1 //===-- SafepointIRVerifier.cpp - Verify gc.statepoint invariants ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Run a sanity check on the IR to ensure that Safepoints - if they've been
10 // inserted - were inserted correctly.  In particular, look for use of
11 // non-relocated values after a safepoint.  It's primary use is to check the
12 // correctness of safepoint insertion immediately after insertion, but it can
13 // also be used to verify that later transforms have not found a way to break
14 // safepoint semenatics.
15 //
16 // In its current form, this verify checks a property which is sufficient, but
17 // not neccessary for correctness.  There are some cases where an unrelocated
18 // pointer can be used after the safepoint.  Consider this example:
19 //
20 //    a = ...
21 //    b = ...
22 //    (a',b') = safepoint(a,b)
23 //    c = cmp eq a b
24 //    br c, ..., ....
25 //
26 // Because it is valid to reorder 'c' above the safepoint, this is legal.  In
27 // practice, this is a somewhat uncommon transform, but CodeGenPrep does create
28 // idioms like this.  The verifier knows about these cases and avoids reporting
29 // false positives.
30 //
31 //===----------------------------------------------------------------------===//
32 
33 #include "llvm/IR/SafepointIRVerifier.h"
34 #include "llvm/ADT/DenseSet.h"
35 #include "llvm/ADT/PostOrderIterator.h"
36 #include "llvm/ADT/SetOperations.h"
37 #include "llvm/ADT/SetVector.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/IntrinsicInst.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/Statepoint.h"
46 #include "llvm/IR/Value.h"
47 #include "llvm/InitializePasses.h"
48 #include "llvm/Support/Allocator.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/raw_ostream.h"
52 
53 #define DEBUG_TYPE "safepoint-ir-verifier"
54 
55 using namespace llvm;
56 
57 /// This option is used for writing test cases.  Instead of crashing the program
58 /// when verification fails, report a message to the console (for FileCheck
59 /// usage) and continue execution as if nothing happened.
60 static cl::opt<bool> PrintOnly("safepoint-ir-verifier-print-only",
61                                cl::init(false));
62 
63 namespace {
64 
65 /// This CFG Deadness finds dead blocks and edges. Algorithm starts with a set
66 /// of blocks unreachable from entry then propagates deadness using foldable
67 /// conditional branches without modifying CFG. So GVN does but it changes CFG
68 /// by splitting critical edges. In most cases passes rely on SimplifyCFG to
69 /// clean up dead blocks, but in some cases, like verification or loop passes
70 /// it's not possible.
71 class CFGDeadness {
72   const DominatorTree *DT = nullptr;
73   SetVector<const BasicBlock *> DeadBlocks;
74   SetVector<const Use *> DeadEdges; // Contains all dead edges from live blocks.
75 
76 public:
77   /// Return the edge that coresponds to the predecessor.
78   static const Use& getEdge(const_pred_iterator &PredIt) {
79     auto &PU = PredIt.getUse();
80     return PU.getUser()->getOperandUse(PU.getOperandNo());
81   }
82 
83   /// Return true if there is at least one live edge that corresponds to the
84   /// basic block InBB listed in the phi node.
85   bool hasLiveIncomingEdge(const PHINode *PN, const BasicBlock *InBB) const {
86     assert(!isDeadBlock(InBB) && "block must be live");
87     const BasicBlock* BB = PN->getParent();
88     bool Listed = false;
89     for (const_pred_iterator PredIt(BB), End(BB, true); PredIt != End; ++PredIt) {
90       if (InBB == *PredIt) {
91         if (!isDeadEdge(&getEdge(PredIt)))
92           return true;
93         Listed = true;
94       }
95     }
96     (void)Listed;
97     assert(Listed && "basic block is not found among incoming blocks");
98     return false;
99   }
100 
101 
102   bool isDeadBlock(const BasicBlock *BB) const {
103     return DeadBlocks.count(BB);
104   }
105 
106   bool isDeadEdge(const Use *U) const {
107     assert(cast<Instruction>(U->getUser())->isTerminator() &&
108            "edge must be operand of terminator");
109     assert(cast_or_null<BasicBlock>(U->get()) &&
110            "edge must refer to basic block");
111     assert(!isDeadBlock(cast<Instruction>(U->getUser())->getParent()) &&
112            "isDeadEdge() must be applied to edge from live block");
113     return DeadEdges.count(U);
114   }
115 
116   bool hasLiveIncomingEdges(const BasicBlock *BB) const {
117     // Check if all incoming edges are dead.
118     for (const_pred_iterator PredIt(BB), End(BB, true); PredIt != End; ++PredIt) {
119       auto &PU = PredIt.getUse();
120       const Use &U = PU.getUser()->getOperandUse(PU.getOperandNo());
121       if (!isDeadBlock(*PredIt) && !isDeadEdge(&U))
122         return true; // Found a live edge.
