1 //===- Instructions.cpp - Implement the LLVM instructions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements all of the non-inline methods for the LLVM instruction
10 // classes.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/IR/Instructions.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/SmallBitVector.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/IR/Attributes.h"
20 #include "llvm/IR/BasicBlock.h"
21 #include "llvm/IR/Constant.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/InstrTypes.h"
27 #include "llvm/IR/Instruction.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/MDBuilder.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/Operator.h"
34 #include "llvm/IR/ProfDataUtils.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/Support/AtomicOrdering.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/ModRef.h"
42 #include "llvm/Support/TypeSize.h"
43 #include <algorithm>
44 #include <cassert>
45 #include <cstdint>
46 #include <optional>
47 #include <vector>
48 
49 using namespace llvm;
50 
51 static cl::opt<bool> DisableI2pP2iOpt(
52     "disable-i2p-p2i-opt", cl::init(false),
53     cl::desc("Disables inttoptr/ptrtoint roundtrip optimization"));
54 
55 //===----------------------------------------------------------------------===//
56 //                            AllocaInst Class
57 //===----------------------------------------------------------------------===//
58 
59 std::optional<TypeSize>
60 AllocaInst::getAllocationSize(const DataLayout &DL) const {
61   TypeSize Size = DL.getTypeAllocSize(getAllocatedType());
62   if (isArrayAllocation()) {
63     auto *C = dyn_cast<ConstantInt>(getArraySize());
64     if (!C)
65       return std::nullopt;
66     assert(!Size.isScalable() && "Array elements cannot have a scalable size");
67     Size *= C->getZExtValue();
68   }
69   return Size;
70 }
71 
72 std::optional<TypeSize>
73 AllocaInst::getAllocationSizeInBits(const DataLayout &DL) const {
74   std::optional<TypeSize> Size = getAllocationSize(DL);
75   if (Size)
76     return *Size * 8;
77   return std::nullopt;
78 }
79 
80 //===----------------------------------------------------------------------===//
81 //                              SelectInst Class
82 //===----------------------------------------------------------------------===//
83 
84 /// areInvalidOperands - Return a string if the specified operands are invalid
85 /// for a select operation, otherwise return null.
86 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
87   if (Op1->getType() != Op2->getType())
88     return "both values to select must have same type";
89 
90   if (Op1->getType()->isTokenTy())
91     return "select values cannot have token type";
92 
93   if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
94     // Vector select.
95     if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
96       return "vector select condition element type must be i1";
97     VectorType *ET = dyn_cast<VectorType>(Op1->getType());
98     if (!ET)
99       return "selected values for vector select must be vectors";
100     if (ET->getElementCount() != VT->getElementCount())
101       return "vector select requires selected vectors to have "
102                    "the same vector length as select condition";
103   } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
104     return "select condition must be i1 or <n x i1>";
105   }
106   return nullptr;
107 }
108 
109 //===----------------------------------------------------------------------===//
110 //                               PHINode Class
111 //===----------------------------------------------------------------------===//
112 
113 PHINode::PHINode(const PHINode &PN)
114     : Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()),
115       ReservedSpace(PN.getNumOperands()) {
116   allocHungoffUses(PN.getNumOperands());
117   std::copy(PN.op_begin(), PN.op_end(), op_begin());
118   copyIncomingBlocks(make_range(PN.block_begin(), PN.block_end()));
119   SubclassOptionalData = PN.SubclassOptionalData;
120 }
121 
122 // removeIncomingValue - Remove an incoming value.  This is useful if a
123 // predecessor basic block is deleted.
124 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
125   Value *Removed = getIncomingValue(Idx);
126 
127   // Move everything after this operand down.
128   //
129   // FIXME: we could just swap with the end of the list, then erase.  However,
130   // clients might not expect this to happen.  The code as it is thrashes the
131   // use/def lists, which is kinda lame.
132   std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
133   copyIncomingBlocks(make_range(block_begin() + Idx + 1, block_end()), Idx);
134 
135   // Nuke the last value.
136   Op<-1>().set(nullptr);
137   setNumHungOffUseOperands(getNumOperands() - 1);
138 
139   // If the PHI node is dead, because it has zero entries, nuke it now.
140   if (getNumOperands() == 0 && DeletePHIIfEmpty) {
141     // If anyone is using this PHI, make them use a dummy value instead...
142     replaceAllUsesWith(PoisonValue::get(getType()));
143     eraseFromParent();
144   }
145   return Removed;
146 }
147 
148 /// growOperands - grow operands - This grows the operand list in response
149 /// to a push_back style of operation.  This grows the number of ops by 1.5
150 /// times.
151 ///
152 void PHINode::growOperands() {
153   unsigned e = getNumOperands();
154   unsigned NumOps = e + e / 2;
155   if (NumOps < 2) NumOps = 2;      // 2 op PHI nodes are VERY common.
156 
157   ReservedSpace = NumOps;
158   growHungoffUses(ReservedSpace, /* IsPhi */ true);
159 }
160 
161 /// hasConstantValue - If the specified PHI node always merges together the same
162 /// value, return the value, otherwise return null.
163 Value *PHINode::hasConstantValue() const {
164   // Exploit the fact that phi nodes always have at least one entry.
165   Value *ConstantValue = getIncomingValue(0);
166   for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
167     if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
168       if (ConstantValue != this)
169         return nullptr; // Incoming values not all the same.
170        // The case where the first value is this PHI.
171       ConstantValue = getIncomingValue(i);
172     }
173   if (ConstantValue == this)
174     return UndefValue::get(getType());
175   return ConstantValue;
176 }
177 
178 /// hasConstantOrUndefValue - Whether the specified PHI node always merges
179 /// together the same value, assuming that undefs result in the same value as
180 /// non-undefs.
181 /// Unlike \ref hasConstantValue, this does not return a value because the
182 /// unique non-undef incoming value need not dominate the PHI node.
183 bool PHINode::hasConstantOrUndefValue() const {
184   Value *ConstantValue = nullptr;
185   for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) {
186     Value *Incoming = getIncomingValue(i);
187     if (Incoming != this && !isa<UndefValue>(Incoming)) {
188       if (ConstantValue && ConstantValue != Incoming)
189         return false;
190       ConstantValue = Incoming;
191     }
192   }
193   return true;
194 }
195 
196 //===----------------------------------------------------------------------===//
197 //                       LandingPadInst Implementation
198 //===----------------------------------------------------------------------===//
199 
200 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
201                                const Twine &NameStr, Instruction *InsertBefore)
202     : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) {
203   init(NumReservedValues, NameStr);
204 }
205 
206 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
207                                const Twine &NameStr, BasicBlock *InsertAtEnd)
208     : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) {
209   init(NumReservedValues, NameStr);
210 }
211 
212 LandingPadInst::LandingPadInst(const LandingPadInst &LP)
213     : Instruction(LP.getType(), Instruction::LandingPad, nullptr,
214                   LP.getNumOperands()),
215       ReservedSpace(LP.getNumOperands()) {
216   allocHungoffUses(LP.getNumOperands());
217   Use *OL = getOperandList();
218   const Use *InOL = LP.getOperandList();
219   for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
220     OL[I] = InOL[I];
221 
222   setCleanup(LP.isCleanup());
223 }
224 
225 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
226                                        const Twine &NameStr,
227                                        Instruction *InsertBefore) {
228   return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore);
229 }
230 
231 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
232                                        const Twine &NameStr,
233                                        BasicBlock *InsertAtEnd) {
234   return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertAtEnd);
235 }
236 
237 void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) {
238   ReservedSpace = NumReservedValues;
239   setNumHungOffUseOperands(0);
240   allocHungoffUses(ReservedSpace);
241   setName(NameStr);
242   setCleanup(false);
243 }
244 
245 /// growOperands - grow operands - This grows the operand list in response to a
246 /// push_back style of operation. This grows the number of ops by 2 times.
247 void LandingPadInst::growOperands(unsigned Size) {
248   unsigned e = getNumOperands();
249   if (ReservedSpace >= e + Size) return;
250   ReservedSpace = (std::max(e, 1U) + Size / 2) * 2;
251   growHungoffUses(ReservedSpace);
252 }
253 
254 void LandingPadInst::addClause(Constant *Val) {
255   unsigned OpNo = getNumOperands();
256   growOperands(1);
257   assert(OpNo < ReservedSpace && "Growing didn't work!");
258   setNumHungOffUseOperands(getNumOperands() + 1);
259   getOperandList()[OpNo] = Val;
260 }
261 
262 //===----------------------------------------------------------------------===//
263 //                        CallBase Implementation
264 //===----------------------------------------------------------------------===//
265 
266 CallBase *CallBase::Create(CallBase *CB, ArrayRef<OperandBundleDef> Bundles,
267                            Instruction *InsertPt) {
268   switch (CB->getOpcode()) {
269   case Instruction::Call:
270     return CallInst::Create(cast<CallInst>(CB), Bundles, InsertPt);
271   case Instruction::Invoke:
272     return InvokeInst::Create(cast<InvokeInst>(CB), Bundles, InsertPt);
273   case Instruction::CallBr:
274     return CallBrInst::Create(cast<CallBrInst>(CB), Bundles, InsertPt);
275   default:
276     llvm_unreachable("Unknown CallBase sub-class!");
277   }
278 }
279 
280 CallBase *CallBase::Create(CallBase *CI, OperandBundleDef OpB,
281                            Instruction *InsertPt) {
282   SmallVector<OperandBundleDef, 2> OpDefs;
283   for (unsigned i = 0, e = CI->getNumOperandBundles(); i < e; ++i) {
284     auto ChildOB = CI->getOperandBundleAt(i);
285     if (ChildOB.getTagName() != OpB.getTag())
286       OpDefs.emplace_back(ChildOB);
287   }
288   OpDefs.emplace_back(OpB);
289   return CallBase::Create(CI, OpDefs, InsertPt);
290 }
291 
292 
293 Function *CallBase::getCaller() { return getParent()->getParent(); }
294 
295 unsigned CallBase::getNumSubclassExtraOperandsDynamic() const {
296   assert(getOpcode() == Instruction::CallBr && "Unexpected opcode!");
297   return cast<CallBrInst>(this)->getNumIndirectDests() + 1;
298 }
299 
300 bool CallBase::isIndirectCall() const {
301   const Value *V = getCalledOperand();
302   if (isa<Function>(V) || isa<Constant>(V))
303     return false;
304   return !isInlineAsm();
305 }
306 
307 /// Tests if this call site must be tail call optimized. Only a CallInst can
308 /// be tail call optimized.
309 bool CallBase::isMustTailCall() const {
310   if (auto *CI = dyn_cast<CallInst>(this))
311     return CI->isMustTailCall();
312   return false;
313 }
314 
315 /// Tests if this call site is marked as a tail call.
316 bool CallBase::isTailCall() const {
317   if (auto *CI = dyn_cast<CallInst>(this))
318     return CI->isTailCall();
319   return false;
320 }
321 
322 Intrinsic::ID CallBase::getIntrinsicID() const {
323   if (auto *F = getCalledFunction())
324     return F->getIntrinsicID();
325   return Intrinsic::not_intrinsic;
326 }
327 
328 bool CallBase::isReturnNonNull() const {
329   if (hasRetAttr(Attribute::NonNull))
330     return true;
331 
332   if (getRetDereferenceableBytes() > 0 &&
333       !NullPointerIsDefined(getCaller(), getType()->getPointerAddressSpace()))
334     return true;
335 
336   return false;
337 }
338 
339 Value *CallBase::getArgOperandWithAttribute(Attribute::AttrKind Kind) const {
340   unsigned Index;
341 
342   if (Attrs.hasAttrSomewhere(Kind, &Index))
343     return getArgOperand(Index - AttributeList::FirstArgIndex);
344   if (const Function *F = getCalledFunction())
345     if (F->getAttributes().hasAttrSomewhere(Kind, &Index))
346       return getArgOperand(Index - AttributeList::FirstArgIndex);
347 
348   return nullptr;
349 }
350 
351 /// Determine whether the argument or parameter has the given attribute.
352 bool CallBase::paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const {
353   assert(ArgNo < arg_size() && "Param index out of bounds!");
354 
355   if (Attrs.hasParamAttr(ArgNo, Kind))
356     return true;
357 
358   const Function *F = getCalledFunction();
359   if (!F)
360     return false;
361 
362   if (!F->getAttributes().hasParamAttr(ArgNo, Kind))
363     return false;
364 
365   // Take into account mod/ref by operand bundles.
366   switch (Kind) {
367   case Attribute::ReadNone:
368     return !hasReadingOperandBundles() && !hasClobberingOperandBundles();
369   case Attribute::ReadOnly:
370     return !hasClobberingOperandBundles();
371   case Attribute::WriteOnly:
372     return !hasReadingOperandBundles();
373   default:
374     return true;
375   }
376 }
377 
378 bool CallBase::hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const {
379   Value *V = getCalledOperand();
380   if (auto *CE = dyn_cast<ConstantExpr>(V))
381     if (CE->getOpcode() == BitCast)
382       V = CE->getOperand(0);
383 
384   if (auto *F = dyn_cast<Function>(V))
385     return F->getAttributes().hasFnAttr(Kind);
386 
387   return false;
388 }
389 
390 bool CallBase::hasFnAttrOnCalledFunction(StringRef Kind) const {
391   Value *V = getCalledOperand();
392   if (auto *CE = dyn_cast<ConstantExpr>(V))
393     if (CE->getOpcode() == BitCast)
394       V = CE->getOperand(0);
395 
396   if (auto *F = dyn_cast<Function>(V))
397     return F->getAttributes().hasFnAttr(Kind);
398 
399   return false;
400 }
401 
402 template <typename AK>
403 Attribute CallBase::getFnAttrOnCalledFunction(AK Kind) const {
404   if constexpr (std::is_same_v<AK, Attribute::AttrKind>) {
405     // getMemoryEffects() correctly combines memory effects from the call-site,
406     // operand bundles and function.
407     assert(Kind != Attribute::Memory && "Use getMemoryEffects() instead");
408   }
409 
410   Value *V = getCalledOperand();
411   if (auto *CE = dyn_cast<ConstantExpr>(V))
412     if (CE->getOpcode() == BitCast)
413       V = CE->getOperand(0);
414 
415   if (auto *F = dyn_cast<Function>(V))
416     return F->getAttributes().getFnAttr(Kind);
417 
418   return Attribute();
419 }
420 
421 template Attribute
422 CallBase::getFnAttrOnCalledFunction(Attribute::AttrKind Kind) const;
423 template Attribute CallBase::getFnAttrOnCalledFunction(StringRef Kind) const;
424 
425 void CallBase::getOperandBundlesAsDefs(
426     SmallVectorImpl<OperandBundleDef> &Defs) const {
427   for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i)
428     Defs.emplace_back(getOperandBundleAt(i));
429 }
430 
431 CallBase::op_iterator
432 CallBase::populateBundleOperandInfos(ArrayRef<OperandBundleDef> Bundles,
433                                      const unsigned BeginIndex) {
434   auto It = op_begin() + BeginIndex;
435   for (auto &B : Bundles)
436     It = std::copy(B.input_begin(), B.input_end(), It);
437 
438   auto *ContextImpl = getContext().pImpl;
439   auto BI = Bundles.begin();
440   unsigned CurrentIndex = BeginIndex;
441 
442   for (auto &BOI : bundle_op_infos()) {
443     assert(BI != Bundles.end() && "Incorrect allocation?");
444 
445     BOI.Tag = ContextImpl->getOrInsertBundleTag(BI->getTag());
446     BOI.Begin = CurrentIndex;
447     BOI.End = CurrentIndex + BI->input_size();
448     CurrentIndex = BOI.End;
449     BI++;
450   }
451 
452   assert(BI == Bundles.end() && "Incorrect allocation?");
453 
454   return It;
455 }
456 
457 CallBase::BundleOpInfo &CallBase::getBundleOpInfoForOperand(unsigned OpIdx) {
458   /// When there isn't many bundles, we do a simple linear search.
459   /// Else fallback to a binary-search that use the fact that bundles usually
460   /// have similar number of argument to get faster convergence.
461   if (bundle_op_info_end() - bundle_op_info_begin() < 8) {
462     for (auto &BOI : bundle_op_infos())
463       if (BOI.Begin <= OpIdx && OpIdx < BOI.End)
464         return BOI;
465 
466     llvm_unreachable("Did not find operand bundle for operand!");
467   }
468 
469   assert(OpIdx >= arg_size() && "the Idx is not in the operand bundles");
470   assert(bundle_op_info_end() - bundle_op_info_begin() > 0 &&
471          OpIdx < std::prev(bundle_op_info_end())->End &&
472          "The Idx isn't in the operand bundle");
473 
474   /// We need a decimal number below and to prevent using floating point numbers
475   /// we use an intergal value multiplied by this constant.
476   constexpr unsigned NumberScaling = 1024;
477 
478   bundle_op_iterator Begin = bundle_op_info_begin();
479   bundle_op_iterator End = bundle_op_info_end();
480   bundle_op_iterator Current = Begin;
481 
482   while (Begin != End) {
483     unsigned ScaledOperandPerBundle =
484         NumberScaling * (std::prev(End)->End - Begin->Begin) / (End - Begin);
485     Current = Begin + (((OpIdx - Begin->Begin) * NumberScaling) /
486                        ScaledOperandPerBundle);
487     if (Current >= End)
488       Current = std::prev(End);
489     assert(Current < End && Current >= Begin &&
490            "the operand bundle doesn't cover every value in the range");
491     if (OpIdx >= Current->Begin && OpIdx < Current->End)
492       break;
493     if (OpIdx >= Current->End)
494       Begin = Current + 1;
495     else
496       End = Current;
497   }
498 
499   assert(OpIdx >= Current->Begin && OpIdx < Current->End &&
500          "the operand bundle doesn't cover every value in the range");
501   return *Current;
502 }
503 
504 CallBase *CallBase::addOperandBundle(CallBase *CB, uint32_t ID,
505                                      OperandBundleDef OB,
506                                      Instruction *InsertPt) {
507   if (CB->getOperandBundle(ID))
508     return CB;
509 
510   SmallVector<OperandBundleDef, 1> Bundles;
511   CB->getOperandBundlesAsDefs(Bundles);
512   Bundles.push_back(OB);
513   return Create(CB, Bundles, InsertPt);
514 }
515 
516 CallBase *CallBase::removeOperandBundle(CallBase *CB, uint32_t ID,
517                                         Instruction *InsertPt) {
518   SmallVector<OperandBundleDef, 1> Bundles;
519   bool CreateNew = false;
520 
521   for (unsigned I = 0, E = CB->getNumOperandBundles(); I != E; ++I) {
522     auto Bundle = CB->getOperandBundleAt(I);
523     if (Bundle.getTagID() == ID) {
524       CreateNew = true;
525       continue;
526     }
527     Bundles.emplace_back(Bundle);
528   }
529 
530   return CreateNew ? Create(CB, Bundles, InsertPt) : CB;
531 }
532 
533 bool CallBase::hasReadingOperandBundles() const {
534   // Implementation note: this is a conservative implementation of operand
535   // bundle semantics, where *any* non-assume operand bundle (other than
536   // ptrauth) forces a callsite to be at least readonly.
537   return hasOperandBundlesOtherThan(
538              {LLVMContext::OB_ptrauth, LLVMContext::OB_kcfi}) &&
539          getIntrinsicID() != Intrinsic::assume;
540 }
541 
542 bool CallBase::hasClobberingOperandBundles() const {
543   return hasOperandBundlesOtherThan(
544              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
545               LLVMContext::OB_ptrauth, LLVMContext::OB_kcfi}) &&
546          getIntrinsicID() != Intrinsic::assume;
547 }
548 
549 MemoryEffects CallBase::getMemoryEffects() const {
550   MemoryEffects ME = getAttributes().getMemoryEffects();
551   if (auto *Fn = dyn_cast<Function>(getCalledOperand())) {
552     MemoryEffects FnME = Fn->getMemoryEffects();
553     if (hasOperandBundles()) {
554       // TODO: Add a method to get memory effects for operand bundles instead.
555       if (hasReadingOperandBundles())
556         FnME |= MemoryEffects::readOnly();
557       if (hasClobberingOperandBundles())
558         FnME |= MemoryEffects::writeOnly();
559     }
560     ME &= FnME;
561   }
562   return ME;
563 }
564 void CallBase::setMemoryEffects(MemoryEffects ME) {
565   addFnAttr(Attribute::getWithMemoryEffects(getContext(), ME));
566 }
567 
568 /// Determine if the function does not access memory.
569 bool CallBase::doesNotAccessMemory() const {
570   return getMemoryEffects().doesNotAccessMemory();
571 }
572 void CallBase::setDoesNotAccessMemory() {
573   setMemoryEffects(MemoryEffects::none());
574 }
575 
576 /// Determine if the function does not access or only reads memory.
577 bool CallBase::onlyReadsMemory() const {
578   return getMemoryEffects().onlyReadsMemory();
579 }
580 void CallBase::setOnlyReadsMemory() {
581   setMemoryEffects(getMemoryEffects() & MemoryEffects::readOnly());
582 }
583 
584 /// Determine if the function does not access or only writes memory.
585 bool CallBase::onlyWritesMemory() const {
586   return getMemoryEffects().onlyWritesMemory();
587 }
588 void CallBase::setOnlyWritesMemory() {
589   setMemoryEffects(getMemoryEffects() & MemoryEffects::writeOnly());
590 }
591 
592 /// Determine if the call can access memmory only using pointers based
593 /// on its arguments.
594 bool CallBase::onlyAccessesArgMemory() const {
595   return getMemoryEffects().onlyAccessesArgPointees();
596 }
597 void CallBase::setOnlyAccessesArgMemory() {
598   setMemoryEffects(getMemoryEffects() & MemoryEffects::argMemOnly());
599 }
600 
601 /// Determine if the function may only access memory that is
602 ///  inaccessible from the IR.
603 bool CallBase::onlyAccessesInaccessibleMemory() const {
604   return getMemoryEffects().onlyAccessesInaccessibleMem();
605 }
606 void CallBase::setOnlyAccessesInaccessibleMemory() {
607   setMemoryEffects(getMemoryEffects() & MemoryEffects::inaccessibleMemOnly());
608 }
609 
610 /// Determine if the function may only access memory that is
611 ///  either inaccessible from the IR or pointed to by its arguments.
612 bool CallBase::onlyAccessesInaccessibleMemOrArgMem() const {
613   return getMemoryEffects().onlyAccessesInaccessibleOrArgMem();
614 }
615 void CallBase::setOnlyAccessesInaccessibleMemOrArgMem() {
616   setMemoryEffects(getMemoryEffects() &
617                    MemoryEffects::inaccessibleOrArgMemOnly());
618 }
619 
620 //===----------------------------------------------------------------------===//
621 //                        CallInst Implementation
622 //===----------------------------------------------------------------------===//
623 
624 void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
625                     ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) {
626   this->FTy = FTy;
627   assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 &&
628          "NumOperands not set up?");
629 
630 #ifndef NDEBUG
631   assert((Args.size() == FTy->getNumParams() ||
632           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
633          "Calling a function with bad signature!");
634 
635   for (unsigned i = 0; i != Args.size(); ++i)
636     assert((i >= FTy->getNumParams() ||
637             FTy->getParamType(i) == Args[i]->getType()) &&
638            "Calling a function with a bad signature!");
639 #endif
640 
641   // Set operands in order of their index to match use-list-order
642   // prediction.
