1 //===- Type.cpp - Implement the Type class --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Type class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Type.h"
14 #include "LLVMContextImpl.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/StringMap.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/IR/Value.h"
26 #include "llvm/Support/Casting.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/TypeSize.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include <cassert>
31 #include <utility>
32 
33 using namespace llvm;
34 
35 //===----------------------------------------------------------------------===//
36 //                         Type Class Implementation
37 //===----------------------------------------------------------------------===//
38 
39 Type *Type::getPrimitiveType(LLVMContext &C, TypeID IDNumber) {
40   switch (IDNumber) {
41   case VoidTyID      : return getVoidTy(C);
42   case HalfTyID      : return getHalfTy(C);
43   case BFloatTyID    : return getBFloatTy(C);
44   case FloatTyID     : return getFloatTy(C);
45   case DoubleTyID    : return getDoubleTy(C);
46   case X86_FP80TyID  : return getX86_FP80Ty(C);
47   case FP128TyID     : return getFP128Ty(C);
48   case PPC_FP128TyID : return getPPC_FP128Ty(C);
49   case LabelTyID     : return getLabelTy(C);
50   case MetadataTyID  : return getMetadataTy(C);
51   case X86_MMXTyID   : return getX86_MMXTy(C);
52   case X86_AMXTyID   : return getX86_AMXTy(C);
53   case TokenTyID     : return getTokenTy(C);
54   default:
55     return nullptr;
56   }
57 }
58 
59 bool Type::isIntegerTy(unsigned Bitwidth) const {
60   return isIntegerTy() && cast<IntegerType>(this)->getBitWidth() == Bitwidth;
61 }
62 
63 bool Type::isOpaquePointerTy() const {
64   if (auto *PTy = dyn_cast<PointerType>(this))
65     return PTy->isOpaque();
66   return false;
67 }
68 
69 bool Type::canLosslesslyBitCastTo(Type *Ty) const {
70   // Identity cast means no change so return true
71   if (this == Ty)
72     return true;
73 
74   // They are not convertible unless they are at least first class types
75   if (!this->isFirstClassType() || !Ty->isFirstClassType())
76     return false;
77 
78   // Vector -> Vector conversions are always lossless if the two vector types
79   // have the same size, otherwise not.
80   if (isa<VectorType>(this) && isa<VectorType>(Ty))
81     return getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits();
82 
83   //  64-bit fixed width vector types can be losslessly converted to x86mmx.
84   if (((isa<FixedVectorType>(this)) && Ty->isX86_MMXTy()) &&
85       getPrimitiveSizeInBits().getFixedSize() == 64)
86     return true;
87   if ((isX86_MMXTy() && isa<FixedVectorType>(Ty)) &&
88       Ty->getPrimitiveSizeInBits().getFixedSize() == 64)
89     return true;
90 
91   //  8192-bit fixed width vector types can be losslessly converted to x86amx.
92   if (((isa<FixedVectorType>(this)) && Ty->isX86_AMXTy()) &&
93       getPrimitiveSizeInBits().getFixedSize() == 8192)
94     return true;
95   if ((isX86_AMXTy() && isa<FixedVectorType>(Ty)) &&
96       Ty->getPrimitiveSizeInBits().getFixedSize() == 8192)
97     return true;
98 
99   // At this point we have only various mismatches of the first class types
100   // remaining and ptr->ptr. Just select the lossless conversions. Everything
101   // else is not lossless. Conservatively assume we can't losslessly convert
102   // between pointers with different address spaces.