123     }
124     return false;
125   }
126 
127   void processFunction(const Function &F, const DominatorTree &DT) {
128     this->DT = &DT;
129 
130     // Start with all blocks unreachable from entry.
131     for (const BasicBlock &BB : F)
132       if (!DT.isReachableFromEntry(&BB))
133         DeadBlocks.insert(&BB);
134 
135     // Top-down walk of the dominator tree
136     ReversePostOrderTraversal<const Function *> RPOT(&F);
137     for (const BasicBlock *BB : RPOT) {
138       const Instruction *TI = BB->getTerminator();
139       assert(TI && "blocks must be well formed");
140 
141       // For conditional branches, we can perform simple conditional propagation on
142       // the condition value itself.
143       const BranchInst *BI = dyn_cast<BranchInst>(TI);
144       if (!BI || !BI->isConditional() || !isa<Constant>(BI->getCondition()))
145         continue;
146 
147       // If a branch has two identical successors, we cannot declare either dead.
148       if (BI->getSuccessor(0) == BI->getSuccessor(1))
149         continue;
150 
151       ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
152       if (!Cond)
153         continue;
154 
155       addDeadEdge(BI->getOperandUse(Cond->getZExtValue() ? 1 : 2));
156     }
157   }
158 
159 protected:
160   void addDeadBlock(const BasicBlock *BB) {
161     SmallVector<const BasicBlock *, 4> NewDead;
162     SmallSetVector<const BasicBlock *, 4> DF;
163 
164     NewDead.push_back(BB);
165     while (!NewDead.empty()) {
166       const BasicBlock *D = NewDead.pop_back_val();
167       if (isDeadBlock(D))
168         continue;
169 
170       // All blocks dominated by D are dead.
171       SmallVector<BasicBlock *, 8> Dom;
172       DT->getDescendants(const_cast<BasicBlock*>(D), Dom);
173       // Do not need to mark all in and out edges dead
174       // because BB is marked dead and this is enough
175       // to run further.
176       DeadBlocks.insert(Dom.begin(), Dom.end());
177 
178       // Figure out the dominance-frontier(D).
179       for (BasicBlock *B : Dom)
180         for (BasicBlock *S : successors(B))
181           if (!isDeadBlock(S) && !hasLiveIncomingEdges(S))
182             NewDead.push_back(S);
183     }
184   }
185 
186   void addDeadEdge(const Use &DeadEdge) {
187     if (!DeadEdges.insert(&DeadEdge))
188       return;
189 
190     BasicBlock *BB = cast_or_null<BasicBlock>(DeadEdge.get());
191     if (hasLiveIncomingEdges(BB))
192       return;
193 
194     addDeadBlock(BB);
195   }
196 };
197 } // namespace
198 
199 static void Verify(const Function &F, const DominatorTree &DT,
200                    const CFGDeadness &CD);
201 
202 namespace llvm {
203 PreservedAnalyses SafepointIRVerifierPass::run(Function &F,
204                                                FunctionAnalysisManager &AM) {
205   const auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
206   CFGDeadness CD;
207   CD.processFunction(F, DT);
208   Verify(F, DT, CD);
209   return PreservedAnalyses::all();
210 }
211 } // namespace llvm
212 
213 namespace {
214 
215 struct SafepointIRVerifier : public FunctionPass {
216   static char ID; // Pass identification, replacement for typeid
217   SafepointIRVerifier() : FunctionPass(ID) {
218     initializeSafepointIRVerifierPass(*PassRegistry::getPassRegistry());
219   }
220 
221   bool runOnFunction(Function &F) override {
222     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
223     CFGDeadness CD;
224     CD.processFunction(F, DT);
225     Verify(F, DT, CD);
226     return false; // no modifications
227   }
228 
229   void getAnalysisUsage(AnalysisUsage &AU) const override {
230     AU.addRequiredID(DominatorTreeWrapperPass::ID);
231     AU.setPreservesAll();
232   }
233 
234   StringRef getPassName() const override { return "safepoint verifier"; }
235 };
236 } // namespace
237 
238 void llvm::verifySafepointIR(Function &F) {
239   SafepointIRVerifier pass;
240   pass.runOnFunction(F);
241 }
242 
243 char SafepointIRVerifier::ID = 0;
244 
245 FunctionPass *llvm::createSafepointIRVerifierPass() {
246   return new SafepointIRVerifier();
247 }
248 
249 INITIALIZE_PASS_BEGIN(SafepointIRVerifier, "verify-safepoint-ir",
250                       "Safepoint IR Verifier", false, false)
251 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
252 INITIALIZE_PASS_END(SafepointIRVerifier, "verify-safepoint-ir",
253                     "Safepoint IR Verifier", false, false)
254 
255 static bool isGCPointerType(Type *T) {
256   if (auto *PT = dyn_cast<PointerType>(T))
257     // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
258     // GC managed heap.  We know that a pointer into this heap needs to be
259     // updated and that no other pointer does.
