1 //===- Instructions.cpp - Implement the LLVM instructions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements all of the non-inline methods for the LLVM instruction
10 // classes.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/IR/Instructions.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/IR/Attributes.h"
20 #include "llvm/IR/BasicBlock.h"
21 #include "llvm/IR/Constant.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/InstrTypes.h"
27 #include "llvm/IR/Instruction.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/MDBuilder.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/Operator.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/Support/AtomicOrdering.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/TypeSize.h"
41 #include <algorithm>
42 #include <cassert>
43 #include <cstdint>
44 #include <vector>
45 
46 using namespace llvm;
47 
48 static cl::opt<bool> DisableI2pP2iOpt(
49     "disable-i2p-p2i-opt", cl::init(false),
50     cl::desc("Disables inttoptr/ptrtoint roundtrip optimization"));
51 
52 //===----------------------------------------------------------------------===//
53 //                            AllocaInst Class
54 //===----------------------------------------------------------------------===//
55 
56 Optional<TypeSize>
57 AllocaInst::getAllocationSizeInBits(const DataLayout &DL) const {
58   TypeSize Size = DL.getTypeAllocSizeInBits(getAllocatedType());
59   if (isArrayAllocation()) {
60     auto *C = dyn_cast<ConstantInt>(getArraySize());
61     if (!C)
62       return None;
63     assert(!Size.isScalable() && "Array elements cannot have a scalable size");
64     Size *= C->getZExtValue();
65   }
66   return Size;
67 }
68 
69 //===----------------------------------------------------------------------===//
70 //                              SelectInst Class
71 //===----------------------------------------------------------------------===//
72 
73 /// areInvalidOperands - Return a string if the specified operands are invalid
74 /// for a select operation, otherwise return null.
75 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
76   if (Op1->getType() != Op2->getType())
77     return "both values to select must have same type";
78 
79   if (Op1->getType()->isTokenTy())
80     return "select values cannot have token type";
81 
82   if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
83     // Vector select.
84     if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
85       return "vector select condition element type must be i1";
86     VectorType *ET = dyn_cast<VectorType>(Op1->getType());
87     if (!ET)
88       return "selected values for vector select must be vectors";
89     if (ET->getElementCount() != VT->getElementCount())
90       return "vector select requires selected vectors to have "
91                    "the same vector length as select condition";
92   } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
93     return "select condition must be i1 or <n x i1>";
94   }
95   return nullptr;
96 }
97 
98 //===----------------------------------------------------------------------===//
99 //                               PHINode Class
100 //===----------------------------------------------------------------------===//
101 
102 PHINode::PHINode(const PHINode &PN)
103     : Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()),
104       ReservedSpace(PN.getNumOperands()) {
105   allocHungoffUses(PN.getNumOperands());
106   std::copy(PN.op_begin(), PN.op_end(), op_begin());
107   std::copy(PN.block_begin(), PN.block_end(), block_begin());
108   SubclassOptionalData = PN.SubclassOptionalData;
109 }
110 
111 // removeIncomingValue - Remove an incoming value.  This is useful if a
112 // predecessor basic block is deleted.
113 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
114   Value *Removed = getIncomingValue(Idx);
115 
116   // Move everything after this operand down.
117   //
118   // FIXME: we could just swap with the end of the list, then erase.  However,
119   // clients might not expect this to happen.  The code as it is thrashes the
120   // use/def lists, which is kinda lame.
121   std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
122   std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
123 
124   // Nuke the last value.
125   Op<-1>().set(nullptr);
126   setNumHungOffUseOperands(getNumOperands() - 1);
127 
128   // If the PHI node is dead, because it has zero entries, nuke it now.
129   if (getNumOperands() == 0 && DeletePHIIfEmpty) {
130     // If anyone is using this PHI, make them use a dummy value instead...
131     replaceAllUsesWith(PoisonValue::get(getType()));
132     eraseFromParent();
133   }
134   return Removed;
135 }
136 
137 /// growOperands - grow operands - This grows the operand list in response
138 /// to a push_back style of operation.  This grows the number of ops by 1.5
139 /// times.
140 ///
141 void PHINode::growOperands() {
142   unsigned e = getNumOperands();
143   unsigned NumOps = e + e / 2;
144   if (NumOps < 2) NumOps = 2;      // 2 op PHI nodes are VERY common.
145 
146   ReservedSpace = NumOps;
147   growHungoffUses(ReservedSpace, /* IsPhi */ true);
148 }
149 
150 /// hasConstantValue - If the specified PHI node always merges together the same
151 /// value, return the value, otherwise return null.
152 Value *PHINode::hasConstantValue() const {
153   // Exploit the fact that phi nodes always have at least one entry.
154   Value *ConstantValue = getIncomingValue(0);
155   for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
156     if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
157       if (ConstantValue != this)
158         return nullptr; // Incoming values not all the same.
159        // The case where the first value is this PHI.
160       ConstantValue = getIncomingValue(i);
161     }
162   if (ConstantValue == this)
163     return UndefValue::get(getType());
164   return ConstantValue;
165 }
166 
167 /// hasConstantOrUndefValue - Whether the specified PHI node always merges
168 /// together the same value, assuming that undefs result in the same value as
169 /// non-undefs.
170 /// Unlike \ref hasConstantValue, this does not return a value because the
171 /// unique non-undef incoming value need not dominate the PHI node.
172 bool PHINode::hasConstantOrUndefValue() const {
173   Value *ConstantValue = nullptr;
174   for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) {
175     Value *Incoming = getIncomingValue(i);
176     if (Incoming != this && !isa<UndefValue>(Incoming)) {
177       if (ConstantValue && ConstantValue != Incoming)
178         return false;
179       ConstantValue = Incoming;
180     }
181   }
182   return true;
183 }
184 
185 //===----------------------------------------------------------------------===//
186 //                       LandingPadInst Implementation
187 //===----------------------------------------------------------------------===//
188 
189 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
190                                const Twine &NameStr, Instruction *InsertBefore)
191     : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) {
192   init(NumReservedValues, NameStr);
193 }
194 
195 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
196                                const Twine &NameStr, BasicBlock *InsertAtEnd)
197     : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) {
198   init(NumReservedValues, NameStr);
199 }
200 
201 LandingPadInst::LandingPadInst(const LandingPadInst &LP)
202     : Instruction(LP.getType(), Instruction::LandingPad, nullptr,
203                   LP.getNumOperands()),
204       ReservedSpace(LP.getNumOperands()) {
205   allocHungoffUses(LP.getNumOperands());
206   Use *OL = getOperandList();
207   const Use *InOL = LP.getOperandList();
208   for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
209     OL[I] = InOL[I];
210 
211   setCleanup(LP.isCleanup());
212 }
213 
214 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
215                                        const Twine &NameStr,
216                                        Instruction *InsertBefore) {
217   return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore);
218 }
219 
220 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
221                                        const Twine &NameStr,
222                                        BasicBlock *InsertAtEnd) {
223   return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertAtEnd);
224 }
225 
226 void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) {
227   ReservedSpace = NumReservedValues;
228   setNumHungOffUseOperands(0);
229   allocHungoffUses(ReservedSpace);
230   setName(NameStr);
231   setCleanup(false);
232 }
233 
234 /// growOperands - grow operands - This grows the operand list in response to a
235 /// push_back style of operation. This grows the number of ops by 2 times.
236 void LandingPadInst::growOperands(unsigned Size) {
237   unsigned e = getNumOperands();
238   if (ReservedSpace >= e + Size) return;
239   ReservedSpace = (std::max(e, 1U) + Size / 2) * 2;
240   growHungoffUses(ReservedSpace);
241 }
242 
243 void LandingPadInst::addClause(Constant *Val) {
244   unsigned OpNo = getNumOperands();
245   growOperands(1);
246   assert(OpNo < ReservedSpace && "Growing didn't work!");
247   setNumHungOffUseOperands(getNumOperands() + 1);
248   getOperandList()[OpNo] = Val;
249 }
250 
251 //===----------------------------------------------------------------------===//
252 //                        CallBase Implementation
253 //===----------------------------------------------------------------------===//
254 
255 CallBase *CallBase::Create(CallBase *CB, ArrayRef<OperandBundleDef> Bundles,
256                            Instruction *InsertPt) {
257   switch (CB->getOpcode()) {
258   case Instruction::Call:
259     return CallInst::Create(cast<CallInst>(CB), Bundles, InsertPt);
260   case Instruction::Invoke:
261     return InvokeInst::Create(cast<InvokeInst>(CB), Bundles, InsertPt);
262   case Instruction::CallBr:
263     return CallBrInst::Create(cast<CallBrInst>(CB), Bundles, InsertPt);
264   default:
265     llvm_unreachable("Unknown CallBase sub-class!");
266   }
267 }
268 
269 CallBase *CallBase::Create(CallBase *CI, OperandBundleDef OpB,
270                            Instruction *InsertPt) {
271   SmallVector<OperandBundleDef, 2> OpDefs;
272   for (unsigned i = 0, e = CI->getNumOperandBundles(); i < e; ++i) {
273     auto ChildOB = CI->getOperandBundleAt(i);
274     if (ChildOB.getTagName() != OpB.getTag())
275       OpDefs.emplace_back(ChildOB);
276   }
277   OpDefs.emplace_back(OpB);
278   return CallBase::Create(CI, OpDefs, InsertPt);
279 }
280 
281 
282 Function *CallBase::getCaller() { return getParent()->getParent(); }
283 
284 unsigned CallBase::getNumSubclassExtraOperandsDynamic() const {
285   assert(getOpcode() == Instruction::CallBr && "Unexpected opcode!");
286   return cast<CallBrInst>(this)->getNumIndirectDests() + 1;
287 }
288 
289 bool CallBase::isIndirectCall() const {
290   const Value *V = getCalledOperand();
291   if (isa<Function>(V) || isa<Constant>(V))
292     return false;
293   return !isInlineAsm();
294 }
295 
296 /// Tests if this call site must be tail call optimized. Only a CallInst can
297 /// be tail call optimized.
298 bool CallBase::isMustTailCall() const {
299   if (auto *CI = dyn_cast<CallInst>(this))
300     return CI->isMustTailCall();
301   return false;
302 }
303 
304 /// Tests if this call site is marked as a tail call.
305 bool CallBase::isTailCall() const {
306   if (auto *CI = dyn_cast<CallInst>(this))
307     return CI->isTailCall();
308   return false;
309 }
310 
311 Intrinsic::ID CallBase::getIntrinsicID() const {
312   if (auto *F = getCalledFunction())
313     return F->getIntrinsicID();
314   return Intrinsic::not_intrinsic;
315 }
316 
317 bool CallBase::isReturnNonNull() const {
318   if (hasRetAttr(Attribute::NonNull))
319     return true;
320 
321   if (getRetDereferenceableBytes() > 0 &&
322       !NullPointerIsDefined(getCaller(), getType()->getPointerAddressSpace()))
323     return true;
324 
325   return false;
326 }
327 
328 Value *CallBase::getArgOperandWithAttribute(Attribute::AttrKind Kind) const {
329   unsigned Index;
330 
331   if (Attrs.hasAttrSomewhere(Kind, &Index))
332     return getArgOperand(Index - AttributeList::FirstArgIndex);
333   if (const Function *F = getCalledFunction())
334     if (F->getAttributes().hasAttrSomewhere(Kind, &Index))
335       return getArgOperand(Index - AttributeList::FirstArgIndex);
336 
337   return nullptr;
338 }
339 
340 /// Determine whether the argument or parameter has the given attribute.
341 bool CallBase::paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const {
342   assert(ArgNo < arg_size() && "Param index out of bounds!");
343 
344   if (Attrs.hasParamAttr(ArgNo, Kind))
345     return true;
346   if (const Function *F = getCalledFunction())
347     return F->getAttributes().hasParamAttr(ArgNo, Kind);
348   return false;
349 }
350 
351 bool CallBase::hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const {
352   Value *V = getCalledOperand();
353   if (auto *CE = dyn_cast<ConstantExpr>(V))
354     if (CE->getOpcode() == BitCast)
355       V = CE->getOperand(0);
356 
357   if (auto *F = dyn_cast<Function>(V))
358     return F->getAttributes().hasFnAttr(Kind);
359 
360   return false;
361 }
362 
363 bool CallBase::hasFnAttrOnCalledFunction(StringRef Kind) const {
364   Value *V = getCalledOperand();
365   if (auto *CE = dyn_cast<ConstantExpr>(V))
366     if (CE->getOpcode() == BitCast)
367       V = CE->getOperand(0);
368 
369   if (auto *F = dyn_cast<Function>(V))
370     return F->getAttributes().hasFnAttr(Kind);
371 
372   return false;
373 }
374 
375 template <typename AK>
376 Attribute CallBase::getFnAttrOnCalledFunction(AK Kind) const {
377   // Operand bundles override attributes on the called function, but don't
378   // override attributes directly present on the call instruction.
379   if (isFnAttrDisallowedByOpBundle(Kind))
380     return Attribute();
381   Value *V = getCalledOperand();
382   if (auto *CE = dyn_cast<ConstantExpr>(V))
383     if (CE->getOpcode() == BitCast)
384       V = CE->getOperand(0);
385 
386   if (auto *F = dyn_cast<Function>(V))
387     return F->getAttributes().getFnAttr(Kind);
388 
389   return Attribute();
390 }
391 
392 template Attribute
393 CallBase::getFnAttrOnCalledFunction(Attribute::AttrKind Kind) const;
394 template Attribute CallBase::getFnAttrOnCalledFunction(StringRef Kind) const;
395 
396 void CallBase::getOperandBundlesAsDefs(
397     SmallVectorImpl<OperandBundleDef> &Defs) const {
398   for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i)
399     Defs.emplace_back(getOperandBundleAt(i));
400 }
401 
402 CallBase::op_iterator
403 CallBase::populateBundleOperandInfos(ArrayRef<OperandBundleDef> Bundles,
404                                      const unsigned BeginIndex) {
405   auto It = op_begin() + BeginIndex;
406   for (auto &B : Bundles)
407     It = std::copy(B.input_begin(), B.input_end(), It);
408 
409   auto *ContextImpl = getContext().pImpl;
410   auto BI = Bundles.begin();
411   unsigned CurrentIndex = BeginIndex;
412 
413   for (auto &BOI : bundle_op_infos()) {
414     assert(BI != Bundles.end() && "Incorrect allocation?");
415 
416     BOI.Tag = ContextImpl->getOrInsertBundleTag(BI->getTag());
417     BOI.Begin = CurrentIndex;
418     BOI.End = CurrentIndex + BI->input_size();
419     CurrentIndex = BOI.End;
420     BI++;
421   }
422 
423   assert(BI == Bundles.end() && "Incorrect allocation?");
424 
425   return It;
426 }
427 
428 CallBase::BundleOpInfo &CallBase::getBundleOpInfoForOperand(unsigned OpIdx) {
429   /// When there isn't many bundles, we do a simple linear search.
430   /// Else fallback to a binary-search that use the fact that bundles usually
431   /// have similar number of argument to get faster convergence.
432   if (bundle_op_info_end() - bundle_op_info_begin() < 8) {
433     for (auto &BOI : bundle_op_infos())
434       if (BOI.Begin <= OpIdx && OpIdx < BOI.End)
435         return BOI;
436 
437     llvm_unreachable("Did not find operand bundle for operand!");
438   }
439 
440   assert(OpIdx >= arg_size() && "the Idx is not in the operand bundles");
441   assert(bundle_op_info_end() - bundle_op_info_begin() > 0 &&
442          OpIdx < std::prev(bundle_op_info_end())->End &&
443          "The Idx isn't in the operand bundle");
444 
445   /// We need a decimal number below and to prevent using floating point numbers
446   /// we use an intergal value multiplied by this constant.
447   constexpr unsigned NumberScaling = 1024;
448 
449   bundle_op_iterator Begin = bundle_op_info_begin();
450   bundle_op_iterator End = bundle_op_info_end();
451   bundle_op_iterator Current = Begin;
452 
453   while (Begin != End) {
454     unsigned ScaledOperandPerBundle =
455         NumberScaling * (std::prev(End)->End - Begin->Begin) / (End - Begin);
456     Current = Begin + (((OpIdx - Begin->Begin) * NumberScaling) /
457                        ScaledOperandPerBundle);
458     if (Current >= End)
459       Current = std::prev(End);
460     assert(Current < End && Current >= Begin &&
461            "the operand bundle doesn't cover every value in the range");
462     if (OpIdx >= Current->Begin && OpIdx < Current->End)
463       break;
464     if (OpIdx >= Current->End)
465       Begin = Current + 1;
466     else
467       End = Current;
468   }
469 
470   assert(OpIdx >= Current->Begin && OpIdx < Current->End &&
471          "the operand bundle doesn't cover every value in the range");
472   return *Current;
473 }
474 
475 CallBase *CallBase::addOperandBundle(CallBase *CB, uint32_t ID,
476                                      OperandBundleDef OB,
477                                      Instruction *InsertPt) {
478   if (CB->getOperandBundle(ID))
479     return CB;
480 
481   SmallVector<OperandBundleDef, 1> Bundles;
482   CB->getOperandBundlesAsDefs(Bundles);
483   Bundles.push_back(OB);
484   return Create(CB, Bundles, InsertPt);
485 }
486 
487 CallBase *CallBase::removeOperandBundle(CallBase *CB, uint32_t ID,
488                                         Instruction *InsertPt) {
489   SmallVector<OperandBundleDef, 1> Bundles;
490   bool CreateNew = false;
491 
492   for (unsigned I = 0, E = CB->getNumOperandBundles(); I != E; ++I) {
493     auto Bundle = CB->getOperandBundleAt(I);
494     if (Bundle.getTagID() == ID) {
495       CreateNew = true;
496       continue;
497     }
498     Bundles.emplace_back(Bundle);
499   }
500 
501   return CreateNew ? Create(CB, Bundles, InsertPt) : CB;
502 }
503 
504 bool CallBase::hasReadingOperandBundles() const {
505   // Implementation note: this is a conservative implementation of operand
506   // bundle semantics, where *any* non-assume operand bundle (other than
507   // ptrauth) forces a callsite to be at least readonly.
508   return hasOperandBundlesOtherThan(LLVMContext::OB_ptrauth) &&
509          getIntrinsicID() != Intrinsic::assume;
510 }
511 
512 //===----------------------------------------------------------------------===//
513 //                        CallInst Implementation
514 //===----------------------------------------------------------------------===//
515 
516 void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
517                     ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) {
518   this->FTy = FTy;
519   assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 &&
520          "NumOperands not set up?");
521 
522 #ifndef NDEBUG
523   assert((Args.size() == FTy->getNumParams() ||
524           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
525          "Calling a function with bad signature!");
526 
527   for (unsigned i = 0; i != Args.size(); ++i)
528     assert((i >= FTy->getNumParams() ||
529             FTy->getParamType(i) == Args[i]->getType()) &&
530            "Calling a function with a bad signature!");
531 #endif
532 
533   // Set operands in order of their index to match use-list-order
534   // prediction.
535   llvm::copy(Args, op_begin());
536   setCalledOperand(Func);
537 
538   auto It = populateBundleOperandInfos(Bundles, Args.size());
539   (void)It;
540   assert(It + 1 == op_end() && "Should add up!");
541 
542   setName(NameStr);
543 }
544 
545 void CallInst::init(FunctionType *FTy, Value *Func, const Twine &NameStr) {
546   this->FTy = FTy;
547   assert(getNumOperands() == 1 && "NumOperands not set up?");
548   setCalledOperand(Func);
549 
550   assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
551 
552   setName(NameStr);
553 }
554 
555 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
556                    Instruction *InsertBefore)
557     : CallBase(Ty->getReturnType(), Instruction::Call,
558                OperandTraits<CallBase>::op_end(this) - 1, 1, InsertBefore) {
559   init(Ty, Func, Name);
560 }
561 
562 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
563                    BasicBlock *InsertAtEnd)
564     : CallBase(Ty->getReturnType(), Instruction::Call,
565                OperandTraits<CallBase>::op_end(this) - 1, 1, InsertAtEnd) {
566   init(Ty, Func, Name);
567 }
568 
569 CallInst::CallInst(const CallInst &CI)
570     : CallBase(CI.Attrs, CI.FTy, CI.getType(), Instruction::Call,
571                OperandTraits<CallBase>::op_end(this) - CI.getNumOperands(),
572                CI.getNumOperands()) {
573   setTailCallKind(CI.getTailCallKind());
574   setCallingConv(CI.getCallingConv());
575 
576   std::copy(CI.op_begin(), CI.op_end(), op_begin());
577   std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(),
578             bundle_op_info_begin());
579   SubclassOptionalData = CI.SubclassOptionalData;
580 }
581 
582 CallInst *CallInst::Create(CallInst *CI, ArrayRef<OperandBundleDef> OpB,
583                            Instruction *InsertPt) {
584   std::vector<Value *> Args(CI->arg_begin(), CI->arg_end());
585 
586   auto *NewCI = CallInst::Create(CI->getFunctionType(), CI->getCalledOperand(),
587                                  Args, OpB, CI->getName(), InsertPt);
588   NewCI->setTailCallKind(CI->getTailCallKind());
589   NewCI->setCallingConv(CI->getCallingConv());
590   NewCI->SubclassOptionalData = CI->SubclassOptionalData;
591   NewCI->setAttributes(CI->getAttributes());
592   NewCI->setDebugLoc(CI->getDebugLoc());
593   return NewCI;
594 }
595 
596 // Update profile weight for call instruction by scaling it using the ratio
597 // of S/T. The meaning of "branch_weights" meta data for call instruction is
598 // transfered to represent call count.
599 void CallInst::updateProfWeight(uint64_t S, uint64_t T) {
600   auto *ProfileData = getMetadata(LLVMContext::MD_prof);
601   if (ProfileData == nullptr)
602     return;
603 
604   auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0));
605   if (!ProfDataName || (!ProfDataName->getString().equals("branch_weights") &&
606                         !ProfDataName->getString().equals("VP")))
607     return;
608 
609   if (T == 0) {
610     LLVM_DEBUG(dbgs() << "Attempting to update profile weights will result in "
611                          "div by 0. Ignoring. Likely the function "
612                       << getParent()->getParent()->getName()
613                       << " has 0 entry count, and contains call instructions "
614                          "with non-zero prof info.");
615     return;
616   }
617 
618   MDBuilder MDB(getContext());
619   SmallVector<Metadata *, 3> Vals;
620   Vals.push_back(ProfileData->getOperand(0));
621   APInt APS(128, S), APT(128, T);
622   if (ProfDataName->getString().equals("branch_weights") &&
623       ProfileData->getNumOperands() > 0) {
624     // Using APInt::div may be expensive, but most cases should fit 64 bits.
