1 //===- AsmParser.cpp - Parser for Assembly Files --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This class implements a parser for assembly files similar to gas syntax.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APFloat.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/ADT/StringMap.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/BinaryFormat/Dwarf.h"
25 #include "llvm/DebugInfo/CodeView/SymbolRecord.h"
26 #include "llvm/MC/MCAsmInfo.h"
27 #include "llvm/MC/MCCodeView.h"
28 #include "llvm/MC/MCContext.h"
29 #include "llvm/MC/MCDirectives.h"
30 #include "llvm/MC/MCDwarf.h"
31 #include "llvm/MC/MCExpr.h"
32 #include "llvm/MC/MCInstPrinter.h"
33 #include "llvm/MC/MCInstrDesc.h"
34 #include "llvm/MC/MCInstrInfo.h"
35 #include "llvm/MC/MCParser/AsmCond.h"
36 #include "llvm/MC/MCParser/AsmLexer.h"
37 #include "llvm/MC/MCParser/MCAsmLexer.h"
38 #include "llvm/MC/MCParser/MCAsmParser.h"
39 #include "llvm/MC/MCParser/MCAsmParserExtension.h"
40 #include "llvm/MC/MCParser/MCAsmParserUtils.h"
41 #include "llvm/MC/MCParser/MCParsedAsmOperand.h"
42 #include "llvm/MC/MCParser/MCTargetAsmParser.h"
43 #include "llvm/MC/MCRegisterInfo.h"
44 #include "llvm/MC/MCSection.h"
45 #include "llvm/MC/MCStreamer.h"
46 #include "llvm/MC/MCSymbol.h"
47 #include "llvm/MC/MCTargetOptions.h"
48 #include "llvm/MC/MCValue.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/MD5.h"
53 #include "llvm/Support/MathExtras.h"
54 #include "llvm/Support/MemoryBuffer.h"
55 #include "llvm/Support/SMLoc.h"
56 #include "llvm/Support/SourceMgr.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <cctype>
61 #include <climits>
62 #include <cstddef>
63 #include <cstdint>
64 #include <deque>
65 #include <memory>
66 #include <optional>
67 #include <sstream>
68 #include <string>
69 #include <tuple>
70 #include <utility>
71 #include <vector>
72 
73 using namespace llvm;
74 
75 MCAsmParserSemaCallback::~MCAsmParserSemaCallback() = default;
76 
77 namespace {
78 
79 /// Helper types for tracking macro definitions.
80 typedef std::vector<AsmToken> MCAsmMacroArgument;
81 typedef std::vector<MCAsmMacroArgument> MCAsmMacroArguments;
82 
83 /// Helper class for storing information about an active macro
84 /// instantiation.
85 struct MacroInstantiation {
86   /// The location of the instantiation.
87   SMLoc InstantiationLoc;
88 
89   /// The buffer where parsing should resume upon instantiation completion.
90   unsigned ExitBuffer;
91 
92   /// The location where parsing should resume upon instantiation completion.
93   SMLoc ExitLoc;
94 
95   /// The depth of TheCondStack at the start of the instantiation.
96   size_t CondStackDepth;
97 };
98 
99 struct ParseStatementInfo {
100   /// The parsed operands from the last parsed statement.
101   SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> ParsedOperands;
102 
103   /// The opcode from the last parsed instruction.
104   unsigned Opcode = ~0U;
105 
106   /// Was there an error parsing the inline assembly?
107   bool ParseError = false;
108 
109   SmallVectorImpl<AsmRewrite> *AsmRewrites = nullptr;
110 
111   ParseStatementInfo() = delete;
112   ParseStatementInfo(SmallVectorImpl<AsmRewrite> *rewrites)
113     : AsmRewrites(rewrites) {}
114 };
115 
116 /// The concrete assembly parser instance.
117 class AsmParser : public MCAsmParser {
118 private:
119   AsmLexer Lexer;
120   MCContext &Ctx;
121   MCStreamer &Out;
122   const MCAsmInfo &MAI;
123   SourceMgr &SrcMgr;
124   SourceMgr::DiagHandlerTy SavedDiagHandler;
125   void *SavedDiagContext;
126   std::unique_ptr<MCAsmParserExtension> PlatformParser;
127   SMLoc StartTokLoc;
128 
129   /// This is the current buffer index we're lexing from as managed by the
130   /// SourceMgr object.
131   unsigned CurBuffer;
132 
133   AsmCond TheCondState;
134   std::vector<AsmCond> TheCondStack;
135 
136   /// maps directive names to handler methods in parser
137   /// extensions. Extensions register themselves in this map by calling
138   /// addDirectiveHandler.
139   StringMap<ExtensionDirectiveHandler> ExtensionDirectiveMap;
140 
141   /// Stack of active macro instantiations.
142   std::vector<MacroInstantiation*> ActiveMacros;
143 
144   /// List of bodies of anonymous macros.
145   std::deque<MCAsmMacro> MacroLikeBodies;
146 
147   /// Boolean tracking whether macro substitution is enabled.
148   unsigned MacrosEnabledFlag : 1;
149 
150   /// Keeps track of how many .macro's have been instantiated.
151   unsigned NumOfMacroInstantiations;
152 
153   /// The values from the last parsed cpp hash file line comment if any.
154   struct CppHashInfoTy {
155     StringRef Filename;
156     int64_t LineNumber;
157     SMLoc Loc;
158     unsigned Buf;
159     CppHashInfoTy() : LineNumber(0), Buf(0) {}
160   };
161   CppHashInfoTy CppHashInfo;
162 
163   /// The filename from the first cpp hash file line comment, if any.
164   StringRef FirstCppHashFilename;
165 
166   /// List of forward directional labels for diagnosis at the end.
167   SmallVector<std::tuple<SMLoc, CppHashInfoTy, MCSymbol *>, 4> DirLabels;
168 
169   SmallSet<StringRef, 2> LTODiscardSymbols;
170 
171   /// AssemblerDialect. ~OU means unset value and use value provided by MAI.
172   unsigned AssemblerDialect = ~0U;
173 
174   /// is Darwin compatibility enabled?
175   bool IsDarwin = false;
176 
177   /// Are we parsing ms-style inline assembly?
178   bool ParsingMSInlineAsm = false;
179 
180   /// Did we already inform the user about inconsistent MD5 usage?
181   bool ReportedInconsistentMD5 = false;
182 
183   // Is alt macro mode enabled.
184   bool AltMacroMode = false;
185 
186 protected:
187   virtual bool parseStatement(ParseStatementInfo &Info,
188                               MCAsmParserSemaCallback *SI);
189 
190   /// This routine uses the target specific ParseInstruction function to
191   /// parse an instruction into Operands, and then call the target specific
192   /// MatchAndEmit function to match and emit the instruction.
193   bool parseAndMatchAndEmitTargetInstruction(ParseStatementInfo &Info,
194                                              StringRef IDVal, AsmToken ID,
195                                              SMLoc IDLoc);
196 
197   /// Should we emit DWARF describing this assembler source?  (Returns false if
198   /// the source has .file directives, which means we don't want to generate
199   /// info describing the assembler source itself.)
200   bool enabledGenDwarfForAssembly();
201 
202 public:
203   AsmParser(SourceMgr &SM, MCContext &Ctx, MCStreamer &Out,
204             const MCAsmInfo &MAI, unsigned CB);
205   AsmParser(const AsmParser &) = delete;
206   AsmParser &operator=(const AsmParser &) = delete;
207   ~AsmParser() override;
208 
209   bool Run(bool NoInitialTextSection, bool NoFinalize = false) override;
210 
211   void addDirectiveHandler(StringRef Directive,
212                            ExtensionDirectiveHandler Handler) override {
213     ExtensionDirectiveMap[Directive] = Handler;
214   }
215 
216   void addAliasForDirective(StringRef Directive, StringRef Alias) override {
217     DirectiveKindMap[Directive.lower()] = DirectiveKindMap[Alias.lower()];
218   }
219 
220   /// @name MCAsmParser Interface
221   /// {
222 
223   SourceMgr &getSourceManager() override { return SrcMgr; }
224   MCAsmLexer &getLexer() override { return Lexer; }
225   MCContext &getContext() override { return Ctx; }
226   MCStreamer &getStreamer() override { return Out; }
227 
228   CodeViewContext &getCVContext() { return Ctx.getCVContext(); }
229 
230   unsigned getAssemblerDialect() override {
231     if (AssemblerDialect == ~0U)
232       return MAI.getAssemblerDialect();
233     else
234       return AssemblerDialect;
235   }
236   void setAssemblerDialect(unsigned i) override {
237     AssemblerDialect = i;
238   }
239 
240   void Note(SMLoc L, const Twine &Msg, SMRange Range = std::nullopt) override;
241   bool Warning(SMLoc L, const Twine &Msg,
242                SMRange Range = std::nullopt) override;
243   bool printError(SMLoc L, const Twine &Msg,
244                   SMRange Range = std::nullopt) override;
245 
246   const AsmToken &Lex() override;
247 
248   void setParsingMSInlineAsm(bool V) override {
249     ParsingMSInlineAsm = V;
250     // When parsing MS inline asm, we must lex 0b1101 and 0ABCH as binary and
251     // hex integer literals.
252     Lexer.setLexMasmIntegers(V);
253   }
254   bool isParsingMSInlineAsm() override { return ParsingMSInlineAsm; }
255 
256   bool discardLTOSymbol(StringRef Name) const override {
257     return LTODiscardSymbols.contains(Name);
258   }
259 
260   bool parseMSInlineAsm(std::string &AsmString, unsigned &NumOutputs,
261                         unsigned &NumInputs,
262                         SmallVectorImpl<std::pair<void *, bool>> &OpDecls,
263                         SmallVectorImpl<std::string> &Constraints,
264                         SmallVectorImpl<std::string> &Clobbers,
265                         const MCInstrInfo *MII, const MCInstPrinter *IP,
266                         MCAsmParserSemaCallback &SI) override;
267 
268   bool parseExpression(const MCExpr *&Res);
269   bool parseExpression(const MCExpr *&Res, SMLoc &EndLoc) override;
270   bool parsePrimaryExpr(const MCExpr *&Res, SMLoc &EndLoc,
271                         AsmTypeInfo *TypeInfo) override;
272   bool parseParenExpression(const MCExpr *&Res, SMLoc &EndLoc) override;
273   bool parseParenExprOfDepth(unsigned ParenDepth, const MCExpr *&Res,
274                              SMLoc &EndLoc) override;
275   bool parseAbsoluteExpression(int64_t &Res) override;
276 
277   /// Parse a floating point expression using the float \p Semantics
278   /// and set \p Res to the value.
279   bool parseRealValue(const fltSemantics &Semantics, APInt &Res);
280 
281   /// Parse an identifier or string (as a quoted identifier)
282   /// and set \p Res to the identifier contents.
283   bool parseIdentifier(StringRef &Res) override;
284   void eatToEndOfStatement() override;
285 
286   bool checkForValidSection() override;
287 
288   /// }
289 
290 private:
291   bool parseCurlyBlockScope(SmallVectorImpl<AsmRewrite>& AsmStrRewrites);
292   bool parseCppHashLineFilenameComment(SMLoc L, bool SaveLocInfo = true);
293 
294   void checkForBadMacro(SMLoc DirectiveLoc, StringRef Name, StringRef Body,
295                         ArrayRef<MCAsmMacroParameter> Parameters);
296   bool expandMacro(raw_svector_ostream &OS, StringRef Body,
297                    ArrayRef<MCAsmMacroParameter> Parameters,
298                    ArrayRef<MCAsmMacroArgument> A, bool EnableAtPseudoVariable,
299                    SMLoc L);
300 
301   /// Are macros enabled in the parser?
302   bool areMacrosEnabled() {return MacrosEnabledFlag;}
303 
304   /// Control a flag in the parser that enables or disables macros.
305   void setMacrosEnabled(bool Flag) {MacrosEnabledFlag = Flag;}
306 
307   /// Are we inside a macro instantiation?
308   bool isInsideMacroInstantiation() {return !ActiveMacros.empty();}
309 
310   /// Handle entry to macro instantiation.
311   ///
312   /// \param M The macro.
313   /// \param NameLoc Instantiation location.
314   bool handleMacroEntry(const MCAsmMacro *M, SMLoc NameLoc);
315 
316   /// Handle exit from macro instantiation.
317   void handleMacroExit();
318 
319   /// Extract AsmTokens for a macro argument.
320   bool parseMacroArgument(MCAsmMacroArgument &MA, bool Vararg);
321 
322   /// Parse all macro arguments for a given macro.
323   bool parseMacroArguments(const MCAsmMacro *M, MCAsmMacroArguments &A);
324 
325   void printMacroInstantiations();
326   void printMessage(SMLoc Loc, SourceMgr::DiagKind Kind, const Twine &Msg,
327                     SMRange Range = std::nullopt) const {
328     ArrayRef<SMRange> Ranges(Range);
329     SrcMgr.PrintMessage(Loc, Kind, Msg, Ranges);
330   }
331   static void DiagHandler(const SMDiagnostic &Diag, void *Context);
332 
333   /// Enter the specified file. This returns true on failure.
334   bool enterIncludeFile(const std::string &Filename);
335 
336   /// Process the specified file for the .incbin directive.
337   /// This returns true on failure.
338   bool processIncbinFile(const std::string &Filename, int64_t Skip = 0,
339                          const MCExpr *Count = nullptr, SMLoc Loc = SMLoc());
340 
341   /// Reset the current lexer position to that given by \p Loc. The
342   /// current token is not set; clients should ensure Lex() is called
343   /// subsequently.
344   ///
345   /// \param InBuffer If not 0, should be the known buffer id that contains the
346   /// location.
347   void jumpToLoc(SMLoc Loc, unsigned InBuffer = 0);
348 
349   /// Parse up to the end of statement and a return the contents from the
350   /// current token until the end of the statement; the current token on exit
351   /// will be either the EndOfStatement or EOF.
352   StringRef parseStringToEndOfStatement() override;
353 
354   /// Parse until the end of a statement or a comma is encountered,
355   /// return the contents from the current token up to the end or comma.
356   StringRef parseStringToComma();
357 
358   enum class AssignmentKind {
359     Set,
360     Equiv,
361     Equal,
362     LTOSetConditional,
363   };
364 
365   bool parseAssignment(StringRef Name, AssignmentKind Kind);
366 
367   unsigned getBinOpPrecedence(AsmToken::TokenKind K,
368                               MCBinaryExpr::Opcode &Kind);
369 
370   bool parseBinOpRHS(unsigned Precedence, const MCExpr *&Res, SMLoc &EndLoc);
371   bool parseParenExpr(const MCExpr *&Res, SMLoc &EndLoc);
372   bool parseBracketExpr(const MCExpr *&Res, SMLoc &EndLoc);
373 
374   bool parseRegisterOrRegisterNumber(int64_t &Register, SMLoc DirectiveLoc);
375 
376   bool parseCVFunctionId(int64_t &FunctionId, StringRef DirectiveName);
377   bool parseCVFileId(int64_t &FileId, StringRef DirectiveName);
378 
379   // Generic (target and platform independent) directive parsing.
