1 //===- Type.cpp - Implement the Type class --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Type class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Type.h"
14 #include "LLVMContextImpl.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/StringMap.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/Value.h"
25 #include "llvm/Support/Casting.h"
26 #include "llvm/Support/TypeSize.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include <cassert>
29 #include <utility>
30 
31 using namespace llvm;
32 
33 //===----------------------------------------------------------------------===//
34 //                         Type Class Implementation
35 //===----------------------------------------------------------------------===//
36 
37 Type *Type::getPrimitiveType(LLVMContext &C, TypeID IDNumber) {
38   switch (IDNumber) {
39   case VoidTyID      : return getVoidTy(C);
40   case HalfTyID      : return getHalfTy(C);
41   case BFloatTyID    : return getBFloatTy(C);
42   case FloatTyID     : return getFloatTy(C);
43   case DoubleTyID    : return getDoubleTy(C);
44   case X86_FP80TyID  : return getX86_FP80Ty(C);
45   case FP128TyID     : return getFP128Ty(C);
46   case PPC_FP128TyID : return getPPC_FP128Ty(C);
47   case LabelTyID     : return getLabelTy(C);
48   case MetadataTyID  : return getMetadataTy(C);
49   case X86_MMXTyID   : return getX86_MMXTy(C);
50   case X86_AMXTyID   : return getX86_AMXTy(C);
51   case TokenTyID     : return getTokenTy(C);
52   default:
53     return nullptr;
54   }
55 }
56 
57 bool Type::isIntegerTy(unsigned Bitwidth) const {
58   return isIntegerTy() && cast<IntegerType>(this)->getBitWidth() == Bitwidth;
59 }
60 
61 bool Type::isOpaquePointerTy() const {
62   if (auto *PTy = dyn_cast<PointerType>(this))
63     return PTy->isOpaque();
64   return false;
65 }
66 
67 const fltSemantics &Type::getFltSemantics() const {
68   switch (getTypeID()) {
69   case HalfTyID: return APFloat::IEEEhalf();
70   case BFloatTyID: return APFloat::BFloat();
71   case FloatTyID: return APFloat::IEEEsingle();
72   case DoubleTyID: return APFloat::IEEEdouble();
73   case X86_FP80TyID: return APFloat::x87DoubleExtended();
74   case FP128TyID: return APFloat::IEEEquad();
75   case PPC_FP128TyID: return APFloat::PPCDoubleDouble();
76   default: llvm_unreachable("Invalid floating type");
77   }
78 }
79 
80 bool Type::isIEEE() const {
81   return APFloat::getZero(getFltSemantics()).isIEEE();
82 }
83 
84 Type *Type::getFloatingPointTy(LLVMContext &C, const fltSemantics &S) {
85   Type *Ty;
86   if (&S == &APFloat::IEEEhalf())
87     Ty = Type::getHalfTy(C);
88   else if (&S == &APFloat::BFloat())
89     Ty = Type::getBFloatTy(C);
90   else if (&S == &APFloat::IEEEsingle())
91     Ty = Type::getFloatTy(C);
92   else if (&S == &APFloat::IEEEdouble())
93     Ty = Type::getDoubleTy(C);
94   else if (&S == &APFloat::x87DoubleExtended())
95     Ty = Type::getX86_FP80Ty(C);
96   else if (&S == &APFloat::IEEEquad())
97     Ty = Type::getFP128Ty(C);
98   else {
99     assert(&S == &APFloat::PPCDoubleDouble() && "Unknown FP format");
100     Ty = Type::getPPC_FP128Ty(C);
101   }
102   return Ty;
103 }
104 
105 bool Type::canLosslesslyBitCastTo(Type *Ty) const {
106   // Identity cast means no change so return true
107   if (this == Ty)
108     return true;
109 
110   // They are not convertible unless they are at least first class types
111   if (!this->isFirstClassType() || !Ty->isFirstClassType())
112     return false;
113 
114   // Vector -> Vector conversions are always lossless if the two vector types
115   // have the same size, otherwise not.
116   if (isa<VectorType>(this) && isa<VectorType>(Ty))
117     return getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits();
118 
119   //  64-bit fixed width vector types can be losslessly converted to x86mmx.