625     APInt Val(128, mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1))
626                        ->getValue()
627                        .getZExtValue());
628     Val *= APS;
629     Vals.push_back(MDB.createConstant(
630         ConstantInt::get(Type::getInt32Ty(getContext()),
631                          Val.udiv(APT).getLimitedValue(UINT32_MAX))));
632   } else if (ProfDataName->getString().equals("VP"))
633     for (unsigned i = 1; i < ProfileData->getNumOperands(); i += 2) {
634       // The first value is the key of the value profile, which will not change.
635       Vals.push_back(ProfileData->getOperand(i));
636       uint64_t Count =
637           mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i + 1))
638               ->getValue()
639               .getZExtValue();
640       // Don't scale the magic number.
641       if (Count == NOMORE_ICP_MAGICNUM) {
642         Vals.push_back(ProfileData->getOperand(i + 1));
643         continue;
644       }
645       // Using APInt::div may be expensive, but most cases should fit 64 bits.
646       APInt Val(128, Count);
647       Val *= APS;
648       Vals.push_back(MDB.createConstant(
649           ConstantInt::get(Type::getInt64Ty(getContext()),
650                            Val.udiv(APT).getLimitedValue())));
651     }
652   setMetadata(LLVMContext::MD_prof, MDNode::get(getContext(), Vals));
653 }
654 
655 /// IsConstantOne - Return true only if val is constant int 1
656 static bool IsConstantOne(Value *val) {
657   assert(val && "IsConstantOne does not work with nullptr val");
658   const ConstantInt *CVal = dyn_cast<ConstantInt>(val);
659   return CVal && CVal->isOne();
660 }
661 
662 static Instruction *createMalloc(Instruction *InsertBefore,
663                                  BasicBlock *InsertAtEnd, Type *IntPtrTy,
664                                  Type *AllocTy, Value *AllocSize,
665                                  Value *ArraySize,
666                                  ArrayRef<OperandBundleDef> OpB,
667                                  Function *MallocF, const Twine &Name) {
668   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
669          "createMalloc needs either InsertBefore or InsertAtEnd");
670 
671   // malloc(type) becomes:
672   //       bitcast (i8* malloc(typeSize)) to type*
673   // malloc(type, arraySize) becomes:
674   //       bitcast (i8* malloc(typeSize*arraySize)) to type*
675   if (!ArraySize)
676     ArraySize = ConstantInt::get(IntPtrTy, 1);
677   else if (ArraySize->getType() != IntPtrTy) {
678     if (InsertBefore)
679       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
680                                               "", InsertBefore);
681     else
682       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
683                                               "", InsertAtEnd);
684   }
685 
686   if (!IsConstantOne(ArraySize)) {
687     if (IsConstantOne(AllocSize)) {
688       AllocSize = ArraySize;         // Operand * 1 = Operand
689     } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
690       Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
691                                                      false /*ZExt*/);
692       // Malloc arg is constant product of type size and array size
693       AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
694     } else {
695       // Multiply type size by the array size...
696       if (InsertBefore)
697         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
698                                               "mallocsize", InsertBefore);
699       else
700         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
701                                               "mallocsize", InsertAtEnd);
702     }
703   }
704 
705   assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
706   // Create the call to Malloc.
707   BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
708   Module *M = BB->getParent()->getParent();
709   Type *BPTy = Type::getInt8PtrTy(BB->getContext());
710   FunctionCallee MallocFunc = MallocF;
711   if (!MallocFunc)
712     // prototype malloc as "void *malloc(size_t)"
713     MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy);
714   PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
715   CallInst *MCall = nullptr;
716   Instruction *Result = nullptr;
717   if (InsertBefore) {
718     MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall",
719                              InsertBefore);
720     Result = MCall;
721     if (Result->getType() != AllocPtrType)
722       // Create a cast instruction to convert to the right type...
723       Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
724   } else {
725     MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall");
726     Result = MCall;
727     if (Result->getType() != AllocPtrType) {
728       InsertAtEnd->getInstList().push_back(MCall);
729       // Create a cast instruction to convert to the right type...
730       Result = new BitCastInst(MCall, AllocPtrType, Name);
731     }
732   }
733   MCall->setTailCall();
734   if (Function *F = dyn_cast<Function>(MallocFunc.getCallee())) {
735     MCall->setCallingConv(F->getCallingConv());
736     if (!F->returnDoesNotAlias())
737       F->setReturnDoesNotAlias();
738   }
739   assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
740 
741   return Result;
742 }
743 
744 /// CreateMalloc - Generate the IR for a call to malloc:
745 /// 1. Compute the malloc call's argument as the specified type's size,
746 ///    possibly multiplied by the array size if the array size is not
747 ///    constant 1.
748 /// 2. Call malloc with that argument.
749 /// 3. Bitcast the result of the malloc call to the specified type.
750 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
751                                     Type *IntPtrTy, Type *AllocTy,
752                                     Value *AllocSize, Value *ArraySize,
753                                     Function *MallocF,
754                                     const Twine &Name) {
755   return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
756                       ArraySize, None, MallocF, Name);
757 }
758 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
759                                     Type *IntPtrTy, Type *AllocTy,
760                                     Value *AllocSize, Value *ArraySize,
761                                     ArrayRef<OperandBundleDef> OpB,
762                                     Function *MallocF,
763                                     const Twine &Name) {
764   return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
765                       ArraySize, OpB, MallocF, Name);
766 }
767 
768 /// CreateMalloc - Generate the IR for a call to malloc:
769 /// 1. Compute the malloc call's argument as the specified type's size,
770 ///    possibly multiplied by the array size if the array size is not
771 ///    constant 1.
772 /// 2. Call malloc with that argument.
773 /// 3. Bitcast the result of the malloc call to the specified type.
774 /// Note: This function does not add the bitcast to the basic block, that is the
775 /// responsibility of the caller.
776 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
777                                     Type *IntPtrTy, Type *AllocTy,
778                                     Value *AllocSize, Value *ArraySize,
779                                     Function *MallocF, const Twine &Name) {
780   return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
781                       ArraySize, None, MallocF, Name);
782 }
783 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
784                                     Type *IntPtrTy, Type *AllocTy,
785                                     Value *AllocSize, Value *ArraySize,
786                                     ArrayRef<OperandBundleDef> OpB,
787                                     Function *MallocF, const Twine &Name) {
788   return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
789                       ArraySize, OpB, MallocF, Name);
790 }
791 
792 static Instruction *createFree(Value *Source,
793                                ArrayRef<OperandBundleDef> Bundles,
794                                Instruction *InsertBefore,
795                                BasicBlock *InsertAtEnd) {
796   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
797          "createFree needs either InsertBefore or InsertAtEnd");
798   assert(Source->getType()->isPointerTy() &&
799          "Can not free something of nonpointer type!");
800 
801   BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
802   Module *M = BB->getParent()->getParent();
803 
804   Type *VoidTy = Type::getVoidTy(M->getContext());
805   Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
806   // prototype free as "void free(void*)"
807   FunctionCallee FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy);
808   CallInst *Result = nullptr;
809   Value *PtrCast = Source;
810   if (InsertBefore) {
811     if (Source->getType() != IntPtrTy)
812       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
813     Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "", InsertBefore);
814   } else {
815     if (Source->getType() != IntPtrTy)
816       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
817     Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "");
818   }
819   Result->setTailCall();
820   if (Function *F = dyn_cast<Function>(FreeFunc.getCallee()))
821     Result->setCallingConv(F->getCallingConv());
822 
823   return Result;
824 }
825 
826 /// CreateFree - Generate the IR for a call to the builtin free function.
827 Instruction *CallInst::CreateFree(Value *Source, Instruction *InsertBefore) {
828   return createFree(Source, None, InsertBefore, nullptr);
829 }
830 Instruction *CallInst::CreateFree(Value *Source,
831                                   ArrayRef<OperandBundleDef> Bundles,
832                                   Instruction *InsertBefore) {
833   return createFree(Source, Bundles, InsertBefore, nullptr);
834 }
835 
836 /// CreateFree - Generate the IR for a call to the builtin free function.
837 /// Note: This function does not add the call to the basic block, that is the
838 /// responsibility of the caller.
839 Instruction *CallInst::CreateFree(Value *Source, BasicBlock *InsertAtEnd) {
840   Instruction *FreeCall = createFree(Source, None, nullptr, InsertAtEnd);
841   assert(FreeCall && "CreateFree did not create a CallInst");
842   return FreeCall;
843 }
844 Instruction *CallInst::CreateFree(Value *Source,
845                                   ArrayRef<OperandBundleDef> Bundles,
846                                   BasicBlock *InsertAtEnd) {
847   Instruction *FreeCall = createFree(Source, Bundles, nullptr, InsertAtEnd);
848   assert(FreeCall && "CreateFree did not create a CallInst");
849   return FreeCall;
850 }
851 
852 //===----------------------------------------------------------------------===//
853 //                        InvokeInst Implementation
854 //===----------------------------------------------------------------------===//
855 
856 void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal,
857                       BasicBlock *IfException, ArrayRef<Value *> Args,
858                       ArrayRef<OperandBundleDef> Bundles,
859                       const Twine &NameStr) {
860   this->FTy = FTy;
861 
862   assert((int)getNumOperands() ==
863              ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)) &&
864          "NumOperands not set up?");
865 
866 #ifndef NDEBUG
867   assert(((Args.size() == FTy->getNumParams()) ||
868           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
869          "Invoking a function with bad signature");
870 
871   for (unsigned i = 0, e = Args.size(); i != e; i++)
872     assert((i >= FTy->getNumParams() ||
873             FTy->getParamType(i) == Args[i]->getType()) &&
874            "Invoking a function with a bad signature!");
875 #endif
876 
877   // Set operands in order of their index to match use-list-order
878   // prediction.
879   llvm::copy(Args, op_begin());
880   setNormalDest(IfNormal);
881   setUnwindDest(IfException);
882   setCalledOperand(Fn);
883 
884   auto It = populateBundleOperandInfos(Bundles, Args.size());
885   (void)It;
886   assert(It + 3 == op_end() && "Should add up!");
887 
888   setName(NameStr);
889 }
890 
891 InvokeInst::InvokeInst(const InvokeInst &II)
892     : CallBase(II.Attrs, II.FTy, II.getType(), Instruction::Invoke,
893                OperandTraits<CallBase>::op_end(this) - II.getNumOperands(),
894                II.getNumOperands()) {
895   setCallingConv(II.getCallingConv());
896   std::copy(II.op_begin(), II.op_end(), op_begin());
897   std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(),
898             bundle_op_info_begin());
899   SubclassOptionalData = II.SubclassOptionalData;
900 }
901 
902 InvokeInst *InvokeInst::Create(InvokeInst *II, ArrayRef<OperandBundleDef> OpB,
903                                Instruction *InsertPt) {
904   std::vector<Value *> Args(II->arg_begin(), II->arg_end());
905 
906   auto *NewII = InvokeInst::Create(
907       II->getFunctionType(), II->getCalledOperand(), II->getNormalDest(),
908       II->getUnwindDest(), Args, OpB, II->getName(), InsertPt);
909   NewII->setCallingConv(II->getCallingConv());
910   NewII->SubclassOptionalData = II->SubclassOptionalData;
911   NewII->setAttributes(II->getAttributes());
912   NewII->setDebugLoc(II->getDebugLoc());
913   return NewII;
914 }
915 
916 LandingPadInst *InvokeInst::getLandingPadInst() const {
917   return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
918 }
919 
920 //===----------------------------------------------------------------------===//
921 //                        CallBrInst Implementation
922 //===----------------------------------------------------------------------===//
923 
924 void CallBrInst::init(FunctionType *FTy, Value *Fn, BasicBlock *Fallthrough,
925                       ArrayRef<BasicBlock *> IndirectDests,
926                       ArrayRef<Value *> Args,
927                       ArrayRef<OperandBundleDef> Bundles,
928                       const Twine &NameStr) {
929   this->FTy = FTy;
930 
931   assert((int)getNumOperands() ==
932              ComputeNumOperands(Args.size(), IndirectDests.size(),
933                                 CountBundleInputs(Bundles)) &&
934          "NumOperands not set up?");
935 
936 #ifndef NDEBUG
937   assert(((Args.size() == FTy->getNumParams()) ||
938           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
939          "Calling a function with bad signature");
940 
941   for (unsigned i = 0, e = Args.size(); i != e; i++)
942     assert((i >= FTy->getNumParams() ||
943             FTy->getParamType(i) == Args[i]->getType()) &&
944            "Calling a function with a bad signature!");
945 #endif
946 
947   // Set operands in order of their index to match use-list-order
948   // prediction.
949   std::copy(Args.begin(), Args.end(), op_begin());
950   NumIndirectDests = IndirectDests.size();
951   setDefaultDest(Fallthrough);
952   for (unsigned i = 0; i != NumIndirectDests; ++i)
953     setIndirectDest(i, IndirectDests[i]);
954   setCalledOperand(Fn);
955 
956   auto It = populateBundleOperandInfos(Bundles, Args.size());
957   (void)It;
958   assert(It + 2 + IndirectDests.size() == op_end() && "Should add up!");
959 
960   setName(NameStr);
961 }
962 
963 BlockAddress *
964 CallBrInst::getBlockAddressForIndirectDest(unsigned DestNo) const {
965   return BlockAddress::get(const_cast<Function *>(getFunction()),
966                            getIndirectDest(DestNo));
967 }
968 
969 CallBrInst::CallBrInst(const CallBrInst &CBI)
970     : CallBase(CBI.Attrs, CBI.FTy, CBI.getType(), Instruction::CallBr,
971                OperandTraits<CallBase>::op_end(this) - CBI.getNumOperands(),
972                CBI.getNumOperands()) {
973   setCallingConv(CBI.getCallingConv());
974   std::copy(CBI.op_begin(), CBI.op_end(), op_begin());
975   std::copy(CBI.bundle_op_info_begin(), CBI.bundle_op_info_end(),
976             bundle_op_info_begin());
977   SubclassOptionalData = CBI.SubclassOptionalData;
978   NumIndirectDests = CBI.NumIndirectDests;
979 }
980 
981 CallBrInst *CallBrInst::Create(CallBrInst *CBI, ArrayRef<OperandBundleDef> OpB,
982                                Instruction *InsertPt) {
983   std::vector<Value *> Args(CBI->arg_begin(), CBI->arg_end());
984 
985   auto *NewCBI = CallBrInst::Create(
986       CBI->getFunctionType(), CBI->getCalledOperand(), CBI->getDefaultDest(),
987       CBI->getIndirectDests(), Args, OpB, CBI->getName(), InsertPt);
988   NewCBI->setCallingConv(CBI->getCallingConv());
989   NewCBI->SubclassOptionalData = CBI->SubclassOptionalData;
990   NewCBI->setAttributes(CBI->getAttributes());
991   NewCBI->setDebugLoc(CBI->getDebugLoc());
992   NewCBI->NumIndirectDests = CBI->NumIndirectDests;
993   return NewCBI;
994 }
995 
996 //===----------------------------------------------------------------------===//
997 //                        ReturnInst Implementation
998 //===----------------------------------------------------------------------===//
999 
1000 ReturnInst::ReturnInst(const ReturnInst &RI)
1001     : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Ret,
1002                   OperandTraits<ReturnInst>::op_end(this) - RI.getNumOperands(),
1003                   RI.getNumOperands()) {
1004   if (RI.getNumOperands())
1005     Op<0>() = RI.Op<0>();
1006   SubclassOptionalData = RI.SubclassOptionalData;
1007 }
1008 
1009 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
1010     : Instruction(Type::getVoidTy(C), Instruction::Ret,
1011                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
1012                   InsertBefore) {
1013   if (retVal)
1014     Op<0>() = retVal;
1015 }
1016 
1017 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
1018     : Instruction(Type::getVoidTy(C), Instruction::Ret,
1019                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
1020                   InsertAtEnd) {
1021   if (retVal)
1022     Op<0>() = retVal;
1023 }
1024 
1025 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
1026     : Instruction(Type::getVoidTy(Context), Instruction::Ret,
1027                   OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {}
1028 
1029 //===----------------------------------------------------------------------===//
1030 //                        ResumeInst Implementation
1031 //===----------------------------------------------------------------------===//
1032 
1033 ResumeInst::ResumeInst(const ResumeInst &RI)
1034     : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Resume,
1035                   OperandTraits<ResumeInst>::op_begin(this), 1) {
1036   Op<0>() = RI.Op<0>();
1037 }
1038 
1039 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
1040     : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
1041                   OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
1042   Op<0>() = Exn;
1043 }
1044 
1045 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
1046     : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
1047                   OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
1048   Op<0>() = Exn;
1049 }
1050 
1051 //===----------------------------------------------------------------------===//
1052 //                        CleanupReturnInst Implementation
1053 //===----------------------------------------------------------------------===//
1054 
1055 CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI)
1056     : Instruction(CRI.getType(), Instruction::CleanupRet,
1057                   OperandTraits<CleanupReturnInst>::op_end(this) -
1058                       CRI.getNumOperands(),
1059                   CRI.getNumOperands()) {
1060   setSubclassData<Instruction::OpaqueField>(
1061       CRI.getSubclassData<Instruction::OpaqueField>());
1062   Op<0>() = CRI.Op<0>();
1063   if (CRI.hasUnwindDest())
1064     Op<1>() = CRI.Op<1>();
1065 }
1066 
1067 void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) {
1068   if (UnwindBB)
1069     setSubclassData<UnwindDestField>(true);
1070 
1071   Op<0>() = CleanupPad;
1072   if (UnwindBB)
1073     Op<1>() = UnwindBB;
1074 }
1075 
1076 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
1077                                      unsigned Values, Instruction *InsertBefore)
1078     : Instruction(Type::getVoidTy(CleanupPad->getContext()),
1079                   Instruction::CleanupRet,
1080                   OperandTraits<CleanupReturnInst>::op_end(this) - Values,
1081                   Values, InsertBefore) {
1082   init(CleanupPad, UnwindBB);
1083 }
1084 
1085 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
1086                                      unsigned Values, BasicBlock *InsertAtEnd)
1087     : Instruction(Type::getVoidTy(CleanupPad->getContext()),
1088                   Instruction::CleanupRet,
1089                   OperandTraits<CleanupReturnInst>::op_end(this) - Values,
1090                   Values, InsertAtEnd) {
1091   init(CleanupPad, UnwindBB);
1092 }
1093 
1094 //===----------------------------------------------------------------------===//
1095 //                        CatchReturnInst Implementation
1096 //===----------------------------------------------------------------------===//
1097 void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) {
1098   Op<0>() = CatchPad;
1099   Op<1>() = BB;
1100 }
1101 
1102 CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI)
1103     : Instruction(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet,
1104                   OperandTraits<CatchReturnInst>::op_begin(this), 2) {
1105   Op<0>() = CRI.Op<0>();
1106   Op<1>() = CRI.Op<1>();
1107 }
1108 
1109 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
1110                                  Instruction *InsertBefore)
1111     : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
1112                   OperandTraits<CatchReturnInst>::op_begin(this), 2,
1113                   InsertBefore) {
1114   init(CatchPad, BB);
1115 }
1116 
1117 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
1118                                  BasicBlock *InsertAtEnd)
1119     : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
1120                   OperandTraits<CatchReturnInst>::op_begin(this), 2,
1121                   InsertAtEnd) {
1122   init(CatchPad, BB);
1123 }
1124 
1125 //===----------------------------------------------------------------------===//
1126 //                       CatchSwitchInst Implementation
1127 //===----------------------------------------------------------------------===//
1128 
1129 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
1130                                  unsigned NumReservedValues,
1131                                  const Twine &NameStr,
1132                                  Instruction *InsertBefore)
1133     : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
1134                   InsertBefore) {
1135   if (UnwindDest)
1136     ++NumReservedValues;
1137   init(ParentPad, UnwindDest, NumReservedValues + 1);
1138   setName(NameStr);
1139 }
1140 
1141 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
1142                                  unsigned NumReservedValues,
1143                                  const Twine &NameStr, BasicBlock *InsertAtEnd)
1144     : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
1145                   InsertAtEnd) {
1146   if (UnwindDest)
1147     ++NumReservedValues;
1148   init(ParentPad, UnwindDest, NumReservedValues + 1);
1149   setName(NameStr);
1150 }
1151 
1152 CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI)
1153     : Instruction(CSI.getType(), Instruction::CatchSwitch, nullptr,
1154                   CSI.getNumOperands()) {
1155   init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands());
1156   setNumHungOffUseOperands(ReservedSpace);
1157   Use *OL = getOperandList();
1158   const Use *InOL = CSI.getOperandList();
1159   for (unsigned I = 1, E = ReservedSpace; I != E; ++I)
1160     OL[I] = InOL[I];
1161 }
1162 
1163 void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest,
1164                            unsigned NumReservedValues) {
1165   assert(ParentPad && NumReservedValues);
1166 
1167   ReservedSpace = NumReservedValues;
1168   setNumHungOffUseOperands(UnwindDest ? 2 : 1);
1169   allocHungoffUses(ReservedSpace);
1170 
1171   Op<0>() = ParentPad;
1172   if (UnwindDest) {
1173     setSubclassData<UnwindDestField>(true);
1174     setUnwindDest(UnwindDest);
1175   }
1176 }
1177 
1178 /// growOperands - grow operands - This grows the operand list in response to a
1179 /// push_back style of operation. This grows the number of ops by 2 times.
1180 void CatchSwitchInst::growOperands(unsigned Size) {
1181   unsigned NumOperands = getNumOperands();
1182   assert(NumOperands >= 1);
1183   if (ReservedSpace >= NumOperands + Size)
1184     return;
1185   ReservedSpace = (NumOperands + Size / 2) * 2;
1186   growHungoffUses(ReservedSpace);
1187 }
1188 
1189 void CatchSwitchInst::addHandler(BasicBlock *Handler) {
1190   unsigned OpNo = getNumOperands();
1191   growOperands(1);
1192   assert(OpNo < ReservedSpace && "Growing didn't work!");
1193   setNumHungOffUseOperands(getNumOperands() + 1);
1194   getOperandList()[OpNo] = Handler;
1195 }
1196 
1197 void CatchSwitchInst::removeHandler(handler_iterator HI) {
1198   // Move all subsequent handlers up one.
1199   Use *EndDst = op_end() - 1;
1200   for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst)
1201     *CurDst = *(CurDst + 1);
1202   // Null out the last handler use.
