
393   case LabelPrefix:
394     break;
395   case LocalPrefix:
396     OS << '%';
397     break;
398   }
399   printLLVMNameWithoutPrefix(OS, Name);
400 }
401 
402 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
403 /// (if the string only contains simple characters) or is surrounded with ""'s
404 /// (if it has special chars in it). Print it out.
405 static void PrintLLVMName(raw_ostream &OS, const Value *V) {
406   PrintLLVMName(OS, V->getName(),
407                 isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
408 }
409 
410 static void PrintShuffleMask(raw_ostream &Out, Type *Ty, ArrayRef<int> Mask) {
411   Out << ", <";
412   if (isa<ScalableVectorType>(Ty))
413     Out << "vscale x ";
414   Out << Mask.size() << " x i32> ";
415   bool FirstElt = true;
416   if (all_of(Mask, [](int Elt) { return Elt == 0; })) {
417     Out << "zeroinitializer";
418   } else if (all_of(Mask, [](int Elt) { return Elt == UndefMaskElem; })) {
419     Out << "undef";
420   } else {
421     Out << "<";
422     for (int Elt : Mask) {
423       if (FirstElt)
424         FirstElt = false;
425       else
426         Out << ", ";
427       Out << "i32 ";
428       if (Elt == UndefMaskElem)
429         Out << "undef";
430       else
431         Out << Elt;
432     }
433     Out << ">";
434   }
435 }
436 
437 namespace {
438 
439 class TypePrinting {
440 public:
441   TypePrinting(const Module *M = nullptr) : DeferredM(M) {}
442 
443   TypePrinting(const TypePrinting &) = delete;
444   TypePrinting &operator=(const TypePrinting &) = delete;
445 
446   /// The named types that are used by the current module.
447   TypeFinder &getNamedTypes();
448 
449   /// The numbered types, number to type mapping.
450   std::vector<StructType *> &getNumberedTypes();
451 
452   bool empty();
453 
454   void print(Type *Ty, raw_ostream &OS);
455 
456   void printStructBody(StructType *Ty, raw_ostream &OS);
457 
458 private:
459   void incorporateTypes();
460 
461   /// A module to process lazily when needed. Set to nullptr as soon as used.
462   const Module *DeferredM;
463 
464   TypeFinder NamedTypes;
465 
466   // The numbered types, along with their value.
467   DenseMap<StructType *, unsigned> Type2Number;
468 
469   std::vector<StructType *> NumberedTypes;
470 };
471 
472 } // end anonymous namespace
473 
474 TypeFinder &TypePrinting::getNamedTypes() {
475   incorporateTypes();
476   return NamedTypes;
477 }
478 
479 std::vector<StructType *> &TypePrinting::getNumberedTypes() {
480   incorporateTypes();
481 
482   // We know all the numbers that each type is used and we know that it is a
483   // dense assignment. Convert the map to an index table, if it's not done
484   // already (judging from the sizes):
485   if (NumberedTypes.size() == Type2Number.size())
486     return NumberedTypes;
487 
488   NumberedTypes.resize(Type2Number.size());
489   for (const auto &P : Type2Number) {
490     assert(P.second < NumberedTypes.size() && "Didn't get a dense numbering?");
491     assert(!NumberedTypes[P.second] && "Didn't get a unique numbering?");
492     NumberedTypes[P.second] = P.first;
493   }
494   return NumberedTypes;
495 }
496 
497 bool TypePrinting::empty() {
498   incorporateTypes();
499   return NamedTypes.empty() && Type2Number.empty();
500 }
501 
502 void TypePrinting::incorporateTypes() {
503   if (!DeferredM)
504     return;
505 
506   NamedTypes.run(*DeferredM, false);
507   DeferredM = nullptr;
508 
509   // The list of struct types we got back includes all the struct types, split
510   // the unnamed ones out to a numbering and remove the anonymous structs.
511   unsigned NextNumber = 0;
512 
513   std::vector<StructType *>::iterator NextToUse = NamedTypes.begin();
514   for (StructType *STy : NamedTypes) {
515     // Ignore anonymous types.
516     if (STy->isLiteral())
517       continue;
518 
519     if (STy->getName().empty())
520       Type2Number[STy] = NextNumber++;
521     else
522       *NextToUse++ = STy;
523   }
524 
525   NamedTypes.erase(NextToUse, NamedTypes.end());
526 }
527 
528 /// Write the specified type to the specified raw_ostream, making use of type
529 /// names or up references to shorten the type name where possible.
530 void TypePrinting::print(Type *Ty, raw_ostream &OS) {
531   switch (Ty->getTypeID()) {
532   case Type::VoidTyID:      OS << "void"; return;
533   case Type::HalfTyID:      OS << "half"; return;
534   case Type::BFloatTyID:    OS << "bfloat"; return;
535   case Type::FloatTyID:     OS << "float"; return;
536   case Type::DoubleTyID:    OS << "double"; return;
537   case Type::X86_FP80TyID:  OS << "x86_fp80"; return;
538   case Type::FP128TyID:     OS << "fp128"; return;
539   case Type::PPC_FP128TyID: OS << "ppc_fp128"; return;
540   case Type::LabelTyID:     OS << "label"; return;
541   case Type::MetadataTyID:  OS << "metadata"; return;
542   case Type::X86_MMXTyID:   OS << "x86_mmx"; return;
543   case Type::X86_AMXTyID:   OS << "x86_amx"; return;
544   case Type::TokenTyID:     OS << "token"; return;
545   case Type::IntegerTyID:
546     OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
547     return;
548 
549   case Type::FunctionTyID: {
550     FunctionType *FTy = cast<FunctionType>(Ty);
551     print(FTy->getReturnType(), OS);
552     OS << " (";
553     ListSeparator LS;
554     for (Type *Ty : FTy->params()) {
555       OS << LS;
556       print(Ty, OS);
557     }
558     if (FTy->isVarArg())
559       OS << LS << "...";
560     OS << ')';
561     return;
562   }
563   case Type::StructTyID: {
564     StructType *STy = cast<StructType>(Ty);
565 
566     if (STy->isLiteral())
567       return printStructBody(STy, OS);
568 
569     if (!STy->getName().empty())
570       return PrintLLVMName(OS, STy->getName(), LocalPrefix);
571 
572     incorporateTypes();
573     const auto I = Type2Number.find(STy);
574     if (I != Type2Number.end())
575       OS << '%' << I->second;
576     else  // Not enumerated, print the hex address.
577       OS << "%\"type " << STy << '\"';
578     return;
579   }
580   case Type::PointerTyID: {
581     PointerType *PTy = cast<PointerType>(Ty);
582     if (PTy->isOpaque()) {
583       OS << "ptr";
584       if (unsigned AddressSpace = PTy->getAddressSpace())
585         OS << " addrspace(" << AddressSpace << ')';
586       return;
587     }
588     print(PTy->getNonOpaquePointerElementType(), OS);
589     if (unsigned AddressSpace = PTy->getAddressSpace())
590       OS << " addrspace(" << AddressSpace << ')';
591     OS << '*';
592     return;
593   }
594   case Type::ArrayTyID: {
595     ArrayType *ATy = cast<ArrayType>(Ty);
596     OS << '[' << ATy->getNumElements() << " x ";
597     print(ATy->getElementType(), OS);
598     OS << ']';
599     return;
600   }
601   case Type::FixedVectorTyID:
602   case Type::ScalableVectorTyID: {
603     VectorType *PTy = cast<VectorType>(Ty);
604     ElementCount EC = PTy->getElementCount();
605     OS << "<";
606     if (EC.isScalable())
607       OS << "vscale x ";
608     OS << EC.getKnownMinValue() << " x ";
609     print(PTy->getElementType(), OS);
610     OS << '>';
611     return;
612   }
613   case Type::DXILPointerTyID:
614     // DXIL pointer types are only handled by the DirectX backend. To avoid
615     // extra dependencies we just print the pointer's address here.
616     OS << "dxil-ptr (" << Ty << ")";
617     return;
618   }
619   llvm_unreachable("Invalid TypeID");
620 }
621 
622 void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
623   if (STy->isOpaque()) {
624     OS << "opaque";
625     return;
626   }
627 
628   if (STy->isPacked())
629     OS << '<';
630 
631   if (STy->getNumElements() == 0) {
632     OS << "{}";
633   } else {
634     OS << "{ ";
635     ListSeparator LS;
636     for (Type *Ty : STy->elements()) {
637       OS << LS;
638       print(Ty, OS);
639     }
640 
641     OS << " }";
642   }
643   if (STy->isPacked())
644     OS << '>';
645 }
646 
647 AbstractSlotTrackerStorage::~AbstractSlotTrackerStorage() = default;
648 
649 namespace llvm {
650 
651 //===----------------------------------------------------------------------===//
652 // SlotTracker Class: Enumerate slot numbers for unnamed values
653 //===----------------------------------------------------------------------===//
654 /// This class provides computation of slot numbers for LLVM Assembly writing.
655 ///
656 class SlotTracker : public AbstractSlotTrackerStorage {
657 public:
658   /// ValueMap - A mapping of Values to slot numbers.
659   using ValueMap = DenseMap<const Value *, unsigned>;
660 
661 private:
662   /// TheModule - The module for which we are holding slot numbers.
663   const Module* TheModule;
664 
665   /// TheFunction - The function for which we are holding slot numbers.
666   const Function* TheFunction = nullptr;
667   bool FunctionProcessed = false;
668   bool ShouldInitializeAllMetadata;
669 
670   std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>
671       ProcessModuleHookFn;
672   std::function<void(AbstractSlotTrackerStorage *, const Function *, bool)>
673       ProcessFunctionHookFn;
674 
675   /// The summary index for which we are holding slot numbers.
676   const ModuleSummaryIndex *TheIndex = nullptr;
677 
678   /// mMap - The slot map for the module level data.
679   ValueMap mMap;
680   unsigned mNext = 0;
681 
682   /// fMap - The slot map for the function level data.
683   ValueMap fMap;
684   unsigned fNext = 0;
685 
686   /// mdnMap - Map for MDNodes.
687   DenseMap<const MDNode*, unsigned> mdnMap;
688   unsigned mdnNext = 0;
689 
690   /// asMap - The slot map for attribute sets.
691   DenseMap<AttributeSet, unsigned> asMap;
692   unsigned asNext = 0;
693 
694   /// ModulePathMap - The slot map for Module paths used in the summary index.
695   StringMap<unsigned> ModulePathMap;
696   unsigned ModulePathNext = 0;
697 
698   /// GUIDMap - The slot map for GUIDs used in the summary index.
699   DenseMap<GlobalValue::GUID, unsigned> GUIDMap;
700   unsigned GUIDNext = 0;
701 
702   /// TypeIdMap - The slot map for type ids used in the summary index.
703   StringMap<unsigned> TypeIdMap;
704   unsigned TypeIdNext = 0;
705 
706 public:
707   /// Construct from a module.
708   ///
709   /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
710   /// functions, giving correct numbering for metadata referenced only from
711   /// within a function (even if no functions have been initialized).
712   explicit SlotTracker(const Module *M,
713                        bool ShouldInitializeAllMetadata = false);
714 
715   /// Construct from a function, starting out in incorp state.
716   ///
717   /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
718   /// functions, giving correct numbering for metadata referenced only from
719   /// within a function (even if no functions have been initialized).
720   explicit SlotTracker(const Function *F,
721                        bool ShouldInitializeAllMetadata = false);
722 
723   /// Construct from a module summary index.
724   explicit SlotTracker(const ModuleSummaryIndex *Index);
725 
726   SlotTracker(const SlotTracker &) = delete;
727   SlotTracker &operator=(const SlotTracker &) = delete;
728 
729   ~SlotTracker() = default;
730 
731   void setProcessHook(
732       std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>);
733   void setProcessHook(std::function<void(AbstractSlotTrackerStorage *,
734                                          const Function *, bool)>);
735 
736   unsigned getNextMetadataSlot() override { return mdnNext; }
737 
738   void createMetadataSlot(const MDNode *N) override;
739 
740   /// Return the slot number of the specified value in it's type
741   /// plane.  If something is not in the SlotTracker, return -1.
742   int getLocalSlot(const Value *V);
743   int getGlobalSlot(const GlobalValue *V);
744   int getMetadataSlot(const MDNode *N) override;
745   int getAttributeGroupSlot(AttributeSet AS);
746   int getModulePathSlot(StringRef Path);
747   int getGUIDSlot(GlobalValue::GUID GUID);
748   int getTypeIdSlot(StringRef Id);
749 
750   /// If you'd like to deal with a function instead of just a module, use
751   /// this method to get its data into the SlotTracker.
752   void incorporateFunction(const Function *F) {
753     TheFunction = F;
754     FunctionProcessed = false;
755   }
756 
757   const Function *getFunction() const { return TheFunction; }
758 
759   /// After calling incorporateFunction, use this method to remove the
760   /// most recently incorporated function from the SlotTracker. This
761   /// will reset the state of the machine back to just the module contents.
762   void purgeFunction();
763 
764   /// MDNode map iterators.
765   using mdn_iterator = DenseMap<const MDNode*, unsigned>::iterator;
766 
767   mdn_iterator mdn_begin() { return mdnMap.begin(); }
768   mdn_iterator mdn_end() { return mdnMap.end(); }
769   unsigned mdn_size() const { return mdnMap.size(); }
770   bool mdn_empty() const { return mdnMap.empty(); }
771 
772   /// AttributeSet map iterators.
773   using as_iterator = DenseMap<AttributeSet, unsigned>::iterator;
774 
775   as_iterator as_begin()   { return asMap.begin(); }
776   as_iterator as_end()     { return asMap.end(); }
777   unsigned as_size() const { return asMap.size(); }
778   bool as_empty() const    { return asMap.empty(); }
779 
780   /// GUID map iterators.
781   using guid_iterator = DenseMap<GlobalValue::GUID, unsigned>::iterator;
782 
783   /// These functions do the actual initialization.
784   inline void initializeIfNeeded();
785   int initializeIndexIfNeeded();
786 
787   // Implementation Details
788 private:
789   /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
790   void CreateModuleSlot(const GlobalValue *V);
791 
792   /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
793   void CreateMetadataSlot(const MDNode *N);
794 
795   /// CreateFunctionSlot - Insert the specified Value* into the slot table.
796   void CreateFunctionSlot(const Value *V);
797 
798   /// Insert the specified AttributeSet into the slot table.
799   void CreateAttributeSetSlot(AttributeSet AS);
800 
801   inline void CreateModulePathSlot(StringRef Path);
802   void CreateGUIDSlot(GlobalValue::GUID GUID);
803   void CreateTypeIdSlot(StringRef Id);
804 
805   /// Add all of the module level global variables (and their initializers)
806   /// and function declarations, but not the contents of those functions.
807   void processModule();
808   // Returns number of allocated slots
809   int processIndex();
810 
811   /// Add all of the functions arguments, basic blocks, and instructions.
812   void processFunction();
813 
814   /// Add the metadata directly attached to a GlobalObject.
815   void processGlobalObjectMetadata(const GlobalObject &GO);
816 
817   /// Add all of the metadata from a function.
818   void processFunctionMetadata(const Function &F);
819 
820   /// Add all of the metadata from an instruction.
821   void processInstructionMetadata(const Instruction &I);
822 };
823 
824 } // end namespace llvm
825 
826 ModuleSlotTracker::ModuleSlotTracker(SlotTracker &Machine, const Module *M,
827                                      const Function *F)
828     : M(M), F(F), Machine(&Machine) {}
829 
830 ModuleSlotTracker::ModuleSlotTracker(const Module *M,
831                                      bool ShouldInitializeAllMetadata)
832     : ShouldCreateStorage(M),
833       ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), M(M) {}
834 
835 ModuleSlotTracker::~ModuleSlotTracker() = default;
836 
837 SlotTracker *ModuleSlotTracker::getMachine() {
838   if (!ShouldCreateStorage)
839     return Machine;
840 
841   ShouldCreateStorage = false;
842   MachineStorage =
843       std::make_unique<SlotTracker>(M, ShouldInitializeAllMetadata);
844   Machine = MachineStorage.get();
845   if (ProcessModuleHookFn)
846     Machine->setProcessHook(ProcessModuleHookFn);
847   if (ProcessFunctionHookFn)
848     Machine->setProcessHook(ProcessFunctionHookFn);
849   return Machine;
850 }
851 
852 void ModuleSlotTracker::incorporateFunction(const Function &F) {
853   // Using getMachine() may lazily create the slot tracker.
854   if (!getMachine())
855     return;
856 
857   // Nothing to do if this is the right function already.
858   if (this->F == &F)
859     return;
860   if (this->F)
861     Machine->purgeFunction();
862   Machine->incorporateFunction(&F);
863   this->F = &F;
864 }
865 
866 int ModuleSlotTracker::getLocalSlot(const Value *V) {
867   assert(F && "No function incorporated");
868   return Machine->getLocalSlot(V);
869 }
870 
871 void ModuleSlotTracker::setProcessHook(
872     std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>
873         Fn) {
874   ProcessModuleHookFn = Fn;
875 }
876 
877 void ModuleSlotTracker::setProcessHook(
878     std::function<void(AbstractSlotTrackerStorage *, const Function *, bool)>
879         Fn) {
880   ProcessFunctionHookFn = Fn;
881 }
882 
883 static SlotTracker *createSlotTracker(const Value *V) {
884   if (const Argument *FA = dyn_cast<Argument>(V))
885     return new SlotTracker(FA->getParent());
886 
887   if (const Instruction *I = dyn_cast<Instruction>(V))
888     if (I->getParent())
889       return new SlotTracker(I->getParent()->getParent());
890 
891   if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
892     return new SlotTracker(BB->getParent());
893 
894   if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
895     return new SlotTracker(GV->getParent());
896 
897   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
898     return new SlotTracker(GA->getParent());
899 
900   if (const GlobalIFunc *GIF = dyn_cast<GlobalIFunc>(V))
901     return new SlotTracker(GIF->getParent());
902 
903   if (const Function *Func = dyn_cast<Function>(V))
904     return new SlotTracker(Func);
905 
906   return nullptr;
907 }
908 
909 #if 0
910 #define ST_DEBUG(X) dbgs() << X
911 #else
912 #define ST_DEBUG(X)
913 #endif
914 
915 // Module level constructor. Causes the contents of the Module (sans functions)
916 // to be added to the slot table.
917 SlotTracker::SlotTracker(const Module *M, bool ShouldInitializeAllMetadata)
918     : TheModule(M), ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
919 
920 // Function level constructor. Causes the contents of the Module and the one
921 // function provided to be added to the slot table.
922 SlotTracker::SlotTracker(const Function *F, bool ShouldInitializeAllMetadata)
923     : TheModule(F ? F->getParent() : nullptr), TheFunction(F),
924       ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
925 
926 SlotTracker::SlotTracker(const ModuleSummaryIndex *Index)
927     : TheModule(nullptr), ShouldInitializeAllMetadata(false), TheIndex(Index) {}
928 
929 inline void SlotTracker::initializeIfNeeded() {
930   if (TheModule) {
931     processModule();
932     TheModule = nullptr; ///< Prevent re-processing next time we're called.
933   }
934 
935   if (TheFunction && !FunctionProcessed)
936     processFunction();
937 }
938 
939 int SlotTracker::initializeIndexIfNeeded() {
940   if (!TheIndex)
941     return 0;
942   int NumSlots = processIndex();
943   TheIndex = nullptr; ///< Prevent re-processing next time we're called.
944   return NumSlots;
945 }
946 
947 // Iterate through all the global variables, functions, and global
948 // variable initializers and create slots for them.
949 void SlotTracker::processModule() {
950   ST_DEBUG("begin processModule!\n");
951 
952   // Add all of the unnamed global variables to the value table.
953   for (const GlobalVariable &Var : TheModule->globals()) {
954     if (!Var.hasName())
955       CreateModuleSlot(&Var);
956     processGlobalObjectMetadata(Var);
957     auto Attrs = Var.getAttributes();
958     if (Attrs.hasAttributes())
959       CreateAttributeSetSlot(Attrs);
960   }
961 
962   for (const GlobalAlias &A : TheModule->aliases()) {
963     if (!A.hasName())
964       CreateModuleSlot(&A);
965   }
966 
967   for (const GlobalIFunc &I : TheModule->ifuncs()) {
968     if (!I.hasName())
969       CreateModuleSlot(&I);
970   }
971 
972   // Add metadata used by named metadata.
973   for (const NamedMDNode &NMD : TheModule->named_metadata()) {
974     for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i)
975       CreateMetadataSlot(NMD.getOperand(i));
976   }
977 
978   for (const Function &F : *TheModule) {
979     if (!F.hasName())
980       // Add all the unnamed functions to the table.
981       CreateModuleSlot(&F);
982 
983     if (ShouldInitializeAllMetadata)
984       processFunctionMetadata(F);
985 
986     // Add all the function attributes to the table.
987     // FIXME: Add attributes of other objects?
988     AttributeSet FnAttrs = F.getAttributes().getFnAttrs();
989     if (FnAttrs.hasAttributes())
990       CreateAttributeSetSlot(FnAttrs);
991   }
992 
993   if (ProcessModuleHookFn)
994     ProcessModuleHookFn(this, TheModule, ShouldInitializeAllMetadata);
995 
996   ST_DEBUG("end processModule!\n");
997 }
998 
999 // Process the arguments, basic blocks, and instructions  of a function.
1000 void SlotTracker::processFunction() {
1001   ST_DEBUG("begin processFunction!\n");
1002   fNext = 0;
1003 
1004   // Process function metadata if it wasn't hit at the module-level.
1005   if (!ShouldInitializeAllMetadata)
1006     processFunctionMetadata(*TheFunction);
1007 
1008   // Add all the function arguments with no names.
1009   for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
1010       AE = TheFunction->arg_end(); AI != AE; ++AI)
1011     if (!AI->hasName())
1012       CreateFunctionSlot(&*AI);
1013 
1014   ST_DEBUG("Inserting Instructions:\n");
1015 
1016   // Add all of the basic blocks and instructions with no names.