120   if (((isa<FixedVectorType>(this)) && Ty->isX86_MMXTy()) &&
121       getPrimitiveSizeInBits().getFixedSize() == 64)
122     return true;
123   if ((isX86_MMXTy() && isa<FixedVectorType>(Ty)) &&
124       Ty->getPrimitiveSizeInBits().getFixedSize() == 64)
125     return true;
126 
127   //  8192-bit fixed width vector types can be losslessly converted to x86amx.
128   if (((isa<FixedVectorType>(this)) && Ty->isX86_AMXTy()) &&
129       getPrimitiveSizeInBits().getFixedSize() == 8192)
130     return true;
131   if ((isX86_AMXTy() && isa<FixedVectorType>(Ty)) &&
132       Ty->getPrimitiveSizeInBits().getFixedSize() == 8192)
133     return true;
134 
135   // At this point we have only various mismatches of the first class types
136   // remaining and ptr->ptr. Just select the lossless conversions. Everything
137   // else is not lossless. Conservatively assume we can't losslessly convert
138   // between pointers with different address spaces.
139   if (auto *PTy = dyn_cast<PointerType>(this)) {
140     if (auto *OtherPTy = dyn_cast<PointerType>(Ty))
141       return PTy->getAddressSpace() == OtherPTy->getAddressSpace();
142     return false;
143   }
144   return false;  // Other types have no identity values
145 }
146 
147 bool Type::isEmptyTy() const {
148   if (auto *ATy = dyn_cast<ArrayType>(this)) {
149     unsigned NumElements = ATy->getNumElements();
150     return NumElements == 0 || ATy->getElementType()->isEmptyTy();
151   }
152 
153   if (auto *STy = dyn_cast<StructType>(this)) {
154     unsigned NumElements = STy->getNumElements();
155     for (unsigned i = 0; i < NumElements; ++i)
156       if (!STy->getElementType(i)->isEmptyTy())
157         return false;
158     return true;
159   }
160 
161   return false;
162 }
163 
164 TypeSize Type::getPrimitiveSizeInBits() const {
165   switch (getTypeID()) {
166   case Type::HalfTyID: return TypeSize::Fixed(16);
167   case Type::BFloatTyID: return TypeSize::Fixed(16);
168   case Type::FloatTyID: return TypeSize::Fixed(32);
169   case Type::DoubleTyID: return TypeSize::Fixed(64);
170   case Type::X86_FP80TyID: return TypeSize::Fixed(80);
171   case Type::FP128TyID: return TypeSize::Fixed(128);
172   case Type::PPC_FP128TyID: return TypeSize::Fixed(128);
173   case Type::X86_MMXTyID: return TypeSize::Fixed(64);
174   case Type::X86_AMXTyID: return TypeSize::Fixed(8192);
175   case Type::IntegerTyID:
176     return TypeSize::Fixed(cast<IntegerType>(this)->getBitWidth());
177   case Type::FixedVectorTyID:
178   case Type::ScalableVectorTyID: {
179     const VectorType *VTy = cast<VectorType>(this);
180     ElementCount EC = VTy->getElementCount();
181     TypeSize ETS = VTy->getElementType()->getPrimitiveSizeInBits();
182     assert(!ETS.isScalable() && "Vector type should have fixed-width elements");
183     return {ETS.getFixedSize() * EC.getKnownMinValue(), EC.isScalable()};
184   }
185   default: return TypeSize::Fixed(0);
186   }
187 }
188 
189 unsigned Type::getScalarSizeInBits() const {
190   // It is safe to assume that the scalar types have a fixed size.