1203   *EndDst = nullptr;
1204 
1205   setNumHungOffUseOperands(getNumOperands() - 1);
1206 }
1207 
1208 //===----------------------------------------------------------------------===//
1209 //                        FuncletPadInst Implementation
1210 //===----------------------------------------------------------------------===//
1211 void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args,
1212                           const Twine &NameStr) {
1213   assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?");
1214   llvm::copy(Args, op_begin());
1215   setParentPad(ParentPad);
1216   setName(NameStr);
1217 }
1218 
1219 FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI)
1220     : Instruction(FPI.getType(), FPI.getOpcode(),
1221                   OperandTraits<FuncletPadInst>::op_end(this) -
1222                       FPI.getNumOperands(),
1223                   FPI.getNumOperands()) {
1224   std::copy(FPI.op_begin(), FPI.op_end(), op_begin());
1225   setParentPad(FPI.getParentPad());
1226 }
1227 
1228 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1229                                ArrayRef<Value *> Args, unsigned Values,
1230                                const Twine &NameStr, Instruction *InsertBefore)
1231     : Instruction(ParentPad->getType(), Op,
1232                   OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1233                   InsertBefore) {
1234   init(ParentPad, Args, NameStr);
1235 }
1236 
1237 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1238                                ArrayRef<Value *> Args, unsigned Values,
1239                                const Twine &NameStr, BasicBlock *InsertAtEnd)
1240     : Instruction(ParentPad->getType(), Op,
1241                   OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1242                   InsertAtEnd) {
1243   init(ParentPad, Args, NameStr);
1244 }
1245 
1246 //===----------------------------------------------------------------------===//
1247 //                      UnreachableInst Implementation
1248 //===----------------------------------------------------------------------===//
1249 
1250 UnreachableInst::UnreachableInst(LLVMContext &Context,
1251                                  Instruction *InsertBefore)
1252     : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1253                   0, InsertBefore) {}
1254 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
1255     : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1256                   0, InsertAtEnd) {}
1257 
1258 //===----------------------------------------------------------------------===//
1259 //                        BranchInst Implementation
1260 //===----------------------------------------------------------------------===//
1261 
1262 void BranchInst::AssertOK() {
1263   if (isConditional())
1264     assert(getCondition()->getType()->isIntegerTy(1) &&
1265            "May only branch on boolean predicates!");
1266 }
1267 
1268 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
1269     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1270                   OperandTraits<BranchInst>::op_end(this) - 1, 1,
1271                   InsertBefore) {
1272   assert(IfTrue && "Branch destination may not be null!");
1273   Op<-1>() = IfTrue;
1274 }
1275 
1276 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1277                        Instruction *InsertBefore)
1278     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1279                   OperandTraits<BranchInst>::op_end(this) - 3, 3,
1280                   InsertBefore) {
1281   // Assign in order of operand index to make use-list order predictable.
1282   Op<-3>() = Cond;
1283   Op<-2>() = IfFalse;
1284   Op<-1>() = IfTrue;
1285 #ifndef NDEBUG
1286   AssertOK();
1287 #endif
1288 }
1289 
1290 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
1291     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1292                   OperandTraits<BranchInst>::op_end(this) - 1, 1, InsertAtEnd) {
1293   assert(IfTrue && "Branch destination may not be null!");
1294   Op<-1>() = IfTrue;
1295 }
1296 
1297 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1298                        BasicBlock *InsertAtEnd)
1299     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1300                   OperandTraits<BranchInst>::op_end(this) - 3, 3, InsertAtEnd) {
1301   // Assign in order of operand index to make use-list order predictable.
1302   Op<-3>() = Cond;
1303   Op<-2>() = IfFalse;
1304   Op<-1>() = IfTrue;
1305 #ifndef NDEBUG
1306   AssertOK();
1307 #endif
1308 }
1309 
1310 BranchInst::BranchInst(const BranchInst &BI)
1311     : Instruction(Type::getVoidTy(BI.getContext()), Instruction::Br,
1312                   OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
1313                   BI.getNumOperands()) {
1314   // Assign in order of operand index to make use-list order predictable.
1315   if (BI.getNumOperands() != 1) {
1316     assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
1317     Op<-3>() = BI.Op<-3>();
1318     Op<-2>() = BI.Op<-2>();
1319   }
1320   Op<-1>() = BI.Op<-1>();
1321   SubclassOptionalData = BI.SubclassOptionalData;
1322 }
1323 
1324 void BranchInst::swapSuccessors() {
1325   assert(isConditional() &&
1326          "Cannot swap successors of an unconditional branch");
1327   Op<-1>().swap(Op<-2>());
1328 
1329   // Update profile metadata if present and it matches our structural
1330   // expectations.
1331   swapProfMetadata();
1332 }
1333 
1334 //===----------------------------------------------------------------------===//
1335 //                        AllocaInst Implementation
1336 //===----------------------------------------------------------------------===//
1337 
1338 static Value *getAISize(LLVMContext &Context, Value *Amt) {
1339   if (!Amt)
1340     Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
1341   else {
1342     assert(!isa<BasicBlock>(Amt) &&
1343            "Passed basic block into allocation size parameter! Use other ctor");
1344     assert(Amt->getType()->isIntegerTy() &&
1345            "Allocation array size is not an integer!");
1346   }
1347   return Amt;
1348 }
1349 
1350 static Align computeAllocaDefaultAlign(Type *Ty, BasicBlock *BB) {
1351   assert(BB && "Insertion BB cannot be null when alignment not provided!");
1352   assert(BB->getParent() &&
1353          "BB must be in a Function when alignment not provided!");
1354   const DataLayout &DL = BB->getModule()->getDataLayout();
1355   return DL.getPrefTypeAlign(Ty);
1356 }
1357 
1358 static Align computeAllocaDefaultAlign(Type *Ty, Instruction *I) {
1359   assert(I && "Insertion position cannot be null when alignment not provided!");
1360   return computeAllocaDefaultAlign(Ty, I->getParent());
1361 }
1362 
1363 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1364                        Instruction *InsertBefore)
1365   : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertBefore) {}
1366 
1367 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1368                        BasicBlock *InsertAtEnd)
1369   : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertAtEnd) {}
1370 
1371 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1372                        const Twine &Name, Instruction *InsertBefore)
1373     : AllocaInst(Ty, AddrSpace, ArraySize,
1374                  computeAllocaDefaultAlign(Ty, InsertBefore), Name,
1375                  InsertBefore) {}
1376 
1377 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1378                        const Twine &Name, BasicBlock *InsertAtEnd)
1379     : AllocaInst(Ty, AddrSpace, ArraySize,
1380                  computeAllocaDefaultAlign(Ty, InsertAtEnd), Name,
1381                  InsertAtEnd) {}
1382 
1383 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1384                        Align Align, const Twine &Name,
1385                        Instruction *InsertBefore)
1386     : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1387                        getAISize(Ty->getContext(), ArraySize), InsertBefore),
1388       AllocatedType(Ty) {
1389   setAlignment(Align);
1390   assert(!Ty->isVoidTy() && "Cannot allocate void!");
1391   setName(Name);
1392 }
1393 
1394 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1395                        Align Align, const Twine &Name, BasicBlock *InsertAtEnd)
1396     : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1397                        getAISize(Ty->getContext(), ArraySize), InsertAtEnd),
1398       AllocatedType(Ty) {
1399   setAlignment(Align);
1400   assert(!Ty->isVoidTy() && "Cannot allocate void!");
1401   setName(Name);
1402 }
1403 
1404 
1405 bool AllocaInst::isArrayAllocation() const {
1406   if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
1407     return !CI->isOne();
1408   return true;
1409 }
1410 
1411 /// isStaticAlloca - Return true if this alloca is in the entry block of the
1412 /// function and is a constant size.  If so, the code generator will fold it
1413 /// into the prolog/epilog code, so it is basically free.
1414 bool AllocaInst::isStaticAlloca() const {
1415   // Must be constant size.
1416   if (!isa<ConstantInt>(getArraySize())) return false;
1417 
1418   // Must be in the entry block.
1419   const BasicBlock *Parent = getParent();
1420   return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca();
1421 }
1422 
1423 //===----------------------------------------------------------------------===//
1424 //                           LoadInst Implementation
1425 //===----------------------------------------------------------------------===//
1426 
1427 void LoadInst::AssertOK() {
1428   assert(getOperand(0)->getType()->isPointerTy() &&
1429          "Ptr must have pointer type.");
1430 }
1431 
1432 static Align computeLoadStoreDefaultAlign(Type *Ty, BasicBlock *BB) {
1433   assert(BB && "Insertion BB cannot be null when alignment not provided!");
1434   assert(BB->getParent() &&
1435          "BB must be in a Function when alignment not provided!");
1436   const DataLayout &DL = BB->getModule()->getDataLayout();
1437   return DL.getABITypeAlign(Ty);
1438 }
1439 
1440 static Align computeLoadStoreDefaultAlign(Type *Ty, Instruction *I) {
1441   assert(I && "Insertion position cannot be null when alignment not provided!");
1442   return computeLoadStoreDefaultAlign(Ty, I->getParent());
1443 }
1444 
1445 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
1446                    Instruction *InsertBef)
1447     : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertBef) {}
1448 
1449 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
1450                    BasicBlock *InsertAE)
1451     : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertAE) {}
1452 
1453 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1454                    Instruction *InsertBef)
1455     : LoadInst(Ty, Ptr, Name, isVolatile,
1456                computeLoadStoreDefaultAlign(Ty, InsertBef), InsertBef) {}
1457 
1458 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1459                    BasicBlock *InsertAE)
1460     : LoadInst(Ty, Ptr, Name, isVolatile,
1461                computeLoadStoreDefaultAlign(Ty, InsertAE), InsertAE) {}
1462 
1463 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1464                    Align Align, Instruction *InsertBef)
1465     : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1466                SyncScope::System, InsertBef) {}
1467 
1468 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1469                    Align Align, BasicBlock *InsertAE)
1470     : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1471                SyncScope::System, InsertAE) {}
1472 
1473 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1474                    Align Align, AtomicOrdering Order, SyncScope::ID SSID,
1475                    Instruction *InsertBef)
1476     : UnaryInstruction(Ty, Load, Ptr, InsertBef) {
1477   assert(cast<PointerType>(Ptr->getType())->isOpaqueOrPointeeTypeMatches(Ty));
1478   setVolatile(isVolatile);
1479   setAlignment(Align);
1480   setAtomic(Order, SSID);
1481   AssertOK();
1482   setName(Name);
1483 }
1484 
1485 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1486                    Align Align, AtomicOrdering Order, SyncScope::ID SSID,
1487                    BasicBlock *InsertAE)
1488     : UnaryInstruction(Ty, Load, Ptr, InsertAE) {
1489   assert(cast<PointerType>(Ptr->getType())->isOpaqueOrPointeeTypeMatches(Ty));
1490   setVolatile(isVolatile);
1491   setAlignment(Align);
1492   setAtomic(Order, SSID);
1493   AssertOK();
1494   setName(Name);
1495 }
1496 
1497 //===----------------------------------------------------------------------===//
1498 //                           StoreInst Implementation
1499 //===----------------------------------------------------------------------===//
1500 
1501 void StoreInst::AssertOK() {
1502   assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1503   assert(getOperand(1)->getType()->isPointerTy() &&
1504          "Ptr must have pointer type!");
1505   assert(cast<PointerType>(getOperand(1)->getType())
1506              ->isOpaqueOrPointeeTypeMatches(getOperand(0)->getType()) &&
1507          "Ptr must be a pointer to Val type!");
1508 }
1509 
1510 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
1511     : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {}
1512 
1513 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
1514     : StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {}
1515 
1516 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1517                      Instruction *InsertBefore)
1518     : StoreInst(val, addr, isVolatile,
1519                 computeLoadStoreDefaultAlign(val->getType(), InsertBefore),
1520                 InsertBefore) {}
1521 
1522 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1523                      BasicBlock *InsertAtEnd)
1524     : StoreInst(val, addr, isVolatile,
1525                 computeLoadStoreDefaultAlign(val->getType(), InsertAtEnd),
1526                 InsertAtEnd) {}
1527 
1528 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1529                      Instruction *InsertBefore)
1530     : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1531                 SyncScope::System, InsertBefore) {}
1532 
1533 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1534                      BasicBlock *InsertAtEnd)
1535     : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1536                 SyncScope::System, InsertAtEnd) {}
1537 
1538 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1539                      AtomicOrdering Order, SyncScope::ID SSID,
1540                      Instruction *InsertBefore)
1541     : Instruction(Type::getVoidTy(val->getContext()), Store,
1542                   OperandTraits<StoreInst>::op_begin(this),
1543                   OperandTraits<StoreInst>::operands(this), InsertBefore) {
1544   Op<0>() = val;
1545   Op<1>() = addr;
1546   setVolatile(isVolatile);
1547   setAlignment(Align);
1548   setAtomic(Order, SSID);
1549   AssertOK();
1550 }
1551 
1552 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1553                      AtomicOrdering Order, SyncScope::ID SSID,
1554                      BasicBlock *InsertAtEnd)
1555     : Instruction(Type::getVoidTy(val->getContext()), Store,
1556                   OperandTraits<StoreInst>::op_begin(this),
1557                   OperandTraits<StoreInst>::operands(this), InsertAtEnd) {
1558   Op<0>() = val;
1559   Op<1>() = addr;
1560   setVolatile(isVolatile);
1561   setAlignment(Align);
1562   setAtomic(Order, SSID);
1563   AssertOK();
1564 }
1565 
1566 
1567 //===----------------------------------------------------------------------===//
1568 //                       AtomicCmpXchgInst Implementation
1569 //===----------------------------------------------------------------------===//
1570 
1571 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
1572                              Align Alignment, AtomicOrdering SuccessOrdering,
1573                              AtomicOrdering FailureOrdering,
1574                              SyncScope::ID SSID) {
1575   Op<0>() = Ptr;
1576   Op<1>() = Cmp;
1577   Op<2>() = NewVal;
1578   setSuccessOrdering(SuccessOrdering);
1579   setFailureOrdering(FailureOrdering);
1580   setSyncScopeID(SSID);
1581   setAlignment(Alignment);
1582 
1583   assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1584          "All operands must be non-null!");
1585   assert(getOperand(0)->getType()->isPointerTy() &&
1586          "Ptr must have pointer type!");
1587   assert(cast<PointerType>(getOperand(0)->getType())
1588              ->isOpaqueOrPointeeTypeMatches(getOperand(1)->getType()) &&
1589          "Ptr must be a pointer to Cmp type!");
1590   assert(cast<PointerType>(getOperand(0)->getType())
1591              ->isOpaqueOrPointeeTypeMatches(getOperand(2)->getType()) &&
1592          "Ptr must be a pointer to NewVal type!");
1593   assert(getOperand(1)->getType() == getOperand(2)->getType() &&
1594          "Cmp type and NewVal type must be same!");
1595 }
1596 
1597 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1598                                      Align Alignment,
1599                                      AtomicOrdering SuccessOrdering,
1600                                      AtomicOrdering FailureOrdering,
1601                                      SyncScope::ID SSID,
1602                                      Instruction *InsertBefore)
1603     : Instruction(
1604           StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1605           AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1606           OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) {
1607   Init(Ptr, Cmp, NewVal, Alignment, SuccessOrdering, FailureOrdering, SSID);
1608 }
1609 
1610 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1611                                      Align Alignment,
1612                                      AtomicOrdering SuccessOrdering,
1613                                      AtomicOrdering FailureOrdering,
1614                                      SyncScope::ID SSID,
1615                                      BasicBlock *InsertAtEnd)
1616     : Instruction(
1617           StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1618           AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1619           OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) {
1620   Init(Ptr, Cmp, NewVal, Alignment, SuccessOrdering, FailureOrdering, SSID);
1621 }
1622 
1623 //===----------------------------------------------------------------------===//
1624 //                       AtomicRMWInst Implementation
1625 //===----------------------------------------------------------------------===//
1626 
1627 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
1628                          Align Alignment, AtomicOrdering Ordering,
1629                          SyncScope::ID SSID) {
1630   Op<0>() = Ptr;
1631   Op<1>() = Val;
1632   setOperation(Operation);
1633   setOrdering(Ordering);
1634   setSyncScopeID(SSID);
1635   setAlignment(Alignment);
1636 
1637   assert(getOperand(0) && getOperand(1) &&
1638          "All operands must be non-null!");
1639   assert(getOperand(0)->getType()->isPointerTy() &&
1640          "Ptr must have pointer type!");
1641   assert(cast<PointerType>(getOperand(0)->getType())
1642              ->isOpaqueOrPointeeTypeMatches(getOperand(1)->getType()) &&
1643          "Ptr must be a pointer to Val type!");
1644   assert(Ordering != AtomicOrdering::NotAtomic &&
1645          "AtomicRMW instructions must be atomic!");
1646 }
1647 
1648 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1649                              Align Alignment, AtomicOrdering Ordering,
1650                              SyncScope::ID SSID, Instruction *InsertBefore)
1651     : Instruction(Val->getType(), AtomicRMW,
1652                   OperandTraits<AtomicRMWInst>::op_begin(this),
1653                   OperandTraits<AtomicRMWInst>::operands(this), InsertBefore) {
1654   Init(Operation, Ptr, Val, Alignment, Ordering, SSID);
1655 }
1656 
1657 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1658                              Align Alignment, AtomicOrdering Ordering,
1659                              SyncScope::ID SSID, BasicBlock *InsertAtEnd)
1660     : Instruction(Val->getType(), AtomicRMW,
1661                   OperandTraits<AtomicRMWInst>::op_begin(this),
1662                   OperandTraits<AtomicRMWInst>::operands(this), InsertAtEnd) {
1663   Init(Operation, Ptr, Val, Alignment, Ordering, SSID);
1664 }
1665 
1666 StringRef AtomicRMWInst::getOperationName(BinOp Op) {
1667   switch (Op) {
1668   case AtomicRMWInst::Xchg:
1669     return "xchg";
1670   case AtomicRMWInst::Add:
1671     return "add";
1672   case AtomicRMWInst::Sub:
1673     return "sub";
1674   case AtomicRMWInst::And:
1675     return "and";
1676   case AtomicRMWInst::Nand:
1677     return "nand";
1678   case AtomicRMWInst::Or:
1679     return "or";
1680   case AtomicRMWInst::Xor:
1681     return "xor";
1682   case AtomicRMWInst::Max:
1683     return "max";
1684   case AtomicRMWInst::Min:
1685     return "min";
1686   case AtomicRMWInst::UMax:
1687     return "umax";
1688   case AtomicRMWInst::UMin:
1689     return "umin";
1690   case AtomicRMWInst::FAdd:
1691     return "fadd";
1692   case AtomicRMWInst::FSub:
1693     return "fsub";
1694   case AtomicRMWInst::FMax:
1695     return "fmax";
1696   case AtomicRMWInst::FMin:
1697     return "fmin";
1698   case AtomicRMWInst::BAD_BINOP:
1699     return "<invalid operation>";
1700   }
1701 
1702   llvm_unreachable("invalid atomicrmw operation");
1703 }
1704 
1705 //===----------------------------------------------------------------------===//
1706 //                       FenceInst Implementation
1707 //===----------------------------------------------------------------------===//
1708 
1709 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1710                      SyncScope::ID SSID,
1711                      Instruction *InsertBefore)
1712   : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) {
1713   setOrdering(Ordering);
1714   setSyncScopeID(SSID);
1715 }
1716 
1717 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1718                      SyncScope::ID SSID,
1719                      BasicBlock *InsertAtEnd)
1720   : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) {
1721   setOrdering(Ordering);
1722   setSyncScopeID(SSID);
1723 }
1724 
1725 //===----------------------------------------------------------------------===//
1726 //                       GetElementPtrInst Implementation
1727 //===----------------------------------------------------------------------===//
1728 
1729 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
1730                              const Twine &Name) {
1731   assert(getNumOperands() == 1 + IdxList.size() &&
1732          "NumOperands not initialized?");
1733   Op<0>() = Ptr;
1734   llvm::copy(IdxList, op_begin() + 1);
1735   setName(Name);
1736 }
1737 
1738 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1739     : Instruction(GEPI.getType(), GetElementPtr,
1740                   OperandTraits<GetElementPtrInst>::op_end(this) -
1741                       GEPI.getNumOperands(),
1742                   GEPI.getNumOperands()),
1743       SourceElementType(GEPI.SourceElementType),
1744       ResultElementType(GEPI.ResultElementType) {
1745   std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
1746   SubclassOptionalData = GEPI.SubclassOptionalData;
1747 }
1748 
1749 Type *GetElementPtrInst::getTypeAtIndex(Type *Ty, Value *Idx) {
1750   if (auto *Struct = dyn_cast<StructType>(Ty)) {
1751     if (!Struct->indexValid(Idx))
1752       return nullptr;
1753     return Struct->getTypeAtIndex(Idx);
1754   }
1755   if (!Idx->getType()->isIntOrIntVectorTy())
1756     return nullptr;
1757   if (auto *Array = dyn_cast<ArrayType>(Ty))
1758     return Array->getElementType();
1759   if (auto *Vector = dyn_cast<VectorType>(Ty))
1760     return Vector->getElementType();
1761   return nullptr;
1762 }
1763 
1764 Type *GetElementPtrInst::getTypeAtIndex(Type *Ty, uint64_t Idx) {
1765   if (auto *Struct = dyn_cast<StructType>(Ty)) {
1766     if (Idx >= Struct->getNumElements())
1767       return nullptr;
1768     return Struct->getElementType(Idx);
1769   }
1770   if (auto *Array = dyn_cast<ArrayType>(Ty))
1771     return Array->getElementType();
1772   if (auto *Vector = dyn_cast<VectorType>(Ty))
1773     return Vector->getElementType();
1774   return nullptr;
1775 }
1776 
1777 template <typename IndexTy>
1778 static Type *getIndexedTypeInternal(Type *Ty, ArrayRef<IndexTy> IdxList) {
1779   if (IdxList.empty())
1780     return Ty;
1781   for (IndexTy V : IdxList.slice(1)) {
1782     Ty = GetElementPtrInst::getTypeAtIndex(Ty, V);
1783     if (!Ty)
1784       return Ty;
1785   }
1786   return Ty;
1787 }
1788 
1789 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) {
1790   return getIndexedTypeInternal(Ty, IdxList);
1791 }
1792 
1793 Type *GetElementPtrInst::getIndexedType(Type *Ty,
1794                                         ArrayRef<Constant *> IdxList) {
1795   return getIndexedTypeInternal(Ty, IdxList);
1796 }
1797 
1798 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) {
1799   return getIndexedTypeInternal(Ty, IdxList);
1800 }
1801 
1802 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1803 /// zeros.  If so, the result pointer and the first operand have the same
1804 /// value, just potentially different types.