1017   for (auto &BB : *TheFunction) {
1018     if (!BB.hasName())
1019       CreateFunctionSlot(&BB);
1020 
1021     for (auto &I : BB) {
1022       if (!I.getType()->isVoidTy() && !I.hasName())
1023         CreateFunctionSlot(&I);
1024 
1025       // We allow direct calls to any llvm.foo function here, because the
1026       // target may not be linked into the optimizer.
1027       if (const auto *Call = dyn_cast<CallBase>(&I)) {
1028         // Add all the call attributes to the table.
1029         AttributeSet Attrs = Call->getAttributes().getFnAttrs();
1030         if (Attrs.hasAttributes())
1031           CreateAttributeSetSlot(Attrs);
1032       }
1033     }
1034   }
1035 
1036   if (ProcessFunctionHookFn)
1037     ProcessFunctionHookFn(this, TheFunction, ShouldInitializeAllMetadata);
1038 
1039   FunctionProcessed = true;
1040 
1041   ST_DEBUG("end processFunction!\n");
1042 }
1043 
1044 // Iterate through all the GUID in the index and create slots for them.
1045 int SlotTracker::processIndex() {
1046   ST_DEBUG("begin processIndex!\n");
1047   assert(TheIndex);
1048 
1049   // The first block of slots are just the module ids, which start at 0 and are
1050   // assigned consecutively. Since the StringMap iteration order isn't
1051   // guaranteed, use a std::map to order by module ID before assigning slots.
1052   std::map<uint64_t, StringRef> ModuleIdToPathMap;
1053   for (auto &ModPath : TheIndex->modulePaths())
1054     ModuleIdToPathMap[ModPath.second.first] = ModPath.first();
1055   for (auto &ModPair : ModuleIdToPathMap)
1056     CreateModulePathSlot(ModPair.second);
1057 
1058   // Start numbering the GUIDs after the module ids.
1059   GUIDNext = ModulePathNext;
1060 
1061   for (auto &GlobalList : *TheIndex)
1062     CreateGUIDSlot(GlobalList.first);
1063 
1064   for (auto &TId : TheIndex->typeIdCompatibleVtableMap())
1065     CreateGUIDSlot(GlobalValue::getGUID(TId.first));
1066 
1067   // Start numbering the TypeIds after the GUIDs.
1068   TypeIdNext = GUIDNext;
1069   for (const auto &TID : TheIndex->typeIds())
1070     CreateTypeIdSlot(TID.second.first);
1071 
1072   ST_DEBUG("end processIndex!\n");
1073   return TypeIdNext;
1074 }
1075 
1076 void SlotTracker::processGlobalObjectMetadata(const GlobalObject &GO) {
1077   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1078   GO.getAllMetadata(MDs);
1079   for (auto &MD : MDs)
1080     CreateMetadataSlot(MD.second);
1081 }
1082 
1083 void SlotTracker::processFunctionMetadata(const Function &F) {
1084   processGlobalObjectMetadata(F);
1085   for (auto &BB : F) {
1086     for (auto &I : BB)
1087       processInstructionMetadata(I);
1088   }
1089 }
1090 
1091 void SlotTracker::processInstructionMetadata(const Instruction &I) {
1092   // Process metadata used directly by intrinsics.
1093   if (const CallInst *CI = dyn_cast<CallInst>(&I))
1094     if (Function *F = CI->getCalledFunction())
1095       if (F->isIntrinsic())
1096         for (auto &Op : I.operands())
1097           if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
1098             if (MDNode *N = dyn_cast<MDNode>(V->getMetadata()))
1099               CreateMetadataSlot(N);
1100 
1101   // Process metadata attached to this instruction.
1102   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1103   I.getAllMetadata(MDs);
1104   for (auto &MD : MDs)
1105     CreateMetadataSlot(MD.second);
1106 }
1107 
1108 /// Clean up after incorporating a function. This is the only way to get out of
1109 /// the function incorporation state that affects get*Slot/Create*Slot. Function
1110 /// incorporation state is indicated by TheFunction != 0.
1111 void SlotTracker::purgeFunction() {
1112   ST_DEBUG("begin purgeFunction!\n");
1113   fMap.clear(); // Simply discard the function level map
1114   TheFunction = nullptr;
1115   FunctionProcessed = false;
1116   ST_DEBUG("end purgeFunction!\n");
1117 }
1118 
1119 /// getGlobalSlot - Get the slot number of a global value.
1120 int SlotTracker::getGlobalSlot(const GlobalValue *V) {
1121   // Check for uninitialized state and do lazy initialization.
1122   initializeIfNeeded();
1123 
1124   // Find the value in the module map
1125   ValueMap::iterator MI = mMap.find(V);
1126   return MI == mMap.end() ? -1 : (int)MI->second;
1127 }
1128 
1129 void SlotTracker::setProcessHook(
1130     std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>
1131         Fn) {
1132   ProcessModuleHookFn = Fn;
1133 }
1134 
1135 void SlotTracker::setProcessHook(
1136     std::function<void(AbstractSlotTrackerStorage *, const Function *, bool)>
1137         Fn) {
1138   ProcessFunctionHookFn = Fn;
1139 }
1140 
1141 /// getMetadataSlot - Get the slot number of a MDNode.
1142 void SlotTracker::createMetadataSlot(const MDNode *N) { CreateMetadataSlot(N); }
1143 
1144 /// getMetadataSlot - Get the slot number of a MDNode.
1145 int SlotTracker::getMetadataSlot(const MDNode *N) {
1146   // Check for uninitialized state and do lazy initialization.
1147   initializeIfNeeded();
1148 
1149   // Find the MDNode in the module map
1150   mdn_iterator MI = mdnMap.find(N);
1151   return MI == mdnMap.end() ? -1 : (int)MI->second;
1152 }
1153 
1154 /// getLocalSlot - Get the slot number for a value that is local to a function.
1155 int SlotTracker::getLocalSlot(const Value *V) {
1156   assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
1157 
1158   // Check for uninitialized state and do lazy initialization.
1159   initializeIfNeeded();
1160 
1161   ValueMap::iterator FI = fMap.find(V);
1162   return FI == fMap.end() ? -1 : (int)FI->second;
1163 }
1164 
1165 int SlotTracker::getAttributeGroupSlot(AttributeSet AS) {
1166   // Check for uninitialized state and do lazy initialization.
1167   initializeIfNeeded();
1168 
1169   // Find the AttributeSet in the module map.
1170   as_iterator AI = asMap.find(AS);
1171   return AI == asMap.end() ? -1 : (int)AI->second;
1172 }
1173 
1174 int SlotTracker::getModulePathSlot(StringRef Path) {
1175   // Check for uninitialized state and do lazy initialization.
1176   initializeIndexIfNeeded();
1177 
1178   // Find the Module path in the map
1179   auto I = ModulePathMap.find(Path);
1180   return I == ModulePathMap.end() ? -1 : (int)I->second;
1181 }
1182 
1183 int SlotTracker::getGUIDSlot(GlobalValue::GUID GUID) {
1184   // Check for uninitialized state and do lazy initialization.
1185   initializeIndexIfNeeded();
1186 
1187   // Find the GUID in the map
1188   guid_iterator I = GUIDMap.find(GUID);
1189   return I == GUIDMap.end() ? -1 : (int)I->second;
1190 }
1191 
1192 int SlotTracker::getTypeIdSlot(StringRef Id) {
1193   // Check for uninitialized state and do lazy initialization.
1194   initializeIndexIfNeeded();
1195 
1196   // Find the TypeId string in the map
1197   auto I = TypeIdMap.find(Id);
1198   return I == TypeIdMap.end() ? -1 : (int)I->second;
1199 }
1200 
1201 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
1202 void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
1203   assert(V && "Can't insert a null Value into SlotTracker!");
1204   assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
1205   assert(!V->hasName() && "Doesn't need a slot!");
1206 
1207   unsigned DestSlot = mNext++;
1208   mMap[V] = DestSlot;
1209 
1210   ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1211            DestSlot << " [");
1212   // G = Global, F = Function, A = Alias, I = IFunc, o = other
1213   ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
1214             (isa<Function>(V) ? 'F' :
1215              (isa<GlobalAlias>(V) ? 'A' :
1216               (isa<GlobalIFunc>(V) ? 'I' : 'o')))) << "]\n");
1217 }
1218 
1219 /// CreateSlot - Create a new slot for the specified value if it has no name.
1220 void SlotTracker::CreateFunctionSlot(const Value *V) {
1221   assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
1222 
1223   unsigned DestSlot = fNext++;
1224   fMap[V] = DestSlot;
1225 
1226   // G = Global, F = Function, o = other
1227   ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1228            DestSlot << " [o]\n");
1229 }
1230 
1231 /// CreateModuleSlot - Insert the specified MDNode* into the slot table.
1232 void SlotTracker::CreateMetadataSlot(const MDNode *N) {
1233   assert(N && "Can't insert a null Value into SlotTracker!");
1234 
1235   // Don't make slots for DIExpressions or DIArgLists. We just print them inline
1236   // everywhere.
1237   if (isa<DIExpression>(N) || isa<DIArgList>(N))
1238     return;
1239 
1240   unsigned DestSlot = mdnNext;
1241   if (!mdnMap.insert(std::make_pair(N, DestSlot)).second)
1242     return;
1243   ++mdnNext;
1244 
1245   // Recursively add any MDNodes referenced by operands.
1246   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1247     if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
1248       CreateMetadataSlot(Op);
1249 }
1250 
1251 void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) {
1252   assert(AS.hasAttributes() && "Doesn't need a slot!");
1253 
1254   as_iterator I = asMap.find(AS);
1255   if (I != asMap.end())
1256     return;
1257 
1258   unsigned DestSlot = asNext++;
1259   asMap[AS] = DestSlot;
1260 }
1261 
1262 /// Create a new slot for the specified Module
1263 void SlotTracker::CreateModulePathSlot(StringRef Path) {
1264   ModulePathMap[Path] = ModulePathNext++;
1265 }
1266 
1267 /// Create a new slot for the specified GUID
1268 void SlotTracker::CreateGUIDSlot(GlobalValue::GUID GUID) {
1269   GUIDMap[GUID] = GUIDNext++;
1270 }
1271 
1272 /// Create a new slot for the specified Id
1273 void SlotTracker::CreateTypeIdSlot(StringRef Id) {
1274   TypeIdMap[Id] = TypeIdNext++;
1275 }
1276 
1277 namespace {
1278 /// Common instances used by most of the printer functions.
1279 struct AsmWriterContext {
1280   TypePrinting *TypePrinter = nullptr;
1281   SlotTracker *Machine = nullptr;
1282   const Module *Context = nullptr;
1283 
1284   AsmWriterContext(TypePrinting *TP, SlotTracker *ST, const Module *M = nullptr)
1285       : TypePrinter(TP), Machine(ST), Context(M) {}
1286 
1287   static AsmWriterContext &getEmpty() {
1288     static AsmWriterContext EmptyCtx(nullptr, nullptr);
1289     return EmptyCtx;
1290   }
1291 
1292   /// A callback that will be triggered when the underlying printer
1293   /// prints a Metadata as operand.
1294   virtual void onWriteMetadataAsOperand(const Metadata *) {}
1295 
1296   virtual ~AsmWriterContext() = default;
1297 };
1298 } // end anonymous namespace
1299 
1300 //===----------------------------------------------------------------------===//
1301 // AsmWriter Implementation
1302 //===----------------------------------------------------------------------===//
1303 
1304 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1305                                    AsmWriterContext &WriterCtx);
1306 
1307 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
1308                                    AsmWriterContext &WriterCtx,
1309                                    bool FromValue = false);
1310 
1311 static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
1312   if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U))
1313     Out << FPO->getFastMathFlags();
1314 
1315   if (const OverflowingBinaryOperator *OBO =
1316         dyn_cast<OverflowingBinaryOperator>(U)) {
1317     if (OBO->hasNoUnsignedWrap())
1318       Out << " nuw";
1319     if (OBO->hasNoSignedWrap())
1320       Out << " nsw";
1321   } else if (const PossiblyExactOperator *Div =
1322                dyn_cast<PossiblyExactOperator>(U)) {
1323     if (Div->isExact())
1324       Out << " exact";
1325   } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
1326     if (GEP->isInBounds())
1327       Out << " inbounds";
1328   }
1329 }
1330 
1331 static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
1332                                   AsmWriterContext &WriterCtx) {
1333   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1334     if (CI->getType()->isIntegerTy(1)) {
1335       Out << (CI->getZExtValue() ? "true" : "false");
1336       return;
1337     }
1338     Out << CI->getValue();
1339     return;
1340   }
1341 
1342   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1343     const APFloat &APF = CFP->getValueAPF();
1344     if (&APF.getSemantics() == &APFloat::IEEEsingle() ||
1345         &APF.getSemantics() == &APFloat::IEEEdouble()) {
1346       // We would like to output the FP constant value in exponential notation,
1347       // but we cannot do this if doing so will lose precision.  Check here to
1348       // make sure that we only output it in exponential format if we can parse
1349       // the value back and get the same value.
1350       //
1351       bool ignored;
1352       bool isDouble = &APF.getSemantics() == &APFloat::IEEEdouble();
1353       bool isInf = APF.isInfinity();
1354       bool isNaN = APF.isNaN();
1355       if (!isInf && !isNaN) {
1356         double Val = APF.convertToDouble();
1357         SmallString<128> StrVal;
1358         APF.toString(StrVal, 6, 0, false);
1359         // Check to make sure that the stringized number is not some string like
1360         // "Inf" or NaN, that atof will accept, but the lexer will not.  Check
1361         // that the string matches the "[-+]?[0-9]" regex.
1362         //
1363         assert((isDigit(StrVal[0]) || ((StrVal[0] == '-' || StrVal[0] == '+') &&
1364                                        isDigit(StrVal[1]))) &&
1365                "[-+]?[0-9] regex does not match!");
1366         // Reparse stringized version!
1367         if (APFloat(APFloat::IEEEdouble(), StrVal).convertToDouble() == Val) {
1368           Out << StrVal;
1369           return;
1370         }
1371       }
1372       // Otherwise we could not reparse it to exactly the same value, so we must
1373       // output the string in hexadecimal format!  Note that loading and storing
1374       // floating point types changes the bits of NaNs on some hosts, notably
1375       // x86, so we must not use these types.
1376       static_assert(sizeof(double) == sizeof(uint64_t),
1377                     "assuming that double is 64 bits!");
1378       APFloat apf = APF;
1379       // Floats are represented in ASCII IR as double, convert.
1380       // FIXME: We should allow 32-bit hex float and remove this.
1381       if (!isDouble) {
1382         // A signaling NaN is quieted on conversion, so we need to recreate the
1383         // expected value after convert (quiet bit of the payload is clear).
1384         bool IsSNAN = apf.isSignaling();
1385         apf.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
1386                     &ignored);
1387         if (IsSNAN) {
1388           APInt Payload = apf.bitcastToAPInt();
1389           apf = APFloat::getSNaN(APFloat::IEEEdouble(), apf.isNegative(),
1390                                  &Payload);
1391         }
1392       }
1393       Out << format_hex(apf.bitcastToAPInt().getZExtValue(), 0, /*Upper=*/true);
1394       return;
1395     }
1396 
1397     // Either half, bfloat or some form of long double.
1398     // These appear as a magic letter identifying the type, then a
1399     // fixed number of hex digits.
1400     Out << "0x";
1401     APInt API = APF.bitcastToAPInt();
1402     if (&APF.getSemantics() == &APFloat::x87DoubleExtended()) {
1403       Out << 'K';
1404       Out << format_hex_no_prefix(API.getHiBits(16).getZExtValue(), 4,
1405                                   /*Upper=*/true);
1406       Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1407                                   /*Upper=*/true);
1408       return;
1409     } else if (&APF.getSemantics() == &APFloat::IEEEquad()) {
1410       Out << 'L';
1411       Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1412                                   /*Upper=*/true);
1413       Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1414                                   /*Upper=*/true);
1415     } else if (&APF.getSemantics() == &APFloat::PPCDoubleDouble()) {
1416       Out << 'M';
1417       Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1418                                   /*Upper=*/true);
1419       Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1420                                   /*Upper=*/true);
1421     } else if (&APF.getSemantics() == &APFloat::IEEEhalf()) {
1422       Out << 'H';
1423       Out << format_hex_no_prefix(API.getZExtValue(), 4,
1424                                   /*Upper=*/true);
1425     } else if (&APF.getSemantics() == &APFloat::BFloat()) {
1426       Out << 'R';
1427       Out << format_hex_no_prefix(API.getZExtValue(), 4,
1428                                   /*Upper=*/true);
1429     } else
1430       llvm_unreachable("Unsupported floating point type");
1431     return;
1432   }
1433 
1434   if (isa<ConstantAggregateZero>(CV)) {
1435     Out << "zeroinitializer";
1436     return;
1437   }
1438 
1439   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
1440     Out << "blockaddress(";
1441     WriteAsOperandInternal(Out, BA->getFunction(), WriterCtx);
1442     Out << ", ";
1443     WriteAsOperandInternal(Out, BA->getBasicBlock(), WriterCtx);
1444     Out << ")";
1445     return;
1446   }
1447 
1448   if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV)) {
1449     Out << "dso_local_equivalent ";
1450     WriteAsOperandInternal(Out, Equiv->getGlobalValue(), WriterCtx);
1451     return;
1452   }
1453 
1454   if (const auto *NC = dyn_cast<NoCFIValue>(CV)) {
1455     Out << "no_cfi ";
1456     WriteAsOperandInternal(Out, NC->getGlobalValue(), WriterCtx);
1457     return;
1458   }
1459 
1460   if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
1461     Type *ETy = CA->getType()->getElementType();
1462     Out << '[';
1463     WriterCtx.TypePrinter->print(ETy, Out);
1464     Out << ' ';
1465     WriteAsOperandInternal(Out, CA->getOperand(0), WriterCtx);
1466     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1467       Out << ", ";
1468       WriterCtx.TypePrinter->print(ETy, Out);
1469       Out << ' ';
1470       WriteAsOperandInternal(Out, CA->getOperand(i), WriterCtx);
1471     }
1472     Out << ']';
1473     return;
1474   }
1475 
1476   if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
1477     // As a special case, print the array as a string if it is an array of
1478     // i8 with ConstantInt values.