643   llvm::copy(Args, op_begin());
644   setCalledOperand(Func);
645 
646   auto It = populateBundleOperandInfos(Bundles, Args.size());
647   (void)It;
648   assert(It + 1 == op_end() && "Should add up!");
649 
650   setName(NameStr);
651 }
652 
653 void CallInst::init(FunctionType *FTy, Value *Func, const Twine &NameStr) {
654   this->FTy = FTy;
655   assert(getNumOperands() == 1 && "NumOperands not set up?");
656   setCalledOperand(Func);
657 
658   assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
659 
660   setName(NameStr);
661 }
662 
663 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
664                    Instruction *InsertBefore)
665     : CallBase(Ty->getReturnType(), Instruction::Call,
666                OperandTraits<CallBase>::op_end(this) - 1, 1, InsertBefore) {
667   init(Ty, Func, Name);
668 }
669 
670 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
671                    BasicBlock *InsertAtEnd)
672     : CallBase(Ty->getReturnType(), Instruction::Call,
673                OperandTraits<CallBase>::op_end(this) - 1, 1, InsertAtEnd) {
674   init(Ty, Func, Name);
675 }
676 
677 CallInst::CallInst(const CallInst &CI)
678     : CallBase(CI.Attrs, CI.FTy, CI.getType(), Instruction::Call,
679                OperandTraits<CallBase>::op_end(this) - CI.getNumOperands(),
680                CI.getNumOperands()) {
681   setTailCallKind(CI.getTailCallKind());
682   setCallingConv(CI.getCallingConv());
683 
684   std::copy(CI.op_begin(), CI.op_end(), op_begin());
685   std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(),
686             bundle_op_info_begin());
687   SubclassOptionalData = CI.SubclassOptionalData;
688 }
689 
690 CallInst *CallInst::Create(CallInst *CI, ArrayRef<OperandBundleDef> OpB,
691                            Instruction *InsertPt) {
692   std::vector<Value *> Args(CI->arg_begin(), CI->arg_end());
693 
694   auto *NewCI = CallInst::Create(CI->getFunctionType(), CI->getCalledOperand(),
695                                  Args, OpB, CI->getName(), InsertPt);
696   NewCI->setTailCallKind(CI->getTailCallKind());
697   NewCI->setCallingConv(CI->getCallingConv());
698   NewCI->SubclassOptionalData = CI->SubclassOptionalData;
699   NewCI->setAttributes(CI->getAttributes());
700   NewCI->setDebugLoc(CI->getDebugLoc());
701   return NewCI;
702 }
703 
704 // Update profile weight for call instruction by scaling it using the ratio
705 // of S/T. The meaning of "branch_weights" meta data for call instruction is
706 // transfered to represent call count.
707 void CallInst::updateProfWeight(uint64_t S, uint64_t T) {
708   auto *ProfileData = getMetadata(LLVMContext::MD_prof);
709   if (ProfileData == nullptr)
710     return;
711 
712   auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0));
713   if (!ProfDataName || (!ProfDataName->getString().equals("branch_weights") &&
714                         !ProfDataName->getString().equals("VP")))
715     return;
716 
717   if (T == 0) {
718     LLVM_DEBUG(dbgs() << "Attempting to update profile weights will result in "
719                          "div by 0. Ignoring. Likely the function "
720                       << getParent()->getParent()->getName()
721                       << " has 0 entry count, and contains call instructions "
722                          "with non-zero prof info.");
723     return;
724   }
725 
726   MDBuilder MDB(getContext());
727   SmallVector<Metadata *, 3> Vals;
728   Vals.push_back(ProfileData->getOperand(0));
729   APInt APS(128, S), APT(128, T);
730   if (ProfDataName->getString().equals("branch_weights") &&
731       ProfileData->getNumOperands() > 0) {
732     // Using APInt::div may be expensive, but most cases should fit 64 bits.
733     APInt Val(128, mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1))
734                        ->getValue()
735                        .getZExtValue());
736     Val *= APS;
737     Vals.push_back(MDB.createConstant(
738         ConstantInt::get(Type::getInt32Ty(getContext()),
739                          Val.udiv(APT).getLimitedValue(UINT32_MAX))));
740   } else if (ProfDataName->getString().equals("VP"))
741     for (unsigned i = 1; i < ProfileData->getNumOperands(); i += 2) {
742       // The first value is the key of the value profile, which will not change.
743       Vals.push_back(ProfileData->getOperand(i));
744       uint64_t Count =
745           mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i + 1))
746               ->getValue()
747               .getZExtValue();
748       // Don't scale the magic number.
749       if (Count == NOMORE_ICP_MAGICNUM) {
750         Vals.push_back(ProfileData->getOperand(i + 1));
751         continue;
752       }
753       // Using APInt::div may be expensive, but most cases should fit 64 bits.
754       APInt Val(128, Count);
755       Val *= APS;
756       Vals.push_back(MDB.createConstant(
757           ConstantInt::get(Type::getInt64Ty(getContext()),
758                            Val.udiv(APT).getLimitedValue())));
759     }
760   setMetadata(LLVMContext::MD_prof, MDNode::get(getContext(), Vals));
761 }
762 
763 /// IsConstantOne - Return true only if val is constant int 1
764 static bool IsConstantOne(Value *val) {
765   assert(val && "IsConstantOne does not work with nullptr val");
766   const ConstantInt *CVal = dyn_cast<ConstantInt>(val);
767   return CVal && CVal->isOne();
768 }
769 
770 static Instruction *createMalloc(Instruction *InsertBefore,
771                                  BasicBlock *InsertAtEnd, Type *IntPtrTy,
772                                  Type *AllocTy, Value *AllocSize,
773                                  Value *ArraySize,
774                                  ArrayRef<OperandBundleDef> OpB,
775                                  Function *MallocF, const Twine &Name) {
776   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
777          "createMalloc needs either InsertBefore or InsertAtEnd");
778 
779   // malloc(type) becomes:
780   //       bitcast (i8* malloc(typeSize)) to type*
781   // malloc(type, arraySize) becomes:
782   //       bitcast (i8* malloc(typeSize*arraySize)) to type*
783   if (!ArraySize)
784     ArraySize = ConstantInt::get(IntPtrTy, 1);
785   else if (ArraySize->getType() != IntPtrTy) {
786     if (InsertBefore)
787       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
788                                               "", InsertBefore);
789     else
790       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
791                                               "", InsertAtEnd);
792   }
793 
794   if (!IsConstantOne(ArraySize)) {
795     if (IsConstantOne(AllocSize)) {
796       AllocSize = ArraySize;         // Operand * 1 = Operand
797     } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
798       Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
799                                                      false /*ZExt*/);
800       // Malloc arg is constant product of type size and array size
801       AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
802     } else {
803       // Multiply type size by the array size...
804       if (InsertBefore)
805         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
806                                               "mallocsize", InsertBefore);
807       else
808         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
809                                               "mallocsize", InsertAtEnd);
810     }
811   }
812 
813   assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
814   // Create the call to Malloc.
815   BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
816   Module *M = BB->getParent()->getParent();
817   Type *BPTy = Type::getInt8PtrTy(BB->getContext());
818   FunctionCallee MallocFunc = MallocF;
819   if (!MallocFunc)
820     // prototype malloc as "void *malloc(size_t)"
821     MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy);
822   PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
823   CallInst *MCall = nullptr;
824   Instruction *Result = nullptr;
825   if (InsertBefore) {
826     MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall",
827                              InsertBefore);
828     Result = MCall;
829     if (Result->getType() != AllocPtrType)
830       // Create a cast instruction to convert to the right type...
831       Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
832   } else {
833     MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall");
834     Result = MCall;
835     if (Result->getType() != AllocPtrType) {
836       MCall->insertInto(InsertAtEnd, InsertAtEnd->end());
837       // Create a cast instruction to convert to the right type...
838       Result = new BitCastInst(MCall, AllocPtrType, Name);
839     }
840   }
841   MCall->setTailCall();
842   if (Function *F = dyn_cast<Function>(MallocFunc.getCallee())) {
843     MCall->setCallingConv(F->getCallingConv());
844     if (!F->returnDoesNotAlias())
845       F->setReturnDoesNotAlias();
846   }
847   assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
848 
849   return Result;
850 }
851 
852 /// CreateMalloc - Generate the IR for a call to malloc:
853 /// 1. Compute the malloc call's argument as the specified type's size,
854 ///    possibly multiplied by the array size if the array size is not
855 ///    constant 1.
856 /// 2. Call malloc with that argument.
857 /// 3. Bitcast the result of the malloc call to the specified type.
858 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
859                                     Type *IntPtrTy, Type *AllocTy,
860                                     Value *AllocSize, Value *ArraySize,
861                                     Function *MallocF,
862                                     const Twine &Name) {
863   return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
864                       ArraySize, std::nullopt, MallocF, Name);
865 }
866 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
867                                     Type *IntPtrTy, Type *AllocTy,
868                                     Value *AllocSize, Value *ArraySize,
869                                     ArrayRef<OperandBundleDef> OpB,
870                                     Function *MallocF,
871                                     const Twine &Name) {
872   return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
873                       ArraySize, OpB, MallocF, Name);
874 }
875 
876 /// CreateMalloc - Generate the IR for a call to malloc:
877 /// 1. Compute the malloc call's argument as the specified type's size,
878 ///    possibly multiplied by the array size if the array size is not
879 ///    constant 1.
880 /// 2. Call malloc with that argument.
881 /// 3. Bitcast the result of the malloc call to the specified type.
882 /// Note: This function does not add the bitcast to the basic block, that is the
883 /// responsibility of the caller.
884 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
885                                     Type *IntPtrTy, Type *AllocTy,
886                                     Value *AllocSize, Value *ArraySize,
887                                     Function *MallocF, const Twine &Name) {
888   return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
889                       ArraySize, std::nullopt, MallocF, Name);
890 }
891 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
892                                     Type *IntPtrTy, Type *AllocTy,
893                                     Value *AllocSize, Value *ArraySize,
894                                     ArrayRef<OperandBundleDef> OpB,
895                                     Function *MallocF, const Twine &Name) {
896   return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
897                       ArraySize, OpB, MallocF, Name);
898 }
899 
900 static Instruction *createFree(Value *Source,
901                                ArrayRef<OperandBundleDef> Bundles,
902                                Instruction *InsertBefore,
903                                BasicBlock *InsertAtEnd) {
904   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
905          "createFree needs either InsertBefore or InsertAtEnd");
906   assert(Source->getType()->isPointerTy() &&
907          "Can not free something of nonpointer type!");
908 
909   BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
910   Module *M = BB->getParent()->getParent();
911 
912   Type *VoidTy = Type::getVoidTy(M->getContext());
913   Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
914   // prototype free as "void free(void*)"
915   FunctionCallee FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy);
916   CallInst *Result = nullptr;
917   Value *PtrCast = Source;
918   if (InsertBefore) {
919     if (Source->getType() != IntPtrTy)
920       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
921     Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "", InsertBefore);
922   } else {
923     if (Source->getType() != IntPtrTy)
924       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
925     Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "");
926   }
927   Result->setTailCall();
928   if (Function *F = dyn_cast<Function>(FreeFunc.getCallee()))
929     Result->setCallingConv(F->getCallingConv());
930 
931   return Result;
932 }
933 
934 /// CreateFree - Generate the IR for a call to the builtin free function.
935 Instruction *CallInst::CreateFree(Value *Source, Instruction *InsertBefore) {
936   return createFree(Source, std::nullopt, InsertBefore, nullptr);
937 }
938 Instruction *CallInst::CreateFree(Value *Source,
939                                   ArrayRef<OperandBundleDef> Bundles,
940                                   Instruction *InsertBefore) {
941   return createFree(Source, Bundles, InsertBefore, nullptr);
942 }
943 
944 /// CreateFree - Generate the IR for a call to the builtin free function.
945 /// Note: This function does not add the call to the basic block, that is the
946 /// responsibility of the caller.
947 Instruction *CallInst::CreateFree(Value *Source, BasicBlock *InsertAtEnd) {
948   Instruction *FreeCall =
949       createFree(Source, std::nullopt, nullptr, InsertAtEnd);
950   assert(FreeCall && "CreateFree did not create a CallInst");
951   return FreeCall;
952 }
953 Instruction *CallInst::CreateFree(Value *Source,
954                                   ArrayRef<OperandBundleDef> Bundles,
955                                   BasicBlock *InsertAtEnd) {
956   Instruction *FreeCall = createFree(Source, Bundles, nullptr, InsertAtEnd);
957   assert(FreeCall && "CreateFree did not create a CallInst");
958   return FreeCall;
959 }
960 
961 //===----------------------------------------------------------------------===//
962 //                        InvokeInst Implementation
963 //===----------------------------------------------------------------------===//
964 
965 void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal,
966                       BasicBlock *IfException, ArrayRef<Value *> Args,
967                       ArrayRef<OperandBundleDef> Bundles,
968                       const Twine &NameStr) {
969   this->FTy = FTy;
970 
971   assert((int)getNumOperands() ==
972              ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)) &&
973          "NumOperands not set up?");
974 
975 #ifndef NDEBUG
976   assert(((Args.size() == FTy->getNumParams()) ||
977           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
978          "Invoking a function with bad signature");
979 
980   for (unsigned i = 0, e = Args.size(); i != e; i++)
981     assert((i >= FTy->getNumParams() ||
982             FTy->getParamType(i) == Args[i]->getType()) &&
983            "Invoking a function with a bad signature!");
984 #endif
985 
986   // Set operands in order of their index to match use-list-order
987   // prediction.
988   llvm::copy(Args, op_begin());
989   setNormalDest(IfNormal);
990   setUnwindDest(IfException);
991   setCalledOperand(Fn);
992 
993   auto It = populateBundleOperandInfos(Bundles, Args.size());
994   (void)It;
995   assert(It + 3 == op_end() && "Should add up!");
996 
997   setName(NameStr);
998 }
999 
1000 InvokeInst::InvokeInst(const InvokeInst &II)
1001     : CallBase(II.Attrs, II.FTy, II.getType(), Instruction::Invoke,
1002                OperandTraits<CallBase>::op_end(this) - II.getNumOperands(),
1003                II.getNumOperands()) {
1004   setCallingConv(II.getCallingConv());
1005   std::copy(II.op_begin(), II.op_end(), op_begin());
1006   std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(),
1007             bundle_op_info_begin());
1008   SubclassOptionalData = II.SubclassOptionalData;
1009 }
1010 
1011 InvokeInst *InvokeInst::Create(InvokeInst *II, ArrayRef<OperandBundleDef> OpB,
1012                                Instruction *InsertPt) {
1013   std::vector<Value *> Args(II->arg_begin(), II->arg_end());
1014 
1015   auto *NewII = InvokeInst::Create(
1016       II->getFunctionType(), II->getCalledOperand(), II->getNormalDest(),
1017       II->getUnwindDest(), Args, OpB, II->getName(), InsertPt);
1018   NewII->setCallingConv(II->getCallingConv());
1019   NewII->SubclassOptionalData = II->SubclassOptionalData;
1020   NewII->setAttributes(II->getAttributes());
1021   NewII->setDebugLoc(II->getDebugLoc());
1022   return NewII;
1023 }
1024 
1025 LandingPadInst *InvokeInst::getLandingPadInst() const {
1026   return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
1027 }
1028 
1029 //===----------------------------------------------------------------------===//
1030 //                        CallBrInst Implementation
1031 //===----------------------------------------------------------------------===//
1032 
1033 void CallBrInst::init(FunctionType *FTy, Value *Fn, BasicBlock *Fallthrough,
1034                       ArrayRef<BasicBlock *> IndirectDests,
1035                       ArrayRef<Value *> Args,
1036                       ArrayRef<OperandBundleDef> Bundles,
1037                       const Twine &NameStr) {
1038   this->FTy = FTy;
1039 
1040   assert((int)getNumOperands() ==
1041              ComputeNumOperands(Args.size(), IndirectDests.size(),
1042                                 CountBundleInputs(Bundles)) &&
1043          "NumOperands not set up?");
1044 
1045 #ifndef NDEBUG
1046   assert(((Args.size() == FTy->getNumParams()) ||
1047           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
1048          "Calling a function with bad signature");
1049 
1050   for (unsigned i = 0, e = Args.size(); i != e; i++)
1051     assert((i >= FTy->getNumParams() ||
1052             FTy->getParamType(i) == Args[i]->getType()) &&
1053            "Calling a function with a bad signature!");
1054 #endif
1055 
1056   // Set operands in order of their index to match use-list-order
1057   // prediction.
1058   std::copy(Args.begin(), Args.end(), op_begin());
1059   NumIndirectDests = IndirectDests.size();
1060   setDefaultDest(Fallthrough);
1061   for (unsigned i = 0; i != NumIndirectDests; ++i)
1062     setIndirectDest(i, IndirectDests[i]);
1063   setCalledOperand(Fn);
1064 
1065   auto It = populateBundleOperandInfos(Bundles, Args.size());
1066   (void)It;
1067   assert(It + 2 + IndirectDests.size() == op_end() && "Should add up!");
1068 
1069   setName(NameStr);
1070 }
1071 
1072 CallBrInst::CallBrInst(const CallBrInst &CBI)
1073     : CallBase(CBI.Attrs, CBI.FTy, CBI.getType(), Instruction::CallBr,
1074                OperandTraits<CallBase>::op_end(this) - CBI.getNumOperands(),
1075                CBI.getNumOperands()) {
1076   setCallingConv(CBI.getCallingConv());
1077   std::copy(CBI.op_begin(), CBI.op_end(), op_begin());
1078   std::copy(CBI.bundle_op_info_begin(), CBI.bundle_op_info_end(),
1079             bundle_op_info_begin());
1080   SubclassOptionalData = CBI.SubclassOptionalData;
1081   NumIndirectDests = CBI.NumIndirectDests;
1082 }
1083 
1084 CallBrInst *CallBrInst::Create(CallBrInst *CBI, ArrayRef<OperandBundleDef> OpB,
1085                                Instruction *InsertPt) {
1086   std::vector<Value *> Args(CBI->arg_begin(), CBI->arg_end());
1087 
1088   auto *NewCBI = CallBrInst::Create(
1089       CBI->getFunctionType(), CBI->getCalledOperand(), CBI->getDefaultDest(),
1090       CBI->getIndirectDests(), Args, OpB, CBI->getName(), InsertPt);
1091   NewCBI->setCallingConv(CBI->getCallingConv());
1092   NewCBI->SubclassOptionalData = CBI->SubclassOptionalData;
1093   NewCBI->setAttributes(CBI->getAttributes());
1094   NewCBI->setDebugLoc(CBI->getDebugLoc());
1095   NewCBI->NumIndirectDests = CBI->NumIndirectDests;
1096   return NewCBI;
1097 }
1098 
1099 //===----------------------------------------------------------------------===//
1100 //                        ReturnInst Implementation
1101 //===----------------------------------------------------------------------===//
1102 
1103 ReturnInst::ReturnInst(const ReturnInst &RI)
1104     : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Ret,
1105                   OperandTraits<ReturnInst>::op_end(this) - RI.getNumOperands(),
1106                   RI.getNumOperands()) {
1107   if (RI.getNumOperands())
1108     Op<0>() = RI.Op<0>();
1109   SubclassOptionalData = RI.SubclassOptionalData;
1110 }
1111 
1112 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
1113     : Instruction(Type::getVoidTy(C), Instruction::Ret,
1114                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
1115                   InsertBefore) {
1116   if (retVal)
1117     Op<0>() = retVal;
1118 }
1119 
1120 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
1121     : Instruction(Type::getVoidTy(C), Instruction::Ret,
1122                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
1123                   InsertAtEnd) {
1124   if (retVal)
1125     Op<0>() = retVal;
1126 }
1127 
1128 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
1129     : Instruction(Type::getVoidTy(Context), Instruction::Ret,
1130                   OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {}
1131 
1132 //===----------------------------------------------------------------------===//
1133 //                        ResumeInst Implementation
1134 //===----------------------------------------------------------------------===//
1135 
1136 ResumeInst::ResumeInst(const ResumeInst &RI)
1137     : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Resume,
1138                   OperandTraits<ResumeInst>::op_begin(this), 1) {
1139   Op<0>() = RI.Op<0>();
1140 }
1141 
1142 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
1143     : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
1144                   OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
1145   Op<0>() = Exn;
1146 }
1147 
1148 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
1149     : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
1150                   OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
1151   Op<0>() = Exn;
1152 }
1153 
1154 //===----------------------------------------------------------------------===//
1155 //                        CleanupReturnInst Implementation
1156 //===----------------------------------------------------------------------===//
1157 
1158 CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI)
1159     : Instruction(CRI.getType(), Instruction::CleanupRet,
1160                   OperandTraits<CleanupReturnInst>::op_end(this) -
1161                       CRI.getNumOperands(),
1162                   CRI.getNumOperands()) {
1163   setSubclassData<Instruction::OpaqueField>(
1164       CRI.getSubclassData<Instruction::OpaqueField>());
1165   Op<0>() = CRI.Op<0>();
1166   if (CRI.hasUnwindDest())
1167     Op<1>() = CRI.Op<1>();
1168 }
1169 
1170 void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) {
1171   if (UnwindBB)
1172     setSubclassData<UnwindDestField>(true);
1173 
1174   Op<0>() = CleanupPad;
1175   if (UnwindBB)
1176     Op<1>() = UnwindBB;
1177 }
1178 
1179 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
1180                                      unsigned Values, Instruction *InsertBefore)
1181     : Instruction(Type::getVoidTy(CleanupPad->getContext()),
1182                   Instruction::CleanupRet,
1183                   OperandTraits<CleanupReturnInst>::op_end(this) - Values,
1184                   Values, InsertBefore) {
1185   init(CleanupPad, UnwindBB);
1186 }
1187 
1188 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
1189                                      unsigned Values, BasicBlock *InsertAtEnd)
1190     : Instruction(Type::getVoidTy(CleanupPad->getContext()),
1191                   Instruction::CleanupRet,
1192                   OperandTraits<CleanupReturnInst>::op_end(this) - Values,
1193                   Values, InsertAtEnd) {
1194   init(CleanupPad, UnwindBB);
1195 }
1196 
1197 //===----------------------------------------------------------------------===//
1198 //                        CatchReturnInst Implementation
1199 //===----------------------------------------------------------------------===//
1200 void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) {
1201   Op<0>() = CatchPad;
1202   Op<1>() = BB;
1203 }
1204 
1205 CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI)
1206     : Instruction(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet,
1207                   OperandTraits<CatchReturnInst>::op_begin(this), 2) {
1208   Op<0>() = CRI.Op<0>();
1209   Op<1>() = CRI.Op<1>();
1210 }
1211 
1212 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
1213                                  Instruction *InsertBefore)
1214     : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
1215                   OperandTraits<CatchReturnInst>::op_begin(this), 2,
1216                   InsertBefore) {
1217   init(CatchPad, BB);
1218 }
1219 
1220 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
1221                                  BasicBlock *InsertAtEnd)
1222     : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
1223                   OperandTraits<CatchReturnInst>::op_begin(this), 2,
1224                   InsertAtEnd) {
1225   init(CatchPad, BB);
1226 }
1227 
1228 //===----------------------------------------------------------------------===//
1229 //                       CatchSwitchInst Implementation
1230 //===----------------------------------------------------------------------===//
1231 
1232 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
1233                                  unsigned NumReservedValues,
1234                                  const Twine &NameStr,
1235                                  Instruction *InsertBefore)
1236     : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
1237                   InsertBefore) {
1238   if (UnwindDest)
1239     ++NumReservedValues;
1240   init(ParentPad, UnwindDest, NumReservedValues + 1);
1241   setName(NameStr);
1242 }
1243 
1244 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
1245                                  unsigned NumReservedValues,
1246                                  const Twine &NameStr, BasicBlock *InsertAtEnd)
1247     : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
1248                   InsertAtEnd) {
1249   if (UnwindDest)
1250     ++NumReservedValues;
1251   init(ParentPad, UnwindDest, NumReservedValues + 1);
1252   setName(NameStr);
1253 }
1254 
1255 CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI)
1256     : Instruction(CSI.getType(), Instruction::CatchSwitch, nullptr,
1257                   CSI.getNumOperands()) {
1258   init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands());
1259   setNumHungOffUseOperands(ReservedSpace);
1260   Use *OL = getOperandList();
1261   const Use *InOL = CSI.getOperandList();
1262   for (unsigned I = 1, E = ReservedSpace; I != E; ++I)
1263     OL[I] = InOL[I];
1264 }
1265 
1266 void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest,
1267                            unsigned NumReservedValues) {
1268   assert(ParentPad && NumReservedValues);
1269 
1270   ReservedSpace = NumReservedValues;
1271   setNumHungOffUseOperands(UnwindDest ? 2 : 1);
1272   allocHungoffUses(ReservedSpace);
1273 
1274   Op<0>() = ParentPad;
1275   if (UnwindDest) {
1276     setSubclassData<UnwindDestField>(true);
1277     setUnwindDest(UnwindDest);
1278   }
1279 }
1280 
1281 /// growOperands - grow operands - This grows the operand list in response to a
1282 /// push_back style of operation. This grows the number of ops by 2 times.