260     return (1 == PT->getAddressSpace());
261   return false;
262 }
263 
264 static bool containsGCPtrType(Type *Ty) {
265   if (isGCPointerType(Ty))
266     return true;
267   if (VectorType *VT = dyn_cast<VectorType>(Ty))
268     return isGCPointerType(VT->getScalarType());
269   if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
270     return containsGCPtrType(AT->getElementType());
271   if (StructType *ST = dyn_cast<StructType>(Ty))
272     return llvm::any_of(ST->elements(), containsGCPtrType);
273   return false;
274 }
275 
276 // Debugging aid -- prints a [Begin, End) range of values.
277 template<typename IteratorTy>
278 static void PrintValueSet(raw_ostream &OS, IteratorTy Begin, IteratorTy End) {
279   OS << "[ ";
280   while (Begin != End) {
281     OS << **Begin << " ";
282     ++Begin;
283   }
284   OS << "]";
285 }
286 
287 /// The verifier algorithm is phrased in terms of availability.  The set of
288 /// values "available" at a given point in the control flow graph is the set of
289 /// correctly relocated value at that point, and is a subset of the set of
290 /// definitions dominating that point.
291 
292 using AvailableValueSet = DenseSet<const Value *>;
293 
294 /// State we compute and track per basic block.
295 struct BasicBlockState {
296   // Set of values available coming in, before the phi nodes
297   AvailableValueSet AvailableIn;
298 
299   // Set of values available going out
300   AvailableValueSet AvailableOut;
301 
302   // AvailableOut minus AvailableIn.
303   // All elements are Instructions
304   AvailableValueSet Contribution;
305 
306   // True if this block contains a safepoint and thus AvailableIn does not
307   // contribute to AvailableOut.
308   bool Cleared = false;
309 };
310 
311 /// A given derived pointer can have multiple base pointers through phi/selects.
312 /// This type indicates when the base pointer is exclusively constant
313 /// (ExclusivelySomeConstant), and if that constant is proven to be exclusively
314 /// null, we record that as ExclusivelyNull. In all other cases, the BaseType is
315 /// NonConstant.
316 enum BaseType {
317   NonConstant = 1, // Base pointers is not exclusively constant.
318   ExclusivelyNull,
319   ExclusivelySomeConstant // Base pointers for a given derived pointer is from a
320                           // set of constants, but they are not exclusively
321                           // null.
322 };
323 
324 /// Return the baseType for Val which states whether Val is exclusively
325 /// derived from constant/null, or not exclusively derived from constant.
326 /// Val is exclusively derived off a constant base when all operands of phi and
327 /// selects are derived off a constant base.
328 static enum BaseType getBaseType(const Value *Val) {
329 
330   SmallVector<const Value *, 32> Worklist;
331   DenseSet<const Value *> Visited;
332   bool isExclusivelyDerivedFromNull = true;
333   Worklist.push_back(Val);
334   // Strip through all the bitcasts and geps to get base pointer. Also check for
335   // the exclusive value when there can be multiple base pointers (through phis
336   // or selects).
337   while(!Worklist.empty()) {
338     const Value *V = Worklist.pop_back_val();
339     if (!Visited.insert(V).second)
340       continue;
341 
342     if (const auto *CI = dyn_cast<CastInst>(V)) {
343       Worklist.push_back(CI->stripPointerCasts());
344       continue;
345     }
346     if (const auto *GEP = dyn_cast<GetElementPtrInst>(V)) {
347       Worklist.push_back(GEP->getPointerOperand());
348       continue;
349     }
350     // Push all the incoming values of phi node into the worklist for
351     // processing.
352     if (const auto *PN = dyn_cast<PHINode>(V)) {
353       for (Value *InV: PN->incoming_values())
354         Worklist.push_back(InV);
355       continue;
356     }
357     if (const auto *SI = dyn_cast<SelectInst>(V)) {
358       // Push in the true and false values
359       Worklist.push_back(SI->getTrueValue());
360       Worklist.push_back(SI->getFalseValue());
361       continue;
362     }
363     if (isa<Constant>(V)) {
364       // We found at least one base pointer which is non-null, so this derived
365       // pointer is not exclusively derived from null.
366       if (V != Constant::getNullValue(V->getType()))
367         isExclusivelyDerivedFromNull = false;
368       // Continue processing the remaining values to make sure it's exclusively
369       // constant.
370       continue;
371     }
372     // At this point, we know that the base pointer is not exclusively
373     // constant.
374     return BaseType::NonConstant;
375   }
376   // Now, we know that the base pointer is exclusively constant, but we need to
377   // differentiate between exclusive null constant and non-null constant.