103   if (auto *PTy = dyn_cast<PointerType>(this)) {
104     if (auto *OtherPTy = dyn_cast<PointerType>(Ty))
105       return PTy->getAddressSpace() == OtherPTy->getAddressSpace();
106     return false;
107   }
108   return false;  // Other types have no identity values
109 }
110 
111 bool Type::isEmptyTy() const {
112   if (auto *ATy = dyn_cast<ArrayType>(this)) {
113     unsigned NumElements = ATy->getNumElements();
114     return NumElements == 0 || ATy->getElementType()->isEmptyTy();
115   }
116 
117   if (auto *STy = dyn_cast<StructType>(this)) {
118     unsigned NumElements = STy->getNumElements();
119     for (unsigned i = 0; i < NumElements; ++i)
120       if (!STy->getElementType(i)->isEmptyTy())
121         return false;
122     return true;
123   }
124 
125   return false;
126 }
127 
128 TypeSize Type::getPrimitiveSizeInBits() const {
129   switch (getTypeID()) {
130   case Type::HalfTyID: return TypeSize::Fixed(16);
131   case Type::BFloatTyID: return TypeSize::Fixed(16);
132   case Type::FloatTyID: return TypeSize::Fixed(32);
133   case Type::DoubleTyID: return TypeSize::Fixed(64);
134   case Type::X86_FP80TyID: return TypeSize::Fixed(80);
135   case Type::FP128TyID: return TypeSize::Fixed(128);
136   case Type::PPC_FP128TyID: return TypeSize::Fixed(128);
137   case Type::X86_MMXTyID: return TypeSize::Fixed(64);
138   case Type::X86_AMXTyID: return TypeSize::Fixed(8192);
139   case Type::IntegerTyID:
140     return TypeSize::Fixed(cast<IntegerType>(this)->getBitWidth());
141   case Type::FixedVectorTyID:
142   case Type::ScalableVectorTyID: {
143     const VectorType *VTy = cast<VectorType>(this);
144     ElementCount EC = VTy->getElementCount();
145     TypeSize ETS = VTy->getElementType()->getPrimitiveSizeInBits();
146     assert(!ETS.isScalable() && "Vector type should have fixed-width elements");
147     return {ETS.getFixedSize() * EC.getKnownMinValue(), EC.isScalable()};
148   }
149   default: return TypeSize::Fixed(0);
150   }
151 }
152 
153 unsigned Type::getScalarSizeInBits() const {
154   // It is safe to assume that the scalar types have a fixed size.
155   return getScalarType()->getPrimitiveSizeInBits().getFixedSize();
156 }
157 
158 int Type::getFPMantissaWidth() const {
159   if (auto *VTy = dyn_cast<VectorType>(this))
160     return VTy->getElementType()->getFPMantissaWidth();
161   assert(isFloatingPointTy() && "Not a floating point type!");
162   if (getTypeID() == HalfTyID) return 11;
163   if (getTypeID() == BFloatTyID) return 8;
164   if (getTypeID() == FloatTyID) return 24;
165   if (getTypeID() == DoubleTyID) return 53;
166   if (getTypeID() == X86_FP80TyID) return 64;
167   if (getTypeID() == FP128TyID) return 113;
168   assert(getTypeID() == PPC_FP128TyID && "unknown fp type");
169   return -1;
170 }
171 
172 bool Type::isSizedDerivedType(SmallPtrSetImpl<Type*> *Visited) const {
173   if (auto *ATy = dyn_cast<ArrayType>(this))
174     return ATy->getElementType()->isSized(Visited);
175 
176   if (auto *VTy = dyn_cast<VectorType>(this))
177     return VTy->getElementType()->isSized(Visited);
178 
179   return cast<StructType>(this)->isSized(Visited);
180 }
181 
182 //===----------------------------------------------------------------------===//
183 //                          Primitive 'Type' data
184 //===----------------------------------------------------------------------===//
185 