1283 void CatchSwitchInst::growOperands(unsigned Size) {
1284   unsigned NumOperands = getNumOperands();
1285   assert(NumOperands >= 1);
1286   if (ReservedSpace >= NumOperands + Size)
1287     return;
1288   ReservedSpace = (NumOperands + Size / 2) * 2;
1289   growHungoffUses(ReservedSpace);
1290 }
1291 
1292 void CatchSwitchInst::addHandler(BasicBlock *Handler) {
1293   unsigned OpNo = getNumOperands();
1294   growOperands(1);
1295   assert(OpNo < ReservedSpace && "Growing didn't work!");
1296   setNumHungOffUseOperands(getNumOperands() + 1);
1297   getOperandList()[OpNo] = Handler;
1298 }
1299 
1300 void CatchSwitchInst::removeHandler(handler_iterator HI) {
1301   // Move all subsequent handlers up one.
1302   Use *EndDst = op_end() - 1;
1303   for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst)
1304     *CurDst = *(CurDst + 1);
1305   // Null out the last handler use.
1306   *EndDst = nullptr;
1307 
1308   setNumHungOffUseOperands(getNumOperands() - 1);
1309 }
1310 
1311 //===----------------------------------------------------------------------===//
1312 //                        FuncletPadInst Implementation
1313 //===----------------------------------------------------------------------===//
1314 void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args,
1315                           const Twine &NameStr) {
1316   assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?");
1317   llvm::copy(Args, op_begin());
1318   setParentPad(ParentPad);
1319   setName(NameStr);
1320 }
1321 
1322 FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI)
1323     : Instruction(FPI.getType(), FPI.getOpcode(),
1324                   OperandTraits<FuncletPadInst>::op_end(this) -
1325                       FPI.getNumOperands(),
1326                   FPI.getNumOperands()) {
1327   std::copy(FPI.op_begin(), FPI.op_end(), op_begin());
1328   setParentPad(FPI.getParentPad());
1329 }
1330 
1331 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1332                                ArrayRef<Value *> Args, unsigned Values,
1333                                const Twine &NameStr, Instruction *InsertBefore)
1334     : Instruction(ParentPad->getType(), Op,
1335                   OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1336                   InsertBefore) {
1337   init(ParentPad, Args, NameStr);
1338 }
1339 
1340 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1341                                ArrayRef<Value *> Args, unsigned Values,
1342                                const Twine &NameStr, BasicBlock *InsertAtEnd)
1343     : Instruction(ParentPad->getType(), Op,
1344                   OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1345                   InsertAtEnd) {
1346   init(ParentPad, Args, NameStr);
1347 }
1348 
1349 //===----------------------------------------------------------------------===//
1350 //                      UnreachableInst Implementation
1351 //===----------------------------------------------------------------------===//
1352 
1353 UnreachableInst::UnreachableInst(LLVMContext &Context,
1354                                  Instruction *InsertBefore)
1355     : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1356                   0, InsertBefore) {}
1357 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
1358     : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1359                   0, InsertAtEnd) {}
1360 
1361 //===----------------------------------------------------------------------===//
1362 //                        BranchInst Implementation
1363 //===----------------------------------------------------------------------===//
1364 
1365 void BranchInst::AssertOK() {
1366   if (isConditional())
1367     assert(getCondition()->getType()->isIntegerTy(1) &&
1368            "May only branch on boolean predicates!");
1369 }
1370 
1371 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
1372     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1373                   OperandTraits<BranchInst>::op_end(this) - 1, 1,
1374                   InsertBefore) {
1375   assert(IfTrue && "Branch destination may not be null!");
1376   Op<-1>() = IfTrue;
1377 }
1378 
1379 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1380                        Instruction *InsertBefore)
1381     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1382                   OperandTraits<BranchInst>::op_end(this) - 3, 3,
1383                   InsertBefore) {
1384   // Assign in order of operand index to make use-list order predictable.
1385   Op<-3>() = Cond;
1386   Op<-2>() = IfFalse;
1387   Op<-1>() = IfTrue;
1388 #ifndef NDEBUG
1389   AssertOK();
1390 #endif
1391 }
1392 
1393 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
1394     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1395                   OperandTraits<BranchInst>::op_end(this) - 1, 1, InsertAtEnd) {
1396   assert(IfTrue && "Branch destination may not be null!");
1397   Op<-1>() = IfTrue;
1398 }
1399 
1400 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1401                        BasicBlock *InsertAtEnd)
1402     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1403                   OperandTraits<BranchInst>::op_end(this) - 3, 3, InsertAtEnd) {
1404   // Assign in order of operand index to make use-list order predictable.
1405   Op<-3>() = Cond;
1406   Op<-2>() = IfFalse;
1407   Op<-1>() = IfTrue;
1408 #ifndef NDEBUG
1409   AssertOK();
1410 #endif
1411 }
1412 
1413 BranchInst::BranchInst(const BranchInst &BI)
1414     : Instruction(Type::getVoidTy(BI.getContext()), Instruction::Br,
1415                   OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
1416                   BI.getNumOperands()) {
1417   // Assign in order of operand index to make use-list order predictable.
1418   if (BI.getNumOperands() != 1) {
1419     assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
1420     Op<-3>() = BI.Op<-3>();
1421     Op<-2>() = BI.Op<-2>();
1422   }
1423   Op<-1>() = BI.Op<-1>();
1424   SubclassOptionalData = BI.SubclassOptionalData;
1425 }
1426 
1427 void BranchInst::swapSuccessors() {
1428   assert(isConditional() &&
1429          "Cannot swap successors of an unconditional branch");
1430   Op<-1>().swap(Op<-2>());
1431 
1432   // Update profile metadata if present and it matches our structural
1433   // expectations.
1434   swapProfMetadata();
1435 }
1436 
1437 //===----------------------------------------------------------------------===//
1438 //                        AllocaInst Implementation
1439 //===----------------------------------------------------------------------===//
1440 
1441 static Value *getAISize(LLVMContext &Context, Value *Amt) {
1442   if (!Amt)
1443     Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
1444   else {
1445     assert(!isa<BasicBlock>(Amt) &&
1446            "Passed basic block into allocation size parameter! Use other ctor");
1447     assert(Amt->getType()->isIntegerTy() &&
1448            "Allocation array size is not an integer!");
1449   }
1450   return Amt;
1451 }
1452 
1453 static Align computeAllocaDefaultAlign(Type *Ty, BasicBlock *BB) {
1454   assert(BB && "Insertion BB cannot be null when alignment not provided!");
1455   assert(BB->getParent() &&
1456          "BB must be in a Function when alignment not provided!");
1457   const DataLayout &DL = BB->getModule()->getDataLayout();
1458   return DL.getPrefTypeAlign(Ty);
1459 }
1460 
1461 static Align computeAllocaDefaultAlign(Type *Ty, Instruction *I) {
1462   assert(I && "Insertion position cannot be null when alignment not provided!");
1463   return computeAllocaDefaultAlign(Ty, I->getParent());
1464 }
1465 
1466 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1467                        Instruction *InsertBefore)
1468   : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertBefore) {}
1469 
1470 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1471                        BasicBlock *InsertAtEnd)
1472   : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertAtEnd) {}
1473 
1474 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1475                        const Twine &Name, Instruction *InsertBefore)
1476     : AllocaInst(Ty, AddrSpace, ArraySize,
1477                  computeAllocaDefaultAlign(Ty, InsertBefore), Name,
1478                  InsertBefore) {}
1479 
1480 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1481                        const Twine &Name, BasicBlock *InsertAtEnd)
1482     : AllocaInst(Ty, AddrSpace, ArraySize,
1483                  computeAllocaDefaultAlign(Ty, InsertAtEnd), Name,
1484                  InsertAtEnd) {}
1485 
1486 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1487                        Align Align, const Twine &Name,
1488                        Instruction *InsertBefore)
1489     : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1490                        getAISize(Ty->getContext(), ArraySize), InsertBefore),
1491       AllocatedType(Ty) {
1492   setAlignment(Align);
1493   assert(!Ty->isVoidTy() && "Cannot allocate void!");
1494   setName(Name);
1495 }
1496 
1497 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1498                        Align Align, const Twine &Name, BasicBlock *InsertAtEnd)
1499     : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1500                        getAISize(Ty->getContext(), ArraySize), InsertAtEnd),
1501       AllocatedType(Ty) {
1502   setAlignment(Align);
1503   assert(!Ty->isVoidTy() && "Cannot allocate void!");
1504   setName(Name);
1505 }
1506 
1507 
1508 bool AllocaInst::isArrayAllocation() const {
1509   if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
1510     return !CI->isOne();
1511   return true;
1512 }
1513 
1514 /// isStaticAlloca - Return true if this alloca is in the entry block of the
1515 /// function and is a constant size.  If so, the code generator will fold it
1516 /// into the prolog/epilog code, so it is basically free.
1517 bool AllocaInst::isStaticAlloca() const {
1518   // Must be constant size.
1519   if (!isa<ConstantInt>(getArraySize())) return false;
1520 
1521   // Must be in the entry block.
1522   const BasicBlock *Parent = getParent();
1523   return Parent->isEntryBlock() && !isUsedWithInAlloca();
1524 }
1525 
1526 //===----------------------------------------------------------------------===//
1527 //                           LoadInst Implementation
1528 //===----------------------------------------------------------------------===//
1529 
1530 void LoadInst::AssertOK() {
1531   assert(getOperand(0)->getType()->isPointerTy() &&
1532          "Ptr must have pointer type.");
1533 }
1534 
1535 static Align computeLoadStoreDefaultAlign(Type *Ty, BasicBlock *BB) {
1536   assert(BB && "Insertion BB cannot be null when alignment not provided!");
1537   assert(BB->getParent() &&
1538          "BB must be in a Function when alignment not provided!");
1539   const DataLayout &DL = BB->getModule()->getDataLayout();
1540   return DL.getABITypeAlign(Ty);
1541 }
1542 
1543 static Align computeLoadStoreDefaultAlign(Type *Ty, Instruction *I) {
1544   assert(I && "Insertion position cannot be null when alignment not provided!");
1545   return computeLoadStoreDefaultAlign(Ty, I->getParent());
1546 }
1547 
1548 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
1549                    Instruction *InsertBef)
1550     : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertBef) {}
1551 
1552 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
1553                    BasicBlock *InsertAE)
1554     : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertAE) {}
1555 
1556 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1557                    Instruction *InsertBef)
1558     : LoadInst(Ty, Ptr, Name, isVolatile,
1559                computeLoadStoreDefaultAlign(Ty, InsertBef), InsertBef) {}
1560 
1561 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1562                    BasicBlock *InsertAE)
1563     : LoadInst(Ty, Ptr, Name, isVolatile,
1564                computeLoadStoreDefaultAlign(Ty, InsertAE), InsertAE) {}
1565 
1566 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1567                    Align Align, Instruction *InsertBef)
1568     : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1569                SyncScope::System, InsertBef) {}
1570 
1571 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1572                    Align Align, BasicBlock *InsertAE)
1573     : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1574                SyncScope::System, InsertAE) {}
1575 
1576 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1577                    Align Align, AtomicOrdering Order, SyncScope::ID SSID,
1578                    Instruction *InsertBef)
1579     : UnaryInstruction(Ty, Load, Ptr, InsertBef) {
1580   assert(cast<PointerType>(Ptr->getType())->isOpaqueOrPointeeTypeMatches(Ty));
1581   setVolatile(isVolatile);
1582   setAlignment(Align);
1583   setAtomic(Order, SSID);
1584   AssertOK();
1585   setName(Name);
1586 }
1587 
1588 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1589                    Align Align, AtomicOrdering Order, SyncScope::ID SSID,
1590                    BasicBlock *InsertAE)
1591     : UnaryInstruction(Ty, Load, Ptr, InsertAE) {
1592   assert(cast<PointerType>(Ptr->getType())->isOpaqueOrPointeeTypeMatches(Ty));
1593   setVolatile(isVolatile);
1594   setAlignment(Align);
1595   setAtomic(Order, SSID);
1596   AssertOK();
1597   setName(Name);
1598 }
1599 
1600 //===----------------------------------------------------------------------===//
1601 //                           StoreInst Implementation
1602 //===----------------------------------------------------------------------===//
1603 
1604 void StoreInst::AssertOK() {
1605   assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1606   assert(getOperand(1)->getType()->isPointerTy() &&
1607          "Ptr must have pointer type!");
1608   assert(cast<PointerType>(getOperand(1)->getType())
1609              ->isOpaqueOrPointeeTypeMatches(getOperand(0)->getType()) &&
1610          "Ptr must be a pointer to Val type!");
1611 }
1612 
1613 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
1614     : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {}
1615 
1616 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
1617     : StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {}
1618 
1619 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1620                      Instruction *InsertBefore)
1621     : StoreInst(val, addr, isVolatile,
1622                 computeLoadStoreDefaultAlign(val->getType(), InsertBefore),
1623                 InsertBefore) {}
1624 
1625 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1626                      BasicBlock *InsertAtEnd)
1627     : StoreInst(val, addr, isVolatile,
1628                 computeLoadStoreDefaultAlign(val->getType(), InsertAtEnd),
1629                 InsertAtEnd) {}
1630 
1631 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1632                      Instruction *InsertBefore)
1633     : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1634                 SyncScope::System, InsertBefore) {}
1635 
1636 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1637                      BasicBlock *InsertAtEnd)
1638     : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1639                 SyncScope::System, InsertAtEnd) {}
1640 
1641 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1642                      AtomicOrdering Order, SyncScope::ID SSID,
1643                      Instruction *InsertBefore)
1644     : Instruction(Type::getVoidTy(val->getContext()), Store,
1645                   OperandTraits<StoreInst>::op_begin(this),
1646                   OperandTraits<StoreInst>::operands(this), InsertBefore) {
1647   Op<0>() = val;
1648   Op<1>() = addr;
1649   setVolatile(isVolatile);
1650   setAlignment(Align);
1651   setAtomic(Order, SSID);
1652   AssertOK();
1653 }
1654 
1655 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1656                      AtomicOrdering Order, SyncScope::ID SSID,
1657                      BasicBlock *InsertAtEnd)
1658     : Instruction(Type::getVoidTy(val->getContext()), Store,
1659                   OperandTraits<StoreInst>::op_begin(this),
1660                   OperandTraits<StoreInst>::operands(this), InsertAtEnd) {
1661   Op<0>() = val;
1662   Op<1>() = addr;
1663   setVolatile(isVolatile);
1664   setAlignment(Align);
1665   setAtomic(Order, SSID);
1666   AssertOK();
1667 }
1668 
1669 
1670 //===----------------------------------------------------------------------===//
1671 //                       AtomicCmpXchgInst Implementation
1672 //===----------------------------------------------------------------------===//
1673 
1674 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
1675                              Align Alignment, AtomicOrdering SuccessOrdering,
1676                              AtomicOrdering FailureOrdering,
1677                              SyncScope::ID SSID) {
1678   Op<0>() = Ptr;
1679   Op<1>() = Cmp;
1680   Op<2>() = NewVal;
1681   setSuccessOrdering(SuccessOrdering);
1682   setFailureOrdering(FailureOrdering);
1683   setSyncScopeID(SSID);
1684   setAlignment(Alignment);
1685 
1686   assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1687          "All operands must be non-null!");
1688   assert(getOperand(0)->getType()->isPointerTy() &&
1689          "Ptr must have pointer type!");
1690   assert(cast<PointerType>(getOperand(0)->getType())
1691              ->isOpaqueOrPointeeTypeMatches(getOperand(1)->getType()) &&
1692          "Ptr must be a pointer to Cmp type!");
1693   assert(cast<PointerType>(getOperand(0)->getType())
1694              ->isOpaqueOrPointeeTypeMatches(getOperand(2)->getType()) &&
1695          "Ptr must be a pointer to NewVal type!");
1696   assert(getOperand(1)->getType() == getOperand(2)->getType() &&
1697          "Cmp type and NewVal type must be same!");
1698 }
1699 
1700 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1701                                      Align Alignment,
1702                                      AtomicOrdering SuccessOrdering,
1703                                      AtomicOrdering FailureOrdering,
1704                                      SyncScope::ID SSID,
1705                                      Instruction *InsertBefore)
1706     : Instruction(
1707           StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1708           AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1709           OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) {
1710   Init(Ptr, Cmp, NewVal, Alignment, SuccessOrdering, FailureOrdering, SSID);
1711 }
1712 
1713 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1714                                      Align Alignment,
1715                                      AtomicOrdering SuccessOrdering,
1716                                      AtomicOrdering FailureOrdering,
1717                                      SyncScope::ID SSID,
1718                                      BasicBlock *InsertAtEnd)
1719     : Instruction(
1720           StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1721           AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1722           OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) {
1723   Init(Ptr, Cmp, NewVal, Alignment, SuccessOrdering, FailureOrdering, SSID);
1724 }
1725 
1726 //===----------------------------------------------------------------------===//
1727 //                       AtomicRMWInst Implementation
1728 //===----------------------------------------------------------------------===//
1729 
1730 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
1731                          Align Alignment, AtomicOrdering Ordering,
1732                          SyncScope::ID SSID) {
1733   assert(Ordering != AtomicOrdering::NotAtomic &&
1734          "atomicrmw instructions can only be atomic.");
1735   assert(Ordering != AtomicOrdering::Unordered &&
1736          "atomicrmw instructions cannot be unordered.");
1737   Op<0>() = Ptr;
1738   Op<1>() = Val;
1739   setOperation(Operation);
1740   setOrdering(Ordering);
1741   setSyncScopeID(SSID);
1742   setAlignment(Alignment);
1743 
1744   assert(getOperand(0) && getOperand(1) &&
1745          "All operands must be non-null!");
1746   assert(getOperand(0)->getType()->isPointerTy() &&
1747          "Ptr must have pointer type!");
1748   assert(cast<PointerType>(getOperand(0)->getType())
1749              ->isOpaqueOrPointeeTypeMatches(getOperand(1)->getType()) &&
1750          "Ptr must be a pointer to Val type!");
1751   assert(Ordering != AtomicOrdering::NotAtomic &&
1752          "AtomicRMW instructions must be atomic!");
1753 }
1754 
1755 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1756                              Align Alignment, AtomicOrdering Ordering,
1757                              SyncScope::ID SSID, Instruction *InsertBefore)
1758     : Instruction(Val->getType(), AtomicRMW,
1759                   OperandTraits<AtomicRMWInst>::op_begin(this),
1760                   OperandTraits<AtomicRMWInst>::operands(this), InsertBefore) {
1761   Init(Operation, Ptr, Val, Alignment, Ordering, SSID);
1762 }
1763 
1764 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1765                              Align Alignment, AtomicOrdering Ordering,
1766                              SyncScope::ID SSID, BasicBlock *InsertAtEnd)
1767     : Instruction(Val->getType(), AtomicRMW,
1768                   OperandTraits<AtomicRMWInst>::op_begin(this),
1769                   OperandTraits<AtomicRMWInst>::operands(this), InsertAtEnd) {
1770   Init(Operation, Ptr, Val, Alignment, Ordering, SSID);
1771 }
1772 
1773 StringRef AtomicRMWInst::getOperationName(BinOp Op) {
1774   switch (Op) {
1775   case AtomicRMWInst::Xchg:
1776     return "xchg";
1777   case AtomicRMWInst::Add:
1778     return "add";
1779   case AtomicRMWInst::Sub:
1780     return "sub";
1781   case AtomicRMWInst::And:
1782     return "and";
1783   case AtomicRMWInst::Nand:
1784     return "nand";
1785   case AtomicRMWInst::Or:
1786     return "or";
1787   case AtomicRMWInst::Xor:
1788     return "xor";
1789   case AtomicRMWInst::Max:
1790     return "max";
1791   case AtomicRMWInst::Min:
1792     return "min";
1793   case AtomicRMWInst::UMax:
1794     return "umax";
1795   case AtomicRMWInst::UMin:
1796     return "umin";
1797   case AtomicRMWInst::FAdd:
1798     return "fadd";
1799   case AtomicRMWInst::FSub:
1800     return "fsub";
1801   case AtomicRMWInst::FMax:
1802     return "fmax";
1803   case AtomicRMWInst::FMin:
1804     return "fmin";
1805   case AtomicRMWInst::UIncWrap:
1806     return "uinc_wrap";
1807   case AtomicRMWInst::UDecWrap:
1808     return "udec_wrap";
1809   case AtomicRMWInst::BAD_BINOP:
1810     return "<invalid operation>";
1811   }
1812 
1813   llvm_unreachable("invalid atomicrmw operation");
1814 }
1815 
1816 //===----------------------------------------------------------------------===//
1817 //                       FenceInst Implementation
1818 //===----------------------------------------------------------------------===//
1819 
1820 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1821                      SyncScope::ID SSID,
1822                      Instruction *InsertBefore)
1823   : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) {
1824   setOrdering(Ordering);
1825   setSyncScopeID(SSID);
1826 }
1827 
1828 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1829                      SyncScope::ID SSID,
1830                      BasicBlock *InsertAtEnd)
1831   : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) {
1832   setOrdering(Ordering);
1833   setSyncScopeID(SSID);
1834 }
1835 
1836 //===----------------------------------------------------------------------===//
1837 //                       GetElementPtrInst Implementation
1838 //===----------------------------------------------------------------------===//
1839 
1840 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
1841                              const Twine &Name) {
1842   assert(getNumOperands() == 1 + IdxList.size() &&
1843          "NumOperands not initialized?");
1844   Op<0>() = Ptr;
1845   llvm::copy(IdxList, op_begin() + 1);
1846   setName(Name);
1847 }
1848 
1849 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1850     : Instruction(GEPI.getType(), GetElementPtr,
1851                   OperandTraits<GetElementPtrInst>::op_end(this) -
1852                       GEPI.getNumOperands(),
1853                   GEPI.getNumOperands()),
1854       SourceElementType(GEPI.SourceElementType),
1855       ResultElementType(GEPI.ResultElementType) {
1856   std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
1857   SubclassOptionalData = GEPI.SubclassOptionalData;
1858 }
1859 
1860 Type *GetElementPtrInst::getTypeAtIndex(Type *Ty, Value *Idx) {
1861   if (auto *Struct = dyn_cast<StructType>(Ty)) {
1862     if (!Struct->indexValid(Idx))
1863       return nullptr;
1864     return Struct->getTypeAtIndex(Idx);
1865   }
1866   if (!Idx->getType()->isIntOrIntVectorTy())
1867     return nullptr;
1868   if (auto *Array = dyn_cast<ArrayType>(Ty))
1869     return Array->getElementType();
1870   if (auto *Vector = dyn_cast<VectorType>(Ty))
1871     return Vector->getElementType();
1872   return nullptr;
1873 }
1874 
1875 Type *GetElementPtrInst::getTypeAtIndex(Type *Ty, uint64_t Idx) {
1876   if (auto *Struct = dyn_cast<StructType>(Ty)) {
1877     if (Idx >= Struct->getNumElements())
1878       return nullptr;
1879     return Struct->getElementType(Idx);
1880   }
1881   if (auto *Array = dyn_cast<ArrayType>(Ty))
1882     return Array->getElementType();
1883   if (auto *Vector = dyn_cast<VectorType>(Ty))
1884     return Vector->getElementType();
1885   return nullptr;
1886 }
1887 
1888 template <typename IndexTy>
1889 static Type *getIndexedTypeInternal(Type *Ty, ArrayRef<IndexTy> IdxList) {
1890   if (IdxList.empty())
1891     return Ty;
1892   for (IndexTy V : IdxList.slice(1)) {
1893     Ty = GetElementPtrInst::getTypeAtIndex(Ty, V);
1894     if (!Ty)
1895       return Ty;
1896   }
1897   return Ty;
1898 }
1899 
1900 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) {
1901   return getIndexedTypeInternal(Ty, IdxList);
1902 }
1903 
1904 Type *GetElementPtrInst::getIndexedType(Type *Ty,
1905                                         ArrayRef<Constant *> IdxList) {
1906   return getIndexedTypeInternal(Ty, IdxList);
1907 }
1908 
1909 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) {
1910   return getIndexedTypeInternal(Ty, IdxList);
1911 }
1912 
1913 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1914 /// zeros.  If so, the result pointer and the first operand have the same
1915 /// value, just potentially different types.