378   return isExclusivelyDerivedFromNull ? BaseType::ExclusivelyNull
379                                       : BaseType::ExclusivelySomeConstant;
380 }
381 
382 static bool isNotExclusivelyConstantDerived(const Value *V) {
383   return getBaseType(V) == BaseType::NonConstant;
384 }
385 
386 namespace {
387 class InstructionVerifier;
388 
389 /// Builds BasicBlockState for each BB of the function.
390 /// It can traverse function for verification and provides all required
391 /// information.
392 ///
393 /// GC pointer may be in one of three states: relocated, unrelocated and
394 /// poisoned.
395 /// Relocated pointer may be used without any restrictions.
396 /// Unrelocated pointer cannot be dereferenced, passed as argument to any call
397 /// or returned. Unrelocated pointer may be safely compared against another
398 /// unrelocated pointer or against a pointer exclusively derived from null.
399 /// Poisoned pointers are produced when we somehow derive pointer from relocated
400 /// and unrelocated pointers (e.g. phi, select). This pointers may be safely
401 /// used in a very limited number of situations. Currently the only way to use
402 /// it is comparison against constant exclusively derived from null. All
403 /// limitations arise due to their undefined state: this pointers should be
404 /// treated as relocated and unrelocated simultaneously.
405 /// Rules of deriving:
406 /// R + U = P - that's where the poisoned pointers come from
407 /// P + X = P
408 /// U + U = U
409 /// R + R = R
410 /// X + C = X
411 /// Where "+" - any operation that somehow derive pointer, U - unrelocated,
412 /// R - relocated and P - poisoned, C - constant, X - U or R or P or C or
413 /// nothing (in case when "+" is unary operation).
414 /// Deriving of pointers by itself is always safe.
415 /// NOTE: when we are making decision on the status of instruction's result:
416 /// a) for phi we need to check status of each input *at the end of
417 ///    corresponding predecessor BB*.
418 /// b) for other instructions we need to check status of each input *at the
419 ///    current point*.
420 ///
421 /// FIXME: This works fairly well except one case
422 ///     bb1:
423 ///     p = *some GC-ptr def*
424 ///     p1 = gep p, offset
425 ///         /     |
426 ///        /      |
427 ///    bb2:       |
428 ///    safepoint  |
429 ///        \      |
430 ///         \     |
431 ///      bb3:
432 ///      p2 = phi [p, bb2] [p1, bb1]
433 ///      p3 = phi [p, bb2] [p, bb1]
434 ///      here p and p1 is unrelocated
435 ///           p2 and p3 is poisoned (though they shouldn't be)
436 ///
437 /// This leads to some weird results:
438 ///      cmp eq p, p2 - illegal instruction (false-positive)
439 ///      cmp eq p1, p2 - illegal instruction (false-positive)
440 ///      cmp eq p, p3 - illegal instruction (false-positive)
441 ///      cmp eq p, p1 - ok
442 /// To fix this we need to introduce conception of generations and be able to
443 /// check if two values belong to one generation or not. This way p2 will be
444 /// considered to be unrelocated and no false alarm will happen.
445 class GCPtrTracker {
446   const Function &F;
447   const CFGDeadness &CD;
448   SpecificBumpPtrAllocator<BasicBlockState> BSAllocator;
449   DenseMap<const BasicBlock *, BasicBlockState *> BlockMap;
450   // This set contains defs of unrelocated pointers that are proved to be legal
451   // and don't need verification.
452   DenseSet<const Instruction *> ValidUnrelocatedDefs;
453   // This set contains poisoned defs. They can be safely ignored during
454   // verification too.
455   DenseSet<const Value *> PoisonedDefs;
456 
457 public:
458   GCPtrTracker(const Function &F, const DominatorTree &DT,
459                const CFGDeadness &CD);
460 
461   bool hasLiveIncomingEdge(const PHINode *PN, const BasicBlock *InBB) const {
462     return CD.hasLiveIncomingEdge(PN, InBB);
463   }
464 
465   BasicBlockState *getBasicBlockState(const BasicBlock *BB);
466   const BasicBlockState *getBasicBlockState(const BasicBlock *BB) const;
467 
468   bool isValuePoisoned(const Value *V) const { return PoisonedDefs.count(V); }
469 
470   /// Traverse each BB of the function and call
471   /// InstructionVerifier::verifyInstruction for each possibly invalid
472   /// instruction.
473   /// It destructively modifies GCPtrTracker so it's passed via rvalue reference
474   /// in order to prohibit further usages of GCPtrTracker as it'll be in
475   /// inconsistent state.
476   static void verifyFunction(GCPtrTracker &&Tracker,
477                              InstructionVerifier &Verifier);
478 
479   /// Returns true for reachable and live blocks.