186 Type *Type::getVoidTy(LLVMContext &C) { return &C.pImpl->VoidTy; }
187 Type *Type::getLabelTy(LLVMContext &C) { return &C.pImpl->LabelTy; }
188 Type *Type::getHalfTy(LLVMContext &C) { return &C.pImpl->HalfTy; }
189 Type *Type::getBFloatTy(LLVMContext &C) { return &C.pImpl->BFloatTy; }
190 Type *Type::getFloatTy(LLVMContext &C) { return &C.pImpl->FloatTy; }
191 Type *Type::getDoubleTy(LLVMContext &C) { return &C.pImpl->DoubleTy; }
192 Type *Type::getMetadataTy(LLVMContext &C) { return &C.pImpl->MetadataTy; }
193 Type *Type::getTokenTy(LLVMContext &C) { return &C.pImpl->TokenTy; }
194 Type *Type::getX86_FP80Ty(LLVMContext &C) { return &C.pImpl->X86_FP80Ty; }
195 Type *Type::getFP128Ty(LLVMContext &C) { return &C.pImpl->FP128Ty; }
196 Type *Type::getPPC_FP128Ty(LLVMContext &C) { return &C.pImpl->PPC_FP128Ty; }
197 Type *Type::getX86_MMXTy(LLVMContext &C) { return &C.pImpl->X86_MMXTy; }
198 Type *Type::getX86_AMXTy(LLVMContext &C) { return &C.pImpl->X86_AMXTy; }
199 
200 IntegerType *Type::getInt1Ty(LLVMContext &C) { return &C.pImpl->Int1Ty; }
201 IntegerType *Type::getInt8Ty(LLVMContext &C) { return &C.pImpl->Int8Ty; }
202 IntegerType *Type::getInt16Ty(LLVMContext &C) { return &C.pImpl->Int16Ty; }
203 IntegerType *Type::getInt32Ty(LLVMContext &C) { return &C.pImpl->Int32Ty; }
204 IntegerType *Type::getInt64Ty(LLVMContext &C) { return &C.pImpl->Int64Ty; }
205 IntegerType *Type::getInt128Ty(LLVMContext &C) { return &C.pImpl->Int128Ty; }
206 
207 IntegerType *Type::getIntNTy(LLVMContext &C, unsigned N) {
208   return IntegerType::get(C, N);
209 }
210 
211 PointerType *Type::getHalfPtrTy(LLVMContext &C, unsigned AS) {
212   return getHalfTy(C)->getPointerTo(AS);
213 }
214 
215 PointerType *Type::getBFloatPtrTy(LLVMContext &C, unsigned AS) {
216   return getBFloatTy(C)->getPointerTo(AS);
217 }
218 
219 PointerType *Type::getFloatPtrTy(LLVMContext &C, unsigned AS) {
220   return getFloatTy(C)->getPointerTo(AS);
221 }
222 
223 PointerType *Type::getDoublePtrTy(LLVMContext &C, unsigned AS) {
224   return getDoubleTy(C)->getPointerTo(AS);
225 }
226 
227 PointerType *Type::getX86_FP80PtrTy(LLVMContext &C, unsigned AS) {
228   return getX86_FP80Ty(C)->getPointerTo(AS);
229 }
230 
231 PointerType *Type::getFP128PtrTy(LLVMContext &C, unsigned AS) {
232   return getFP128Ty(C)->getPointerTo(AS);
233 }
234 
235 PointerType *Type::getPPC_FP128PtrTy(LLVMContext &C, unsigned AS) {
236   return getPPC_FP128Ty(C)->getPointerTo(AS);
237 }
238 
239 PointerType *Type::getX86_MMXPtrTy(LLVMContext &C, unsigned AS) {
240   return getX86_MMXTy(C)->getPointerTo(AS);
241 }
242 
243 PointerType *Type::getX86_AMXPtrTy(LLVMContext &C, unsigned AS) {
244   return getX86_AMXTy(C)->getPointerTo(AS);
245 }
246 
247 PointerType *Type::getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS) {
248   return getIntNTy(C, N)->getPointerTo(AS);
249 }
250 
251 PointerType *Type::getInt1PtrTy(LLVMContext &C, unsigned AS) {
252   return getInt1Ty(C)->getPointerTo(AS);
253 }
254 
255 PointerType *Type::getInt8PtrTy(LLVMContext &C, unsigned AS) {
256   return getInt8Ty(C)->getPointerTo(AS);
257 }
258 
259 PointerType *Type::getInt16PtrTy(LLVMContext &C, unsigned AS) {
260   return getInt16Ty(C)->getPointerTo(AS);
261 }
262 
263 PointerType *Type::getInt32PtrTy(LLVMContext &C, unsigned AS) {
264   return getInt32Ty(C)->getPointerTo(AS);
265 }
266 
267 PointerType *Type::getInt64PtrTy(LLVMContext &C, unsigned AS) {