380   enum DirectiveKind {
381     DK_NO_DIRECTIVE, // Placeholder
382     DK_SET,
383     DK_EQU,
384     DK_EQUIV,
385     DK_ASCII,
386     DK_ASCIZ,
387     DK_STRING,
388     DK_BYTE,
389     DK_SHORT,
390     DK_RELOC,
391     DK_VALUE,
392     DK_2BYTE,
393     DK_LONG,
394     DK_INT,
395     DK_4BYTE,
396     DK_QUAD,
397     DK_8BYTE,
398     DK_OCTA,
399     DK_DC,
400     DK_DC_A,
401     DK_DC_B,
402     DK_DC_D,
403     DK_DC_L,
404     DK_DC_S,
405     DK_DC_W,
406     DK_DC_X,
407     DK_DCB,
408     DK_DCB_B,
409     DK_DCB_D,
410     DK_DCB_L,
411     DK_DCB_S,
412     DK_DCB_W,
413     DK_DCB_X,
414     DK_DS,
415     DK_DS_B,
416     DK_DS_D,
417     DK_DS_L,
418     DK_DS_P,
419     DK_DS_S,
420     DK_DS_W,
421     DK_DS_X,
422     DK_SINGLE,
423     DK_FLOAT,
424     DK_DOUBLE,
425     DK_ALIGN,
426     DK_ALIGN32,
427     DK_BALIGN,
428     DK_BALIGNW,
429     DK_BALIGNL,
430     DK_P2ALIGN,
431     DK_P2ALIGNW,
432     DK_P2ALIGNL,
433     DK_ORG,
434     DK_FILL,
435     DK_ENDR,
436     DK_BUNDLE_ALIGN_MODE,
437     DK_BUNDLE_LOCK,
438     DK_BUNDLE_UNLOCK,
439     DK_ZERO,
440     DK_EXTERN,
441     DK_GLOBL,
442     DK_GLOBAL,
443     DK_LAZY_REFERENCE,
444     DK_NO_DEAD_STRIP,
445     DK_SYMBOL_RESOLVER,
446     DK_PRIVATE_EXTERN,
447     DK_REFERENCE,
448     DK_WEAK_DEFINITION,
449     DK_WEAK_REFERENCE,
450     DK_WEAK_DEF_CAN_BE_HIDDEN,
451     DK_COLD,
452     DK_COMM,
453     DK_COMMON,
454     DK_LCOMM,
455     DK_ABORT,
456     DK_INCLUDE,
457     DK_INCBIN,
458     DK_CODE16,
459     DK_CODE16GCC,
460     DK_REPT,
461     DK_IRP,
462     DK_IRPC,
463     DK_IF,
464     DK_IFEQ,
465     DK_IFGE,
466     DK_IFGT,
467     DK_IFLE,
468     DK_IFLT,
469     DK_IFNE,
470     DK_IFB,
471     DK_IFNB,
472     DK_IFC,
473     DK_IFEQS,
474     DK_IFNC,
475     DK_IFNES,
476     DK_IFDEF,
477     DK_IFNDEF,
478     DK_IFNOTDEF,
479     DK_ELSEIF,
480     DK_ELSE,
481     DK_ENDIF,
482     DK_SPACE,
483     DK_SKIP,
484     DK_FILE,
485     DK_LINE,
486     DK_LOC,
487     DK_STABS,
488     DK_CV_FILE,
489     DK_CV_FUNC_ID,
490     DK_CV_INLINE_SITE_ID,
491     DK_CV_LOC,
492     DK_CV_LINETABLE,
493     DK_CV_INLINE_LINETABLE,
494     DK_CV_DEF_RANGE,
495     DK_CV_STRINGTABLE,
496     DK_CV_STRING,
497     DK_CV_FILECHECKSUMS,
498     DK_CV_FILECHECKSUM_OFFSET,
499     DK_CV_FPO_DATA,
500     DK_CFI_SECTIONS,
501     DK_CFI_STARTPROC,
502     DK_CFI_ENDPROC,
503     DK_CFI_DEF_CFA,
504     DK_CFI_DEF_CFA_OFFSET,
505     DK_CFI_ADJUST_CFA_OFFSET,
506     DK_CFI_DEF_CFA_REGISTER,
507     DK_CFI_LLVM_DEF_ASPACE_CFA,
508     DK_CFI_OFFSET,
509     DK_CFI_REL_OFFSET,
510     DK_CFI_PERSONALITY,
511     DK_CFI_LSDA,
512     DK_CFI_REMEMBER_STATE,
513     DK_CFI_RESTORE_STATE,
514     DK_CFI_SAME_VALUE,
515     DK_CFI_RESTORE,
516     DK_CFI_ESCAPE,
517     DK_CFI_RETURN_COLUMN,
518     DK_CFI_SIGNAL_FRAME,
519     DK_CFI_UNDEFINED,
520     DK_CFI_REGISTER,
521     DK_CFI_WINDOW_SAVE,
522     DK_CFI_B_KEY_FRAME,
523     DK_MACROS_ON,
524     DK_MACROS_OFF,
525     DK_ALTMACRO,
526     DK_NOALTMACRO,
527     DK_MACRO,
528     DK_EXITM,
529     DK_ENDM,
530     DK_ENDMACRO,
531     DK_PURGEM,
532     DK_SLEB128,
533     DK_ULEB128,
534     DK_ERR,
535     DK_ERROR,
536     DK_WARNING,
537     DK_PRINT,
538     DK_ADDRSIG,
539     DK_ADDRSIG_SYM,
540     DK_PSEUDO_PROBE,
541     DK_LTO_DISCARD,
542     DK_LTO_SET_CONDITIONAL,
543     DK_CFI_MTE_TAGGED_FRAME,
544     DK_MEMTAG,
545     DK_END
546   };
547 
548   /// Maps directive name --> DirectiveKind enum, for
549   /// directives parsed by this class.
550   StringMap<DirectiveKind> DirectiveKindMap;
551 
552   // Codeview def_range type parsing.
553   enum CVDefRangeType {
554     CVDR_DEFRANGE = 0, // Placeholder
555     CVDR_DEFRANGE_REGISTER,
556     CVDR_DEFRANGE_FRAMEPOINTER_REL,
557     CVDR_DEFRANGE_SUBFIELD_REGISTER,
558     CVDR_DEFRANGE_REGISTER_REL
559   };
560 
561   /// Maps Codeview def_range types --> CVDefRangeType enum, for
562   /// Codeview def_range types parsed by this class.
563   StringMap<CVDefRangeType> CVDefRangeTypeMap;
564 
565   // ".ascii", ".asciz", ".string"
566   bool parseDirectiveAscii(StringRef IDVal, bool ZeroTerminated);
567   bool parseDirectiveReloc(SMLoc DirectiveLoc); // ".reloc"
568   bool parseDirectiveValue(StringRef IDVal,
569                            unsigned Size);       // ".byte", ".long", ...
570   bool parseDirectiveOctaValue(StringRef IDVal); // ".octa", ...
571   bool parseDirectiveRealValue(StringRef IDVal,
572                                const fltSemantics &); // ".single", ...
573   bool parseDirectiveFill(); // ".fill"
574   bool parseDirectiveZero(); // ".zero"
575   // ".set", ".equ", ".equiv", ".lto_set_conditional"
576   bool parseDirectiveSet(StringRef IDVal, AssignmentKind Kind);
577   bool parseDirectiveOrg(); // ".org"
578   // ".align{,32}", ".p2align{,w,l}"
579   bool parseDirectiveAlign(bool IsPow2, unsigned ValueSize);
580 
581   // ".file", ".line", ".loc", ".stabs"
582   bool parseDirectiveFile(SMLoc DirectiveLoc);
583   bool parseDirectiveLine();
584   bool parseDirectiveLoc();
585   bool parseDirectiveStabs();
586 
587   // ".cv_file", ".cv_func_id", ".cv_inline_site_id", ".cv_loc", ".cv_linetable",
588   // ".cv_inline_linetable", ".cv_def_range", ".cv_string"
589   bool parseDirectiveCVFile();
590   bool parseDirectiveCVFuncId();
591   bool parseDirectiveCVInlineSiteId();
592   bool parseDirectiveCVLoc();
593   bool parseDirectiveCVLinetable();
594   bool parseDirectiveCVInlineLinetable();
595   bool parseDirectiveCVDefRange();
596   bool parseDirectiveCVString();
597   bool parseDirectiveCVStringTable();
598   bool parseDirectiveCVFileChecksums();
599   bool parseDirectiveCVFileChecksumOffset();
600   bool parseDirectiveCVFPOData();
601 
602   // .cfi directives
603   bool parseDirectiveCFIRegister(SMLoc DirectiveLoc);
604   bool parseDirectiveCFIWindowSave(SMLoc DirectiveLoc);
605   bool parseDirectiveCFISections();
606   bool parseDirectiveCFIStartProc();
607   bool parseDirectiveCFIEndProc();
608   bool parseDirectiveCFIDefCfaOffset(SMLoc DirectiveLoc);
609   bool parseDirectiveCFIDefCfa(SMLoc DirectiveLoc);
610   bool parseDirectiveCFIAdjustCfaOffset(SMLoc DirectiveLoc);
611   bool parseDirectiveCFIDefCfaRegister(SMLoc DirectiveLoc);
612   bool parseDirectiveCFILLVMDefAspaceCfa(SMLoc DirectiveLoc);
613   bool parseDirectiveCFIOffset(SMLoc DirectiveLoc);
614   bool parseDirectiveCFIRelOffset(SMLoc DirectiveLoc);
615   bool parseDirectiveCFIPersonalityOrLsda(bool IsPersonality);
616   bool parseDirectiveCFIRememberState(SMLoc DirectiveLoc);
617   bool parseDirectiveCFIRestoreState(SMLoc DirectiveLoc);
618   bool parseDirectiveCFISameValue(SMLoc DirectiveLoc);
619   bool parseDirectiveCFIRestore(SMLoc DirectiveLoc);
620   bool parseDirectiveCFIEscape(SMLoc DirectiveLoc);
621   bool parseDirectiveCFIReturnColumn(SMLoc DirectiveLoc);
622   bool parseDirectiveCFISignalFrame(SMLoc DirectiveLoc);
623   bool parseDirectiveCFIUndefined(SMLoc DirectiveLoc);
624 
625   // macro directives
626   bool parseDirectivePurgeMacro(SMLoc DirectiveLoc);
627   bool parseDirectiveExitMacro(StringRef Directive);
628   bool parseDirectiveEndMacro(StringRef Directive);
629   bool parseDirectiveMacro(SMLoc DirectiveLoc);
630   bool parseDirectiveMacrosOnOff(StringRef Directive);
631   // alternate macro mode directives
632   bool parseDirectiveAltmacro(StringRef Directive);
633   // ".bundle_align_mode"
634   bool parseDirectiveBundleAlignMode();
635   // ".bundle_lock"
636   bool parseDirectiveBundleLock();
637   // ".bundle_unlock"
638   bool parseDirectiveBundleUnlock();
639 
640   // ".space", ".skip"
641   bool parseDirectiveSpace(StringRef IDVal);
642 
643   // ".dcb"
644   bool parseDirectiveDCB(StringRef IDVal, unsigned Size);
645   bool parseDirectiveRealDCB(StringRef IDVal, const fltSemantics &);
646   // ".ds"
647   bool parseDirectiveDS(StringRef IDVal, unsigned Size);
648 
649   // .sleb128 (Signed=true) and .uleb128 (Signed=false)
650   bool parseDirectiveLEB128(bool Signed);
651 
652   /// Parse a directive like ".globl" which
653   /// accepts a single symbol (which should be a label or an external).
654   bool parseDirectiveSymbolAttribute(MCSymbolAttr Attr);
655 
656   bool parseDirectiveComm(bool IsLocal); // ".comm" and ".lcomm"
657 
658   bool parseDirectiveAbort(); // ".abort"
659   bool parseDirectiveInclude(); // ".include"
660   bool parseDirectiveIncbin(); // ".incbin"
661 
662   // ".if", ".ifeq", ".ifge", ".ifgt" , ".ifle", ".iflt" or ".ifne"
663   bool parseDirectiveIf(SMLoc DirectiveLoc, DirectiveKind DirKind);
664   // ".ifb" or ".ifnb", depending on ExpectBlank.
665   bool parseDirectiveIfb(SMLoc DirectiveLoc, bool ExpectBlank);
666   // ".ifc" or ".ifnc", depending on ExpectEqual.
667   bool parseDirectiveIfc(SMLoc DirectiveLoc, bool ExpectEqual);
668   // ".ifeqs" or ".ifnes", depending on ExpectEqual.
669   bool parseDirectiveIfeqs(SMLoc DirectiveLoc, bool ExpectEqual);
670   // ".ifdef" or ".ifndef", depending on expect_defined
671   bool parseDirectiveIfdef(SMLoc DirectiveLoc, bool expect_defined);
672   bool parseDirectiveElseIf(SMLoc DirectiveLoc); // ".elseif"
673   bool parseDirectiveElse(SMLoc DirectiveLoc); // ".else"
674   bool parseDirectiveEndIf(SMLoc DirectiveLoc); // .endif
675   bool parseEscapedString(std::string &Data) override;
676   bool parseAngleBracketString(std::string &Data) override;
677 
678   const MCExpr *applyModifierToExpr(const MCExpr *E,
679                                     MCSymbolRefExpr::VariantKind Variant);
680 
681   // Macro-like directives
682   MCAsmMacro *parseMacroLikeBody(SMLoc DirectiveLoc);
683   void instantiateMacroLikeBody(MCAsmMacro *M, SMLoc DirectiveLoc,
684                                 raw_svector_ostream &OS);
685   bool parseDirectiveRept(SMLoc DirectiveLoc, StringRef Directive);
686   bool parseDirectiveIrp(SMLoc DirectiveLoc);  // ".irp"
687   bool parseDirectiveIrpc(SMLoc DirectiveLoc); // ".irpc"
688   bool parseDirectiveEndr(SMLoc DirectiveLoc); // ".endr"
689 
690   // "_emit" or "__emit"
691   bool parseDirectiveMSEmit(SMLoc DirectiveLoc, ParseStatementInfo &Info,
692                             size_t Len);
693 
694   // "align"
695   bool parseDirectiveMSAlign(SMLoc DirectiveLoc, ParseStatementInfo &Info);
696 
697   // "end"
698   bool parseDirectiveEnd(SMLoc DirectiveLoc);
699 
700   // ".err" or ".error"
701   bool parseDirectiveError(SMLoc DirectiveLoc, bool WithMessage);
702 
703   // ".warning"
704   bool parseDirectiveWarning(SMLoc DirectiveLoc);
705 
706   // .print <double-quotes-string>
707   bool parseDirectivePrint(SMLoc DirectiveLoc);
708 
709   // .pseudoprobe
710   bool parseDirectivePseudoProbe();
711 
712   // ".lto_discard"
713   bool parseDirectiveLTODiscard();
714 
715   // Directives to support address-significance tables.