1805 bool GetElementPtrInst::hasAllZeroIndices() const {
1806   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1807     if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1808       if (!CI->isZero()) return false;
1809     } else {
1810       return false;
1811     }
1812   }
1813   return true;
1814 }
1815 
1816 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1817 /// constant integers.  If so, the result pointer and the first operand have
1818 /// a constant offset between them.
1819 bool GetElementPtrInst::hasAllConstantIndices() const {
1820   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1821     if (!isa<ConstantInt>(getOperand(i)))
1822       return false;
1823   }
1824   return true;
1825 }
1826 
1827 void GetElementPtrInst::setIsInBounds(bool B) {
1828   cast<GEPOperator>(this)->setIsInBounds(B);
1829 }
1830 
1831 bool GetElementPtrInst::isInBounds() const {
1832   return cast<GEPOperator>(this)->isInBounds();
1833 }
1834 
1835 bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL,
1836                                                  APInt &Offset) const {
1837   // Delegate to the generic GEPOperator implementation.
1838   return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
1839 }
1840 
1841 bool GetElementPtrInst::collectOffset(
1842     const DataLayout &DL, unsigned BitWidth,
1843     MapVector<Value *, APInt> &VariableOffsets,
1844     APInt &ConstantOffset) const {
1845   // Delegate to the generic GEPOperator implementation.
1846   return cast<GEPOperator>(this)->collectOffset(DL, BitWidth, VariableOffsets,
1847                                                 ConstantOffset);
1848 }
1849 
1850 //===----------------------------------------------------------------------===//
1851 //                           ExtractElementInst Implementation
1852 //===----------------------------------------------------------------------===//
1853 
1854 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1855                                        const Twine &Name,
1856                                        Instruction *InsertBef)
1857   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1858                 ExtractElement,
1859                 OperandTraits<ExtractElementInst>::op_begin(this),
1860                 2, InsertBef) {
1861   assert(isValidOperands(Val, Index) &&
1862          "Invalid extractelement instruction operands!");
1863   Op<0>() = Val;
1864   Op<1>() = Index;
1865   setName(Name);
1866 }
1867 
1868 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1869                                        const Twine &Name,
1870                                        BasicBlock *InsertAE)
1871   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1872                 ExtractElement,
1873                 OperandTraits<ExtractElementInst>::op_begin(this),
1874                 2, InsertAE) {
1875   assert(isValidOperands(Val, Index) &&
1876          "Invalid extractelement instruction operands!");
1877 
1878   Op<0>() = Val;
1879   Op<1>() = Index;
1880   setName(Name);
1881 }
1882 
1883 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1884   if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy())
1885     return false;
1886   return true;
1887 }
1888 
1889 //===----------------------------------------------------------------------===//
1890 //                           InsertElementInst Implementation
1891 //===----------------------------------------------------------------------===//
1892 
1893 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1894                                      const Twine &Name,
1895                                      Instruction *InsertBef)
1896   : Instruction(Vec->getType(), InsertElement,
1897                 OperandTraits<InsertElementInst>::op_begin(this),
1898                 3, InsertBef) {
1899   assert(isValidOperands(Vec, Elt, Index) &&
1900          "Invalid insertelement instruction operands!");
1901   Op<0>() = Vec;
1902   Op<1>() = Elt;
1903   Op<2>() = Index;
1904   setName(Name);
1905 }
1906 
1907 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1908                                      const Twine &Name,
1909                                      BasicBlock *InsertAE)
1910   : Instruction(Vec->getType(), InsertElement,
1911                 OperandTraits<InsertElementInst>::op_begin(this),
1912                 3, InsertAE) {
1913   assert(isValidOperands(Vec, Elt, Index) &&
1914          "Invalid insertelement instruction operands!");
1915 
1916   Op<0>() = Vec;
1917   Op<1>() = Elt;
1918   Op<2>() = Index;
1919   setName(Name);
1920 }
1921 
1922 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1923                                         const Value *Index) {
1924   if (!Vec->getType()->isVectorTy())
1925     return false;   // First operand of insertelement must be vector type.
1926 
1927   if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1928     return false;// Second operand of insertelement must be vector element type.
1929 
1930   if (!Index->getType()->isIntegerTy())
1931     return false;  // Third operand of insertelement must be i32.
1932   return true;
1933 }
1934 
1935 //===----------------------------------------------------------------------===//
1936 //                      ShuffleVectorInst Implementation
1937 //===----------------------------------------------------------------------===//
1938 
1939 static Value *createPlaceholderForShuffleVector(Value *V) {
1940   assert(V && "Cannot create placeholder of nullptr V");
1941   return PoisonValue::get(V->getType());
1942 }
1943 
1944 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *Mask, const Twine &Name,
1945                                      Instruction *InsertBefore)
1946     : ShuffleVectorInst(V1, createPlaceholderForShuffleVector(V1), Mask, Name,
1947                         InsertBefore) {}
1948 
1949 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *Mask, const Twine &Name,
1950                                      BasicBlock *InsertAtEnd)
1951     : ShuffleVectorInst(V1, createPlaceholderForShuffleVector(V1), Mask, Name,
1952                         InsertAtEnd) {}
1953 
1954 ShuffleVectorInst::ShuffleVectorInst(Value *V1, ArrayRef<int> Mask,
1955                                      const Twine &Name,
1956                                      Instruction *InsertBefore)
1957     : ShuffleVectorInst(V1, createPlaceholderForShuffleVector(V1), Mask, Name,
1958                         InsertBefore) {}
1959 
1960 ShuffleVectorInst::ShuffleVectorInst(Value *V1, ArrayRef<int> Mask,
1961                                      const Twine &Name, BasicBlock *InsertAtEnd)
1962     : ShuffleVectorInst(V1, createPlaceholderForShuffleVector(V1), Mask, Name,
1963                         InsertAtEnd) {}
1964 
1965 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1966                                      const Twine &Name,
1967                                      Instruction *InsertBefore)
1968     : Instruction(
1969           VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1970                           cast<VectorType>(Mask->getType())->getElementCount()),
1971           ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1972           OperandTraits<ShuffleVectorInst>::operands(this), InsertBefore) {
1973   assert(isValidOperands(V1, V2, Mask) &&
1974          "Invalid shuffle vector instruction operands!");
1975 
1976   Op<0>() = V1;
1977   Op<1>() = V2;
1978   SmallVector<int, 16> MaskArr;
1979   getShuffleMask(cast<Constant>(Mask), MaskArr);
1980   setShuffleMask(MaskArr);
1981   setName(Name);
1982 }
1983 
1984 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1985                                      const Twine &Name, BasicBlock *InsertAtEnd)
1986     : Instruction(
1987           VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1988                           cast<VectorType>(Mask->getType())->getElementCount()),
1989           ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1990           OperandTraits<ShuffleVectorInst>::operands(this), InsertAtEnd) {
1991   assert(isValidOperands(V1, V2, Mask) &&
1992          "Invalid shuffle vector instruction operands!");
1993 
1994   Op<0>() = V1;
1995   Op<1>() = V2;
1996   SmallVector<int, 16> MaskArr;
1997   getShuffleMask(cast<Constant>(Mask), MaskArr);
1998   setShuffleMask(MaskArr);
1999   setName(Name);
2000 }
2001 
2002 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
2003                                      const Twine &Name,
2004                                      Instruction *InsertBefore)
2005     : Instruction(
2006           VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
2007                           Mask.size(), isa<ScalableVectorType>(V1->getType())),
2008           ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
2009           OperandTraits<ShuffleVectorInst>::operands(this), InsertBefore) {
2010   assert(isValidOperands(V1, V2, Mask) &&
2011          "Invalid shuffle vector instruction operands!");
2012   Op<0>() = V1;
2013   Op<1>() = V2;
2014   setShuffleMask(Mask);
2015   setName(Name);
2016 }
2017 
2018 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
2019                                      const Twine &Name, BasicBlock *InsertAtEnd)
2020     : Instruction(
2021           VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
2022                           Mask.size(), isa<ScalableVectorType>(V1->getType())),
2023           ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
2024           OperandTraits<ShuffleVectorInst>::operands(this), InsertAtEnd) {
2025   assert(isValidOperands(V1, V2, Mask) &&
2026          "Invalid shuffle vector instruction operands!");
2027 
2028   Op<0>() = V1;
2029   Op<1>() = V2;
2030   setShuffleMask(Mask);
2031   setName(Name);
2032 }
2033 
2034 void ShuffleVectorInst::commute() {
2035   int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2036   int NumMaskElts = ShuffleMask.size();
2037   SmallVector<int, 16> NewMask(NumMaskElts);
2038   for (int i = 0; i != NumMaskElts; ++i) {
2039     int MaskElt = getMaskValue(i);
2040     if (MaskElt == UndefMaskElem) {
2041       NewMask[i] = UndefMaskElem;
2042       continue;
2043     }
2044     assert(MaskElt >= 0 && MaskElt < 2 * NumOpElts && "Out-of-range mask");
2045     MaskElt = (MaskElt < NumOpElts) ? MaskElt + NumOpElts : MaskElt - NumOpElts;
2046     NewMask[i] = MaskElt;
2047   }
2048   setShuffleMask(NewMask);
2049   Op<0>().swap(Op<1>());
2050 }
2051 
2052 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
2053                                         ArrayRef<int> Mask) {
2054   // V1 and V2 must be vectors of the same type.
2055   if (!isa<VectorType>(V1->getType()) || V1->getType() != V2->getType())
2056     return false;
2057 
2058   // Make sure the mask elements make sense.
2059   int V1Size =
2060       cast<VectorType>(V1->getType())->getElementCount().getKnownMinValue();
2061   for (int Elem : Mask)
2062     if (Elem != UndefMaskElem && Elem >= V1Size * 2)
2063       return false;
2064 
2065   if (isa<ScalableVectorType>(V1->getType()))
2066     if ((Mask[0] != 0 && Mask[0] != UndefMaskElem) || !is_splat(Mask))
2067       return false;
2068 
2069   return true;
2070 }
2071 
2072 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
2073                                         const Value *Mask) {
2074   // V1 and V2 must be vectors of the same type.
2075   if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
2076     return false;
2077 
2078   // Mask must be vector of i32, and must be the same kind of vector as the
2079   // input vectors
2080   auto *MaskTy = dyn_cast<VectorType>(Mask->getType());
2081   if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32) ||
2082       isa<ScalableVectorType>(MaskTy) != isa<ScalableVectorType>(V1->getType()))
2083     return false;
2084 
2085   // Check to see if Mask is valid.
2086   if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
2087     return true;
2088 
2089   if (const auto *MV = dyn_cast<ConstantVector>(Mask)) {
2090     unsigned V1Size = cast<FixedVectorType>(V1->getType())->getNumElements();
2091     for (Value *Op : MV->operands()) {
2092       if (auto *CI = dyn_cast<ConstantInt>(Op)) {
2093         if (CI->uge(V1Size*2))
2094           return false;
2095       } else if (!isa<UndefValue>(Op)) {
2096         return false;
2097       }
2098     }
2099     return true;
2100   }
2101 
2102   if (const auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
2103     unsigned V1Size = cast<FixedVectorType>(V1->getType())->getNumElements();
2104     for (unsigned i = 0, e = cast<FixedVectorType>(MaskTy)->getNumElements();
2105          i != e; ++i)
2106       if (CDS->getElementAsInteger(i) >= V1Size*2)
2107         return false;
2108     return true;
2109   }
2110 
2111   return false;
2112 }
2113 
2114 void ShuffleVectorInst::getShuffleMask(const Constant *Mask,
2115                                        SmallVectorImpl<int> &Result) {
2116   ElementCount EC = cast<VectorType>(Mask->getType())->getElementCount();
2117 
2118   if (isa<ConstantAggregateZero>(Mask)) {
2119     Result.resize(EC.getKnownMinValue(), 0);
2120     return;
2121   }
2122 
2123   Result.reserve(EC.getKnownMinValue());
2124 
2125   if (EC.isScalable()) {
2126     assert((isa<ConstantAggregateZero>(Mask) || isa<UndefValue>(Mask)) &&
2127            "Scalable vector shuffle mask must be undef or zeroinitializer");
2128     int MaskVal = isa<UndefValue>(Mask) ? -1 : 0;
2129     for (unsigned I = 0; I < EC.getKnownMinValue(); ++I)
2130       Result.emplace_back(MaskVal);
2131     return;
2132   }
2133 
2134   unsigned NumElts = EC.getKnownMinValue();
2135 
2136   if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
2137     for (unsigned i = 0; i != NumElts; ++i)
2138       Result.push_back(CDS->getElementAsInteger(i));
2139     return;
2140   }
2141   for (unsigned i = 0; i != NumElts; ++i) {
2142     Constant *C = Mask->getAggregateElement(i);
2143     Result.push_back(isa<UndefValue>(C) ? -1 :
2144                      cast<ConstantInt>(C)->getZExtValue());
2145   }
2146 }
2147 
2148 void ShuffleVectorInst::setShuffleMask(ArrayRef<int> Mask) {
2149   ShuffleMask.assign(Mask.begin(), Mask.end());
2150   ShuffleMaskForBitcode = convertShuffleMaskForBitcode(Mask, getType());
2151 }
2152 
2153 Constant *ShuffleVectorInst::convertShuffleMaskForBitcode(ArrayRef<int> Mask,
2154                                                           Type *ResultTy) {
2155   Type *Int32Ty = Type::getInt32Ty(ResultTy->getContext());
2156   if (isa<ScalableVectorType>(ResultTy)) {
2157     assert(is_splat(Mask) && "Unexpected shuffle");
2158     Type *VecTy = VectorType::get(Int32Ty, Mask.size(), true);
2159     if (Mask[0] == 0)
2160       return Constant::getNullValue(VecTy);
2161     return UndefValue::get(VecTy);
2162   }
2163   SmallVector<Constant *, 16> MaskConst;
2164   for (int Elem : Mask) {
2165     if (Elem == UndefMaskElem)
2166       MaskConst.push_back(UndefValue::get(Int32Ty));
2167     else
2168       MaskConst.push_back(ConstantInt::get(Int32Ty, Elem));
2169   }
2170   return ConstantVector::get(MaskConst);
2171 }
2172 
2173 static bool isSingleSourceMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
2174   assert(!Mask.empty() && "Shuffle mask must contain elements");
2175   bool UsesLHS = false;
2176   bool UsesRHS = false;
2177   for (int I : Mask) {
2178     if (I == -1)
2179       continue;
2180     assert(I >= 0 && I < (NumOpElts * 2) &&
2181            "Out-of-bounds shuffle mask element");
2182     UsesLHS |= (I < NumOpElts);
2183     UsesRHS |= (I >= NumOpElts);
2184     if (UsesLHS && UsesRHS)
2185       return false;
2186   }
2187   // Allow for degenerate case: completely undef mask means neither source is used.
2188   return UsesLHS || UsesRHS;
2189 }
2190 
2191 bool ShuffleVectorInst::isSingleSourceMask(ArrayRef<int> Mask) {
2192   // We don't have vector operand size information, so assume operands are the
2193   // same size as the mask.
2194   return isSingleSourceMaskImpl(Mask, Mask.size());
2195 }
2196 
2197 static bool isIdentityMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
2198   if (!isSingleSourceMaskImpl(Mask, NumOpElts))
2199     return false;
2200   for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
2201     if (Mask[i] == -1)
2202       continue;
2203     if (Mask[i] != i && Mask[i] != (NumOpElts + i))
2204       return false;
2205   }
2206   return true;
2207 }
2208 
2209 bool ShuffleVectorInst::isIdentityMask(ArrayRef<int> Mask) {
2210   // We don't have vector operand size information, so assume operands are the
2211   // same size as the mask.
2212   return isIdentityMaskImpl(Mask, Mask.size());
2213 }
2214 
2215 bool ShuffleVectorInst::isReverseMask(ArrayRef<int> Mask) {
2216   if (!isSingleSourceMask(Mask))
2217     return false;
2218 
2219   // The number of elements in the mask must be at least 2.
2220   int NumElts = Mask.size();
2221   if (NumElts < 2)
2222     return false;
2223 
2224   for (int i = 0; i < NumElts; ++i) {
2225     if (Mask[i] == -1)
2226       continue;
2227     if (Mask[i] != (NumElts - 1 - i) && Mask[i] != (NumElts + NumElts - 1 - i))
2228       return false;
2229   }
2230   return true;
2231 }
2232 
2233 bool ShuffleVectorInst::isZeroEltSplatMask(ArrayRef<int> Mask) {
2234   if (!isSingleSourceMask(Mask))
2235     return false;
2236   for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
2237     if (Mask[i] == -1)
2238       continue;
2239     if (Mask[i] != 0 && Mask[i] != NumElts)
2240       return false;
2241   }
2242   return true;
2243 }
2244 
2245 bool ShuffleVectorInst::isSelectMask(ArrayRef<int> Mask) {
2246   // Select is differentiated from identity. It requires using both sources.
2247   if (isSingleSourceMask(Mask))
2248     return false;
2249   for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
2250     if (Mask[i] == -1)
2251       continue;
2252     if (Mask[i] != i && Mask[i] != (NumElts + i))
2253       return false;
2254   }
2255   return true;
2256 }
2257 
2258 bool ShuffleVectorInst::isTransposeMask(ArrayRef<int> Mask) {
2259   // Example masks that will return true:
2260   // v1 = <a, b, c, d>
2261   // v2 = <e, f, g, h>
2262   // trn1 = shufflevector v1, v2 <0, 4, 2, 6> = <a, e, c, g>
2263   // trn2 = shufflevector v1, v2 <1, 5, 3, 7> = <b, f, d, h>
2264 
2265   // 1. The number of elements in the mask must be a power-of-2 and at least 2.
2266   int NumElts = Mask.size();
2267   if (NumElts < 2 || !isPowerOf2_32(NumElts))
2268     return false;
2269 
2270   // 2. The first element of the mask must be either a 0 or a 1.
2271   if (Mask[0] != 0 && Mask[0] != 1)
2272     return false;
2273 
2274   // 3. The difference between the first 2 elements must be equal to the
2275   // number of elements in the mask.
2276   if ((Mask[1] - Mask[0]) != NumElts)
2277     return false;
2278 
2279   // 4. The difference between consecutive even-numbered and odd-numbered
2280   // elements must be equal to 2.
2281   for (int i = 2; i < NumElts; ++i) {
2282     int MaskEltVal = Mask[i];
2283     if (MaskEltVal == -1)
2284       return false;
2285     int MaskEltPrevVal = Mask[i - 2];
2286     if (MaskEltVal - MaskEltPrevVal != 2)
2287       return false;
2288   }
2289   return true;
2290 }
2291 
2292 bool ShuffleVectorInst::isExtractSubvectorMask(ArrayRef<int> Mask,
2293                                                int NumSrcElts, int &Index) {
2294   // Must extract from a single source.
2295   if (!isSingleSourceMaskImpl(Mask, NumSrcElts))
2296     return false;
2297 
2298   // Must be smaller (else this is an Identity shuffle).
2299   if (NumSrcElts <= (int)Mask.size())
2300     return false;
2301 
2302   // Find start of extraction, accounting that we may start with an UNDEF.
2303   int SubIndex = -1;
2304   for (int i = 0, e = Mask.size(); i != e; ++i) {
2305     int M = Mask[i];
2306     if (M < 0)
2307       continue;
2308     int Offset = (M % NumSrcElts) - i;
2309     if (0 <= SubIndex && SubIndex != Offset)
2310       return false;
2311     SubIndex = Offset;
2312   }
2313 
2314   if (0 <= SubIndex && SubIndex + (int)Mask.size() <= NumSrcElts) {
2315     Index = SubIndex;
2316     return true;
2317   }
2318   return false;
2319 }
2320 
2321 bool ShuffleVectorInst::isInsertSubvectorMask(ArrayRef<int> Mask,
2322                                               int NumSrcElts, int &NumSubElts,
2323                                               int &Index) {
2324   int NumMaskElts = Mask.size();
2325 
2326   // Don't try to match if we're shuffling to a smaller size.
2327   if (NumMaskElts < NumSrcElts)
2328     return false;
2329 
2330   // TODO: We don't recognize self-insertion/widening.
2331   if (isSingleSourceMaskImpl(Mask, NumSrcElts))
2332     return false;
2333 
2334   // Determine which mask elements are attributed to which source.
2335   APInt UndefElts = APInt::getZero(NumMaskElts);
2336   APInt Src0Elts = APInt::getZero(NumMaskElts);
2337   APInt Src1Elts = APInt::getZero(NumMaskElts);
2338   bool Src0Identity = true;
2339   bool Src1Identity = true;
2340 
2341   for (int i = 0; i != NumMaskElts; ++i) {
2342     int M = Mask[i];
2343     if (M < 0) {
2344       UndefElts.setBit(i);
2345       continue;
2346     }
2347     if (M < NumSrcElts) {
2348       Src0Elts.setBit(i);
2349       Src0Identity &= (M == i);
2350       continue;
2351     }
2352     Src1Elts.setBit(i);
2353     Src1Identity &= (M == (i + NumSrcElts));
2354   }
2355   assert((Src0Elts | Src1Elts | UndefElts).isAllOnes() &&
2356          "unknown shuffle elements");
2357   assert(!Src0Elts.isZero() && !Src1Elts.isZero() &&
2358          "2-source shuffle not found");
2359 
2360   // Determine lo/hi span ranges.
2361   // TODO: How should we handle undefs at the start of subvector insertions?
2362   int Src0Lo = Src0Elts.countTrailingZeros();
2363   int Src1Lo = Src1Elts.countTrailingZeros();
2364   int Src0Hi = NumMaskElts - Src0Elts.countLeadingZeros();
2365   int Src1Hi = NumMaskElts - Src1Elts.countLeadingZeros();
2366 
2367   // If src0 is in place, see if the src1 elements is inplace within its own
2368   // span.
2369   if (Src0Identity) {
2370     int NumSub1Elts = Src1Hi - Src1Lo;
2371     ArrayRef<int> Sub1Mask = Mask.slice(Src1Lo, NumSub1Elts);
2372     if (isIdentityMaskImpl(Sub1Mask, NumSrcElts)) {
2373       NumSubElts = NumSub1Elts;
2374       Index = Src1Lo;
2375       return true;
2376     }
2377   }
2378 
2379   // If src1 is in place, see if the src0 elements is inplace within its own
2380   // span.