191   return getScalarType()->getPrimitiveSizeInBits().getFixedSize();
192 }
193 
194 int Type::getFPMantissaWidth() const {
195   if (auto *VTy = dyn_cast<VectorType>(this))
196     return VTy->getElementType()->getFPMantissaWidth();
197   assert(isFloatingPointTy() && "Not a floating point type!");
198   if (getTypeID() == HalfTyID) return 11;
199   if (getTypeID() == BFloatTyID) return 8;
200   if (getTypeID() == FloatTyID) return 24;
201   if (getTypeID() == DoubleTyID) return 53;
202   if (getTypeID() == X86_FP80TyID) return 64;
203   if (getTypeID() == FP128TyID) return 113;
204   assert(getTypeID() == PPC_FP128TyID && "unknown fp type");
205   return -1;
206 }
207 
208 bool Type::isSizedDerivedType(SmallPtrSetImpl<Type*> *Visited) const {
209   if (auto *ATy = dyn_cast<ArrayType>(this))
210     return ATy->getElementType()->isSized(Visited);
211 
212   if (auto *VTy = dyn_cast<VectorType>(this))
213     return VTy->getElementType()->isSized(Visited);
214 
215   return cast<StructType>(this)->isSized(Visited);
216 }
217 
218 //===----------------------------------------------------------------------===//
219 //                          Primitive 'Type' data
220 //===----------------------------------------------------------------------===//
221 
222 Type *Type::getVoidTy(LLVMContext &C) { return &C.pImpl->VoidTy; }
223 Type *Type::getLabelTy(LLVMContext &C) { return &C.pImpl->LabelTy; }
224 Type *Type::getHalfTy(LLVMContext &C) { return &C.pImpl->HalfTy; }
225 Type *Type::getBFloatTy(LLVMContext &C) { return &C.pImpl->BFloatTy; }
226 Type *Type::getFloatTy(LLVMContext &C) { return &C.pImpl->FloatTy; }
227 Type *Type::getDoubleTy(LLVMContext &C) { return &C.pImpl->DoubleTy; }
228 Type *Type::getMetadataTy(LLVMContext &C) { return &C.pImpl->MetadataTy; }
229 Type *Type::getTokenTy(LLVMContext &C) { return &C.pImpl->TokenTy; }
230 Type *Type::getX86_FP80Ty(LLVMContext &C) { return &C.pImpl->X86_FP80Ty; }
231 Type *Type::getFP128Ty(LLVMContext &C) { return &C.pImpl->FP128Ty; }
232 Type *Type::getPPC_FP128Ty(LLVMContext &C) { return &C.pImpl->PPC_FP128Ty; }
233 Type *Type::getX86_MMXTy(LLVMContext &C) { return &C.pImpl->X86_MMXTy; }
234 Type *Type::getX86_AMXTy(LLVMContext &C) { return &C.pImpl->X86_AMXTy; }
235 
236 IntegerType *Type::getInt1Ty(LLVMContext &C) { return &C.pImpl->Int1Ty; }
237 IntegerType *Type::getInt8Ty(LLVMContext &C) { return &C.pImpl->Int8Ty; }
238 IntegerType *Type::getInt16Ty(LLVMContext &C) { return &C.pImpl->Int16Ty; }
239 IntegerType *Type::getInt32Ty(LLVMContext &C) { return &C.pImpl->Int32Ty; }
240 IntegerType *Type::getInt64Ty(LLVMContext &C) { return &C.pImpl->Int64Ty; }
241 IntegerType *Type::getInt128Ty(LLVMContext &C) { return &C.pImpl->Int128Ty; }
242 
243 IntegerType *Type::getIntNTy(LLVMContext &C, unsigned N) {
244   return IntegerType::get(C, N);
245 }
246 
247 PointerType *Type::getHalfPtrTy(LLVMContext &C, unsigned AS) {
248   return getHalfTy(C)->getPointerTo(AS);
249 }
250 
251 PointerType *Type::getBFloatPtrTy(LLVMContext &C, unsigned AS) {
252   return getBFloatTy(C)->getPointerTo(AS);
253 }
254 
255 PointerType *Type::getFloatPtrTy(LLVMContext &C, unsigned AS) {
256   return getFloatTy(C)->getPointerTo(AS);
257 }
258 
259 PointerType *Type::getDoublePtrTy(LLVMContext &C, unsigned AS) {
260   return getDoubleTy(C)->getPointerTo(AS);
261 }
262 
263 PointerType *Type::getX86_FP80PtrTy(LLVMContext &C, unsigned AS) {
264   return getX86_FP80Ty(C)->getPointerTo(AS);
