1 //===- Type.cpp - Implement the Type class --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Type class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Type.h"
14 #include "LLVMContextImpl.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/StringMap.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/IR/Value.h"
26 #include "llvm/Support/Casting.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/Support/TypeSize.h"
30 #include <cassert>
31 #include <utility>
32 
33 using namespace llvm;
34 
35 //===----------------------------------------------------------------------===//
36 //                         Type Class Implementation
37 //===----------------------------------------------------------------------===//
38 
39 Type *Type::getPrimitiveType(LLVMContext &C, TypeID IDNumber) {
40   switch (IDNumber) {
41   case VoidTyID      : return getVoidTy(C);
42   case HalfTyID      : return getHalfTy(C);
43   case FloatTyID     : return getFloatTy(C);
44   case DoubleTyID    : return getDoubleTy(C);
45   case X86_FP80TyID  : return getX86_FP80Ty(C);
46   case FP128TyID     : return getFP128Ty(C);
47   case PPC_FP128TyID : return getPPC_FP128Ty(C);
48   case LabelTyID     : return getLabelTy(C);
49   case MetadataTyID  : return getMetadataTy(C);
50   case X86_MMXTyID   : return getX86_MMXTy(C);
51   case TokenTyID     : return getTokenTy(C);
52   default:
53     return nullptr;
54   }
55 }
56 
57 bool Type::isIntegerTy(unsigned Bitwidth) const {
58   return isIntegerTy() && cast<IntegerType>(this)->getBitWidth() == Bitwidth;
59 }
60 
61 bool Type::canLosslesslyBitCastTo(Type *Ty) const {
62   // Identity cast means no change so return true
63   if (this == Ty)
64     return true;
65 
66   // They are not convertible unless they are at least first class types
67   if (!this->isFirstClassType() || !Ty->isFirstClassType())
68     return false;
69 
70   // Vector -> Vector conversions are always lossless if the two vector types
71   // have the same size, otherwise not.  Also, 64-bit vector types can be
72   // converted to x86mmx.
73   if (auto *thisPTy = dyn_cast<VectorType>(this)) {
74     if (auto *thatPTy = dyn_cast<VectorType>(Ty))
75       return thisPTy->getBitWidth() == thatPTy->getBitWidth();
76     if (Ty->getTypeID() == Type::X86_MMXTyID &&
77         thisPTy->getBitWidth() == 64)
78       return true;
79   }
80 
81   if (this->getTypeID() == Type::X86_MMXTyID)
82     if (auto *thatPTy = dyn_cast<VectorType>(Ty))
83       if (thatPTy->getBitWidth() == 64)
84         return true;
85 
86   // At this point we have only various mismatches of the first class types
87   // remaining and ptr->ptr. Just select the lossless conversions. Everything
88   // else is not lossless. Conservatively assume we can't losslessly convert
89   // between pointers with different address spaces.