1479     if (CA->isString()) {
1480       Out << "c\"";
1481       printEscapedString(CA->getAsString(), Out);
1482       Out << '"';
1483       return;
1484     }
1485 
1486     Type *ETy = CA->getType()->getElementType();
1487     Out << '[';
1488     WriterCtx.TypePrinter->print(ETy, Out);
1489     Out << ' ';
1490     WriteAsOperandInternal(Out, CA->getElementAsConstant(0), WriterCtx);
1491     for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
1492       Out << ", ";
1493       WriterCtx.TypePrinter->print(ETy, Out);
1494       Out << ' ';
1495       WriteAsOperandInternal(Out, CA->getElementAsConstant(i), WriterCtx);
1496     }
1497     Out << ']';
1498     return;
1499   }
1500 
1501   if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
1502     if (CS->getType()->isPacked())
1503       Out << '<';
1504     Out << '{';
1505     unsigned N = CS->getNumOperands();
1506     if (N) {
1507       Out << ' ';
1508       WriterCtx.TypePrinter->print(CS->getOperand(0)->getType(), Out);
1509       Out << ' ';
1510 
1511       WriteAsOperandInternal(Out, CS->getOperand(0), WriterCtx);
1512 
1513       for (unsigned i = 1; i < N; i++) {
1514         Out << ", ";
1515         WriterCtx.TypePrinter->print(CS->getOperand(i)->getType(), Out);
1516         Out << ' ';
1517 
1518         WriteAsOperandInternal(Out, CS->getOperand(i), WriterCtx);
1519       }
1520       Out << ' ';
1521     }
1522 
1523     Out << '}';
1524     if (CS->getType()->isPacked())
1525       Out << '>';
1526     return;
1527   }
1528 
1529   if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
1530     auto *CVVTy = cast<FixedVectorType>(CV->getType());
1531     Type *ETy = CVVTy->getElementType();
1532     Out << '<';
1533     WriterCtx.TypePrinter->print(ETy, Out);
1534     Out << ' ';
1535     WriteAsOperandInternal(Out, CV->getAggregateElement(0U), WriterCtx);
1536     for (unsigned i = 1, e = CVVTy->getNumElements(); i != e; ++i) {
1537       Out << ", ";
1538       WriterCtx.TypePrinter->print(ETy, Out);
1539       Out << ' ';
1540       WriteAsOperandInternal(Out, CV->getAggregateElement(i), WriterCtx);
1541     }
1542     Out << '>';
1543     return;
1544   }
1545 
1546   if (isa<ConstantPointerNull>(CV)) {
1547     Out << "null";
1548     return;
1549   }
1550 
1551   if (isa<ConstantTokenNone>(CV)) {
1552     Out << "none";
1553     return;
1554   }
1555 
1556   if (isa<PoisonValue>(CV)) {
1557     Out << "poison";
1558     return;
1559   }
1560 
1561   if (isa<UndefValue>(CV)) {
1562     Out << "undef";
1563     return;
1564   }
1565 
1566   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1567     Out << CE->getOpcodeName();
1568     WriteOptimizationInfo(Out, CE);
1569     if (CE->isCompare())
1570       Out << ' ' << CmpInst::getPredicateName(
1571                         static_cast<CmpInst::Predicate>(CE->getPredicate()));
1572     Out << " (";
1573 
1574     Optional<unsigned> InRangeOp;
1575     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) {
1576       WriterCtx.TypePrinter->print(GEP->getSourceElementType(), Out);
1577       Out << ", ";
1578       InRangeOp = GEP->getInRangeIndex();
1579       if (InRangeOp)
1580         ++*InRangeOp;
1581     }
1582 
1583     for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
1584       if (InRangeOp && unsigned(OI - CE->op_begin()) == *InRangeOp)
1585         Out << "inrange ";
1586       WriterCtx.TypePrinter->print((*OI)->getType(), Out);
1587       Out << ' ';
1588       WriteAsOperandInternal(Out, *OI, WriterCtx);
1589       if (OI+1 != CE->op_end())
1590         Out << ", ";
1591     }
1592 
1593     if (CE->isCast()) {
1594       Out << " to ";
1595       WriterCtx.TypePrinter->print(CE->getType(), Out);
1596     }
1597 
1598     if (CE->getOpcode() == Instruction::ShuffleVector)
1599       PrintShuffleMask(Out, CE->getType(), CE->getShuffleMask());
1600 
1601     Out << ')';
1602     return;
1603   }
1604 
1605   Out << "<placeholder or erroneous Constant>";
1606 }
1607 
1608 static void writeMDTuple(raw_ostream &Out, const MDTuple *Node,
1609                          AsmWriterContext &WriterCtx) {
1610   Out << "!{";
1611   for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
1612     const Metadata *MD = Node->getOperand(mi);
1613     if (!MD)
1614       Out << "null";
1615     else if (auto *MDV = dyn_cast<ValueAsMetadata>(MD)) {
1616       Value *V = MDV->getValue();
1617       WriterCtx.TypePrinter->print(V->getType(), Out);
1618       Out << ' ';
1619       WriteAsOperandInternal(Out, V, WriterCtx);
1620     } else {
1621       WriteAsOperandInternal(Out, MD, WriterCtx);
1622       WriterCtx.onWriteMetadataAsOperand(MD);
1623     }
1624     if (mi + 1 != me)
1625       Out << ", ";
1626   }
1627 
1628   Out << "}";
1629 }
1630 
1631 namespace {
1632 
1633 struct FieldSeparator {
1634   bool Skip = true;
1635   const char *Sep;
1636 
1637   FieldSeparator(const char *Sep = ", ") : Sep(Sep) {}
1638 };
1639 
1640 raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) {
1641   if (FS.Skip) {
1642     FS.Skip = false;
1643     return OS;
1644   }
1645   return OS << FS.Sep;
1646 }
1647 
1648 struct MDFieldPrinter {
1649   raw_ostream &Out;
1650   FieldSeparator FS;
1651   AsmWriterContext &WriterCtx;
1652 
1653   explicit MDFieldPrinter(raw_ostream &Out)
1654       : Out(Out), WriterCtx(AsmWriterContext::getEmpty()) {}
1655   MDFieldPrinter(raw_ostream &Out, AsmWriterContext &Ctx)
1656       : Out(Out), WriterCtx(Ctx) {}
1657 
1658   void printTag(const DINode *N);
1659   void printMacinfoType(const DIMacroNode *N);
1660   void printChecksum(const DIFile::ChecksumInfo<StringRef> &N);
1661   void printString(StringRef Name, StringRef Value,
1662                    bool ShouldSkipEmpty = true);
1663   void printMetadata(StringRef Name, const Metadata *MD,
1664                      bool ShouldSkipNull = true);
1665   template <class IntTy>
1666   void printInt(StringRef Name, IntTy Int, bool ShouldSkipZero = true);
1667   void printAPInt(StringRef Name, const APInt &Int, bool IsUnsigned,
1668                   bool ShouldSkipZero);
1669   void printBool(StringRef Name, bool Value, Optional<bool> Default = None);
1670   void printDIFlags(StringRef Name, DINode::DIFlags Flags);
1671   void printDISPFlags(StringRef Name, DISubprogram::DISPFlags Flags);
1672   template <class IntTy, class Stringifier>
1673   void printDwarfEnum(StringRef Name, IntTy Value, Stringifier toString,
1674                       bool ShouldSkipZero = true);
1675   void printEmissionKind(StringRef Name, DICompileUnit::DebugEmissionKind EK);
1676   void printNameTableKind(StringRef Name,
1677                           DICompileUnit::DebugNameTableKind NTK);
1678 };
1679 
1680 } // end anonymous namespace
1681 
1682 void MDFieldPrinter::printTag(const DINode *N) {
1683   Out << FS << "tag: ";
1684   auto Tag = dwarf::TagString(N->getTag());
1685   if (!Tag.empty())
1686     Out << Tag;
1687   else
1688     Out << N->getTag();
1689 }
1690 
1691 void MDFieldPrinter::printMacinfoType(const DIMacroNode *N) {
1692   Out << FS << "type: ";
1693   auto Type = dwarf::MacinfoString(N->getMacinfoType());
1694   if (!Type.empty())
1695     Out << Type;
1696   else
1697     Out << N->getMacinfoType();
1698 }
1699 
1700 void MDFieldPrinter::printChecksum(
1701     const DIFile::ChecksumInfo<StringRef> &Checksum) {
1702   Out << FS << "checksumkind: " << Checksum.getKindAsString();
1703   printString("checksum", Checksum.Value, /* ShouldSkipEmpty */ false);
1704 }
1705 
1706 void MDFieldPrinter::printString(StringRef Name, StringRef Value,
1707                                  bool ShouldSkipEmpty) {
1708   if (ShouldSkipEmpty && Value.empty())
1709     return;
1710 
1711   Out << FS << Name << ": \"";
1712   printEscapedString(Value, Out);
1713   Out << "\"";
1714 }
1715 
1716 static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD,
1717                                    AsmWriterContext &WriterCtx) {
1718   if (!MD) {
1719     Out << "null";
1720     return;
1721   }
1722   WriteAsOperandInternal(Out, MD, WriterCtx);
1723   WriterCtx.onWriteMetadataAsOperand(MD);
1724 }
1725 
1726 void MDFieldPrinter::printMetadata(StringRef Name, const Metadata *MD,
1727                                    bool ShouldSkipNull) {
1728   if (ShouldSkipNull && !MD)
1729     return;
1730 
1731   Out << FS << Name << ": ";
1732   writeMetadataAsOperand(Out, MD, WriterCtx);
1733 }
1734 
1735 template <class IntTy>
1736 void MDFieldPrinter::printInt(StringRef Name, IntTy Int, bool ShouldSkipZero) {
1737   if (ShouldSkipZero && !Int)
1738     return;
1739 
1740   Out << FS << Name << ": " << Int;
1741 }
1742 
1743 void MDFieldPrinter::printAPInt(StringRef Name, const APInt &Int,
1744                                 bool IsUnsigned, bool ShouldSkipZero) {
1745   if (ShouldSkipZero && Int.isZero())
1746     return;
1747 
1748   Out << FS << Name << ": ";
1749   Int.print(Out, !IsUnsigned);
1750 }
1751 
1752 void MDFieldPrinter::printBool(StringRef Name, bool Value,
1753                                Optional<bool> Default) {
1754   if (Default && Value == *Default)
1755     return;
1756   Out << FS << Name << ": " << (Value ? "true" : "false");
1757 }
1758 
1759 void MDFieldPrinter::printDIFlags(StringRef Name, DINode::DIFlags Flags) {
1760   if (!Flags)
1761     return;
1762 
1763   Out << FS << Name << ": ";
1764 
1765   SmallVector<DINode::DIFlags, 8> SplitFlags;
1766   auto Extra = DINode::splitFlags(Flags, SplitFlags);
1767 
1768   FieldSeparator FlagsFS(" | ");
1769   for (auto F : SplitFlags) {
1770     auto StringF = DINode::getFlagString(F);
1771     assert(!StringF.empty() && "Expected valid flag");
1772     Out << FlagsFS << StringF;
1773   }
1774   if (Extra || SplitFlags.empty())
1775     Out << FlagsFS << Extra;
1776 }
1777 
1778 void MDFieldPrinter::printDISPFlags(StringRef Name,
1779                                     DISubprogram::DISPFlags Flags) {
1780   // Always print this field, because no flags in the IR at all will be
1781   // interpreted as old-style isDefinition: true.
1782   Out << FS << Name << ": ";
1783 
1784   if (!Flags) {
1785     Out << 0;
1786     return;
1787   }
1788 
1789   SmallVector<DISubprogram::DISPFlags, 8> SplitFlags;
1790   auto Extra = DISubprogram::splitFlags(Flags, SplitFlags);
1791 
1792   FieldSeparator FlagsFS(" | ");
1793   for (auto F : SplitFlags) {
1794     auto StringF = DISubprogram::getFlagString(F);
1795     assert(!StringF.empty() && "Expected valid flag");
1796     Out << FlagsFS << StringF;
1797   }
1798   if (Extra || SplitFlags.empty())
1799     Out << FlagsFS << Extra;
1800 }
1801 
1802 void MDFieldPrinter::printEmissionKind(StringRef Name,
1803                                        DICompileUnit::DebugEmissionKind EK) {
1804   Out << FS << Name << ": " << DICompileUnit::emissionKindString(EK);
1805 }
1806 
1807 void MDFieldPrinter::printNameTableKind(StringRef Name,
1808                                         DICompileUnit::DebugNameTableKind NTK) {
1809   if (NTK == DICompileUnit::DebugNameTableKind::Default)
1810     return;
1811   Out << FS << Name << ": " << DICompileUnit::nameTableKindString(NTK);
1812 }
1813 
1814 template <class IntTy, class Stringifier>
1815 void MDFieldPrinter::printDwarfEnum(StringRef Name, IntTy Value,
1816                                     Stringifier toString, bool ShouldSkipZero) {
1817   if (!Value)
1818     return;
1819 
1820   Out << FS << Name << ": ";
1821   auto S = toString(Value);
1822   if (!S.empty())
1823     Out << S;
1824   else
1825     Out << Value;
1826 }
1827 
1828 static void writeGenericDINode(raw_ostream &Out, const GenericDINode *N,
1829                                AsmWriterContext &WriterCtx) {
1830   Out << "!GenericDINode(";
1831   MDFieldPrinter Printer(Out, WriterCtx);
1832   Printer.printTag(N);
1833   Printer.printString("header", N->getHeader());
1834   if (N->getNumDwarfOperands()) {
1835     Out << Printer.FS << "operands: {";
1836     FieldSeparator IFS;
1837     for (auto &I : N->dwarf_operands()) {
1838       Out << IFS;
1839       writeMetadataAsOperand(Out, I, WriterCtx);
1840     }
1841     Out << "}";
1842   }
1843   Out << ")";
1844 }
1845 
1846 static void writeDILocation(raw_ostream &Out, const DILocation *DL,
1847                             AsmWriterContext &WriterCtx) {
1848   Out << "!DILocation(";
1849   MDFieldPrinter Printer(Out, WriterCtx);
1850   // Always output the line, since 0 is a relevant and important value for it.
1851   Printer.printInt("line", DL->getLine(), /* ShouldSkipZero */ false);
1852   Printer.printInt("column", DL->getColumn());
1853   Printer.printMetadata("scope", DL->getRawScope(), /* ShouldSkipNull */ false);
1854   Printer.printMetadata("inlinedAt", DL->getRawInlinedAt());
1855   Printer.printBool("isImplicitCode", DL->isImplicitCode(),
1856                     /* Default */ false);
1857   Out << ")";
1858 }
1859 
1860 static void writeDISubrange(raw_ostream &Out, const DISubrange *N,
1861                             AsmWriterContext &WriterCtx) {
1862   Out << "!DISubrange(";
1863   MDFieldPrinter Printer(Out, WriterCtx);
1864 
1865   auto *Count = N->getRawCountNode();
1866   if (auto *CE = dyn_cast_or_null<ConstantAsMetadata>(Count)) {
1867     auto *CV = cast<ConstantInt>(CE->getValue());
1868     Printer.printInt("count", CV->getSExtValue(),
1869                      /* ShouldSkipZero */ false);
1870   } else
1871     Printer.printMetadata("count", Count, /*ShouldSkipNull */ true);
1872 
1873   // A lowerBound of constant 0 should not be skipped, since it is different
1874   // from an unspecified lower bound (= nullptr).
1875   auto *LBound = N->getRawLowerBound();
1876   if (auto *LE = dyn_cast_or_null<ConstantAsMetadata>(LBound)) {
1877     auto *LV = cast<ConstantInt>(LE->getValue());
1878     Printer.printInt("lowerBound", LV->getSExtValue(),
1879                      /* ShouldSkipZero */ false);
1880   } else
1881     Printer.printMetadata("lowerBound", LBound, /*ShouldSkipNull */ true);
1882 
1883   auto *UBound = N->getRawUpperBound();
1884   if (auto *UE = dyn_cast_or_null<ConstantAsMetadata>(UBound)) {
1885     auto *UV = cast<ConstantInt>(UE->getValue());
1886     Printer.printInt("upperBound", UV->getSExtValue(),
1887                      /* ShouldSkipZero */ false);
1888   } else
1889     Printer.printMetadata("upperBound", UBound, /*ShouldSkipNull */ true);
1890 
1891   auto *Stride = N->getRawStride();
1892   if (auto *SE = dyn_cast_or_null<ConstantAsMetadata>(Stride)) {
1893     auto *SV = cast<ConstantInt>(SE->getValue());
1894     Printer.printInt("stride", SV->getSExtValue(), /* ShouldSkipZero */ false);
1895   } else
1896     Printer.printMetadata("stride", Stride, /*ShouldSkipNull */ true);
1897 
1898   Out << ")";
1899 }
1900 
1901 static void writeDIGenericSubrange(raw_ostream &Out, const DIGenericSubrange *N,
1902                                    AsmWriterContext &WriterCtx) {
1903   Out << "!DIGenericSubrange(";
1904   MDFieldPrinter Printer(Out, WriterCtx);
1905 
1906   auto IsConstant = [&](Metadata *Bound) -> bool {
1907     if (auto *BE = dyn_cast_or_null<DIExpression>(Bound)) {
1908       return BE->isConstant() &&
1909              DIExpression::SignedOrUnsignedConstant::SignedConstant ==
1910                  *BE->isConstant();
1911     }
1912     return false;
1913   };
1914 
1915   auto GetConstant = [&](Metadata *Bound) -> int64_t {
1916     assert(IsConstant(Bound) && "Expected constant");
1917     auto *BE = dyn_cast_or_null<DIExpression>(Bound);
1918     return static_cast<int64_t>(BE->getElement(1));
1919   };
1920 
1921   auto *Count = N->getRawCountNode();
1922   if (IsConstant(Count))
1923     Printer.printInt("count", GetConstant(Count),
1924                      /* ShouldSkipZero */ false);
1925   else
1926     Printer.printMetadata("count", Count, /*ShouldSkipNull */ true);
1927 
1928   auto *LBound = N->getRawLowerBound();
1929   if (IsConstant(LBound))
1930     Printer.printInt("lowerBound", GetConstant(LBound),
1931                      /* ShouldSkipZero */ false);
1932   else
1933     Printer.printMetadata("lowerBound", LBound, /*ShouldSkipNull */ true);
1934 
1935   auto *UBound = N->getRawUpperBound();
1936   if (IsConstant(UBound))
1937     Printer.printInt("upperBound", GetConstant(UBound),
1938                      /* ShouldSkipZero */ false);
1939   else
1940     Printer.printMetadata("upperBound", UBound, /*ShouldSkipNull */ true);
1941 
1942   auto *Stride = N->getRawStride();
1943   if (IsConstant(Stride))
1944     Printer.printInt("stride", GetConstant(Stride),
1945                      /* ShouldSkipZero */ false);
1946   else
1947     Printer.printMetadata("stride", Stride, /*ShouldSkipNull */ true);
1948 
1949   Out << ")";
1950 }
1951 
1952 static void writeDIEnumerator(raw_ostream &Out, const DIEnumerator *N,
1953                               AsmWriterContext &) {
1954   Out << "!DIEnumerator(";
1955   MDFieldPrinter Printer(Out);
1956   Printer.printString("name", N->getName(), /* ShouldSkipEmpty */ false);
1957   Printer.printAPInt("value", N->getValue(), N->isUnsigned(),
1958                      /*ShouldSkipZero=*/false);
1959   if (N->isUnsigned())
1960     Printer.printBool("isUnsigned", true);
1961   Out << ")";
1962 }
1963 
1964 static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N,
1965                              AsmWriterContext &) {
1966   Out << "!DIBasicType(";
1967   MDFieldPrinter Printer(Out);
1968   if (N->getTag() != dwarf::DW_TAG_base_type)
1969     Printer.printTag(N);
1970   Printer.printString("name", N->getName());
1971   Printer.printInt("size", N->getSizeInBits());
1972   Printer.printInt("align", N->getAlignInBits());
1973   Printer.printDwarfEnum("encoding", N->getEncoding(),
1974                          dwarf::AttributeEncodingString);
1975   Printer.printDIFlags("flags", N->getFlags());
1976   Out << ")";
1977 }
1978 
1979 static void writeDIStringType(raw_ostream &Out, const DIStringType *N,
1980                               AsmWriterContext &WriterCtx) {
1981   Out << "!DIStringType(";
1982   MDFieldPrinter Printer(Out, WriterCtx);
1983   if (N->getTag() != dwarf::DW_TAG_string_type)
1984     Printer.printTag(N);
1985   Printer.printString("name", N->getName());
1986   Printer.printMetadata("stringLength", N->getRawStringLength());
1987   Printer.printMetadata("stringLengthExpression", N->getRawStringLengthExp());
1988   Printer.printMetadata("stringLocationExpression",
1989                         N->getRawStringLocationExp());
1990   Printer.printInt("size", N->getSizeInBits());
1991   Printer.printInt("align", N->getAlignInBits());
1992   Printer.printDwarfEnum("encoding", N->getEncoding(),
1993                          dwarf::AttributeEncodingString);
1994   Out << ")";
1995 }
1996 
1997 static void writeDIDerivedType(raw_ostream &Out, const DIDerivedType *N,
1998                                AsmWriterContext &WriterCtx) {
1999   Out << "!DIDerivedType(";
2000   MDFieldPrinter Printer(Out, WriterCtx);
2001   Printer.printTag(N);
2002   Printer.printString("name", N->getName());
2003   Printer.printMetadata("scope", N->getRawScope());
2004   Printer.printMetadata("file", N->getRawFile());
2005   Printer.printInt("line", N->getLine());
2006   Printer.printMetadata("baseType", N->getRawBaseType(),
2007                         /* ShouldSkipNull */ false);
2008   Printer.printInt("size", N->getSizeInBits());
2009   Printer.printInt("align", N->getAlignInBits());
2010   Printer.printInt("offset", N->getOffsetInBits());
2011   Printer.printDIFlags("flags", N->getFlags());
2012   Printer.printMetadata("extraData", N->getRawExtraData());
2013   if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
2014     Printer.printInt("dwarfAddressSpace", *DWARFAddressSpace,
2015                      /* ShouldSkipZero */ false);
2016   Printer.printMetadata("annotations", N->getRawAnnotations());
2017   Out << ")";
2018 }
2019 
2020 static void writeDICompositeType(raw_ostream &Out, const DICompositeType *N,
2021                                  AsmWriterContext &WriterCtx) {
2022   Out << "!DICompositeType(";
2023   MDFieldPrinter Printer(Out, WriterCtx);
2024   Printer.printTag(N);
2025   Printer.printString("name", N->getName());
2026   Printer.printMetadata("scope", N->getRawScope());
2027   Printer.printMetadata("file", N->getRawFile());
2028   Printer.printInt("line", N->getLine());
2029   Printer.printMetadata("baseType", N->getRawBaseType());
2030   Printer.printInt("size", N->getSizeInBits());
2031   Printer.printInt("align", N->getAlignInBits());
2032   Printer.printInt("offset", N->getOffsetInBits());
2033   Printer.printDIFlags("flags", N->getFlags());
2034   Printer.printMetadata("elements", N->getRawElements());
2035   Printer.printDwarfEnum("runtimeLang", N->getRuntimeLang(),
2036                          dwarf::LanguageString);
2037   Printer.printMetadata("vtableHolder", N->getRawVTableHolder());
2038   Printer.printMetadata("templateParams", N->getRawTemplateParams());
2039   Printer.printString("identifier", N->getIdentifier());
2040   Printer.printMetadata("discriminator", N->getRawDiscriminator());
2041   Printer.printMetadata("dataLocation", N->getRawDataLocation());
2042   Printer.printMetadata("associated", N->getRawAssociated());
2043   Printer.printMetadata("allocated", N->getRawAllocated());
2044   if (auto *RankConst = N->getRankConst())
2045     Printer.printInt("rank", RankConst->getSExtValue(),
2046                      /* ShouldSkipZero */ false);
2047   else
2048     Printer.printMetadata("rank", N->getRawRank(), /*ShouldSkipNull */ true);
2049   Printer.printMetadata("annotations", N->getRawAnnotations());
2050   Out << ")";
2051 }
2052 
2053 static void writeDISubroutineType(raw_ostream &Out, const DISubroutineType *N,
2054                                   AsmWriterContext &WriterCtx) {
2055   Out << "!DISubroutineType(";
2056   MDFieldPrinter Printer(Out, WriterCtx);
2057   Printer.printDIFlags("flags", N->getFlags());
2058   Printer.printDwarfEnum("cc", N->getCC(), dwarf::ConventionString);
2059   Printer.printMetadata("types", N->getRawTypeArray(),
2060                         /* ShouldSkipNull */ false);
2061   Out << ")";
2062 }
2063 
2064 static void writeDIFile(raw_ostream &Out, const DIFile *N, AsmWriterContext &) {
2065   Out << "!DIFile(";
2066   MDFieldPrinter Printer(Out);
2067   Printer.printString("filename", N->getFilename(),
2068                       /* ShouldSkipEmpty */ false);
2069   Printer.printString("directory", N->getDirectory(),
2070                       /* ShouldSkipEmpty */ false);
2071   // Print all values for checksum together, or not at all.