2381   if (Src1Identity) {
2382     int NumSub0Elts = Src0Hi - Src0Lo;
2383     ArrayRef<int> Sub0Mask = Mask.slice(Src0Lo, NumSub0Elts);
2384     if (isIdentityMaskImpl(Sub0Mask, NumSrcElts)) {
2385       NumSubElts = NumSub0Elts;
2386       Index = Src0Lo;
2387       return true;
2388     }
2389   }
2390 
2391   return false;
2392 }
2393 
2394 bool ShuffleVectorInst::isIdentityWithPadding() const {
2395   if (isa<UndefValue>(Op<2>()))
2396     return false;
2397 
2398   // FIXME: Not currently possible to express a shuffle mask for a scalable
2399   // vector for this case.
2400   if (isa<ScalableVectorType>(getType()))
2401     return false;
2402 
2403   int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2404   int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
2405   if (NumMaskElts <= NumOpElts)
2406     return false;
2407 
2408   // The first part of the mask must choose elements from exactly 1 source op.
2409   ArrayRef<int> Mask = getShuffleMask();
2410   if (!isIdentityMaskImpl(Mask, NumOpElts))
2411     return false;
2412 
2413   // All extending must be with undef elements.
2414   for (int i = NumOpElts; i < NumMaskElts; ++i)
2415     if (Mask[i] != -1)
2416       return false;
2417 
2418   return true;
2419 }
2420 
2421 bool ShuffleVectorInst::isIdentityWithExtract() const {
2422   if (isa<UndefValue>(Op<2>()))
2423     return false;
2424 
2425   // FIXME: Not currently possible to express a shuffle mask for a scalable
2426   // vector for this case.
2427   if (isa<ScalableVectorType>(getType()))
2428     return false;
2429 
2430   int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2431   int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
2432   if (NumMaskElts >= NumOpElts)
2433     return false;
2434 
2435   return isIdentityMaskImpl(getShuffleMask(), NumOpElts);
2436 }
2437 
2438 bool ShuffleVectorInst::isConcat() const {
2439   // Vector concatenation is differentiated from identity with padding.
2440   if (isa<UndefValue>(Op<0>()) || isa<UndefValue>(Op<1>()) ||
2441       isa<UndefValue>(Op<2>()))
2442     return false;
2443 
2444   // FIXME: Not currently possible to express a shuffle mask for a scalable
2445   // vector for this case.
2446   if (isa<ScalableVectorType>(getType()))
2447     return false;
2448 
2449   int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2450   int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
2451   if (NumMaskElts != NumOpElts * 2)
2452     return false;
2453 
2454   // Use the mask length rather than the operands' vector lengths here. We
2455   // already know that the shuffle returns a vector twice as long as the inputs,
2456   // and neither of the inputs are undef vectors. If the mask picks consecutive
2457   // elements from both inputs, then this is a concatenation of the inputs.
2458   return isIdentityMaskImpl(getShuffleMask(), NumMaskElts);
2459 }
2460 
2461 static bool isReplicationMaskWithParams(ArrayRef<int> Mask,
2462                                         int ReplicationFactor, int VF) {
2463   assert(Mask.size() == (unsigned)ReplicationFactor * VF &&
2464          "Unexpected mask size.");
2465 
2466   for (int CurrElt : seq(0, VF)) {
2467     ArrayRef<int> CurrSubMask = Mask.take_front(ReplicationFactor);
2468     assert(CurrSubMask.size() == (unsigned)ReplicationFactor &&
2469            "Run out of mask?");
2470     Mask = Mask.drop_front(ReplicationFactor);
2471     if (!all_of(CurrSubMask, [CurrElt](int MaskElt) {
2472           return MaskElt == UndefMaskElem || MaskElt == CurrElt;
2473         }))
2474       return false;
2475   }
2476   assert(Mask.empty() && "Did not consume the whole mask?");
2477 
2478   return true;
2479 }
2480 
2481 bool ShuffleVectorInst::isReplicationMask(ArrayRef<int> Mask,
2482                                           int &ReplicationFactor, int &VF) {
2483   // undef-less case is trivial.
2484   if (none_of(Mask, [](int MaskElt) { return MaskElt == UndefMaskElem; })) {
2485     ReplicationFactor =
2486         Mask.take_while([](int MaskElt) { return MaskElt == 0; }).size();
2487     if (ReplicationFactor == 0 || Mask.size() % ReplicationFactor != 0)
2488       return false;
2489     VF = Mask.size() / ReplicationFactor;
2490     return isReplicationMaskWithParams(Mask, ReplicationFactor, VF);
2491   }
2492 
2493   // However, if the mask contains undef's, we have to enumerate possible tuples
2494   // and pick one. There are bounds on replication factor: [1, mask size]
2495   // (where RF=1 is an identity shuffle, RF=mask size is a broadcast shuffle)
2496   // Additionally, mask size is a replication factor multiplied by vector size,
2497   // which further significantly reduces the search space.
2498 
2499   // Before doing that, let's perform basic correctness checking first.
2500   int Largest = -1;
2501   for (int MaskElt : Mask) {
2502     if (MaskElt == UndefMaskElem)
2503       continue;
2504     // Elements must be in non-decreasing order.
2505     if (MaskElt < Largest)
2506       return false;
2507     Largest = std::max(Largest, MaskElt);
2508   }
2509 
2510   // Prefer larger replication factor if all else equal.
2511   for (int PossibleReplicationFactor :
2512        reverse(seq_inclusive<unsigned>(1, Mask.size()))) {
2513     if (Mask.size() % PossibleReplicationFactor != 0)
2514       continue;
2515     int PossibleVF = Mask.size() / PossibleReplicationFactor;
2516     if (!isReplicationMaskWithParams(Mask, PossibleReplicationFactor,
2517                                      PossibleVF))
2518       continue;
2519     ReplicationFactor = PossibleReplicationFactor;
2520     VF = PossibleVF;
2521     return true;
2522   }
2523 
2524   return false;
2525 }
2526 
2527 bool ShuffleVectorInst::isReplicationMask(int &ReplicationFactor,
2528                                           int &VF) const {
2529   // Not possible to express a shuffle mask for a scalable vector for this
2530   // case.
2531   if (isa<ScalableVectorType>(getType()))
2532     return false;
2533 
2534   VF = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2535   if (ShuffleMask.size() % VF != 0)
2536     return false;
2537   ReplicationFactor = ShuffleMask.size() / VF;
2538 
2539   return isReplicationMaskWithParams(ShuffleMask, ReplicationFactor, VF);
2540 }
2541 
2542 //===----------------------------------------------------------------------===//
2543 //                             InsertValueInst Class
2544 //===----------------------------------------------------------------------===//
2545 
2546 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2547                            const Twine &Name) {
2548   assert(getNumOperands() == 2 && "NumOperands not initialized?");
2549 
2550   // There's no fundamental reason why we require at least one index
2551   // (other than weirdness with &*IdxBegin being invalid; see
2552   // getelementptr's init routine for example). But there's no
2553   // present need to support it.
2554   assert(!Idxs.empty() && "InsertValueInst must have at least one index");
2555 
2556   assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
2557          Val->getType() && "Inserted value must match indexed type!");
2558   Op<0>() = Agg;
2559   Op<1>() = Val;
2560 
2561   Indices.append(Idxs.begin(), Idxs.end());
2562   setName(Name);
2563 }
2564 
2565 InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
2566   : Instruction(IVI.getType(), InsertValue,
2567                 OperandTraits<InsertValueInst>::op_begin(this), 2),
2568     Indices(IVI.Indices) {
2569   Op<0>() = IVI.getOperand(0);
2570   Op<1>() = IVI.getOperand(1);
2571   SubclassOptionalData = IVI.SubclassOptionalData;
2572 }
2573 
2574 //===----------------------------------------------------------------------===//
2575 //                             ExtractValueInst Class
2576 //===----------------------------------------------------------------------===//
2577 
2578 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
2579   assert(getNumOperands() == 1 && "NumOperands not initialized?");
2580 
2581   // There's no fundamental reason why we require at least one index.
2582   // But there's no present need to support it.
2583   assert(!Idxs.empty() && "ExtractValueInst must have at least one index");
2584 
2585   Indices.append(Idxs.begin(), Idxs.end());
2586   setName(Name);
2587 }
2588 
2589 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
2590   : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
2591     Indices(EVI.Indices) {
2592   SubclassOptionalData = EVI.SubclassOptionalData;
2593 }
2594 
2595 // getIndexedType - Returns the type of the element that would be extracted
2596 // with an extractvalue instruction with the specified parameters.
2597 //
2598 // A null type is returned if the indices are invalid for the specified
2599 // pointer type.
2600 //
2601 Type *ExtractValueInst::getIndexedType(Type *Agg,
2602                                        ArrayRef<unsigned> Idxs) {
2603   for (unsigned Index : Idxs) {
2604     // We can't use CompositeType::indexValid(Index) here.
2605     // indexValid() always returns true for arrays because getelementptr allows
2606     // out-of-bounds indices. Since we don't allow those for extractvalue and
2607     // insertvalue we need to check array indexing manually.
2608     // Since the only other types we can index into are struct types it's just
2609     // as easy to check those manually as well.
2610     if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
2611       if (Index >= AT->getNumElements())
2612         return nullptr;
2613       Agg = AT->getElementType();
2614     } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
2615       if (Index >= ST->getNumElements())
2616         return nullptr;
2617       Agg = ST->getElementType(Index);
2618     } else {
2619       // Not a valid type to index into.
2620       return nullptr;
2621     }
2622   }
2623   return const_cast<Type*>(Agg);
2624 }
2625 
2626 //===----------------------------------------------------------------------===//
2627 //                             UnaryOperator Class
2628 //===----------------------------------------------------------------------===//
2629 
2630 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
2631                              Type *Ty, const Twine &Name,
2632                              Instruction *InsertBefore)
2633   : UnaryInstruction(Ty, iType, S, InsertBefore) {
2634   Op<0>() = S;
2635   setName(Name);
2636   AssertOK();
2637 }
2638 
2639 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
2640                              Type *Ty, const Twine &Name,
2641                              BasicBlock *InsertAtEnd)
2642   : UnaryInstruction(Ty, iType, S, InsertAtEnd) {
2643   Op<0>() = S;
2644   setName(Name);
2645   AssertOK();
2646 }
2647 
2648 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
2649                                      const Twine &Name,
2650                                      Instruction *InsertBefore) {
2651   return new UnaryOperator(Op, S, S->getType(), Name, InsertBefore);
2652 }
2653 
2654 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
2655                                      const Twine &Name,
2656                                      BasicBlock *InsertAtEnd) {
2657   UnaryOperator *Res = Create(Op, S, Name);
2658   InsertAtEnd->getInstList().push_back(Res);
2659   return Res;
2660 }
2661 
2662 void UnaryOperator::AssertOK() {
2663   Value *LHS = getOperand(0);
2664   (void)LHS; // Silence warnings.
2665 #ifndef NDEBUG
2666   switch (getOpcode()) {
2667   case FNeg:
2668     assert(getType() == LHS->getType() &&
2669            "Unary operation should return same type as operand!");
2670     assert(getType()->isFPOrFPVectorTy() &&
2671            "Tried to create a floating-point operation on a "
2672            "non-floating-point type!");
2673     break;
2674   default: llvm_unreachable("Invalid opcode provided");
2675   }
2676 #endif
2677 }
2678 
2679 //===----------------------------------------------------------------------===//
2680 //                             BinaryOperator Class
2681 //===----------------------------------------------------------------------===//
2682 
2683 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
2684                                Type *Ty, const Twine &Name,
2685                                Instruction *InsertBefore)
2686   : Instruction(Ty, iType,
2687                 OperandTraits<BinaryOperator>::op_begin(this),
2688                 OperandTraits<BinaryOperator>::operands(this),
2689                 InsertBefore) {
2690   Op<0>() = S1;
2691   Op<1>() = S2;
2692   setName(Name);
2693   AssertOK();
2694 }
2695 
2696 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
2697                                Type *Ty, const Twine &Name,
2698                                BasicBlock *InsertAtEnd)
2699   : Instruction(Ty, iType,
2700                 OperandTraits<BinaryOperator>::op_begin(this),
2701                 OperandTraits<BinaryOperator>::operands(this),
2702                 InsertAtEnd) {
2703   Op<0>() = S1;
2704   Op<1>() = S2;
2705   setName(Name);
2706   AssertOK();
2707 }
2708 
2709 void BinaryOperator::AssertOK() {
2710   Value *LHS = getOperand(0), *RHS = getOperand(1);
2711   (void)LHS; (void)RHS; // Silence warnings.
2712   assert(LHS->getType() == RHS->getType() &&
2713          "Binary operator operand types must match!");
2714 #ifndef NDEBUG
2715   switch (getOpcode()) {
2716   case Add: case Sub:
2717   case Mul:
2718     assert(getType() == LHS->getType() &&
2719            "Arithmetic operation should return same type as operands!");
2720     assert(getType()->isIntOrIntVectorTy() &&
2721            "Tried to create an integer operation on a non-integer type!");
2722     break;
2723   case FAdd: case FSub:
2724   case FMul:
2725     assert(getType() == LHS->getType() &&
2726            "Arithmetic operation should return same type as operands!");
2727     assert(getType()->isFPOrFPVectorTy() &&
2728            "Tried to create a floating-point operation on a "
2729            "non-floating-point type!");
2730     break;
2731   case UDiv:
2732   case SDiv:
2733     assert(getType() == LHS->getType() &&
2734            "Arithmetic operation should return same type as operands!");
2735     assert(getType()->isIntOrIntVectorTy() &&
2736            "Incorrect operand type (not integer) for S/UDIV");
2737     break;
2738   case FDiv:
2739     assert(getType() == LHS->getType() &&
2740            "Arithmetic operation should return same type as operands!");
2741     assert(getType()->isFPOrFPVectorTy() &&
2742            "Incorrect operand type (not floating point) for FDIV");
2743     break;
2744   case URem:
2745   case SRem:
2746     assert(getType() == LHS->getType() &&
2747            "Arithmetic operation should return same type as operands!");
2748     assert(getType()->isIntOrIntVectorTy() &&
2749            "Incorrect operand type (not integer) for S/UREM");
2750     break;
2751   case FRem:
2752     assert(getType() == LHS->getType() &&
2753            "Arithmetic operation should return same type as operands!");
2754     assert(getType()->isFPOrFPVectorTy() &&
2755            "Incorrect operand type (not floating point) for FREM");
2756     break;
2757   case Shl:
2758   case LShr:
2759   case AShr:
2760     assert(getType() == LHS->getType() &&
2761            "Shift operation should return same type as operands!");
2762     assert(getType()->isIntOrIntVectorTy() &&
2763            "Tried to create a shift operation on a non-integral type!");
2764     break;
2765   case And: case Or:
2766   case Xor:
2767     assert(getType() == LHS->getType() &&
2768            "Logical operation should return same type as operands!");
2769     assert(getType()->isIntOrIntVectorTy() &&
2770            "Tried to create a logical operation on a non-integral type!");
2771     break;
2772   default: llvm_unreachable("Invalid opcode provided");
2773   }
2774 #endif
2775 }
2776 
2777 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2778                                        const Twine &Name,
2779                                        Instruction *InsertBefore) {
2780   assert(S1->getType() == S2->getType() &&
2781          "Cannot create binary operator with two operands of differing type!");
2782   return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
2783 }
2784 
2785 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2786                                        const Twine &Name,
2787                                        BasicBlock *InsertAtEnd) {
2788   BinaryOperator *Res = Create(Op, S1, S2, Name);
2789   InsertAtEnd->getInstList().push_back(Res);
2790   return Res;
2791 }
2792 
2793 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2794                                           Instruction *InsertBefore) {
2795   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2796   return new BinaryOperator(Instruction::Sub,
2797                             zero, Op,
2798                             Op->getType(), Name, InsertBefore);
2799 }
2800 
2801 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2802                                           BasicBlock *InsertAtEnd) {
2803   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2804   return new BinaryOperator(Instruction::Sub,
2805                             zero, Op,
2806                             Op->getType(), Name, InsertAtEnd);
2807 }
2808 
2809 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2810                                              Instruction *InsertBefore) {
2811   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2812   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
2813 }
2814 
2815 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2816                                              BasicBlock *InsertAtEnd) {
2817   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2818   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
2819 }
2820 
2821 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2822                                              Instruction *InsertBefore) {
2823   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2824   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
2825 }
2826 
2827 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2828                                              BasicBlock *InsertAtEnd) {
2829   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2830   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
2831 }
2832 
2833 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2834                                           Instruction *InsertBefore) {
2835   Constant *C = Constant::getAllOnesValue(Op->getType());
2836   return new BinaryOperator(Instruction::Xor, Op, C,
2837                             Op->getType(), Name, InsertBefore);
2838 }
2839 
2840 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2841                                           BasicBlock *InsertAtEnd) {
2842   Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
2843   return new BinaryOperator(Instruction::Xor, Op, AllOnes,
2844                             Op->getType(), Name, InsertAtEnd);
2845 }
2846 
2847 // Exchange the two operands to this instruction. This instruction is safe to
2848 // use on any binary instruction and does not modify the semantics of the
2849 // instruction. If the instruction is order-dependent (SetLT f.e.), the opcode
2850 // is changed.
2851 bool BinaryOperator::swapOperands() {
2852   if (!isCommutative())
2853     return true; // Can't commute operands
2854   Op<0>().swap(Op<1>());
2855   return false;
2856 }
2857 
2858 //===----------------------------------------------------------------------===//
2859 //                             FPMathOperator Class
2860 //===----------------------------------------------------------------------===//
2861 
2862 float FPMathOperator::getFPAccuracy() const {
2863   const MDNode *MD =
2864       cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
2865   if (!MD)
2866     return 0.0;
2867   ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0));
2868   return Accuracy->getValueAPF().convertToFloat();
2869 }
2870 
2871 //===----------------------------------------------------------------------===//
2872 //                                CastInst Class
2873 //===----------------------------------------------------------------------===//
2874 
2875 // Just determine if this cast only deals with integral->integral conversion.
2876 bool CastInst::isIntegerCast() const {
2877   switch (getOpcode()) {
2878     default: return false;
2879     case Instruction::ZExt:
2880     case Instruction::SExt:
2881     case Instruction::Trunc:
2882       return true;
2883     case Instruction::BitCast:
2884       return getOperand(0)->getType()->isIntegerTy() &&
2885         getType()->isIntegerTy();
2886   }
2887 }
2888 
2889 bool CastInst::isLosslessCast() const {
2890   // Only BitCast can be lossless, exit fast if we're not BitCast
2891   if (getOpcode() != Instruction::BitCast)
2892     return false;
2893 
2894   // Identity cast is always lossless
2895   Type *SrcTy = getOperand(0)->getType();
2896   Type *DstTy = getType();
2897   if (SrcTy == DstTy)
2898     return true;
2899 
2900   // Pointer to pointer is always lossless.
2901   if (SrcTy->isPointerTy())
2902     return DstTy->isPointerTy();
2903   return false;  // Other types have no identity values
2904 }
2905 
2906 /// This function determines if the CastInst does not require any bits to be
2907 /// changed in order to effect the cast. Essentially, it identifies cases where
2908 /// no code gen is necessary for the cast, hence the name no-op cast.  For
2909 /// example, the following are all no-op casts:
2910 /// # bitcast i32* %x to i8*
2911 /// # bitcast <2 x i32> %x to <4 x i16>
2912 /// # ptrtoint i32* %x to i32     ; on 32-bit plaforms only
2913 /// Determine if the described cast is a no-op.
2914 bool CastInst::isNoopCast(Instruction::CastOps Opcode,
2915                           Type *SrcTy,
2916                           Type *DestTy,
2917                           const DataLayout &DL) {
2918   assert(castIsValid(Opcode, SrcTy, DestTy) && "method precondition");
2919   switch (Opcode) {
2920     default: llvm_unreachable("Invalid CastOp");
2921     case Instruction::Trunc:
2922     case Instruction::ZExt:
2923     case Instruction::SExt:
2924     case Instruction::FPTrunc:
2925     case Instruction::FPExt:
2926     case Instruction::UIToFP:
2927     case Instruction::SIToFP:
2928     case Instruction::FPToUI:
2929     case Instruction::FPToSI:
2930     case Instruction::AddrSpaceCast:
2931       // TODO: Target informations may give a more accurate answer here.
2932       return false;
2933     case Instruction::BitCast:
2934       return true;  // BitCast never modifies bits.
2935     case Instruction::PtrToInt:
2936       return DL.getIntPtrType(SrcTy)->getScalarSizeInBits() ==
2937              DestTy->getScalarSizeInBits();
2938     case Instruction::IntToPtr:
2939       return DL.getIntPtrType(DestTy)->getScalarSizeInBits() ==
2940              SrcTy->getScalarSizeInBits();
2941   }
2942 }
2943 
2944 bool CastInst::isNoopCast(const DataLayout &DL) const {
2945   return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), DL);
2946 }
2947 
2948 /// This function determines if a pair of casts can be eliminated and what
2949 /// opcode should be used in the elimination. This assumes that there are two
2950 /// instructions like this:
2951 /// *  %F = firstOpcode SrcTy %x to MidTy
2952 /// *  %S = secondOpcode MidTy %F to DstTy
2953 /// The function returns a resultOpcode so these two casts can be replaced with:
2954 /// *  %Replacement = resultOpcode %SrcTy %x to DstTy
2955 /// If no such cast is permitted, the function returns 0.
2956 unsigned CastInst::isEliminableCastPair(
2957   Instruction::CastOps firstOp, Instruction::CastOps secondOp,
2958   Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
2959   Type *DstIntPtrTy) {
2960   // Define the 144 possibilities for these two cast instructions. The values
2961   // in this matrix determine what to do in a given situation and select the
2962   // case in the switch below.  The rows correspond to firstOp, the columns
2963   // correspond to secondOp.  In looking at the table below, keep in mind
2964   // the following cast properties:
2965   //
2966   //          Size Compare       Source               Destination
2967   // Operator  Src ? Size   Type       Sign         Type       Sign
2968   // -------- ------------ -------------------   ---------------------
2969   // TRUNC         >       Integer      Any        Integral     Any
2970   // ZEXT          <       Integral   Unsigned     Integer      Any
2971   // SEXT          <       Integral    Signed      Integer      Any
2972   // FPTOUI       n/a      FloatPt      n/a        Integral   Unsigned
2973   // FPTOSI       n/a      FloatPt      n/a        Integral    Signed
2974   // UITOFP       n/a      Integral   Unsigned     FloatPt      n/a
2975   // SITOFP       n/a      Integral    Signed      FloatPt      n/a
2976   // FPTRUNC       >       FloatPt      n/a        FloatPt      n/a
2977   // FPEXT         <       FloatPt      n/a        FloatPt      n/a
2978   // PTRTOINT     n/a      Pointer      n/a        Integral   Unsigned
2979   // INTTOPTR     n/a      Integral   Unsigned     Pointer      n/a
2980   // BITCAST       =       FirstClass   n/a       FirstClass    n/a
2981   // ADDRSPCST    n/a      Pointer      n/a        Pointer      n/a
2982   //
2983   // NOTE: some transforms are safe, but we consider them to be non-profitable.