90   if (auto *PTy = dyn_cast<PointerType>(this)) {
91     if (auto *OtherPTy = dyn_cast<PointerType>(Ty))
92       return PTy->getAddressSpace() == OtherPTy->getAddressSpace();
93     return false;
94   }
95   return false;  // Other types have no identity values
96 }
97 
98 bool Type::isEmptyTy() const {
99   if (auto *ATy = dyn_cast<ArrayType>(this)) {
100     unsigned NumElements = ATy->getNumElements();
101     return NumElements == 0 || ATy->getElementType()->isEmptyTy();
102   }
103 
104   if (auto *STy = dyn_cast<StructType>(this)) {
105     unsigned NumElements = STy->getNumElements();
106     for (unsigned i = 0; i < NumElements; ++i)
107       if (!STy->getElementType(i)->isEmptyTy())
108         return false;
109     return true;
110   }
111 
112   return false;
113 }
114 
115 TypeSize Type::getPrimitiveSizeInBits() const {
116   switch (getTypeID()) {
117   case Type::HalfTyID: return TypeSize::Fixed(16);
118   case Type::FloatTyID: return TypeSize::Fixed(32);
119   case Type::DoubleTyID: return TypeSize::Fixed(64);
120   case Type::X86_FP80TyID: return TypeSize::Fixed(80);
121   case Type::FP128TyID: return TypeSize::Fixed(128);
122   case Type::PPC_FP128TyID: return TypeSize::Fixed(128);
123   case Type::X86_MMXTyID: return TypeSize::Fixed(64);
124   case Type::IntegerTyID:
125     return TypeSize::Fixed(cast<IntegerType>(this)->getBitWidth());
126   case Type::VectorTyID: {
127     const VectorType *VTy = cast<VectorType>(this);
128     return TypeSize(VTy->getBitWidth(), VTy->isScalable());
129   }
130   default: return TypeSize::Fixed(0);
131   }
132 }
133 
134 unsigned Type::getScalarSizeInBits() const {
135   return getScalarType()->getPrimitiveSizeInBits();
136 }
137 
138 int Type::getFPMantissaWidth() const {
139   if (auto *VTy = dyn_cast<VectorType>(this))
140     return VTy->getElementType()->getFPMantissaWidth();
141   assert(isFloatingPointTy() && "Not a floating point type!");
142   if (getTypeID() == HalfTyID) return 11;
143   if (getTypeID() == FloatTyID) return 24;
144   if (getTypeID() == DoubleTyID) return 53;
145   if (getTypeID() == X86_FP80TyID) return 64;
146   if (getTypeID() == FP128TyID) return 113;
147   assert(getTypeID() == PPC_FP128TyID && "unknown fp type");
148   return -1;
149 }
150 
151 bool Type::isSizedDerivedType(SmallPtrSetImpl<Type*> *Visited) const {
152   if (auto *ATy = dyn_cast<ArrayType>(this))
153     return ATy->getElementType()->isSized(Visited);
154 
155   if (auto *VTy = dyn_cast<VectorType>(this))
156     return VTy->getElementType()->isSized(Visited);
157 
158   return cast<StructType>(this)->isSized(Visited);
159 }
160 
161 //===----------------------------------------------------------------------===//
162 //                          Primitive 'Type' data
163 //===----------------------------------------------------------------------===//
164 
165 Type *Type::getVoidTy(LLVMContext &C) { return &C.pImpl->VoidTy; }
166 Type *Type::getLabelTy(LLVMContext &C) { return &C.pImpl->LabelTy; }
167 Type *Type::getHalfTy(LLVMContext &C) { return &C.pImpl->HalfTy; }
168 Type *Type::getFloatTy(LLVMContext &C) { return &C.pImpl->FloatTy; }
169 Type *Type::getDoubleTy(LLVMContext &C) { return &C.pImpl->DoubleTy; }
170 Type *Type::getMetadataTy(LLVMContext &C) { return &C.pImpl->MetadataTy; }
171 Type *Type::getTokenTy(LLVMContext &C) { return &C.pImpl->TokenTy; }
172 Type *Type::getX86_FP80Ty(LLVMContext &C) { return &C.pImpl->X86_FP80Ty; }
173 Type *Type::getFP128Ty(LLVMContext &C) { return &C.pImpl->FP128Ty; }
174 Type *Type::getPPC_FP128Ty(LLVMContext &C) { return &C.pImpl->PPC_FP128Ty; }
175 Type *Type::getX86_MMXTy(LLVMContext &C) { return &C.pImpl->X86_MMXTy; }