1916 bool GetElementPtrInst::hasAllZeroIndices() const {
1917   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1918     if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1919       if (!CI->isZero()) return false;
1920     } else {
1921       return false;
1922     }
1923   }
1924   return true;
1925 }
1926 
1927 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1928 /// constant integers.  If so, the result pointer and the first operand have
1929 /// a constant offset between them.
1930 bool GetElementPtrInst::hasAllConstantIndices() const {
1931   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1932     if (!isa<ConstantInt>(getOperand(i)))
1933       return false;
1934   }
1935   return true;
1936 }
1937 
1938 void GetElementPtrInst::setIsInBounds(bool B) {
1939   cast<GEPOperator>(this)->setIsInBounds(B);
1940 }
1941 
1942 bool GetElementPtrInst::isInBounds() const {
1943   return cast<GEPOperator>(this)->isInBounds();
1944 }
1945 
1946 bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL,
1947                                                  APInt &Offset) const {
1948   // Delegate to the generic GEPOperator implementation.
1949   return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
1950 }
1951 
1952 bool GetElementPtrInst::collectOffset(
1953     const DataLayout &DL, unsigned BitWidth,
1954     MapVector<Value *, APInt> &VariableOffsets,
1955     APInt &ConstantOffset) const {
1956   // Delegate to the generic GEPOperator implementation.
1957   return cast<GEPOperator>(this)->collectOffset(DL, BitWidth, VariableOffsets,
1958                                                 ConstantOffset);
1959 }
1960 
1961 //===----------------------------------------------------------------------===//
1962 //                           ExtractElementInst Implementation
1963 //===----------------------------------------------------------------------===//
1964 
1965 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1966                                        const Twine &Name,
1967                                        Instruction *InsertBef)
1968   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1969                 ExtractElement,
1970                 OperandTraits<ExtractElementInst>::op_begin(this),
1971                 2, InsertBef) {
1972   assert(isValidOperands(Val, Index) &&
1973          "Invalid extractelement instruction operands!");
1974   Op<0>() = Val;
1975   Op<1>() = Index;
1976   setName(Name);
1977 }
1978 
1979 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1980                                        const Twine &Name,
1981                                        BasicBlock *InsertAE)
1982   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1983                 ExtractElement,
1984                 OperandTraits<ExtractElementInst>::op_begin(this),
1985                 2, InsertAE) {
1986   assert(isValidOperands(Val, Index) &&
1987          "Invalid extractelement instruction operands!");
1988 
1989   Op<0>() = Val;
1990   Op<1>() = Index;
1991   setName(Name);
1992 }
1993 
1994 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1995   if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy())
1996     return false;
1997   return true;
1998 }
1999 
2000 //===----------------------------------------------------------------------===//
2001 //                           InsertElementInst Implementation
2002 //===----------------------------------------------------------------------===//
2003 
2004 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
2005                                      const Twine &Name,
2006                                      Instruction *InsertBef)
2007   : Instruction(Vec->getType(), InsertElement,
2008                 OperandTraits<InsertElementInst>::op_begin(this),
2009                 3, InsertBef) {
2010   assert(isValidOperands(Vec, Elt, Index) &&
2011          "Invalid insertelement instruction operands!");
2012   Op<0>() = Vec;
2013   Op<1>() = Elt;
2014   Op<2>() = Index;
2015   setName(Name);
2016 }
2017 
2018 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
2019                                      const Twine &Name,
2020                                      BasicBlock *InsertAE)
2021   : Instruction(Vec->getType(), InsertElement,
2022                 OperandTraits<InsertElementInst>::op_begin(this),
2023                 3, InsertAE) {
2024   assert(isValidOperands(Vec, Elt, Index) &&
2025          "Invalid insertelement instruction operands!");
2026 
2027   Op<0>() = Vec;
2028   Op<1>() = Elt;
2029   Op<2>() = Index;
2030   setName(Name);
2031 }
2032 
2033 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
2034                                         const Value *Index) {
2035   if (!Vec->getType()->isVectorTy())
2036     return false;   // First operand of insertelement must be vector type.
2037 
2038   if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
2039     return false;// Second operand of insertelement must be vector element type.
2040 
2041   if (!Index->getType()->isIntegerTy())
2042     return false;  // Third operand of insertelement must be i32.
2043   return true;
2044 }
2045 
2046 //===----------------------------------------------------------------------===//
2047 //                      ShuffleVectorInst Implementation
2048 //===----------------------------------------------------------------------===//
2049 
2050 static Value *createPlaceholderForShuffleVector(Value *V) {
2051   assert(V && "Cannot create placeholder of nullptr V");
2052   return PoisonValue::get(V->getType());
2053 }
2054 
2055 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *Mask, const Twine &Name,
2056                                      Instruction *InsertBefore)
2057     : ShuffleVectorInst(V1, createPlaceholderForShuffleVector(V1), Mask, Name,
2058                         InsertBefore) {}
2059 
2060 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *Mask, const Twine &Name,
2061                                      BasicBlock *InsertAtEnd)
2062     : ShuffleVectorInst(V1, createPlaceholderForShuffleVector(V1), Mask, Name,
2063                         InsertAtEnd) {}
2064 
2065 ShuffleVectorInst::ShuffleVectorInst(Value *V1, ArrayRef<int> Mask,
2066                                      const Twine &Name,
2067                                      Instruction *InsertBefore)
2068     : ShuffleVectorInst(V1, createPlaceholderForShuffleVector(V1), Mask, Name,
2069                         InsertBefore) {}
2070 
2071 ShuffleVectorInst::ShuffleVectorInst(Value *V1, ArrayRef<int> Mask,
2072                                      const Twine &Name, BasicBlock *InsertAtEnd)
2073     : ShuffleVectorInst(V1, createPlaceholderForShuffleVector(V1), Mask, Name,
2074                         InsertAtEnd) {}
2075 
2076 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
2077                                      const Twine &Name,
2078                                      Instruction *InsertBefore)
2079     : Instruction(
2080           VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
2081                           cast<VectorType>(Mask->getType())->getElementCount()),
2082           ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
2083           OperandTraits<ShuffleVectorInst>::operands(this), InsertBefore) {
2084   assert(isValidOperands(V1, V2, Mask) &&
2085          "Invalid shuffle vector instruction operands!");
2086 
2087   Op<0>() = V1;
2088   Op<1>() = V2;
2089   SmallVector<int, 16> MaskArr;
2090   getShuffleMask(cast<Constant>(Mask), MaskArr);
2091   setShuffleMask(MaskArr);
2092   setName(Name);
2093 }
2094 
2095 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
2096                                      const Twine &Name, BasicBlock *InsertAtEnd)
2097     : Instruction(
2098           VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
2099                           cast<VectorType>(Mask->getType())->getElementCount()),
2100           ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
2101           OperandTraits<ShuffleVectorInst>::operands(this), InsertAtEnd) {
2102   assert(isValidOperands(V1, V2, Mask) &&
2103          "Invalid shuffle vector instruction operands!");
2104 
2105   Op<0>() = V1;
2106   Op<1>() = V2;
2107   SmallVector<int, 16> MaskArr;
2108   getShuffleMask(cast<Constant>(Mask), MaskArr);
2109   setShuffleMask(MaskArr);
2110   setName(Name);
2111 }
2112 
2113 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
2114                                      const Twine &Name,
2115                                      Instruction *InsertBefore)
2116     : Instruction(
2117           VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
2118                           Mask.size(), isa<ScalableVectorType>(V1->getType())),
2119           ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
2120           OperandTraits<ShuffleVectorInst>::operands(this), InsertBefore) {
2121   assert(isValidOperands(V1, V2, Mask) &&
2122          "Invalid shuffle vector instruction operands!");
2123   Op<0>() = V1;
2124   Op<1>() = V2;
2125   setShuffleMask(Mask);
2126   setName(Name);
2127 }
2128 
2129 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
2130                                      const Twine &Name, BasicBlock *InsertAtEnd)
2131     : Instruction(
2132           VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
2133                           Mask.size(), isa<ScalableVectorType>(V1->getType())),
2134           ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
2135           OperandTraits<ShuffleVectorInst>::operands(this), InsertAtEnd) {
2136   assert(isValidOperands(V1, V2, Mask) &&
2137          "Invalid shuffle vector instruction operands!");
2138 
2139   Op<0>() = V1;
2140   Op<1>() = V2;
2141   setShuffleMask(Mask);
2142   setName(Name);
2143 }
2144 
2145 void ShuffleVectorInst::commute() {
2146   int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2147   int NumMaskElts = ShuffleMask.size();
2148   SmallVector<int, 16> NewMask(NumMaskElts);
2149   for (int i = 0; i != NumMaskElts; ++i) {
2150     int MaskElt = getMaskValue(i);
2151     if (MaskElt == UndefMaskElem) {
2152       NewMask[i] = UndefMaskElem;
2153       continue;
2154     }
2155     assert(MaskElt >= 0 && MaskElt < 2 * NumOpElts && "Out-of-range mask");
2156     MaskElt = (MaskElt < NumOpElts) ? MaskElt + NumOpElts : MaskElt - NumOpElts;
2157     NewMask[i] = MaskElt;
2158   }
2159   setShuffleMask(NewMask);
2160   Op<0>().swap(Op<1>());
2161 }
2162 
2163 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
2164                                         ArrayRef<int> Mask) {
2165   // V1 and V2 must be vectors of the same type.
2166   if (!isa<VectorType>(V1->getType()) || V1->getType() != V2->getType())
2167     return false;
2168 
2169   // Make sure the mask elements make sense.
2170   int V1Size =
2171       cast<VectorType>(V1->getType())->getElementCount().getKnownMinValue();
2172   for (int Elem : Mask)
2173     if (Elem != UndefMaskElem && Elem >= V1Size * 2)
2174       return false;
2175 
2176   if (isa<ScalableVectorType>(V1->getType()))
2177     if ((Mask[0] != 0 && Mask[0] != UndefMaskElem) || !all_equal(Mask))
2178       return false;
2179 
2180   return true;
2181 }
2182 
2183 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
2184                                         const Value *Mask) {
2185   // V1 and V2 must be vectors of the same type.
2186   if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
2187     return false;
2188 
2189   // Mask must be vector of i32, and must be the same kind of vector as the
2190   // input vectors
2191   auto *MaskTy = dyn_cast<VectorType>(Mask->getType());
2192   if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32) ||
2193       isa<ScalableVectorType>(MaskTy) != isa<ScalableVectorType>(V1->getType()))
2194     return false;
2195 
2196   // Check to see if Mask is valid.
2197   if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
2198     return true;
2199 
2200   if (const auto *MV = dyn_cast<ConstantVector>(Mask)) {
2201     unsigned V1Size = cast<FixedVectorType>(V1->getType())->getNumElements();
2202     for (Value *Op : MV->operands()) {
2203       if (auto *CI = dyn_cast<ConstantInt>(Op)) {
2204         if (CI->uge(V1Size*2))
2205           return false;
2206       } else if (!isa<UndefValue>(Op)) {
2207         return false;
2208       }
2209     }
2210     return true;
2211   }
2212 
2213   if (const auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
2214     unsigned V1Size = cast<FixedVectorType>(V1->getType())->getNumElements();
2215     for (unsigned i = 0, e = cast<FixedVectorType>(MaskTy)->getNumElements();
2216          i != e; ++i)
2217       if (CDS->getElementAsInteger(i) >= V1Size*2)
2218         return false;
2219     return true;
2220   }
2221 
2222   return false;
2223 }
2224 
2225 void ShuffleVectorInst::getShuffleMask(const Constant *Mask,
2226                                        SmallVectorImpl<int> &Result) {
2227   ElementCount EC = cast<VectorType>(Mask->getType())->getElementCount();
2228 
2229   if (isa<ConstantAggregateZero>(Mask)) {
2230     Result.resize(EC.getKnownMinValue(), 0);
2231     return;
2232   }
2233 
2234   Result.reserve(EC.getKnownMinValue());
2235 
2236   if (EC.isScalable()) {
2237     assert((isa<ConstantAggregateZero>(Mask) || isa<UndefValue>(Mask)) &&
2238            "Scalable vector shuffle mask must be undef or zeroinitializer");
2239     int MaskVal = isa<UndefValue>(Mask) ? -1 : 0;
2240     for (unsigned I = 0; I < EC.getKnownMinValue(); ++I)
2241       Result.emplace_back(MaskVal);
2242     return;
2243   }
2244 
2245   unsigned NumElts = EC.getKnownMinValue();
2246 
2247   if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
2248     for (unsigned i = 0; i != NumElts; ++i)
2249       Result.push_back(CDS->getElementAsInteger(i));
2250     return;
2251   }
2252   for (unsigned i = 0; i != NumElts; ++i) {
2253     Constant *C = Mask->getAggregateElement(i);
2254     Result.push_back(isa<UndefValue>(C) ? -1 :
2255                      cast<ConstantInt>(C)->getZExtValue());
2256   }
2257 }
2258 
2259 void ShuffleVectorInst::setShuffleMask(ArrayRef<int> Mask) {
2260   ShuffleMask.assign(Mask.begin(), Mask.end());
2261   ShuffleMaskForBitcode = convertShuffleMaskForBitcode(Mask, getType());
2262 }
2263 
2264 Constant *ShuffleVectorInst::convertShuffleMaskForBitcode(ArrayRef<int> Mask,
2265                                                           Type *ResultTy) {
2266   Type *Int32Ty = Type::getInt32Ty(ResultTy->getContext());
2267   if (isa<ScalableVectorType>(ResultTy)) {
2268     assert(all_equal(Mask) && "Unexpected shuffle");
2269     Type *VecTy = VectorType::get(Int32Ty, Mask.size(), true);
2270     if (Mask[0] == 0)
2271       return Constant::getNullValue(VecTy);
2272     return UndefValue::get(VecTy);
2273   }
2274   SmallVector<Constant *, 16> MaskConst;
2275   for (int Elem : Mask) {
2276     if (Elem == UndefMaskElem)
2277       MaskConst.push_back(UndefValue::get(Int32Ty));
2278     else
2279       MaskConst.push_back(ConstantInt::get(Int32Ty, Elem));
2280   }
2281   return ConstantVector::get(MaskConst);
2282 }
2283 
2284 static bool isSingleSourceMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
2285   assert(!Mask.empty() && "Shuffle mask must contain elements");
2286   bool UsesLHS = false;
2287   bool UsesRHS = false;
2288   for (int I : Mask) {
2289     if (I == -1)
2290       continue;
2291     assert(I >= 0 && I < (NumOpElts * 2) &&
2292            "Out-of-bounds shuffle mask element");
2293     UsesLHS |= (I < NumOpElts);
2294     UsesRHS |= (I >= NumOpElts);
2295     if (UsesLHS && UsesRHS)
2296       return false;
2297   }
2298   // Allow for degenerate case: completely undef mask means neither source is used.
2299   return UsesLHS || UsesRHS;
2300 }
2301 
2302 bool ShuffleVectorInst::isSingleSourceMask(ArrayRef<int> Mask) {
2303   // We don't have vector operand size information, so assume operands are the
2304   // same size as the mask.
2305   return isSingleSourceMaskImpl(Mask, Mask.size());
2306 }
2307 
2308 static bool isIdentityMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
2309   if (!isSingleSourceMaskImpl(Mask, NumOpElts))
2310     return false;
2311   for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
2312     if (Mask[i] == -1)
2313       continue;
2314     if (Mask[i] != i && Mask[i] != (NumOpElts + i))
2315       return false;
2316   }
2317   return true;
2318 }
2319 
2320 bool ShuffleVectorInst::isIdentityMask(ArrayRef<int> Mask) {
2321   // We don't have vector operand size information, so assume operands are the
2322   // same size as the mask.
2323   return isIdentityMaskImpl(Mask, Mask.size());
2324 }
2325 
2326 bool ShuffleVectorInst::isReverseMask(ArrayRef<int> Mask) {
2327   if (!isSingleSourceMask(Mask))
2328     return false;
2329 
2330   // The number of elements in the mask must be at least 2.
2331   int NumElts = Mask.size();
2332   if (NumElts < 2)
2333     return false;
2334 
2335   for (int i = 0; i < NumElts; ++i) {
2336     if (Mask[i] == -1)
2337       continue;
2338     if (Mask[i] != (NumElts - 1 - i) && Mask[i] != (NumElts + NumElts - 1 - i))
2339       return false;
2340   }
2341   return true;
2342 }
2343 
2344 bool ShuffleVectorInst::isZeroEltSplatMask(ArrayRef<int> Mask) {
2345   if (!isSingleSourceMask(Mask))
2346     return false;
2347   for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
2348     if (Mask[i] == -1)
2349       continue;
2350     if (Mask[i] != 0 && Mask[i] != NumElts)
2351       return false;
2352   }
2353   return true;
2354 }
2355 
2356 bool ShuffleVectorInst::isSelectMask(ArrayRef<int> Mask) {
2357   // Select is differentiated from identity. It requires using both sources.
2358   if (isSingleSourceMask(Mask))
2359     return false;
2360   for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
2361     if (Mask[i] == -1)
2362       continue;
2363     if (Mask[i] != i && Mask[i] != (NumElts + i))
2364       return false;
2365   }
2366   return true;
2367 }
2368 
2369 bool ShuffleVectorInst::isTransposeMask(ArrayRef<int> Mask) {
2370   // Example masks that will return true:
2371   // v1 = <a, b, c, d>
2372   // v2 = <e, f, g, h>
2373   // trn1 = shufflevector v1, v2 <0, 4, 2, 6> = <a, e, c, g>
2374   // trn2 = shufflevector v1, v2 <1, 5, 3, 7> = <b, f, d, h>
2375 
2376   // 1. The number of elements in the mask must be a power-of-2 and at least 2.
2377   int NumElts = Mask.size();
2378   if (NumElts < 2 || !isPowerOf2_32(NumElts))
2379     return false;
2380 
2381   // 2. The first element of the mask must be either a 0 or a 1.
2382   if (Mask[0] != 0 && Mask[0] != 1)
2383     return false;
2384 
2385   // 3. The difference between the first 2 elements must be equal to the
2386   // number of elements in the mask.
2387   if ((Mask[1] - Mask[0]) != NumElts)
2388     return false;
2389 
2390   // 4. The difference between consecutive even-numbered and odd-numbered
2391   // elements must be equal to 2.
2392   for (int i = 2; i < NumElts; ++i) {
2393     int MaskEltVal = Mask[i];
2394     if (MaskEltVal == -1)
2395       return false;
2396     int MaskEltPrevVal = Mask[i - 2];
2397     if (MaskEltVal - MaskEltPrevVal != 2)
2398       return false;
2399   }
2400   return true;
2401 }
2402 
2403 bool ShuffleVectorInst::isSpliceMask(ArrayRef<int> Mask, int &Index) {
2404   // Example: shufflevector <4 x n> A, <4 x n> B, <1,2,3,4>
2405   int StartIndex = -1;
2406   for (int I = 0, E = Mask.size(); I != E; ++I) {
2407     int MaskEltVal = Mask[I];
2408     if (MaskEltVal == -1)
2409       continue;
2410 
2411     if (StartIndex == -1) {
2412       // Don't support a StartIndex that begins in the second input, or if the
2413       // first non-undef index would access below the StartIndex.
2414       if (MaskEltVal < I || E <= (MaskEltVal - I))
2415         return false;
2416 
2417       StartIndex = MaskEltVal - I;
2418       continue;
2419     }
2420 
2421     // Splice is sequential starting from StartIndex.
2422     if (MaskEltVal != (StartIndex + I))
2423       return false;
2424   }
2425 
2426   if (StartIndex == -1)
2427     return false;
2428 
2429   // NOTE: This accepts StartIndex == 0 (COPY).
2430   Index = StartIndex;
2431   return true;
2432 }
2433 
2434 bool ShuffleVectorInst::isExtractSubvectorMask(ArrayRef<int> Mask,
2435                                                int NumSrcElts, int &Index) {
2436   // Must extract from a single source.
2437   if (!isSingleSourceMaskImpl(Mask, NumSrcElts))
2438     return false;
2439 
2440   // Must be smaller (else this is an Identity shuffle).
2441   if (NumSrcElts <= (int)Mask.size())
2442     return false;
2443 
2444   // Find start of extraction, accounting that we may start with an UNDEF.
2445   int SubIndex = -1;
2446   for (int i = 0, e = Mask.size(); i != e; ++i) {
2447     int M = Mask[i];
2448     if (M < 0)
2449       continue;
2450     int Offset = (M % NumSrcElts) - i;
2451     if (0 <= SubIndex && SubIndex != Offset)
2452       return false;
2453     SubIndex = Offset;
2454   }
2455 
2456   if (0 <= SubIndex && SubIndex + (int)Mask.size() <= NumSrcElts) {
2457     Index = SubIndex;
2458     return true;
2459   }
2460   return false;
2461 }
2462 
2463 bool ShuffleVectorInst::isInsertSubvectorMask(ArrayRef<int> Mask,
2464                                               int NumSrcElts, int &NumSubElts,
2465                                               int &Index) {
2466   int NumMaskElts = Mask.size();
2467 
2468   // Don't try to match if we're shuffling to a smaller size.