265 }
266 
267 PointerType *Type::getFP128PtrTy(LLVMContext &C, unsigned AS) {
268   return getFP128Ty(C)->getPointerTo(AS);
269 }
270 
271 PointerType *Type::getPPC_FP128PtrTy(LLVMContext &C, unsigned AS) {
272   return getPPC_FP128Ty(C)->getPointerTo(AS);
273 }
274 
275 PointerType *Type::getX86_MMXPtrTy(LLVMContext &C, unsigned AS) {
276   return getX86_MMXTy(C)->getPointerTo(AS);
277 }
278 
279 PointerType *Type::getX86_AMXPtrTy(LLVMContext &C, unsigned AS) {
280   return getX86_AMXTy(C)->getPointerTo(AS);
281 }
282 
283 PointerType *Type::getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS) {
284   return getIntNTy(C, N)->getPointerTo(AS);
285 }
286 
287 PointerType *Type::getInt1PtrTy(LLVMContext &C, unsigned AS) {
288   return getInt1Ty(C)->getPointerTo(AS);
289 }
290 
291 PointerType *Type::getInt8PtrTy(LLVMContext &C, unsigned AS) {
292   return getInt8Ty(C)->getPointerTo(AS);
293 }
294 
295 PointerType *Type::getInt16PtrTy(LLVMContext &C, unsigned AS) {
296   return getInt16Ty(C)->getPointerTo(AS);
297 }
298 
299 PointerType *Type::getInt32PtrTy(LLVMContext &C, unsigned AS) {
300   return getInt32Ty(C)->getPointerTo(AS);
301 }
302 
303 PointerType *Type::getInt64PtrTy(LLVMContext &C, unsigned AS) {
304   return getInt64Ty(C)->getPointerTo(AS);
305 }
306 
307 //===----------------------------------------------------------------------===//
308 //                       IntegerType Implementation
309 //===----------------------------------------------------------------------===//
310 
311 IntegerType *IntegerType::get(LLVMContext &C, unsigned NumBits) {
312   assert(NumBits >= MIN_INT_BITS && "bitwidth too small");
313   assert(NumBits <= MAX_INT_BITS && "bitwidth too large");
314 
315   // Check for the built-in integer types
316   switch (NumBits) {
317   case   1: return cast<IntegerType>(Type::getInt1Ty(C));
318   case   8: return cast<IntegerType>(Type::getInt8Ty(C));
319   case  16: return cast<IntegerType>(Type::getInt16Ty(C));
320   case  32: return cast<IntegerType>(Type::getInt32Ty(C));
321   case  64: return cast<IntegerType>(Type::getInt64Ty(C));
322   case 128: return cast<IntegerType>(Type::getInt128Ty(C));
323   default:
324     break;
325   }
326 
327   IntegerType *&Entry = C.pImpl->IntegerTypes[NumBits];
328 
329   if (!Entry)
330     Entry = new (C.pImpl->Alloc) IntegerType(C, NumBits);
331 
332   return Entry;
333 }
334 
335 APInt IntegerType::getMask() const { return APInt::getAllOnes(getBitWidth()); }
336 
337 //===----------------------------------------------------------------------===//
338 //                       FunctionType Implementation
339 //===----------------------------------------------------------------------===//
340 
341 FunctionType::FunctionType(Type *Result, ArrayRef<Type*> Params,
342                            bool IsVarArgs)
343   : Type(Result->getContext(), FunctionTyID) {
344   Type **SubTys = reinterpret_cast<Type**>(this+1);
345   assert(isValidReturnType(Result) && "invalid return type for function");
346   setSubclassData(IsVarArgs);
347 
348   SubTys[0] = Result;
349 
350   for (unsigned i = 0, e = Params.size(); i != e; ++i) {
351     assert(isValidArgumentType(Params[i]) &&
352            "Not a valid type for function argument!");
353     SubTys[i+1] = Params[i];
354   }
355 
356   ContainedTys = SubTys;
357   NumContainedTys = Params.size() + 1; // + 1 for result type
358 }
359 
360 // This is the factory function for the FunctionType class.