268   return getInt64Ty(C)->getPointerTo(AS);
269 }
270 
271 //===----------------------------------------------------------------------===//
272 //                       IntegerType Implementation
273 //===----------------------------------------------------------------------===//
274 
275 IntegerType *IntegerType::get(LLVMContext &C, unsigned NumBits) {
276   assert(NumBits >= MIN_INT_BITS && "bitwidth too small");
277   assert(NumBits <= MAX_INT_BITS && "bitwidth too large");
278 
279   // Check for the built-in integer types
280   switch (NumBits) {
281   case   1: return cast<IntegerType>(Type::getInt1Ty(C));
282   case   8: return cast<IntegerType>(Type::getInt8Ty(C));
283   case  16: return cast<IntegerType>(Type::getInt16Ty(C));
284   case  32: return cast<IntegerType>(Type::getInt32Ty(C));
285   case  64: return cast<IntegerType>(Type::getInt64Ty(C));
286   case 128: return cast<IntegerType>(Type::getInt128Ty(C));
287   default:
288     break;
289   }
290 
291   IntegerType *&Entry = C.pImpl->IntegerTypes[NumBits];
292 
293   if (!Entry)
294     Entry = new (C.pImpl->Alloc) IntegerType(C, NumBits);
295 
296   return Entry;
297 }
298 
299 APInt IntegerType::getMask() const {
300   return APInt::getAllOnesValue(getBitWidth());
301 }
302 
303 //===----------------------------------------------------------------------===//
304 //                       FunctionType Implementation
305 //===----------------------------------------------------------------------===//
306 
307 FunctionType::FunctionType(Type *Result, ArrayRef<Type*> Params,
308                            bool IsVarArgs)
309   : Type(Result->getContext(), FunctionTyID) {
310   Type **SubTys = reinterpret_cast<Type**>(this+1);
311   assert(isValidReturnType(Result) && "invalid return type for function");
312   setSubclassData(IsVarArgs);
313 
314   SubTys[0] = Result;
315 
316   for (unsigned i = 0, e = Params.size(); i != e; ++i) {
317     assert(isValidArgumentType(Params[i]) &&
318            "Not a valid type for function argument!");
319     SubTys[i+1] = Params[i];
320   }
321 
322   ContainedTys = SubTys;
323   NumContainedTys = Params.size() + 1; // + 1 for result type
324 }
325 
326 // This is the factory function for the FunctionType class.
327 FunctionType *FunctionType::get(Type *ReturnType,
328                                 ArrayRef<Type*> Params, bool isVarArg) {
329   LLVMContextImpl *pImpl = ReturnType->getContext().pImpl;
330   const FunctionTypeKeyInfo::KeyTy Key(ReturnType, Params, isVarArg);
331   FunctionType *FT;
332   // Since we only want to allocate a fresh function type in case none is found
333   // and we don't want to perform two lookups (one for checking if existent and
334   // one for inserting the newly allocated one), here we instead lookup based on
335   // Key and update the reference to the function type in-place to a newly
336   // allocated one if not found.
337   auto Insertion = pImpl->FunctionTypes.insert_as(nullptr, Key);
338   if (Insertion.second) {
339     // The function type was not found. Allocate one and update FunctionTypes
340     // in-place.
341     FT = (FunctionType *)pImpl->Alloc.Allocate(
342         sizeof(FunctionType) + sizeof(Type *) * (Params.size() + 1),
343         alignof(FunctionType));
344     new (FT) FunctionType(ReturnType, Params, isVarArg);
345     *Insertion.first = FT;
346   } else {
347     // The function type was found. Just return it.