176 
177 IntegerType *Type::getInt1Ty(LLVMContext &C) { return &C.pImpl->Int1Ty; }
178 IntegerType *Type::getInt8Ty(LLVMContext &C) { return &C.pImpl->Int8Ty; }
179 IntegerType *Type::getInt16Ty(LLVMContext &C) { return &C.pImpl->Int16Ty; }
180 IntegerType *Type::getInt32Ty(LLVMContext &C) { return &C.pImpl->Int32Ty; }
181 IntegerType *Type::getInt64Ty(LLVMContext &C) { return &C.pImpl->Int64Ty; }
182 IntegerType *Type::getInt128Ty(LLVMContext &C) { return &C.pImpl->Int128Ty; }
183 
184 IntegerType *Type::getIntNTy(LLVMContext &C, unsigned N) {
185   return IntegerType::get(C, N);
186 }
187 
188 PointerType *Type::getHalfPtrTy(LLVMContext &C, unsigned AS) {
189   return getHalfTy(C)->getPointerTo(AS);
190 }
191 
192 PointerType *Type::getFloatPtrTy(LLVMContext &C, unsigned AS) {
193   return getFloatTy(C)->getPointerTo(AS);
194 }
195 
196 PointerType *Type::getDoublePtrTy(LLVMContext &C, unsigned AS) {
197   return getDoubleTy(C)->getPointerTo(AS);
198 }
199 
200 PointerType *Type::getX86_FP80PtrTy(LLVMContext &C, unsigned AS) {
201   return getX86_FP80Ty(C)->getPointerTo(AS);
202 }
203 
204 PointerType *Type::getFP128PtrTy(LLVMContext &C, unsigned AS) {
205   return getFP128Ty(C)->getPointerTo(AS);
206 }
207 
208 PointerType *Type::getPPC_FP128PtrTy(LLVMContext &C, unsigned AS) {
209   return getPPC_FP128Ty(C)->getPointerTo(AS);
210 }
211 
212 PointerType *Type::getX86_MMXPtrTy(LLVMContext &C, unsigned AS) {
213   return getX86_MMXTy(C)->getPointerTo(AS);
214 }
215 
216 PointerType *Type::getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS) {
217   return getIntNTy(C, N)->getPointerTo(AS);
218 }
219 
220 PointerType *Type::getInt1PtrTy(LLVMContext &C, unsigned AS) {
221   return getInt1Ty(C)->getPointerTo(AS);
222 }
223 
224 PointerType *Type::getInt8PtrTy(LLVMContext &C, unsigned AS) {
225   return getInt8Ty(C)->getPointerTo(AS);
226 }
227 
228 PointerType *Type::getInt16PtrTy(LLVMContext &C, unsigned AS) {
229   return getInt16Ty(C)->getPointerTo(AS);
230 }
231 
232 PointerType *Type::getInt32PtrTy(LLVMContext &C, unsigned AS) {
233   return getInt32Ty(C)->getPointerTo(AS);
234 }
235 
236 PointerType *Type::getInt64PtrTy(LLVMContext &C, unsigned AS) {
237   return getInt64Ty(C)->getPointerTo(AS);
238 }
239 
240 //===----------------------------------------------------------------------===//
241 //                       IntegerType Implementation
242 //===----------------------------------------------------------------------===//
243 
244 IntegerType *IntegerType::get(LLVMContext &C, unsigned NumBits) {
245   assert(NumBits >= MIN_INT_BITS && "bitwidth too small");
246   assert(NumBits <= MAX_INT_BITS && "bitwidth too large");
247 
248   // Check for the built-in integer types
249   switch (NumBits) {
250   case   1: return cast<IntegerType>(Type::getInt1Ty(C));
251   case   8: return cast<IntegerType>(Type::getInt8Ty(C));
252   case  16: return cast<IntegerType>(Type::getInt16Ty(C));
253   case  32: return cast<IntegerType>(Type::getInt32Ty(C));
254   case  64: return cast<IntegerType>(Type::getInt64Ty(C));
255   case 128: return cast<IntegerType>(Type::getInt128Ty(C));
256   default:
257     break;
258   }
259 
260   IntegerType *&Entry = C.pImpl->IntegerTypes[NumBits];
261 
262   if (!Entry)
263     Entry = new (C.pImpl->Alloc) IntegerType(C, NumBits);
264 
265   return Entry;
266 }
267 
268 bool IntegerType::isPowerOf2ByteWidth() const {
269   unsigned BitWidth = getBitWidth();
270   return (BitWidth > 7) && isPowerOf2_32(BitWidth);
271 }
272 
273 APInt IntegerType::getMask() const {
274   return APInt::getAllOnesValue(getBitWidth());
275 }
276 
277 //===----------------------------------------------------------------------===//