716   bool parseDirectiveAddrsig();
717   bool parseDirectiveAddrsigSym();
718 
719   void initializeDirectiveKindMap();
720   void initializeCVDefRangeTypeMap();
721 };
722 
723 class HLASMAsmParser final : public AsmParser {
724 private:
725   MCAsmLexer &Lexer;
726   MCStreamer &Out;
727 
728   void lexLeadingSpaces() {
729     while (Lexer.is(AsmToken::Space))
730       Lexer.Lex();
731   }
732 
733   bool parseAsHLASMLabel(ParseStatementInfo &Info, MCAsmParserSemaCallback *SI);
734   bool parseAsMachineInstruction(ParseStatementInfo &Info,
735                                  MCAsmParserSemaCallback *SI);
736 
737 public:
738   HLASMAsmParser(SourceMgr &SM, MCContext &Ctx, MCStreamer &Out,
739                  const MCAsmInfo &MAI, unsigned CB = 0)
740       : AsmParser(SM, Ctx, Out, MAI, CB), Lexer(getLexer()), Out(Out) {
741     Lexer.setSkipSpace(false);
742     Lexer.setAllowHashInIdentifier(true);
743     Lexer.setLexHLASMIntegers(true);
744     Lexer.setLexHLASMStrings(true);
745   }
746 
747   ~HLASMAsmParser() { Lexer.setSkipSpace(true); }
748 
749   bool parseStatement(ParseStatementInfo &Info,
750                       MCAsmParserSemaCallback *SI) override;
751 };
752 
753 } // end anonymous namespace
754 
755 namespace llvm {
756 
757 extern cl::opt<unsigned> AsmMacroMaxNestingDepth;
758 
759 extern MCAsmParserExtension *createDarwinAsmParser();
760 extern MCAsmParserExtension *createELFAsmParser();
761 extern MCAsmParserExtension *createCOFFAsmParser();
762 extern MCAsmParserExtension *createGOFFAsmParser();
763 extern MCAsmParserExtension *createXCOFFAsmParser();
764 extern MCAsmParserExtension *createWasmAsmParser();
765 
766 } // end namespace llvm
767 
768 enum { DEFAULT_ADDRSPACE = 0 };
769 
770 AsmParser::AsmParser(SourceMgr &SM, MCContext &Ctx, MCStreamer &Out,
771                      const MCAsmInfo &MAI, unsigned CB = 0)
772     : Lexer(MAI), Ctx(Ctx), Out(Out), MAI(MAI), SrcMgr(SM),
773       CurBuffer(CB ? CB : SM.getMainFileID()), MacrosEnabledFlag(true) {
774   HadError = false;
775   // Save the old handler.
776   SavedDiagHandler = SrcMgr.getDiagHandler();
777   SavedDiagContext = SrcMgr.getDiagContext();
778   // Set our own handler which calls the saved handler.
779   SrcMgr.setDiagHandler(DiagHandler, this);
780   Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer());
781   // Make MCStreamer aware of the StartTokLoc for locations in diagnostics.
782   Out.setStartTokLocPtr(&StartTokLoc);
783 
784   // Initialize the platform / file format parser.
785   switch (Ctx.getObjectFileType()) {
786   case MCContext::IsCOFF:
787     PlatformParser.reset(createCOFFAsmParser());
788     break;
789   case MCContext::IsMachO:
790     PlatformParser.reset(createDarwinAsmParser());
791     IsDarwin = true;
792     break;
793   case MCContext::IsELF:
794     PlatformParser.reset(createELFAsmParser());
795     break;
796   case MCContext::IsGOFF:
797     PlatformParser.reset(createGOFFAsmParser());
798     break;
799   case MCContext::IsSPIRV:
800     report_fatal_error(
801         "Need to implement createSPIRVAsmParser for SPIRV format.");
802     break;
803   case MCContext::IsWasm:
804     PlatformParser.reset(createWasmAsmParser());
805     break;
806   case MCContext::IsXCOFF:
807     PlatformParser.reset(createXCOFFAsmParser());
808     break;
809   case MCContext::IsDXContainer:
810     llvm_unreachable("DXContainer is not supported yet");
811     break;
812   }
813 
814   PlatformParser->Initialize(*this);
815   initializeDirectiveKindMap();
816   initializeCVDefRangeTypeMap();
817 
818   NumOfMacroInstantiations = 0;
819 }
820 
821 AsmParser::~AsmParser() {
822   assert((HadError || ActiveMacros.empty()) &&
823          "Unexpected active macro instantiation!");
824 
825   // Remove MCStreamer's reference to the parser SMLoc.
826   Out.setStartTokLocPtr(nullptr);
827   // Restore the saved diagnostics handler and context for use during
828   // finalization.
829   SrcMgr.setDiagHandler(SavedDiagHandler, SavedDiagContext);
830 }
831 
832 void AsmParser::printMacroInstantiations() {
833   // Print the active macro instantiation stack.
834   for (std::vector<MacroInstantiation *>::const_reverse_iterator
835            it = ActiveMacros.rbegin(),
836            ie = ActiveMacros.rend();
837        it != ie; ++it)
838     printMessage((*it)->InstantiationLoc, SourceMgr::DK_Note,
839                  "while in macro instantiation");
840 }
841 
842 void AsmParser::Note(SMLoc L, const Twine &Msg, SMRange Range) {
843   printPendingErrors();
844   printMessage(L, SourceMgr::DK_Note, Msg, Range);
845   printMacroInstantiations();
846 }
847 
848 bool AsmParser::Warning(SMLoc L, const Twine &Msg, SMRange Range) {
849   if(getTargetParser().getTargetOptions().MCNoWarn)
850     return false;
851   if (getTargetParser().getTargetOptions().MCFatalWarnings)
852     return Error(L, Msg, Range);
853   printMessage(L, SourceMgr::DK_Warning, Msg, Range);
854   printMacroInstantiations();
855   return false;
856 }
857 
858 bool AsmParser::printError(SMLoc L, const Twine &Msg, SMRange Range) {
859   HadError = true;
860   printMessage(L, SourceMgr::DK_Error, Msg, Range);
861   printMacroInstantiations();
862   return true;
863 }
864 
865 bool AsmParser::enterIncludeFile(const std::string &Filename) {
866   std::string IncludedFile;
867   unsigned NewBuf =
868       SrcMgr.AddIncludeFile(Filename, Lexer.getLoc(), IncludedFile);
869   if (!NewBuf)
870     return true;
871 
872   CurBuffer = NewBuf;
873   Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer());
874   return false;
875 }
876 
877 /// Process the specified .incbin file by searching for it in the include paths
878 /// then just emitting the byte contents of the file to the streamer. This
879 /// returns true on failure.
880 bool AsmParser::processIncbinFile(const std::string &Filename, int64_t Skip,
881                                   const MCExpr *Count, SMLoc Loc) {
882   std::string IncludedFile;
883   unsigned NewBuf =
884       SrcMgr.AddIncludeFile(Filename, Lexer.getLoc(), IncludedFile);
885   if (!NewBuf)
886     return true;
887 
888   // Pick up the bytes from the file and emit them.
889   StringRef Bytes = SrcMgr.getMemoryBuffer(NewBuf)->getBuffer();
890   Bytes = Bytes.drop_front(Skip);
891   if (Count) {
892     int64_t Res;
893     if (!Count->evaluateAsAbsolute(Res, getStreamer().getAssemblerPtr()))
894       return Error(Loc, "expected absolute expression");
895     if (Res < 0)
896       return Warning(Loc, "negative count has no effect");
897     Bytes = Bytes.take_front(Res);
898   }
899   getStreamer().emitBytes(Bytes);
900   return false;
901 }
902 
903 void AsmParser::jumpToLoc(SMLoc Loc, unsigned InBuffer) {
904   CurBuffer = InBuffer ? InBuffer : SrcMgr.FindBufferContainingLoc(Loc);
905   Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer(),
906                   Loc.getPointer());
907 }
908 
909 const AsmToken &AsmParser::Lex() {
910   if (Lexer.getTok().is(AsmToken::Error))
911     Error(Lexer.getErrLoc(), Lexer.getErr());
912 
913   // if it's a end of statement with a comment in it
914   if (getTok().is(AsmToken::EndOfStatement)) {
915     // if this is a line comment output it.
916     if (!getTok().getString().empty() && getTok().getString().front() != '\n' &&
917         getTok().getString().front() != '\r' && MAI.preserveAsmComments())
918       Out.addExplicitComment(Twine(getTok().getString()));
919   }
920 
921   const AsmToken *tok = &Lexer.Lex();
922 
923   // Parse comments here to be deferred until end of next statement.
924   while (tok->is(AsmToken::Comment)) {
925     if (MAI.preserveAsmComments())
926       Out.addExplicitComment(Twine(tok->getString()));
927     tok = &Lexer.Lex();
928   }
929 
930   if (tok->is(AsmToken::Eof)) {
931     // If this is the end of an included file, pop the parent file off the
932     // include stack.
933     SMLoc ParentIncludeLoc = SrcMgr.getParentIncludeLoc(CurBuffer);
934     if (ParentIncludeLoc != SMLoc()) {
935       jumpToLoc(ParentIncludeLoc);
936       return Lex();
937     }
938   }
939 
940   return *tok;
941 }
942 
943 bool AsmParser::enabledGenDwarfForAssembly() {
944   // Check whether the user specified -g.
945   if (!getContext().getGenDwarfForAssembly())
946     return false;
947   // If we haven't encountered any .file directives (which would imply that
948   // the assembler source was produced with debug info already) then emit one
949   // describing the assembler source file itself.
950   if (getContext().getGenDwarfFileNumber() == 0) {
951     // Use the first #line directive for this, if any. It's preprocessed, so
952     // there is no checksum, and of course no source directive.
953     if (!FirstCppHashFilename.empty())
954       getContext().setMCLineTableRootFile(
955           /*CUID=*/0, getContext().getCompilationDir(), FirstCppHashFilename,
956           /*Cksum=*/std::nullopt, /*Source=*/std::nullopt);
957     const MCDwarfFile &RootFile =
958         getContext().getMCDwarfLineTable(/*CUID=*/0).getRootFile();
959     getContext().setGenDwarfFileNumber(getStreamer().emitDwarfFileDirective(
960         /*CUID=*/0, getContext().getCompilationDir(), RootFile.Name,
961         RootFile.Checksum, RootFile.Source));
962   }
963   return true;
964 }
965 
966 bool AsmParser::Run(bool NoInitialTextSection, bool NoFinalize) {
967   LTODiscardSymbols.clear();
968 
969   // Create the initial section, if requested.
970   if (!NoInitialTextSection)
971     Out.initSections(false, getTargetParser().getSTI());
972 
973   // Prime the lexer.
974   Lex();
975 
976   HadError = false;
977   AsmCond StartingCondState = TheCondState;
978   SmallVector<AsmRewrite, 4> AsmStrRewrites;
979 
980   // If we are generating dwarf for assembly source files save the initial text
981   // section.  (Don't use enabledGenDwarfForAssembly() here, as we aren't
982   // emitting any actual debug info yet and haven't had a chance to parse any
983   // embedded .file directives.)
984   if (getContext().getGenDwarfForAssembly()) {
985     MCSection *Sec = getStreamer().getCurrentSectionOnly();
986     if (!Sec->getBeginSymbol()) {
987       MCSymbol *SectionStartSym = getContext().createTempSymbol();
988       getStreamer().emitLabel(SectionStartSym);
989       Sec->setBeginSymbol(SectionStartSym);
990     }
991     bool InsertResult = getContext().addGenDwarfSection(Sec);
992     assert(InsertResult && ".text section should not have debug info yet");
993     (void)InsertResult;
994   }
995 
996   getTargetParser().onBeginOfFile();
997 
998   // While we have input, parse each statement.
999   while (Lexer.isNot(AsmToken::Eof)) {
1000     ParseStatementInfo Info(&AsmStrRewrites);
1001     bool Parsed = parseStatement(Info, nullptr);
1002 
1003     // If we have a Lexer Error we are on an Error Token. Load in Lexer Error
1004     // for printing ErrMsg via Lex() only if no (presumably better) parser error
1005     // exists.
1006     if (Parsed && !hasPendingError() && Lexer.getTok().is(AsmToken::Error)) {
1007       Lex();
1008     }
1009 
1010     // parseStatement returned true so may need to emit an error.
1011     printPendingErrors();
1012 
1013     // Skipping to the next line if needed.
1014     if (Parsed && !getLexer().isAtStartOfStatement())
1015       eatToEndOfStatement();
1016   }
1017 
1018   getTargetParser().onEndOfFile();
1019   printPendingErrors();
1020 
1021   // All errors should have been emitted.
1022   assert(!hasPendingError() && "unexpected error from parseStatement");
1023 
1024   getTargetParser().flushPendingInstructions(getStreamer());
1025 
1026   if (TheCondState.TheCond != StartingCondState.TheCond ||
1027       TheCondState.Ignore != StartingCondState.Ignore)
1028     printError(getTok().getLoc(), "unmatched .ifs or .elses");
1029   // Check to see there are no empty DwarfFile slots.
1030   const auto &LineTables = getContext().getMCDwarfLineTables();
1031   if (!LineTables.empty()) {
1032     unsigned Index = 0;
1033     for (const auto &File : LineTables.begin()->second.getMCDwarfFiles()) {
1034       if (File.Name.empty() && Index != 0)
1035         printError(getTok().getLoc(), "unassigned file number: " +
1036                                           Twine(Index) +
1037                                           " for .file directives");
1038       ++Index;
1039     }
1040   }
1041 
1042   // Check to see that all assembler local symbols were actually defined.
1043   // Targets that don't do subsections via symbols may not want this, though,
1044   // so conservatively exclude them. Only do this if we're finalizing, though,
1045   // as otherwise we won't necessarilly have seen everything yet.
1046   if (!NoFinalize) {
1047     if (MAI.hasSubsectionsViaSymbols()) {
1048       for (const auto &TableEntry : getContext().getSymbols()) {
1049         MCSymbol *Sym = TableEntry.getValue();
1050         // Variable symbols may not be marked as defined, so check those
1051         // explicitly. If we know it's a variable, we have a definition for
1052         // the purposes of this check.
1053         if (Sym->isTemporary() && !Sym->isVariable() && !Sym->isDefined())
1054           // FIXME: We would really like to refer back to where the symbol was
1055           // first referenced for a source location. We need to add something
1056           // to track that. Currently, we just point to the end of the file.
1057           printError(getTok().getLoc(), "assembler local symbol '" +
1058                                             Sym->getName() + "' not defined");
1059       }
1060     }
1061 
1062     // Temporary symbols like the ones for directional jumps don't go in the
1063     // symbol table. They also need to be diagnosed in all (final) cases.
1064     for (std::tuple<SMLoc, CppHashInfoTy, MCSymbol *> &LocSym : DirLabels) {
1065       if (std::get<2>(LocSym)->isUndefined()) {
1066         // Reset the state of any "# line file" directives we've seen to the
1067         // context as it was at the diagnostic site.
1068         CppHashInfo = std::get<1>(LocSym);
1069         printError(std::get<0>(LocSym), "directional label undefined");
1070       }
1071     }
1072   }
1073   // Finalize the output stream if there are no errors and if the client wants
1074   // us to.