361 FunctionType *FunctionType::get(Type *ReturnType,
362                                 ArrayRef<Type*> Params, bool isVarArg) {
363   LLVMContextImpl *pImpl = ReturnType->getContext().pImpl;
364   const FunctionTypeKeyInfo::KeyTy Key(ReturnType, Params, isVarArg);
365   FunctionType *FT;
366   // Since we only want to allocate a fresh function type in case none is found
367   // and we don't want to perform two lookups (one for checking if existent and
368   // one for inserting the newly allocated one), here we instead lookup based on
369   // Key and update the reference to the function type in-place to a newly
370   // allocated one if not found.
371   auto Insertion = pImpl->FunctionTypes.insert_as(nullptr, Key);
372   if (Insertion.second) {
373     // The function type was not found. Allocate one and update FunctionTypes
374     // in-place.
375     FT = (FunctionType *)pImpl->Alloc.Allocate(
376         sizeof(FunctionType) + sizeof(Type *) * (Params.size() + 1),
377         alignof(FunctionType));
378     new (FT) FunctionType(ReturnType, Params, isVarArg);
379     *Insertion.first = FT;
380   } else {
381     // The function type was found. Just return it.
382     FT = *Insertion.first;
383   }
384   return FT;
385 }
386 
387 FunctionType *FunctionType::get(Type *Result, bool isVarArg) {
388   return get(Result, None, isVarArg);
389 }
390 
391 bool FunctionType::isValidReturnType(Type *RetTy) {
392   return !RetTy->isFunctionTy() && !RetTy->isLabelTy() &&
393   !RetTy->isMetadataTy();
394 }
395 
396 bool FunctionType::isValidArgumentType(Type *ArgTy) {
397   return ArgTy->isFirstClassType();
398 }
399 
400 //===----------------------------------------------------------------------===//
401 //                       StructType Implementation
402 //===----------------------------------------------------------------------===//
403 
404 // Primitive Constructors.
405 
406 StructType *StructType::get(LLVMContext &Context, ArrayRef<Type*> ETypes,
407                             bool isPacked) {
408   LLVMContextImpl *pImpl = Context.pImpl;
409   const AnonStructTypeKeyInfo::KeyTy Key(ETypes, isPacked);
410 
411   StructType *ST;
412   // Since we only want to allocate a fresh struct type in case none is found
413   // and we don't want to perform two lookups (one for checking if existent and
414   // one for inserting the newly allocated one), here we instead lookup based on
415   // Key and update the reference to the struct type in-place to a newly
416   // allocated one if not found.
417   auto Insertion = pImpl->AnonStructTypes.insert_as(nullptr, Key);
418   if (Insertion.second) {
419     // The struct type was not found. Allocate one and update AnonStructTypes
420     // in-place.
421     ST = new (Context.pImpl->Alloc) StructType(Context);
422     ST->setSubclassData(SCDB_IsLiteral);  // Literal struct.
423     ST->setBody(ETypes, isPacked);
424     *Insertion.first = ST;
425   } else {
426     // The struct type was found. Just return it.
427     ST = *Insertion.first;
428   }
429 
430   return ST;
431 }
432 
433 bool StructType::containsScalableVectorType() const {
434   for (Type *Ty : elements()) {
435     if (isa<ScalableVectorType>(Ty))
436       return true;
437     if (auto *STy = dyn_cast<StructType>(Ty))
438       if (STy->containsScalableVectorType())
439         return true;
440   }
441 
442   return false;
443 }
444 
445 void StructType::setBody(ArrayRef<Type*> Elements, bool isPacked) {
446   assert(isOpaque() && "Struct body already set!");
447 
448   setSubclassData(getSubclassData() | SCDB_HasBody);
449   if (isPacked)
450     setSubclassData(getSubclassData() | SCDB_Packed);
451 
452   NumContainedTys = Elements.size();
453 
454   if (Elements.empty()) {
455     ContainedTys = nullptr;
456     return;
457   }
458 
459   ContainedTys = Elements.copy(getContext().pImpl->Alloc).data();
460 }
461 
462 void StructType::setName(StringRef Name) {
463   if (Name == getName()) return;
464 
465   StringMap<StructType *> &SymbolTable = getContext().pImpl->NamedStructTypes;
466 
467   using EntryTy = StringMap<StructType *>::MapEntryTy;
468 
469   // If this struct already had a name, remove its symbol table entry. Don't
470   // delete the data yet because it may be part of the new name.