278 //                       FunctionType Implementation
279 //===----------------------------------------------------------------------===//
280 
281 FunctionType::FunctionType(Type *Result, ArrayRef<Type*> Params,
282                            bool IsVarArgs)
283   : Type(Result->getContext(), FunctionTyID) {
284   Type **SubTys = reinterpret_cast<Type**>(this+1);
285   assert(isValidReturnType(Result) && "invalid return type for function");
286   setSubclassData(IsVarArgs);
287 
288   SubTys[0] = Result;
289 
290   for (unsigned i = 0, e = Params.size(); i != e; ++i) {
291     assert(isValidArgumentType(Params[i]) &&
292            "Not a valid type for function argument!");
293     SubTys[i+1] = Params[i];
294   }
295 
296   ContainedTys = SubTys;
297   NumContainedTys = Params.size() + 1; // + 1 for result type
298 }
299 
300 // This is the factory function for the FunctionType class.
301 FunctionType *FunctionType::get(Type *ReturnType,
302                                 ArrayRef<Type*> Params, bool isVarArg) {
303   LLVMContextImpl *pImpl = ReturnType->getContext().pImpl;
304   const FunctionTypeKeyInfo::KeyTy Key(ReturnType, Params, isVarArg);
305   FunctionType *FT;
306   // Since we only want to allocate a fresh function type in case none is found
307   // and we don't want to perform two lookups (one for checking if existent and
308   // one for inserting the newly allocated one), here we instead lookup based on
309   // Key and update the reference to the function type in-place to a newly
310   // allocated one if not found.
311   auto Insertion = pImpl->FunctionTypes.insert_as(nullptr, Key);
312   if (Insertion.second) {
313     // The function type was not found. Allocate one and update FunctionTypes
314     // in-place.
315     FT = (FunctionType *)pImpl->Alloc.Allocate(
316         sizeof(FunctionType) + sizeof(Type *) * (Params.size() + 1),
317         alignof(FunctionType));
318     new (FT) FunctionType(ReturnType, Params, isVarArg);
319     *Insertion.first = FT;
320   } else {
321     // The function type was found. Just return it.
322     FT = *Insertion.first;
323   }
324   return FT;
325 }
326 
327 FunctionType *FunctionType::get(Type *Result, bool isVarArg) {
328   return get(Result, None, isVarArg);
329 }
330 
331 bool FunctionType::isValidReturnType(Type *RetTy) {
332   return !RetTy->isFunctionTy() && !RetTy->isLabelTy() &&
333   !RetTy->isMetadataTy();
334 }
335 
336 bool FunctionType::isValidArgumentType(Type *ArgTy) {
337   return ArgTy->isFirstClassType();
338 }
339 
340 //===----------------------------------------------------------------------===//
341 //                       StructType Implementation
342 //===----------------------------------------------------------------------===//
343 
344 // Primitive Constructors.
345 
346 StructType *StructType::get(LLVMContext &Context, ArrayRef<Type*> ETypes,
347                             bool isPacked) {
348   LLVMContextImpl *pImpl = Context.pImpl;
349   const AnonStructTypeKeyInfo::KeyTy Key(ETypes, isPacked);
350 
351   StructType *ST;
352   // Since we only want to allocate a fresh struct type in case none is found
353   // and we don't want to perform two lookups (one for checking if existent and
354   // one for inserting the newly allocated one), here we instead lookup based on
355   // Key and update the reference to the struct type in-place to a newly
356   // allocated one if not found.
357   auto Insertion = pImpl->AnonStructTypes.insert_as(nullptr, Key);
358   if (Insertion.second) {
359     // The struct type was not found. Allocate one and update AnonStructTypes
360     // in-place.