2984   // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2985   // into "fptoui double to i64", but this loses information about the range
2986   // of the produced value (we no longer know the top-part is all zeros).
2987   // Further this conversion is often much more expensive for typical hardware,
2988   // and causes issues when building libgcc.  We disallow fptosi+sext for the
2989   // same reason.
2990   const unsigned numCastOps =
2991     Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2992   static const uint8_t CastResults[numCastOps][numCastOps] = {
2993     // T        F  F  U  S  F  F  P  I  B  A  -+
2994     // R  Z  S  P  P  I  I  T  P  2  N  T  S   |
2995     // U  E  E  2  2  2  2  R  E  I  T  C  C   +- secondOp
2996     // N  X  X  U  S  F  F  N  X  N  2  V  V   |
2997     // C  T  T  I  I  P  P  C  T  T  P  T  T  -+
2998     {  1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc         -+
2999     {  8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt           |
3000     {  8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt           |
3001     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI         |
3002     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI         |
3003     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP         +- firstOp
3004     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP         |
3005     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc        |
3006     { 99,99,99, 2, 2,99,99, 8, 2,99,99, 4, 0}, // FPExt          |
3007     {  1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt       |
3008     { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr       |
3009     {  5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast        |
3010     {  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
3011   };
3012 
3013   // TODO: This logic could be encoded into the table above and handled in the
3014   // switch below.
3015   // If either of the casts are a bitcast from scalar to vector, disallow the
3016   // merging. However, any pair of bitcasts are allowed.
3017   bool IsFirstBitcast  = (firstOp == Instruction::BitCast);
3018   bool IsSecondBitcast = (secondOp == Instruction::BitCast);
3019   bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast;
3020 
3021   // Check if any of the casts convert scalars <-> vectors.
3022   if ((IsFirstBitcast  && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
3023       (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
3024     if (!AreBothBitcasts)
3025       return 0;
3026 
3027   int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
3028                             [secondOp-Instruction::CastOpsBegin];
3029   switch (ElimCase) {
3030     case 0:
3031       // Categorically disallowed.
3032       return 0;
3033     case 1:
3034       // Allowed, use first cast's opcode.
3035       return firstOp;
3036     case 2:
3037       // Allowed, use second cast's opcode.
3038       return secondOp;
3039     case 3:
3040       // No-op cast in second op implies firstOp as long as the DestTy
3041       // is integer and we are not converting between a vector and a
3042       // non-vector type.
3043       if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
3044         return firstOp;
3045       return 0;
3046     case 4:
3047       // No-op cast in second op implies firstOp as long as the DestTy
3048       // is floating point.
3049       if (DstTy->isFloatingPointTy())
3050         return firstOp;
3051       return 0;
3052     case 5:
3053       // No-op cast in first op implies secondOp as long as the SrcTy
3054       // is an integer.
3055       if (SrcTy->isIntegerTy())
3056         return secondOp;
3057       return 0;
3058     case 6:
3059       // No-op cast in first op implies secondOp as long as the SrcTy
3060       // is a floating point.
3061       if (SrcTy->isFloatingPointTy())
3062         return secondOp;
3063       return 0;
3064     case 7: {
3065       // Disable inttoptr/ptrtoint optimization if enabled.
3066       if (DisableI2pP2iOpt)
3067         return 0;
3068 
3069       // Cannot simplify if address spaces are different!
3070       if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
3071         return 0;
3072 
3073       unsigned MidSize = MidTy->getScalarSizeInBits();
3074       // We can still fold this without knowing the actual sizes as long we
3075       // know that the intermediate pointer is the largest possible
3076       // pointer size.
3077       // FIXME: Is this always true?
3078       if (MidSize == 64)
3079         return Instruction::BitCast;
3080 
3081       // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
3082       if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
3083         return 0;
3084       unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
3085       if (MidSize >= PtrSize)
3086         return Instruction::BitCast;
3087       return 0;
3088     }
3089     case 8: {
3090       // ext, trunc -> bitcast,    if the SrcTy and DstTy are the same
3091       // ext, trunc -> ext,        if sizeof(SrcTy) < sizeof(DstTy)
3092       // ext, trunc -> trunc,      if sizeof(SrcTy) > sizeof(DstTy)
3093       unsigned SrcSize = SrcTy->getScalarSizeInBits();
3094       unsigned DstSize = DstTy->getScalarSizeInBits();
3095       if (SrcTy == DstTy)
3096         return Instruction::BitCast;
3097       if (SrcSize < DstSize)
3098         return firstOp;
3099       if (SrcSize > DstSize)
3100         return secondOp;
3101       return 0;
3102     }
3103     case 9:
3104       // zext, sext -> zext, because sext can't sign extend after zext
3105       return Instruction::ZExt;
3106     case 11: {
3107       // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
3108       if (!MidIntPtrTy)
3109         return 0;
3110       unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
3111       unsigned SrcSize = SrcTy->getScalarSizeInBits();
3112       unsigned DstSize = DstTy->getScalarSizeInBits();
3113       if (SrcSize <= PtrSize && SrcSize == DstSize)
3114         return Instruction::BitCast;
3115       return 0;
3116     }
3117     case 12:
3118       // addrspacecast, addrspacecast -> bitcast,       if SrcAS == DstAS
3119       // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
3120       if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
3121         return Instruction::AddrSpaceCast;
3122       return Instruction::BitCast;
3123     case 13:
3124       // FIXME: this state can be merged with (1), but the following assert
3125       // is useful to check the correcteness of the sequence due to semantic
3126       // change of bitcast.
3127       assert(
3128         SrcTy->isPtrOrPtrVectorTy() &&
3129         MidTy->isPtrOrPtrVectorTy() &&
3130         DstTy->isPtrOrPtrVectorTy() &&
3131         SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() &&
3132         MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
3133         "Illegal addrspacecast, bitcast sequence!");
3134       // Allowed, use first cast's opcode
3135       return firstOp;
3136     case 14: {
3137       // bitcast, addrspacecast -> addrspacecast if the element type of
3138       // bitcast's source is the same as that of addrspacecast's destination.
3139       PointerType *SrcPtrTy = cast<PointerType>(SrcTy->getScalarType());
3140       PointerType *DstPtrTy = cast<PointerType>(DstTy->getScalarType());
3141       if (SrcPtrTy->hasSameElementTypeAs(DstPtrTy))
3142         return Instruction::AddrSpaceCast;
3143       return 0;
3144     }
3145     case 15:
3146       // FIXME: this state can be merged with (1), but the following assert
3147       // is useful to check the correcteness of the sequence due to semantic
3148       // change of bitcast.
3149       assert(
3150         SrcTy->isIntOrIntVectorTy() &&
3151         MidTy->isPtrOrPtrVectorTy() &&
3152         DstTy->isPtrOrPtrVectorTy() &&
3153         MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
3154         "Illegal inttoptr, bitcast sequence!");
3155       // Allowed, use first cast's opcode
3156       return firstOp;
3157     case 16:
3158       // FIXME: this state can be merged with (2), but the following assert
3159       // is useful to check the correcteness of the sequence due to semantic
3160       // change of bitcast.
3161       assert(
3162         SrcTy->isPtrOrPtrVectorTy() &&
3163         MidTy->isPtrOrPtrVectorTy() &&
3164         DstTy->isIntOrIntVectorTy() &&
3165         SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() &&
3166         "Illegal bitcast, ptrtoint sequence!");
3167       // Allowed, use second cast's opcode
3168       return secondOp;
3169     case 17:
3170       // (sitofp (zext x)) -> (uitofp x)
3171       return Instruction::UIToFP;
3172     case 99:
3173       // Cast combination can't happen (error in input). This is for all cases
3174       // where the MidTy is not the same for the two cast instructions.
3175       llvm_unreachable("Invalid Cast Combination");
3176     default:
3177       llvm_unreachable("Error in CastResults table!!!");
3178   }
3179 }
3180 
3181 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
3182   const Twine &Name, Instruction *InsertBefore) {
3183   assert(castIsValid(op, S, Ty) && "Invalid cast!");
3184   // Construct and return the appropriate CastInst subclass
3185   switch (op) {
3186   case Trunc:         return new TruncInst         (S, Ty, Name, InsertBefore);
3187   case ZExt:          return new ZExtInst          (S, Ty, Name, InsertBefore);
3188   case SExt:          return new SExtInst          (S, Ty, Name, InsertBefore);
3189   case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertBefore);
3190   case FPExt:         return new FPExtInst         (S, Ty, Name, InsertBefore);
3191   case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertBefore);
3192   case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertBefore);
3193   case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertBefore);
3194   case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertBefore);
3195   case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertBefore);
3196   case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertBefore);
3197   case BitCast:       return new BitCastInst       (S, Ty, Name, InsertBefore);
3198   case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore);
3199   default: llvm_unreachable("Invalid opcode provided");
3200   }
3201 }
3202 
3203 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
3204   const Twine &Name, BasicBlock *InsertAtEnd) {
3205   assert(castIsValid(op, S, Ty) && "Invalid cast!");
3206   // Construct and return the appropriate CastInst subclass
3207   switch (op) {
3208   case Trunc:         return new TruncInst         (S, Ty, Name, InsertAtEnd);
3209   case ZExt:          return new ZExtInst          (S, Ty, Name, InsertAtEnd);
3210   case SExt:          return new SExtInst          (S, Ty, Name, InsertAtEnd);
3211   case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertAtEnd);
3212   case FPExt:         return new FPExtInst         (S, Ty, Name, InsertAtEnd);
3213   case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertAtEnd);
3214   case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertAtEnd);
3215   case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertAtEnd);
3216   case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertAtEnd);
3217   case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertAtEnd);
3218   case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertAtEnd);
3219   case BitCast:       return new BitCastInst       (S, Ty, Name, InsertAtEnd);
3220   case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd);
3221   default: llvm_unreachable("Invalid opcode provided");
3222   }
3223 }
3224 
3225 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
3226                                         const Twine &Name,
3227                                         Instruction *InsertBefore) {
3228   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3229     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3230   return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
3231 }
3232 
3233 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
3234                                         const Twine &Name,
3235                                         BasicBlock *InsertAtEnd) {
3236   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3237     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3238   return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
3239 }
3240 
3241 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
3242                                         const Twine &Name,
3243                                         Instruction *InsertBefore) {
3244   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3245     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3246   return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
3247 }
3248 
3249 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
3250                                         const Twine &Name,
3251                                         BasicBlock *InsertAtEnd) {
3252   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3253     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3254   return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
3255 }
3256 
3257 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
3258                                          const Twine &Name,
3259                                          Instruction *InsertBefore) {
3260   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3261     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3262   return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
3263 }
3264 
3265 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
3266                                          const Twine &Name,
3267                                          BasicBlock *InsertAtEnd) {
3268   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3269     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3270   return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
3271 }
3272 
3273 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
3274                                       const Twine &Name,
3275                                       BasicBlock *InsertAtEnd) {
3276   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3277   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
3278          "Invalid cast");
3279   assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
3280   assert((!Ty->isVectorTy() ||
3281           cast<VectorType>(Ty)->getElementCount() ==
3282               cast<VectorType>(S->getType())->getElementCount()) &&
3283          "Invalid cast");
3284 
3285   if (Ty->isIntOrIntVectorTy())
3286     return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
3287 
3288   return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertAtEnd);
3289 }
3290 
3291 /// Create a BitCast or a PtrToInt cast instruction
3292 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
3293                                       const Twine &Name,
3294                                       Instruction *InsertBefore) {
3295   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3296   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
3297          "Invalid cast");
3298   assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
3299   assert((!Ty->isVectorTy() ||
3300           cast<VectorType>(Ty)->getElementCount() ==
3301               cast<VectorType>(S->getType())->getElementCount()) &&
3302          "Invalid cast");
3303 
3304   if (Ty->isIntOrIntVectorTy())
3305     return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
3306 
3307   return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore);
3308 }
3309 
3310 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
3311   Value *S, Type *Ty,
3312   const Twine &Name,
3313   BasicBlock *InsertAtEnd) {
3314   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3315   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
3316 
3317   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
3318     return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd);
3319 
3320   return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3321 }
3322 
3323 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
3324   Value *S, Type *Ty,
3325   const Twine &Name,
3326   Instruction *InsertBefore) {
3327   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3328   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
3329 
3330   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
3331     return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore);
3332 
3333   return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3334 }
3335 
3336 CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty,
3337                                            const Twine &Name,
3338                                            Instruction *InsertBefore) {
3339   if (S->getType()->isPointerTy() && Ty->isIntegerTy())
3340     return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
3341   if (S->getType()->isIntegerTy() && Ty->isPointerTy())
3342     return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore);
3343 
3344   return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3345 }
3346 
3347 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
3348                                       bool isSigned, const Twine &Name,
3349                                       Instruction *InsertBefore) {
3350   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
3351          "Invalid integer cast");
3352   unsigned SrcBits = C->getType()->getScalarSizeInBits();
3353   unsigned DstBits = Ty->getScalarSizeInBits();
3354   Instruction::CastOps opcode =
3355     (SrcBits == DstBits ? Instruction::BitCast :
3356      (SrcBits > DstBits ? Instruction::Trunc :
3357       (isSigned ? Instruction::SExt : Instruction::ZExt)));
3358   return Create(opcode, C, Ty, Name, InsertBefore);
3359 }
3360 
3361 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
3362                                       bool isSigned, const Twine &Name,
3363                                       BasicBlock *InsertAtEnd) {
3364   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
3365          "Invalid cast");
3366   unsigned SrcBits = C->getType()->getScalarSizeInBits();
3367   unsigned DstBits = Ty->getScalarSizeInBits();
3368   Instruction::CastOps opcode =
3369     (SrcBits == DstBits ? Instruction::BitCast :
3370      (SrcBits > DstBits ? Instruction::Trunc :
3371       (isSigned ? Instruction::SExt : Instruction::ZExt)));
3372   return Create(opcode, C, Ty, Name, InsertAtEnd);
3373 }
3374 
3375 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
3376                                  const Twine &Name,
3377                                  Instruction *InsertBefore) {
3378   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
3379          "Invalid cast");
3380   unsigned SrcBits = C->getType()->getScalarSizeInBits();
3381   unsigned DstBits = Ty->getScalarSizeInBits();
3382   Instruction::CastOps opcode =
3383     (SrcBits == DstBits ? Instruction::BitCast :
3384      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
3385   return Create(opcode, C, Ty, Name, InsertBefore);
3386 }
3387 
3388 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
3389                                  const Twine &Name,
3390                                  BasicBlock *InsertAtEnd) {
3391   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
3392          "Invalid cast");
3393   unsigned SrcBits = C->getType()->getScalarSizeInBits();
3394   unsigned DstBits = Ty->getScalarSizeInBits();
3395   Instruction::CastOps opcode =
3396     (SrcBits == DstBits ? Instruction::BitCast :
3397      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
3398   return Create(opcode, C, Ty, Name, InsertAtEnd);
3399 }
3400 
3401 bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
3402   if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
3403     return false;
3404 
3405   if (SrcTy == DestTy)
3406     return true;
3407 
3408   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3409     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
3410       if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
3411         // An element by element cast. Valid if casting the elements is valid.
3412         SrcTy = SrcVecTy->getElementType();
3413         DestTy = DestVecTy->getElementType();
3414       }
3415     }
3416   }
3417 
3418   if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
3419     if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
3420       return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
3421     }
3422   }
3423 
3424   TypeSize SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
3425   TypeSize DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3426 
3427   // Could still have vectors of pointers if the number of elements doesn't
3428   // match
3429   if (SrcBits.getKnownMinSize() == 0 || DestBits.getKnownMinSize() == 0)
3430     return false;
3431 
3432   if (SrcBits != DestBits)
3433     return false;
3434 
3435   if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
3436     return false;
3437 
3438   return true;
3439 }
3440 
3441 bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy,
3442                                           const DataLayout &DL) {
3443   // ptrtoint and inttoptr are not allowed on non-integral pointers
3444   if (auto *PtrTy = dyn_cast<PointerType>(SrcTy))
3445     if (auto *IntTy = dyn_cast<IntegerType>(DestTy))
3446       return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3447               !DL.isNonIntegralPointerType(PtrTy));
3448   if (auto *PtrTy = dyn_cast<PointerType>(DestTy))
3449     if (auto *IntTy = dyn_cast<IntegerType>(SrcTy))
3450       return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3451               !DL.isNonIntegralPointerType(PtrTy));
3452 
3453   return isBitCastable(SrcTy, DestTy);
3454 }
3455 
3456 // Provide a way to get a "cast" where the cast opcode is inferred from the
3457 // types and size of the operand. This, basically, is a parallel of the
3458 // logic in the castIsValid function below.  This axiom should hold:
3459 //   castIsValid( getCastOpcode(Val, Ty), Val, Ty)
3460 // should not assert in castIsValid. In other words, this produces a "correct"
3461 // casting opcode for the arguments passed to it.
3462 Instruction::CastOps
3463 CastInst::getCastOpcode(
3464   const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
3465   Type *SrcTy = Src->getType();
3466 
3467   assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
3468          "Only first class types are castable!");
3469 
3470   if (SrcTy == DestTy)
3471     return BitCast;
3472 
3473   // FIXME: Check address space sizes here
3474   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
3475     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
3476       if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
3477         // An element by element cast.  Find the appropriate opcode based on the
3478         // element types.
3479         SrcTy = SrcVecTy->getElementType();
3480         DestTy = DestVecTy->getElementType();
3481       }
3482 
3483   // Get the bit sizes, we'll need these
3484   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
3485   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3486 
3487   // Run through the possibilities ...
3488   if (DestTy->isIntegerTy()) {                      // Casting to integral
3489     if (SrcTy->isIntegerTy()) {                     // Casting from integral
3490       if (DestBits < SrcBits)
3491         return Trunc;                               // int -> smaller int
3492       else if (DestBits > SrcBits) {                // its an extension
3493         if (SrcIsSigned)
3494           return SExt;                              // signed -> SEXT
3495         else
3496           return ZExt;                              // unsigned -> ZEXT
3497       } else {
3498         return BitCast;                             // Same size, No-op cast
3499       }
3500     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
3501       if (DestIsSigned)
3502         return FPToSI;                              // FP -> sint
3503       else
3504         return FPToUI;                              // FP -> uint
3505     } else if (SrcTy->isVectorTy()) {
3506       assert(DestBits == SrcBits &&
3507              "Casting vector to integer of different width");
3508       return BitCast;                             // Same size, no-op cast
3509     } else {
3510       assert(SrcTy->isPointerTy() &&
3511              "Casting from a value that is not first-class type");
3512       return PtrToInt;                              // ptr -> int
3513     }
3514   } else if (DestTy->isFloatingPointTy()) {         // Casting to floating pt
3515     if (SrcTy->isIntegerTy()) {                     // Casting from integral
3516       if (SrcIsSigned)
3517         return SIToFP;                              // sint -> FP
3518       else
3519         return UIToFP;                              // uint -> FP
3520     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
3521       if (DestBits < SrcBits) {
3522         return FPTrunc;                             // FP -> smaller FP
3523       } else if (DestBits > SrcBits) {
3524         return FPExt;                               // FP -> larger FP
3525       } else  {
3526         return BitCast;                             // same size, no-op cast
3527       }
3528     } else if (SrcTy->isVectorTy()) {
3529       assert(DestBits == SrcBits &&
3530              "Casting vector to floating point of different width");
3531       return BitCast;                             // same size, no-op cast
3532     }
3533     llvm_unreachable("Casting pointer or non-first class to float");
3534   } else if (DestTy->isVectorTy()) {
3535     assert(DestBits == SrcBits &&
3536            "Illegal cast to vector (wrong type or size)");
3537     return BitCast;
3538   } else if (DestTy->isPointerTy()) {
3539     if (SrcTy->isPointerTy()) {
3540       if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace())
3541         return AddrSpaceCast;
3542       return BitCast;                               // ptr -> ptr
3543     } else if (SrcTy->isIntegerTy()) {
3544       return IntToPtr;                              // int -> ptr
3545     }
3546     llvm_unreachable("Casting pointer to other than pointer or int");
3547   } else if (DestTy->isX86_MMXTy()) {
3548     if (SrcTy->isVectorTy()) {
3549       assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
3550       return BitCast;                               // 64-bit vector to MMX
3551     }
3552     llvm_unreachable("Illegal cast to X86_MMX");
3553   }
3554   llvm_unreachable("Casting to type that is not first-class");
3555 }
3556 
3557 //===----------------------------------------------------------------------===//
3558 //                    CastInst SubClass Constructors
3559 //===----------------------------------------------------------------------===//
3560 
3561 /// Check that the construction parameters for a CastInst are correct. This
3562 /// could be broken out into the separate constructors but it is useful to have
3563 /// it in one place and to eliminate the redundant code for getting the sizes
3564 /// of the types involved.
3565 bool
3566 CastInst::castIsValid(Instruction::CastOps op, Type *SrcTy, Type *DstTy) {
3567   if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
3568       SrcTy->isAggregateType() || DstTy->isAggregateType())
3569     return false;
3570 
3571   // Get the size of the types in bits, and whether we are dealing
3572   // with vector types, we'll need this later.
3573   bool SrcIsVec = isa<VectorType>(SrcTy);
3574   bool DstIsVec = isa<VectorType>(DstTy);
3575   unsigned SrcScalarBitSize = SrcTy->getScalarSizeInBits();
3576   unsigned DstScalarBitSize = DstTy->getScalarSizeInBits();
3577 
3578   // If these are vector types, get the lengths of the vectors (using zero for
3579   // scalar types means that checking that vector lengths match also checks that
3580   // scalars are not being converted to vectors or vectors to scalars).