480   bool isMapped(const BasicBlock *BB) const {
481     return BlockMap.find(BB) != BlockMap.end();
482   }
483 
484 private:
485   /// Returns true if the instruction may be safely skipped during verification.
486   bool instructionMayBeSkipped(const Instruction *I) const;
487 
488   /// Iterates over all BBs from BlockMap and recalculates AvailableIn/Out for
489   /// each of them until it converges.
490   void recalculateBBsStates();
491 
492   /// Remove from Contribution all defs that legally produce unrelocated
493   /// pointers and saves them to ValidUnrelocatedDefs.
494   /// Though Contribution should belong to BBS it is passed separately with
495   /// different const-modifier in order to emphasize (and guarantee) that only
496   /// Contribution will be changed.
497   /// Returns true if Contribution was changed otherwise false.
498   bool removeValidUnrelocatedDefs(const BasicBlock *BB,
499                                   const BasicBlockState *BBS,
500                                   AvailableValueSet &Contribution);
501 
502   /// Gather all the definitions dominating the start of BB into Result. This is
503   /// simply the defs introduced by every dominating basic block and the
504   /// function arguments.
505   void gatherDominatingDefs(const BasicBlock *BB, AvailableValueSet &Result,
506                             const DominatorTree &DT);
507 
508   /// Compute the AvailableOut set for BB, based on the BasicBlockState BBS,
509   /// which is the BasicBlockState for BB.
510   /// ContributionChanged is set when the verifier runs for the first time
511   /// (in this case Contribution was changed from 'empty' to its initial state)
512   /// or when Contribution of this BB was changed since last computation.
513   static void transferBlock(const BasicBlock *BB, BasicBlockState &BBS,
514                             bool ContributionChanged);
515 
516   /// Model the effect of an instruction on the set of available values.
517   static void transferInstruction(const Instruction &I, bool &Cleared,
518                                   AvailableValueSet &Available);
519 };
520 
521 /// It is a visitor for GCPtrTracker::verifyFunction. It decides if the
522 /// instruction (which uses heap reference) is legal or not, given our safepoint
523 /// semantics.
524 class InstructionVerifier {
525   bool AnyInvalidUses = false;
526 
527 public:
528   void verifyInstruction(const GCPtrTracker *Tracker, const Instruction &I,
529                          const AvailableValueSet &AvailableSet);
530 
531   bool hasAnyInvalidUses() const { return AnyInvalidUses; }
532 
533 private:
534   void reportInvalidUse(const Value &V, const Instruction &I);
535 };
536 } // end anonymous namespace
537 
538 GCPtrTracker::GCPtrTracker(const Function &F, const DominatorTree &DT,
539                            const CFGDeadness &CD) : F(F), CD(CD) {
540   // Calculate Contribution of each live BB.
541   // Allocate BB states for live blocks.
542   for (const BasicBlock &BB : F)
543     if (!CD.isDeadBlock(&BB)) {
544       BasicBlockState *BBS = new (BSAllocator.Allocate()) BasicBlockState;
545       for (const auto &I : BB)
546         transferInstruction(I, BBS->Cleared, BBS->Contribution);
547       BlockMap[&BB] = BBS;
548     }
549 
550   // Initialize AvailableIn/Out sets of each BB using only information about
551   // dominating BBs.
552   for (auto &BBI : BlockMap) {
553     gatherDominatingDefs(BBI.first, BBI.second->AvailableIn, DT);
554     transferBlock(BBI.first, *BBI.second, true);
555   }
556 
557   // Simulate the flow of defs through the CFG and recalculate AvailableIn/Out
558   // sets of each BB until it converges. If any def is proved to be an
559   // unrelocated pointer, it will be removed from all BBSs.
560   recalculateBBsStates();
561 }
562 
563 BasicBlockState *GCPtrTracker::getBasicBlockState(const BasicBlock *BB) {
564   return BlockMap.lookup(BB);
565 }
566 
567 const BasicBlockState *GCPtrTracker::getBasicBlockState(
568     const BasicBlock *BB) const {
569   return const_cast<GCPtrTracker *>(this)->getBasicBlockState(BB);
570 }
571 
572 bool GCPtrTracker::instructionMayBeSkipped(const Instruction *I) const {
573   // Poisoned defs are skipped since they are always safe by itself by
574   // definition (for details see comment to this class).
575   return ValidUnrelocatedDefs.count(I) || PoisonedDefs.count(I);
576 }
577 
578 void GCPtrTracker::verifyFunction(GCPtrTracker &&Tracker,
579                                   InstructionVerifier &Verifier) {
580   // We need RPO here to a) report always the first error b) report errors in
581   // same order from run to run.