2469   if (NumMaskElts < NumSrcElts)
2470     return false;
2471 
2472   // TODO: We don't recognize self-insertion/widening.
2473   if (isSingleSourceMaskImpl(Mask, NumSrcElts))
2474     return false;
2475 
2476   // Determine which mask elements are attributed to which source.
2477   APInt UndefElts = APInt::getZero(NumMaskElts);
2478   APInt Src0Elts = APInt::getZero(NumMaskElts);
2479   APInt Src1Elts = APInt::getZero(NumMaskElts);
2480   bool Src0Identity = true;
2481   bool Src1Identity = true;
2482 
2483   for (int i = 0; i != NumMaskElts; ++i) {
2484     int M = Mask[i];
2485     if (M < 0) {
2486       UndefElts.setBit(i);
2487       continue;
2488     }
2489     if (M < NumSrcElts) {
2490       Src0Elts.setBit(i);
2491       Src0Identity &= (M == i);
2492       continue;
2493     }
2494     Src1Elts.setBit(i);
2495     Src1Identity &= (M == (i + NumSrcElts));
2496   }
2497   assert((Src0Elts | Src1Elts | UndefElts).isAllOnes() &&
2498          "unknown shuffle elements");
2499   assert(!Src0Elts.isZero() && !Src1Elts.isZero() &&
2500          "2-source shuffle not found");
2501 
2502   // Determine lo/hi span ranges.
2503   // TODO: How should we handle undefs at the start of subvector insertions?
2504   int Src0Lo = Src0Elts.countTrailingZeros();
2505   int Src1Lo = Src1Elts.countTrailingZeros();
2506   int Src0Hi = NumMaskElts - Src0Elts.countLeadingZeros();
2507   int Src1Hi = NumMaskElts - Src1Elts.countLeadingZeros();
2508 
2509   // If src0 is in place, see if the src1 elements is inplace within its own
2510   // span.
2511   if (Src0Identity) {
2512     int NumSub1Elts = Src1Hi - Src1Lo;
2513     ArrayRef<int> Sub1Mask = Mask.slice(Src1Lo, NumSub1Elts);
2514     if (isIdentityMaskImpl(Sub1Mask, NumSrcElts)) {
2515       NumSubElts = NumSub1Elts;
2516       Index = Src1Lo;
2517       return true;
2518     }
2519   }
2520 
2521   // If src1 is in place, see if the src0 elements is inplace within its own
2522   // span.
2523   if (Src1Identity) {
2524     int NumSub0Elts = Src0Hi - Src0Lo;
2525     ArrayRef<int> Sub0Mask = Mask.slice(Src0Lo, NumSub0Elts);
2526     if (isIdentityMaskImpl(Sub0Mask, NumSrcElts)) {
2527       NumSubElts = NumSub0Elts;
2528       Index = Src0Lo;
2529       return true;
2530     }
2531   }
2532 
2533   return false;
2534 }
2535 
2536 bool ShuffleVectorInst::isIdentityWithPadding() const {
2537   if (isa<UndefValue>(Op<2>()))
2538     return false;
2539 
2540   // FIXME: Not currently possible to express a shuffle mask for a scalable
2541   // vector for this case.
2542   if (isa<ScalableVectorType>(getType()))
2543     return false;
2544 
2545   int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2546   int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
2547   if (NumMaskElts <= NumOpElts)
2548     return false;
2549 
2550   // The first part of the mask must choose elements from exactly 1 source op.
2551   ArrayRef<int> Mask = getShuffleMask();
2552   if (!isIdentityMaskImpl(Mask, NumOpElts))
2553     return false;
2554 
2555   // All extending must be with undef elements.
2556   for (int i = NumOpElts; i < NumMaskElts; ++i)
2557     if (Mask[i] != -1)
2558       return false;
2559 
2560   return true;
2561 }
2562 
2563 bool ShuffleVectorInst::isIdentityWithExtract() const {
2564   if (isa<UndefValue>(Op<2>()))
2565     return false;
2566 
2567   // FIXME: Not currently possible to express a shuffle mask for a scalable
2568   // vector for this case.
2569   if (isa<ScalableVectorType>(getType()))
2570     return false;
2571 
2572   int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2573   int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
2574   if (NumMaskElts >= NumOpElts)
2575     return false;
2576 
2577   return isIdentityMaskImpl(getShuffleMask(), NumOpElts);
2578 }
2579 
2580 bool ShuffleVectorInst::isConcat() const {
2581   // Vector concatenation is differentiated from identity with padding.
2582   if (isa<UndefValue>(Op<0>()) || isa<UndefValue>(Op<1>()) ||
2583       isa<UndefValue>(Op<2>()))
2584     return false;
2585 
2586   // FIXME: Not currently possible to express a shuffle mask for a scalable
2587   // vector for this case.
2588   if (isa<ScalableVectorType>(getType()))
2589     return false;
2590 
2591   int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2592   int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
2593   if (NumMaskElts != NumOpElts * 2)
2594     return false;
2595 
2596   // Use the mask length rather than the operands' vector lengths here. We
2597   // already know that the shuffle returns a vector twice as long as the inputs,
2598   // and neither of the inputs are undef vectors. If the mask picks consecutive
2599   // elements from both inputs, then this is a concatenation of the inputs.
2600   return isIdentityMaskImpl(getShuffleMask(), NumMaskElts);
2601 }
2602 
2603 static bool isReplicationMaskWithParams(ArrayRef<int> Mask,
2604                                         int ReplicationFactor, int VF) {
2605   assert(Mask.size() == (unsigned)ReplicationFactor * VF &&
2606          "Unexpected mask size.");
2607 
2608   for (int CurrElt : seq(0, VF)) {
2609     ArrayRef<int> CurrSubMask = Mask.take_front(ReplicationFactor);
2610     assert(CurrSubMask.size() == (unsigned)ReplicationFactor &&
2611            "Run out of mask?");
2612     Mask = Mask.drop_front(ReplicationFactor);
2613     if (!all_of(CurrSubMask, [CurrElt](int MaskElt) {
2614           return MaskElt == UndefMaskElem || MaskElt == CurrElt;
2615         }))
2616       return false;
2617   }
2618   assert(Mask.empty() && "Did not consume the whole mask?");
2619 
2620   return true;
2621 }
2622 
2623 bool ShuffleVectorInst::isReplicationMask(ArrayRef<int> Mask,
2624                                           int &ReplicationFactor, int &VF) {
2625   // undef-less case is trivial.
2626   if (!llvm::is_contained(Mask, UndefMaskElem)) {
2627     ReplicationFactor =
2628         Mask.take_while([](int MaskElt) { return MaskElt == 0; }).size();
2629     if (ReplicationFactor == 0 || Mask.size() % ReplicationFactor != 0)
2630       return false;
2631     VF = Mask.size() / ReplicationFactor;
2632     return isReplicationMaskWithParams(Mask, ReplicationFactor, VF);
2633   }
2634 
2635   // However, if the mask contains undef's, we have to enumerate possible tuples
2636   // and pick one. There are bounds on replication factor: [1, mask size]
2637   // (where RF=1 is an identity shuffle, RF=mask size is a broadcast shuffle)
2638   // Additionally, mask size is a replication factor multiplied by vector size,
2639   // which further significantly reduces the search space.
2640 
2641   // Before doing that, let's perform basic correctness checking first.
2642   int Largest = -1;
2643   for (int MaskElt : Mask) {
2644     if (MaskElt == UndefMaskElem)
2645       continue;
2646     // Elements must be in non-decreasing order.
2647     if (MaskElt < Largest)
2648       return false;
2649     Largest = std::max(Largest, MaskElt);
2650   }
2651 
2652   // Prefer larger replication factor if all else equal.
2653   for (int PossibleReplicationFactor :
2654        reverse(seq_inclusive<unsigned>(1, Mask.size()))) {
2655     if (Mask.size() % PossibleReplicationFactor != 0)
2656       continue;
2657     int PossibleVF = Mask.size() / PossibleReplicationFactor;
2658     if (!isReplicationMaskWithParams(Mask, PossibleReplicationFactor,
2659                                      PossibleVF))
2660       continue;
2661     ReplicationFactor = PossibleReplicationFactor;
2662     VF = PossibleVF;
2663     return true;
2664   }
2665 
2666   return false;
2667 }
2668 
2669 bool ShuffleVectorInst::isReplicationMask(int &ReplicationFactor,
2670                                           int &VF) const {
2671   // Not possible to express a shuffle mask for a scalable vector for this
2672   // case.
2673   if (isa<ScalableVectorType>(getType()))
2674     return false;
2675 
2676   VF = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2677   if (ShuffleMask.size() % VF != 0)
2678     return false;
2679   ReplicationFactor = ShuffleMask.size() / VF;
2680 
2681   return isReplicationMaskWithParams(ShuffleMask, ReplicationFactor, VF);
2682 }
2683 
2684 bool ShuffleVectorInst::isOneUseSingleSourceMask(ArrayRef<int> Mask, int VF) {
2685   if (VF <= 0 || Mask.size() < static_cast<unsigned>(VF) ||
2686       Mask.size() % VF != 0)
2687     return false;
2688   for (unsigned K = 0, Sz = Mask.size(); K < Sz; K += VF) {
2689     ArrayRef<int> SubMask = Mask.slice(K, VF);
2690     if (all_of(SubMask, [](int Idx) { return Idx == UndefMaskElem; }))
2691       continue;
2692     SmallBitVector Used(VF, false);
2693     for_each(SubMask, [&Used, VF](int Idx) {
2694       if (Idx != UndefMaskElem && Idx < VF)
2695         Used.set(Idx);
2696     });
2697     if (!Used.all())
2698       return false;
2699   }
2700   return true;
2701 }
2702 
2703 /// Return true if this shuffle mask is a replication mask.
2704 bool ShuffleVectorInst::isOneUseSingleSourceMask(int VF) const {
2705   // Not possible to express a shuffle mask for a scalable vector for this
2706   // case.
2707   if (isa<ScalableVectorType>(getType()))
2708     return false;
2709   if (!isSingleSourceMask(ShuffleMask))
2710     return false;
2711 
2712   return isOneUseSingleSourceMask(ShuffleMask, VF);
2713 }
2714 
2715 //===----------------------------------------------------------------------===//
2716 //                             InsertValueInst Class
2717 //===----------------------------------------------------------------------===//
2718 
2719 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2720                            const Twine &Name) {
2721   assert(getNumOperands() == 2 && "NumOperands not initialized?");
2722 
2723   // There's no fundamental reason why we require at least one index
2724   // (other than weirdness with &*IdxBegin being invalid; see
2725   // getelementptr's init routine for example). But there's no
2726   // present need to support it.
2727   assert(!Idxs.empty() && "InsertValueInst must have at least one index");
2728 
2729   assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
2730          Val->getType() && "Inserted value must match indexed type!");
2731   Op<0>() = Agg;
2732   Op<1>() = Val;
2733 
2734   Indices.append(Idxs.begin(), Idxs.end());
2735   setName(Name);
2736 }
2737 
2738 InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
2739   : Instruction(IVI.getType(), InsertValue,
2740                 OperandTraits<InsertValueInst>::op_begin(this), 2),
2741     Indices(IVI.Indices) {
2742   Op<0>() = IVI.getOperand(0);
2743   Op<1>() = IVI.getOperand(1);
2744   SubclassOptionalData = IVI.SubclassOptionalData;
2745 }
2746 
2747 //===----------------------------------------------------------------------===//
2748 //                             ExtractValueInst Class
2749 //===----------------------------------------------------------------------===//
2750 
2751 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
2752   assert(getNumOperands() == 1 && "NumOperands not initialized?");
2753 
2754   // There's no fundamental reason why we require at least one index.
2755   // But there's no present need to support it.
2756   assert(!Idxs.empty() && "ExtractValueInst must have at least one index");
2757 
2758   Indices.append(Idxs.begin(), Idxs.end());
2759   setName(Name);
2760 }
2761 
2762 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
2763   : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
2764     Indices(EVI.Indices) {
2765   SubclassOptionalData = EVI.SubclassOptionalData;
2766 }
2767 
2768 // getIndexedType - Returns the type of the element that would be extracted
2769 // with an extractvalue instruction with the specified parameters.
2770 //
2771 // A null type is returned if the indices are invalid for the specified
2772 // pointer type.
2773 //
2774 Type *ExtractValueInst::getIndexedType(Type *Agg,
2775                                        ArrayRef<unsigned> Idxs) {
2776   for (unsigned Index : Idxs) {
2777     // We can't use CompositeType::indexValid(Index) here.
2778     // indexValid() always returns true for arrays because getelementptr allows
2779     // out-of-bounds indices. Since we don't allow those for extractvalue and
2780     // insertvalue we need to check array indexing manually.
2781     // Since the only other types we can index into are struct types it's just
2782     // as easy to check those manually as well.
2783     if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
2784       if (Index >= AT->getNumElements())
2785         return nullptr;
2786       Agg = AT->getElementType();
2787     } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
2788       if (Index >= ST->getNumElements())
2789         return nullptr;
2790       Agg = ST->getElementType(Index);
2791     } else {
2792       // Not a valid type to index into.
2793       return nullptr;
2794     }
2795   }
2796   return const_cast<Type*>(Agg);
2797 }
2798 
2799 //===----------------------------------------------------------------------===//
2800 //                             UnaryOperator Class
2801 //===----------------------------------------------------------------------===//
2802 
2803 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
2804                              Type *Ty, const Twine &Name,
2805                              Instruction *InsertBefore)
2806   : UnaryInstruction(Ty, iType, S, InsertBefore) {
2807   Op<0>() = S;
2808   setName(Name);
2809   AssertOK();
2810 }
2811 
2812 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
2813                              Type *Ty, const Twine &Name,
2814                              BasicBlock *InsertAtEnd)
2815   : UnaryInstruction(Ty, iType, S, InsertAtEnd) {
2816   Op<0>() = S;
2817   setName(Name);
2818   AssertOK();
2819 }
2820 
2821 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
2822                                      const Twine &Name,
2823                                      Instruction *InsertBefore) {
2824   return new UnaryOperator(Op, S, S->getType(), Name, InsertBefore);
2825 }
2826 
2827 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
2828                                      const Twine &Name,
2829                                      BasicBlock *InsertAtEnd) {
2830   UnaryOperator *Res = Create(Op, S, Name);
2831   Res->insertInto(InsertAtEnd, InsertAtEnd->end());
2832   return Res;
2833 }
2834 
2835 void UnaryOperator::AssertOK() {
2836   Value *LHS = getOperand(0);
2837   (void)LHS; // Silence warnings.
2838 #ifndef NDEBUG
2839   switch (getOpcode()) {
2840   case FNeg:
2841     assert(getType() == LHS->getType() &&
2842            "Unary operation should return same type as operand!");
2843     assert(getType()->isFPOrFPVectorTy() &&
2844            "Tried to create a floating-point operation on a "
2845            "non-floating-point type!");
2846     break;
2847   default: llvm_unreachable("Invalid opcode provided");
2848   }
2849 #endif
2850 }
2851 
2852 //===----------------------------------------------------------------------===//
2853 //                             BinaryOperator Class
2854 //===----------------------------------------------------------------------===//
2855 
2856 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
2857                                Type *Ty, const Twine &Name,
2858                                Instruction *InsertBefore)
2859   : Instruction(Ty, iType,
2860                 OperandTraits<BinaryOperator>::op_begin(this),
2861                 OperandTraits<BinaryOperator>::operands(this),
2862                 InsertBefore) {
2863   Op<0>() = S1;
2864   Op<1>() = S2;
2865   setName(Name);
2866   AssertOK();
2867 }
2868 
2869 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
2870                                Type *Ty, const Twine &Name,
2871                                BasicBlock *InsertAtEnd)
2872   : Instruction(Ty, iType,
2873                 OperandTraits<BinaryOperator>::op_begin(this),
2874                 OperandTraits<BinaryOperator>::operands(this),
2875                 InsertAtEnd) {
2876   Op<0>() = S1;
2877   Op<1>() = S2;
2878   setName(Name);
2879   AssertOK();
2880 }
2881 
2882 void BinaryOperator::AssertOK() {
2883   Value *LHS = getOperand(0), *RHS = getOperand(1);
2884   (void)LHS; (void)RHS; // Silence warnings.
2885   assert(LHS->getType() == RHS->getType() &&
2886          "Binary operator operand types must match!");
2887 #ifndef NDEBUG
2888   switch (getOpcode()) {
2889   case Add: case Sub:
2890   case Mul:
2891     assert(getType() == LHS->getType() &&
2892            "Arithmetic operation should return same type as operands!");
2893     assert(getType()->isIntOrIntVectorTy() &&
2894            "Tried to create an integer operation on a non-integer type!");
2895     break;
2896   case FAdd: case FSub:
2897   case FMul:
2898     assert(getType() == LHS->getType() &&
2899            "Arithmetic operation should return same type as operands!");
2900     assert(getType()->isFPOrFPVectorTy() &&
2901            "Tried to create a floating-point operation on a "
2902            "non-floating-point type!");
2903     break;
2904   case UDiv:
2905   case SDiv:
2906     assert(getType() == LHS->getType() &&
2907            "Arithmetic operation should return same type as operands!");
2908     assert(getType()->isIntOrIntVectorTy() &&
2909            "Incorrect operand type (not integer) for S/UDIV");
2910     break;
2911   case FDiv:
2912     assert(getType() == LHS->getType() &&
2913            "Arithmetic operation should return same type as operands!");
2914     assert(getType()->isFPOrFPVectorTy() &&
2915            "Incorrect operand type (not floating point) for FDIV");
2916     break;
2917   case URem:
2918   case SRem:
2919     assert(getType() == LHS->getType() &&
2920            "Arithmetic operation should return same type as operands!");
2921     assert(getType()->isIntOrIntVectorTy() &&
2922            "Incorrect operand type (not integer) for S/UREM");
2923     break;
2924   case FRem:
2925     assert(getType() == LHS->getType() &&
2926            "Arithmetic operation should return same type as operands!");
2927     assert(getType()->isFPOrFPVectorTy() &&
2928            "Incorrect operand type (not floating point) for FREM");
2929     break;
2930   case Shl:
2931   case LShr:
2932   case AShr:
2933     assert(getType() == LHS->getType() &&
2934            "Shift operation should return same type as operands!");
2935     assert(getType()->isIntOrIntVectorTy() &&
2936            "Tried to create a shift operation on a non-integral type!");
2937     break;
2938   case And: case Or:
2939   case Xor:
2940     assert(getType() == LHS->getType() &&
2941            "Logical operation should return same type as operands!");
2942     assert(getType()->isIntOrIntVectorTy() &&
2943            "Tried to create a logical operation on a non-integral type!");
2944     break;
2945   default: llvm_unreachable("Invalid opcode provided");
2946   }
2947 #endif
2948 }
2949 
2950 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2951                                        const Twine &Name,
2952                                        Instruction *InsertBefore) {
2953   assert(S1->getType() == S2->getType() &&
2954          "Cannot create binary operator with two operands of differing type!");
2955   return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
2956 }
2957 
2958 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2959                                        const Twine &Name,
2960                                        BasicBlock *InsertAtEnd) {
2961   BinaryOperator *Res = Create(Op, S1, S2, Name);
2962   Res->insertInto(InsertAtEnd, InsertAtEnd->end());
2963   return Res;
2964 }
2965 
2966 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2967                                           Instruction *InsertBefore) {
2968   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2969   return new BinaryOperator(Instruction::Sub,
2970                             zero, Op,
2971                             Op->getType(), Name, InsertBefore);
2972 }
2973 
2974 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2975                                           BasicBlock *InsertAtEnd) {
2976   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2977   return new BinaryOperator(Instruction::Sub,
2978                             zero, Op,
2979                             Op->getType(), Name, InsertAtEnd);
2980 }
2981 
2982 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2983                                              Instruction *InsertBefore) {
2984   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2985   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
2986 }
2987 
2988 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2989                                              BasicBlock *InsertAtEnd) {
2990   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2991   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
2992 }
2993 
2994 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2995                                              Instruction *InsertBefore) {
2996   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2997   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
2998 }
2999 
3000 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
3001                                              BasicBlock *InsertAtEnd) {
3002   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
3003   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
3004 }
3005 
3006 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
3007                                           Instruction *InsertBefore) {
3008   Constant *C = Constant::getAllOnesValue(Op->getType());
3009   return new BinaryOperator(Instruction::Xor, Op, C,
3010                             Op->getType(), Name, InsertBefore);
3011 }
3012 
3013 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
3014                                           BasicBlock *InsertAtEnd) {
3015   Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
3016   return new BinaryOperator(Instruction::Xor, Op, AllOnes,
3017                             Op->getType(), Name, InsertAtEnd);
3018 }
3019 
3020 // Exchange the two operands to this instruction. This instruction is safe to
3021 // use on any binary instruction and does not modify the semantics of the
3022 // instruction. If the instruction is order-dependent (SetLT f.e.), the opcode
3023 // is changed.
3024 bool BinaryOperator::swapOperands() {
3025   if (!isCommutative())
3026     return true; // Can't commute operands
3027   Op<0>().swap(Op<1>());
3028   return false;
3029 }
3030 
3031 //===----------------------------------------------------------------------===//
3032 //                             FPMathOperator Class
3033 //===----------------------------------------------------------------------===//
3034 
3035 float FPMathOperator::getFPAccuracy() const {
3036   const MDNode *MD =
3037       cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
3038   if (!MD)
3039     return 0.0;
3040   ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0));
3041   return Accuracy->getValueAPF().convertToFloat();
3042 }
3043 
3044 //===----------------------------------------------------------------------===//
3045 //                                CastInst Class
3046 //===----------------------------------------------------------------------===//
3047 
3048 // Just determine if this cast only deals with integral->integral conversion.
3049 bool CastInst::isIntegerCast() const {
3050   switch (getOpcode()) {
3051     default: return false;
3052     case Instruction::ZExt:
3053     case Instruction::SExt:
3054     case Instruction::Trunc:
3055       return true;
3056     case Instruction::BitCast:
3057       return getOperand(0)->getType()->isIntegerTy() &&
3058         getType()->isIntegerTy();
3059   }
3060 }
3061 
3062 bool CastInst::isLosslessCast() const {
3063   // Only BitCast can be lossless, exit fast if we're not BitCast
3064   if (getOpcode() != Instruction::BitCast)
3065     return false;
3066 
3067   // Identity cast is always lossless
3068   Type *SrcTy = getOperand(0)->getType();
3069   Type *DstTy = getType();
3070   if (SrcTy == DstTy)
3071     return true;
3072 
3073   // Pointer to pointer is always lossless.
3074   if (SrcTy->isPointerTy())
3075     return DstTy->isPointerTy();
3076   return false;  // Other types have no identity values
3077 }
3078 
3079 /// This function determines if the CastInst does not require any bits to be
3080 /// changed in order to effect the cast. Essentially, it identifies cases where
3081 /// no code gen is necessary for the cast, hence the name no-op cast.  For
3082 /// example, the following are all no-op casts:
3083 /// # bitcast i32* %x to i8*
3084 /// # bitcast <2 x i32> %x to <4 x i16>
3085 /// # ptrtoint i32* %x to i32     ; on 32-bit plaforms only
3086 /// Determine if the described cast is a no-op.