361     ST = new (Context.pImpl->Alloc) StructType(Context);
362     ST->setSubclassData(SCDB_IsLiteral);  // Literal struct.
363     ST->setBody(ETypes, isPacked);
364     *Insertion.first = ST;
365   } else {
366     // The struct type was found. Just return it.
367     ST = *Insertion.first;
368   }
369 
370   return ST;
371 }
372 
373 void StructType::setBody(ArrayRef<Type*> Elements, bool isPacked) {
374   assert(isOpaque() && "Struct body already set!");
375 
376   setSubclassData(getSubclassData() | SCDB_HasBody);
377   if (isPacked)
378     setSubclassData(getSubclassData() | SCDB_Packed);
379 
380   NumContainedTys = Elements.size();
381 
382   if (Elements.empty()) {
383     ContainedTys = nullptr;
384     return;
385   }
386 
387   ContainedTys = Elements.copy(getContext().pImpl->Alloc).data();
388 }
389 
390 void StructType::setName(StringRef Name) {
391   if (Name == getName()) return;
392 
393   StringMap<StructType *> &SymbolTable = getContext().pImpl->NamedStructTypes;
394 
395   using EntryTy = StringMap<StructType *>::MapEntryTy;
396 
397   // If this struct already had a name, remove its symbol table entry. Don't
398   // delete the data yet because it may be part of the new name.
399   if (SymbolTableEntry)
400     SymbolTable.remove((EntryTy *)SymbolTableEntry);
401 
402   // If this is just removing the name, we're done.
403   if (Name.empty()) {
404     if (SymbolTableEntry) {
405       // Delete the old string data.
406       ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
407       SymbolTableEntry = nullptr;
408     }
409     return;
410   }
411 
412   // Look up the entry for the name.
413   auto IterBool =
414       getContext().pImpl->NamedStructTypes.insert(std::make_pair(Name, this));
415 
416   // While we have a name collision, try a random rename.
417   if (!IterBool.second) {
418     SmallString<64> TempStr(Name);
419     TempStr.push_back('.');
420     raw_svector_ostream TmpStream(TempStr);
421     unsigned NameSize = Name.size();
422 
423     do {
424       TempStr.resize(NameSize + 1);
425       TmpStream << getContext().pImpl->NamedStructTypesUniqueID++;
426 
427       IterBool = getContext().pImpl->NamedStructTypes.insert(
428           std::make_pair(TmpStream.str(), this));
429     } while (!IterBool.second);
430   }
431 
432   // Delete the old string data.
433   if (SymbolTableEntry)
434     ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
435   SymbolTableEntry = &*IterBool.first;
436 }
437 
438 //===----------------------------------------------------------------------===//
439 // StructType Helper functions.
440 
441 StructType *StructType::create(LLVMContext &Context, StringRef Name) {
442   StructType *ST = new (Context.pImpl->Alloc) StructType(Context);
443   if (!Name.empty())
444     ST->setName(Name);
445   return ST;
446 }
447 
448 StructType *StructType::get(LLVMContext &Context, bool isPacked) {
449   return get(Context, None, isPacked);
450 }
451 
452 StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements,
453                                StringRef Name, bool isPacked) {
454   StructType *ST = create(Context, Name);
455   ST->setBody(Elements, isPacked);
456   return ST;
457 }
458 
459 StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements) {
460   return create(Context, Elements, StringRef());
461 }
462 
463 StructType *StructType::create(LLVMContext &Context) {
464   return create(Context, StringRef());
465 }
466 
467 StructType *StructType::create(ArrayRef<Type*> Elements, StringRef Name,
468                                bool isPacked) {
469   assert(!Elements.empty() &&
470          "This method may not be invoked with an empty list");
471   return create(Elements[0]->getContext(), Elements, Name, isPacked);
472 }
473 
474 StructType *StructType::create(ArrayRef<Type*> Elements) {
475   assert(!Elements.empty() &&
476          "This method may not be invoked with an empty list");
477   return create(Elements[0]->getContext(), Elements, StringRef());
478 }
479 
480 bool StructType::isSized(SmallPtrSetImpl<Type*> *Visited) const {
481   if ((getSubclassData() & SCDB_IsSized) != 0)
482     return true;
483   if (isOpaque())
484     return false;
485 
486   if (Visited && !Visited->insert(const_cast<StructType*>(this)).second)
487     return false;
488 
489   // Okay, our struct is sized if all of the elements are, but if one of the
490   // elements is opaque, the struct isn't sized *yet*, but may become sized in
491   // the future, so just bail out without caching.