3581   ElementCount SrcEC = SrcIsVec ? cast<VectorType>(SrcTy)->getElementCount()
3582                                 : ElementCount::getFixed(0);
3583   ElementCount DstEC = DstIsVec ? cast<VectorType>(DstTy)->getElementCount()
3584                                 : ElementCount::getFixed(0);
3585 
3586   // Switch on the opcode provided
3587   switch (op) {
3588   default: return false; // This is an input error
3589   case Instruction::Trunc:
3590     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3591            SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize;
3592   case Instruction::ZExt:
3593     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3594            SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3595   case Instruction::SExt:
3596     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3597            SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3598   case Instruction::FPTrunc:
3599     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3600            SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize;
3601   case Instruction::FPExt:
3602     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3603            SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3604   case Instruction::UIToFP:
3605   case Instruction::SIToFP:
3606     return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
3607            SrcEC == DstEC;
3608   case Instruction::FPToUI:
3609   case Instruction::FPToSI:
3610     return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
3611            SrcEC == DstEC;
3612   case Instruction::PtrToInt:
3613     if (SrcEC != DstEC)
3614       return false;
3615     return SrcTy->isPtrOrPtrVectorTy() && DstTy->isIntOrIntVectorTy();
3616   case Instruction::IntToPtr:
3617     if (SrcEC != DstEC)
3618       return false;
3619     return SrcTy->isIntOrIntVectorTy() && DstTy->isPtrOrPtrVectorTy();
3620   case Instruction::BitCast: {
3621     PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3622     PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3623 
3624     // BitCast implies a no-op cast of type only. No bits change.
3625     // However, you can't cast pointers to anything but pointers.
3626     if (!SrcPtrTy != !DstPtrTy)
3627       return false;
3628 
3629     // For non-pointer cases, the cast is okay if the source and destination bit
3630     // widths are identical.
3631     if (!SrcPtrTy)
3632       return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
3633 
3634     // If both are pointers then the address spaces must match.
3635     if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace())
3636       return false;
3637 
3638     // A vector of pointers must have the same number of elements.
3639     if (SrcIsVec && DstIsVec)
3640       return SrcEC == DstEC;
3641     if (SrcIsVec)
3642       return SrcEC == ElementCount::getFixed(1);
3643     if (DstIsVec)
3644       return DstEC == ElementCount::getFixed(1);
3645 
3646     return true;
3647   }
3648   case Instruction::AddrSpaceCast: {
3649     PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3650     if (!SrcPtrTy)
3651       return false;
3652 
3653     PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3654     if (!DstPtrTy)
3655       return false;
3656 
3657     if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
3658       return false;
3659 
3660     return SrcEC == DstEC;
3661   }
3662   }
3663 }
3664 
3665 TruncInst::TruncInst(
3666   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3667 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
3668   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3669 }
3670 
3671 TruncInst::TruncInst(
3672   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3673 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
3674   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3675 }
3676 
3677 ZExtInst::ZExtInst(
3678   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3679 )  : CastInst(Ty, ZExt, S, Name, InsertBefore) {
3680   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3681 }
3682 
3683 ZExtInst::ZExtInst(
3684   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3685 )  : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
3686   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3687 }
3688 SExtInst::SExtInst(
3689   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3690 ) : CastInst(Ty, SExt, S, Name, InsertBefore) {
3691   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3692 }
3693 
3694 SExtInst::SExtInst(
3695   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3696 )  : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
3697   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3698 }
3699 
3700 FPTruncInst::FPTruncInst(
3701   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3702 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
3703   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3704 }
3705 
3706 FPTruncInst::FPTruncInst(
3707   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3708 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
3709   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3710 }
3711 
3712 FPExtInst::FPExtInst(
3713   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3714 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
3715   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3716 }
3717 
3718 FPExtInst::FPExtInst(
3719   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3720 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
3721   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3722 }
3723 
3724 UIToFPInst::UIToFPInst(
3725   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3726 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
3727   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3728 }
3729 
3730 UIToFPInst::UIToFPInst(
3731   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3732 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
3733   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3734 }
3735 
3736 SIToFPInst::SIToFPInst(
3737   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3738 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
3739   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3740 }
3741 
3742 SIToFPInst::SIToFPInst(
3743   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3744 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
3745   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3746 }
3747 
3748 FPToUIInst::FPToUIInst(
3749   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3750 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
3751   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3752 }
3753 
3754 FPToUIInst::FPToUIInst(
3755   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3756 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
3757   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3758 }
3759 
3760 FPToSIInst::FPToSIInst(
3761   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3762 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
3763   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3764 }
3765 
3766 FPToSIInst::FPToSIInst(
3767   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3768 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
3769   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3770 }
3771 
3772 PtrToIntInst::PtrToIntInst(
3773   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3774 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
3775   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3776 }
3777 
3778 PtrToIntInst::PtrToIntInst(
3779   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3780 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
3781   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3782 }
3783 
3784 IntToPtrInst::IntToPtrInst(
3785   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3786 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
3787   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3788 }
3789 
3790 IntToPtrInst::IntToPtrInst(
3791   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3792 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
3793   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3794 }
3795 
3796 BitCastInst::BitCastInst(
3797   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3798 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
3799   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3800 }
3801 
3802 BitCastInst::BitCastInst(
3803   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3804 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
3805   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3806 }
3807 
3808 AddrSpaceCastInst::AddrSpaceCastInst(
3809   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3810 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) {
3811   assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3812 }
3813 
3814 AddrSpaceCastInst::AddrSpaceCastInst(
3815   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3816 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) {
3817   assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3818 }
3819 
3820 //===----------------------------------------------------------------------===//
3821 //                               CmpInst Classes
3822 //===----------------------------------------------------------------------===//
3823 
3824 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3825                  Value *RHS, const Twine &Name, Instruction *InsertBefore,
3826                  Instruction *FlagsSource)
3827   : Instruction(ty, op,
3828                 OperandTraits<CmpInst>::op_begin(this),
3829                 OperandTraits<CmpInst>::operands(this),
3830                 InsertBefore) {
3831   Op<0>() = LHS;
3832   Op<1>() = RHS;
3833   setPredicate((Predicate)predicate);
3834   setName(Name);
3835   if (FlagsSource)
3836     copyIRFlags(FlagsSource);
3837 }
3838 
3839 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3840                  Value *RHS, const Twine &Name, BasicBlock *InsertAtEnd)
3841   : Instruction(ty, op,
3842                 OperandTraits<CmpInst>::op_begin(this),
3843                 OperandTraits<CmpInst>::operands(this),
3844                 InsertAtEnd) {
3845   Op<0>() = LHS;
3846   Op<1>() = RHS;
3847   setPredicate((Predicate)predicate);
3848   setName(Name);
3849 }
3850 
3851 CmpInst *
3852 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3853                 const Twine &Name, Instruction *InsertBefore) {
3854   if (Op == Instruction::ICmp) {
3855     if (InsertBefore)
3856       return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
3857                           S1, S2, Name);
3858     else
3859       return new ICmpInst(CmpInst::Predicate(predicate),
3860                           S1, S2, Name);
3861   }
3862 
3863   if (InsertBefore)
3864     return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
3865                         S1, S2, Name);
3866   else
3867     return new FCmpInst(CmpInst::Predicate(predicate),
3868                         S1, S2, Name);
3869 }
3870 
3871 CmpInst *
3872 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3873                 const Twine &Name, BasicBlock *InsertAtEnd) {
3874   if (Op == Instruction::ICmp) {
3875     return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3876                         S1, S2, Name);
3877   }
3878   return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3879                       S1, S2, Name);
3880 }
3881 
3882 void CmpInst::swapOperands() {
3883   if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
3884     IC->swapOperands();
3885   else
3886     cast<FCmpInst>(this)->swapOperands();
3887 }
3888 
3889 bool CmpInst::isCommutative() const {
3890   if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3891     return IC->isCommutative();
3892   return cast<FCmpInst>(this)->isCommutative();
3893 }
3894 
3895 bool CmpInst::isEquality(Predicate P) {
3896   if (ICmpInst::isIntPredicate(P))
3897     return ICmpInst::isEquality(P);
3898   if (FCmpInst::isFPPredicate(P))
3899     return FCmpInst::isEquality(P);
3900   llvm_unreachable("Unsupported predicate kind");
3901 }
3902 
3903 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
3904   switch (pred) {
3905     default: llvm_unreachable("Unknown cmp predicate!");
3906     case ICMP_EQ: return ICMP_NE;
3907     case ICMP_NE: return ICMP_EQ;
3908     case ICMP_UGT: return ICMP_ULE;
3909     case ICMP_ULT: return ICMP_UGE;
3910     case ICMP_UGE: return ICMP_ULT;
3911     case ICMP_ULE: return ICMP_UGT;
3912     case ICMP_SGT: return ICMP_SLE;
3913     case ICMP_SLT: return ICMP_SGE;
3914     case ICMP_SGE: return ICMP_SLT;
3915     case ICMP_SLE: return ICMP_SGT;
3916 
3917     case FCMP_OEQ: return FCMP_UNE;
3918     case FCMP_ONE: return FCMP_UEQ;
3919     case FCMP_OGT: return FCMP_ULE;
3920     case FCMP_OLT: return FCMP_UGE;
3921     case FCMP_OGE: return FCMP_ULT;
3922     case FCMP_OLE: return FCMP_UGT;
3923     case FCMP_UEQ: return FCMP_ONE;
3924     case FCMP_UNE: return FCMP_OEQ;
3925     case FCMP_UGT: return FCMP_OLE;
3926     case FCMP_ULT: return FCMP_OGE;
3927     case FCMP_UGE: return FCMP_OLT;
3928     case FCMP_ULE: return FCMP_OGT;
3929     case FCMP_ORD: return FCMP_UNO;
3930     case FCMP_UNO: return FCMP_ORD;
3931     case FCMP_TRUE: return FCMP_FALSE;
3932     case FCMP_FALSE: return FCMP_TRUE;
3933   }
3934 }
3935 
3936 StringRef CmpInst::getPredicateName(Predicate Pred) {
3937   switch (Pred) {
3938   default:                   return "unknown";
3939   case FCmpInst::FCMP_FALSE: return "false";
3940   case FCmpInst::FCMP_OEQ:   return "oeq";
3941   case FCmpInst::FCMP_OGT:   return "ogt";
3942   case FCmpInst::FCMP_OGE:   return "oge";
3943   case FCmpInst::FCMP_OLT:   return "olt";
3944   case FCmpInst::FCMP_OLE:   return "ole";
3945   case FCmpInst::FCMP_ONE:   return "one";
3946   case FCmpInst::FCMP_ORD:   return "ord";
3947   case FCmpInst::FCMP_UNO:   return "uno";
3948   case FCmpInst::FCMP_UEQ:   return "ueq";
3949   case FCmpInst::FCMP_UGT:   return "ugt";
3950   case FCmpInst::FCMP_UGE:   return "uge";
3951   case FCmpInst::FCMP_ULT:   return "ult";
3952   case FCmpInst::FCMP_ULE:   return "ule";
3953   case FCmpInst::FCMP_UNE:   return "une";
3954   case FCmpInst::FCMP_TRUE:  return "true";
3955   case ICmpInst::ICMP_EQ:    return "eq";
3956   case ICmpInst::ICMP_NE:    return "ne";
3957   case ICmpInst::ICMP_SGT:   return "sgt";
3958   case ICmpInst::ICMP_SGE:   return "sge";
3959   case ICmpInst::ICMP_SLT:   return "slt";
3960   case ICmpInst::ICMP_SLE:   return "sle";
3961   case ICmpInst::ICMP_UGT:   return "ugt";
3962   case ICmpInst::ICMP_UGE:   return "uge";
3963   case ICmpInst::ICMP_ULT:   return "ult";
3964   case ICmpInst::ICMP_ULE:   return "ule";
3965   }
3966 }
3967 
3968 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
3969   switch (pred) {
3970     default: llvm_unreachable("Unknown icmp predicate!");
3971     case ICMP_EQ: case ICMP_NE:
3972     case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
3973        return pred;
3974     case ICMP_UGT: return ICMP_SGT;
3975     case ICMP_ULT: return ICMP_SLT;
3976     case ICMP_UGE: return ICMP_SGE;
3977     case ICMP_ULE: return ICMP_SLE;
3978   }
3979 }
3980 
3981 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
3982   switch (pred) {
3983     default: llvm_unreachable("Unknown icmp predicate!");
3984     case ICMP_EQ: case ICMP_NE:
3985     case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
3986        return pred;
3987     case ICMP_SGT: return ICMP_UGT;
3988     case ICMP_SLT: return ICMP_ULT;
3989     case ICMP_SGE: return ICMP_UGE;
3990     case ICMP_SLE: return ICMP_ULE;
3991   }
3992 }
3993 
3994 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
3995   switch (pred) {
3996     default: llvm_unreachable("Unknown cmp predicate!");
3997     case ICMP_EQ: case ICMP_NE:
3998       return pred;
3999     case ICMP_SGT: return ICMP_SLT;
4000     case ICMP_SLT: return ICMP_SGT;
4001     case ICMP_SGE: return ICMP_SLE;
4002     case ICMP_SLE: return ICMP_SGE;
4003     case ICMP_UGT: return ICMP_ULT;
4004     case ICMP_ULT: return ICMP_UGT;
4005     case ICMP_UGE: return ICMP_ULE;
4006     case ICMP_ULE: return ICMP_UGE;
4007 
4008     case FCMP_FALSE: case FCMP_TRUE:
4009     case FCMP_OEQ: case FCMP_ONE:
4010     case FCMP_UEQ: case FCMP_UNE:
4011     case FCMP_ORD: case FCMP_UNO:
4012       return pred;
4013     case FCMP_OGT: return FCMP_OLT;
4014     case FCMP_OLT: return FCMP_OGT;
4015     case FCMP_OGE: return FCMP_OLE;
4016     case FCMP_OLE: return FCMP_OGE;
4017     case FCMP_UGT: return FCMP_ULT;
4018     case FCMP_ULT: return FCMP_UGT;
4019     case FCMP_UGE: return FCMP_ULE;
4020     case FCMP_ULE: return FCMP_UGE;
4021   }
4022 }
4023 
4024 bool CmpInst::isNonStrictPredicate(Predicate pred) {
4025   switch (pred) {
4026   case ICMP_SGE:
4027   case ICMP_SLE:
4028   case ICMP_UGE:
4029   case ICMP_ULE:
4030   case FCMP_OGE:
4031   case FCMP_OLE:
4032   case FCMP_UGE:
4033   case FCMP_ULE:
4034     return true;
4035   default:
4036     return false;
4037   }
4038 }
4039 
4040 bool CmpInst::isStrictPredicate(Predicate pred) {
4041   switch (pred) {
4042   case ICMP_SGT:
4043   case ICMP_SLT:
4044   case ICMP_UGT:
4045   case ICMP_ULT:
4046   case FCMP_OGT:
4047   case FCMP_OLT:
4048   case FCMP_UGT:
4049   case FCMP_ULT:
4050     return true;
4051   default:
4052     return false;
4053   }
4054 }
4055 
4056 CmpInst::Predicate CmpInst::getStrictPredicate(Predicate pred) {
4057   switch (pred) {
4058   case ICMP_SGE:
4059     return ICMP_SGT;
4060   case ICMP_SLE:
4061     return ICMP_SLT;
4062   case ICMP_UGE:
4063     return ICMP_UGT;
4064   case ICMP_ULE:
4065     return ICMP_ULT;
4066   case FCMP_OGE:
4067     return FCMP_OGT;
4068   case FCMP_OLE:
4069     return FCMP_OLT;
4070   case FCMP_UGE:
4071     return FCMP_UGT;
4072   case FCMP_ULE:
4073     return FCMP_ULT;
4074   default:
4075     return pred;
4076   }
4077 }
4078 
4079 CmpInst::Predicate CmpInst::getNonStrictPredicate(Predicate pred) {
4080   switch (pred) {
4081   case ICMP_SGT:
4082     return ICMP_SGE;
4083   case ICMP_SLT:
4084     return ICMP_SLE;
4085   case ICMP_UGT:
4086     return ICMP_UGE;
4087   case ICMP_ULT:
4088     return ICMP_ULE;
4089   case FCMP_OGT:
4090     return FCMP_OGE;
4091   case FCMP_OLT:
4092     return FCMP_OLE;
4093   case FCMP_UGT:
4094     return FCMP_UGE;
4095   case FCMP_ULT:
4096     return FCMP_ULE;
4097   default:
4098     return pred;
4099   }
4100 }
4101 
4102 CmpInst::Predicate CmpInst::getFlippedStrictnessPredicate(Predicate pred) {
4103   assert(CmpInst::isRelational(pred) && "Call only with relational predicate!");
4104 
4105   if (isStrictPredicate(pred))
4106     return getNonStrictPredicate(pred);
4107   if (isNonStrictPredicate(pred))
4108     return getStrictPredicate(pred);
4109 
4110   llvm_unreachable("Unknown predicate!");
4111 }
4112 
4113 CmpInst::Predicate CmpInst::getSignedPredicate(Predicate pred) {
4114   assert(CmpInst::isUnsigned(pred) && "Call only with unsigned predicates!");
4115 
4116   switch (pred) {
4117   default:
4118     llvm_unreachable("Unknown predicate!");
4119   case CmpInst::ICMP_ULT:
4120     return CmpInst::ICMP_SLT;
4121   case CmpInst::ICMP_ULE:
4122     return CmpInst::ICMP_SLE;
4123   case CmpInst::ICMP_UGT:
4124     return CmpInst::ICMP_SGT;
4125   case CmpInst::ICMP_UGE:
4126     return CmpInst::ICMP_SGE;
4127   }
4128 }
4129 
4130 CmpInst::Predicate CmpInst::getUnsignedPredicate(Predicate pred) {
4131   assert(CmpInst::isSigned(pred) && "Call only with signed predicates!");
4132 
4133   switch (pred) {
4134   default:
4135     llvm_unreachable("Unknown predicate!");
4136   case CmpInst::ICMP_SLT:
4137     return CmpInst::ICMP_ULT;
4138   case CmpInst::ICMP_SLE:
4139     return CmpInst::ICMP_ULE;
4140   case CmpInst::ICMP_SGT:
4141     return CmpInst::ICMP_UGT;
4142   case CmpInst::ICMP_SGE:
4143     return CmpInst::ICMP_UGE;
4144   }
4145 }
4146 
4147 bool CmpInst::isUnsigned(Predicate predicate) {
4148   switch (predicate) {
4149     default: return false;
4150     case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
4151     case ICmpInst::ICMP_UGE: return true;
4152   }
4153 }
4154 
4155 bool CmpInst::isSigned(Predicate predicate) {
4156   switch (predicate) {
4157     default: return false;
4158     case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
4159     case ICmpInst::ICMP_SGE: return true;
4160   }
4161 }
4162 
4163 bool ICmpInst::compare(const APInt &LHS, const APInt &RHS,
4164                        ICmpInst::Predicate Pred) {
4165   assert(ICmpInst::isIntPredicate(Pred) && "Only for integer predicates!");
4166   switch (Pred) {
4167   case ICmpInst::Predicate::ICMP_EQ:
4168     return LHS.eq(RHS);
4169   case ICmpInst::Predicate::ICMP_NE:
4170     return LHS.ne(RHS);
4171   case ICmpInst::Predicate::ICMP_UGT:
4172     return LHS.ugt(RHS);
4173   case ICmpInst::Predicate::ICMP_UGE:
4174     return LHS.uge(RHS);
4175   case ICmpInst::Predicate::ICMP_ULT:
4176     return LHS.ult(RHS);
4177   case ICmpInst::Predicate::ICMP_ULE:
4178     return LHS.ule(RHS);
4179   case ICmpInst::Predicate::ICMP_SGT:
4180     return LHS.sgt(RHS);
4181   case ICmpInst::Predicate::ICMP_SGE:
4182     return LHS.sge(RHS);
4183   case ICmpInst::Predicate::ICMP_SLT:
4184     return LHS.slt(RHS);
4185   case ICmpInst::Predicate::ICMP_SLE:
4186     return LHS.sle(RHS);
4187   default:
4188     llvm_unreachable("Unexpected non-integer predicate.");
4189   };
4190 }
4191 
4192 bool FCmpInst::compare(const APFloat &LHS, const APFloat &RHS,
4193                        FCmpInst::Predicate Pred) {
4194   APFloat::cmpResult R = LHS.compare(RHS);
4195   switch (Pred) {
4196   default:
4197     llvm_unreachable("Invalid FCmp Predicate");
4198   case FCmpInst::FCMP_FALSE:
4199     return false;
4200   case FCmpInst::FCMP_TRUE:
4201     return true;
4202   case FCmpInst::FCMP_UNO:
4203     return R == APFloat::cmpUnordered;
4204   case FCmpInst::FCMP_ORD:
4205     return R != APFloat::cmpUnordered;
4206   case FCmpInst::FCMP_UEQ:
4207     return R == APFloat::cmpUnordered || R == APFloat::cmpEqual;
4208   case FCmpInst::FCMP_OEQ:
4209     return R == APFloat::cmpEqual;
4210   case FCmpInst::FCMP_UNE:
4211     return R != APFloat::cmpEqual;
4212   case FCmpInst::FCMP_ONE:
4213     return R == APFloat::cmpLessThan || R == APFloat::cmpGreaterThan;
4214   case FCmpInst::FCMP_ULT:
4215     return R == APFloat::cmpUnordered || R == APFloat::cmpLessThan;
4216   case FCmpInst::FCMP_OLT:
4217     return R == APFloat::cmpLessThan;
4218   case FCmpInst::FCMP_UGT:
4219     return R == APFloat::cmpUnordered || R == APFloat::cmpGreaterThan;
4220   case FCmpInst::FCMP_OGT:
4221     return R == APFloat::cmpGreaterThan;
4222   case FCmpInst::FCMP_ULE:
4223     return R != APFloat::cmpGreaterThan;
4224   case FCmpInst::FCMP_OLE:
4225     return R == APFloat::cmpLessThan || R == APFloat::cmpEqual;
4226   case FCmpInst::FCMP_UGE:
4227     return R != APFloat::cmpLessThan;
4228   case FCmpInst::FCMP_OGE:
4229     return R == APFloat::cmpGreaterThan || R == APFloat::cmpEqual;
4230   }
4231 }
4232 
4233 CmpInst::Predicate CmpInst::getFlippedSignednessPredicate(Predicate pred) {
4234   assert(CmpInst::isRelational(pred) &&
4235          "Call only with non-equality predicates!");
4236 
4237   if (isSigned(pred))
4238     return getUnsignedPredicate(pred);
4239   if (isUnsigned(pred))
4240     return getSignedPredicate(pred);
4241 
4242   llvm_unreachable("Unknown predicate!");
4243 }
4244 
4245 bool CmpInst::isOrdered(Predicate predicate) {
4246   switch (predicate) {
4247     default: return false;
4248     case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
4249     case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
4250     case FCmpInst::FCMP_ORD: return true;
4251   }
4252 }
4253 
4254 bool CmpInst::isUnordered(Predicate predicate) {
4255   switch (predicate) {
4256     default: return false;
4257     case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
4258     case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
4259     case FCmpInst::FCMP_UNO: return true;
4260   }
4261 }
4262 
4263 bool CmpInst::isTrueWhenEqual(Predicate predicate) {
4264   switch(predicate) {
4265     default: return false;
4266     case ICMP_EQ:   case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
4267     case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
4268   }
4269 }
4270 
4271 bool CmpInst::isFalseWhenEqual(Predicate predicate) {
4272   switch(predicate) {
4273   case ICMP_NE:    case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
4274   case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
4275   default: return false;
4276   }
4277 }
4278 
4279 bool CmpInst::isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2) {
4280   // If the predicates match, then we know the first condition implies the
4281   // second is true.