1075   if (!HadError && !NoFinalize) {
1076     if (auto *TS = Out.getTargetStreamer())
1077       TS->emitConstantPools();
1078 
1079     Out.finish(Lexer.getLoc());
1080   }
1081 
1082   return HadError || getContext().hadError();
1083 }
1084 
1085 bool AsmParser::checkForValidSection() {
1086   if (!ParsingMSInlineAsm && !getStreamer().getCurrentSectionOnly()) {
1087     Out.initSections(false, getTargetParser().getSTI());
1088     return Error(getTok().getLoc(),
1089                  "expected section directive before assembly directive");
1090   }
1091   return false;
1092 }
1093 
1094 /// Throw away the rest of the line for testing purposes.
1095 void AsmParser::eatToEndOfStatement() {
1096   while (Lexer.isNot(AsmToken::EndOfStatement) && Lexer.isNot(AsmToken::Eof))
1097     Lexer.Lex();
1098 
1099   // Eat EOL.
1100   if (Lexer.is(AsmToken::EndOfStatement))
1101     Lexer.Lex();
1102 }
1103 
1104 StringRef AsmParser::parseStringToEndOfStatement() {
1105   const char *Start = getTok().getLoc().getPointer();
1106 
1107   while (Lexer.isNot(AsmToken::EndOfStatement) && Lexer.isNot(AsmToken::Eof))
1108     Lexer.Lex();
1109 
1110   const char *End = getTok().getLoc().getPointer();
1111   return StringRef(Start, End - Start);
1112 }
1113 
1114 StringRef AsmParser::parseStringToComma() {
1115   const char *Start = getTok().getLoc().getPointer();
1116 
1117   while (Lexer.isNot(AsmToken::EndOfStatement) &&
1118          Lexer.isNot(AsmToken::Comma) && Lexer.isNot(AsmToken::Eof))
1119     Lexer.Lex();
1120 
1121   const char *End = getTok().getLoc().getPointer();
1122   return StringRef(Start, End - Start);
1123 }
1124 
1125 /// Parse a paren expression and return it.
1126 /// NOTE: This assumes the leading '(' has already been consumed.
1127 ///
1128 /// parenexpr ::= expr)
1129 ///
1130 bool AsmParser::parseParenExpr(const MCExpr *&Res, SMLoc &EndLoc) {
1131   if (parseExpression(Res))
1132     return true;
1133   EndLoc = Lexer.getTok().getEndLoc();
1134   return parseRParen();
1135 }
1136 
1137 /// Parse a bracket expression and return it.
1138 /// NOTE: This assumes the leading '[' has already been consumed.
1139 ///
1140 /// bracketexpr ::= expr]
1141 ///
1142 bool AsmParser::parseBracketExpr(const MCExpr *&Res, SMLoc &EndLoc) {
1143   if (parseExpression(Res))
1144     return true;
1145   EndLoc = getTok().getEndLoc();
1146   if (parseToken(AsmToken::RBrac, "expected ']' in brackets expression"))
1147     return true;
1148   return false;
1149 }
1150 
1151 /// Parse a primary expression and return it.
1152 ///  primaryexpr ::= (parenexpr
1153 ///  primaryexpr ::= symbol
1154 ///  primaryexpr ::= number
1155 ///  primaryexpr ::= '.'
1156 ///  primaryexpr ::= ~,+,- primaryexpr
1157 bool AsmParser::parsePrimaryExpr(const MCExpr *&Res, SMLoc &EndLoc,
1158                                  AsmTypeInfo *TypeInfo) {
1159   SMLoc FirstTokenLoc = getLexer().getLoc();
1160   AsmToken::TokenKind FirstTokenKind = Lexer.getKind();
1161   switch (FirstTokenKind) {
1162   default:
1163     return TokError("unknown token in expression");
1164   // If we have an error assume that we've already handled it.
1165   case AsmToken::Error:
1166     return true;
1167   case AsmToken::Exclaim:
1168     Lex(); // Eat the operator.
1169     if (parsePrimaryExpr(Res, EndLoc, TypeInfo))
1170       return true;
1171     Res = MCUnaryExpr::createLNot(Res, getContext(), FirstTokenLoc);
1172     return false;
1173   case AsmToken::Dollar:
1174   case AsmToken::Star:
1175   case AsmToken::At:
1176   case AsmToken::String:
1177   case AsmToken::Identifier: {
1178     StringRef Identifier;
1179     if (parseIdentifier(Identifier)) {
1180       // We may have failed but '$'|'*' may be a valid token in context of
1181       // the current PC.
1182       if (getTok().is(AsmToken::Dollar) || getTok().is(AsmToken::Star)) {
1183         bool ShouldGenerateTempSymbol = false;
1184         if ((getTok().is(AsmToken::Dollar) && MAI.getDollarIsPC()) ||
1185             (getTok().is(AsmToken::Star) && MAI.getStarIsPC()))
1186           ShouldGenerateTempSymbol = true;
1187 
1188         if (!ShouldGenerateTempSymbol)
1189           return Error(FirstTokenLoc, "invalid token in expression");
1190 
1191         // Eat the '$'|'*' token.
1192         Lex();
1193         // This is either a '$'|'*' reference, which references the current PC.
1194         // Emit a temporary label to the streamer and refer to it.
1195         MCSymbol *Sym = Ctx.createTempSymbol();
1196         Out.emitLabel(Sym);
1197         Res = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None,
1198                                       getContext());
1199         EndLoc = FirstTokenLoc;
1200         return false;
1201       }
1202     }
1203     // Parse symbol variant
1204     std::pair<StringRef, StringRef> Split;
1205     if (!MAI.useParensForSymbolVariant()) {
1206       if (FirstTokenKind == AsmToken::String) {
1207         if (Lexer.is(AsmToken::At)) {
1208           Lex(); // eat @
1209           SMLoc AtLoc = getLexer().getLoc();
1210           StringRef VName;
1211           if (parseIdentifier(VName))
1212             return Error(AtLoc, "expected symbol variant after '@'");
1213 
1214           Split = std::make_pair(Identifier, VName);
1215         }
1216       } else {
1217         Split = Identifier.split('@');
1218       }
1219     } else if (Lexer.is(AsmToken::LParen)) {
1220       Lex(); // eat '('.
1221       StringRef VName;
1222       parseIdentifier(VName);
1223       if (parseRParen())
1224         return true;
1225       Split = std::make_pair(Identifier, VName);
1226     }
1227 
1228     EndLoc = SMLoc::getFromPointer(Identifier.end());
1229 
1230     // This is a symbol reference.
1231     StringRef SymbolName = Identifier;
1232     if (SymbolName.empty())
1233       return Error(getLexer().getLoc(), "expected a symbol reference");
1234 
1235     MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
1236 
1237     // Lookup the symbol variant if used.
1238     if (!Split.second.empty()) {
1239       Variant = MCSymbolRefExpr::getVariantKindForName(Split.second);
1240       if (Variant != MCSymbolRefExpr::VK_Invalid) {
1241         SymbolName = Split.first;
1242       } else if (MAI.doesAllowAtInName() && !MAI.useParensForSymbolVariant()) {
1243         Variant = MCSymbolRefExpr::VK_None;
1244       } else {
1245         return Error(SMLoc::getFromPointer(Split.second.begin()),
1246                      "invalid variant '" + Split.second + "'");
1247       }
1248     }
1249 
1250     MCSymbol *Sym = getContext().getInlineAsmLabel(SymbolName);
1251     if (!Sym)
1252       Sym = getContext().getOrCreateSymbol(
1253           MAI.shouldEmitLabelsInUpperCase() ? SymbolName.upper() : SymbolName);
1254 
1255     // If this is an absolute variable reference, substitute it now to preserve
1256     // semantics in the face of reassignment.
1257     if (Sym->isVariable()) {
1258       auto V = Sym->getVariableValue(/*SetUsed*/ false);
1259       bool DoInline = isa<MCConstantExpr>(V) && !Variant;
1260       if (auto TV = dyn_cast<MCTargetExpr>(V))
1261         DoInline = TV->inlineAssignedExpr();
1262       if (DoInline) {
1263         if (Variant)
1264           return Error(EndLoc, "unexpected modifier on variable reference");
1265         Res = Sym->getVariableValue(/*SetUsed*/ false);
1266         return false;
1267       }
1268     }
1269 
1270     // Otherwise create a symbol ref.
1271     Res = MCSymbolRefExpr::create(Sym, Variant, getContext(), FirstTokenLoc);
1272     return false;
1273   }
1274   case AsmToken::BigNum:
1275     return TokError("literal value out of range for directive");
1276   case AsmToken::Integer: {
1277     SMLoc Loc = getTok().getLoc();
1278     int64_t IntVal = getTok().getIntVal();
1279     Res = MCConstantExpr::create(IntVal, getContext());
1280     EndLoc = Lexer.getTok().getEndLoc();
1281     Lex(); // Eat token.
1282     // Look for 'b' or 'f' following an Integer as a directional label
1283     if (Lexer.getKind() == AsmToken::Identifier) {
1284       StringRef IDVal = getTok().getString();
1285       // Lookup the symbol variant if used.
1286       std::pair<StringRef, StringRef> Split = IDVal.split('@');
1287       MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
1288       if (Split.first.size() != IDVal.size()) {
1289         Variant = MCSymbolRefExpr::getVariantKindForName(Split.second);
1290         if (Variant == MCSymbolRefExpr::VK_Invalid)
1291           return TokError("invalid variant '" + Split.second + "'");
1292         IDVal = Split.first;
1293       }
1294       if (IDVal == "f" || IDVal == "b") {
1295         MCSymbol *Sym =
1296             Ctx.getDirectionalLocalSymbol(IntVal, IDVal == "b");
1297         Res = MCSymbolRefExpr::create(Sym, Variant, getContext());
1298         if (IDVal == "b" && Sym->isUndefined())
1299           return Error(Loc, "directional label undefined");
1300         DirLabels.push_back(std::make_tuple(Loc, CppHashInfo, Sym));
1301         EndLoc = Lexer.getTok().getEndLoc();
1302         Lex(); // Eat identifier.
1303       }
1304     }
1305     return false;
1306   }
1307   case AsmToken::Real: {
1308     APFloat RealVal(APFloat::IEEEdouble(), getTok().getString());
1309     uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
1310     Res = MCConstantExpr::create(IntVal, getContext());
1311     EndLoc = Lexer.getTok().getEndLoc();
1312     Lex(); // Eat token.
1313     return false;
1314   }
1315   case AsmToken::Dot: {
1316     if (!MAI.getDotIsPC())
1317       return TokError("cannot use . as current PC");
1318 
1319     // This is a '.' reference, which references the current PC.  Emit a
1320     // temporary label to the streamer and refer to it.
1321     MCSymbol *Sym = Ctx.createTempSymbol();
1322     Out.emitLabel(Sym);
1323     Res = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, getContext());
1324     EndLoc = Lexer.getTok().getEndLoc();
1325     Lex(); // Eat identifier.
1326     return false;
1327   }
1328   case AsmToken::LParen:
1329     Lex(); // Eat the '('.
1330     return parseParenExpr(Res, EndLoc);
1331   case AsmToken::LBrac:
1332     if (!PlatformParser->HasBracketExpressions())
1333       return TokError("brackets expression not supported on this target");
1334     Lex(); // Eat the '['.
1335     return parseBracketExpr(Res, EndLoc);
1336   case AsmToken::Minus:
1337     Lex(); // Eat the operator.
1338     if (parsePrimaryExpr(Res, EndLoc, TypeInfo))
1339       return true;
1340     Res = MCUnaryExpr::createMinus(Res, getContext(), FirstTokenLoc);
1341     return false;
1342   case AsmToken::Plus:
1343     Lex(); // Eat the operator.
1344     if (parsePrimaryExpr(Res, EndLoc, TypeInfo))
1345       return true;
1346     Res = MCUnaryExpr::createPlus(Res, getContext(), FirstTokenLoc);
1347     return false;
1348   case AsmToken::Tilde:
1349     Lex(); // Eat the operator.
1350     if (parsePrimaryExpr(Res, EndLoc, TypeInfo))
1351       return true;
1352     Res = MCUnaryExpr::createNot(Res, getContext(), FirstTokenLoc);
1353     return false;
1354   // MIPS unary expression operators. The lexer won't generate these tokens if
1355   // MCAsmInfo::HasMipsExpressions is false for the target.
1356   case AsmToken::PercentCall16:
1357   case AsmToken::PercentCall_Hi:
1358   case AsmToken::PercentCall_Lo:
1359   case AsmToken::PercentDtprel_Hi:
1360   case AsmToken::PercentDtprel_Lo:
1361   case AsmToken::PercentGot:
1362   case AsmToken::PercentGot_Disp:
1363   case AsmToken::PercentGot_Hi:
1364   case AsmToken::PercentGot_Lo:
1365   case AsmToken::PercentGot_Ofst:
1366   case AsmToken::PercentGot_Page:
1367   case AsmToken::PercentGottprel:
1368   case AsmToken::PercentGp_Rel:
1369   case AsmToken::PercentHi:
1370   case AsmToken::PercentHigher:
1371   case AsmToken::PercentHighest:
1372   case AsmToken::PercentLo:
1373   case AsmToken::PercentNeg:
1374   case AsmToken::PercentPcrel_Hi:
1375   case AsmToken::PercentPcrel_Lo:
1376   case AsmToken::PercentTlsgd:
1377   case AsmToken::PercentTlsldm:
1378   case AsmToken::PercentTprel_Hi:
1379   case AsmToken::PercentTprel_Lo:
1380     Lex(); // Eat the operator.
1381     if (Lexer.isNot(AsmToken::LParen))
1382       return TokError("expected '(' after operator");
1383     Lex(); // Eat the operator.
1384     if (parseExpression(Res, EndLoc))
1385       return true;
1386     if (parseRParen())
1387       return true;
1388     Res = getTargetParser().createTargetUnaryExpr(Res, FirstTokenKind, Ctx);
1389     return !Res;
1390   }
1391 }
1392 
1393 bool AsmParser::parseExpression(const MCExpr *&Res) {
1394   SMLoc EndLoc;
1395   return parseExpression(Res, EndLoc);
1396 }
1397 
1398 const MCExpr *
1399 AsmParser::applyModifierToExpr(const MCExpr *E,
1400                                MCSymbolRefExpr::VariantKind Variant) {
1401   // Ask the target implementation about this expression first.
1402   const MCExpr *NewE = getTargetParser().applyModifierToExpr(E, Variant, Ctx);
1403   if (NewE)
1404     return NewE;
1405   // Recurse over the given expression, rebuilding it to apply the given variant
1406   // if there is exactly one symbol.
1407   switch (E->getKind()) {
1408   case MCExpr::Target:
1409   case MCExpr::Constant:
1410     return nullptr;
1411 
1412   case MCExpr::SymbolRef: {
1413     const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(E);
1414 
1415     if (SRE->getKind() != MCSymbolRefExpr::VK_None) {
1416       TokError("invalid variant on expression '" + getTok().getIdentifier() +
1417                "' (already modified)");
1418       return E;
1419     }
1420 
1421     return MCSymbolRefExpr::create(&SRE->getSymbol(), Variant, getContext());
1422   }
1423 
1424   case MCExpr::Unary: {
1425     const MCUnaryExpr *UE = cast<MCUnaryExpr>(E);
1426     const MCExpr *Sub = applyModifierToExpr(UE->getSubExpr(), Variant);
1427     if (!Sub)
1428       return nullptr;
1429     return MCUnaryExpr::create(UE->getOpcode(), Sub, getContext());
1430   }
1431 
1432   case MCExpr::Binary: {
1433     const MCBinaryExpr *BE = cast<MCBinaryExpr>(E);
1434     const MCExpr *LHS = applyModifierToExpr(BE->getLHS(), Variant);
1435     const MCExpr *RHS = applyModifierToExpr(BE->getRHS(), Variant);
1436 
1437     if (!LHS && !RHS)
1438       return nullptr;
1439 
1440     if (!LHS)
1441       LHS = BE->getLHS();
1442     if (!RHS)
1443       RHS = BE->getRHS();
1444 
1445     return MCBinaryExpr::create(BE->getOpcode(), LHS, RHS, getContext());
1446   }
1447   }
1448 
1449   llvm_unreachable("Invalid expression kind!");
1450 }
1451 
1452 /// This function checks if the next token is <string> type or arithmetic.