2072   if (N->getChecksum())
2073     Printer.printChecksum(*N->getChecksum());
2074   Printer.printString("source", N->getSource().value_or(StringRef()),
2075                       /* ShouldSkipEmpty */ true);
2076   Out << ")";
2077 }
2078 
2079 static void writeDICompileUnit(raw_ostream &Out, const DICompileUnit *N,
2080                                AsmWriterContext &WriterCtx) {
2081   Out << "!DICompileUnit(";
2082   MDFieldPrinter Printer(Out, WriterCtx);
2083   Printer.printDwarfEnum("language", N->getSourceLanguage(),
2084                          dwarf::LanguageString, /* ShouldSkipZero */ false);
2085   Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
2086   Printer.printString("producer", N->getProducer());
2087   Printer.printBool("isOptimized", N->isOptimized());
2088   Printer.printString("flags", N->getFlags());
2089   Printer.printInt("runtimeVersion", N->getRuntimeVersion(),
2090                    /* ShouldSkipZero */ false);
2091   Printer.printString("splitDebugFilename", N->getSplitDebugFilename());
2092   Printer.printEmissionKind("emissionKind", N->getEmissionKind());
2093   Printer.printMetadata("enums", N->getRawEnumTypes());
2094   Printer.printMetadata("retainedTypes", N->getRawRetainedTypes());
2095   Printer.printMetadata("globals", N->getRawGlobalVariables());
2096   Printer.printMetadata("imports", N->getRawImportedEntities());
2097   Printer.printMetadata("macros", N->getRawMacros());
2098   Printer.printInt("dwoId", N->getDWOId());
2099   Printer.printBool("splitDebugInlining", N->getSplitDebugInlining(), true);
2100   Printer.printBool("debugInfoForProfiling", N->getDebugInfoForProfiling(),
2101                     false);
2102   Printer.printNameTableKind("nameTableKind", N->getNameTableKind());
2103   Printer.printBool("rangesBaseAddress", N->getRangesBaseAddress(), false);
2104   Printer.printString("sysroot", N->getSysRoot());
2105   Printer.printString("sdk", N->getSDK());
2106   Out << ")";
2107 }
2108 
2109 static void writeDISubprogram(raw_ostream &Out, const DISubprogram *N,
2110                               AsmWriterContext &WriterCtx) {
2111   Out << "!DISubprogram(";
2112   MDFieldPrinter Printer(Out, WriterCtx);
2113   Printer.printString("name", N->getName());
2114   Printer.printString("linkageName", N->getLinkageName());
2115   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2116   Printer.printMetadata("file", N->getRawFile());
2117   Printer.printInt("line", N->getLine());
2118   Printer.printMetadata("type", N->getRawType());
2119   Printer.printInt("scopeLine", N->getScopeLine());
2120   Printer.printMetadata("containingType", N->getRawContainingType());
2121   if (N->getVirtuality() != dwarf::DW_VIRTUALITY_none ||
2122       N->getVirtualIndex() != 0)
2123     Printer.printInt("virtualIndex", N->getVirtualIndex(), false);
2124   Printer.printInt("thisAdjustment", N->getThisAdjustment());
2125   Printer.printDIFlags("flags", N->getFlags());
2126   Printer.printDISPFlags("spFlags", N->getSPFlags());
2127   Printer.printMetadata("unit", N->getRawUnit());
2128   Printer.printMetadata("templateParams", N->getRawTemplateParams());
2129   Printer.printMetadata("declaration", N->getRawDeclaration());
2130   Printer.printMetadata("retainedNodes", N->getRawRetainedNodes());
2131   Printer.printMetadata("thrownTypes", N->getRawThrownTypes());
2132   Printer.printMetadata("annotations", N->getRawAnnotations());
2133   Printer.printString("targetFuncName", N->getTargetFuncName());
2134   Out << ")";
2135 }
2136 
2137 static void writeDILexicalBlock(raw_ostream &Out, const DILexicalBlock *N,
2138                                 AsmWriterContext &WriterCtx) {
2139   Out << "!DILexicalBlock(";
2140   MDFieldPrinter Printer(Out, WriterCtx);
2141   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2142   Printer.printMetadata("file", N->getRawFile());
2143   Printer.printInt("line", N->getLine());
2144   Printer.printInt("column", N->getColumn());
2145   Out << ")";
2146 }
2147 
2148 static void writeDILexicalBlockFile(raw_ostream &Out,
2149                                     const DILexicalBlockFile *N,
2150                                     AsmWriterContext &WriterCtx) {
2151   Out << "!DILexicalBlockFile(";
2152   MDFieldPrinter Printer(Out, WriterCtx);
2153   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2154   Printer.printMetadata("file", N->getRawFile());
2155   Printer.printInt("discriminator", N->getDiscriminator(),
2156                    /* ShouldSkipZero */ false);
2157   Out << ")";
2158 }
2159 
2160 static void writeDINamespace(raw_ostream &Out, const DINamespace *N,
2161                              AsmWriterContext &WriterCtx) {
2162   Out << "!DINamespace(";
2163   MDFieldPrinter Printer(Out, WriterCtx);
2164   Printer.printString("name", N->getName());
2165   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2166   Printer.printBool("exportSymbols", N->getExportSymbols(), false);
2167   Out << ")";
2168 }
2169 
2170 static void writeDICommonBlock(raw_ostream &Out, const DICommonBlock *N,
2171                                AsmWriterContext &WriterCtx) {
2172   Out << "!DICommonBlock(";
2173   MDFieldPrinter Printer(Out, WriterCtx);
2174   Printer.printMetadata("scope", N->getRawScope(), false);
2175   Printer.printMetadata("declaration", N->getRawDecl(), false);
2176   Printer.printString("name", N->getName());
2177   Printer.printMetadata("file", N->getRawFile());
2178   Printer.printInt("line", N->getLineNo());
2179   Out << ")";
2180 }
2181 
2182 static void writeDIMacro(raw_ostream &Out, const DIMacro *N,
2183                          AsmWriterContext &WriterCtx) {
2184   Out << "!DIMacro(";
2185   MDFieldPrinter Printer(Out, WriterCtx);
2186   Printer.printMacinfoType(N);
2187   Printer.printInt("line", N->getLine());
2188   Printer.printString("name", N->getName());
2189   Printer.printString("value", N->getValue());
2190   Out << ")";
2191 }
2192 
2193 static void writeDIMacroFile(raw_ostream &Out, const DIMacroFile *N,
2194                              AsmWriterContext &WriterCtx) {
2195   Out << "!DIMacroFile(";
2196   MDFieldPrinter Printer(Out, WriterCtx);
2197   Printer.printInt("line", N->getLine());
2198   Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
2199   Printer.printMetadata("nodes", N->getRawElements());
2200   Out << ")";
2201 }
2202 
2203 static void writeDIModule(raw_ostream &Out, const DIModule *N,
2204                           AsmWriterContext &WriterCtx) {
2205   Out << "!DIModule(";
2206   MDFieldPrinter Printer(Out, WriterCtx);
2207   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2208   Printer.printString("name", N->getName());
2209   Printer.printString("configMacros", N->getConfigurationMacros());
2210   Printer.printString("includePath", N->getIncludePath());
2211   Printer.printString("apinotes", N->getAPINotesFile());
2212   Printer.printMetadata("file", N->getRawFile());
2213   Printer.printInt("line", N->getLineNo());
2214   Printer.printBool("isDecl", N->getIsDecl(), /* Default */ false);
2215   Out << ")";
2216 }
2217 
2218 static void writeDITemplateTypeParameter(raw_ostream &Out,
2219                                          const DITemplateTypeParameter *N,
2220                                          AsmWriterContext &WriterCtx) {
2221   Out << "!DITemplateTypeParameter(";
2222   MDFieldPrinter Printer(Out, WriterCtx);
2223   Printer.printString("name", N->getName());
2224   Printer.printMetadata("type", N->getRawType(), /* ShouldSkipNull */ false);
2225   Printer.printBool("defaulted", N->isDefault(), /* Default= */ false);
2226   Out << ")";
2227 }
2228 
2229 static void writeDITemplateValueParameter(raw_ostream &Out,
2230                                           const DITemplateValueParameter *N,
2231                                           AsmWriterContext &WriterCtx) {
2232   Out << "!DITemplateValueParameter(";
2233   MDFieldPrinter Printer(Out, WriterCtx);
2234   if (N->getTag() != dwarf::DW_TAG_template_value_parameter)
2235     Printer.printTag(N);
2236   Printer.printString("name", N->getName());
2237   Printer.printMetadata("type", N->getRawType());
2238   Printer.printBool("defaulted", N->isDefault(), /* Default= */ false);
2239   Printer.printMetadata("value", N->getValue(), /* ShouldSkipNull */ false);
2240   Out << ")";
2241 }
2242 
2243 static void writeDIGlobalVariable(raw_ostream &Out, const DIGlobalVariable *N,
2244                                   AsmWriterContext &WriterCtx) {
2245   Out << "!DIGlobalVariable(";
2246   MDFieldPrinter Printer(Out, WriterCtx);
2247   Printer.printString("name", N->getName());
2248   Printer.printString("linkageName", N->getLinkageName());
2249   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2250   Printer.printMetadata("file", N->getRawFile());
2251   Printer.printInt("line", N->getLine());
2252   Printer.printMetadata("type", N->getRawType());
2253   Printer.printBool("isLocal", N->isLocalToUnit());
2254   Printer.printBool("isDefinition", N->isDefinition());
2255   Printer.printMetadata("declaration", N->getRawStaticDataMemberDeclaration());
2256   Printer.printMetadata("templateParams", N->getRawTemplateParams());
2257   Printer.printInt("align", N->getAlignInBits());
2258   Printer.printMetadata("annotations", N->getRawAnnotations());
2259   Out << ")";
2260 }
2261 
2262 static void writeDILocalVariable(raw_ostream &Out, const DILocalVariable *N,
2263                                  AsmWriterContext &WriterCtx) {
2264   Out << "!DILocalVariable(";
2265   MDFieldPrinter Printer(Out, WriterCtx);
2266   Printer.printString("name", N->getName());
2267   Printer.printInt("arg", N->getArg());
2268   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2269   Printer.printMetadata("file", N->getRawFile());
2270   Printer.printInt("line", N->getLine());
2271   Printer.printMetadata("type", N->getRawType());
2272   Printer.printDIFlags("flags", N->getFlags());
2273   Printer.printInt("align", N->getAlignInBits());
2274   Printer.printMetadata("annotations", N->getRawAnnotations());
2275   Out << ")";
2276 }
2277 
2278 static void writeDILabel(raw_ostream &Out, const DILabel *N,
2279                          AsmWriterContext &WriterCtx) {
2280   Out << "!DILabel(";
2281   MDFieldPrinter Printer(Out, WriterCtx);
2282   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2283   Printer.printString("name", N->getName());
2284   Printer.printMetadata("file", N->getRawFile());
2285   Printer.printInt("line", N->getLine());
2286   Out << ")";
2287 }
2288 
2289 static void writeDIExpression(raw_ostream &Out, const DIExpression *N,
2290                               AsmWriterContext &WriterCtx) {
2291   Out << "!DIExpression(";
2292   FieldSeparator FS;
2293   if (N->isValid()) {
2294     for (const DIExpression::ExprOperand &Op : N->expr_ops()) {
2295       auto OpStr = dwarf::OperationEncodingString(Op.getOp());
2296       assert(!OpStr.empty() && "Expected valid opcode");
2297 
2298       Out << FS << OpStr;
2299       if (Op.getOp() == dwarf::DW_OP_LLVM_convert) {
2300         Out << FS << Op.getArg(0);
2301         Out << FS << dwarf::AttributeEncodingString(Op.getArg(1));
2302       } else {
2303         for (unsigned A = 0, AE = Op.getNumArgs(); A != AE; ++A)
2304           Out << FS << Op.getArg(A);
2305       }
2306     }
2307   } else {
2308     for (const auto &I : N->getElements())
2309       Out << FS << I;
2310   }
2311   Out << ")";
2312 }
2313 
2314 static void writeDIArgList(raw_ostream &Out, const DIArgList *N,
2315                            AsmWriterContext &WriterCtx,
2316                            bool FromValue = false) {
2317   assert(FromValue &&
2318          "Unexpected DIArgList metadata outside of value argument");
2319   Out << "!DIArgList(";
2320   FieldSeparator FS;
2321   MDFieldPrinter Printer(Out, WriterCtx);
2322   for (Metadata *Arg : N->getArgs()) {
2323     Out << FS;
2324     WriteAsOperandInternal(Out, Arg, WriterCtx, true);
2325   }
2326   Out << ")";
2327 }
2328 
2329 static void writeDIGlobalVariableExpression(raw_ostream &Out,
2330                                             const DIGlobalVariableExpression *N,
2331                                             AsmWriterContext &WriterCtx) {
2332   Out << "!DIGlobalVariableExpression(";
2333   MDFieldPrinter Printer(Out, WriterCtx);
2334   Printer.printMetadata("var", N->getVariable());
2335   Printer.printMetadata("expr", N->getExpression());
2336   Out << ")";
2337 }
2338 
2339 static void writeDIObjCProperty(raw_ostream &Out, const DIObjCProperty *N,
2340                                 AsmWriterContext &WriterCtx) {
2341   Out << "!DIObjCProperty(";
2342   MDFieldPrinter Printer(Out, WriterCtx);
2343   Printer.printString("name", N->getName());
2344   Printer.printMetadata("file", N->getRawFile());
2345   Printer.printInt("line", N->getLine());
2346   Printer.printString("setter", N->getSetterName());
2347   Printer.printString("getter", N->getGetterName());
2348   Printer.printInt("attributes", N->getAttributes());
2349   Printer.printMetadata("type", N->getRawType());
2350   Out << ")";
2351 }
2352 
2353 static void writeDIImportedEntity(raw_ostream &Out, const DIImportedEntity *N,
2354                                   AsmWriterContext &WriterCtx) {
2355   Out << "!DIImportedEntity(";
2356   MDFieldPrinter Printer(Out, WriterCtx);
2357   Printer.printTag(N);
2358   Printer.printString("name", N->getName());
2359   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2360   Printer.printMetadata("entity", N->getRawEntity());
2361   Printer.printMetadata("file", N->getRawFile());
2362   Printer.printInt("line", N->getLine());
2363   Printer.printMetadata("elements", N->getRawElements());
2364   Out << ")";
2365 }
2366 
2367 static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
2368                                     AsmWriterContext &Ctx) {
2369   if (Node->isDistinct())
2370     Out << "distinct ";
2371   else if (Node->isTemporary())
2372     Out << "<temporary!> "; // Handle broken code.
2373 
2374   switch (Node->getMetadataID()) {
2375   default:
2376     llvm_unreachable("Expected uniquable MDNode");
2377 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
2378   case Metadata::CLASS##Kind:                                                  \
2379     write##CLASS(Out, cast<CLASS>(Node), Ctx);                                 \
2380     break;
2381 #include "llvm/IR/Metadata.def"
2382   }
2383 }
2384 
2385 // Full implementation of printing a Value as an operand with support for
2386 // TypePrinting, etc.
2387 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
2388                                    AsmWriterContext &WriterCtx) {
2389   if (V->hasName()) {
2390     PrintLLVMName(Out, V);
2391     return;
2392   }
2393 
2394   const Constant *CV = dyn_cast<Constant>(V);
2395   if (CV && !isa<GlobalValue>(CV)) {
2396     assert(WriterCtx.TypePrinter && "Constants require TypePrinting!");
2397     WriteConstantInternal(Out, CV, WriterCtx);
2398     return;
2399   }
2400 
2401   if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2402     Out << "asm ";
2403     if (IA->hasSideEffects())
2404       Out << "sideeffect ";
2405     if (IA->isAlignStack())
2406       Out << "alignstack ";
2407     // We don't emit the AD_ATT dialect as it's the assumed default.
2408     if (IA->getDialect() == InlineAsm::AD_Intel)
2409       Out << "inteldialect ";
2410     if (IA->canThrow())
2411       Out << "unwind ";
2412     Out << '"';
2413     printEscapedString(IA->getAsmString(), Out);
2414     Out << "\", \"";
2415     printEscapedString(IA->getConstraintString(), Out);
2416     Out << '"';
2417     return;
2418   }
2419 
2420   if (auto *MD = dyn_cast<MetadataAsValue>(V)) {
2421     WriteAsOperandInternal(Out, MD->getMetadata(), WriterCtx,
2422                            /* FromValue */ true);
2423     return;
2424   }
2425 
2426   char Prefix = '%';
2427   int Slot;
2428   auto *Machine = WriterCtx.Machine;
2429   // If we have a SlotTracker, use it.
2430   if (Machine) {
2431     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2432       Slot = Machine->getGlobalSlot(GV);
2433       Prefix = '@';
2434     } else {
2435       Slot = Machine->getLocalSlot(V);
2436 
2437       // If the local value didn't succeed, then we may be referring to a value
2438       // from a different function.  Translate it, as this can happen when using
2439       // address of blocks.
2440       if (Slot == -1)
2441         if ((Machine = createSlotTracker(V))) {
2442           Slot = Machine->getLocalSlot(V);
2443           delete Machine;
2444         }
2445     }
2446   } else if ((Machine = createSlotTracker(V))) {
2447     // Otherwise, create one to get the # and then destroy it.
2448     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2449       Slot = Machine->getGlobalSlot(GV);
2450       Prefix = '@';
2451     } else {
2452       Slot = Machine->getLocalSlot(V);
2453     }
2454     delete Machine;
2455     Machine = nullptr;
2456   } else {
2457     Slot = -1;
2458   }
2459 
2460   if (Slot != -1)
2461     Out << Prefix << Slot;
2462   else
2463     Out << "<badref>";
2464 }
2465 
2466 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
2467                                    AsmWriterContext &WriterCtx,
2468                                    bool FromValue) {
2469   // Write DIExpressions and DIArgLists inline when used as a value. Improves
2470   // readability of debug info intrinsics.
2471   if (const DIExpression *Expr = dyn_cast<DIExpression>(MD)) {
2472     writeDIExpression(Out, Expr, WriterCtx);
2473     return;
2474   }
2475   if (const DIArgList *ArgList = dyn_cast<DIArgList>(MD)) {
2476     writeDIArgList(Out, ArgList, WriterCtx, FromValue);
2477     return;
2478   }
2479 
2480   if (const MDNode *N = dyn_cast<MDNode>(MD)) {
2481     std::unique_ptr<SlotTracker> MachineStorage;
2482     SaveAndRestore<SlotTracker *> SARMachine(WriterCtx.Machine);
2483     if (!WriterCtx.Machine) {
2484       MachineStorage = std::make_unique<SlotTracker>(WriterCtx.Context);
2485       WriterCtx.Machine = MachineStorage.get();
2486     }
2487     int Slot = WriterCtx.Machine->getMetadataSlot(N);
2488     if (Slot == -1) {
2489       if (const DILocation *Loc = dyn_cast<DILocation>(N)) {
2490         writeDILocation(Out, Loc, WriterCtx);
2491         return;
2492       }
2493       // Give the pointer value instead of "badref", since this comes up all
2494       // the time when debugging.
2495       Out << "<" << N << ">";
2496     } else
2497       Out << '!' << Slot;
2498     return;
2499   }
2500 
2501   if (const MDString *MDS = dyn_cast<MDString>(MD)) {
2502     Out << "!\"";
2503     printEscapedString(MDS->getString(), Out);
2504     Out << '"';
2505     return;
2506   }
2507 
2508   auto *V = cast<ValueAsMetadata>(MD);
2509   assert(WriterCtx.TypePrinter && "TypePrinter required for metadata values");
2510   assert((FromValue || !isa<LocalAsMetadata>(V)) &&
2511          "Unexpected function-local metadata outside of value argument");
2512 
2513   WriterCtx.TypePrinter->print(V->getValue()->getType(), Out);
2514   Out << ' ';
2515   WriteAsOperandInternal(Out, V->getValue(), WriterCtx);
2516 }
2517 
2518 namespace {
2519 
2520 class AssemblyWriter {
2521   formatted_raw_ostream &Out;
2522   const Module *TheModule = nullptr;
2523   const ModuleSummaryIndex *TheIndex = nullptr;
2524   std::unique_ptr<SlotTracker> SlotTrackerStorage;
2525   SlotTracker &Machine;
2526   TypePrinting TypePrinter;
2527   AssemblyAnnotationWriter *AnnotationWriter = nullptr;
2528   SetVector<const Comdat *> Comdats;
2529   bool IsForDebug;
2530   bool ShouldPreserveUseListOrder;
2531   UseListOrderMap UseListOrders;
2532   SmallVector<StringRef, 8> MDNames;
2533   /// Synchronization scope names registered with LLVMContext.
2534   SmallVector<StringRef, 8> SSNs;
2535   DenseMap<const GlobalValueSummary *, GlobalValue::GUID> SummaryToGUIDMap;
2536 
2537 public:
2538   /// Construct an AssemblyWriter with an external SlotTracker
2539   AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const Module *M,
2540                  AssemblyAnnotationWriter *AAW, bool IsForDebug,
2541                  bool ShouldPreserveUseListOrder = false);
2542 
2543   AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2544                  const ModuleSummaryIndex *Index, bool IsForDebug);
2545 
2546   AsmWriterContext getContext() {
2547     return AsmWriterContext(&TypePrinter, &Machine, TheModule);
2548   }
2549 
2550   void printMDNodeBody(const MDNode *MD);
2551   void printNamedMDNode(const NamedMDNode *NMD);
2552 
2553   void printModule(const Module *M);
2554 
2555   void writeOperand(const Value *Op, bool PrintType);
2556   void writeParamOperand(const Value *Operand, AttributeSet Attrs);
2557   void writeOperandBundles(const CallBase *Call);
2558   void writeSyncScope(const LLVMContext &Context,
2559                       SyncScope::ID SSID);
2560   void writeAtomic(const LLVMContext &Context,
2561                    AtomicOrdering Ordering,
2562                    SyncScope::ID SSID);
2563   void writeAtomicCmpXchg(const LLVMContext &Context,
2564                           AtomicOrdering SuccessOrdering,
2565                           AtomicOrdering FailureOrdering,
2566                           SyncScope::ID SSID);
2567 
2568   void writeAllMDNodes();
2569   void writeMDNode(unsigned Slot, const MDNode *Node);
2570   void writeAttribute(const Attribute &Attr, bool InAttrGroup = false);
2571   void writeAttributeSet(const AttributeSet &AttrSet, bool InAttrGroup = false);
2572   void writeAllAttributeGroups();
2573 
2574   void printTypeIdentities();
2575   void printGlobal(const GlobalVariable *GV);
2576   void printAlias(const GlobalAlias *GA);
2577   void printIFunc(const GlobalIFunc *GI);
2578   void printComdat(const Comdat *C);
2579   void printFunction(const Function *F);
2580   void printArgument(const Argument *FA, AttributeSet Attrs);
2581   void printBasicBlock(const BasicBlock *BB);
2582   void printInstructionLine(const Instruction &I);
2583   void printInstruction(const Instruction &I);
2584 
2585   void printUseListOrder(const Value *V, const std::vector<unsigned> &Shuffle);
2586   void printUseLists(const Function *F);
2587 
2588   void printModuleSummaryIndex();
2589   void printSummaryInfo(unsigned Slot, const ValueInfo &VI);
2590   void printSummary(const GlobalValueSummary &Summary);
2591   void printAliasSummary(const AliasSummary *AS);
2592   void printGlobalVarSummary(const GlobalVarSummary *GS);
2593   void printFunctionSummary(const FunctionSummary *FS);
2594   void printTypeIdSummary(const TypeIdSummary &TIS);
2595   void printTypeIdCompatibleVtableSummary(const TypeIdCompatibleVtableInfo &TI);
2596   void printTypeTestResolution(const TypeTestResolution &TTRes);
2597   void printArgs(const std::vector<uint64_t> &Args);
2598   void printWPDRes(const WholeProgramDevirtResolution &WPDRes);
2599   void printTypeIdInfo(const FunctionSummary::TypeIdInfo &TIDInfo);
2600   void printVFuncId(const FunctionSummary::VFuncId VFId);
2601   void
2602   printNonConstVCalls(const std::vector<FunctionSummary::VFuncId> &VCallList,
2603                       const char *Tag);
2604   void
2605   printConstVCalls(const std::vector<FunctionSummary::ConstVCall> &VCallList,
2606                    const char *Tag);
2607 
2608 private:
2609   /// Print out metadata attachments.