492   for (element_iterator I = element_begin(), E = element_end(); I != E; ++I)
493     if (!(*I)->isSized(Visited))
494       return false;
495 
496   // Here we cheat a bit and cast away const-ness. The goal is to memoize when
497   // we find a sized type, as types can only move from opaque to sized, not the
498   // other way.
499   const_cast<StructType*>(this)->setSubclassData(
500     getSubclassData() | SCDB_IsSized);
501   return true;
502 }
503 
504 StringRef StructType::getName() const {
505   assert(!isLiteral() && "Literal structs never have names");
506   if (!SymbolTableEntry) return StringRef();
507 
508   return ((StringMapEntry<StructType*> *)SymbolTableEntry)->getKey();
509 }
510 
511 bool StructType::isValidElementType(Type *ElemTy) {
512   if (auto *VTy = dyn_cast<VectorType>(ElemTy))
513     return !VTy->isScalable();
514   return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
515          !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy() &&
516          !ElemTy->isTokenTy();
517 }
518 
519 bool StructType::isLayoutIdentical(StructType *Other) const {
520   if (this == Other) return true;
521 
522   if (isPacked() != Other->isPacked())
523     return false;
524 
525   return elements() == Other->elements();
526 }
527 
528 StructType *Module::getTypeByName(StringRef Name) const {
529   return getContext().pImpl->NamedStructTypes.lookup(Name);
530 }
531 
532 //===----------------------------------------------------------------------===//
533 //                       CompositeType Implementation
534 //===----------------------------------------------------------------------===//
535 
536 Type *CompositeType::getTypeAtIndex(const Value *V) const {
537   if (auto *STy = dyn_cast<StructType>(this)) {
538     unsigned Idx =
539       (unsigned)cast<Constant>(V)->getUniqueInteger().getZExtValue();
540     assert(indexValid(Idx) && "Invalid structure index!");
541     return STy->getElementType(Idx);
542   }
543 
544   return cast<SequentialType>(this)->getElementType();
545 }
546 
547 Type *CompositeType::getTypeAtIndex(unsigned Idx) const{
548   if (auto *STy = dyn_cast<StructType>(this)) {
549     assert(indexValid(Idx) && "Invalid structure index!");
550     return STy->getElementType(Idx);
551   }
552 
553   return cast<SequentialType>(this)->getElementType();
554 }
555 
556 bool CompositeType::indexValid(const Value *V) const {
557   if (auto *STy = dyn_cast<StructType>(this)) {
558     // Structure indexes require (vectors of) 32-bit integer constants.  In the
559     // vector case all of the indices must be equal.
560     if (!V->getType()->isIntOrIntVectorTy(32))
561       return false;
562     const Constant *C = dyn_cast<Constant>(V);
563     if (C && V->getType()->isVectorTy())
564       C = C->getSplatValue();
565     const ConstantInt *CU = dyn_cast_or_null<ConstantInt>(C);
566     return CU && CU->getZExtValue() < STy->getNumElements();
567   }
568 
569   // Sequential types can be indexed by any integer.
570   return V->getType()->isIntOrIntVectorTy();
571 }
572 
573 bool CompositeType::indexValid(unsigned Idx) const {
574   if (auto *STy = dyn_cast<StructType>(this))
575     return Idx < STy->getNumElements();
576   // Sequential types can be indexed by any integer.