348     FT = *Insertion.first;
349   }
350   return FT;
351 }
352 
353 FunctionType *FunctionType::get(Type *Result, bool isVarArg) {
354   return get(Result, None, isVarArg);
355 }
356 
357 bool FunctionType::isValidReturnType(Type *RetTy) {
358   return !RetTy->isFunctionTy() && !RetTy->isLabelTy() &&
359   !RetTy->isMetadataTy();
360 }
361 
362 bool FunctionType::isValidArgumentType(Type *ArgTy) {
363   return ArgTy->isFirstClassType();
364 }
365 
366 //===----------------------------------------------------------------------===//
367 //                       StructType Implementation
368 //===----------------------------------------------------------------------===//
369 
370 // Primitive Constructors.
371 
372 StructType *StructType::get(LLVMContext &Context, ArrayRef<Type*> ETypes,
373                             bool isPacked) {
374   LLVMContextImpl *pImpl = Context.pImpl;
375   const AnonStructTypeKeyInfo::KeyTy Key(ETypes, isPacked);
376 
377   StructType *ST;
378   // Since we only want to allocate a fresh struct type in case none is found
379   // and we don't want to perform two lookups (one for checking if existent and
380   // one for inserting the newly allocated one), here we instead lookup based on
381   // Key and update the reference to the struct type in-place to a newly
382   // allocated one if not found.
383   auto Insertion = pImpl->AnonStructTypes.insert_as(nullptr, Key);
384   if (Insertion.second) {
385     // The struct type was not found. Allocate one and update AnonStructTypes
386     // in-place.
387     ST = new (Context.pImpl->Alloc) StructType(Context);
388     ST->setSubclassData(SCDB_IsLiteral);  // Literal struct.
389     ST->setBody(ETypes, isPacked);
390     *Insertion.first = ST;
391   } else {
392     // The struct type was found. Just return it.
393     ST = *Insertion.first;
394   }
395 
396   return ST;
397 }
398 
399 bool StructType::containsScalableVectorType() const {
400   for (Type *Ty : elements()) {
401     if (isa<ScalableVectorType>(Ty))
402       return true;
403     if (auto *STy = dyn_cast<StructType>(Ty))
404       if (STy->containsScalableVectorType())
405         return true;
406   }
407 
408   return false;
409 }
410 
411 void StructType::setBody(ArrayRef<Type*> Elements, bool isPacked) {
412   assert(isOpaque() && "Struct body already set!");
413 
414   setSubclassData(getSubclassData() | SCDB_HasBody);
415   if (isPacked)
416     setSubclassData(getSubclassData() | SCDB_Packed);
417 
418   NumContainedTys = Elements.size();
419 
420   if (Elements.empty()) {
421     ContainedTys = nullptr;
422     return;
423   }
424 
425   ContainedTys = Elements.copy(getContext().pImpl->Alloc).data();
426 }
427 
428 void StructType::setName(StringRef Name) {
429   if (Name == getName()) return;
430 
431   StringMap<StructType *> &SymbolTable = getContext().pImpl->NamedStructTypes;
432 
433   using EntryTy = StringMap<StructType *>::MapEntryTy;
434 
435   // If this struct already had a name, remove its symbol table entry. Don't
436   // delete the data yet because it may be part of the new name.
437   if (SymbolTableEntry)
438     SymbolTable.remove((EntryTy *)SymbolTableEntry);
439 
440   // If this is just removing the name, we're done.
441   if (Name.empty()) {
442     if (SymbolTableEntry) {
443       // Delete the old string data.
444       ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
445       SymbolTableEntry = nullptr;
446     }
447     return;
448   }
449 
450   // Look up the entry for the name.
451   auto IterBool =
452       getContext().pImpl->NamedStructTypes.insert(std::make_pair(Name, this));
453 
454   // While we have a name collision, try a random rename.