582   ReversePostOrderTraversal<const Function *> RPOT(&Tracker.F);
583   for (const BasicBlock *BB : RPOT) {
584     BasicBlockState *BBS = Tracker.getBasicBlockState(BB);
585     if (!BBS)
586       continue;
587 
588     // We destructively modify AvailableIn as we traverse the block instruction
589     // by instruction.
590     AvailableValueSet &AvailableSet = BBS->AvailableIn;
591     for (const Instruction &I : *BB) {
592       if (Tracker.instructionMayBeSkipped(&I))
593         continue; // This instruction shouldn't be added to AvailableSet.
594 
595       Verifier.verifyInstruction(&Tracker, I, AvailableSet);
596 
597       // Model the effect of current instruction on AvailableSet to keep the set
598       // relevant at each point of BB.
599       bool Cleared = false;
600       transferInstruction(I, Cleared, AvailableSet);
601       (void)Cleared;
602     }
603   }
604 }
605 
606 void GCPtrTracker::recalculateBBsStates() {
607   SetVector<const BasicBlock *> Worklist;
608   // TODO: This order is suboptimal, it's better to replace it with priority
609   // queue where priority is RPO number of BB.
610   for (auto &BBI : BlockMap)
611     Worklist.insert(BBI.first);
612 
613   // This loop iterates the AvailableIn/Out sets until it converges.
614   // The AvailableIn and AvailableOut sets decrease as we iterate.
615   while (!Worklist.empty()) {
616     const BasicBlock *BB = Worklist.pop_back_val();
617     BasicBlockState *BBS = getBasicBlockState(BB);
618     if (!BBS)
619       continue; // Ignore dead successors.
620 
621     size_t OldInCount = BBS->AvailableIn.size();
622     for (const_pred_iterator PredIt(BB), End(BB, true); PredIt != End; ++PredIt) {
623       const BasicBlock *PBB = *PredIt;
624       BasicBlockState *PBBS = getBasicBlockState(PBB);
625       if (PBBS && !CD.isDeadEdge(&CFGDeadness::getEdge(PredIt)))
626         set_intersect(BBS->AvailableIn, PBBS->AvailableOut);
627     }
628 
629     assert(OldInCount >= BBS->AvailableIn.size() && "invariant!");
630 
631     bool InputsChanged = OldInCount != BBS->AvailableIn.size();
632     bool ContributionChanged =
633         removeValidUnrelocatedDefs(BB, BBS, BBS->Contribution);
634     if (!InputsChanged && !ContributionChanged)
635       continue;
636 
637     size_t OldOutCount = BBS->AvailableOut.size();
638     transferBlock(BB, *BBS, ContributionChanged);
639     if (OldOutCount != BBS->AvailableOut.size()) {
640       assert(OldOutCount > BBS->AvailableOut.size() && "invariant!");
641       Worklist.insert(succ_begin(BB), succ_end(BB));
642     }
643   }
644 }
645 
646 bool GCPtrTracker::removeValidUnrelocatedDefs(const BasicBlock *BB,
647                                               const BasicBlockState *BBS,
648                                               AvailableValueSet &Contribution) {
649   assert(&BBS->Contribution == &Contribution &&
650          "Passed Contribution should be from the passed BasicBlockState!");
651   AvailableValueSet AvailableSet = BBS->AvailableIn;
652   bool ContributionChanged = false;
653   // For explanation why instructions are processed this way see
654   // "Rules of deriving" in the comment to this class.
655   for (const Instruction &I : *BB) {
656     bool ValidUnrelocatedPointerDef = false;
657     bool PoisonedPointerDef = false;
658     // TODO: `select` instructions should be handled here too.
659     if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
660       if (containsGCPtrType(PN->getType())) {
661         // If both is true, output is poisoned.
662         bool HasRelocatedInputs = false;
663         bool HasUnrelocatedInputs = false;
664         for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
665           const BasicBlock *InBB = PN->getIncomingBlock(i);
666           if (!isMapped(InBB) ||
667               !CD.hasLiveIncomingEdge(PN, InBB))
668             continue; // Skip dead block or dead edge.
669 
670           const Value *InValue = PN->getIncomingValue(i);
671 
672           if (isNotExclusivelyConstantDerived(InValue)) {
673             if (isValuePoisoned(InValue)) {
674               // If any of inputs is poisoned, output is always poisoned too.
675               HasRelocatedInputs = true;
676               HasUnrelocatedInputs = true;
677               break;
678             }
679             if (BlockMap[InBB]->AvailableOut.count(InValue))
680               HasRelocatedInputs = true;
681             else
682               HasUnrelocatedInputs = true;
683           }
684         }
685         if (HasUnrelocatedInputs) {
686           if (HasRelocatedInputs)
687             PoisonedPointerDef = true;
688           else
689             ValidUnrelocatedPointerDef = true;
690         }
691       }
692     } else if ((isa<GetElementPtrInst>(I) || isa<BitCastInst>(I)) &&
693                containsGCPtrType(I.getType())) {
694       // GEP/bitcast of unrelocated pointer is legal by itself but this def
695       // shouldn't appear in any AvailableSet.