3087 bool CastInst::isNoopCast(Instruction::CastOps Opcode,
3088                           Type *SrcTy,
3089                           Type *DestTy,
3090                           const DataLayout &DL) {
3091   assert(castIsValid(Opcode, SrcTy, DestTy) && "method precondition");
3092   switch (Opcode) {
3093     default: llvm_unreachable("Invalid CastOp");
3094     case Instruction::Trunc:
3095     case Instruction::ZExt:
3096     case Instruction::SExt:
3097     case Instruction::FPTrunc:
3098     case Instruction::FPExt:
3099     case Instruction::UIToFP:
3100     case Instruction::SIToFP:
3101     case Instruction::FPToUI:
3102     case Instruction::FPToSI:
3103     case Instruction::AddrSpaceCast:
3104       // TODO: Target informations may give a more accurate answer here.
3105       return false;
3106     case Instruction::BitCast:
3107       return true;  // BitCast never modifies bits.
3108     case Instruction::PtrToInt:
3109       return DL.getIntPtrType(SrcTy)->getScalarSizeInBits() ==
3110              DestTy->getScalarSizeInBits();
3111     case Instruction::IntToPtr:
3112       return DL.getIntPtrType(DestTy)->getScalarSizeInBits() ==
3113              SrcTy->getScalarSizeInBits();
3114   }
3115 }
3116 
3117 bool CastInst::isNoopCast(const DataLayout &DL) const {
3118   return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), DL);
3119 }
3120 
3121 /// This function determines if a pair of casts can be eliminated and what
3122 /// opcode should be used in the elimination. This assumes that there are two
3123 /// instructions like this:
3124 /// *  %F = firstOpcode SrcTy %x to MidTy
3125 /// *  %S = secondOpcode MidTy %F to DstTy
3126 /// The function returns a resultOpcode so these two casts can be replaced with:
3127 /// *  %Replacement = resultOpcode %SrcTy %x to DstTy
3128 /// If no such cast is permitted, the function returns 0.
3129 unsigned CastInst::isEliminableCastPair(
3130   Instruction::CastOps firstOp, Instruction::CastOps secondOp,
3131   Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
3132   Type *DstIntPtrTy) {
3133   // Define the 144 possibilities for these two cast instructions. The values
3134   // in this matrix determine what to do in a given situation and select the
3135   // case in the switch below.  The rows correspond to firstOp, the columns
3136   // correspond to secondOp.  In looking at the table below, keep in mind
3137   // the following cast properties:
3138   //
3139   //          Size Compare       Source               Destination
3140   // Operator  Src ? Size   Type       Sign         Type       Sign
3141   // -------- ------------ -------------------   ---------------------
3142   // TRUNC         >       Integer      Any        Integral     Any
3143   // ZEXT          <       Integral   Unsigned     Integer      Any
3144   // SEXT          <       Integral    Signed      Integer      Any
3145   // FPTOUI       n/a      FloatPt      n/a        Integral   Unsigned
3146   // FPTOSI       n/a      FloatPt      n/a        Integral    Signed
3147   // UITOFP       n/a      Integral   Unsigned     FloatPt      n/a
3148   // SITOFP       n/a      Integral    Signed      FloatPt      n/a
3149   // FPTRUNC       >       FloatPt      n/a        FloatPt      n/a
3150   // FPEXT         <       FloatPt      n/a        FloatPt      n/a
3151   // PTRTOINT     n/a      Pointer      n/a        Integral   Unsigned
3152   // INTTOPTR     n/a      Integral   Unsigned     Pointer      n/a
3153   // BITCAST       =       FirstClass   n/a       FirstClass    n/a
3154   // ADDRSPCST    n/a      Pointer      n/a        Pointer      n/a
3155   //
3156   // NOTE: some transforms are safe, but we consider them to be non-profitable.
3157   // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
3158   // into "fptoui double to i64", but this loses information about the range
3159   // of the produced value (we no longer know the top-part is all zeros).
3160   // Further this conversion is often much more expensive for typical hardware,
3161   // and causes issues when building libgcc.  We disallow fptosi+sext for the
3162   // same reason.
3163   const unsigned numCastOps =
3164     Instruction::CastOpsEnd - Instruction::CastOpsBegin;
3165   static const uint8_t CastResults[numCastOps][numCastOps] = {
3166     // T        F  F  U  S  F  F  P  I  B  A  -+
3167     // R  Z  S  P  P  I  I  T  P  2  N  T  S   |
3168     // U  E  E  2  2  2  2  R  E  I  T  C  C   +- secondOp
3169     // N  X  X  U  S  F  F  N  X  N  2  V  V   |
3170     // C  T  T  I  I  P  P  C  T  T  P  T  T  -+
3171     {  1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc         -+
3172     {  8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt           |
3173     {  8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt           |
3174     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI         |
3175     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI         |
3176     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP         +- firstOp
3177     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP         |
3178     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc        |
3179     { 99,99,99, 2, 2,99,99, 8, 2,99,99, 4, 0}, // FPExt          |
3180     {  1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt       |
3181     { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr       |
3182     {  5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast        |
3183     {  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
3184   };
3185 
3186   // TODO: This logic could be encoded into the table above and handled in the
3187   // switch below.
3188   // If either of the casts are a bitcast from scalar to vector, disallow the
3189   // merging. However, any pair of bitcasts are allowed.
3190   bool IsFirstBitcast  = (firstOp == Instruction::BitCast);
3191   bool IsSecondBitcast = (secondOp == Instruction::BitCast);
3192   bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast;
3193 
3194   // Check if any of the casts convert scalars <-> vectors.
3195   if ((IsFirstBitcast  && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
3196       (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
3197     if (!AreBothBitcasts)
3198       return 0;
3199 
3200   int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
3201                             [secondOp-Instruction::CastOpsBegin];
3202   switch (ElimCase) {
3203     case 0:
3204       // Categorically disallowed.
3205       return 0;
3206     case 1:
3207       // Allowed, use first cast's opcode.
3208       return firstOp;
3209     case 2:
3210       // Allowed, use second cast's opcode.
3211       return secondOp;
3212     case 3:
3213       // No-op cast in second op implies firstOp as long as the DestTy
3214       // is integer and we are not converting between a vector and a
3215       // non-vector type.
3216       if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
3217         return firstOp;
3218       return 0;
3219     case 4:
3220       // No-op cast in second op implies firstOp as long as the DestTy
3221       // is floating point.
3222       if (DstTy->isFloatingPointTy())
3223         return firstOp;
3224       return 0;
3225     case 5:
3226       // No-op cast in first op implies secondOp as long as the SrcTy
3227       // is an integer.
3228       if (SrcTy->isIntegerTy())
3229         return secondOp;
3230       return 0;
3231     case 6:
3232       // No-op cast in first op implies secondOp as long as the SrcTy
3233       // is a floating point.
3234       if (SrcTy->isFloatingPointTy())
3235         return secondOp;
3236       return 0;
3237     case 7: {
3238       // Disable inttoptr/ptrtoint optimization if enabled.
3239       if (DisableI2pP2iOpt)
3240         return 0;
3241 
3242       // Cannot simplify if address spaces are different!
3243       if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
3244         return 0;
3245 
3246       unsigned MidSize = MidTy->getScalarSizeInBits();
3247       // We can still fold this without knowing the actual sizes as long we
3248       // know that the intermediate pointer is the largest possible
3249       // pointer size.
3250       // FIXME: Is this always true?
3251       if (MidSize == 64)
3252         return Instruction::BitCast;
3253 
3254       // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
3255       if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
3256         return 0;
3257       unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
3258       if (MidSize >= PtrSize)
3259         return Instruction::BitCast;
3260       return 0;
3261     }
3262     case 8: {
3263       // ext, trunc -> bitcast,    if the SrcTy and DstTy are the same
3264       // ext, trunc -> ext,        if sizeof(SrcTy) < sizeof(DstTy)
3265       // ext, trunc -> trunc,      if sizeof(SrcTy) > sizeof(DstTy)
3266       unsigned SrcSize = SrcTy->getScalarSizeInBits();
3267       unsigned DstSize = DstTy->getScalarSizeInBits();
3268       if (SrcTy == DstTy)
3269         return Instruction::BitCast;
3270       if (SrcSize < DstSize)
3271         return firstOp;
3272       if (SrcSize > DstSize)
3273         return secondOp;
3274       return 0;
3275     }
3276     case 9:
3277       // zext, sext -> zext, because sext can't sign extend after zext
3278       return Instruction::ZExt;
3279     case 11: {
3280       // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
3281       if (!MidIntPtrTy)
3282         return 0;
3283       unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
3284       unsigned SrcSize = SrcTy->getScalarSizeInBits();
3285       unsigned DstSize = DstTy->getScalarSizeInBits();
3286       if (SrcSize <= PtrSize && SrcSize == DstSize)
3287         return Instruction::BitCast;
3288       return 0;
3289     }
3290     case 12:
3291       // addrspacecast, addrspacecast -> bitcast,       if SrcAS == DstAS
3292       // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
3293       if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
3294         return Instruction::AddrSpaceCast;
3295       return Instruction::BitCast;
3296     case 13:
3297       // FIXME: this state can be merged with (1), but the following assert
3298       // is useful to check the correcteness of the sequence due to semantic
3299       // change of bitcast.
3300       assert(
3301         SrcTy->isPtrOrPtrVectorTy() &&
3302         MidTy->isPtrOrPtrVectorTy() &&
3303         DstTy->isPtrOrPtrVectorTy() &&
3304         SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() &&
3305         MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
3306         "Illegal addrspacecast, bitcast sequence!");
3307       // Allowed, use first cast's opcode
3308       return firstOp;
3309     case 14: {
3310       // bitcast, addrspacecast -> addrspacecast if the element type of
3311       // bitcast's source is the same as that of addrspacecast's destination.
3312       PointerType *SrcPtrTy = cast<PointerType>(SrcTy->getScalarType());
3313       PointerType *DstPtrTy = cast<PointerType>(DstTy->getScalarType());
3314       if (SrcPtrTy->hasSameElementTypeAs(DstPtrTy))
3315         return Instruction::AddrSpaceCast;
3316       return 0;
3317     }
3318     case 15:
3319       // FIXME: this state can be merged with (1), but the following assert
3320       // is useful to check the correcteness of the sequence due to semantic
3321       // change of bitcast.
3322       assert(
3323         SrcTy->isIntOrIntVectorTy() &&
3324         MidTy->isPtrOrPtrVectorTy() &&
3325         DstTy->isPtrOrPtrVectorTy() &&
3326         MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
3327         "Illegal inttoptr, bitcast sequence!");
3328       // Allowed, use first cast's opcode
3329       return firstOp;
3330     case 16:
3331       // FIXME: this state can be merged with (2), but the following assert
3332       // is useful to check the correcteness of the sequence due to semantic
3333       // change of bitcast.
3334       assert(
3335         SrcTy->isPtrOrPtrVectorTy() &&
3336         MidTy->isPtrOrPtrVectorTy() &&
3337         DstTy->isIntOrIntVectorTy() &&
3338         SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() &&
3339         "Illegal bitcast, ptrtoint sequence!");
3340       // Allowed, use second cast's opcode
3341       return secondOp;
3342     case 17:
3343       // (sitofp (zext x)) -> (uitofp x)
3344       return Instruction::UIToFP;
3345     case 99:
3346       // Cast combination can't happen (error in input). This is for all cases
3347       // where the MidTy is not the same for the two cast instructions.
3348       llvm_unreachable("Invalid Cast Combination");
3349     default:
3350       llvm_unreachable("Error in CastResults table!!!");
3351   }
3352 }
3353 
3354 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
3355   const Twine &Name, Instruction *InsertBefore) {
3356   assert(castIsValid(op, S, Ty) && "Invalid cast!");
3357   // Construct and return the appropriate CastInst subclass
3358   switch (op) {
3359   case Trunc:         return new TruncInst         (S, Ty, Name, InsertBefore);
3360   case ZExt:          return new ZExtInst          (S, Ty, Name, InsertBefore);
3361   case SExt:          return new SExtInst          (S, Ty, Name, InsertBefore);
3362   case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertBefore);
3363   case FPExt:         return new FPExtInst         (S, Ty, Name, InsertBefore);
3364   case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertBefore);
3365   case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertBefore);
3366   case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertBefore);
3367   case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertBefore);
3368   case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertBefore);
3369   case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertBefore);
3370   case BitCast:       return new BitCastInst       (S, Ty, Name, InsertBefore);
3371   case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore);
3372   default: llvm_unreachable("Invalid opcode provided");
3373   }
3374 }
3375 
3376 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
3377   const Twine &Name, BasicBlock *InsertAtEnd) {
3378   assert(castIsValid(op, S, Ty) && "Invalid cast!");
3379   // Construct and return the appropriate CastInst subclass
3380   switch (op) {
3381   case Trunc:         return new TruncInst         (S, Ty, Name, InsertAtEnd);
3382   case ZExt:          return new ZExtInst          (S, Ty, Name, InsertAtEnd);
3383   case SExt:          return new SExtInst          (S, Ty, Name, InsertAtEnd);
3384   case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertAtEnd);
3385   case FPExt:         return new FPExtInst         (S, Ty, Name, InsertAtEnd);
3386   case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertAtEnd);
3387   case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertAtEnd);
3388   case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertAtEnd);
3389   case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertAtEnd);
3390   case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertAtEnd);
3391   case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertAtEnd);
3392   case BitCast:       return new BitCastInst       (S, Ty, Name, InsertAtEnd);
3393   case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd);
3394   default: llvm_unreachable("Invalid opcode provided");
3395   }
3396 }
3397 
3398 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
3399                                         const Twine &Name,
3400                                         Instruction *InsertBefore) {
3401   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3402     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3403   return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
3404 }
3405 
3406 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
3407                                         const Twine &Name,
3408                                         BasicBlock *InsertAtEnd) {
3409   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3410     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3411   return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
3412 }
3413 
3414 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
3415                                         const Twine &Name,
3416                                         Instruction *InsertBefore) {
3417   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3418     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3419   return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
3420 }
3421 
3422 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
3423                                         const Twine &Name,
3424                                         BasicBlock *InsertAtEnd) {
3425   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3426     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3427   return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
3428 }
3429 
3430 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
3431                                          const Twine &Name,
3432                                          Instruction *InsertBefore) {
3433   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3434     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3435   return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
3436 }
3437 
3438 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
3439                                          const Twine &Name,
3440                                          BasicBlock *InsertAtEnd) {
3441   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3442     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3443   return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
3444 }
3445 
3446 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
3447                                       const Twine &Name,
3448                                       BasicBlock *InsertAtEnd) {
3449   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3450   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
3451          "Invalid cast");
3452   assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
3453   assert((!Ty->isVectorTy() ||
3454           cast<VectorType>(Ty)->getElementCount() ==
3455               cast<VectorType>(S->getType())->getElementCount()) &&
3456          "Invalid cast");
3457 
3458   if (Ty->isIntOrIntVectorTy())
3459     return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
3460 
3461   return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertAtEnd);
3462 }
3463 
3464 /// Create a BitCast or a PtrToInt cast instruction
3465 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
3466                                       const Twine &Name,
3467                                       Instruction *InsertBefore) {
3468   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3469   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
3470          "Invalid cast");
3471   assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
3472   assert((!Ty->isVectorTy() ||
3473           cast<VectorType>(Ty)->getElementCount() ==
3474               cast<VectorType>(S->getType())->getElementCount()) &&
3475          "Invalid cast");
3476 
3477   if (Ty->isIntOrIntVectorTy())
3478     return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
3479 
3480   return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore);
3481 }
3482 
3483 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
3484   Value *S, Type *Ty,
3485   const Twine &Name,
3486   BasicBlock *InsertAtEnd) {
3487   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3488   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
3489 
3490   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
3491     return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd);
3492 
3493   return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3494 }
3495 
3496 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
3497   Value *S, Type *Ty,
3498   const Twine &Name,
3499   Instruction *InsertBefore) {
3500   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3501   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
3502 
3503   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
3504     return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore);
3505 
3506   return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3507 }
3508 
3509 CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty,
3510                                            const Twine &Name,
3511                                            Instruction *InsertBefore) {
3512   if (S->getType()->isPointerTy() && Ty->isIntegerTy())
3513     return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
3514   if (S->getType()->isIntegerTy() && Ty->isPointerTy())
3515     return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore);
3516 
3517   return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3518 }
3519 
3520 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
3521                                       bool isSigned, const Twine &Name,
3522                                       Instruction *InsertBefore) {
3523   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
3524          "Invalid integer cast");
3525   unsigned SrcBits = C->getType()->getScalarSizeInBits();
3526   unsigned DstBits = Ty->getScalarSizeInBits();
3527   Instruction::CastOps opcode =
3528     (SrcBits == DstBits ? Instruction::BitCast :
3529      (SrcBits > DstBits ? Instruction::Trunc :
3530       (isSigned ? Instruction::SExt : Instruction::ZExt)));
3531   return Create(opcode, C, Ty, Name, InsertBefore);
3532 }
3533 
3534 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
3535                                       bool isSigned, const Twine &Name,
3536                                       BasicBlock *InsertAtEnd) {
3537   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
3538          "Invalid cast");
3539   unsigned SrcBits = C->getType()->getScalarSizeInBits();
3540   unsigned DstBits = Ty->getScalarSizeInBits();
3541   Instruction::CastOps opcode =
3542     (SrcBits == DstBits ? Instruction::BitCast :
3543      (SrcBits > DstBits ? Instruction::Trunc :
3544       (isSigned ? Instruction::SExt : Instruction::ZExt)));
3545   return Create(opcode, C, Ty, Name, InsertAtEnd);
3546 }
3547 
3548 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
3549                                  const Twine &Name,
3550                                  Instruction *InsertBefore) {
3551   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
3552          "Invalid cast");
3553   unsigned SrcBits = C->getType()->getScalarSizeInBits();
3554   unsigned DstBits = Ty->getScalarSizeInBits();
3555   Instruction::CastOps opcode =
3556     (SrcBits == DstBits ? Instruction::BitCast :
3557      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
3558   return Create(opcode, C, Ty, Name, InsertBefore);
3559 }
3560 
3561 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
3562                                  const Twine &Name,
3563                                  BasicBlock *InsertAtEnd) {
3564   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
3565          "Invalid cast");
3566   unsigned SrcBits = C->getType()->getScalarSizeInBits();
3567   unsigned DstBits = Ty->getScalarSizeInBits();
3568   Instruction::CastOps opcode =
3569     (SrcBits == DstBits ? Instruction::BitCast :
3570      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
3571   return Create(opcode, C, Ty, Name, InsertAtEnd);
3572 }
3573 
3574 bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
3575   if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
3576     return false;
3577 
3578   if (SrcTy == DestTy)
3579     return true;
3580 
3581   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3582     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
3583       if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
3584         // An element by element cast. Valid if casting the elements is valid.
3585         SrcTy = SrcVecTy->getElementType();
3586         DestTy = DestVecTy->getElementType();
3587       }
3588     }
3589   }
3590 
3591   if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
3592     if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
3593       return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
3594     }
3595   }
3596 
3597   TypeSize SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
3598   TypeSize DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3599 
3600   // Could still have vectors of pointers if the number of elements doesn't
3601   // match
3602   if (SrcBits.getKnownMinValue() == 0 || DestBits.getKnownMinValue() == 0)
3603     return false;
3604 
3605   if (SrcBits != DestBits)
3606     return false;
3607 
3608   if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
3609     return false;
3610 
3611   return true;
3612 }
3613 
3614 bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy,
3615                                           const DataLayout &DL) {
3616   // ptrtoint and inttoptr are not allowed on non-integral pointers
3617   if (auto *PtrTy = dyn_cast<PointerType>(SrcTy))
3618     if (auto *IntTy = dyn_cast<IntegerType>(DestTy))
3619       return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3620               !DL.isNonIntegralPointerType(PtrTy));
3621   if (auto *PtrTy = dyn_cast<PointerType>(DestTy))
3622     if (auto *IntTy = dyn_cast<IntegerType>(SrcTy))
3623       return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3624               !DL.isNonIntegralPointerType(PtrTy));
3625 
3626   return isBitCastable(SrcTy, DestTy);
3627 }
3628 
3629 // Provide a way to get a "cast" where the cast opcode is inferred from the
3630 // types and size of the operand. This, basically, is a parallel of the
3631 // logic in the castIsValid function below.  This axiom should hold:
3632 //   castIsValid( getCastOpcode(Val, Ty), Val, Ty)
3633 // should not assert in castIsValid. In other words, this produces a "correct"
3634 // casting opcode for the arguments passed to it.
3635 Instruction::CastOps
3636 CastInst::getCastOpcode(
3637   const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
3638   Type *SrcTy = Src->getType();
3639 
3640   assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
3641          "Only first class types are castable!");
3642 
3643   if (SrcTy == DestTy)
3644     return BitCast;
3645 
3646   // FIXME: Check address space sizes here
3647   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
3648     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
3649       if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
3650         // An element by element cast.  Find the appropriate opcode based on the
3651         // element types.
3652         SrcTy = SrcVecTy->getElementType();
3653         DestTy = DestVecTy->getElementType();
3654       }
3655 
3656   // Get the bit sizes, we'll need these
3657   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
3658   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3659 
3660   // Run through the possibilities ...
3661   if (DestTy->isIntegerTy()) {                      // Casting to integral
3662     if (SrcTy->isIntegerTy()) {                     // Casting from integral
3663       if (DestBits < SrcBits)
3664         return Trunc;                               // int -> smaller int
3665       else if (DestBits > SrcBits) {                // its an extension
3666         if (SrcIsSigned)
3667           return SExt;                              // signed -> SEXT
3668         else
3669           return ZExt;                              // unsigned -> ZEXT
3670       } else {
3671         return BitCast;                             // Same size, No-op cast
3672       }
3673     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
3674       if (DestIsSigned)
3675         return FPToSI;                              // FP -> sint
3676       else
3677         return FPToUI;                              // FP -> uint
3678     } else if (SrcTy->isVectorTy()) {
3679       assert(DestBits == SrcBits &&
3680              "Casting vector to integer of different width");
3681       return BitCast;                             // Same size, no-op cast
3682     } else {
3683       assert(SrcTy->isPointerTy() &&
3684              "Casting from a value that is not first-class type");
3685       return PtrToInt;                              // ptr -> int
3686     }
3687   } else if (DestTy->isFloatingPointTy()) {         // Casting to floating pt
3688     if (SrcTy->isIntegerTy()) {                     // Casting from integral
3689       if (SrcIsSigned)
3690         return SIToFP;                              // sint -> FP
3691       else
3692         return UIToFP;                              // uint -> FP
3693     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
3694       if (DestBits < SrcBits) {
3695         return FPTrunc;                             // FP -> smaller FP
3696       } else if (DestBits > SrcBits) {
3697         return FPExt;                               // FP -> larger FP
3698       } else  {
3699         return BitCast;                             // same size, no-op cast
3700       }
3701     } else if (SrcTy->isVectorTy()) {
3702       assert(DestBits == SrcBits &&
3703              "Casting vector to floating point of different width");
3704       return BitCast;                             // same size, no-op cast
3705     }
3706     llvm_unreachable("Casting pointer or non-first class to float");
3707   } else if (DestTy->isVectorTy()) {
3708     assert(DestBits == SrcBits &&
3709            "Illegal cast to vector (wrong type or size)");
3710     return BitCast;
3711   } else if (DestTy->isPointerTy()) {
3712     if (SrcTy->isPointerTy()) {
3713       if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace())
3714         return AddrSpaceCast;
3715       return BitCast;                               // ptr -> ptr
3716     } else if (SrcTy->isIntegerTy()) {
3717       return IntToPtr;                              // int -> ptr
3718     }
3719     llvm_unreachable("Casting pointer to other than pointer or int");
3720   } else if (DestTy->isX86_MMXTy()) {
3721     if (SrcTy->isVectorTy()) {
3722       assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
3723       return BitCast;                               // 64-bit vector to MMX
3724     }
3725     llvm_unreachable("Illegal cast to X86_MMX");
3726   }
3727   llvm_unreachable("Casting to type that is not first-class");
3728 }
3729 
3730 //===----------------------------------------------------------------------===//
3731 //                    CastInst SubClass Constructors
3732 //===----------------------------------------------------------------------===//
3733 
3734 /// Check that the construction parameters for a CastInst are correct. This
3735 /// could be broken out into the separate constructors but it is useful to have
3736 /// it in one place and to eliminate the redundant code for getting the sizes
3737 /// of the types involved.