455   if (!IterBool.second) {
456     SmallString<64> TempStr(Name);
457     TempStr.push_back('.');
458     raw_svector_ostream TmpStream(TempStr);
459     unsigned NameSize = Name.size();
460 
461     do {
462       TempStr.resize(NameSize + 1);
463       TmpStream << getContext().pImpl->NamedStructTypesUniqueID++;
464 
465       IterBool = getContext().pImpl->NamedStructTypes.insert(
466           std::make_pair(TmpStream.str(), this));
467     } while (!IterBool.second);
468   }
469 
470   // Delete the old string data.
471   if (SymbolTableEntry)
472     ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
473   SymbolTableEntry = &*IterBool.first;
474 }
475 
476 //===----------------------------------------------------------------------===//
477 // StructType Helper functions.
478 
479 StructType *StructType::create(LLVMContext &Context, StringRef Name) {
480   StructType *ST = new (Context.pImpl->Alloc) StructType(Context);
481   if (!Name.empty())
482     ST->setName(Name);
483   return ST;
484 }
485 
486 StructType *StructType::get(LLVMContext &Context, bool isPacked) {
487   return get(Context, None, isPacked);
488 }
489 
490 StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements,
491                                StringRef Name, bool isPacked) {
492   StructType *ST = create(Context, Name);
493   ST->setBody(Elements, isPacked);
494   return ST;
495 }
496 
497 StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements) {
498   return create(Context, Elements, StringRef());
499 }
500 
501 StructType *StructType::create(LLVMContext &Context) {
502   return create(Context, StringRef());
503 }
504 
505 StructType *StructType::create(ArrayRef<Type*> Elements, StringRef Name,
506                                bool isPacked) {
507   assert(!Elements.empty() &&
508          "This method may not be invoked with an empty list");
509   return create(Elements[0]->getContext(), Elements, Name, isPacked);
510 }
511 
512 StructType *StructType::create(ArrayRef<Type*> Elements) {
513   assert(!Elements.empty() &&
514          "This method may not be invoked with an empty list");
515   return create(Elements[0]->getContext(), Elements, StringRef());
516 }
517 
518 bool StructType::isSized(SmallPtrSetImpl<Type*> *Visited) const {
519   if ((getSubclassData() & SCDB_IsSized) != 0)
520     return true;
521   if (isOpaque())
522     return false;
523 
524   if (Visited && !Visited->insert(const_cast<StructType*>(this)).second)
525     return false;
526 
527   // Okay, our struct is sized if all of the elements are, but if one of the
528   // elements is opaque, the struct isn't sized *yet*, but may become sized in
529   // the future, so just bail out without caching.
530   for (Type *Ty : elements()) {
531     // If the struct contains a scalable vector type, don't consider it sized.
532     // This prevents it from being used in loads/stores/allocas/GEPs.
533     if (isa<ScalableVectorType>(Ty))
534       return false;
535     if (!Ty->isSized(Visited))
536       return false;
537   }
538 
539   // Here we cheat a bit and cast away const-ness. The goal is to memoize when
540   // we find a sized type, as types can only move from opaque to sized, not the
541   // other way.
542   const_cast<StructType*>(this)->setSubclassData(
543     getSubclassData() | SCDB_IsSized);
544   return true;
545 }
546 
547 StringRef StructType::getName() const {
548   assert(!isLiteral() && "Literal structs never have names");
549   if (!SymbolTableEntry) return StringRef();
550 
551   return ((StringMapEntry<StructType*> *)SymbolTableEntry)->getKey();
552 }
553 
554 bool StructType::isValidElementType(Type *ElemTy) {
555   return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
556          !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy() &&
557          !ElemTy->isTokenTy();
558 }
559 
560 bool StructType::isLayoutIdentical(StructType *Other) const {
561   if (this == Other) return true;
562 
563   if (isPacked() != Other->isPacked())
564     return false;
565 
566   return elements() == Other->elements();
567 }
568 
569 Type *StructType::getTypeAtIndex(const Value *V) const {
570   unsigned Idx = (unsigned)cast<Constant>(V)->getUniqueInteger().getZExtValue();
571   assert(indexValid(Idx) && "Invalid structure index!");
572   return getElementType(Idx);
573 }
574 
575 bool StructType::indexValid(const Value *V) const {
576   // Structure indexes require (vectors of) 32-bit integer constants.  In the
577   // vector case all of the indices must be equal.