696       for (const Value *V : I.operands())
697         if (containsGCPtrType(V->getType()) &&
698             isNotExclusivelyConstantDerived(V) && !AvailableSet.count(V)) {
699           if (isValuePoisoned(V))
700             PoisonedPointerDef = true;
701           else
702             ValidUnrelocatedPointerDef = true;
703           break;
704         }
705     }
706     assert(!(ValidUnrelocatedPointerDef && PoisonedPointerDef) &&
707            "Value cannot be both unrelocated and poisoned!");
708     if (ValidUnrelocatedPointerDef) {
709       // Remove def of unrelocated pointer from Contribution of this BB and
710       // trigger update of all its successors.
711       Contribution.erase(&I);
712       PoisonedDefs.erase(&I);
713       ValidUnrelocatedDefs.insert(&I);
714       LLVM_DEBUG(dbgs() << "Removing urelocated " << I
715                         << " from Contribution of " << BB->getName() << "\n");
716       ContributionChanged = true;
717     } else if (PoisonedPointerDef) {
718       // Mark pointer as poisoned, remove its def from Contribution and trigger
719       // update of all successors.
720       Contribution.erase(&I);
721       PoisonedDefs.insert(&I);
722       LLVM_DEBUG(dbgs() << "Removing poisoned " << I << " from Contribution of "
723                         << BB->getName() << "\n");
724       ContributionChanged = true;
725     } else {
726       bool Cleared = false;
727       transferInstruction(I, Cleared, AvailableSet);
728       (void)Cleared;
729     }
730   }
731   return ContributionChanged;
732 }
733 
734 void GCPtrTracker::gatherDominatingDefs(const BasicBlock *BB,
735                                         AvailableValueSet &Result,
736                                         const DominatorTree &DT) {
737   DomTreeNode *DTN = DT[const_cast<BasicBlock *>(BB)];
738 
739   assert(DTN && "Unreachable blocks are ignored");
740   while (DTN->getIDom()) {
741     DTN = DTN->getIDom();
742     auto BBS = getBasicBlockState(DTN->getBlock());
743     assert(BBS && "immediate dominator cannot be dead for a live block");
744     const auto &Defs = BBS->Contribution;
745     Result.insert(Defs.begin(), Defs.end());
746     // If this block is 'Cleared', then nothing LiveIn to this block can be
747     // available after this block completes.  Note: This turns out to be
748     // really important for reducing memory consuption of the initial available
749     // sets and thus peak memory usage by this verifier.
750     if (BBS->Cleared)
751       return;
752   }
753 
754   for (const Argument &A : BB->getParent()->args())
755     if (containsGCPtrType(A.getType()))
756       Result.insert(&A);
757 }
758 
759 void GCPtrTracker::transferBlock(const BasicBlock *BB, BasicBlockState &BBS,
760                                  bool ContributionChanged) {
761   const AvailableValueSet &AvailableIn = BBS.AvailableIn;
762   AvailableValueSet &AvailableOut = BBS.AvailableOut;
763 
764   if (BBS.Cleared) {
765     // AvailableOut will change only when Contribution changed.
766     if (ContributionChanged)
767       AvailableOut = BBS.Contribution;
768   } else {
769     // Otherwise, we need to reduce the AvailableOut set by things which are no
770     // longer in our AvailableIn
771     AvailableValueSet Temp = BBS.Contribution;
772     set_union(Temp, AvailableIn);
773     AvailableOut = std::move(Temp);
774   }
775 
776   LLVM_DEBUG(dbgs() << "Transfered block " << BB->getName() << " from ";
777              PrintValueSet(dbgs(), AvailableIn.begin(), AvailableIn.end());
778              dbgs() << " to ";
779              PrintValueSet(dbgs(), AvailableOut.begin(), AvailableOut.end());
780              dbgs() << "\n";);
781 }
782 
783 void GCPtrTracker::transferInstruction(const Instruction &I, bool &Cleared,
784                                        AvailableValueSet &Available) {
785   if (isa<GCStatepointInst>(I)) {
786     Cleared = true;
787     Available.clear();
788   } else if (containsGCPtrType(I.getType()))
789     Available.insert(&I);
790 }
791 
792 void InstructionVerifier::verifyInstruction(
793     const GCPtrTracker *Tracker, const Instruction &I,
794     const AvailableValueSet &AvailableSet) {
795   if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
796     if (containsGCPtrType(PN->getType()))
797       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
798         const BasicBlock *InBB = PN->getIncomingBlock(i);
799         const BasicBlockState *InBBS = Tracker->getBasicBlockState(InBB);
800         if (!InBBS ||
801             !Tracker->hasLiveIncomingEdge(PN, InBB))
802           continue; // Skip dead block or dead edge.