577   return true;
578 }
579 
580 //===----------------------------------------------------------------------===//
581 //                           ArrayType Implementation
582 //===----------------------------------------------------------------------===//
583 
584 ArrayType::ArrayType(Type *ElType, uint64_t NumEl)
585   : SequentialType(ArrayTyID, ElType, NumEl) {}
586 
587 ArrayType *ArrayType::get(Type *ElementType, uint64_t NumElements) {
588   assert(isValidElementType(ElementType) && "Invalid type for array element!");
589 
590   LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
591   ArrayType *&Entry =
592     pImpl->ArrayTypes[std::make_pair(ElementType, NumElements)];
593 
594   if (!Entry)
595     Entry = new (pImpl->Alloc) ArrayType(ElementType, NumElements);
596   return Entry;
597 }
598 
599 bool ArrayType::isValidElementType(Type *ElemTy) {
600   if (auto *VTy = dyn_cast<VectorType>(ElemTy))
601     return !VTy->isScalable();
602   return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
603          !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy() &&
604          !ElemTy->isTokenTy();
605 }
606 
607 //===----------------------------------------------------------------------===//
608 //                          VectorType Implementation
609 //===----------------------------------------------------------------------===//
610 
611 VectorType::VectorType(Type *ElType, ElementCount EC)
612   : SequentialType(VectorTyID, ElType, EC.Min), Scalable(EC.Scalable) {}
613 
614 VectorType *VectorType::get(Type *ElementType, ElementCount EC) {
615   assert(EC.Min > 0 && "#Elements of a VectorType must be greater than 0");
616   assert(isValidElementType(ElementType) && "Element type of a VectorType must "
617                                             "be an integer, floating point, or "
618                                             "pointer type.");
619 
620   LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
621   VectorType *&Entry = ElementType->getContext().pImpl
622                                  ->VectorTypes[std::make_pair(ElementType, EC)];
623   if (!Entry)
624     Entry = new (pImpl->Alloc) VectorType(ElementType, EC);
625   return Entry;
626 }
627 
628 bool VectorType::isValidElementType(Type *ElemTy) {
629   return ElemTy->isIntegerTy() || ElemTy->isFloatingPointTy() ||
630     ElemTy->isPointerTy();
631 }
632 
633 //===----------------------------------------------------------------------===//
634 //                         PointerType Implementation
635 //===----------------------------------------------------------------------===//
636 
637 PointerType *PointerType::get(Type *EltTy, unsigned AddressSpace) {
638   assert(EltTy && "Can't get a pointer to <null> type!");
639   assert(isValidElementType(EltTy) && "Invalid type for pointer element!");
640 
641   LLVMContextImpl *CImpl = EltTy->getContext().pImpl;
642 
643   // Since AddressSpace #0 is the common case, we special case it.
644   PointerType *&Entry = AddressSpace == 0 ? CImpl->PointerTypes[EltTy]
645      : CImpl->ASPointerTypes[std::make_pair(EltTy, AddressSpace)];
646 
647   if (!Entry)
648     Entry = new (CImpl->Alloc) PointerType(EltTy, AddressSpace);
649   return Entry;
650 }
651 
652 PointerType::PointerType(Type *E, unsigned AddrSpace)
653   : Type(E->getContext(), PointerTyID), PointeeTy(E) {
654   ContainedTys = &PointeeTy;
655   NumContainedTys = 1;
656   setSubclassData(AddrSpace);
657 }
658 
659 PointerType *Type::getPointerTo(unsigned addrs) const {
660   return PointerType::get(const_cast<Type*>(this), addrs);
661 }
662 
663 bool PointerType::isValidElementType(Type *ElemTy) {
664   return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
665          !ElemTy->isMetadataTy() && !ElemTy->isTokenTy();
666 }
667 
668 bool PointerType::isLoadableOrStorableType(Type *ElemTy) {
669   return isValidElementType(ElemTy) && !ElemTy->isFunctionTy();
670 }
671