1453 /// string that begin with character '<' must end with character '>'.
1454 /// otherwise it is arithmetics.
1455 /// If the function returns a 'true' value,
1456 /// the End argument will be filled with the last location pointed to the '>'
1457 /// character.
1458 
1459 /// There is a gap between the AltMacro's documentation and the single quote
1460 /// implementation. GCC does not fully support this feature and so we will not
1461 /// support it.
1462 /// TODO: Adding single quote as a string.
1463 static bool isAngleBracketString(SMLoc &StrLoc, SMLoc &EndLoc) {
1464   assert((StrLoc.getPointer() != nullptr) &&
1465          "Argument to the function cannot be a NULL value");
1466   const char *CharPtr = StrLoc.getPointer();
1467   while ((*CharPtr != '>') && (*CharPtr != '\n') && (*CharPtr != '\r') &&
1468          (*CharPtr != '\0')) {
1469     if (*CharPtr == '!')
1470       CharPtr++;
1471     CharPtr++;
1472   }
1473   if (*CharPtr == '>') {
1474     EndLoc = StrLoc.getFromPointer(CharPtr + 1);
1475     return true;
1476   }
1477   return false;
1478 }
1479 
1480 /// creating a string without the escape characters '!'.
1481 static std::string angleBracketString(StringRef AltMacroStr) {
1482   std::string Res;
1483   for (size_t Pos = 0; Pos < AltMacroStr.size(); Pos++) {
1484     if (AltMacroStr[Pos] == '!')
1485       Pos++;
1486     Res += AltMacroStr[Pos];
1487   }
1488   return Res;
1489 }
1490 
1491 /// Parse an expression and return it.
1492 ///
1493 ///  expr ::= expr &&,|| expr               -> lowest.
1494 ///  expr ::= expr |,^,&,! expr
1495 ///  expr ::= expr ==,!=,<>,<,<=,>,>= expr
1496 ///  expr ::= expr <<,>> expr
1497 ///  expr ::= expr +,- expr
1498 ///  expr ::= expr *,/,% expr               -> highest.
1499 ///  expr ::= primaryexpr
1500 ///
1501 bool AsmParser::parseExpression(const MCExpr *&Res, SMLoc &EndLoc) {
1502   // Parse the expression.
1503   Res = nullptr;
1504   if (getTargetParser().parsePrimaryExpr(Res, EndLoc) ||
1505       parseBinOpRHS(1, Res, EndLoc))
1506     return true;
1507 
1508   // As a special case, we support 'a op b @ modifier' by rewriting the
1509   // expression to include the modifier. This is inefficient, but in general we
1510   // expect users to use 'a@modifier op b'.
1511   if (Lexer.getKind() == AsmToken::At) {
1512     Lex();
1513 
1514     if (Lexer.isNot(AsmToken::Identifier))
1515       return TokError("unexpected symbol modifier following '@'");
1516 
1517     MCSymbolRefExpr::VariantKind Variant =
1518         MCSymbolRefExpr::getVariantKindForName(getTok().getIdentifier());
1519     if (Variant == MCSymbolRefExpr::VK_Invalid)
1520       return TokError("invalid variant '" + getTok().getIdentifier() + "'");
1521 
1522     const MCExpr *ModifiedRes = applyModifierToExpr(Res, Variant);
1523     if (!ModifiedRes) {
1524       return TokError("invalid modifier '" + getTok().getIdentifier() +
1525                       "' (no symbols present)");
1526     }
1527 
1528     Res = ModifiedRes;
1529     Lex();
1530   }
1531 
1532   // Try to constant fold it up front, if possible. Do not exploit
1533   // assembler here.
1534   int64_t Value;
1535   if (Res->evaluateAsAbsolute(Value))
1536     Res = MCConstantExpr::create(Value, getContext());
1537 
1538   return false;
1539 }
1540 
1541 bool AsmParser::parseParenExpression(const MCExpr *&Res, SMLoc &EndLoc) {
1542   Res = nullptr;
1543   return parseParenExpr(Res, EndLoc) || parseBinOpRHS(1, Res, EndLoc);
1544 }
1545 
1546 bool AsmParser::parseParenExprOfDepth(unsigned ParenDepth, const MCExpr *&Res,
1547                                       SMLoc &EndLoc) {
1548   if (parseParenExpr(Res, EndLoc))
1549     return true;
1550 
1551   for (; ParenDepth > 0; --ParenDepth) {
1552     if (parseBinOpRHS(1, Res, EndLoc))
1553       return true;
1554 
1555     // We don't Lex() the last RParen.
1556     // This is the same behavior as parseParenExpression().
1557     if (ParenDepth - 1 > 0) {
1558       EndLoc = getTok().getEndLoc();
1559       if (parseRParen())
1560         return true;
1561     }
1562   }
1563   return false;
1564 }
1565 
1566 bool AsmParser::parseAbsoluteExpression(int64_t &Res) {
1567   const MCExpr *Expr;
1568 
1569   SMLoc StartLoc = Lexer.getLoc();
1570   if (parseExpression(Expr))
1571     return true;
1572 
1573   if (!Expr->evaluateAsAbsolute(Res, getStreamer().getAssemblerPtr()))
1574     return Error(StartLoc, "expected absolute expression");
1575 
1576   return false;
1577 }
1578 
1579 static unsigned getDarwinBinOpPrecedence(AsmToken::TokenKind K,
1580                                          MCBinaryExpr::Opcode &Kind,
1581                                          bool ShouldUseLogicalShr) {
1582   switch (K) {
1583   default:
1584     return 0; // not a binop.
1585 
1586   // Lowest Precedence: &&, ||
1587   case AsmToken::AmpAmp:
1588     Kind = MCBinaryExpr::LAnd;
1589     return 1;
1590   case AsmToken::PipePipe:
1591     Kind = MCBinaryExpr::LOr;
1592     return 1;
1593 
1594   // Low Precedence: |, &, ^
1595   case AsmToken::Pipe:
1596     Kind = MCBinaryExpr::Or;
1597     return 2;
1598   case AsmToken::Caret:
1599     Kind = MCBinaryExpr::Xor;
1600     return 2;
1601   case AsmToken::Amp:
1602     Kind = MCBinaryExpr::And;
1603     return 2;
1604 
1605   // Low Intermediate Precedence: ==, !=, <>, <, <=, >, >=
1606   case AsmToken::EqualEqual:
1607     Kind = MCBinaryExpr::EQ;
1608     return 3;
1609   case AsmToken::ExclaimEqual:
1610   case AsmToken::LessGreater:
1611     Kind = MCBinaryExpr::NE;
1612     return 3;
1613   case AsmToken::Less:
1614     Kind = MCBinaryExpr::LT;
1615     return 3;
1616   case AsmToken::LessEqual:
1617     Kind = MCBinaryExpr::LTE;
1618     return 3;
1619   case AsmToken::Greater:
1620     Kind = MCBinaryExpr::GT;
1621     return 3;
1622   case AsmToken::GreaterEqual:
1623     Kind = MCBinaryExpr::GTE;
1624     return 3;
1625 
1626   // Intermediate Precedence: <<, >>
1627   case AsmToken::LessLess:
1628     Kind = MCBinaryExpr::Shl;
1629     return 4;
1630   case AsmToken::GreaterGreater:
1631     Kind = ShouldUseLogicalShr ? MCBinaryExpr::LShr : MCBinaryExpr::AShr;
1632     return 4;
1633 
1634   // High Intermediate Precedence: +, -
1635   case AsmToken::Plus:
1636     Kind = MCBinaryExpr::Add;
1637     return 5;
1638   case AsmToken::Minus:
1639     Kind = MCBinaryExpr::Sub;
1640     return 5;
1641 
1642   // Highest Precedence: *, /, %
1643   case AsmToken::Star:
1644     Kind = MCBinaryExpr::Mul;
1645     return 6;
1646   case AsmToken::Slash:
1647     Kind = MCBinaryExpr::Div;
1648     return 6;
1649   case AsmToken::Percent:
1650     Kind = MCBinaryExpr::Mod;
1651     return 6;
1652   }
1653 }
1654 
1655 static unsigned getGNUBinOpPrecedence(const MCAsmInfo &MAI,
1656                                       AsmToken::TokenKind K,
1657                                       MCBinaryExpr::Opcode &Kind,
1658                                       bool ShouldUseLogicalShr) {
1659   switch (K) {
1660   default:
1661     return 0; // not a binop.
1662 
1663   // Lowest Precedence: &&, ||
1664   case AsmToken::AmpAmp:
1665     Kind = MCBinaryExpr::LAnd;
1666     return 2;
1667   case AsmToken::PipePipe:
1668     Kind = MCBinaryExpr::LOr;
1669     return 1;
1670 
1671   // Low Precedence: ==, !=, <>, <, <=, >, >=
1672   case AsmToken::EqualEqual:
1673     Kind = MCBinaryExpr::EQ;
1674     return 3;
1675   case AsmToken::ExclaimEqual:
1676   case AsmToken::LessGreater:
1677     Kind = MCBinaryExpr::NE;
1678     return 3;
1679   case AsmToken::Less:
1680     Kind = MCBinaryExpr::LT;
1681     return 3;
1682   case AsmToken::LessEqual:
1683     Kind = MCBinaryExpr::LTE;
1684     return 3;
1685   case AsmToken::Greater:
1686     Kind = MCBinaryExpr::GT;
1687     return 3;
1688   case AsmToken::GreaterEqual:
1689     Kind = MCBinaryExpr::GTE;
1690     return 3;
1691 
1692   // Low Intermediate Precedence: +, -
1693   case AsmToken::Plus:
1694     Kind = MCBinaryExpr::Add;
1695     return 4;
1696   case AsmToken::Minus:
1697     Kind = MCBinaryExpr::Sub;
1698     return 4;
1699 
1700   // High Intermediate Precedence: |, !, &, ^
1701   //
1702   case AsmToken::Pipe:
1703     Kind = MCBinaryExpr::Or;
1704     return 5;
1705   case AsmToken::Exclaim:
1706     // Hack to support ARM compatible aliases (implied 'sp' operand in 'srs*'
1707     // instructions like 'srsda #31!') and not parse ! as an infix operator.
1708     if (MAI.getCommentString() == "@")
1709       return 0;
1710     Kind = MCBinaryExpr::OrNot;
1711     return 5;
1712   case AsmToken::Caret:
1713     Kind = MCBinaryExpr::Xor;
1714     return 5;
1715   case AsmToken::Amp:
1716     Kind = MCBinaryExpr::And;
1717     return 5;
1718 
1719   // Highest Precedence: *, /, %, <<, >>
1720   case AsmToken::Star:
1721     Kind = MCBinaryExpr::Mul;
1722     return 6;
1723   case AsmToken::Slash:
1724     Kind = MCBinaryExpr::Div;
1725     return 6;
1726   case AsmToken::Percent:
1727     Kind = MCBinaryExpr::Mod;
1728     return 6;
1729   case AsmToken::LessLess:
1730     Kind = MCBinaryExpr::Shl;
1731     return 6;
1732   case AsmToken::GreaterGreater:
1733     Kind = ShouldUseLogicalShr ? MCBinaryExpr::LShr : MCBinaryExpr::AShr;
1734     return 6;
1735   }
1736 }
1737 
1738 unsigned AsmParser::getBinOpPrecedence(AsmToken::TokenKind K,
1739                                        MCBinaryExpr::Opcode &Kind) {
1740   bool ShouldUseLogicalShr = MAI.shouldUseLogicalShr();
1741   return IsDarwin ? getDarwinBinOpPrecedence(K, Kind, ShouldUseLogicalShr)
1742                   : getGNUBinOpPrecedence(MAI, K, Kind, ShouldUseLogicalShr);
1743 }
1744 
1745 /// Parse all binary operators with precedence >= 'Precedence'.
1746 /// Res contains the LHS of the expression on input.
1747 bool AsmParser::parseBinOpRHS(unsigned Precedence, const MCExpr *&Res,
1748                               SMLoc &EndLoc) {
1749   SMLoc StartLoc = Lexer.getLoc();
1750   while (true) {
1751     MCBinaryExpr::Opcode Kind = MCBinaryExpr::Add;
1752     unsigned TokPrec = getBinOpPrecedence(Lexer.getKind(), Kind);
1753 
1754     // If the next token is lower precedence than we are allowed to eat, return
1755     // successfully with what we ate already.
1756     if (TokPrec < Precedence)
1757       return false;
1758 
1759     Lex();
1760 
1761     // Eat the next primary expression.
1762     const MCExpr *RHS;
1763     if (getTargetParser().parsePrimaryExpr(RHS, EndLoc))
1764       return true;
1765 
1766     // If BinOp binds less tightly with RHS than the operator after RHS, let
1767     // the pending operator take RHS as its LHS.
1768     MCBinaryExpr::Opcode Dummy;
1769     unsigned NextTokPrec = getBinOpPrecedence(Lexer.getKind(), Dummy);
1770     if (TokPrec < NextTokPrec && parseBinOpRHS(TokPrec + 1, RHS, EndLoc))
1771       return true;
1772 
1773     // Merge LHS and RHS according to operator.
1774     Res = MCBinaryExpr::create(Kind, Res, RHS, getContext(), StartLoc);
1775   }
1776 }
1777 
1778 /// ParseStatement:
1779 ///   ::= EndOfStatement
1780 ///   ::= Label* Directive ...Operands... EndOfStatement
1781 ///   ::= Label* Identifier OperandList* EndOfStatement
1782 bool AsmParser::parseStatement(ParseStatementInfo &Info,
1783                                MCAsmParserSemaCallback *SI) {
1784   assert(!hasPendingError() && "parseStatement started with pending error");
1785   // Eat initial spaces and comments
1786   while (Lexer.is(AsmToken::Space))
1787     Lex();
1788   if (Lexer.is(AsmToken::EndOfStatement)) {
1789     // if this is a line comment we can drop it safely
1790     if (getTok().getString().empty() || getTok().getString().front() == '\r' ||
1791         getTok().getString().front() == '\n')
1792       Out.addBlankLine();
1793     Lex();
1794     return false;
1795   }
1796   // Statements always start with an identifier.
1797   AsmToken ID = getTok();
1798   SMLoc IDLoc = ID.getLoc();
1799   StringRef IDVal;
1800   int64_t LocalLabelVal = -1;
1801   StartTokLoc = ID.getLoc();
1802   if (Lexer.is(AsmToken::HashDirective))
1803     return parseCppHashLineFilenameComment(IDLoc,
1804                                            !isInsideMacroInstantiation());
1805 
1806   // Allow an integer followed by a ':' as a directional local label.