803 
804         const Value *InValue = PN->getIncomingValue(i);
805 
806         if (isNotExclusivelyConstantDerived(InValue) &&
807             !InBBS->AvailableOut.count(InValue))
808           reportInvalidUse(*InValue, *PN);
809       }
810   } else if (isa<CmpInst>(I) &&
811              containsGCPtrType(I.getOperand(0)->getType())) {
812     Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
813     enum BaseType baseTyLHS = getBaseType(LHS),
814                   baseTyRHS = getBaseType(RHS);
815 
816     // Returns true if LHS and RHS are unrelocated pointers and they are
817     // valid unrelocated uses.
818     auto hasValidUnrelocatedUse = [&AvailableSet, Tracker, baseTyLHS, baseTyRHS,
819                                    &LHS, &RHS] () {
820         // A cmp instruction has valid unrelocated pointer operands only if
821         // both operands are unrelocated pointers.
822         // In the comparison between two pointers, if one is an unrelocated
823         // use, the other *should be* an unrelocated use, for this
824         // instruction to contain valid unrelocated uses. This unrelocated
825         // use can be a null constant as well, or another unrelocated
826         // pointer.
827         if (AvailableSet.count(LHS) || AvailableSet.count(RHS))
828           return false;
829         // Constant pointers (that are not exclusively null) may have
830         // meaning in different VMs, so we cannot reorder the compare
831         // against constant pointers before the safepoint. In other words,
832         // comparison of an unrelocated use against a non-null constant
833         // maybe invalid.
834         if ((baseTyLHS == BaseType::ExclusivelySomeConstant &&
835              baseTyRHS == BaseType::NonConstant) ||
836             (baseTyLHS == BaseType::NonConstant &&
837              baseTyRHS == BaseType::ExclusivelySomeConstant))
838           return false;
839 
840         // If one of pointers is poisoned and other is not exclusively derived
841         // from null it is an invalid expression: it produces poisoned result
842         // and unless we want to track all defs (not only gc pointers) the only
843         // option is to prohibit such instructions.
844         if ((Tracker->isValuePoisoned(LHS) && baseTyRHS != ExclusivelyNull) ||
845             (Tracker->isValuePoisoned(RHS) && baseTyLHS != ExclusivelyNull))
846             return false;
847 
848         // All other cases are valid cases enumerated below:
849         // 1. Comparison between an exclusively derived null pointer and a
850         // constant base pointer.
851         // 2. Comparison between an exclusively derived null pointer and a
852         // non-constant unrelocated base pointer.
853         // 3. Comparison between 2 unrelocated pointers.
854         // 4. Comparison between a pointer exclusively derived from null and a
855         // non-constant poisoned pointer.
856         return true;
857     };
858     if (!hasValidUnrelocatedUse()) {
859       // Print out all non-constant derived pointers that are unrelocated
860       // uses, which are invalid.
861       if (baseTyLHS == BaseType::NonConstant && !AvailableSet.count(LHS))
862         reportInvalidUse(*LHS, I);
863       if (baseTyRHS == BaseType::NonConstant && !AvailableSet.count(RHS))
864         reportInvalidUse(*RHS, I);
865     }
866   } else {
867     for (const Value *V : I.operands())
868       if (containsGCPtrType(V->getType()) &&
869           isNotExclusivelyConstantDerived(V) && !AvailableSet.count(V))
870         reportInvalidUse(*V, I);
871   }
872 }
873 
874 void InstructionVerifier::reportInvalidUse(const Value &V,
875                                            const Instruction &I) {
876   errs() << "Illegal use of unrelocated value found!\n";
877   errs() << "Def: " << V << "\n";
878   errs() << "Use: " << I << "\n";
879   if (!PrintOnly)
880     abort();
881   AnyInvalidUses = true;
882 }
883 
884 static void Verify(const Function &F, const DominatorTree &DT,
885                    const CFGDeadness &CD) {
886   LLVM_DEBUG(dbgs() << "Verifying gc pointers in function: " << F.getName()
887                     << "\n");
888   if (PrintOnly)
889     dbgs() << "Verifying gc pointers in function: " << F.getName() << "\n";
890 
891   GCPtrTracker Tracker(F, DT, CD);
892 
893   // We now have all the information we need to decide if the use of a heap
894   // reference is legal or not, given our safepoint semantics.
895 
896   InstructionVerifier Verifier;
897   GCPtrTracker::verifyFunction(std::move(Tracker), Verifier);
898 
899   if (PrintOnly && !Verifier.hasAnyInvalidUses()) {
900     dbgs() << "No illegal uses found by SafepointIRVerifier in: " << F.getName()
901            << "\n";
902   }
903 }
904