578   if (!V->getType()->isIntOrIntVectorTy(32))
579     return false;
580   if (isa<ScalableVectorType>(V->getType()))
581     return false;
582   const Constant *C = dyn_cast<Constant>(V);
583   if (C && V->getType()->isVectorTy())
584     C = C->getSplatValue();
585   const ConstantInt *CU = dyn_cast_or_null<ConstantInt>(C);
586   return CU && CU->getZExtValue() < getNumElements();
587 }
588 
589 StructType *StructType::getTypeByName(LLVMContext &C, StringRef Name) {
590   return C.pImpl->NamedStructTypes.lookup(Name);
591 }
592 
593 //===----------------------------------------------------------------------===//
594 //                           ArrayType Implementation
595 //===----------------------------------------------------------------------===//
596 
597 ArrayType::ArrayType(Type *ElType, uint64_t NumEl)
598     : Type(ElType->getContext(), ArrayTyID), ContainedType(ElType),
599       NumElements(NumEl) {
600   ContainedTys = &ContainedType;
601   NumContainedTys = 1;
602 }
603 
604 ArrayType *ArrayType::get(Type *ElementType, uint64_t NumElements) {
605   assert(isValidElementType(ElementType) && "Invalid type for array element!");
606 
607   LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
608   ArrayType *&Entry =
609     pImpl->ArrayTypes[std::make_pair(ElementType, NumElements)];
610 
611   if (!Entry)
612     Entry = new (pImpl->Alloc) ArrayType(ElementType, NumElements);
613   return Entry;
614 }
615 
616 bool ArrayType::isValidElementType(Type *ElemTy) {
617   return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
618          !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy() &&
619          !ElemTy->isTokenTy() && !ElemTy->isX86_AMXTy() &&
620          !isa<ScalableVectorType>(ElemTy);
621 }
622 
623 //===----------------------------------------------------------------------===//
624 //                          VectorType Implementation
625 //===----------------------------------------------------------------------===//
626 
627 VectorType::VectorType(Type *ElType, unsigned EQ, Type::TypeID TID)
628     : Type(ElType->getContext(), TID), ContainedType(ElType),
629       ElementQuantity(EQ) {
630   ContainedTys = &ContainedType;
631   NumContainedTys = 1;
632 }
633 
634 VectorType *VectorType::get(Type *ElementType, ElementCount EC) {
635   if (EC.isScalable())
636     return ScalableVectorType::get(ElementType, EC.getKnownMinValue());
637   else
638     return FixedVectorType::get(ElementType, EC.getKnownMinValue());
639 }
640 
641 bool VectorType::isValidElementType(Type *ElemTy) {
642   return ElemTy->isIntegerTy() || ElemTy->isFloatingPointTy() ||
643          ElemTy->isPointerTy();
644 }
645 
646 //===----------------------------------------------------------------------===//
647 //                        FixedVectorType Implementation
648 //===----------------------------------------------------------------------===//
649 
650 FixedVectorType *FixedVectorType::get(Type *ElementType, unsigned NumElts) {
651   assert(NumElts > 0 && "#Elements of a VectorType must be greater than 0");
652   assert(isValidElementType(ElementType) && "Element type of a VectorType must "
653                                             "be an integer, floating point, or "
654                                             "pointer type.");
655 
656   auto EC = ElementCount::getFixed(NumElts);
657 
658   LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
659   VectorType *&Entry = ElementType->getContext()
660                            .pImpl->VectorTypes[std::make_pair(ElementType, EC)];
661 
662   if (!Entry)
663     Entry = new (pImpl->Alloc) FixedVectorType(ElementType, NumElts);