4282   if (Pred1 == Pred2)
4283     return true;
4284 
4285   switch (Pred1) {
4286   default:
4287     break;
4288   case ICMP_EQ:
4289     // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true.
4290     return Pred2 == ICMP_UGE || Pred2 == ICMP_ULE || Pred2 == ICMP_SGE ||
4291            Pred2 == ICMP_SLE;
4292   case ICMP_UGT: // A >u B implies A != B and A >=u B are true.
4293     return Pred2 == ICMP_NE || Pred2 == ICMP_UGE;
4294   case ICMP_ULT: // A <u B implies A != B and A <=u B are true.
4295     return Pred2 == ICMP_NE || Pred2 == ICMP_ULE;
4296   case ICMP_SGT: // A >s B implies A != B and A >=s B are true.
4297     return Pred2 == ICMP_NE || Pred2 == ICMP_SGE;
4298   case ICMP_SLT: // A <s B implies A != B and A <=s B are true.
4299     return Pred2 == ICMP_NE || Pred2 == ICMP_SLE;
4300   }
4301   return false;
4302 }
4303 
4304 bool CmpInst::isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2) {
4305   return isImpliedTrueByMatchingCmp(Pred1, getInversePredicate(Pred2));
4306 }
4307 
4308 //===----------------------------------------------------------------------===//
4309 //                        SwitchInst Implementation
4310 //===----------------------------------------------------------------------===//
4311 
4312 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
4313   assert(Value && Default && NumReserved);
4314   ReservedSpace = NumReserved;
4315   setNumHungOffUseOperands(2);
4316   allocHungoffUses(ReservedSpace);
4317 
4318   Op<0>() = Value;
4319   Op<1>() = Default;
4320 }
4321 
4322 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
4323 /// switch on and a default destination.  The number of additional cases can
4324 /// be specified here to make memory allocation more efficient.  This
4325 /// constructor can also autoinsert before another instruction.
4326 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
4327                        Instruction *InsertBefore)
4328     : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
4329                   nullptr, 0, InsertBefore) {
4330   init(Value, Default, 2+NumCases*2);
4331 }
4332 
4333 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
4334 /// switch on and a default destination.  The number of additional cases can
4335 /// be specified here to make memory allocation more efficient.  This
4336 /// constructor also autoinserts at the end of the specified BasicBlock.
4337 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
4338                        BasicBlock *InsertAtEnd)
4339     : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
4340                   nullptr, 0, InsertAtEnd) {
4341   init(Value, Default, 2+NumCases*2);
4342 }
4343 
4344 SwitchInst::SwitchInst(const SwitchInst &SI)
4345     : Instruction(SI.getType(), Instruction::Switch, nullptr, 0) {
4346   init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
4347   setNumHungOffUseOperands(SI.getNumOperands());
4348   Use *OL = getOperandList();
4349   const Use *InOL = SI.getOperandList();
4350   for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
4351     OL[i] = InOL[i];
4352     OL[i+1] = InOL[i+1];
4353   }
4354   SubclassOptionalData = SI.SubclassOptionalData;
4355 }
4356 
4357 /// addCase - Add an entry to the switch instruction...
4358 ///
4359 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
4360   unsigned NewCaseIdx = getNumCases();
4361   unsigned OpNo = getNumOperands();
4362   if (OpNo+2 > ReservedSpace)
4363     growOperands();  // Get more space!
4364   // Initialize some new operands.
4365   assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
4366   setNumHungOffUseOperands(OpNo+2);
4367   CaseHandle Case(this, NewCaseIdx);
4368   Case.setValue(OnVal);
4369   Case.setSuccessor(Dest);
4370 }
4371 
4372 /// removeCase - This method removes the specified case and its successor
4373 /// from the switch instruction.
4374 SwitchInst::CaseIt SwitchInst::removeCase(CaseIt I) {
4375   unsigned idx = I->getCaseIndex();
4376 
4377   assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
4378 
4379   unsigned NumOps = getNumOperands();
4380   Use *OL = getOperandList();
4381 
4382   // Overwrite this case with the end of the list.
4383   if (2 + (idx + 1) * 2 != NumOps) {
4384     OL[2 + idx * 2] = OL[NumOps - 2];
4385     OL[2 + idx * 2 + 1] = OL[NumOps - 1];
4386   }
4387 
4388   // Nuke the last value.
4389   OL[NumOps-2].set(nullptr);
4390   OL[NumOps-2+1].set(nullptr);
4391   setNumHungOffUseOperands(NumOps-2);
4392 
4393   return CaseIt(this, idx);
4394 }
4395 
4396 /// growOperands - grow operands - This grows the operand list in response
4397 /// to a push_back style of operation.  This grows the number of ops by 3 times.
4398 ///
4399 void SwitchInst::growOperands() {
4400   unsigned e = getNumOperands();
4401   unsigned NumOps = e*3;
4402 
4403   ReservedSpace = NumOps;
4404   growHungoffUses(ReservedSpace);
4405 }
4406 
4407 MDNode *
4408 SwitchInstProfUpdateWrapper::getProfBranchWeightsMD(const SwitchInst &SI) {
4409   if (MDNode *ProfileData = SI.getMetadata(LLVMContext::MD_prof))
4410     if (auto *MDName = dyn_cast<MDString>(ProfileData->getOperand(0)))
4411       if (MDName->getString() == "branch_weights")
4412         return ProfileData;
4413   return nullptr;
4414 }
4415 
4416 MDNode *SwitchInstProfUpdateWrapper::buildProfBranchWeightsMD() {
4417   assert(Changed && "called only if metadata has changed");
4418 
4419   if (!Weights)
4420     return nullptr;
4421 
4422   assert(SI.getNumSuccessors() == Weights->size() &&
4423          "num of prof branch_weights must accord with num of successors");
4424 
4425   bool AllZeroes = all_of(Weights.value(), [](uint32_t W) { return W == 0; });
4426 
4427   if (AllZeroes || Weights.value().size() < 2)
4428     return nullptr;
4429 
4430   return MDBuilder(SI.getParent()->getContext()).createBranchWeights(*Weights);
4431 }
4432 
4433 void SwitchInstProfUpdateWrapper::init() {
4434   MDNode *ProfileData = getProfBranchWeightsMD(SI);
4435   if (!ProfileData)
4436     return;
4437 
4438   if (ProfileData->getNumOperands() != SI.getNumSuccessors() + 1) {
4439     llvm_unreachable("number of prof branch_weights metadata operands does "
4440                      "not correspond to number of succesors");
4441   }
4442 
4443   SmallVector<uint32_t, 8> Weights;
4444   for (unsigned CI = 1, CE = SI.getNumSuccessors(); CI <= CE; ++CI) {
4445     ConstantInt *C = mdconst::extract<ConstantInt>(ProfileData->getOperand(CI));
4446     uint32_t CW = C->getValue().getZExtValue();
4447     Weights.push_back(CW);
4448   }
4449   this->Weights = std::move(Weights);
4450 }
4451 
4452 SwitchInst::CaseIt
4453 SwitchInstProfUpdateWrapper::removeCase(SwitchInst::CaseIt I) {
4454   if (Weights) {
4455     assert(SI.getNumSuccessors() == Weights->size() &&
4456            "num of prof branch_weights must accord with num of successors");
4457     Changed = true;
4458     // Copy the last case to the place of the removed one and shrink.
4459     // This is tightly coupled with the way SwitchInst::removeCase() removes
4460     // the cases in SwitchInst::removeCase(CaseIt).
4461     Weights.value()[I->getCaseIndex() + 1] = Weights.value().back();
4462     Weights.value().pop_back();
4463   }
4464   return SI.removeCase(I);
4465 }
4466 
4467 void SwitchInstProfUpdateWrapper::addCase(
4468     ConstantInt *OnVal, BasicBlock *Dest,
4469     SwitchInstProfUpdateWrapper::CaseWeightOpt W) {
4470   SI.addCase(OnVal, Dest);
4471 
4472   if (!Weights && W && *W) {
4473     Changed = true;
4474     Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
4475     Weights.value()[SI.getNumSuccessors() - 1] = *W;
4476   } else if (Weights) {
4477     Changed = true;
4478     Weights.value().push_back(W.value_or(0));
4479   }
4480   if (Weights)
4481     assert(SI.getNumSuccessors() == Weights->size() &&
4482            "num of prof branch_weights must accord with num of successors");
4483 }
4484 
4485 SymbolTableList<Instruction>::iterator
4486 SwitchInstProfUpdateWrapper::eraseFromParent() {
4487   // Instruction is erased. Mark as unchanged to not touch it in the destructor.
4488   Changed = false;
4489   if (Weights)
4490     Weights->resize(0);
4491   return SI.eraseFromParent();
4492 }
4493 
4494 SwitchInstProfUpdateWrapper::CaseWeightOpt
4495 SwitchInstProfUpdateWrapper::getSuccessorWeight(unsigned idx) {
4496   if (!Weights)
4497     return None;
4498   return (*Weights)[idx];
4499 }
4500 
4501 void SwitchInstProfUpdateWrapper::setSuccessorWeight(
4502     unsigned idx, SwitchInstProfUpdateWrapper::CaseWeightOpt W) {
4503   if (!W)
4504     return;
4505 
4506   if (!Weights && *W)
4507     Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
4508 
4509   if (Weights) {
4510     auto &OldW = (*Weights)[idx];
4511     if (*W != OldW) {
4512       Changed = true;
4513       OldW = *W;
4514     }
4515   }
4516 }
4517 
4518 SwitchInstProfUpdateWrapper::CaseWeightOpt
4519 SwitchInstProfUpdateWrapper::getSuccessorWeight(const SwitchInst &SI,
4520                                                 unsigned idx) {
4521   if (MDNode *ProfileData = getProfBranchWeightsMD(SI))
4522     if (ProfileData->getNumOperands() == SI.getNumSuccessors() + 1)
4523       return mdconst::extract<ConstantInt>(ProfileData->getOperand(idx + 1))
4524           ->getValue()
4525           .getZExtValue();
4526 
4527   return None;
4528 }
4529 
4530 //===----------------------------------------------------------------------===//
4531 //                        IndirectBrInst Implementation
4532 //===----------------------------------------------------------------------===//
4533 
4534 void IndirectBrInst::init(Value *Address, unsigned NumDests) {
4535   assert(Address && Address->getType()->isPointerTy() &&
4536          "Address of indirectbr must be a pointer");
4537   ReservedSpace = 1+NumDests;
4538   setNumHungOffUseOperands(1);
4539   allocHungoffUses(ReservedSpace);
4540 
4541   Op<0>() = Address;
4542 }
4543 
4544 
4545 /// growOperands - grow operands - This grows the operand list in response
4546 /// to a push_back style of operation.  This grows the number of ops by 2 times.
4547 ///
4548 void IndirectBrInst::growOperands() {
4549   unsigned e = getNumOperands();
4550   unsigned NumOps = e*2;
4551 
4552   ReservedSpace = NumOps;
4553   growHungoffUses(ReservedSpace);
4554 }
4555 
4556 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
4557                                Instruction *InsertBefore)
4558     : Instruction(Type::getVoidTy(Address->getContext()),
4559                   Instruction::IndirectBr, nullptr, 0, InsertBefore) {
4560   init(Address, NumCases);
4561 }
4562 
4563 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
4564                                BasicBlock *InsertAtEnd)
4565     : Instruction(Type::getVoidTy(Address->getContext()),
4566                   Instruction::IndirectBr, nullptr, 0, InsertAtEnd) {
4567   init(Address, NumCases);
4568 }
4569 
4570 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
4571     : Instruction(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
4572                   nullptr, IBI.getNumOperands()) {
4573   allocHungoffUses(IBI.getNumOperands());
4574   Use *OL = getOperandList();
4575   const Use *InOL = IBI.getOperandList();
4576   for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
4577     OL[i] = InOL[i];
4578   SubclassOptionalData = IBI.SubclassOptionalData;
4579 }
4580 
4581 /// addDestination - Add a destination.
4582 ///
4583 void IndirectBrInst::addDestination(BasicBlock *DestBB) {
4584   unsigned OpNo = getNumOperands();
4585   if (OpNo+1 > ReservedSpace)
4586     growOperands();  // Get more space!
4587   // Initialize some new operands.
4588   assert(OpNo < ReservedSpace && "Growing didn't work!");
4589   setNumHungOffUseOperands(OpNo+1);
4590   getOperandList()[OpNo] = DestBB;
4591 }
4592 
4593 /// removeDestination - This method removes the specified successor from the
4594 /// indirectbr instruction.
4595 void IndirectBrInst::removeDestination(unsigned idx) {
4596   assert(idx < getNumOperands()-1 && "Successor index out of range!");
4597 
4598   unsigned NumOps = getNumOperands();
4599   Use *OL = getOperandList();
4600 
4601   // Replace this value with the last one.
4602   OL[idx+1] = OL[NumOps-1];
4603 
4604   // Nuke the last value.
4605   OL[NumOps-1].set(nullptr);
4606   setNumHungOffUseOperands(NumOps-1);
4607 }
4608 
4609 //===----------------------------------------------------------------------===//
4610 //                            FreezeInst Implementation
4611 //===----------------------------------------------------------------------===//
4612 
4613 FreezeInst::FreezeInst(Value *S,
4614                        const Twine &Name, Instruction *InsertBefore)
4615     : UnaryInstruction(S->getType(), Freeze, S, InsertBefore) {
4616   setName(Name);
4617 }
4618 
4619 FreezeInst::FreezeInst(Value *S,
4620                        const Twine &Name, BasicBlock *InsertAtEnd)
4621     : UnaryInstruction(S->getType(), Freeze, S, InsertAtEnd) {
4622   setName(Name);
4623 }
4624 
4625 //===----------------------------------------------------------------------===//
4626 //                           cloneImpl() implementations
4627 //===----------------------------------------------------------------------===//
4628 
4629 // Define these methods here so vtables don't get emitted into every translation
4630 // unit that uses these classes.
4631 
4632 GetElementPtrInst *GetElementPtrInst::cloneImpl() const {
4633   return new (getNumOperands()) GetElementPtrInst(*this);
4634 }
4635 
4636 UnaryOperator *UnaryOperator::cloneImpl() const {
4637   return Create(getOpcode(), Op<0>());
4638 }
4639 
4640 BinaryOperator *BinaryOperator::cloneImpl() const {
4641   return Create(getOpcode(), Op<0>(), Op<1>());
4642 }
4643 
4644 FCmpInst *FCmpInst::cloneImpl() const {
4645   return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
4646 }
4647 
4648 ICmpInst *ICmpInst::cloneImpl() const {
4649   return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
4650 }
4651 
4652 ExtractValueInst *ExtractValueInst::cloneImpl() const {
4653   return new ExtractValueInst(*this);
4654 }
4655 
4656 InsertValueInst *InsertValueInst::cloneImpl() const {
4657   return new InsertValueInst(*this);
4658 }
4659 
4660 AllocaInst *AllocaInst::cloneImpl() const {
4661   AllocaInst *Result =
4662       new AllocaInst(getAllocatedType(), getType()->getAddressSpace(),
4663                      getOperand(0), getAlign());
4664   Result->setUsedWithInAlloca(isUsedWithInAlloca());
4665   Result->setSwiftError(isSwiftError());
4666   return Result;
4667 }
4668 
4669 LoadInst *LoadInst::cloneImpl() const {
4670   return new LoadInst(getType(), getOperand(0), Twine(), isVolatile(),
4671                       getAlign(), getOrdering(), getSyncScopeID());
4672 }
4673 
4674 StoreInst *StoreInst::cloneImpl() const {
4675   return new StoreInst(getOperand(0), getOperand(1), isVolatile(), getAlign(),
4676                        getOrdering(), getSyncScopeID());
4677 }
4678 
4679 AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const {
4680   AtomicCmpXchgInst *Result = new AtomicCmpXchgInst(
4681       getOperand(0), getOperand(1), getOperand(2), getAlign(),
4682       getSuccessOrdering(), getFailureOrdering(), getSyncScopeID());
4683   Result->setVolatile(isVolatile());
4684   Result->setWeak(isWeak());
4685   return Result;
4686 }
4687 
4688 AtomicRMWInst *AtomicRMWInst::cloneImpl() const {
4689   AtomicRMWInst *Result =
4690       new AtomicRMWInst(getOperation(), getOperand(0), getOperand(1),
4691                         getAlign(), getOrdering(), getSyncScopeID());
4692   Result->setVolatile(isVolatile());
4693   return Result;
4694 }
4695 
4696 FenceInst *FenceInst::cloneImpl() const {
4697   return new FenceInst(getContext(), getOrdering(), getSyncScopeID());
4698 }
4699 
4700 TruncInst *TruncInst::cloneImpl() const {
4701   return new TruncInst(getOperand(0), getType());
4702 }
4703 
4704 ZExtInst *ZExtInst::cloneImpl() const {
4705   return new ZExtInst(getOperand(0), getType());
4706 }
4707 
4708 SExtInst *SExtInst::cloneImpl() const {
4709   return new SExtInst(getOperand(0), getType());
4710 }
4711 
4712 FPTruncInst *FPTruncInst::cloneImpl() const {
4713   return new FPTruncInst(getOperand(0), getType());
4714 }
4715 
4716 FPExtInst *FPExtInst::cloneImpl() const {
4717   return new FPExtInst(getOperand(0), getType());
4718 }
4719 
4720 UIToFPInst *UIToFPInst::cloneImpl() const {
4721   return new UIToFPInst(getOperand(0), getType());
4722 }
4723 
4724 SIToFPInst *SIToFPInst::cloneImpl() const {
4725   return new SIToFPInst(getOperand(0), getType());
4726 }
4727 
4728 FPToUIInst *FPToUIInst::cloneImpl() const {
4729   return new FPToUIInst(getOperand(0), getType());
4730 }
4731 
4732 FPToSIInst *FPToSIInst::cloneImpl() const {
4733   return new FPToSIInst(getOperand(0), getType());
4734 }
4735 
4736 PtrToIntInst *PtrToIntInst::cloneImpl() const {
4737   return new PtrToIntInst(getOperand(0), getType());
4738 }
4739 
4740 IntToPtrInst *IntToPtrInst::cloneImpl() const {
4741   return new IntToPtrInst(getOperand(0), getType());
4742 }
4743 
4744 BitCastInst *BitCastInst::cloneImpl() const {
4745   return new BitCastInst(getOperand(0), getType());
4746 }
4747 
4748 AddrSpaceCastInst *AddrSpaceCastInst::cloneImpl() const {
4749   return new AddrSpaceCastInst(getOperand(0), getType());
4750 }
4751 
4752 CallInst *CallInst::cloneImpl() const {
4753   if (hasOperandBundles()) {
4754     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4755     return new(getNumOperands(), DescriptorBytes) CallInst(*this);
4756   }
4757   return  new(getNumOperands()) CallInst(*this);
4758 }
4759 
4760 SelectInst *SelectInst::cloneImpl() const {
4761   return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
4762 }
4763 
4764 VAArgInst *VAArgInst::cloneImpl() const {
4765   return new VAArgInst(getOperand(0), getType());
4766 }
4767 
4768 ExtractElementInst *ExtractElementInst::cloneImpl() const {
4769   return ExtractElementInst::Create(getOperand(0), getOperand(1));
4770 }
4771 
4772 InsertElementInst *InsertElementInst::cloneImpl() const {
4773   return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
4774 }
4775 
4776 ShuffleVectorInst *ShuffleVectorInst::cloneImpl() const {
4777   return new ShuffleVectorInst(getOperand(0), getOperand(1), getShuffleMask());
4778 }
4779 
4780 PHINode *PHINode::cloneImpl() const { return new PHINode(*this); }
4781 
4782 LandingPadInst *LandingPadInst::cloneImpl() const {
4783   return new LandingPadInst(*this);
4784 }
4785 
4786 ReturnInst *ReturnInst::cloneImpl() const {
4787   return new(getNumOperands()) ReturnInst(*this);
4788 }
4789 
4790 BranchInst *BranchInst::cloneImpl() const {
4791   return new(getNumOperands()) BranchInst(*this);
4792 }
4793 
4794 SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); }
4795 
4796 IndirectBrInst *IndirectBrInst::cloneImpl() const {
4797   return new IndirectBrInst(*this);
4798 }
4799 
4800 InvokeInst *InvokeInst::cloneImpl() const {
4801   if (hasOperandBundles()) {
4802     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4803     return new(getNumOperands(), DescriptorBytes) InvokeInst(*this);
4804   }
4805   return new(getNumOperands()) InvokeInst(*this);
4806 }
4807 
4808 CallBrInst *CallBrInst::cloneImpl() const {
4809   if (hasOperandBundles()) {
4810     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4811     return new (getNumOperands(), DescriptorBytes) CallBrInst(*this);
4812   }
4813   return new (getNumOperands()) CallBrInst(*this);
4814 }
4815 
4816 ResumeInst *ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); }
4817 
4818 CleanupReturnInst *CleanupReturnInst::cloneImpl() const {
4819   return new (getNumOperands()) CleanupReturnInst(*this);
4820 }
4821 
4822 CatchReturnInst *CatchReturnInst::cloneImpl() const {
4823   return new (getNumOperands()) CatchReturnInst(*this);
4824 }
4825 
4826 CatchSwitchInst *CatchSwitchInst::cloneImpl() const {
4827   return new CatchSwitchInst(*this);
4828 }
4829 
4830 FuncletPadInst *FuncletPadInst::cloneImpl() const {
4831   return new (getNumOperands()) FuncletPadInst(*this);
4832 }
4833 
4834 UnreachableInst *UnreachableInst::cloneImpl() const {
4835   LLVMContext &Context = getContext();
4836   return new UnreachableInst(Context);
4837 }
4838 
4839 FreezeInst *FreezeInst::cloneImpl() const {
4840   return new FreezeInst(getOperand(0));
4841 }
4842