1807   if (Lexer.is(AsmToken::Integer)) {
1808     LocalLabelVal = getTok().getIntVal();
1809     if (LocalLabelVal < 0) {
1810       if (!TheCondState.Ignore) {
1811         Lex(); // always eat a token
1812         return Error(IDLoc, "unexpected token at start of statement");
1813       }
1814       IDVal = "";
1815     } else {
1816       IDVal = getTok().getString();
1817       Lex(); // Consume the integer token to be used as an identifier token.
1818       if (Lexer.getKind() != AsmToken::Colon) {
1819         if (!TheCondState.Ignore) {
1820           Lex(); // always eat a token
1821           return Error(IDLoc, "unexpected token at start of statement");
1822         }
1823       }
1824     }
1825   } else if (Lexer.is(AsmToken::Dot)) {
1826     // Treat '.' as a valid identifier in this context.
1827     Lex();
1828     IDVal = ".";
1829   } else if (Lexer.is(AsmToken::LCurly)) {
1830     // Treat '{' as a valid identifier in this context.
1831     Lex();
1832     IDVal = "{";
1833 
1834   } else if (Lexer.is(AsmToken::RCurly)) {
1835     // Treat '}' as a valid identifier in this context.
1836     Lex();
1837     IDVal = "}";
1838   } else if (Lexer.is(AsmToken::Star) &&
1839              getTargetParser().starIsStartOfStatement()) {
1840     // Accept '*' as a valid start of statement.
1841     Lex();
1842     IDVal = "*";
1843   } else if (parseIdentifier(IDVal)) {
1844     if (!TheCondState.Ignore) {
1845       Lex(); // always eat a token
1846       return Error(IDLoc, "unexpected token at start of statement");
1847     }
1848     IDVal = "";
1849   }
1850 
1851   // Handle conditional assembly here before checking for skipping.  We
1852   // have to do this so that .endif isn't skipped in a ".if 0" block for
1853   // example.
1854   StringMap<DirectiveKind>::const_iterator DirKindIt =
1855       DirectiveKindMap.find(IDVal.lower());
1856   DirectiveKind DirKind = (DirKindIt == DirectiveKindMap.end())
1857                               ? DK_NO_DIRECTIVE
1858                               : DirKindIt->getValue();
1859   switch (DirKind) {
1860   default:
1861     break;
1862   case DK_IF:
1863   case DK_IFEQ:
1864   case DK_IFGE:
1865   case DK_IFGT:
1866   case DK_IFLE:
1867   case DK_IFLT:
1868   case DK_IFNE:
1869     return parseDirectiveIf(IDLoc, DirKind);
1870   case DK_IFB:
1871     return parseDirectiveIfb(IDLoc, true);
1872   case DK_IFNB:
1873     return parseDirectiveIfb(IDLoc, false);
1874   case DK_IFC:
1875     return parseDirectiveIfc(IDLoc, true);
1876   case DK_IFEQS:
1877     return parseDirectiveIfeqs(IDLoc, true);
1878   case DK_IFNC:
1879     return parseDirectiveIfc(IDLoc, false);
1880   case DK_IFNES:
1881     return parseDirectiveIfeqs(IDLoc, false);
1882   case DK_IFDEF:
1883     return parseDirectiveIfdef(IDLoc, true);
1884   case DK_IFNDEF:
1885   case DK_IFNOTDEF:
1886     return parseDirectiveIfdef(IDLoc, false);
1887   case DK_ELSEIF:
1888     return parseDirectiveElseIf(IDLoc);
1889   case DK_ELSE:
1890     return parseDirectiveElse(IDLoc);
1891   case DK_ENDIF:
1892     return parseDirectiveEndIf(IDLoc);
1893   }
1894 
1895   // Ignore the statement if in the middle of inactive conditional
1896   // (e.g. ".if 0").
1897   if (TheCondState.Ignore) {
1898     eatToEndOfStatement();
1899     return false;
1900   }
1901 
1902   // FIXME: Recurse on local labels?
1903 
1904   // Check for a label.
1905   //   ::= identifier ':'
1906   //   ::= number ':'
1907   if (Lexer.is(AsmToken::Colon) && getTargetParser().isLabel(ID)) {
1908     if (checkForValidSection())
1909       return true;
1910 
1911     Lex(); // Consume the ':'.
1912 
1913     // Diagnose attempt to use '.' as a label.
1914     if (IDVal == ".")
1915       return Error(IDLoc, "invalid use of pseudo-symbol '.' as a label");
1916 
1917     // Diagnose attempt to use a variable as a label.
1918     //
1919     // FIXME: Diagnostics. Note the location of the definition as a label.
1920     // FIXME: This doesn't diagnose assignment to a symbol which has been
1921     // implicitly marked as external.
1922     MCSymbol *Sym;
1923     if (LocalLabelVal == -1) {
1924       if (ParsingMSInlineAsm && SI) {
1925         StringRef RewrittenLabel =
1926             SI->LookupInlineAsmLabel(IDVal, getSourceManager(), IDLoc, true);
1927         assert(!RewrittenLabel.empty() &&
1928                "We should have an internal name here.");
1929         Info.AsmRewrites->emplace_back(AOK_Label, IDLoc, IDVal.size(),
1930                                        RewrittenLabel);
1931         IDVal = RewrittenLabel;
1932       }
1933       Sym = getContext().getOrCreateSymbol(IDVal);
1934     } else
1935       Sym = Ctx.createDirectionalLocalSymbol(LocalLabelVal);
1936     // End of Labels should be treated as end of line for lexing
1937     // purposes but that information is not available to the Lexer who
1938     // does not understand Labels. This may cause us to see a Hash
1939     // here instead of a preprocessor line comment.
1940     if (getTok().is(AsmToken::Hash)) {
1941       StringRef CommentStr = parseStringToEndOfStatement();
1942       Lexer.Lex();
1943       Lexer.UnLex(AsmToken(AsmToken::EndOfStatement, CommentStr));
1944     }
1945 
1946     // Consume any end of statement token, if present, to avoid spurious
1947     // addBlankLine calls().
1948     if (getTok().is(AsmToken::EndOfStatement)) {
1949       Lex();
1950     }
1951 
1952     if (discardLTOSymbol(IDVal))
1953       return false;
1954 
1955     getTargetParser().doBeforeLabelEmit(Sym, IDLoc);
1956 
1957     // Emit the label.
1958     if (!getTargetParser().isParsingMSInlineAsm())
1959       Out.emitLabel(Sym, IDLoc);
1960 
1961     // If we are generating dwarf for assembly source files then gather the
1962     // info to make a dwarf label entry for this label if needed.
1963     if (enabledGenDwarfForAssembly())
1964       MCGenDwarfLabelEntry::Make(Sym, &getStreamer(), getSourceManager(),
1965                                  IDLoc);
1966 
1967     getTargetParser().onLabelParsed(Sym);
1968 
1969     return false;
1970   }
1971 
1972   // Check for an assignment statement.
1973   //   ::= identifier '='
1974   if (Lexer.is(AsmToken::Equal) && getTargetParser().equalIsAsmAssignment()) {
1975     Lex();
1976     return parseAssignment(IDVal, AssignmentKind::Equal);
1977   }
1978 
1979   // If macros are enabled, check to see if this is a macro instantiation.
1980   if (areMacrosEnabled())
1981     if (const MCAsmMacro *M = getContext().lookupMacro(IDVal)) {
1982       return handleMacroEntry(M, IDLoc);
1983     }
1984 
1985   // Otherwise, we have a normal instruction or directive.
1986 
1987   // Directives start with "."
1988   if (IDVal.startswith(".") && IDVal != ".") {
1989     // There are several entities interested in parsing directives:
1990     //
1991     // 1. The target-specific assembly parser. Some directives are target
1992     //    specific or may potentially behave differently on certain targets.
1993     // 2. Asm parser extensions. For example, platform-specific parsers
1994     //    (like the ELF parser) register themselves as extensions.
1995     // 3. The generic directive parser implemented by this class. These are
1996     //    all the directives that behave in a target and platform independent
1997     //    manner, or at least have a default behavior that's shared between
1998     //    all targets and platforms.
1999 
2000     getTargetParser().flushPendingInstructions(getStreamer());
2001 
2002     ParseStatus TPDirectiveReturn = getTargetParser().parseDirective(ID);
2003     assert(TPDirectiveReturn.isFailure() == hasPendingError() &&
2004            "Should only return Failure iff there was an error");
2005     if (TPDirectiveReturn.isFailure())
2006       return true;
2007     if (TPDirectiveReturn.isSuccess())
2008       return false;
2009 
2010     // Next, check the extension directive map to see if any extension has
2011     // registered itself to parse this directive.
2012     std::pair<MCAsmParserExtension *, DirectiveHandler> Handler =
2013         ExtensionDirectiveMap.lookup(IDVal);
2014     if (Handler.first)
2015       return (*Handler.second)(Handler.first, IDVal, IDLoc);
2016 
2017     // Finally, if no one else is interested in this directive, it must be
2018     // generic and familiar to this class.
2019     switch (DirKind) {
2020     default:
2021       break;
2022     case DK_SET:
2023     case DK_EQU:
2024       return parseDirectiveSet(IDVal, AssignmentKind::Set);
2025     case DK_EQUIV:
2026       return parseDirectiveSet(IDVal, AssignmentKind::Equiv);
2027     case DK_LTO_SET_CONDITIONAL:
2028       return parseDirectiveSet(IDVal, AssignmentKind::LTOSetConditional);
2029     case DK_ASCII:
2030       return parseDirectiveAscii(IDVal, false);
2031     case DK_ASCIZ:
2032     case DK_STRING:
2033       return parseDirectiveAscii(IDVal, true);
2034     case DK_BYTE:
2035     case DK_DC_B:
2036       return parseDirectiveValue(IDVal, 1);
2037     case DK_DC:
2038     case DK_DC_W:
2039     case DK_SHORT:
2040     case DK_VALUE:
2041     case DK_2BYTE:
2042       return parseDirectiveValue(IDVal, 2);
2043     case DK_LONG:
2044     case DK_INT:
2045     case DK_4BYTE:
2046     case DK_DC_L:
2047       return parseDirectiveValue(IDVal, 4);
2048     case DK_QUAD:
2049     case DK_8BYTE:
2050       return parseDirectiveValue(IDVal, 8);
2051     case DK_DC_A:
2052       return parseDirectiveValue(
2053           IDVal, getContext().getAsmInfo()->getCodePointerSize());
2054     case DK_OCTA:
2055       return parseDirectiveOctaValue(IDVal);
2056     case DK_SINGLE:
2057     case DK_FLOAT:
2058     case DK_DC_S:
2059       return parseDirectiveRealValue(IDVal, APFloat::IEEEsingle());
2060     case DK_DOUBLE:
2061     case DK_DC_D:
2062       return parseDirectiveRealValue(IDVal, APFloat::IEEEdouble());
2063     case DK_ALIGN: {
2064       bool IsPow2 = !getContext().getAsmInfo()->getAlignmentIsInBytes();
2065       return parseDirectiveAlign(IsPow2, /*ExprSize=*/1);
2066     }
2067     case DK_ALIGN32: {
2068       bool IsPow2 = !getContext().getAsmInfo()->getAlignmentIsInBytes();
2069       return parseDirectiveAlign(IsPow2, /*ExprSize=*/4);
2070     }
2071     case DK_BALIGN:
2072       return parseDirectiveAlign(/*IsPow2=*/false, /*ExprSize=*/1);
2073     case DK_BALIGNW:
2074       return parseDirectiveAlign(/*IsPow2=*/false, /*ExprSize=*/2);
2075     case DK_BALIGNL:
2076       return parseDirectiveAlign(/*IsPow2=*/false, /*ExprSize=*/4);
2077     case DK_P2ALIGN:
2078       return parseDirectiveAlign(/*IsPow2=*/true, /*ExprSize=*/1);
2079     case DK_P2ALIGNW:
2080       return parseDirectiveAlign(/*IsPow2=*/true, /*ExprSize=*/2);
2081     case DK_P2ALIGNL:
2082       return parseDirectiveAlign(/*IsPow2=*/true, /*ExprSize=*/4);
2083     case DK_ORG:
2084       return parseDirectiveOrg();
2085     case DK_FILL:
2086       return parseDirectiveFill();
2087     case DK_ZERO:
2088       return parseDirectiveZero();
2089     case DK_EXTERN:
2090       eatToEndOfStatement(); // .extern is the default, ignore it.