471   if (SymbolTableEntry)
472     SymbolTable.remove((EntryTy *)SymbolTableEntry);
473 
474   // If this is just removing the name, we're done.
475   if (Name.empty()) {
476     if (SymbolTableEntry) {
477       // Delete the old string data.
478       ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
479       SymbolTableEntry = nullptr;
480     }
481     return;
482   }
483 
484   // Look up the entry for the name.
485   auto IterBool =
486       getContext().pImpl->NamedStructTypes.insert(std::make_pair(Name, this));
487 
488   // While we have a name collision, try a random rename.
489   if (!IterBool.second) {
490     SmallString<64> TempStr(Name);
491     TempStr.push_back('.');
492     raw_svector_ostream TmpStream(TempStr);
493     unsigned NameSize = Name.size();
494 
495     do {
496       TempStr.resize(NameSize + 1);
497       TmpStream << getContext().pImpl->NamedStructTypesUniqueID++;
498 
499       IterBool = getContext().pImpl->NamedStructTypes.insert(
500           std::make_pair(TmpStream.str(), this));
501     } while (!IterBool.second);
502   }
503 
504   // Delete the old string data.
505   if (SymbolTableEntry)
506     ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
507   SymbolTableEntry = &*IterBool.first;
508 }
509 
510 //===----------------------------------------------------------------------===//
511 // StructType Helper functions.
512 
513 StructType *StructType::create(LLVMContext &Context, StringRef Name) {
514   StructType *ST = new (Context.pImpl->Alloc) StructType(Context);
515   if (!Name.empty())
516     ST->setName(Name);
517   return ST;
518 }
519 
520 StructType *StructType::get(LLVMContext &Context, bool isPacked) {
521   return get(Context, None, isPacked);
522 }
523 
524 StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements,
525                                StringRef Name, bool isPacked) {
526   StructType *ST = create(Context, Name);
527   ST->setBody(Elements, isPacked);
528   return ST;
529 }
530 
531 StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements) {
532   return create(Context, Elements, StringRef());
533 }
534 
535 StructType *StructType::create(LLVMContext &Context) {
536   return create(Context, StringRef());
537 }
538 
539 StructType *StructType::create(ArrayRef<Type*> Elements, StringRef Name,
540                                bool isPacked) {
541   assert(!Elements.empty() &&
542          "This method may not be invoked with an empty list");
543   return create(Elements[0]->getContext(), Elements, Name, isPacked);
544 }
545 
546 StructType *StructType::create(ArrayRef<Type*> Elements) {
547   assert(!Elements.empty() &&
548          "This method may not be invoked with an empty list");
549   return create(Elements[0]->getContext(), Elements, StringRef());
550 }
551 
552 bool StructType::isSized(SmallPtrSetImpl<Type*> *Visited) const {
553   if ((getSubclassData() & SCDB_IsSized) != 0)
554     return true;
555   if (isOpaque())
556     return false;
557 
558   if (Visited && !Visited->insert(const_cast<StructType*>(this)).second)
559     return false;
560 
561   // Okay, our struct is sized if all of the elements are, but if one of the
562   // elements is opaque, the struct isn't sized *yet*, but may become sized in
563   // the future, so just bail out without caching.
564   for (Type *Ty : elements()) {
565     // If the struct contains a scalable vector type, don't consider it sized.
566     // This prevents it from being used in loads/stores/allocas/GEPs.
567     if (isa<ScalableVectorType>(Ty))
568       return false;
569     if (!Ty->isSized(Visited))
570       return false;
571   }
572 
573   // Here we cheat a bit and cast away const-ness. The goal is to memoize when
574   // we find a sized type, as types can only move from opaque to sized, not the
575   // other way.