3738 bool
3739 CastInst::castIsValid(Instruction::CastOps op, Type *SrcTy, Type *DstTy) {
3740   if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
3741       SrcTy->isAggregateType() || DstTy->isAggregateType())
3742     return false;
3743 
3744   // Get the size of the types in bits, and whether we are dealing
3745   // with vector types, we'll need this later.
3746   bool SrcIsVec = isa<VectorType>(SrcTy);
3747   bool DstIsVec = isa<VectorType>(DstTy);
3748   unsigned SrcScalarBitSize = SrcTy->getScalarSizeInBits();
3749   unsigned DstScalarBitSize = DstTy->getScalarSizeInBits();
3750 
3751   // If these are vector types, get the lengths of the vectors (using zero for
3752   // scalar types means that checking that vector lengths match also checks that
3753   // scalars are not being converted to vectors or vectors to scalars).
3754   ElementCount SrcEC = SrcIsVec ? cast<VectorType>(SrcTy)->getElementCount()
3755                                 : ElementCount::getFixed(0);
3756   ElementCount DstEC = DstIsVec ? cast<VectorType>(DstTy)->getElementCount()
3757                                 : ElementCount::getFixed(0);
3758 
3759   // Switch on the opcode provided
3760   switch (op) {
3761   default: return false; // This is an input error
3762   case Instruction::Trunc:
3763     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3764            SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize;
3765   case Instruction::ZExt:
3766     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3767            SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3768   case Instruction::SExt:
3769     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3770            SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3771   case Instruction::FPTrunc:
3772     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3773            SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize;
3774   case Instruction::FPExt:
3775     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3776            SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3777   case Instruction::UIToFP:
3778   case Instruction::SIToFP:
3779     return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
3780            SrcEC == DstEC;
3781   case Instruction::FPToUI:
3782   case Instruction::FPToSI:
3783     return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
3784            SrcEC == DstEC;
3785   case Instruction::PtrToInt:
3786     if (SrcEC != DstEC)
3787       return false;
3788     return SrcTy->isPtrOrPtrVectorTy() && DstTy->isIntOrIntVectorTy();
3789   case Instruction::IntToPtr:
3790     if (SrcEC != DstEC)
3791       return false;
3792     return SrcTy->isIntOrIntVectorTy() && DstTy->isPtrOrPtrVectorTy();
3793   case Instruction::BitCast: {
3794     PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3795     PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3796 
3797     // BitCast implies a no-op cast of type only. No bits change.
3798     // However, you can't cast pointers to anything but pointers.
3799     if (!SrcPtrTy != !DstPtrTy)
3800       return false;
3801 
3802     // For non-pointer cases, the cast is okay if the source and destination bit
3803     // widths are identical.
3804     if (!SrcPtrTy)
3805       return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
3806 
3807     // If both are pointers then the address spaces must match.
3808     if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace())
3809       return false;
3810 
3811     // A vector of pointers must have the same number of elements.
3812     if (SrcIsVec && DstIsVec)
3813       return SrcEC == DstEC;
3814     if (SrcIsVec)
3815       return SrcEC == ElementCount::getFixed(1);
3816     if (DstIsVec)
3817       return DstEC == ElementCount::getFixed(1);
3818 
3819     return true;
3820   }
3821   case Instruction::AddrSpaceCast: {
3822     PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3823     if (!SrcPtrTy)
3824       return false;
3825 
3826     PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3827     if (!DstPtrTy)
3828       return false;
3829 
3830     if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
3831       return false;
3832 
3833     return SrcEC == DstEC;
3834   }
3835   }
3836 }
3837 
3838 TruncInst::TruncInst(
3839   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3840 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
3841   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3842 }
3843 
3844 TruncInst::TruncInst(
3845   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3846 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
3847   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3848 }
3849 
3850 ZExtInst::ZExtInst(
3851   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3852 )  : CastInst(Ty, ZExt, S, Name, InsertBefore) {
3853   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3854 }
3855 
3856 ZExtInst::ZExtInst(
3857   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3858 )  : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
3859   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3860 }
3861 SExtInst::SExtInst(
3862   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3863 ) : CastInst(Ty, SExt, S, Name, InsertBefore) {
3864   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3865 }
3866 
3867 SExtInst::SExtInst(
3868   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3869 )  : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
3870   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3871 }
3872 
3873 FPTruncInst::FPTruncInst(
3874   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3875 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
3876   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3877 }
3878 
3879 FPTruncInst::FPTruncInst(
3880   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3881 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
3882   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3883 }
3884 
3885 FPExtInst::FPExtInst(
3886   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3887 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
3888   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3889 }
3890 
3891 FPExtInst::FPExtInst(
3892   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3893 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
3894   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3895 }
3896 
3897 UIToFPInst::UIToFPInst(
3898   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3899 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
3900   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3901 }
3902 
3903 UIToFPInst::UIToFPInst(
3904   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3905 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
3906   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3907 }
3908 
3909 SIToFPInst::SIToFPInst(
3910   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3911 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
3912   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3913 }
3914 
3915 SIToFPInst::SIToFPInst(
3916   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3917 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
3918   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3919 }
3920 
3921 FPToUIInst::FPToUIInst(
3922   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3923 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
3924   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3925 }
3926 
3927 FPToUIInst::FPToUIInst(
3928   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3929 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
3930   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3931 }
3932 
3933 FPToSIInst::FPToSIInst(
3934   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3935 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
3936   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3937 }
3938 
3939 FPToSIInst::FPToSIInst(
3940   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3941 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
3942   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3943 }
3944 
3945 PtrToIntInst::PtrToIntInst(
3946   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3947 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
3948   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3949 }
3950 
3951 PtrToIntInst::PtrToIntInst(
3952   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3953 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
3954   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3955 }
3956 
3957 IntToPtrInst::IntToPtrInst(
3958   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3959 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
3960   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3961 }
3962 
3963 IntToPtrInst::IntToPtrInst(
3964   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3965 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
3966   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3967 }
3968 
3969 BitCastInst::BitCastInst(
3970   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3971 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
3972   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3973 }
3974 
3975 BitCastInst::BitCastInst(
3976   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3977 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
3978   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3979 }
3980 
3981 AddrSpaceCastInst::AddrSpaceCastInst(
3982   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3983 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) {
3984   assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3985 }
3986 
3987 AddrSpaceCastInst::AddrSpaceCastInst(
3988   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3989 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) {
3990   assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3991 }
3992 
3993 //===----------------------------------------------------------------------===//
3994 //                               CmpInst Classes
3995 //===----------------------------------------------------------------------===//
3996 
3997 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3998                  Value *RHS, const Twine &Name, Instruction *InsertBefore,
3999                  Instruction *FlagsSource)
4000   : Instruction(ty, op,
4001                 OperandTraits<CmpInst>::op_begin(this),
4002                 OperandTraits<CmpInst>::operands(this),
4003                 InsertBefore) {
4004   Op<0>() = LHS;
4005   Op<1>() = RHS;
4006   setPredicate((Predicate)predicate);
4007   setName(Name);
4008   if (FlagsSource)
4009     copyIRFlags(FlagsSource);
4010 }
4011 
4012 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
4013                  Value *RHS, const Twine &Name, BasicBlock *InsertAtEnd)
4014   : Instruction(ty, op,
4015                 OperandTraits<CmpInst>::op_begin(this),
4016                 OperandTraits<CmpInst>::operands(this),
4017                 InsertAtEnd) {
4018   Op<0>() = LHS;
4019   Op<1>() = RHS;
4020   setPredicate((Predicate)predicate);
4021   setName(Name);
4022 }
4023 
4024 CmpInst *
4025 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
4026                 const Twine &Name, Instruction *InsertBefore) {
4027   if (Op == Instruction::ICmp) {
4028     if (InsertBefore)
4029       return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
4030                           S1, S2, Name);
4031     else
4032       return new ICmpInst(CmpInst::Predicate(predicate),
4033                           S1, S2, Name);
4034   }
4035 
4036   if (InsertBefore)
4037     return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
4038                         S1, S2, Name);
4039   else
4040     return new FCmpInst(CmpInst::Predicate(predicate),
4041                         S1, S2, Name);
4042 }
4043 
4044 CmpInst *
4045 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
4046                 const Twine &Name, BasicBlock *InsertAtEnd) {
4047   if (Op == Instruction::ICmp) {
4048     return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
4049                         S1, S2, Name);
4050   }
4051   return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
4052                       S1, S2, Name);
4053 }
4054 
4055 void CmpInst::swapOperands() {
4056   if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
4057     IC->swapOperands();
4058   else
4059     cast<FCmpInst>(this)->swapOperands();
4060 }
4061 
4062 bool CmpInst::isCommutative() const {
4063   if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
4064     return IC->isCommutative();
4065   return cast<FCmpInst>(this)->isCommutative();
4066 }
4067 
4068 bool CmpInst::isEquality(Predicate P) {
4069   if (ICmpInst::isIntPredicate(P))
4070     return ICmpInst::isEquality(P);
4071   if (FCmpInst::isFPPredicate(P))
4072     return FCmpInst::isEquality(P);
4073   llvm_unreachable("Unsupported predicate kind");
4074 }
4075 
4076 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
4077   switch (pred) {
4078     default: llvm_unreachable("Unknown cmp predicate!");
4079     case ICMP_EQ: return ICMP_NE;
4080     case ICMP_NE: return ICMP_EQ;
4081     case ICMP_UGT: return ICMP_ULE;
4082     case ICMP_ULT: return ICMP_UGE;
4083     case ICMP_UGE: return ICMP_ULT;
4084     case ICMP_ULE: return ICMP_UGT;
4085     case ICMP_SGT: return ICMP_SLE;
4086     case ICMP_SLT: return ICMP_SGE;
4087     case ICMP_SGE: return ICMP_SLT;
4088     case ICMP_SLE: return ICMP_SGT;
4089 
4090     case FCMP_OEQ: return FCMP_UNE;
4091     case FCMP_ONE: return FCMP_UEQ;
4092     case FCMP_OGT: return FCMP_ULE;
4093     case FCMP_OLT: return FCMP_UGE;
4094     case FCMP_OGE: return FCMP_ULT;
4095     case FCMP_OLE: return FCMP_UGT;
4096     case FCMP_UEQ: return FCMP_ONE;
4097     case FCMP_UNE: return FCMP_OEQ;
4098     case FCMP_UGT: return FCMP_OLE;
4099     case FCMP_ULT: return FCMP_OGE;
4100     case FCMP_UGE: return FCMP_OLT;
4101     case FCMP_ULE: return FCMP_OGT;
4102     case FCMP_ORD: return FCMP_UNO;
4103     case FCMP_UNO: return FCMP_ORD;
4104     case FCMP_TRUE: return FCMP_FALSE;
4105     case FCMP_FALSE: return FCMP_TRUE;
4106   }
4107 }
4108 
4109 StringRef CmpInst::getPredicateName(Predicate Pred) {
4110   switch (Pred) {
4111   default:                   return "unknown";
4112   case FCmpInst::FCMP_FALSE: return "false";
4113   case FCmpInst::FCMP_OEQ:   return "oeq";
4114   case FCmpInst::FCMP_OGT:   return "ogt";
4115   case FCmpInst::FCMP_OGE:   return "oge";
4116   case FCmpInst::FCMP_OLT:   return "olt";
4117   case FCmpInst::FCMP_OLE:   return "ole";
4118   case FCmpInst::FCMP_ONE:   return "one";
4119   case FCmpInst::FCMP_ORD:   return "ord";
4120   case FCmpInst::FCMP_UNO:   return "uno";
4121   case FCmpInst::FCMP_UEQ:   return "ueq";
4122   case FCmpInst::FCMP_UGT:   return "ugt";
4123   case FCmpInst::FCMP_UGE:   return "uge";
4124   case FCmpInst::FCMP_ULT:   return "ult";
4125   case FCmpInst::FCMP_ULE:   return "ule";
4126   case FCmpInst::FCMP_UNE:   return "une";
4127   case FCmpInst::FCMP_TRUE:  return "true";
4128   case ICmpInst::ICMP_EQ:    return "eq";
4129   case ICmpInst::ICMP_NE:    return "ne";
4130   case ICmpInst::ICMP_SGT:   return "sgt";
4131   case ICmpInst::ICMP_SGE:   return "sge";
4132   case ICmpInst::ICMP_SLT:   return "slt";
4133   case ICmpInst::ICMP_SLE:   return "sle";
4134   case ICmpInst::ICMP_UGT:   return "ugt";
4135   case ICmpInst::ICMP_UGE:   return "uge";
4136   case ICmpInst::ICMP_ULT:   return "ult";
4137   case ICmpInst::ICMP_ULE:   return "ule";
4138   }
4139 }
4140 
4141 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
4142   switch (pred) {
4143     default: llvm_unreachable("Unknown icmp predicate!");
4144     case ICMP_EQ: case ICMP_NE:
4145     case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
4146        return pred;
4147     case ICMP_UGT: return ICMP_SGT;
4148     case ICMP_ULT: return ICMP_SLT;
4149     case ICMP_UGE: return ICMP_SGE;
4150     case ICMP_ULE: return ICMP_SLE;
4151   }
4152 }
4153 
4154 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
4155   switch (pred) {
4156     default: llvm_unreachable("Unknown icmp predicate!");
4157     case ICMP_EQ: case ICMP_NE:
4158     case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
4159        return pred;
4160     case ICMP_SGT: return ICMP_UGT;
4161     case ICMP_SLT: return ICMP_ULT;
4162     case ICMP_SGE: return ICMP_UGE;
4163     case ICMP_SLE: return ICMP_ULE;
4164   }
4165 }
4166 
4167 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
4168   switch (pred) {
4169     default: llvm_unreachable("Unknown cmp predicate!");
4170     case ICMP_EQ: case ICMP_NE:
4171       return pred;
4172     case ICMP_SGT: return ICMP_SLT;
4173     case ICMP_SLT: return ICMP_SGT;
4174     case ICMP_SGE: return ICMP_SLE;
4175     case ICMP_SLE: return ICMP_SGE;
4176     case ICMP_UGT: return ICMP_ULT;
4177     case ICMP_ULT: return ICMP_UGT;
4178     case ICMP_UGE: return ICMP_ULE;
4179     case ICMP_ULE: return ICMP_UGE;
4180 
4181     case FCMP_FALSE: case FCMP_TRUE:
4182     case FCMP_OEQ: case FCMP_ONE:
4183     case FCMP_UEQ: case FCMP_UNE:
4184     case FCMP_ORD: case FCMP_UNO:
4185       return pred;
4186     case FCMP_OGT: return FCMP_OLT;
4187     case FCMP_OLT: return FCMP_OGT;
4188     case FCMP_OGE: return FCMP_OLE;
4189     case FCMP_OLE: return FCMP_OGE;
4190     case FCMP_UGT: return FCMP_ULT;
4191     case FCMP_ULT: return FCMP_UGT;
4192     case FCMP_UGE: return FCMP_ULE;
4193     case FCMP_ULE: return FCMP_UGE;
4194   }
4195 }
4196 
4197 bool CmpInst::isNonStrictPredicate(Predicate pred) {
4198   switch (pred) {
4199   case ICMP_SGE:
4200   case ICMP_SLE:
4201   case ICMP_UGE:
4202   case ICMP_ULE:
4203   case FCMP_OGE:
4204   case FCMP_OLE:
4205   case FCMP_UGE:
4206   case FCMP_ULE:
4207     return true;
4208   default:
4209     return false;
4210   }
4211 }
4212 
4213 bool CmpInst::isStrictPredicate(Predicate pred) {
4214   switch (pred) {
4215   case ICMP_SGT:
4216   case ICMP_SLT:
4217   case ICMP_UGT:
4218   case ICMP_ULT:
4219   case FCMP_OGT:
4220   case FCMP_OLT:
4221   case FCMP_UGT:
4222   case FCMP_ULT:
4223     return true;
4224   default:
4225     return false;
4226   }
4227 }
4228 
4229 CmpInst::Predicate CmpInst::getStrictPredicate(Predicate pred) {
4230   switch (pred) {
4231   case ICMP_SGE:
4232     return ICMP_SGT;
4233   case ICMP_SLE:
4234     return ICMP_SLT;
4235   case ICMP_UGE:
4236     return ICMP_UGT;
4237   case ICMP_ULE:
4238     return ICMP_ULT;
4239   case FCMP_OGE:
4240     return FCMP_OGT;
4241   case FCMP_OLE:
4242     return FCMP_OLT;
4243   case FCMP_UGE:
4244     return FCMP_UGT;
4245   case FCMP_ULE:
4246     return FCMP_ULT;
4247   default:
4248     return pred;
4249   }
4250 }
4251 
4252 CmpInst::Predicate CmpInst::getNonStrictPredicate(Predicate pred) {
4253   switch (pred) {
4254   case ICMP_SGT:
4255     return ICMP_SGE;
4256   case ICMP_SLT:
4257     return ICMP_SLE;
4258   case ICMP_UGT:
4259     return ICMP_UGE;
4260   case ICMP_ULT:
4261     return ICMP_ULE;
4262   case FCMP_OGT:
4263     return FCMP_OGE;
4264   case FCMP_OLT:
4265     return FCMP_OLE;
4266   case FCMP_UGT:
4267     return FCMP_UGE;
4268   case FCMP_ULT:
4269     return FCMP_ULE;
4270   default:
4271     return pred;
4272   }
4273 }
4274 
4275 CmpInst::Predicate CmpInst::getFlippedStrictnessPredicate(Predicate pred) {
4276   assert(CmpInst::isRelational(pred) && "Call only with relational predicate!");
4277 
4278   if (isStrictPredicate(pred))
4279     return getNonStrictPredicate(pred);
4280   if (isNonStrictPredicate(pred))
4281     return getStrictPredicate(pred);
4282 
4283   llvm_unreachable("Unknown predicate!");
4284 }
4285 
4286 CmpInst::Predicate CmpInst::getSignedPredicate(Predicate pred) {
4287   assert(CmpInst::isUnsigned(pred) && "Call only with unsigned predicates!");
4288 
4289   switch (pred) {
4290   default:
4291     llvm_unreachable("Unknown predicate!");
4292   case CmpInst::ICMP_ULT:
4293     return CmpInst::ICMP_SLT;
4294   case CmpInst::ICMP_ULE:
4295     return CmpInst::ICMP_SLE;
4296   case CmpInst::ICMP_UGT:
4297     return CmpInst::ICMP_SGT;
4298   case CmpInst::ICMP_UGE:
4299     return CmpInst::ICMP_SGE;
4300   }
4301 }
4302 
4303 CmpInst::Predicate CmpInst::getUnsignedPredicate(Predicate pred) {
4304   assert(CmpInst::isSigned(pred) && "Call only with signed predicates!");
4305 
4306   switch (pred) {
4307   default:
4308     llvm_unreachable("Unknown predicate!");
4309   case CmpInst::ICMP_SLT:
4310     return CmpInst::ICMP_ULT;
4311   case CmpInst::ICMP_SLE:
4312     return CmpInst::ICMP_ULE;
4313   case CmpInst::ICMP_SGT:
4314     return CmpInst::ICMP_UGT;
4315   case CmpInst::ICMP_SGE:
4316     return CmpInst::ICMP_UGE;
4317   }
4318 }
4319 
4320 bool CmpInst::isUnsigned(Predicate predicate) {
4321   switch (predicate) {
4322     default: return false;
4323     case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
4324     case ICmpInst::ICMP_UGE: return true;
4325   }
4326 }
4327 
4328 bool CmpInst::isSigned(Predicate predicate) {
4329   switch (predicate) {
4330     default: return false;
4331     case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
4332     case ICmpInst::ICMP_SGE: return true;
4333   }
4334 }
4335 
4336 bool ICmpInst::compare(const APInt &LHS, const APInt &RHS,
4337                        ICmpInst::Predicate Pred) {
4338   assert(ICmpInst::isIntPredicate(Pred) && "Only for integer predicates!");
4339   switch (Pred) {
4340   case ICmpInst::Predicate::ICMP_EQ:
4341     return LHS.eq(RHS);
4342   case ICmpInst::Predicate::ICMP_NE:
4343     return LHS.ne(RHS);
4344   case ICmpInst::Predicate::ICMP_UGT:
4345     return LHS.ugt(RHS);
4346   case ICmpInst::Predicate::ICMP_UGE:
4347     return LHS.uge(RHS);
4348   case ICmpInst::Predicate::ICMP_ULT:
4349     return LHS.ult(RHS);
4350   case ICmpInst::Predicate::ICMP_ULE:
4351     return LHS.ule(RHS);
4352   case ICmpInst::Predicate::ICMP_SGT:
4353     return LHS.sgt(RHS);
4354   case ICmpInst::Predicate::ICMP_SGE:
4355     return LHS.sge(RHS);
4356   case ICmpInst::Predicate::ICMP_SLT:
4357     return LHS.slt(RHS);
4358   case ICmpInst::Predicate::ICMP_SLE:
4359     return LHS.sle(RHS);
4360   default:
4361     llvm_unreachable("Unexpected non-integer predicate.");
4362   };
4363 }
4364 
4365 bool FCmpInst::compare(const APFloat &LHS, const APFloat &RHS,
4366                        FCmpInst::Predicate Pred) {
4367   APFloat::cmpResult R = LHS.compare(RHS);
4368   switch (Pred) {
4369   default:
4370     llvm_unreachable("Invalid FCmp Predicate");
4371   case FCmpInst::FCMP_FALSE:
4372     return false;
4373   case FCmpInst::FCMP_TRUE:
4374     return true;
4375   case FCmpInst::FCMP_UNO:
4376     return R == APFloat::cmpUnordered;
4377   case FCmpInst::FCMP_ORD:
4378     return R != APFloat::cmpUnordered;
4379   case FCmpInst::FCMP_UEQ:
4380     return R == APFloat::cmpUnordered || R == APFloat::cmpEqual;
4381   case FCmpInst::FCMP_OEQ:
4382     return R == APFloat::cmpEqual;
4383   case FCmpInst::FCMP_UNE:
4384     return R != APFloat::cmpEqual;
4385   case FCmpInst::FCMP_ONE:
4386     return R == APFloat::cmpLessThan || R == APFloat::cmpGreaterThan;
4387   case FCmpInst::FCMP_ULT:
4388     return R == APFloat::cmpUnordered || R == APFloat::cmpLessThan;
4389   case FCmpInst::FCMP_OLT:
4390     return R == APFloat::cmpLessThan;
4391   case FCmpInst::FCMP_UGT:
4392     return R == APFloat::cmpUnordered || R == APFloat::cmpGreaterThan;
4393   case FCmpInst::FCMP_OGT:
4394     return R == APFloat::cmpGreaterThan;
4395   case FCmpInst::FCMP_ULE:
4396     return R != APFloat::cmpGreaterThan;
4397   case FCmpInst::FCMP_OLE:
4398     return R == APFloat::cmpLessThan || R == APFloat::cmpEqual;
4399   case FCmpInst::FCMP_UGE:
4400     return R != APFloat::cmpLessThan;
4401   case FCmpInst::FCMP_OGE:
4402     return R == APFloat::cmpGreaterThan || R == APFloat::cmpEqual;
4403   }
4404 }
4405 
4406 CmpInst::Predicate CmpInst::getFlippedSignednessPredicate(Predicate pred) {
4407   assert(CmpInst::isRelational(pred) &&
4408          "Call only with non-equality predicates!");
4409 
4410   if (isSigned(pred))
4411     return getUnsignedPredicate(pred);
4412   if (isUnsigned(pred))
4413     return getSignedPredicate(pred);
4414 
4415   llvm_unreachable("Unknown predicate!");
4416 }
4417 
4418 bool CmpInst::isOrdered(Predicate predicate) {
4419   switch (predicate) {
4420     default: return false;
4421     case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
4422     case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
4423     case FCmpInst::FCMP_ORD: return true;
4424   }
4425 }
4426 
4427 bool CmpInst::isUnordered(Predicate predicate) {
4428   switch (predicate) {
4429     default: return false;
4430     case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
4431     case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
4432     case FCmpInst::FCMP_UNO: return true;
4433   }
4434 }
4435 
4436 bool CmpInst::isTrueWhenEqual(Predicate predicate) {
4437   switch(predicate) {
4438     default: return false;
4439     case ICMP_EQ:   case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
4440     case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
4441   }
4442 }
4443 
4444 bool CmpInst::isFalseWhenEqual(Predicate predicate) {
4445   switch(predicate) {
4446   case ICMP_NE:    case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
4447   case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
4448   default: return false;
4449   }
4450 }
4451 
4452 bool CmpInst::isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2) {
4453   // If the predicates match, then we know the first condition implies the
4454   // second is true.