2091       return false;
2092     case DK_GLOBL:
2093     case DK_GLOBAL:
2094       return parseDirectiveSymbolAttribute(MCSA_Global);
2095     case DK_LAZY_REFERENCE:
2096       return parseDirectiveSymbolAttribute(MCSA_LazyReference);
2097     case DK_NO_DEAD_STRIP:
2098       return parseDirectiveSymbolAttribute(MCSA_NoDeadStrip);
2099     case DK_SYMBOL_RESOLVER:
2100       return parseDirectiveSymbolAttribute(MCSA_SymbolResolver);
2101     case DK_PRIVATE_EXTERN:
2102       return parseDirectiveSymbolAttribute(MCSA_PrivateExtern);
2103     case DK_REFERENCE:
2104       return parseDirectiveSymbolAttribute(MCSA_Reference);
2105     case DK_WEAK_DEFINITION:
2106       return parseDirectiveSymbolAttribute(MCSA_WeakDefinition);
2107     case DK_WEAK_REFERENCE:
2108       return parseDirectiveSymbolAttribute(MCSA_WeakReference);
2109     case DK_WEAK_DEF_CAN_BE_HIDDEN:
2110       return parseDirectiveSymbolAttribute(MCSA_WeakDefAutoPrivate);
2111     case DK_COLD:
2112       return parseDirectiveSymbolAttribute(MCSA_Cold);
2113     case DK_COMM:
2114     case DK_COMMON:
2115       return parseDirectiveComm(/*IsLocal=*/false);
2116     case DK_LCOMM:
2117       return parseDirectiveComm(/*IsLocal=*/true);
2118     case DK_ABORT:
2119       return parseDirectiveAbort();
2120     case DK_INCLUDE:
2121       return parseDirectiveInclude();
2122     case DK_INCBIN:
2123       return parseDirectiveIncbin();
2124     case DK_CODE16:
2125     case DK_CODE16GCC:
2126       return TokError(Twine(IDVal) +
2127                       " not currently supported for this target");
2128     case DK_REPT:
2129       return parseDirectiveRept(IDLoc, IDVal);
2130     case DK_IRP:
2131       return parseDirectiveIrp(IDLoc);
2132     case DK_IRPC:
2133       return parseDirectiveIrpc(IDLoc);
2134     case DK_ENDR:
2135       return parseDirectiveEndr(IDLoc);
2136     case DK_BUNDLE_ALIGN_MODE:
2137       return parseDirectiveBundleAlignMode();
2138     case DK_BUNDLE_LOCK:
2139       return parseDirectiveBundleLock();
2140     case DK_BUNDLE_UNLOCK:
2141       return parseDirectiveBundleUnlock();
2142     case DK_SLEB128:
2143       return parseDirectiveLEB128(true);
2144     case DK_ULEB128:
2145       return parseDirectiveLEB128(false);
2146     case DK_SPACE:
2147     case DK_SKIP:
2148       return parseDirectiveSpace(IDVal);
2149     case DK_FILE:
2150       return parseDirectiveFile(IDLoc);
2151     case DK_LINE:
2152       return parseDirectiveLine();
2153     case DK_LOC:
2154       return parseDirectiveLoc();
2155     case DK_STABS:
2156       return parseDirectiveStabs();
2157     case DK_CV_FILE:
2158       return parseDirectiveCVFile();
2159     case DK_CV_FUNC_ID:
2160       return parseDirectiveCVFuncId();
2161     case DK_CV_INLINE_SITE_ID:
2162       return parseDirectiveCVInlineSiteId();
2163     case DK_CV_LOC:
2164       return parseDirectiveCVLoc();
2165     case DK_CV_LINETABLE:
2166       return parseDirectiveCVLinetable();
2167     case DK_CV_INLINE_LINETABLE:
2168       return parseDirectiveCVInlineLinetable();
2169     case DK_CV_DEF_RANGE:
2170       return parseDirectiveCVDefRange();
2171     case DK_CV_STRING:
2172       return parseDirectiveCVString();
2173     case DK_CV_STRINGTABLE:
2174       return parseDirectiveCVStringTable();
2175     case DK_CV_FILECHECKSUMS:
2176       return parseDirectiveCVFileChecksums();
2177     case DK_CV_FILECHECKSUM_OFFSET:
2178       return parseDirectiveCVFileChecksumOffset();
2179     case DK_CV_FPO_DATA:
2180       return parseDirectiveCVFPOData();
2181     case DK_CFI_SECTIONS:
2182       return parseDirectiveCFISections();
2183     case DK_CFI_STARTPROC:
2184       return parseDirectiveCFIStartProc();
2185     case DK_CFI_ENDPROC:
2186       return parseDirectiveCFIEndProc();
2187     case DK_CFI_DEF_CFA:
2188       return parseDirectiveCFIDefCfa(IDLoc);
2189     case DK_CFI_DEF_CFA_OFFSET:
2190       return parseDirectiveCFIDefCfaOffset(IDLoc);
2191     case DK_CFI_ADJUST_CFA_OFFSET:
2192       return parseDirectiveCFIAdjustCfaOffset(IDLoc);
2193     case DK_CFI_DEF_CFA_REGISTER:
2194       return parseDirectiveCFIDefCfaRegister(IDLoc);
2195     case DK_CFI_LLVM_DEF_ASPACE_CFA:
2196       return parseDirectiveCFILLVMDefAspaceCfa(IDLoc);
2197     case DK_CFI_OFFSET:
2198       return parseDirectiveCFIOffset(IDLoc);
2199     case DK_CFI_REL_OFFSET:
2200       return parseDirectiveCFIRelOffset(IDLoc);
2201     case DK_CFI_PERSONALITY:
2202       return parseDirectiveCFIPersonalityOrLsda(true);
2203     case DK_CFI_LSDA:
2204       return parseDirectiveCFIPersonalityOrLsda(false);
2205     case DK_CFI_REMEMBER_STATE:
2206       return parseDirectiveCFIRememberState(IDLoc);
2207     case DK_CFI_RESTORE_STATE:
2208       return parseDirectiveCFIRestoreState(IDLoc);
2209     case DK_CFI_SAME_VALUE:
2210       return parseDirectiveCFISameValue(IDLoc);
2211     case DK_CFI_RESTORE:
2212       return parseDirectiveCFIRestore(IDLoc);
2213     case DK_CFI_ESCAPE:
2214       return parseDirectiveCFIEscape(IDLoc);
2215     case DK_CFI_RETURN_COLUMN:
2216       return parseDirectiveCFIReturnColumn(IDLoc);
2217     case DK_CFI_SIGNAL_FRAME:
2218       return parseDirectiveCFISignalFrame(IDLoc);
2219     case DK_CFI_UNDEFINED:
2220       return parseDirectiveCFIUndefined(IDLoc);
2221     case DK_CFI_REGISTER:
2222       return parseDirectiveCFIRegister(IDLoc);
2223     case DK_CFI_WINDOW_SAVE:
2224       return parseDirectiveCFIWindowSave(IDLoc);
2225     case DK_MACROS_ON:
2226     case DK_MACROS_OFF:
2227       return parseDirectiveMacrosOnOff(IDVal);
2228     case DK_MACRO:
2229       return parseDirectiveMacro(IDLoc);
2230     case DK_ALTMACRO:
2231     case DK_NOALTMACRO:
2232       return parseDirectiveAltmacro(IDVal);
2233     case DK_EXITM:
2234       return parseDirectiveExitMacro(IDVal);
2235     case DK_ENDM:
2236     case DK_ENDMACRO:
2237       return parseDirectiveEndMacro(IDVal);
2238     case DK_PURGEM:
2239       return parseDirectivePurgeMacro(IDLoc);
2240     case DK_END:
2241       return parseDirectiveEnd(IDLoc);
2242     case DK_ERR:
2243       return parseDirectiveError(IDLoc, false);
2244     case DK_ERROR:
2245       return parseDirectiveError(IDLoc, true);
2246     case DK_WARNING:
2247       return parseDirectiveWarning(IDLoc);
2248     case DK_RELOC:
2249       return parseDirectiveReloc(IDLoc);
2250     case DK_DCB:
2251     case DK_DCB_W:
2252       return parseDirectiveDCB(IDVal, 2);
2253     case DK_DCB_B:
2254       return parseDirectiveDCB(IDVal, 1);
2255     case DK_DCB_D:
2256       return parseDirectiveRealDCB(IDVal, APFloat::IEEEdouble());
2257     case DK_DCB_L:
2258       return parseDirectiveDCB(IDVal, 4);
2259     case DK_DCB_S:
2260       return parseDirectiveRealDCB(IDVal, APFloat::IEEEsingle());
2261     case DK_DC_X:
2262     case DK_DCB_X:
2263       return TokError(Twine(IDVal) +
2264                       " not currently supported for this target");
2265     case DK_DS:
2266     case DK_DS_W:
2267       return parseDirectiveDS(IDVal, 2);
2268     case DK_DS_B:
2269       return parseDirectiveDS(IDVal, 1);
2270     case DK_DS_D:
2271       return parseDirectiveDS(IDVal, 8);
2272     case DK_DS_L:
2273     case DK_DS_S:
2274       return parseDirectiveDS(IDVal, 4);
2275     case DK_DS_P:
2276     case DK_DS_X:
2277       return parseDirectiveDS(IDVal, 12);
2278     case DK_PRINT:
2279       return parseDirectivePrint(IDLoc);
2280     case DK_ADDRSIG:
2281       return parseDirectiveAddrsig();
2282     case DK_ADDRSIG_SYM:
2283       return parseDirectiveAddrsigSym();
2284     case DK_PSEUDO_PROBE:
2285       return parseDirectivePseudoProbe();
2286     case DK_LTO_DISCARD:
2287       return parseDirectiveLTODiscard();
2288     case DK_MEMTAG:
2289       return parseDirectiveSymbolAttribute(MCSA_Memtag);
2290     }
2291 
2292     return Error(IDLoc, "unknown directive");
2293   }
2294 
2295   // __asm _emit or __asm __emit
2296   if (ParsingMSInlineAsm && (IDVal == "_emit" || IDVal == "__emit" ||
2297                              IDVal == "_EMIT" || IDVal == "__EMIT"))
2298     return parseDirectiveMSEmit(IDLoc, Info, IDVal.size());
2299 
2300   // __asm align
2301   if (ParsingMSInlineAsm && (IDVal == "align" || IDVal == "ALIGN"))
2302     return parseDirectiveMSAlign(IDLoc, Info);
2303 
2304   if (ParsingMSInlineAsm && (IDVal == "even" || IDVal == "EVEN"))
2305     Info.AsmRewrites->emplace_back(AOK_EVEN, IDLoc, 4);
2306   if (checkForValidSection())
2307     return true;
2308 
2309   return parseAndMatchAndEmitTargetInstruction(Info, IDVal, ID, IDLoc);
2310 }
2311 
2312 bool AsmParser::parseAndMatchAndEmitTargetInstruction(ParseStatementInfo &Info,
2313                                                       StringRef IDVal,
2314                                                       AsmToken ID,
2315                                                       SMLoc IDLoc) {
2316   // Canonicalize the opcode to lower case.
2317   std::string OpcodeStr = IDVal.lower();
2318   ParseInstructionInfo IInfo(Info.AsmRewrites);
2319   bool ParseHadError = getTargetParser().ParseInstruction(IInfo, OpcodeStr, ID,
2320                                                           Info.ParsedOperands);
2321   Info.ParseError = ParseHadError;
2322 
2323   // Dump the parsed representation, if requested.
2324   if (getShowParsedOperands()) {
2325     SmallString<256> Str;
2326     raw_svector_ostream OS(Str);
2327     OS << "parsed instruction: [";
2328     for (unsigned i = 0; i != Info.ParsedOperands.size(); ++i) {
2329       if (i != 0)
2330         OS << ", ";
2331       Info.ParsedOperands[i]->print(OS);
2332     }
2333     OS << "]";
2334 
2335     printMessage(IDLoc, SourceMgr::DK_Note, OS.str());
2336   }
2337 
2338   // Fail even if ParseInstruction erroneously returns false.
2339   if (hasPendingError() || ParseHadError)
2340     return true;
2341 
2342   // If we are generating dwarf for the current section then generate a .loc
2343   // directive for the instruction.
2344   if (!ParseHadError && enabledGenDwarfForAssembly() &&
2345       getContext().getGenDwarfSectionSyms().count(
2346           getStreamer().getCurrentSectionOnly())) {
2347     unsigned Line;
2348     if (ActiveMacros.empty())
2349       Line = SrcMgr.FindLineNumber(IDLoc, CurBuffer);
2350     else
2351       Line = SrcMgr.FindLineNumber(ActiveMacros.front()->InstantiationLoc,
2352                                    ActiveMacros.front()->ExitBuffer);
2353 
2354     // If we previously parsed a cpp hash file line comment then make sure the
2355     // current Dwarf File is for the CppHashFilename if not then emit the
2356     // Dwarf File table for it and adjust the line number for the .loc.
2357     if (!CppHashInfo.Filename.empty()) {
2358       unsigned FileNumber = getStreamer().emitDwarfFileDirective(
2359           0, StringRef(), CppHashInfo.Filename);
2360       getContext().setGenDwarfFileNumber(FileNumber);
2361 
2362       unsigned CppHashLocLineNo =
2363         SrcMgr.FindLineNumber(CppHashInfo.Loc, CppHashInfo.Buf);
2364       Line = CppHashInfo.LineNumber - 1 + (Line - CppHashLocLineNo);
2365     }
2366 
2367     getStreamer().emitDwarfLocDirective(
2368         getContext().getGenDwarfFileNumber(), Line, 0,
2369         DWARF2_LINE_DEFAULT_IS_STMT ? DWARF2_FLAG_IS_STMT : 0, 0, 0,
2370         StringRef());
2371   }
2372 
2373   // If parsing succeeded, match the instruction.
2374   if (!ParseHadError) {
2375     uint64_t ErrorInfo;
2376     if (getTargetParser().MatchAndEmitInstruction(
2377             IDLoc, Info.Opcode, Info.ParsedOperands, Out, ErrorInfo,
2378             getTargetParser().isParsingMSInlineAsm()))
2379       return true;
2380   }
2381   return false;
2382 }
2383 
2384 // Parse and erase curly braces marking block start/end
2385 bool
2386 AsmParser::parseCurlyBlockScope(SmallVectorImpl<AsmRewrite> &AsmStrRewrites) {
2387   // Identify curly brace marking block start/end
2388   if (Lexer.isNot(AsmToken::LCurly) && Lexer.isNot(AsmToken::RCurly))
2389     return false;
2390 
2391   SMLoc StartLoc = Lexer.getLoc();
2392   Lex(); // Eat the brace
2393   if (Lexer.is(AsmToken::EndOfStatement))
2394     Lex(); // Eat EndOfStatement following the brace
2395 
2396   // Erase the block start/end brace from the output asm string
2397   AsmStrRewrites.emplace_back(AOK_Skip, StartLoc, Lexer.getLoc().getPointer() -
2398                                                   StartLoc.getPointer());
2399   return true;
2400 }
2401 
2402 /// parseCppHashLineFilenameComment as this:
2403 ///   ::= # number "filename"
2404 bool AsmParser::parseCppHashLineFilenameComment(SMLoc L, bool SaveLocInfo) {
2405   Lex(); // Eat the hash token.
2406   // Lexer only ever emits HashDirective if it fully formed if it's
2407   // done the checking already so this is an internal error.
2408   assert(getTok().is(AsmToken::Integer) &&
2409          "Lexing Cpp line comment: Expected Integer");
2410   int64_t LineNumber = getTok().getIntVal();
2411   Lex();
2412   assert(getTok().is(AsmToken::String) &&
2413          "Lexing Cpp line comment: Expected String");
2414   StringRef Filename = getTok().getString();
2415   Lex();
2416 
2417   if (!SaveLocInfo)
2418     return false;
2419 
2420   // Get rid of the enclosing quotes.
2421   Filename = Filename.substr(1, Filename.size() - 2);
2422 
2423   // Save the SMLoc, Filename and LineNumber for later use by diagnostics
2424   // and possibly DWARF file info.
2425   CppHashInfo.Loc = L;
2426   CppHashInfo.Filename = Filename;
2427   CppHashInfo.LineNumber = LineNumber;
2428   CppHashInfo.Buf = CurBuffer;
2429   if (FirstCppHashFilename.empty())
2430     FirstCppHashFilename = Filename;
2431   return false;
2432 }
2433 
2434 /// will use the last parsed cpp hash line filename comment
2435 /// for the Filename and LineNo if any in the diagnostic.
2436 void AsmParser::DiagHandler(const SMDiagnostic &Diag, void *Context) {
2437   auto *Parser = static_cast<AsmParser *>(Context);
2438   raw_ostream &OS = errs();
2439 
2440   const SourceMgr &DiagSrcMgr = *Diag.getSourceMgr();
2441   SMLoc DiagLoc = Diag.getLoc();
2442   unsigned DiagBuf = DiagSrcMgr.FindBufferContainingLoc(DiagLoc);
2443   unsigned CppHashBuf =
2444       Parser->SrcMgr.FindBufferContainingLoc(Parser->CppHashInfo.Loc);
2445 
2446   // Like SourceMgr::printMessage() we need to print the include stack if any
2447   // before printing the message.
2448   unsigned DiagCurBuffer = DiagSrcMgr.FindBufferContainingLoc(DiagLoc);
2449   if (!Parser->SavedDiagHandler && DiagCurBuffer &&
2450       DiagCurBuffer != DiagSrcMgr.getMainFileID()) {
2451     SMLoc ParentIncludeLoc = DiagSrcMgr.getParentIncludeLoc(DiagCurBuffer);
2452     DiagSrcMgr.PrintIncludeStack(ParentIncludeLoc, OS);
2453   }
2454 
2455   // If we have not parsed a cpp hash line filename comment or the source
2456   // manager changed or buffer changed (like in a nested include) then just
2457   // print the normal diagnostic using its Filename and LineNo.