576   const_cast<StructType*>(this)->setSubclassData(
577     getSubclassData() | SCDB_IsSized);
578   return true;
579 }
580 
581 StringRef StructType::getName() const {
582   assert(!isLiteral() && "Literal structs never have names");
583   if (!SymbolTableEntry) return StringRef();
584 
585   return ((StringMapEntry<StructType*> *)SymbolTableEntry)->getKey();
586 }
587 
588 bool StructType::isValidElementType(Type *ElemTy) {
589   return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
590          !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy() &&
591          !ElemTy->isTokenTy();
592 }
593 
594 bool StructType::isLayoutIdentical(StructType *Other) const {
595   if (this == Other) return true;
596 
597   if (isPacked() != Other->isPacked())
598     return false;
599 
600   return elements() == Other->elements();
601 }
602 
603 Type *StructType::getTypeAtIndex(const Value *V) const {
604   unsigned Idx = (unsigned)cast<Constant>(V)->getUniqueInteger().getZExtValue();
605   assert(indexValid(Idx) && "Invalid structure index!");
606   return getElementType(Idx);
607 }
608 
609 bool StructType::indexValid(const Value *V) const {
610   // Structure indexes require (vectors of) 32-bit integer constants.  In the
611   // vector case all of the indices must be equal.
612   if (!V->getType()->isIntOrIntVectorTy(32))
613     return false;
614   if (isa<ScalableVectorType>(V->getType()))
615     return false;
616   const Constant *C = dyn_cast<Constant>(V);
617   if (C && V->getType()->isVectorTy())
618     C = C->getSplatValue();
619   const ConstantInt *CU = dyn_cast_or_null<ConstantInt>(C);
620   return CU && CU->getZExtValue() < getNumElements();
621 }
622 
623 StructType *StructType::getTypeByName(LLVMContext &C, StringRef Name) {
624   return C.pImpl->NamedStructTypes.lookup(Name);
625 }
626 
627 //===----------------------------------------------------------------------===//
628 //                           ArrayType Implementation
629 //===----------------------------------------------------------------------===//
630 
631 ArrayType::ArrayType(Type *ElType, uint64_t NumEl)
632     : Type(ElType->getContext(), ArrayTyID), ContainedType(ElType),
633       NumElements(NumEl) {
634   ContainedTys = &ContainedType;
635   NumContainedTys = 1;
636 }
637 
638 ArrayType *ArrayType::get(Type *ElementType, uint64_t NumElements) {
639   assert(isValidElementType(ElementType) && "Invalid type for array element!");
640 
641   LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
642   ArrayType *&Entry =
643     pImpl->ArrayTypes[std::make_pair(ElementType, NumElements)];
644 
645   if (!Entry)
646     Entry = new (pImpl->Alloc) ArrayType(ElementType, NumElements);
647   return Entry;
648 }
649 
650 bool ArrayType::isValidElementType(Type *ElemTy) {
651   return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
652          !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy() &&
653          !ElemTy->isTokenTy() && !ElemTy->isX86_AMXTy() &&
654          !isa<ScalableVectorType>(ElemTy);
655 }
656 
657 //===----------------------------------------------------------------------===//
658 //                          VectorType Implementation
659 //===----------------------------------------------------------------------===//
660 
661 VectorType::VectorType(Type *ElType, unsigned EQ, Type::TypeID TID)
662     : Type(ElType->getContext(), TID), ContainedType(ElType),
663       ElementQuantity(EQ) {
664   ContainedTys = &ContainedType;
665   NumContainedTys = 1;
666 }
667 
668 VectorType *VectorType::get(Type *ElementType, ElementCount EC) {
669   if (EC.isScalable())
670     return ScalableVectorType::get(ElementType, EC.getKnownMinValue());
671   else
672     return FixedVectorType::get(ElementType, EC.getKnownMinValue());
673 }
674 
675 bool VectorType::isValidElementType(Type *ElemTy) {
676   return ElemTy->isIntegerTy() || ElemTy->isFloatingPointTy() ||
677          ElemTy->isPointerTy();
678 }
679 
680 //===----------------------------------------------------------------------===//
681 //                        FixedVectorType Implementation
682 //===----------------------------------------------------------------------===//
683 
684 FixedVectorType *FixedVectorType::get(Type *ElementType, unsigned NumElts) {