2610   void printMetadataAttachments(
2611       const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
2612       StringRef Separator);
2613 
2614   // printInfoComment - Print a little comment after the instruction indicating
2615   // which slot it occupies.
2616   void printInfoComment(const Value &V);
2617 
2618   // printGCRelocateComment - print comment after call to the gc.relocate
2619   // intrinsic indicating base and derived pointer names.
2620   void printGCRelocateComment(const GCRelocateInst &Relocate);
2621 };
2622 
2623 } // end anonymous namespace
2624 
2625 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2626                                const Module *M, AssemblyAnnotationWriter *AAW,
2627                                bool IsForDebug, bool ShouldPreserveUseListOrder)
2628     : Out(o), TheModule(M), Machine(Mac), TypePrinter(M), AnnotationWriter(AAW),
2629       IsForDebug(IsForDebug),
2630       ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
2631   if (!TheModule)
2632     return;
2633   for (const GlobalObject &GO : TheModule->global_objects())
2634     if (const Comdat *C = GO.getComdat())
2635       Comdats.insert(C);
2636 }
2637 
2638 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2639                                const ModuleSummaryIndex *Index, bool IsForDebug)
2640     : Out(o), TheIndex(Index), Machine(Mac), TypePrinter(/*Module=*/nullptr),
2641       IsForDebug(IsForDebug), ShouldPreserveUseListOrder(false) {}
2642 
2643 void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
2644   if (!Operand) {
2645     Out << "<null operand!>";
2646     return;
2647   }
2648   if (PrintType) {
2649     TypePrinter.print(Operand->getType(), Out);
2650     Out << ' ';
2651   }
2652   auto WriterCtx = getContext();
2653   WriteAsOperandInternal(Out, Operand, WriterCtx);
2654 }
2655 
2656 void AssemblyWriter::writeSyncScope(const LLVMContext &Context,
2657                                     SyncScope::ID SSID) {
2658   switch (SSID) {
2659   case SyncScope::System: {
2660     break;
2661   }
2662   default: {
2663     if (SSNs.empty())
2664       Context.getSyncScopeNames(SSNs);
2665 
2666     Out << " syncscope(\"";
2667     printEscapedString(SSNs[SSID], Out);
2668     Out << "\")";
2669     break;
2670   }
2671   }
2672 }
2673 
2674 void AssemblyWriter::writeAtomic(const LLVMContext &Context,
2675                                  AtomicOrdering Ordering,
2676                                  SyncScope::ID SSID) {
2677   if (Ordering == AtomicOrdering::NotAtomic)
2678     return;
2679 
2680   writeSyncScope(Context, SSID);
2681   Out << " " << toIRString(Ordering);
2682 }
2683 
2684 void AssemblyWriter::writeAtomicCmpXchg(const LLVMContext &Context,
2685                                         AtomicOrdering SuccessOrdering,
2686                                         AtomicOrdering FailureOrdering,
2687                                         SyncScope::ID SSID) {
2688   assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
2689          FailureOrdering != AtomicOrdering::NotAtomic);
2690 
2691   writeSyncScope(Context, SSID);
2692   Out << " " << toIRString(SuccessOrdering);
2693   Out << " " << toIRString(FailureOrdering);
2694 }
2695 
2696 void AssemblyWriter::writeParamOperand(const Value *Operand,
2697                                        AttributeSet Attrs) {
2698   if (!Operand) {
2699     Out << "<null operand!>";
2700     return;
2701   }
2702 
2703   // Print the type
2704   TypePrinter.print(Operand->getType(), Out);
2705   // Print parameter attributes list
2706   if (Attrs.hasAttributes()) {
2707     Out << ' ';
2708     writeAttributeSet(Attrs);
2709   }
2710   Out << ' ';
2711   // Print the operand
2712   auto WriterCtx = getContext();
2713   WriteAsOperandInternal(Out, Operand, WriterCtx);
2714 }
2715 
2716 void AssemblyWriter::writeOperandBundles(const CallBase *Call) {
2717   if (!Call->hasOperandBundles())
2718     return;
2719 
2720   Out << " [ ";
2721 
2722   bool FirstBundle = true;
2723   for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i) {
2724     OperandBundleUse BU = Call->getOperandBundleAt(i);
2725 
2726     if (!FirstBundle)
2727       Out << ", ";
2728     FirstBundle = false;
2729 
2730     Out << '"';
2731     printEscapedString(BU.getTagName(), Out);
2732     Out << '"';
2733 
2734     Out << '(';
2735 
2736     bool FirstInput = true;
2737     auto WriterCtx = getContext();
2738     for (const auto &Input : BU.Inputs) {
2739       if (!FirstInput)
2740         Out << ", ";
2741       FirstInput = false;
2742 
2743       TypePrinter.print(Input->getType(), Out);
2744       Out << " ";
2745       WriteAsOperandInternal(Out, Input, WriterCtx);
2746     }
2747 
2748     Out << ')';
2749   }
2750 
2751   Out << " ]";
2752 }
2753 
2754 void AssemblyWriter::printModule(const Module *M) {
2755   Machine.initializeIfNeeded();
2756 
2757   if (ShouldPreserveUseListOrder)
2758     UseListOrders = predictUseListOrder(M);
2759 
2760   if (!M->getModuleIdentifier().empty() &&
2761       // Don't print the ID if it will start a new line (which would
2762       // require a comment char before it).
2763       M->getModuleIdentifier().find('\n') == std::string::npos)
2764     Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
2765 
2766   if (!M->getSourceFileName().empty()) {
2767     Out << "source_filename = \"";
2768     printEscapedString(M->getSourceFileName(), Out);
2769     Out << "\"\n";
2770   }
2771 
2772   const std::string &DL = M->getDataLayoutStr();
2773   if (!DL.empty())
2774     Out << "target datalayout = \"" << DL << "\"\n";
2775   if (!M->getTargetTriple().empty())
2776     Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
2777 
2778   if (!M->getModuleInlineAsm().empty()) {
2779     Out << '\n';
2780 
2781     // Split the string into lines, to make it easier to read the .ll file.
2782     StringRef Asm = M->getModuleInlineAsm();
2783     do {
2784       StringRef Front;
2785       std::tie(Front, Asm) = Asm.split('\n');
2786 
2787       // We found a newline, print the portion of the asm string from the
2788       // last newline up to this newline.
2789       Out << "module asm \"";
2790       printEscapedString(Front, Out);
2791       Out << "\"\n";
2792     } while (!Asm.empty());
2793   }
2794 
2795   printTypeIdentities();
2796 
2797   // Output all comdats.
2798   if (!Comdats.empty())
2799     Out << '\n';
2800   for (const Comdat *C : Comdats) {
2801     printComdat(C);
2802     if (C != Comdats.back())
2803       Out << '\n';
2804   }
2805 
2806   // Output all globals.
2807   if (!M->global_empty()) Out << '\n';
2808   for (const GlobalVariable &GV : M->globals()) {
2809     printGlobal(&GV); Out << '\n';
2810   }
2811 
2812   // Output all aliases.
2813   if (!M->alias_empty()) Out << "\n";
2814   for (const GlobalAlias &GA : M->aliases())
2815     printAlias(&GA);
2816 
2817   // Output all ifuncs.
2818   if (!M->ifunc_empty()) Out << "\n";
2819   for (const GlobalIFunc &GI : M->ifuncs())
2820     printIFunc(&GI);
2821 
2822   // Output all of the functions.
2823   for (const Function &F : *M) {
2824     Out << '\n';
2825     printFunction(&F);
2826   }
2827 
2828   // Output global use-lists.
2829   printUseLists(nullptr);
2830 
2831   // Output all attribute groups.
2832   if (!Machine.as_empty()) {
2833     Out << '\n';
2834     writeAllAttributeGroups();
2835   }
2836 
2837   // Output named metadata.
2838   if (!M->named_metadata_empty()) Out << '\n';
2839 
2840   for (const NamedMDNode &Node : M->named_metadata())
2841     printNamedMDNode(&Node);
2842 
2843   // Output metadata.
2844   if (!Machine.mdn_empty()) {
2845     Out << '\n';
2846     writeAllMDNodes();
2847   }
2848 }
2849 
2850 void AssemblyWriter::printModuleSummaryIndex() {
2851   assert(TheIndex);
2852   int NumSlots = Machine.initializeIndexIfNeeded();
2853 
2854   Out << "\n";
2855 
2856   // Print module path entries. To print in order, add paths to a vector
2857   // indexed by module slot.
2858   std::vector<std::pair<std::string, ModuleHash>> moduleVec;
2859   std::string RegularLTOModuleName =
2860       ModuleSummaryIndex::getRegularLTOModuleName();
2861   moduleVec.resize(TheIndex->modulePaths().size());
2862   for (auto &ModPath : TheIndex->modulePaths())
2863     moduleVec[Machine.getModulePathSlot(ModPath.first())] = std::make_pair(
2864         // A module id of -1 is a special entry for a regular LTO module created
2865         // during the thin link.
2866         ModPath.second.first == -1u ? RegularLTOModuleName
2867                                     : (std::string)std::string(ModPath.first()),
2868         ModPath.second.second);
2869 
2870   unsigned i = 0;
2871   for (auto &ModPair : moduleVec) {
2872     Out << "^" << i++ << " = module: (";
2873     Out << "path: \"";
2874     printEscapedString(ModPair.first, Out);
2875     Out << "\", hash: (";
2876     FieldSeparator FS;
2877     for (auto Hash : ModPair.second)
2878       Out << FS << Hash;
2879     Out << "))\n";
2880   }
2881 
2882   // FIXME: Change AliasSummary to hold a ValueInfo instead of summary pointer
2883   // for aliasee (then update BitcodeWriter.cpp and remove get/setAliaseeGUID).
2884   for (auto &GlobalList : *TheIndex) {
2885     auto GUID = GlobalList.first;
2886     for (auto &Summary : GlobalList.second.SummaryList)
2887       SummaryToGUIDMap[Summary.get()] = GUID;
2888   }
2889 
2890   // Print the global value summary entries.
2891   for (auto &GlobalList : *TheIndex) {
2892     auto GUID = GlobalList.first;
2893     auto VI = TheIndex->getValueInfo(GlobalList);
2894     printSummaryInfo(Machine.getGUIDSlot(GUID), VI);
2895   }
2896 
2897   // Print the TypeIdMap entries.
2898   for (const auto &TID : TheIndex->typeIds()) {
2899     Out << "^" << Machine.getTypeIdSlot(TID.second.first)
2900         << " = typeid: (name: \"" << TID.second.first << "\"";
2901     printTypeIdSummary(TID.second.second);
2902     Out << ") ; guid = " << TID.first << "\n";
2903   }
2904 
2905   // Print the TypeIdCompatibleVtableMap entries.
2906   for (auto &TId : TheIndex->typeIdCompatibleVtableMap()) {
2907     auto GUID = GlobalValue::getGUID(TId.first);
2908     Out << "^" << Machine.getGUIDSlot(GUID)
2909         << " = typeidCompatibleVTable: (name: \"" << TId.first << "\"";
2910     printTypeIdCompatibleVtableSummary(TId.second);
2911     Out << ") ; guid = " << GUID << "\n";
2912   }
2913 
2914   // Don't emit flags when it's not really needed (value is zero by default).
2915   if (TheIndex->getFlags()) {
2916     Out << "^" << NumSlots << " = flags: " << TheIndex->getFlags() << "\n";
2917     ++NumSlots;
2918   }
2919 
2920   Out << "^" << NumSlots << " = blockcount: " << TheIndex->getBlockCount()
2921       << "\n";
2922 }
2923 
2924 static const char *
2925 getWholeProgDevirtResKindName(WholeProgramDevirtResolution::Kind K) {
2926   switch (K) {
2927   case WholeProgramDevirtResolution::Indir:
2928     return "indir";
2929   case WholeProgramDevirtResolution::SingleImpl:
2930     return "singleImpl";
2931   case WholeProgramDevirtResolution::BranchFunnel:
2932     return "branchFunnel";
2933   }
2934   llvm_unreachable("invalid WholeProgramDevirtResolution kind");
2935 }
2936 
2937 static const char *getWholeProgDevirtResByArgKindName(
2938     WholeProgramDevirtResolution::ByArg::Kind K) {
2939   switch (K) {
2940   case WholeProgramDevirtResolution::ByArg::Indir:
2941     return "indir";
2942   case WholeProgramDevirtResolution::ByArg::UniformRetVal:
2943     return "uniformRetVal";
2944   case WholeProgramDevirtResolution::ByArg::UniqueRetVal:
2945     return "uniqueRetVal";
2946   case WholeProgramDevirtResolution::ByArg::VirtualConstProp:
2947     return "virtualConstProp";
2948   }
2949   llvm_unreachable("invalid WholeProgramDevirtResolution::ByArg kind");
2950 }
2951 
2952 static const char *getTTResKindName(TypeTestResolution::Kind K) {
2953   switch (K) {
2954   case TypeTestResolution::Unknown:
2955     return "unknown";
2956   case TypeTestResolution::Unsat:
2957     return "unsat";
2958   case TypeTestResolution::ByteArray:
2959     return "byteArray";
2960   case TypeTestResolution::Inline:
2961     return "inline";
2962   case TypeTestResolution::Single:
2963     return "single";
2964   case TypeTestResolution::AllOnes:
2965     return "allOnes";
2966   }
2967   llvm_unreachable("invalid TypeTestResolution kind");
2968 }
2969 
2970 void AssemblyWriter::printTypeTestResolution(const TypeTestResolution &TTRes) {
2971   Out << "typeTestRes: (kind: " << getTTResKindName(TTRes.TheKind)
2972       << ", sizeM1BitWidth: " << TTRes.SizeM1BitWidth;
2973 
2974   // The following fields are only used if the target does not support the use
2975   // of absolute symbols to store constants. Print only if non-zero.
2976   if (TTRes.AlignLog2)
2977     Out << ", alignLog2: " << TTRes.AlignLog2;
2978   if (TTRes.SizeM1)
2979     Out << ", sizeM1: " << TTRes.SizeM1;
2980   if (TTRes.BitMask)
2981     // BitMask is uint8_t which causes it to print the corresponding char.
2982     Out << ", bitMask: " << (unsigned)TTRes.BitMask;
2983   if (TTRes.InlineBits)
2984     Out << ", inlineBits: " << TTRes.InlineBits;
2985 
2986   Out << ")";
2987 }
2988 
2989 void AssemblyWriter::printTypeIdSummary(const TypeIdSummary &TIS) {
2990   Out << ", summary: (";
2991   printTypeTestResolution(TIS.TTRes);
2992   if (!TIS.WPDRes.empty()) {
2993     Out << ", wpdResolutions: (";
2994     FieldSeparator FS;
2995     for (auto &WPDRes : TIS.WPDRes) {
2996       Out << FS;
2997       Out << "(offset: " << WPDRes.first << ", ";
2998       printWPDRes(WPDRes.second);
2999       Out << ")";
3000     }
3001     Out << ")";
3002   }
3003   Out << ")";
3004 }
3005 
3006 void AssemblyWriter::printTypeIdCompatibleVtableSummary(
3007     const TypeIdCompatibleVtableInfo &TI) {
3008   Out << ", summary: (";
3009   FieldSeparator FS;
3010   for (auto &P : TI) {
3011     Out << FS;
3012     Out << "(offset: " << P.AddressPointOffset << ", ";
3013     Out << "^" << Machine.getGUIDSlot(P.VTableVI.getGUID());
3014     Out << ")";
3015   }
3016   Out << ")";
3017 }
3018 
3019 void AssemblyWriter::printArgs(const std::vector<uint64_t> &Args) {
3020   Out << "args: (";
3021   FieldSeparator FS;
3022   for (auto arg : Args) {
3023     Out << FS;
3024     Out << arg;
3025   }
3026   Out << ")";
3027 }
3028 
3029 void AssemblyWriter::printWPDRes(const WholeProgramDevirtResolution &WPDRes) {
3030   Out << "wpdRes: (kind: ";
3031   Out << getWholeProgDevirtResKindName(WPDRes.TheKind);
3032 
3033   if (WPDRes.TheKind == WholeProgramDevirtResolution::SingleImpl)
3034     Out << ", singleImplName: \"" << WPDRes.SingleImplName << "\"";
3035 
3036   if (!WPDRes.ResByArg.empty()) {
3037     Out << ", resByArg: (";
3038     FieldSeparator FS;
3039     for (auto &ResByArg : WPDRes.ResByArg) {
3040       Out << FS;
3041       printArgs(ResByArg.first);
3042       Out << ", byArg: (kind: ";
3043       Out << getWholeProgDevirtResByArgKindName(ResByArg.second.TheKind);
3044       if (ResByArg.second.TheKind ==
3045               WholeProgramDevirtResolution::ByArg::UniformRetVal ||
3046           ResByArg.second.TheKind ==
3047               WholeProgramDevirtResolution::ByArg::UniqueRetVal)
3048         Out << ", info: " << ResByArg.second.Info;
3049 
3050       // The following fields are only used if the target does not support the
3051       // use of absolute symbols to store constants. Print only if non-zero.
3052       if (ResByArg.second.Byte || ResByArg.second.Bit)
3053         Out << ", byte: " << ResByArg.second.Byte
3054             << ", bit: " << ResByArg.second.Bit;
3055 
3056       Out << ")";
3057     }
3058     Out << ")";
3059   }
3060   Out << ")";
3061 }
3062 
3063 static const char *getSummaryKindName(GlobalValueSummary::SummaryKind SK) {
3064   switch (SK) {
3065   case GlobalValueSummary::AliasKind:
3066     return "alias";
3067   case GlobalValueSummary::FunctionKind:
3068     return "function";
3069   case GlobalValueSummary::GlobalVarKind:
3070     return "variable";
3071   }
3072   llvm_unreachable("invalid summary kind");
3073 }
3074 
3075 void AssemblyWriter::printAliasSummary(const AliasSummary *AS) {
3076   Out << ", aliasee: ";
3077   // The indexes emitted for distributed backends may not include the
3078   // aliasee summary (only if it is being imported directly). Handle
3079   // that case by just emitting "null" as the aliasee.
3080   if (AS->hasAliasee())
3081     Out << "^" << Machine.getGUIDSlot(SummaryToGUIDMap[&AS->getAliasee()]);
3082   else
3083     Out << "null";
3084 }
3085 
3086 void AssemblyWriter::printGlobalVarSummary(const GlobalVarSummary *GS) {
3087   auto VTableFuncs = GS->vTableFuncs();
3088   Out << ", varFlags: (readonly: " << GS->VarFlags.MaybeReadOnly << ", "
3089       << "writeonly: " << GS->VarFlags.MaybeWriteOnly << ", "
3090       << "constant: " << GS->VarFlags.Constant;
3091   if (!VTableFuncs.empty())
3092     Out << ", "
3093         << "vcall_visibility: " << GS->VarFlags.VCallVisibility;
3094   Out << ")";
3095 
3096   if (!VTableFuncs.empty()) {
3097     Out << ", vTableFuncs: (";
3098     FieldSeparator FS;
3099     for (auto &P : VTableFuncs) {
3100       Out << FS;
3101       Out << "(virtFunc: ^" << Machine.getGUIDSlot(P.FuncVI.getGUID())
3102           << ", offset: " << P.VTableOffset;
3103       Out << ")";
3104     }
3105     Out << ")";
3106   }
3107 }
3108 
3109 static std::string getLinkageName(GlobalValue::LinkageTypes LT) {
3110   switch (LT) {
3111   case GlobalValue::ExternalLinkage:
3112     return "external";
3113   case GlobalValue::PrivateLinkage:
3114     return "private";
3115   case GlobalValue::InternalLinkage:
3116     return "internal";
3117   case GlobalValue::LinkOnceAnyLinkage:
3118     return "linkonce";
3119   case GlobalValue::LinkOnceODRLinkage:
3120     return "linkonce_odr";
3121   case GlobalValue::WeakAnyLinkage:
3122     return "weak";
3123   case GlobalValue::WeakODRLinkage:
3124     return "weak_odr";
3125   case GlobalValue::CommonLinkage:
3126     return "common";
3127   case GlobalValue::AppendingLinkage:
3128     return "appending";
3129   case GlobalValue::ExternalWeakLinkage:
3130     return "extern_weak";
3131   case GlobalValue::AvailableExternallyLinkage:
3132     return "available_externally";
3133   }
3134   llvm_unreachable("invalid linkage");
3135 }
3136 
3137 // When printing the linkage types in IR where the ExternalLinkage is
3138 // not printed, and other linkage types are expected to be printed with
3139 // a space after the name.