664   return cast<FixedVectorType>(Entry);
665 }
666 
667 //===----------------------------------------------------------------------===//
668 //                       ScalableVectorType Implementation
669 //===----------------------------------------------------------------------===//
670 
671 ScalableVectorType *ScalableVectorType::get(Type *ElementType,
672                                             unsigned MinNumElts) {
673   assert(MinNumElts > 0 && "#Elements of a VectorType must be greater than 0");
674   assert(isValidElementType(ElementType) && "Element type of a VectorType must "
675                                             "be an integer, floating point, or "
676                                             "pointer type.");
677 
678   auto EC = ElementCount::getScalable(MinNumElts);
679 
680   LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
681   VectorType *&Entry = ElementType->getContext()
682                            .pImpl->VectorTypes[std::make_pair(ElementType, EC)];
683 
684   if (!Entry)
685     Entry = new (pImpl->Alloc) ScalableVectorType(ElementType, MinNumElts);
686   return cast<ScalableVectorType>(Entry);
687 }
688 
689 //===----------------------------------------------------------------------===//
690 //                         PointerType Implementation
691 //===----------------------------------------------------------------------===//
692 
693 PointerType *PointerType::get(Type *EltTy, unsigned AddressSpace) {
694   assert(EltTy && "Can't get a pointer to <null> type!");
695   assert(isValidElementType(EltTy) && "Invalid type for pointer element!");
696 
697   LLVMContextImpl *CImpl = EltTy->getContext().pImpl;
698 
699   // Create opaque pointer for pointer to opaque pointer.
700   if (CImpl->ForceOpaquePointers || EltTy->isOpaquePointerTy())
701     return get(EltTy->getContext(), AddressSpace);
702 
703   // Since AddressSpace #0 is the common case, we special case it.
704   PointerType *&Entry = AddressSpace == 0 ? CImpl->PointerTypes[EltTy]
705      : CImpl->ASPointerTypes[std::make_pair(EltTy, AddressSpace)];
706 
707   if (!Entry)
708     Entry = new (CImpl->Alloc) PointerType(EltTy, AddressSpace);
709   return Entry;
710 }
711 
712 PointerType *PointerType::get(LLVMContext &C, unsigned AddressSpace) {
713   LLVMContextImpl *CImpl = C.pImpl;
714 
715   // Since AddressSpace #0 is the common case, we special case it.
716   PointerType *&Entry =
717       AddressSpace == 0
718           ? CImpl->PointerTypes[nullptr]
719           : CImpl->ASPointerTypes[std::make_pair(nullptr, AddressSpace)];
720 
721   if (!Entry)
722     Entry = new (CImpl->Alloc) PointerType(C, AddressSpace);
723   return Entry;
724 }
725 
726 PointerType::PointerType(Type *E, unsigned AddrSpace)
727   : Type(E->getContext(), PointerTyID), PointeeTy(E) {
728   ContainedTys = &PointeeTy;
729   NumContainedTys = 1;
730   setSubclassData(AddrSpace);
731 }
732 
733 PointerType::PointerType(LLVMContext &C, unsigned AddrSpace)
734     : Type(C, PointerTyID), PointeeTy(nullptr) {
735   setSubclassData(AddrSpace);
736 }
737 
738 PointerType *Type::getPointerTo(unsigned AddrSpace) const {
739   return PointerType::get(const_cast<Type*>(this), AddrSpace);
740 }
741 
742 bool PointerType::isValidElementType(Type *ElemTy) {
743   return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
744          !ElemTy->isMetadataTy() && !ElemTy->isTokenTy() &&
745          !ElemTy->isX86_AMXTy();
746 }
747 
748 bool PointerType::isLoadableOrStorableType(Type *ElemTy) {
749   return isValidElementType(ElemTy) && !ElemTy->isFunctionTy();
750 }
751