4455   if (Pred1 == Pred2)
4456     return true;
4457 
4458   switch (Pred1) {
4459   default:
4460     break;
4461   case ICMP_EQ:
4462     // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true.
4463     return Pred2 == ICMP_UGE || Pred2 == ICMP_ULE || Pred2 == ICMP_SGE ||
4464            Pred2 == ICMP_SLE;
4465   case ICMP_UGT: // A >u B implies A != B and A >=u B are true.
4466     return Pred2 == ICMP_NE || Pred2 == ICMP_UGE;
4467   case ICMP_ULT: // A <u B implies A != B and A <=u B are true.
4468     return Pred2 == ICMP_NE || Pred2 == ICMP_ULE;
4469   case ICMP_SGT: // A >s B implies A != B and A >=s B are true.
4470     return Pred2 == ICMP_NE || Pred2 == ICMP_SGE;
4471   case ICMP_SLT: // A <s B implies A != B and A <=s B are true.
4472     return Pred2 == ICMP_NE || Pred2 == ICMP_SLE;
4473   }
4474   return false;
4475 }
4476 
4477 bool CmpInst::isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2) {
4478   return isImpliedTrueByMatchingCmp(Pred1, getInversePredicate(Pred2));
4479 }
4480 
4481 //===----------------------------------------------------------------------===//
4482 //                        SwitchInst Implementation
4483 //===----------------------------------------------------------------------===//
4484 
4485 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
4486   assert(Value && Default && NumReserved);
4487   ReservedSpace = NumReserved;
4488   setNumHungOffUseOperands(2);
4489   allocHungoffUses(ReservedSpace);
4490 
4491   Op<0>() = Value;
4492   Op<1>() = Default;
4493 }
4494 
4495 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
4496 /// switch on and a default destination.  The number of additional cases can
4497 /// be specified here to make memory allocation more efficient.  This
4498 /// constructor can also autoinsert before another instruction.
4499 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
4500                        Instruction *InsertBefore)
4501     : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
4502                   nullptr, 0, InsertBefore) {
4503   init(Value, Default, 2+NumCases*2);
4504 }
4505 
4506 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
4507 /// switch on and a default destination.  The number of additional cases can
4508 /// be specified here to make memory allocation more efficient.  This
4509 /// constructor also autoinserts at the end of the specified BasicBlock.
4510 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
4511                        BasicBlock *InsertAtEnd)
4512     : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
4513                   nullptr, 0, InsertAtEnd) {
4514   init(Value, Default, 2+NumCases*2);
4515 }
4516 
4517 SwitchInst::SwitchInst(const SwitchInst &SI)
4518     : Instruction(SI.getType(), Instruction::Switch, nullptr, 0) {
4519   init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
4520   setNumHungOffUseOperands(SI.getNumOperands());
4521   Use *OL = getOperandList();
4522   const Use *InOL = SI.getOperandList();
4523   for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
4524     OL[i] = InOL[i];
4525     OL[i+1] = InOL[i+1];
4526   }
4527   SubclassOptionalData = SI.SubclassOptionalData;
4528 }
4529 
4530 /// addCase - Add an entry to the switch instruction...
4531 ///
4532 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
4533   unsigned NewCaseIdx = getNumCases();
4534   unsigned OpNo = getNumOperands();
4535   if (OpNo+2 > ReservedSpace)
4536     growOperands();  // Get more space!
4537   // Initialize some new operands.
4538   assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
4539   setNumHungOffUseOperands(OpNo+2);
4540   CaseHandle Case(this, NewCaseIdx);
4541   Case.setValue(OnVal);
4542   Case.setSuccessor(Dest);
4543 }
4544 
4545 /// removeCase - This method removes the specified case and its successor
4546 /// from the switch instruction.
4547 SwitchInst::CaseIt SwitchInst::removeCase(CaseIt I) {
4548   unsigned idx = I->getCaseIndex();
4549 
4550   assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
4551 
4552   unsigned NumOps = getNumOperands();
4553   Use *OL = getOperandList();
4554 
4555   // Overwrite this case with the end of the list.
4556   if (2 + (idx + 1) * 2 != NumOps) {
4557     OL[2 + idx * 2] = OL[NumOps - 2];
4558     OL[2 + idx * 2 + 1] = OL[NumOps - 1];
4559   }
4560 
4561   // Nuke the last value.
4562   OL[NumOps-2].set(nullptr);
4563   OL[NumOps-2+1].set(nullptr);
4564   setNumHungOffUseOperands(NumOps-2);
4565 
4566   return CaseIt(this, idx);
4567 }
4568 
4569 /// growOperands - grow operands - This grows the operand list in response
4570 /// to a push_back style of operation.  This grows the number of ops by 3 times.
4571 ///
4572 void SwitchInst::growOperands() {
4573   unsigned e = getNumOperands();
4574   unsigned NumOps = e*3;
4575 
4576   ReservedSpace = NumOps;
4577   growHungoffUses(ReservedSpace);
4578 }
4579 
4580 MDNode *SwitchInstProfUpdateWrapper::buildProfBranchWeightsMD() {
4581   assert(Changed && "called only if metadata has changed");
4582 
4583   if (!Weights)
4584     return nullptr;
4585 
4586   assert(SI.getNumSuccessors() == Weights->size() &&
4587          "num of prof branch_weights must accord with num of successors");
4588 
4589   bool AllZeroes = all_of(*Weights, [](uint32_t W) { return W == 0; });
4590 
4591   if (AllZeroes || Weights->size() < 2)
4592     return nullptr;
4593 
4594   return MDBuilder(SI.getParent()->getContext()).createBranchWeights(*Weights);
4595 }
4596 
4597 void SwitchInstProfUpdateWrapper::init() {
4598   MDNode *ProfileData = getBranchWeightMDNode(SI);
4599   if (!ProfileData)
4600     return;
4601 
4602   if (ProfileData->getNumOperands() != SI.getNumSuccessors() + 1) {
4603     llvm_unreachable("number of prof branch_weights metadata operands does "
4604                      "not correspond to number of succesors");
4605   }
4606 
4607   SmallVector<uint32_t, 8> Weights;
4608   if (!extractBranchWeights(ProfileData, Weights))
4609     return;
4610   this->Weights = std::move(Weights);
4611 }
4612 
4613 SwitchInst::CaseIt
4614 SwitchInstProfUpdateWrapper::removeCase(SwitchInst::CaseIt I) {
4615   if (Weights) {
4616     assert(SI.getNumSuccessors() == Weights->size() &&
4617            "num of prof branch_weights must accord with num of successors");
4618     Changed = true;
4619     // Copy the last case to the place of the removed one and shrink.
4620     // This is tightly coupled with the way SwitchInst::removeCase() removes
4621     // the cases in SwitchInst::removeCase(CaseIt).
4622     (*Weights)[I->getCaseIndex() + 1] = Weights->back();
4623     Weights->pop_back();
4624   }
4625   return SI.removeCase(I);
4626 }
4627 
4628 void SwitchInstProfUpdateWrapper::addCase(
4629     ConstantInt *OnVal, BasicBlock *Dest,
4630     SwitchInstProfUpdateWrapper::CaseWeightOpt W) {
4631   SI.addCase(OnVal, Dest);
4632 
4633   if (!Weights && W && *W) {
4634     Changed = true;
4635     Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
4636     (*Weights)[SI.getNumSuccessors() - 1] = *W;
4637   } else if (Weights) {
4638     Changed = true;
4639     Weights->push_back(W.value_or(0));
4640   }
4641   if (Weights)
4642     assert(SI.getNumSuccessors() == Weights->size() &&
4643            "num of prof branch_weights must accord with num of successors");
4644 }
4645 
4646 SymbolTableList<Instruction>::iterator
4647 SwitchInstProfUpdateWrapper::eraseFromParent() {
4648   // Instruction is erased. Mark as unchanged to not touch it in the destructor.
4649   Changed = false;
4650   if (Weights)
4651     Weights->resize(0);
4652   return SI.eraseFromParent();
4653 }
4654 
4655 SwitchInstProfUpdateWrapper::CaseWeightOpt
4656 SwitchInstProfUpdateWrapper::getSuccessorWeight(unsigned idx) {
4657   if (!Weights)
4658     return std::nullopt;
4659   return (*Weights)[idx];
4660 }
4661 
4662 void SwitchInstProfUpdateWrapper::setSuccessorWeight(
4663     unsigned idx, SwitchInstProfUpdateWrapper::CaseWeightOpt W) {
4664   if (!W)
4665     return;
4666 
4667   if (!Weights && *W)
4668     Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
4669 
4670   if (Weights) {
4671     auto &OldW = (*Weights)[idx];
4672     if (*W != OldW) {
4673       Changed = true;
4674       OldW = *W;
4675     }
4676   }
4677 }
4678 
4679 SwitchInstProfUpdateWrapper::CaseWeightOpt
4680 SwitchInstProfUpdateWrapper::getSuccessorWeight(const SwitchInst &SI,
4681                                                 unsigned idx) {
4682   if (MDNode *ProfileData = getBranchWeightMDNode(SI))
4683     if (ProfileData->getNumOperands() == SI.getNumSuccessors() + 1)
4684       return mdconst::extract<ConstantInt>(ProfileData->getOperand(idx + 1))
4685           ->getValue()
4686           .getZExtValue();
4687 
4688   return std::nullopt;
4689 }
4690 
4691 //===----------------------------------------------------------------------===//
4692 //                        IndirectBrInst Implementation
4693 //===----------------------------------------------------------------------===//
4694 
4695 void IndirectBrInst::init(Value *Address, unsigned NumDests) {
4696   assert(Address && Address->getType()->isPointerTy() &&
4697          "Address of indirectbr must be a pointer");
4698   ReservedSpace = 1+NumDests;
4699   setNumHungOffUseOperands(1);
4700   allocHungoffUses(ReservedSpace);
4701 
4702   Op<0>() = Address;
4703 }
4704 
4705 
4706 /// growOperands - grow operands - This grows the operand list in response
4707 /// to a push_back style of operation.  This grows the number of ops by 2 times.
4708 ///
4709 void IndirectBrInst::growOperands() {
4710   unsigned e = getNumOperands();
4711   unsigned NumOps = e*2;
4712 
4713   ReservedSpace = NumOps;
4714   growHungoffUses(ReservedSpace);
4715 }
4716 
4717 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
4718                                Instruction *InsertBefore)
4719     : Instruction(Type::getVoidTy(Address->getContext()),
4720                   Instruction::IndirectBr, nullptr, 0, InsertBefore) {
4721   init(Address, NumCases);
4722 }
4723 
4724 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
4725                                BasicBlock *InsertAtEnd)
4726     : Instruction(Type::getVoidTy(Address->getContext()),
4727                   Instruction::IndirectBr, nullptr, 0, InsertAtEnd) {
4728   init(Address, NumCases);
4729 }
4730 
4731 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
4732     : Instruction(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
4733                   nullptr, IBI.getNumOperands()) {
4734   allocHungoffUses(IBI.getNumOperands());
4735   Use *OL = getOperandList();
4736   const Use *InOL = IBI.getOperandList();
4737   for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
4738     OL[i] = InOL[i];
4739   SubclassOptionalData = IBI.SubclassOptionalData;
4740 }
4741 
4742 /// addDestination - Add a destination.
4743 ///
4744 void IndirectBrInst::addDestination(BasicBlock *DestBB) {
4745   unsigned OpNo = getNumOperands();
4746   if (OpNo+1 > ReservedSpace)
4747     growOperands();  // Get more space!
4748   // Initialize some new operands.
4749   assert(OpNo < ReservedSpace && "Growing didn't work!");
4750   setNumHungOffUseOperands(OpNo+1);
4751   getOperandList()[OpNo] = DestBB;
4752 }
4753 
4754 /// removeDestination - This method removes the specified successor from the
4755 /// indirectbr instruction.
4756 void IndirectBrInst::removeDestination(unsigned idx) {
4757   assert(idx < getNumOperands()-1 && "Successor index out of range!");
4758 
4759   unsigned NumOps = getNumOperands();
4760   Use *OL = getOperandList();
4761 
4762   // Replace this value with the last one.
4763   OL[idx+1] = OL[NumOps-1];
4764 
4765   // Nuke the last value.
4766   OL[NumOps-1].set(nullptr);
4767   setNumHungOffUseOperands(NumOps-1);
4768 }
4769 
4770 //===----------------------------------------------------------------------===//
4771 //                            FreezeInst Implementation
4772 //===----------------------------------------------------------------------===//
4773 
4774 FreezeInst::FreezeInst(Value *S,
4775                        const Twine &Name, Instruction *InsertBefore)
4776     : UnaryInstruction(S->getType(), Freeze, S, InsertBefore) {
4777   setName(Name);
4778 }
4779 
4780 FreezeInst::FreezeInst(Value *S,
4781                        const Twine &Name, BasicBlock *InsertAtEnd)
4782     : UnaryInstruction(S->getType(), Freeze, S, InsertAtEnd) {
4783   setName(Name);
4784 }
4785 
4786 //===----------------------------------------------------------------------===//
4787 //                           cloneImpl() implementations
4788 //===----------------------------------------------------------------------===//
4789 
4790 // Define these methods here so vtables don't get emitted into every translation
4791 // unit that uses these classes.
4792 
4793 GetElementPtrInst *GetElementPtrInst::cloneImpl() const {
4794   return new (getNumOperands()) GetElementPtrInst(*this);
4795 }
4796 
4797 UnaryOperator *UnaryOperator::cloneImpl() const {
4798   return Create(getOpcode(), Op<0>());
4799 }
4800 
4801 BinaryOperator *BinaryOperator::cloneImpl() const {
4802   return Create(getOpcode(), Op<0>(), Op<1>());
4803 }
4804 
4805 FCmpInst *FCmpInst::cloneImpl() const {
4806   return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
4807 }
4808 
4809 ICmpInst *ICmpInst::cloneImpl() const {
4810   return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
4811 }
4812 
4813 ExtractValueInst *ExtractValueInst::cloneImpl() const {
4814   return new ExtractValueInst(*this);
4815 }
4816 
4817 InsertValueInst *InsertValueInst::cloneImpl() const {
4818   return new InsertValueInst(*this);
4819 }
4820 
4821 AllocaInst *AllocaInst::cloneImpl() const {
4822   AllocaInst *Result = new AllocaInst(getAllocatedType(), getAddressSpace(),
4823                                       getOperand(0), getAlign());
4824   Result->setUsedWithInAlloca(isUsedWithInAlloca());
4825   Result->setSwiftError(isSwiftError());
4826   return Result;
4827 }
4828 
4829 LoadInst *LoadInst::cloneImpl() const {
4830   return new LoadInst(getType(), getOperand(0), Twine(), isVolatile(),
4831                       getAlign(), getOrdering(), getSyncScopeID());
4832 }
4833 
4834 StoreInst *StoreInst::cloneImpl() const {
4835   return new StoreInst(getOperand(0), getOperand(1), isVolatile(), getAlign(),
4836                        getOrdering(), getSyncScopeID());
4837 }
4838 
4839 AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const {
4840   AtomicCmpXchgInst *Result = new AtomicCmpXchgInst(
4841       getOperand(0), getOperand(1), getOperand(2), getAlign(),
4842       getSuccessOrdering(), getFailureOrdering(), getSyncScopeID());
4843   Result->setVolatile(isVolatile());
4844   Result->setWeak(isWeak());
4845   return Result;
4846 }
4847 
4848 AtomicRMWInst *AtomicRMWInst::cloneImpl() const {
4849   AtomicRMWInst *Result =
4850       new AtomicRMWInst(getOperation(), getOperand(0), getOperand(1),
4851                         getAlign(), getOrdering(), getSyncScopeID());
4852   Result->setVolatile(isVolatile());
4853   return Result;
4854 }
4855 
4856 FenceInst *FenceInst::cloneImpl() const {
4857   return new FenceInst(getContext(), getOrdering(), getSyncScopeID());
4858 }
4859 
4860 TruncInst *TruncInst::cloneImpl() const {
4861   return new TruncInst(getOperand(0), getType());
4862 }
4863 
4864 ZExtInst *ZExtInst::cloneImpl() const {
4865   return new ZExtInst(getOperand(0), getType());
4866 }
4867 
4868 SExtInst *SExtInst::cloneImpl() const {
4869   return new SExtInst(getOperand(0), getType());
4870 }
4871 
4872 FPTruncInst *FPTruncInst::cloneImpl() const {
4873   return new FPTruncInst(getOperand(0), getType());
4874 }
4875 
4876 FPExtInst *FPExtInst::cloneImpl() const {
4877   return new FPExtInst(getOperand(0), getType());
4878 }
4879 
4880 UIToFPInst *UIToFPInst::cloneImpl() const {
4881   return new UIToFPInst(getOperand(0), getType());
4882 }
4883 
4884 SIToFPInst *SIToFPInst::cloneImpl() const {
4885   return new SIToFPInst(getOperand(0), getType());
4886 }
4887 
4888 FPToUIInst *FPToUIInst::cloneImpl() const {
4889   return new FPToUIInst(getOperand(0), getType());
4890 }
4891 
4892 FPToSIInst *FPToSIInst::cloneImpl() const {
4893   return new FPToSIInst(getOperand(0), getType());
4894 }
4895 
4896 PtrToIntInst *PtrToIntInst::cloneImpl() const {
4897   return new PtrToIntInst(getOperand(0), getType());
4898 }
4899 
4900 IntToPtrInst *IntToPtrInst::cloneImpl() const {
4901   return new IntToPtrInst(getOperand(0), getType());
4902 }
4903 
4904 BitCastInst *BitCastInst::cloneImpl() const {
4905   return new BitCastInst(getOperand(0), getType());
4906 }
4907 
4908 AddrSpaceCastInst *AddrSpaceCastInst::cloneImpl() const {
4909   return new AddrSpaceCastInst(getOperand(0), getType());
4910 }
4911 
4912 CallInst *CallInst::cloneImpl() const {
4913   if (hasOperandBundles()) {
4914     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4915     return new(getNumOperands(), DescriptorBytes) CallInst(*this);
4916   }
4917   return  new(getNumOperands()) CallInst(*this);
4918 }
4919 
4920 SelectInst *SelectInst::cloneImpl() const {
4921   return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
4922 }
4923 
4924 VAArgInst *VAArgInst::cloneImpl() const {
4925   return new VAArgInst(getOperand(0), getType());
4926 }
4927 
4928 ExtractElementInst *ExtractElementInst::cloneImpl() const {
4929   return ExtractElementInst::Create(getOperand(0), getOperand(1));
4930 }
4931 
4932 InsertElementInst *InsertElementInst::cloneImpl() const {
4933   return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
4934 }
4935 
4936 ShuffleVectorInst *ShuffleVectorInst::cloneImpl() const {
4937   return new ShuffleVectorInst(getOperand(0), getOperand(1), getShuffleMask());
4938 }
4939 
4940 PHINode *PHINode::cloneImpl() const { return new PHINode(*this); }
4941 
4942 LandingPadInst *LandingPadInst::cloneImpl() const {
4943   return new LandingPadInst(*this);
4944 }
4945 
4946 ReturnInst *ReturnInst::cloneImpl() const {
4947   return new(getNumOperands()) ReturnInst(*this);
4948 }
4949 
4950 BranchInst *BranchInst::cloneImpl() const {
4951   return new(getNumOperands()) BranchInst(*this);
4952 }
4953 
4954 SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); }
4955 
4956 IndirectBrInst *IndirectBrInst::cloneImpl() const {
4957   return new IndirectBrInst(*this);
4958 }
4959 
4960 InvokeInst *InvokeInst::cloneImpl() const {
4961   if (hasOperandBundles()) {
4962     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4963     return new(getNumOperands(), DescriptorBytes) InvokeInst(*this);
4964   }
4965   return new(getNumOperands()) InvokeInst(*this);
4966 }
4967 
4968 CallBrInst *CallBrInst::cloneImpl() const {
4969   if (hasOperandBundles()) {
4970     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4971     return new (getNumOperands(), DescriptorBytes) CallBrInst(*this);
4972   }
4973   return new (getNumOperands()) CallBrInst(*this);
4974 }
4975 
4976 ResumeInst *ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); }
4977 
4978 CleanupReturnInst *CleanupReturnInst::cloneImpl() const {
4979   return new (getNumOperands()) CleanupReturnInst(*this);
4980 }
4981 
4982 CatchReturnInst *CatchReturnInst::cloneImpl() const {
4983   return new (getNumOperands()) CatchReturnInst(*this);
4984 }
4985 
4986 CatchSwitchInst *CatchSwitchInst::cloneImpl() const {
4987   return new CatchSwitchInst(*this);
4988 }
4989 
4990 FuncletPadInst *FuncletPadInst::cloneImpl() const {
4991   return new (getNumOperands()) FuncletPadInst(*this);
4992 }
4993 
4994 UnreachableInst *UnreachableInst::cloneImpl() const {
4995   LLVMContext &Context = getContext();
4996   return new UnreachableInst(Context);
4997 }
4998 
4999 FreezeInst *FreezeInst::cloneImpl() const {
5000   return new FreezeInst(getOperand(0));
5001 }
5002