3140 static std::string getLinkageNameWithSpace(GlobalValue::LinkageTypes LT) {
3141   if (LT == GlobalValue::ExternalLinkage)
3142     return "";
3143   return getLinkageName(LT) + " ";
3144 }
3145 
3146 static const char *getVisibilityName(GlobalValue::VisibilityTypes Vis) {
3147   switch (Vis) {
3148   case GlobalValue::DefaultVisibility:
3149     return "default";
3150   case GlobalValue::HiddenVisibility:
3151     return "hidden";
3152   case GlobalValue::ProtectedVisibility:
3153     return "protected";
3154   }
3155   llvm_unreachable("invalid visibility");
3156 }
3157 
3158 void AssemblyWriter::printFunctionSummary(const FunctionSummary *FS) {
3159   Out << ", insts: " << FS->instCount();
3160   if (FS->fflags().anyFlagSet())
3161     Out << ", " << FS->fflags();
3162 
3163   if (!FS->calls().empty()) {
3164     Out << ", calls: (";
3165     FieldSeparator IFS;
3166     for (auto &Call : FS->calls()) {
3167       Out << IFS;
3168       Out << "(callee: ^" << Machine.getGUIDSlot(Call.first.getGUID());
3169       if (Call.second.getHotness() != CalleeInfo::HotnessType::Unknown)
3170         Out << ", hotness: " << getHotnessName(Call.second.getHotness());
3171       else if (Call.second.RelBlockFreq)
3172         Out << ", relbf: " << Call.second.RelBlockFreq;
3173       Out << ")";
3174     }
3175     Out << ")";
3176   }
3177 
3178   if (const auto *TIdInfo = FS->getTypeIdInfo())
3179     printTypeIdInfo(*TIdInfo);
3180 
3181   auto PrintRange = [&](const ConstantRange &Range) {
3182     Out << "[" << Range.getSignedMin() << ", " << Range.getSignedMax() << "]";
3183   };
3184 
3185   if (!FS->paramAccesses().empty()) {
3186     Out << ", params: (";
3187     FieldSeparator IFS;
3188     for (auto &PS : FS->paramAccesses()) {
3189       Out << IFS;
3190       Out << "(param: " << PS.ParamNo;
3191       Out << ", offset: ";
3192       PrintRange(PS.Use);
3193       if (!PS.Calls.empty()) {
3194         Out << ", calls: (";
3195         FieldSeparator IFS;
3196         for (auto &Call : PS.Calls) {
3197           Out << IFS;
3198           Out << "(callee: ^" << Machine.getGUIDSlot(Call.Callee.getGUID());
3199           Out << ", param: " << Call.ParamNo;
3200           Out << ", offset: ";
3201           PrintRange(Call.Offsets);
3202           Out << ")";
3203         }
3204         Out << ")";
3205       }
3206       Out << ")";
3207     }
3208     Out << ")";
3209   }
3210 }
3211 
3212 void AssemblyWriter::printTypeIdInfo(
3213     const FunctionSummary::TypeIdInfo &TIDInfo) {
3214   Out << ", typeIdInfo: (";
3215   FieldSeparator TIDFS;
3216   if (!TIDInfo.TypeTests.empty()) {
3217     Out << TIDFS;
3218     Out << "typeTests: (";
3219     FieldSeparator FS;
3220     for (auto &GUID : TIDInfo.TypeTests) {
3221       auto TidIter = TheIndex->typeIds().equal_range(GUID);
3222       if (TidIter.first == TidIter.second) {
3223         Out << FS;
3224         Out << GUID;
3225         continue;
3226       }
3227       // Print all type id that correspond to this GUID.
3228       for (auto It = TidIter.first; It != TidIter.second; ++It) {
3229         Out << FS;
3230         auto Slot = Machine.getTypeIdSlot(It->second.first);
3231         assert(Slot != -1);
3232         Out << "^" << Slot;
3233       }
3234     }
3235     Out << ")";
3236   }
3237   if (!TIDInfo.TypeTestAssumeVCalls.empty()) {
3238     Out << TIDFS;
3239     printNonConstVCalls(TIDInfo.TypeTestAssumeVCalls, "typeTestAssumeVCalls");
3240   }
3241   if (!TIDInfo.TypeCheckedLoadVCalls.empty()) {
3242     Out << TIDFS;
3243     printNonConstVCalls(TIDInfo.TypeCheckedLoadVCalls, "typeCheckedLoadVCalls");
3244   }
3245   if (!TIDInfo.TypeTestAssumeConstVCalls.empty()) {
3246     Out << TIDFS;
3247     printConstVCalls(TIDInfo.TypeTestAssumeConstVCalls,
3248                      "typeTestAssumeConstVCalls");
3249   }
3250   if (!TIDInfo.TypeCheckedLoadConstVCalls.empty()) {
3251     Out << TIDFS;
3252     printConstVCalls(TIDInfo.TypeCheckedLoadConstVCalls,
3253                      "typeCheckedLoadConstVCalls");
3254   }
3255   Out << ")";
3256 }
3257 
3258 void AssemblyWriter::printVFuncId(const FunctionSummary::VFuncId VFId) {
3259   auto TidIter = TheIndex->typeIds().equal_range(VFId.GUID);
3260   if (TidIter.first == TidIter.second) {
3261     Out << "vFuncId: (";
3262     Out << "guid: " << VFId.GUID;
3263     Out << ", offset: " << VFId.Offset;
3264     Out << ")";
3265     return;
3266   }
3267   // Print all type id that correspond to this GUID.
3268   FieldSeparator FS;
3269   for (auto It = TidIter.first; It != TidIter.second; ++It) {
3270     Out << FS;
3271     Out << "vFuncId: (";
3272     auto Slot = Machine.getTypeIdSlot(It->second.first);
3273     assert(Slot != -1);
3274     Out << "^" << Slot;
3275     Out << ", offset: " << VFId.Offset;
3276     Out << ")";
3277   }
3278 }
3279 
3280 void AssemblyWriter::printNonConstVCalls(
3281     const std::vector<FunctionSummary::VFuncId> &VCallList, const char *Tag) {
3282   Out << Tag << ": (";
3283   FieldSeparator FS;
3284   for (auto &VFuncId : VCallList) {
3285     Out << FS;
3286     printVFuncId(VFuncId);
3287   }
3288   Out << ")";
3289 }
3290 
3291 void AssemblyWriter::printConstVCalls(
3292     const std::vector<FunctionSummary::ConstVCall> &VCallList,
3293     const char *Tag) {
3294   Out << Tag << ": (";
3295   FieldSeparator FS;
3296   for (auto &ConstVCall : VCallList) {
3297     Out << FS;
3298     Out << "(";
3299     printVFuncId(ConstVCall.VFunc);
3300     if (!ConstVCall.Args.empty()) {
3301       Out << ", ";
3302       printArgs(ConstVCall.Args);
3303     }
3304     Out << ")";
3305   }
3306   Out << ")";
3307 }
3308 
3309 void AssemblyWriter::printSummary(const GlobalValueSummary &Summary) {
3310   GlobalValueSummary::GVFlags GVFlags = Summary.flags();
3311   GlobalValue::LinkageTypes LT = (GlobalValue::LinkageTypes)GVFlags.Linkage;
3312   Out << getSummaryKindName(Summary.getSummaryKind()) << ": ";
3313   Out << "(module: ^" << Machine.getModulePathSlot(Summary.modulePath())
3314       << ", flags: (";
3315   Out << "linkage: " << getLinkageName(LT);
3316   Out << ", visibility: "
3317       << getVisibilityName((GlobalValue::VisibilityTypes)GVFlags.Visibility);
3318   Out << ", notEligibleToImport: " << GVFlags.NotEligibleToImport;
3319   Out << ", live: " << GVFlags.Live;
3320   Out << ", dsoLocal: " << GVFlags.DSOLocal;
3321   Out << ", canAutoHide: " << GVFlags.CanAutoHide;
3322   Out << ")";
3323 
3324   if (Summary.getSummaryKind() == GlobalValueSummary::AliasKind)
3325     printAliasSummary(cast<AliasSummary>(&Summary));
3326   else if (Summary.getSummaryKind() == GlobalValueSummary::FunctionKind)
3327     printFunctionSummary(cast<FunctionSummary>(&Summary));
3328   else
3329     printGlobalVarSummary(cast<GlobalVarSummary>(&Summary));
3330 
3331   auto RefList = Summary.refs();
3332   if (!RefList.empty()) {
3333     Out << ", refs: (";
3334     FieldSeparator FS;
3335     for (auto &Ref : RefList) {
3336       Out << FS;
3337       if (Ref.isReadOnly())
3338         Out << "readonly ";
3339       else if (Ref.isWriteOnly())
3340         Out << "writeonly ";
3341       Out << "^" << Machine.getGUIDSlot(Ref.getGUID());
3342     }
3343     Out << ")";
3344   }
3345 
3346   Out << ")";
3347 }
3348 
3349 void AssemblyWriter::printSummaryInfo(unsigned Slot, const ValueInfo &VI) {
3350   Out << "^" << Slot << " = gv: (";
3351   if (!VI.name().empty())
3352     Out << "name: \"" << VI.name() << "\"";
3353   else
3354     Out << "guid: " << VI.getGUID();
3355   if (!VI.getSummaryList().empty()) {
3356     Out << ", summaries: (";
3357     FieldSeparator FS;
3358     for (auto &Summary : VI.getSummaryList()) {
3359       Out << FS;
3360       printSummary(*Summary);
3361     }
3362     Out << ")";
3363   }
3364   Out << ")";
3365   if (!VI.name().empty())
3366     Out << " ; guid = " << VI.getGUID();
3367   Out << "\n";
3368 }
3369 
3370 static void printMetadataIdentifier(StringRef Name,
3371                                     formatted_raw_ostream &Out) {
3372   if (Name.empty()) {
3373     Out << "<empty name> ";
3374   } else {
3375     if (isalpha(static_cast<unsigned char>(Name[0])) || Name[0] == '-' ||
3376         Name[0] == '$' || Name[0] == '.' || Name[0] == '_')
3377       Out << Name[0];
3378     else
3379       Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F);
3380     for (unsigned i = 1, e = Name.size(); i != e; ++i) {
3381       unsigned char C = Name[i];
3382       if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' ||
3383           C == '.' || C == '_')
3384         Out << C;
3385       else
3386         Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
3387     }
3388   }
3389 }
3390 
3391 void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
3392   Out << '!';
3393   printMetadataIdentifier(NMD->getName(), Out);
3394   Out << " = !{";
3395   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
3396     if (i)
3397       Out << ", ";
3398 
3399     // Write DIExpressions inline.
3400     // FIXME: Ban DIExpressions in NamedMDNodes, they will serve no purpose.
3401     MDNode *Op = NMD->getOperand(i);
3402     assert(!isa<DIArgList>(Op) &&
3403            "DIArgLists should not appear in NamedMDNodes");
3404     if (auto *Expr = dyn_cast<DIExpression>(Op)) {
3405       writeDIExpression(Out, Expr, AsmWriterContext::getEmpty());
3406       continue;
3407     }
3408 
3409     int Slot = Machine.getMetadataSlot(Op);
3410     if (Slot == -1)
3411       Out << "<badref>";
3412     else
3413       Out << '!' << Slot;
3414   }
3415   Out << "}\n";
3416 }
3417 
3418 static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
3419                             formatted_raw_ostream &Out) {
3420   switch (Vis) {
3421   case GlobalValue::DefaultVisibility: break;
3422   case GlobalValue::HiddenVisibility:    Out << "hidden "; break;
3423   case GlobalValue::ProtectedVisibility: Out << "protected "; break;
3424   }
3425 }
3426 
3427 static void PrintDSOLocation(const GlobalValue &GV,
3428                              formatted_raw_ostream &Out) {
3429   if (GV.isDSOLocal() && !GV.isImplicitDSOLocal())
3430     Out << "dso_local ";
3431 }
3432 
3433 static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT,
3434                                  formatted_raw_ostream &Out) {
3435   switch (SCT) {
3436   case GlobalValue::DefaultStorageClass: break;
3437   case GlobalValue::DLLImportStorageClass: Out << "dllimport "; break;
3438   case GlobalValue::DLLExportStorageClass: Out << "dllexport "; break;
3439   }
3440 }
3441 
3442 static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
3443                                   formatted_raw_ostream &Out) {
3444   switch (TLM) {
3445     case GlobalVariable::NotThreadLocal:
3446       break;
3447     case GlobalVariable::GeneralDynamicTLSModel:
3448       Out << "thread_local ";
3449       break;
3450     case GlobalVariable::LocalDynamicTLSModel:
3451       Out << "thread_local(localdynamic) ";
3452       break;
3453     case GlobalVariable::InitialExecTLSModel:
3454       Out << "thread_local(initialexec) ";
3455       break;
3456     case GlobalVariable::LocalExecTLSModel:
3457       Out << "thread_local(localexec) ";
3458       break;
3459   }
3460 }
3461 
3462 static StringRef getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA) {
3463   switch (UA) {
3464   case GlobalVariable::UnnamedAddr::None:
3465     return "";
3466   case GlobalVariable::UnnamedAddr::Local:
3467     return "local_unnamed_addr";
3468   case GlobalVariable::UnnamedAddr::Global:
3469     return "unnamed_addr";
3470   }
3471   llvm_unreachable("Unknown UnnamedAddr");
3472 }
3473 
3474 static void maybePrintComdat(formatted_raw_ostream &Out,
3475                              const GlobalObject &GO) {
3476   const Comdat *C = GO.getComdat();
3477   if (!C)
3478     return;
3479 
3480   if (isa<GlobalVariable>(GO))
3481     Out << ',';
3482   Out << " comdat";
3483 
3484   if (GO.getName() == C->getName())
3485     return;
3486 
3487   Out << '(';
3488   PrintLLVMName(Out, C->getName(), ComdatPrefix);
3489   Out << ')';
3490 }
3491 
3492 void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
3493   if (GV->isMaterializable())
3494     Out << "; Materializable\n";
3495 
3496   AsmWriterContext WriterCtx(&TypePrinter, &Machine, GV->getParent());
3497   WriteAsOperandInternal(Out, GV, WriterCtx);
3498   Out << " = ";
3499 
3500   if (!GV->hasInitializer() && GV->hasExternalLinkage())
3501     Out << "external ";
3502 
3503   Out << getLinkageNameWithSpace(GV->getLinkage());
3504   PrintDSOLocation(*GV, Out);
3505   PrintVisibility(GV->getVisibility(), Out);
3506   PrintDLLStorageClass(GV->getDLLStorageClass(), Out);
3507   PrintThreadLocalModel(GV->getThreadLocalMode(), Out);
3508   StringRef UA = getUnnamedAddrEncoding(GV->getUnnamedAddr());
3509   if (!UA.empty())
3510       Out << UA << ' ';
3511 
3512   if (unsigned AddressSpace = GV->getType()->getAddressSpace())
3513     Out << "addrspace(" << AddressSpace << ") ";
3514   if (GV->isExternallyInitialized()) Out << "externally_initialized ";
3515   Out << (GV->isConstant() ? "constant " : "global ");
3516   TypePrinter.print(GV->getValueType(), Out);
3517 
3518   if (GV->hasInitializer()) {
3519     Out << ' ';
3520     writeOperand(GV->getInitializer(), false);
3521   }
3522 
3523   if (GV->hasSection()) {
3524     Out << ", section \"";
3525     printEscapedString(GV->getSection(), Out);
3526     Out << '"';
3527   }
3528   if (GV->hasPartition()) {
3529     Out << ", partition \"";
3530     printEscapedString(GV->getPartition(), Out);
3531     Out << '"';
3532   }
3533 
3534   using SanitizerMetadata = llvm::GlobalValue::SanitizerMetadata;
3535   if (GV->hasSanitizerMetadata()) {
3536     SanitizerMetadata MD = GV->getSanitizerMetadata();
3537     if (MD.NoAddress)
3538       Out << ", no_sanitize_address";
3539     if (MD.NoHWAddress)
3540       Out << ", no_sanitize_hwaddress";
3541     if (MD.Memtag)
3542       Out << ", sanitize_memtag";
3543     if (MD.IsDynInit)
3544       Out << ", sanitize_address_dyninit";
3545   }
3546 
3547   maybePrintComdat(Out, *GV);
3548   if (MaybeAlign A = GV->getAlign())
3549     Out << ", align " << A->value();
3550 
3551   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3552   GV->getAllMetadata(MDs);
3553   printMetadataAttachments(MDs, ", ");
3554 
3555   auto Attrs = GV->getAttributes();
3556   if (Attrs.hasAttributes())
3557     Out << " #" << Machine.getAttributeGroupSlot(Attrs);
3558 
3559   printInfoComment(*GV);
3560 }
3561 
3562 void AssemblyWriter::printAlias(const GlobalAlias *GA) {
3563   if (GA->isMaterializable())
3564     Out << "; Materializable\n";
3565 
3566   AsmWriterContext WriterCtx(&TypePrinter, &Machine, GA->getParent());
3567   WriteAsOperandInternal(Out, GA, WriterCtx);
3568   Out << " = ";
3569 
3570   Out << getLinkageNameWithSpace(GA->getLinkage());
3571   PrintDSOLocation(*GA, Out);
3572   PrintVisibility(GA->getVisibility(), Out);
3573   PrintDLLStorageClass(GA->getDLLStorageClass(), Out);
3574   PrintThreadLocalModel(GA->getThreadLocalMode(), Out);
3575   StringRef UA = getUnnamedAddrEncoding(GA->getUnnamedAddr());
3576   if (!UA.empty())
3577       Out << UA << ' ';
3578 
3579   Out << "alias ";
3580 
3581   TypePrinter.print(GA->getValueType(), Out);
3582   Out << ", ";
3583 
3584   if (const Constant *Aliasee = GA->getAliasee()) {
3585     writeOperand(Aliasee, !isa<ConstantExpr>(Aliasee));
3586   } else {
3587     TypePrinter.print(GA->getType(), Out);
3588     Out << " <<NULL ALIASEE>>";
3589   }
3590 
3591   if (GA->hasPartition()) {
3592     Out << ", partition \"";
3593     printEscapedString(GA->getPartition(), Out);
3594     Out << '"';
3595   }
3596 
3597   printInfoComment(*GA);
3598   Out << '\n';
3599 }
3600 
3601 void AssemblyWriter::printIFunc(const GlobalIFunc *GI) {
3602   if (GI->isMaterializable())
3603     Out << "; Materializable\n";
3604 
3605   AsmWriterContext WriterCtx(&TypePrinter, &Machine, GI->getParent());
3606   WriteAsOperandInternal(Out, GI, WriterCtx);
3607   Out << " = ";
3608 
3609   Out << getLinkageNameWithSpace(GI->getLinkage());
3610   PrintDSOLocation(*GI, Out);
3611   PrintVisibility(GI->getVisibility(), Out);
3612 
3613   Out << "ifunc ";
3614 
3615   TypePrinter.print(GI->getValueType(), Out);
3616   Out << ", ";
3617 
3618   if (const Constant *Resolver = GI->getResolver()) {
3619     writeOperand(Resolver, !isa<ConstantExpr>(Resolver));
3620   } else {
3621     TypePrinter.print(GI->getType(), Out);
3622     Out << " <<NULL RESOLVER>>";
3623   }
3624 
3625   if (GI->hasPartition()) {
3626     Out << ", partition \"";
3627     printEscapedString(GI->getPartition(), Out);
3628     Out << '"';
3629   }
3630 
3631   printInfoComment(*GI);
3632   Out << '\n';
3633 }
3634 
3635 void AssemblyWriter::printComdat(const Comdat *C) {
3636   C->print(Out);
3637 }
3638 
3639 void AssemblyWriter::printTypeIdentities() {
3640   if (TypePrinter.empty())
3641     return;
3642 
3643   Out << '\n';
3644 
3645   // Emit all numbered types.
3646   auto &NumberedTypes = TypePrinter.getNumberedTypes();
3647   for (unsigned I = 0, E = NumberedTypes.size(); I != E; ++I) {
3648     Out << '%' << I << " = type ";
3649 
3650     // Make sure we print out at least one level of the type structure, so
3651     // that we do not get %2 = type %2
3652     TypePrinter.printStructBody(NumberedTypes[I], Out);
3653     Out << '\n';
3654   }
3655 
3656   auto &NamedTypes = TypePrinter.getNamedTypes();
3657   for (StructType *NamedType : NamedTypes) {
3658     PrintLLVMName(Out, NamedType->getName(), LocalPrefix);
3659     Out << " = type ";
3660 
3661     // Make sure we print out at least one level of the type structure, so
3662     // that we do not get %FILE = type %FILE
3663     TypePrinter.printStructBody(NamedType, Out);
3664     Out << '\n';
3665   }
3666 }
3667 
3668 /// printFunction - Print all aspects of a function.
3669 void AssemblyWriter::printFunction(const Function *F) {
3670   if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
3671 
3672   if (F->isMaterializable())
3673     Out << "; Materializable\n";
3674 
3675   const AttributeList &Attrs = F->getAttributes();
3676   if (Attrs.hasFnAttrs()) {
3677     AttributeSet AS = Attrs.getFnAttrs();
3678     std::string AttrStr;
3679 
3680     for (const Attribute &Attr : AS) {
3681       if (!Attr.isStringAttribute()) {
3682         if (!AttrStr.empty()) AttrStr += ' ';
3683         AttrStr += Attr.getAsString();
3684       }
3685     }
3686 
3687     if (!AttrStr.empty())
3688       Out << "; Function Attrs: " << AttrStr << '\n';
3689   }
3690 
3691   Machine.incorporateFunction(F);
3692 
3693   if (F->isDeclaration()) {
3694     Out << "declare";
3695     SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3696     F->getAllMetadata(MDs);
3697     printMetadataAttachments(MDs, " ");
3698     Out << ' ';
3699   } else
3700     Out << "define ";
3701 
3702   Out << getLinkageNameWithSpace(F->getLinkage());
3703   PrintDSOLocation(*F, Out);
3704   PrintVisibility(F->getVisibility(), Out);
3705   PrintDLLStorageClass(F->getDLLStorageClass(), Out);
3706 
3707   // Print the calling convention.