685   assert(NumElts > 0 && "#Elements of a VectorType must be greater than 0");
686   assert(isValidElementType(ElementType) && "Element type of a VectorType must "
687                                             "be an integer, floating point, or "
688                                             "pointer type.");
689 
690   auto EC = ElementCount::getFixed(NumElts);
691 
692   LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
693   VectorType *&Entry = ElementType->getContext()
694                            .pImpl->VectorTypes[std::make_pair(ElementType, EC)];
695 
696   if (!Entry)
697     Entry = new (pImpl->Alloc) FixedVectorType(ElementType, NumElts);
698   return cast<FixedVectorType>(Entry);
699 }
700 
701 //===----------------------------------------------------------------------===//
702 //                       ScalableVectorType Implementation
703 //===----------------------------------------------------------------------===//
704 
705 ScalableVectorType *ScalableVectorType::get(Type *ElementType,
706                                             unsigned MinNumElts) {
707   assert(MinNumElts > 0 && "#Elements of a VectorType must be greater than 0");
708   assert(isValidElementType(ElementType) && "Element type of a VectorType must "
709                                             "be an integer, floating point, or "
710                                             "pointer type.");
711 
712   auto EC = ElementCount::getScalable(MinNumElts);
713 
714   LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
715   VectorType *&Entry = ElementType->getContext()
716                            .pImpl->VectorTypes[std::make_pair(ElementType, EC)];
717 
718   if (!Entry)
719     Entry = new (pImpl->Alloc) ScalableVectorType(ElementType, MinNumElts);
720   return cast<ScalableVectorType>(Entry);
721 }
722 
723 //===----------------------------------------------------------------------===//
724 //                         PointerType Implementation
725 //===----------------------------------------------------------------------===//
726 
727 PointerType *PointerType::get(Type *EltTy, unsigned AddressSpace) {
728   assert(EltTy && "Can't get a pointer to <null> type!");
729   assert(isValidElementType(EltTy) && "Invalid type for pointer element!");
730 
731   LLVMContextImpl *CImpl = EltTy->getContext().pImpl;
732 
733   // Automatically convert typed pointers to opaque pointers.
734   if (CImpl->getOpaquePointers())
735     return get(EltTy->getContext(), AddressSpace);
736 
737   // Since AddressSpace #0 is the common case, we special case it.
738   PointerType *&Entry = AddressSpace == 0 ? CImpl->PointerTypes[EltTy]
739      : CImpl->ASPointerTypes[std::make_pair(EltTy, AddressSpace)];
740 
741   if (!Entry)
742     Entry = new (CImpl->Alloc) PointerType(EltTy, AddressSpace);
743   return Entry;
744 }
745 
746 PointerType *PointerType::get(LLVMContext &C, unsigned AddressSpace) {
747   LLVMContextImpl *CImpl = C.pImpl;
748   assert(CImpl->getOpaquePointers() &&
749          "Can only create opaque pointers in opaque pointer mode");
750 
751   // Since AddressSpace #0 is the common case, we special case it.
752   PointerType *&Entry =
753       AddressSpace == 0
754           ? CImpl->PointerTypes[nullptr]
755           : CImpl->ASPointerTypes[std::make_pair(nullptr, AddressSpace)];
756 
757   if (!Entry)
758     Entry = new (CImpl->Alloc) PointerType(C, AddressSpace);
759   return Entry;
760 }
761 
762 PointerType::PointerType(Type *E, unsigned AddrSpace)
763   : Type(E->getContext(), PointerTyID), PointeeTy(E) {
764   ContainedTys = &PointeeTy;
765   NumContainedTys = 1;
766   setSubclassData(AddrSpace);
767 }
768 
769 PointerType::PointerType(LLVMContext &C, unsigned AddrSpace)
770     : Type(C, PointerTyID), PointeeTy(nullptr) {
771   setSubclassData(AddrSpace);
772 }
773 
774 PointerType *Type::getPointerTo(unsigned AddrSpace) const {
775   return PointerType::get(const_cast<Type*>(this), AddrSpace);
776 }
777 
778 bool PointerType::isValidElementType(Type *ElemTy) {
779   return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
780          !ElemTy->isMetadataTy() && !ElemTy->isTokenTy() &&
781          !ElemTy->isX86_AMXTy();
782 }
783 
784 bool PointerType::isLoadableOrStorableType(Type *ElemTy) {
785   return isValidElementType(ElemTy) && !ElemTy->isFunctionTy();
786 }
787