3708   if (F->getCallingConv() != CallingConv::C) {
3709     PrintCallingConv(F->getCallingConv(), Out);
3710     Out << " ";
3711   }
3712 
3713   FunctionType *FT = F->getFunctionType();
3714   if (Attrs.hasRetAttrs())
3715     Out << Attrs.getAsString(AttributeList::ReturnIndex) << ' ';
3716   TypePrinter.print(F->getReturnType(), Out);
3717   AsmWriterContext WriterCtx(&TypePrinter, &Machine, F->getParent());
3718   Out << ' ';
3719   WriteAsOperandInternal(Out, F, WriterCtx);
3720   Out << '(';
3721 
3722   // Loop over the arguments, printing them...
3723   if (F->isDeclaration() && !IsForDebug) {
3724     // We're only interested in the type here - don't print argument names.
3725     for (unsigned I = 0, E = FT->getNumParams(); I != E; ++I) {
3726       // Insert commas as we go... the first arg doesn't get a comma
3727       if (I)
3728         Out << ", ";
3729       // Output type...
3730       TypePrinter.print(FT->getParamType(I), Out);
3731 
3732       AttributeSet ArgAttrs = Attrs.getParamAttrs(I);
3733       if (ArgAttrs.hasAttributes()) {
3734         Out << ' ';
3735         writeAttributeSet(ArgAttrs);
3736       }
3737     }
3738   } else {
3739     // The arguments are meaningful here, print them in detail.
3740     for (const Argument &Arg : F->args()) {
3741       // Insert commas as we go... the first arg doesn't get a comma
3742       if (Arg.getArgNo() != 0)
3743         Out << ", ";
3744       printArgument(&Arg, Attrs.getParamAttrs(Arg.getArgNo()));
3745     }
3746   }
3747 
3748   // Finish printing arguments...
3749   if (FT->isVarArg()) {
3750     if (FT->getNumParams()) Out << ", ";
3751     Out << "...";  // Output varargs portion of signature!
3752   }
3753   Out << ')';
3754   StringRef UA = getUnnamedAddrEncoding(F->getUnnamedAddr());
3755   if (!UA.empty())
3756     Out << ' ' << UA;
3757   // We print the function address space if it is non-zero or if we are writing
3758   // a module with a non-zero program address space or if there is no valid
3759   // Module* so that the file can be parsed without the datalayout string.
3760   const Module *Mod = F->getParent();
3761   if (F->getAddressSpace() != 0 || !Mod ||
3762       Mod->getDataLayout().getProgramAddressSpace() != 0)
3763     Out << " addrspace(" << F->getAddressSpace() << ")";
3764   if (Attrs.hasFnAttrs())
3765     Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttrs());
3766   if (F->hasSection()) {
3767     Out << " section \"";
3768     printEscapedString(F->getSection(), Out);
3769     Out << '"';
3770   }
3771   if (F->hasPartition()) {
3772     Out << " partition \"";
3773     printEscapedString(F->getPartition(), Out);
3774     Out << '"';
3775   }
3776   maybePrintComdat(Out, *F);
3777   if (MaybeAlign A = F->getAlign())
3778     Out << " align " << A->value();
3779   if (F->hasGC())
3780     Out << " gc \"" << F->getGC() << '"';
3781   if (F->hasPrefixData()) {
3782     Out << " prefix ";
3783     writeOperand(F->getPrefixData(), true);
3784   }
3785   if (F->hasPrologueData()) {
3786     Out << " prologue ";
3787     writeOperand(F->getPrologueData(), true);
3788   }
3789   if (F->hasPersonalityFn()) {
3790     Out << " personality ";
3791     writeOperand(F->getPersonalityFn(), /*PrintType=*/true);
3792   }
3793 
3794   if (F->isDeclaration()) {
3795     Out << '\n';
3796   } else {
3797     SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3798     F->getAllMetadata(MDs);
3799     printMetadataAttachments(MDs, " ");
3800 
3801     Out << " {";
3802     // Output all of the function's basic blocks.
3803     for (const BasicBlock &BB : *F)
3804       printBasicBlock(&BB);
3805 
3806     // Output the function's use-lists.
3807     printUseLists(F);
3808 
3809     Out << "}\n";
3810   }
3811 
3812   Machine.purgeFunction();
3813 }
3814 
3815 /// printArgument - This member is called for every argument that is passed into
3816 /// the function.  Simply print it out
3817 void AssemblyWriter::printArgument(const Argument *Arg, AttributeSet Attrs) {
3818   // Output type...
3819   TypePrinter.print(Arg->getType(), Out);
3820 
3821   // Output parameter attributes list
3822   if (Attrs.hasAttributes()) {
3823     Out << ' ';
3824     writeAttributeSet(Attrs);
3825   }
3826 
3827   // Output name, if available...
3828   if (Arg->hasName()) {
3829     Out << ' ';
3830     PrintLLVMName(Out, Arg);
3831   } else {
3832     int Slot = Machine.getLocalSlot(Arg);
3833     assert(Slot != -1 && "expect argument in function here");
3834     Out << " %" << Slot;
3835   }
3836 }
3837 
3838 /// printBasicBlock - This member is called for each basic block in a method.
3839 void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
3840   bool IsEntryBlock = BB->getParent() && BB->isEntryBlock();
3841   if (BB->hasName()) {              // Print out the label if it exists...
3842     Out << "\n";
3843     PrintLLVMName(Out, BB->getName(), LabelPrefix);
3844     Out << ':';
3845   } else if (!IsEntryBlock) {
3846     Out << "\n";
3847     int Slot = Machine.getLocalSlot(BB);
3848     if (Slot != -1)
3849       Out << Slot << ":";
3850     else
3851       Out << "<badref>:";
3852   }
3853 
3854   if (!IsEntryBlock) {
3855     // Output predecessors for the block.
3856     Out.PadToColumn(50);
3857     Out << ";";
3858     const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
3859 
3860     if (PI == PE) {
3861       Out << " No predecessors!";
3862     } else {
3863       Out << " preds = ";
3864       writeOperand(*PI, false);
3865       for (++PI; PI != PE; ++PI) {
3866         Out << ", ";
3867         writeOperand(*PI, false);
3868       }
3869     }
3870   }
3871 
3872   Out << "\n";
3873 
3874   if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
3875 
3876   // Output all of the instructions in the basic block...
3877   for (const Instruction &I : *BB) {
3878     printInstructionLine(I);
3879   }
3880 
3881   if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
3882 }
3883 
3884 /// printInstructionLine - Print an instruction and a newline character.
3885 void AssemblyWriter::printInstructionLine(const Instruction &I) {
3886   printInstruction(I);
3887   Out << '\n';
3888 }
3889 
3890 /// printGCRelocateComment - print comment after call to the gc.relocate
3891 /// intrinsic indicating base and derived pointer names.
3892 void AssemblyWriter::printGCRelocateComment(const GCRelocateInst &Relocate) {
3893   Out << " ; (";
3894   writeOperand(Relocate.getBasePtr(), false);
3895   Out << ", ";
3896   writeOperand(Relocate.getDerivedPtr(), false);
3897   Out << ")";
3898 }
3899 
3900 /// printInfoComment - Print a little comment after the instruction indicating
3901 /// which slot it occupies.
3902 void AssemblyWriter::printInfoComment(const Value &V) {
3903   if (const auto *Relocate = dyn_cast<GCRelocateInst>(&V))
3904     printGCRelocateComment(*Relocate);
3905 
3906   if (AnnotationWriter)
3907     AnnotationWriter->printInfoComment(V, Out);
3908 }
3909 
3910 static void maybePrintCallAddrSpace(const Value *Operand, const Instruction *I,
3911                                     raw_ostream &Out) {
3912   // We print the address space of the call if it is non-zero.
3913   unsigned CallAddrSpace = Operand->getType()->getPointerAddressSpace();
3914   bool PrintAddrSpace = CallAddrSpace != 0;
3915   if (!PrintAddrSpace) {
3916     const Module *Mod = getModuleFromVal(I);
3917     // We also print it if it is zero but not equal to the program address space
3918     // or if we can't find a valid Module* to make it possible to parse
3919     // the resulting file even without a datalayout string.
3920     if (!Mod || Mod->getDataLayout().getProgramAddressSpace() != 0)
3921       PrintAddrSpace = true;
3922   }
3923   if (PrintAddrSpace)
3924     Out << " addrspace(" << CallAddrSpace << ")";
3925 }
3926 
3927 // This member is called for each Instruction in a function..
3928 void AssemblyWriter::printInstruction(const Instruction &I) {
3929   if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
3930 
3931   // Print out indentation for an instruction.
3932   Out << "  ";
3933 
3934   // Print out name if it exists...
3935   if (I.hasName()) {
3936     PrintLLVMName(Out, &I);
3937     Out << " = ";
3938   } else if (!I.getType()->isVoidTy()) {
3939     // Print out the def slot taken.
3940     int SlotNum = Machine.getLocalSlot(&I);
3941     if (SlotNum == -1)
3942       Out << "<badref> = ";
3943     else
3944       Out << '%' << SlotNum << " = ";
3945   }
3946 
3947   if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
3948     if (CI->isMustTailCall())
3949       Out << "musttail ";
3950     else if (CI->isTailCall())
3951       Out << "tail ";
3952     else if (CI->isNoTailCall())
3953       Out << "notail ";
3954   }
3955 
3956   // Print out the opcode...
3957   Out << I.getOpcodeName();
3958 
3959   // If this is an atomic load or store, print out the atomic marker.
3960   if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isAtomic()) ||
3961       (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
3962     Out << " atomic";
3963 
3964   if (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isWeak())
3965     Out << " weak";
3966 
3967   // If this is a volatile operation, print out the volatile marker.
3968   if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
3969       (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
3970       (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
3971       (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
3972     Out << " volatile";
3973 
3974   // Print out optimization information.
3975   WriteOptimizationInfo(Out, &I);
3976 
3977   // Print out the compare instruction predicates
3978   if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
3979     Out << ' ' << CmpInst::getPredicateName(CI->getPredicate());
3980 
3981   // Print out the atomicrmw operation
3982   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
3983     Out << ' ' << AtomicRMWInst::getOperationName(RMWI->getOperation());
3984 
3985   // Print out the type of the operands...
3986   const Value *Operand = I.getNumOperands() ? I.getOperand(0) : nullptr;
3987 
3988   // Special case conditional branches to swizzle the condition out to the front
3989   if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
3990     const BranchInst &BI(cast<BranchInst>(I));
3991     Out << ' ';
3992     writeOperand(BI.getCondition(), true);
3993     Out << ", ";
3994     writeOperand(BI.getSuccessor(0), true);
3995     Out << ", ";
3996     writeOperand(BI.getSuccessor(1), true);
3997 
3998   } else if (isa<SwitchInst>(I)) {
3999     const SwitchInst& SI(cast<SwitchInst>(I));
4000     // Special case switch instruction to get formatting nice and correct.
4001     Out << ' ';
4002     writeOperand(SI.getCondition(), true);
4003     Out << ", ";
4004     writeOperand(SI.getDefaultDest(), true);
4005     Out << " [";
4006     for (auto Case : SI.cases()) {
4007       Out << "\n    ";
4008       writeOperand(Case.getCaseValue(), true);
4009       Out << ", ";
4010       writeOperand(Case.getCaseSuccessor(), true);
4011     }
4012     Out << "\n  ]";
4013   } else if (isa<IndirectBrInst>(I)) {
4014     // Special case indirectbr instruction to get formatting nice and correct.
4015     Out << ' ';
4016     writeOperand(Operand, true);
4017     Out << ", [";
4018 
4019     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
4020       if (i != 1)
4021         Out << ", ";
4022       writeOperand(I.getOperand(i), true);
4023     }
4024     Out << ']';
4025   } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
4026     Out << ' ';
4027     TypePrinter.print(I.getType(), Out);
4028     Out << ' ';
4029 
4030     for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
4031       if (op) Out << ", ";
4032       Out << "[ ";
4033       writeOperand(PN->getIncomingValue(op), false); Out << ", ";
4034       writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
4035     }
4036   } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
4037     Out << ' ';
4038     writeOperand(I.getOperand(0), true);
4039     for (unsigned i : EVI->indices())
4040       Out << ", " << i;
4041   } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
4042     Out << ' ';
4043     writeOperand(I.getOperand(0), true); Out << ", ";
4044     writeOperand(I.getOperand(1), true);
4045     for (unsigned i : IVI->indices())
4046       Out << ", " << i;
4047   } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
4048     Out << ' ';
4049     TypePrinter.print(I.getType(), Out);
4050     if (LPI->isCleanup() || LPI->getNumClauses() != 0)
4051       Out << '\n';
4052 
4053     if (LPI->isCleanup())
4054       Out << "          cleanup";
4055 
4056     for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
4057       if (i != 0 || LPI->isCleanup()) Out << "\n";
4058       if (LPI->isCatch(i))
4059         Out << "          catch ";
4060       else
4061         Out << "          filter ";
4062 
4063       writeOperand(LPI->getClause(i), true);
4064     }
4065   } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(&I)) {
4066     Out << " within ";
4067     writeOperand(CatchSwitch->getParentPad(), /*PrintType=*/false);
4068     Out << " [";
4069     unsigned Op = 0;
4070     for (const BasicBlock *PadBB : CatchSwitch->handlers()) {
4071       if (Op > 0)
4072         Out << ", ";
4073       writeOperand(PadBB, /*PrintType=*/true);
4074       ++Op;
4075     }
4076     Out << "] unwind ";
4077     if (const BasicBlock *UnwindDest = CatchSwitch->getUnwindDest())
4078       writeOperand(UnwindDest, /*PrintType=*/true);
4079     else
4080       Out << "to caller";
4081   } else if (const auto *FPI = dyn_cast<FuncletPadInst>(&I)) {
4082     Out << " within ";
4083     writeOperand(FPI->getParentPad(), /*PrintType=*/false);
4084     Out << " [";
4085     for (unsigned Op = 0, NumOps = FPI->getNumArgOperands(); Op < NumOps;
4086          ++Op) {
4087       if (Op > 0)
4088         Out << ", ";
4089       writeOperand(FPI->getArgOperand(Op), /*PrintType=*/true);
4090     }
4091     Out << ']';
4092   } else if (isa<ReturnInst>(I) && !Operand) {
4093     Out << " void";
4094   } else if (const auto *CRI = dyn_cast<CatchReturnInst>(&I)) {
4095     Out << " from ";
4096     writeOperand(CRI->getOperand(0), /*PrintType=*/false);
4097 
4098     Out << " to ";
4099     writeOperand(CRI->getOperand(1), /*PrintType=*/true);
4100   } else if (const auto *CRI = dyn_cast<CleanupReturnInst>(&I)) {
4101     Out << " from ";
4102     writeOperand(CRI->getOperand(0), /*PrintType=*/false);
4103 
4104     Out << " unwind ";
4105     if (CRI->hasUnwindDest())
4106       writeOperand(CRI->getOperand(1), /*PrintType=*/true);
4107     else
4108       Out << "to caller";
4109   } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
4110     // Print the calling convention being used.
4111     if (CI->getCallingConv() != CallingConv::C) {
4112       Out << " ";
4113       PrintCallingConv(CI->getCallingConv(), Out);
4114     }
4115 
4116     Operand = CI->getCalledOperand();
4117     FunctionType *FTy = CI->getFunctionType();
4118     Type *RetTy = FTy->getReturnType();
4119     const AttributeList &PAL = CI->getAttributes();
4120 
4121     if (PAL.hasRetAttrs())
4122       Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
4123 
4124     // Only print addrspace(N) if necessary:
4125     maybePrintCallAddrSpace(Operand, &I, Out);
4126 
4127     // If possible, print out the short form of the call instruction.  We can
4128     // only do this if the first argument is a pointer to a nonvararg function,
4129     // and if the return type is not a pointer to a function.
4130     //
4131     Out << ' ';
4132     TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4133     Out << ' ';
4134     writeOperand(Operand, false);
4135     Out << '(';
4136     for (unsigned op = 0, Eop = CI->arg_size(); op < Eop; ++op) {
4137       if (op > 0)
4138         Out << ", ";
4139       writeParamOperand(CI->getArgOperand(op), PAL.getParamAttrs(op));
4140     }
4141 
4142     // Emit an ellipsis if this is a musttail call in a vararg function.  This
4143     // is only to aid readability, musttail calls forward varargs by default.
4144     if (CI->isMustTailCall() && CI->getParent() &&
4145         CI->getParent()->getParent() &&
4146         CI->getParent()->getParent()->isVarArg())
4147       Out << ", ...";
4148 
4149     Out << ')';
4150     if (PAL.hasFnAttrs())
4151       Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttrs());
4152 
4153     writeOperandBundles(CI);
4154   } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
4155     Operand = II->getCalledOperand();
4156     FunctionType *FTy = II->getFunctionType();
4157     Type *RetTy = FTy->getReturnType();
4158     const AttributeList &PAL = II->getAttributes();
4159 
4160     // Print the calling convention being used.
4161     if (II->getCallingConv() != CallingConv::C) {
4162       Out << " ";
4163       PrintCallingConv(II->getCallingConv(), Out);
4164     }
4165 
4166     if (PAL.hasRetAttrs())
4167       Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
4168 
4169     // Only print addrspace(N) if necessary:
4170     maybePrintCallAddrSpace(Operand, &I, Out);
4171 
4172     // If possible, print out the short form of the invoke instruction. We can
4173     // only do this if the first argument is a pointer to a nonvararg function,
4174     // and if the return type is not a pointer to a function.
4175     //
4176     Out << ' ';
4177     TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4178     Out << ' ';
4179     writeOperand(Operand, false);
4180     Out << '(';
4181     for (unsigned op = 0, Eop = II->arg_size(); op < Eop; ++op) {
4182       if (op)
4183         Out << ", ";
4184       writeParamOperand(II->getArgOperand(op), PAL.getParamAttrs(op));
4185     }
4186 
4187     Out << ')';
4188     if (PAL.hasFnAttrs())
4189       Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttrs());
4190 
4191     writeOperandBundles(II);
4192 
4193     Out << "\n          to ";
4194     writeOperand(II->getNormalDest(), true);
4195     Out << " unwind ";
4196     writeOperand(II->getUnwindDest(), true);
4197   } else if (const CallBrInst *CBI = dyn_cast<CallBrInst>(&I)) {
4198     Operand = CBI->getCalledOperand();
4199     FunctionType *FTy = CBI->getFunctionType();
4200     Type *RetTy = FTy->getReturnType();
4201     const AttributeList &PAL = CBI->getAttributes();
4202 
4203     // Print the calling convention being used.
4204     if (CBI->getCallingConv() != CallingConv::C) {
4205       Out << " ";
4206       PrintCallingConv(CBI->getCallingConv(), Out);
4207     }
4208 
4209     if (PAL.hasRetAttrs())
4210       Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
4211 
4212     // If possible, print out the short form of the callbr instruction. We can
4213     // only do this if the first argument is a pointer to a nonvararg function,
4214     // and if the return type is not a pointer to a function.
4215     //
4216     Out << ' ';
4217     TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4218     Out << ' ';
4219     writeOperand(Operand, false);
4220     Out << '(';
4221     for (unsigned op = 0, Eop = CBI->arg_size(); op < Eop; ++op) {
4222       if (op)
4223         Out << ", ";
4224       writeParamOperand(CBI->getArgOperand(op), PAL.getParamAttrs(op));
4225     }
4226 
4227     Out << ')';
4228     if (PAL.hasFnAttrs())
4229       Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttrs());
4230 
4231     writeOperandBundles(CBI);
4232 
4233     Out << "\n          to ";
4234     writeOperand(CBI->getDefaultDest(), true);
4235     Out << " [";
4236     for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) {
4237       if (i != 0)
4238         Out << ", ";
4239       writeOperand(CBI->getIndirectDest(i), true);
4240     }
4241     Out << ']';
4242   } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
4243     Out << ' ';
4244     if (AI->isUsedWithInAlloca())
4245       Out << "inalloca ";
4246     if (AI->isSwiftError())
4247       Out << "swifterror ";
4248     TypePrinter.print(AI->getAllocatedType(), Out);
4249 
4250     // Explicitly write the array size if the code is broken, if it's an array
4251     // allocation, or if the type is not canonical for scalar allocations.  The
4252     // latter case prevents the type from mutating when round-tripping through
4253     // assembly.
4254     if (!AI->getArraySize() || AI->isArrayAllocation() ||
4255         !AI->getArraySize()->getType()->isIntegerTy(32)) {
4256       Out << ", ";
4257       writeOperand(AI->getArraySize(), true);
4258     }
4259     if (MaybeAlign A = AI->getAlign()) {
4260       Out << ", align " << A->value();
4261     }
4262 
4263     unsigned AddrSpace = AI->getType()->getAddressSpace();
4264     if (AddrSpace != 0) {
4265       Out << ", addrspace(" << AddrSpace << ')';
4266     }
4267   } else if (isa<CastInst>(I)) {
4268     if (Operand) {
4269       Out << ' ';
4270       writeOperand(Operand, true);   // Work with broken code
4271     }
4272     Out << " to ";
4273     TypePrinter.print(I.getType(), Out);
4274   } else if (isa<VAArgInst>(I)) {
4275     if (Operand) {
4276       Out << ' ';
4277       writeOperand(Operand, true);   // Work with broken code
4278     }
4279     Out << ", ";
4280     TypePrinter.print(I.getType(), Out);
4281   } else if (Operand) {   // Print the normal way.
4282     if (const auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
4283       Out << ' ';
4284       TypePrinter.print(GEP->getSourceElementType(), Out);
4285       Out << ',';
4286     } else if (const auto *LI = dyn_cast<LoadInst>(&I)) {
4287       Out << ' ';
4288       TypePrinter.print(LI->getType(), Out);
4289       Out << ',';
4290     }
4291 
4292     // PrintAllTypes - Instructions who have operands of all the same type
4293     // omit the type from all but the first operand.  If the instruction has
4294     // different type operands (for example br), then they are all printed.
4295     bool PrintAllTypes = false;
4296     Type *TheType = Operand->getType();
4297 
4298     // Select, Store, ShuffleVector and CmpXchg always print all types.
4299     if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I) ||
4300         isa<ReturnInst>(I) || isa<AtomicCmpXchgInst>(I)) {
4301       PrintAllTypes = true;
4302     } else {
4303       for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
4304         Operand = I.getOperand(i);
4305         // note that Operand shouldn't be null, but the test helps make dump()
4306         // more tolerant of malformed IR
4307         if (Operand && Operand->getType() != TheType) {
4308           PrintAllTypes = true;    // We have differing types!  Print them all!
4309           break;
4310         }
4311       }
4312     }
4313 
4314     if (!PrintAllTypes) {
4315       Out << ' ';
4316       TypePrinter.print(TheType, Out);
4317     }
4318 
4319     Out << ' ';
4320     for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
4321       if (i) Out << ", ";
4322       writeOperand(I.getOperand(i), PrintAllTypes);
4323     }
4324   }
4325 
4326   // Print atomic ordering/alignment for memory operations
4327   if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
4328     if (LI->isAtomic())
4329       writeAtomic(LI->getContext(), LI->getOrdering(), LI->getSyncScopeID());
4330     if (MaybeAlign A = LI->getAlign())
4331       Out << ", align " << A->value();
4332   } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
4333     if (SI->isAtomic())
4334       writeAtomic(SI->getContext(), SI->getOrdering(), SI->getSyncScopeID());
4335     if (MaybeAlign A = SI->getAlign())
4336       Out << ", align " << A->value();
4337   } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
4338     writeAtomicCmpXchg(CXI->getContext(), CXI->getSuccessOrdering(),
4339                        CXI->getFailureOrdering(), CXI->getSyncScopeID());
4340     Out << ", align " << CXI->getAlign().value();
4341   } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
4342     writeAtomic(RMWI->getContext(), RMWI->getOrdering(),
4343                 RMWI->getSyncScopeID());
4344     Out << ", align " << RMWI->getAlign().value();
4345   } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
4346     writeAtomic(FI->getContext(), FI->getOrdering(), FI->getSyncScopeID());
4347   } else if (const ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(&I)) {
4348     PrintShuffleMask(Out, SVI->getType(), SVI->getShuffleMask());
4349   }
4350 
4351   // Print Metadata info.
4352   SmallVector<std::pair<unsigned, MDNode *>, 4> InstMD;
4353   I.getAllMetadata(InstMD);
4354   printMetadataAttachments(InstMD, ", ");
4355 
4356   // Print a nice comment.
4357   printInfoComment(I);
4358 }
4359 
4360 void AssemblyWriter::printMetadataAttachments(
4361     const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
4362     StringRef Separator) {
4363   if (MDs.empty())
4364     return;
4365 
4366   if (MDNames.empty())
4367     MDs[0].second->getContext().getMDKindNames(MDNames);
4368 
4369   auto WriterCtx = getContext();
4370   for (const auto &I : MDs) {
4371     unsigned Kind = I.first;
4372     Out << Separator;
4373     if (Kind < MDNames.size()) {
4374       Out << "!";
4375       printMetadataIdentifier(MDNames[Kind], Out);
4376     } else
4377       Out << "!<unknown kind #" << Kind << ">";
4378     Out << ' ';
4379     WriteAsOperandInternal(Out, I.second, WriterCtx);
4380   }
4381 }
4382 
4383 void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) {
4384   Out << '!' << Slot << " = ";
4385   printMDNodeBody(Node);
4386   Out << "\n";
4387 }
4388 
4389 void AssemblyWriter::writeAllMDNodes() {
4390   SmallVector<const MDNode *, 16> Nodes;
4391   Nodes.resize(Machine.mdn_size());
4392   for (auto &I : llvm::make_range(Machine.mdn_begin(), Machine.mdn_end()))
4393     Nodes[I.second] = cast<MDNode>(I.first);
4394 
4395   for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4396     writeMDNode(i, Nodes[i]);
4397   }
4398 }
4399 
4400 void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
4401   auto WriterCtx = getContext();
4402   WriteMDNodeBodyInternal(Out, Node, WriterCtx);
4403 }
4404 
4405 void AssemblyWriter::writeAttribute(const Attribute &Attr, bool InAttrGroup) {
4406   if (!Attr.isTypeAttribute()) {
4407     Out << Attr.getAsString(InAttrGroup);
4408     return;
4409   }
4410 
4411   Out << Attribute::getNameFromAttrKind(Attr.getKindAsEnum());
4412   if (Type *Ty = Attr.getValueAsType()) {
4413     Out << '(';
4414     TypePrinter.print(Ty, Out);
4415     Out << ')';
4416   }
4417 }
4418 
4419 void AssemblyWriter::writeAttributeSet(const AttributeSet &AttrSet,
4420                                        bool InAttrGroup) {
4421   bool FirstAttr = true;
4422   for (const auto &Attr : AttrSet) {
4423     if (!FirstAttr)
4424       Out << ' ';
4425     writeAttribute(Attr, InAttrGroup);
4426     FirstAttr = false;
4427   }
4428 }
4429 
4430 void AssemblyWriter::writeAllAttributeGroups() {
4431   std::vector<std::pair<AttributeSet, unsigned>> asVec;
4432   asVec.resize(Machine.as_size());
4433 
4434   for (auto &I : llvm::make_range(Machine.as_begin(), Machine.as_end()))
4435     asVec[I.second] = I;
4436 
4437   for (const auto &I : asVec)
4438     Out << "attributes #" << I.second << " = { "
4439         << I.first.getAsString(true) << " }\n";
4440 }
4441 
4442 void AssemblyWriter::printUseListOrder(const Value *V,
4443                                        const std::vector<unsigned> &Shuffle) {
4444   bool IsInFunction = Machine.getFunction();
4445   if (IsInFunction)
4446     Out << "  ";
4447 
4448   Out << "uselistorder";
4449   if (const BasicBlock *BB = IsInFunction ? nullptr : dyn_cast<BasicBlock>(V)) {
4450     Out << "_bb ";
4451     writeOperand(BB->getParent(), false);
4452     Out << ", ";
4453     writeOperand(BB, false);
4454   } else {
4455     Out << " ";
4456     writeOperand(V, true);
4457   }
4458   Out << ", { ";
4459 
4460   assert(Shuffle.size() >= 2 && "Shuffle too small");
4461   Out << Shuffle[0];
4462   for (unsigned I = 1, E = Shuffle.size(); I != E; ++I)
4463     Out << ", " << Shuffle[I];
4464   Out << " }\n";
4465 }
4466 
4467 void AssemblyWriter::printUseLists(const Function *F) {
4468   auto It = UseListOrders.find(F);
4469   if (It == UseListOrders.end())
4470     return;
4471 
4472   Out << "\n; uselistorder directives\n";
4473   for (const auto &Pair : It->second)
4474     printUseListOrder(Pair.first, Pair.second);
4475 }
4476 
4477 //===----------------------------------------------------------------------===//
4478 //                       External Interface declarations
4479 //===----------------------------------------------------------------------===//
4480 
4481 void Function::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4482                      bool ShouldPreserveUseListOrder,
4483                      bool IsForDebug) const {
4484   SlotTracker SlotTable(this->getParent());
4485   formatted_raw_ostream OS(ROS);
4486   AssemblyWriter W(OS, SlotTable, this->getParent(), AAW,
4487                    IsForDebug,
4488                    ShouldPreserveUseListOrder);
4489   W.printFunction(this);
4490 }
4491 
4492 void BasicBlock::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4493                      bool ShouldPreserveUseListOrder,
4494                      bool IsForDebug) const {
4495   SlotTracker SlotTable(this->getParent());
4496   formatted_raw_ostream OS(ROS);
4497   AssemblyWriter W(OS, SlotTable, this->getModule(), AAW,
4498                    IsForDebug,
4499                    ShouldPreserveUseListOrder);
4500   W.printBasicBlock(this);
4501 }
4502 
4503 void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4504                    bool ShouldPreserveUseListOrder, bool IsForDebug) const {
4505   SlotTracker SlotTable(this);
4506   formatted_raw_ostream OS(ROS);
4507   AssemblyWriter W(OS, SlotTable, this, AAW, IsForDebug,
4508                    ShouldPreserveUseListOrder);
4509   W.printModule(this);
4510 }
4511 
4512 void NamedMDNode::print(raw_ostream &ROS, bool IsForDebug) const {
4513   SlotTracker SlotTable(getParent());
4514   formatted_raw_ostream OS(ROS);
4515   AssemblyWriter W(OS, SlotTable, getParent(), nullptr, IsForDebug);
4516   W.printNamedMDNode(this);
4517 }
4518 
4519 void NamedMDNode::print(raw_ostream &ROS, ModuleSlotTracker &MST,
4520                         bool IsForDebug) const {
4521   Optional<SlotTracker> LocalST;
4522   SlotTracker *SlotTable;
4523   if (auto *ST = MST.getMachine())
4524     SlotTable = ST;
4525   else {
4526     LocalST.emplace(getParent());
4527     SlotTable = &*LocalST;
4528   }
4529 
4530   formatted_raw_ostream OS(ROS);
4531   AssemblyWriter W(OS, *SlotTable, getParent(), nullptr, IsForDebug);
4532   W.printNamedMDNode(this);
4533 }
4534 
4535 void Comdat::print(raw_ostream &ROS, bool /*IsForDebug*/) const {
4536   PrintLLVMName(ROS, getName(), ComdatPrefix);
4537   ROS << " = comdat ";
4538 
4539   switch (getSelectionKind()) {
4540   case Comdat::Any:
4541     ROS << "any";
4542     break;
4543   case Comdat::ExactMatch:
4544     ROS << "exactmatch";
4545     break;
4546   case Comdat::Largest:
4547     ROS << "largest";
4548     break;
4549   case Comdat::NoDeduplicate:
4550     ROS << "nodeduplicate";
4551     break;
4552   case Comdat::SameSize:
4553     ROS << "samesize";
4554     break;
4555   }
4556 
4557   ROS << '\n';
4558 }
4559 
4560 void Type::print(raw_ostream &OS, bool /*IsForDebug*/, bool NoDetails) const {
4561   TypePrinting TP;
4562   TP.print(const_cast<Type*>(this), OS);
4563 
4564   if (NoDetails)
4565     return;
4566 
4567   // If the type is a named struct type, print the body as well.
4568   if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
4569     if (!STy->isLiteral()) {
4570       OS << " = type ";
4571       TP.printStructBody(STy, OS);
4572     }
4573 }
4574 
4575 static bool isReferencingMDNode(const Instruction &I) {
4576   if (const auto *CI = dyn_cast<CallInst>(&I))
4577     if (Function *F = CI->getCalledFunction())
4578       if (F->isIntrinsic())
4579         for (auto &Op : I.operands())
4580           if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
4581             if (isa<MDNode>(V->getMetadata()))
4582               return true;
4583   return false;
4584 }
4585 
4586 void Value::print(raw_ostream &ROS, bool IsForDebug) const {
4587   bool ShouldInitializeAllMetadata = false;
4588   if (auto *I = dyn_cast<Instruction>(this))
4589     ShouldInitializeAllMetadata = isReferencingMDNode(*I);
4590   else if (isa<Function>(this) || isa<MetadataAsValue>(this))
4591     ShouldInitializeAllMetadata = true;
4592 
4593   ModuleSlotTracker MST(getModuleFromVal(this), ShouldInitializeAllMetadata);
4594   print(ROS, MST, IsForDebug);
4595 }
4596 
4597 void Value::print(raw_ostream &ROS, ModuleSlotTracker &MST,
4598                   bool IsForDebug) const {
4599   formatted_raw_ostream OS(ROS);
4600   SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
4601   SlotTracker &SlotTable =
4602       MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
4603   auto incorporateFunction = [&](const Function *F) {
4604     if (F)
4605       MST.incorporateFunction(*F);
4606   };
4607 
4608   if (const Instruction *I = dyn_cast<Instruction>(this)) {
4609     incorporateFunction(I->getParent() ? I->getParent()->getParent() : nullptr);
4610     AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), nullptr, IsForDebug);
4611     W.printInstruction(*I);
4612   } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
4613     incorporateFunction(BB->getParent());
4614     AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), nullptr, IsForDebug);
4615     W.printBasicBlock(BB);
4616   } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
4617     AssemblyWriter W(OS, SlotTable, GV->getParent(), nullptr, IsForDebug);
4618     if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
4619       W.printGlobal(V);
4620     else if (const Function *F = dyn_cast<Function>(GV))
4621       W.printFunction(F);
4622     else if (const GlobalAlias *A = dyn_cast<GlobalAlias>(GV))
4623       W.printAlias(A);
4624     else if (const GlobalIFunc *I = dyn_cast<GlobalIFunc>(GV))
4625       W.printIFunc(I);
4626     else
4627       llvm_unreachable("Unknown GlobalValue to print out!");
4628   } else if (const MetadataAsValue *V = dyn_cast<MetadataAsValue>(this)) {
4629     V->getMetadata()->print(ROS, MST, getModuleFromVal(V));
4630   } else if (const Constant *C = dyn_cast<Constant>(this)) {
4631     TypePrinting TypePrinter;
4632     TypePrinter.print(C->getType(), OS);
4633     OS << ' ';
4634     AsmWriterContext WriterCtx(&TypePrinter, MST.getMachine());
4635     WriteConstantInternal(OS, C, WriterCtx);
4636   } else if (isa<InlineAsm>(this) || isa<Argument>(this)) {
4637     this->printAsOperand(OS, /* PrintType */ true, MST);
4638   } else {
4639     llvm_unreachable("Unknown value to print out!");
4640   }
4641 }
4642 
4643 /// Print without a type, skipping the TypePrinting object.
4644 ///
4645 /// \return \c true iff printing was successful.
4646 static bool printWithoutType(const Value &V, raw_ostream &O,
4647                              SlotTracker *Machine, const Module *M) {
4648   if (V.hasName() || isa<GlobalValue>(V) ||
4649       (!isa<Constant>(V) && !isa<MetadataAsValue>(V))) {
4650     AsmWriterContext WriterCtx(nullptr, Machine, M);
4651     WriteAsOperandInternal(O, &V, WriterCtx);
4652     return true;
4653   }
4654   return false;
4655 }
4656 
4657 static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType,
4658                                ModuleSlotTracker &MST) {
4659   TypePrinting TypePrinter(MST.getModule());
4660   if (PrintType) {
4661     TypePrinter.print(V.getType(), O);
4662     O << ' ';
4663   }
4664 
4665   AsmWriterContext WriterCtx(&TypePrinter, MST.getMachine(), MST.getModule());
4666   WriteAsOperandInternal(O, &V, WriterCtx);
4667 }
4668 
4669 void Value::printAsOperand(raw_ostream &O, bool PrintType,
4670                            const Module *M) const {
4671   if (!M)
4672     M = getModuleFromVal(this);
4673 
4674   if (!PrintType)
4675     if (printWithoutType(*this, O, nullptr, M))
4676       return;
4677 
4678   SlotTracker Machine(
4679       M, /* ShouldInitializeAllMetadata */ isa<MetadataAsValue>(this));
4680   ModuleSlotTracker MST(Machine, M);
4681   printAsOperandImpl(*this, O, PrintType, MST);
4682 }
4683 
4684 void Value::printAsOperand(raw_ostream &O, bool PrintType,
4685                            ModuleSlotTracker &MST) const {
4686   if (!PrintType)
4687     if (printWithoutType(*this, O, MST.getMachine(), MST.getModule()))
4688       return;
4689 
4690   printAsOperandImpl(*this, O, PrintType, MST);
4691 }
4692 
4693 /// Recursive version of printMetadataImpl.
4694 static void printMetadataImplRec(raw_ostream &ROS, const Metadata &MD,
4695                                  AsmWriterContext &WriterCtx) {
4696   formatted_raw_ostream OS(ROS);
4697   WriteAsOperandInternal(OS, &MD, WriterCtx, /* FromValue */ true);
4698 
4699   auto *N = dyn_cast<MDNode>(&MD);
4700   if (!N || isa<DIExpression>(MD) || isa<DIArgList>(MD))
4701     return;
4702 
4703   OS << " = ";
4704   WriteMDNodeBodyInternal(OS, N, WriterCtx);
4705 }
4706 
4707 namespace {
4708 struct MDTreeAsmWriterContext : public AsmWriterContext {
4709   unsigned Level;
4710   // {Level, Printed string}
4711   using EntryTy = std::pair<unsigned, std::string>;
4712   SmallVector<EntryTy, 4> Buffer;
4713 
4714   // Used to break the cycle in case there is any.
4715   SmallPtrSet<const Metadata *, 4> Visited;
4716 
4717   raw_ostream &MainOS;
4718 
4719   MDTreeAsmWriterContext(TypePrinting *TP, SlotTracker *ST, const Module *M,
4720                          raw_ostream &OS, const Metadata *InitMD)
4721       : AsmWriterContext(TP, ST, M), Level(0U), Visited({InitMD}), MainOS(OS) {}
4722 
4723   void onWriteMetadataAsOperand(const Metadata *MD) override {
4724     if (!Visited.insert(MD).second)
4725       return;
4726 
4727     std::string Str;
4728     raw_string_ostream SS(Str);
4729     ++Level;
4730     // A placeholder entry to memorize the correct
4731     // position in buffer.
4732     Buffer.emplace_back(std::make_pair(Level, ""));
4733     unsigned InsertIdx = Buffer.size() - 1;
4734 
4735     printMetadataImplRec(SS, *MD, *this);
4736     Buffer[InsertIdx].second = std::move(SS.str());
4737     --Level;
4738   }
4739 
4740   ~MDTreeAsmWriterContext() {
4741     for (const auto &Entry : Buffer) {
4742       MainOS << "\n";
4743       unsigned NumIndent = Entry.first * 2U;
4744       MainOS.indent(NumIndent) << Entry.second;
4745     }
4746   }
4747 };
4748 } // end anonymous namespace
4749 
4750 static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD,
4751                               ModuleSlotTracker &MST, const Module *M,
4752                               bool OnlyAsOperand, bool PrintAsTree = false) {
4753   formatted_raw_ostream OS(ROS);
4754 
4755   TypePrinting TypePrinter(M);
4756 
4757   std::unique_ptr<AsmWriterContext> WriterCtx;
4758   if (PrintAsTree && !OnlyAsOperand)
4759     WriterCtx = std::make_unique<MDTreeAsmWriterContext>(
4760         &TypePrinter, MST.getMachine(), M, OS, &MD);
4761   else
4762     WriterCtx =
4763         std::make_unique<AsmWriterContext>(&TypePrinter, MST.getMachine(), M);
4764 
4765   WriteAsOperandInternal(OS, &MD, *WriterCtx, /* FromValue */ true);
4766 
4767   auto *N = dyn_cast<MDNode>(&MD);
4768   if (OnlyAsOperand || !N || isa<DIExpression>(MD) || isa<DIArgList>(MD))
4769     return;
4770 
4771   OS << " = ";
4772   WriteMDNodeBodyInternal(OS, N, *WriterCtx);
4773 }
4774 
4775 void Metadata::printAsOperand(raw_ostream &OS, const Module *M) const {
4776   ModuleSlotTracker MST(M, isa<MDNode>(this));
4777   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
4778 }
4779 
4780 void Metadata::printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
4781                               const Module *M) const {
4782   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
4783 }
4784 
4785 void Metadata::print(raw_ostream &OS, const Module *M,
4786                      bool /*IsForDebug*/) const {
4787   ModuleSlotTracker MST(M, isa<MDNode>(this));
4788   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
4789 }
4790 
4791 void Metadata::print(raw_ostream &OS, ModuleSlotTracker &MST,
4792                      const Module *M, bool /*IsForDebug*/) const {
4793   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
4794 }
4795 
4796 void MDNode::printTree(raw_ostream &OS, const Module *M) const {
4797   ModuleSlotTracker MST(M, true);
4798   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false,
4799                     /*PrintAsTree=*/true);
4800 }
4801 
4802 void MDNode::printTree(raw_ostream &OS, ModuleSlotTracker &MST,
4803                        const Module *M) const {
4804   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false,
4805                     /*PrintAsTree=*/true);
4806 }
4807 
4808 void ModuleSummaryIndex::print(raw_ostream &ROS, bool IsForDebug) const {
4809   SlotTracker SlotTable(this);
4810   formatted_raw_ostream OS(ROS);
4811   AssemblyWriter W(OS, SlotTable, this, IsForDebug);
4812   W.printModuleSummaryIndex();
4813 }
4814 
4815 void ModuleSlotTracker::collectMDNodes(MachineMDNodeListType &L, unsigned LB,
4816                                        unsigned UB) const {
4817   SlotTracker *ST = MachineStorage.get();
4818   if (!ST)
4819     return;
4820 
4821   for (auto &I : llvm::make_range(ST->mdn_begin(), ST->mdn_end()))
4822     if (I.second >= LB && I.second < UB)
4823       L.push_back(std::make_pair(I.second, I.first));
4824 }
4825 
4826 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4827 // Value::dump - allow easy printing of Values from the debugger.
4828 LLVM_DUMP_METHOD
4829 void Value::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
4830 
4831 // Type::dump - allow easy printing of Types from the debugger.
4832 LLVM_DUMP_METHOD
4833 void Type::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
4834 
4835 // Module::dump() - Allow printing of Modules from the debugger.
4836 LLVM_DUMP_METHOD
4837 void Module::dump() const {
4838   print(dbgs(), nullptr,
4839         /*ShouldPreserveUseListOrder=*/false, /*IsForDebug=*/true);
4840 }
4841 
4842 // Allow printing of Comdats from the debugger.
4843 LLVM_DUMP_METHOD
4844 void Comdat::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4845 
4846 // NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
4847 LLVM_DUMP_METHOD
4848 void NamedMDNode::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4849 
4850 LLVM_DUMP_METHOD
4851 void Metadata::dump() const { dump(nullptr); }
4852 
4853 LLVM_DUMP_METHOD
4854 void Metadata::dump(const Module *M) const {
4855   print(dbgs(), M, /*IsForDebug=*/true);
4856   dbgs() << '\n';
4857 }
4858 
4859 LLVM_DUMP_METHOD
4860 void MDNode::dumpTree() const { dumpTree(nullptr); }
4861 
4862 LLVM_DUMP_METHOD
4863 void MDNode::dumpTree(const Module *M) const {
4864   printTree(dbgs(), M);
4865   dbgs() << '\n';
4866 }
4867 
4868 // Allow printing of ModuleSummaryIndex from the debugger.
4869 LLVM_DUMP_METHOD
4870 void ModuleSummaryIndex::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4871 #endif
4872