2458   if (!Parser->CppHashInfo.LineNumber || DiagBuf != CppHashBuf) {
2459     if (Parser->SavedDiagHandler)
2460       Parser->SavedDiagHandler(Diag, Parser->SavedDiagContext);
2461     else
2462       Parser->getContext().diagnose(Diag);
2463     return;
2464   }
2465 
2466   // Use the CppHashFilename and calculate a line number based on the
2467   // CppHashInfo.Loc and CppHashInfo.LineNumber relative to this Diag's SMLoc
2468   // for the diagnostic.
2469   const std::string &Filename = std::string(Parser->CppHashInfo.Filename);
2470 
2471   int DiagLocLineNo = DiagSrcMgr.FindLineNumber(DiagLoc, DiagBuf);
2472   int CppHashLocLineNo =
2473       Parser->SrcMgr.FindLineNumber(Parser->CppHashInfo.Loc, CppHashBuf);
2474   int LineNo =
2475       Parser->CppHashInfo.LineNumber - 1 + (DiagLocLineNo - CppHashLocLineNo);
2476 
2477   SMDiagnostic NewDiag(*Diag.getSourceMgr(), Diag.getLoc(), Filename, LineNo,
2478                        Diag.getColumnNo(), Diag.getKind(), Diag.getMessage(),
2479                        Diag.getLineContents(), Diag.getRanges());
2480 
2481   if (Parser->SavedDiagHandler)
2482     Parser->SavedDiagHandler(Diag, Parser->SavedDiagContext);
2483   else
2484     Parser->getContext().diagnose(NewDiag);
2485 }
2486 
2487 // FIXME: This is mostly duplicated from the function in AsmLexer.cpp. The
2488 // difference being that that function accepts '@' as part of identifiers and
2489 // we can't do that. AsmLexer.cpp should probably be changed to handle
2490 // '@' as a special case when needed.
2491 static bool isIdentifierChar(char c) {
2492   return isalnum(static_cast<unsigned char>(c)) || c == '_' || c == '$' ||
2493          c == '.';
2494 }
2495 
2496 bool AsmParser::expandMacro(raw_svector_ostream &OS, StringRef Body,
2497                             ArrayRef<MCAsmMacroParameter> Parameters,
2498                             ArrayRef<MCAsmMacroArgument> A,
2499                             bool EnableAtPseudoVariable, SMLoc L) {
2500   unsigned NParameters = Parameters.size();
2501   bool HasVararg = NParameters ? Parameters.back().Vararg : false;
2502   if ((!IsDarwin || NParameters != 0) && NParameters != A.size())
2503     return Error(L, "Wrong number of arguments");
2504 
2505   // A macro without parameters is handled differently on Darwin:
2506   // gas accepts no arguments and does no substitutions
2507   while (!Body.empty()) {
2508     // Scan for the next substitution.
2509     std::size_t End = Body.size(), Pos = 0;
2510     for (; Pos != End; ++Pos) {
2511       // Check for a substitution or escape.
2512       if (IsDarwin && !NParameters) {
2513         // This macro has no parameters, look for $0, $1, etc.
2514         if (Body[Pos] != '$' || Pos + 1 == End)
2515           continue;
2516 
2517         char Next = Body[Pos + 1];
2518         if (Next == '$' || Next == 'n' ||
2519             isdigit(static_cast<unsigned char>(Next)))
2520           break;
2521       } else {
2522         // This macro has parameters, look for \foo, \bar, etc.
2523         if (Body[Pos] == '\\' && Pos + 1 != End)
2524           break;
2525       }
2526     }
2527 
2528     // Add the prefix.
2529     OS << Body.slice(0, Pos);
2530 
2531     // Check if we reached the end.
2532     if (Pos == End)
2533       break;
2534 
2535     if (IsDarwin && !NParameters) {
2536       switch (Body[Pos + 1]) {
2537       // $$ => $
2538       case '$':
2539         OS << '$';
2540         break;
2541 
2542       // $n => number of arguments
2543       case 'n':
2544         OS << A.size();
2545         break;
2546 
2547       // $[0-9] => argument
2548       default: {
2549         // Missing arguments are ignored.
2550         unsigned Index = Body[Pos + 1] - '0';
2551         if (Index >= A.size())
2552           break;
2553 
2554         // Otherwise substitute with the token values, with spaces eliminated.
2555         for (const AsmToken &Token : A[Index])
2556           OS << Token.getString();
2557         break;
2558       }
2559       }
2560       Pos += 2;
2561     } else {
2562       unsigned I = Pos + 1;
2563 
2564       // Check for the \@ pseudo-variable.
2565       if (EnableAtPseudoVariable && Body[I] == '@' && I + 1 != End)
2566         ++I;
2567       else
2568         while (isIdentifierChar(Body[I]) && I + 1 != End)
2569           ++I;
2570 
2571       const char *Begin = Body.data() + Pos + 1;
2572       StringRef Argument(Begin, I - (Pos + 1));
2573       unsigned Index = 0;
2574 
2575       if (Argument == "@") {
2576         OS << NumOfMacroInstantiations;
2577         Pos += 2;
2578       } else {
2579         for (; Index < NParameters; ++Index)
2580           if (Parameters[Index].Name == Argument)
2581             break;
2582 
2583         if (Index == NParameters) {
2584           if (Body[Pos + 1] == '(' && Body[Pos + 2] == ')')
2585             Pos += 3;
2586           else {
2587             OS << '\\' << Argument;
2588             Pos = I;
2589           }
2590         } else {
2591           bool VarargParameter = HasVararg && Index == (NParameters - 1);
2592           for (const AsmToken &Token : A[Index])
2593             // For altmacro mode, you can write '%expr'.
2594             // The prefix '%' evaluates the expression 'expr'
2595             // and uses the result as a string (e.g. replace %(1+2) with the
2596             // string "3").
2597             // Here, we identify the integer token which is the result of the
2598             // absolute expression evaluation and replace it with its string
2599             // representation.
2600             if (AltMacroMode && Token.getString().front() == '%' &&
2601                 Token.is(AsmToken::Integer))
2602               // Emit an integer value to the buffer.
2603               OS << Token.getIntVal();
2604             // Only Token that was validated as a string and begins with '<'
2605             // is considered altMacroString!!!
2606             else if (AltMacroMode && Token.getString().front() == '<' &&
2607                      Token.is(AsmToken::String)) {
2608               OS << angleBracketString(Token.getStringContents());
2609             }
2610             // We expect no quotes around the string's contents when
2611             // parsing for varargs.
2612             else if (Token.isNot(AsmToken::String) || VarargParameter)
2613               OS << Token.getString();
2614             else
2615               OS << Token.getStringContents();
2616 
2617           Pos += 1 + Argument.size();
2618         }
2619       }
2620     }
2621     // Update the scan point.
2622     Body = Body.substr(Pos);
2623   }
2624 
2625   return false;
2626 }
2627 
2628 static bool isOperator(AsmToken::TokenKind kind) {
2629   switch (kind) {
2630   default:
2631     return false;
2632   case AsmToken::Plus:
2633   case AsmToken::Minus:
2634   case AsmToken::Tilde:
2635   case AsmToken::Slash:
2636   case AsmToken::Star:
2637   case AsmToken::Dot:
2638   case AsmToken::Equal:
2639   case AsmToken::EqualEqual:
2640   case AsmToken::Pipe:
2641   case AsmToken::PipePipe:
2642   case AsmToken::Caret:
2643   case AsmToken::Amp:
2644   case AsmToken::AmpAmp:
2645   case AsmToken::Exclaim:
2646   case AsmToken::ExclaimEqual:
2647   case AsmToken::Less:
2648   case AsmToken::LessEqual:
2649   case AsmToken::LessLess:
2650   case AsmToken::LessGreater:
2651   case AsmToken::Greater:
2652   case AsmToken::GreaterEqual:
2653   case AsmToken::GreaterGreater:
2654     return true;
2655   }
2656 }
2657 
2658 namespace {
2659 
2660 class AsmLexerSkipSpaceRAII {
2661 public:
2662   AsmLexerSkipSpaceRAII(AsmLexer &Lexer, bool SkipSpace) : Lexer(Lexer) {
2663     Lexer.setSkipSpace(SkipSpace);
2664   }
2665 
2666   ~AsmLexerSkipSpaceRAII() {
2667     Lexer.setSkipSpace(true);
2668   }
2669 
2670 private:
2671   AsmLexer &Lexer;
2672 };
2673 
2674 } // end anonymous namespace
2675 
2676 bool AsmParser::parseMacroArgument(MCAsmMacroArgument &MA, bool Vararg) {
2677 
2678   if (Vararg) {
2679     if (Lexer.isNot(AsmToken::EndOfStatement)) {
2680       StringRef Str = parseStringToEndOfStatement();
2681       MA.emplace_back(AsmToken::String, Str);
2682     }
2683     return false;
2684   }
2685 
2686   unsigned ParenLevel = 0;
2687 
2688   // Darwin doesn't use spaces to delmit arguments.
2689   AsmLexerSkipSpaceRAII ScopedSkipSpace(Lexer, IsDarwin);
2690 
2691   bool SpaceEaten;
2692 
2693   while (true) {
2694     SpaceEaten = false;
2695     if (Lexer.is(AsmToken::Eof) || Lexer.is(AsmToken::Equal))
2696       return TokError("unexpected token in macro instantiation");
2697 
2698     if (ParenLevel == 0) {
2699 
2700       if (Lexer.is(AsmToken::Comma))
2701         break;
2702 
2703       if (Lexer.is(AsmToken::Space)) {
2704         SpaceEaten = true;
2705         Lexer.Lex(); // Eat spaces
2706       }
2707 
2708       // Spaces can delimit parameters, but could also be part an expression.
2709       // If the token after a space is an operator, add the token and the next
2710       // one into this argument
2711       if (!IsDarwin) {
2712         if (isOperator(Lexer.getKind())) {
2713           MA.push_back(getTok());
2714           Lexer.Lex();
2715 
2716           // Whitespace after an operator can be ignored.
2717           if (Lexer.is(AsmToken::Space))
2718             Lexer.Lex();
2719 
2720           continue;
2721         }
2722       }
2723       if (SpaceEaten)
2724         break;
2725     }
2726 
2727     // handleMacroEntry relies on not advancing the lexer here
2728     // to be able to fill in the remaining default parameter values
2729     if (Lexer.is(AsmToken::EndOfStatement))
2730       break;
2731 
2732     // Adjust the current parentheses level.
2733     if (Lexer.is(AsmToken::LParen))
2734       ++ParenLevel;
2735     else if (Lexer.is(AsmToken::RParen) && ParenLevel)
2736       --ParenLevel;
2737 
2738     // Append the token to the current argument list.
2739     MA.push_back(getTok());
2740     Lexer.Lex();
2741   }
2742 
2743   if (ParenLevel != 0)
2744     return TokError("unbalanced parentheses in macro argument");
2745   return false;
2746 }
2747 
2748 // Parse the macro instantiation arguments.
2749 bool AsmParser::parseMacroArguments(const MCAsmMacro *M,
2750                                     MCAsmMacroArguments &A) {
2751   const unsigned NParameters = M ? M->Parameters.size() : 0;
2752   bool NamedParametersFound = false;
2753   SmallVector<SMLoc, 4> FALocs;
2754 
2755   A.resize(NParameters);
2756   FALocs.resize(NParameters);
2757 
2758   // Parse two kinds of macro invocations:
2759   // - macros defined without any parameters accept an arbitrary number of them
2760   // - macros defined with parameters accept at most that many of them
2761   bool HasVararg = NParameters ? M->Parameters.back().Vararg : false;
2762   for (unsigned Parameter = 0; !NParameters || Parameter < NParameters;
2763        ++Parameter) {
2764     SMLoc IDLoc = Lexer.getLoc();
2765     MCAsmMacroParameter FA;
2766 
2767     if (Lexer.is(AsmToken::Identifier) && Lexer.peekTok().is(AsmToken::Equal)) {
2768       if (parseIdentifier(FA.Name))
2769         return Error(IDLoc, "invalid argument identifier for formal argument");
2770 
2771       if (Lexer.isNot(AsmToken::Equal))
2772         return TokError("expected '=' after formal parameter identifier");
2773 
2774       Lex();
2775 
2776       NamedParametersFound = true;
2777     }
2778     bool Vararg = HasVararg && Parameter == (NParameters - 1);
2779 
2780     if (NamedParametersFound && FA.Name.empty())
2781       return Error(IDLoc, "cannot mix positional and keyword arguments");
2782 
2783     SMLoc StrLoc = Lexer.getLoc();
2784     SMLoc EndLoc;
2785     if (AltMacroMode && Lexer.is(AsmToken::Percent)) {
2786       const MCExpr *AbsoluteExp;
2787       int64_t Value;
2788       /// Eat '%'
2789       Lex();
2790       if (parseExpression(AbsoluteExp, EndLoc))
2791         return false;
2792       if (!AbsoluteExp->evaluateAsAbsolute(Value,
2793                                            getStreamer().getAssemblerPtr()))
2794         return Error(StrLoc, "expected absolute expression");
2795       const char *StrChar = StrLoc.getPointer();
2796       const char *EndChar = EndLoc.getPointer();
2797       AsmToken newToken(AsmToken::Integer,
2798                         StringRef(StrChar, EndChar - StrChar), Value);
2799       FA.Value.push_back(newToken);
2800     } else if (AltMacroMode && Lexer.is(AsmToken::Less) &&
2801                isAngleBracketString(StrLoc, EndLoc)) {
2802       const char *StrChar = StrLoc.getPointer();
2803       const char *EndChar = EndLoc.getPointer();
2804       jumpToLoc(EndLoc, CurBuffer);
2805       /// Eat from '<' to '>'
2806       Lex();
2807       AsmToken newToken(AsmToken::String,
2808                         StringRef(StrChar, EndChar - StrChar));
2809       FA.Value.push_back(newToken);
2810     } else if(parseMacroArgument(FA.Value, Vararg))
2811       return true;
2812 
2813     unsigned PI = Parameter;
2814     if (!FA.Name.empty()) {
2815       unsigned FAI = 0;
2816       for (FAI = 0; FAI < NParameters; ++FAI)
2817         if (M->Parameters[FAI].Name == FA.Name)
2818           break;
2819 
2820       if (FAI >= NParameters) {
2821         assert(M && "expected macro to be defined");
2822         return Error(IDLoc, "parameter named '" + FA.Name +
2823                                 "' does not exist for macro '" + M->Name + "'");
2824       }
2825       PI = FAI;
2826     }
2827 
2828     if (!FA.Value.empty()) {
2829       if (A.size() <= PI)
2830         A.resize(PI + 1);
2831       A[PI] = FA.Value;
2832 
2833       if (FALocs.size() <= PI)
2834         FALocs.resize(PI + 1);
2835 
2836       FALocs[PI] = Lexer.getLoc();
2837     }
2838 
2839     // At the end of the statement, fill in remaining arguments that have
2840     // default values. If there aren't any, then the next argument is
2841     // required but missing
2842     if (Lexer.is(AsmToken::EndOfStatement)) {
2843       bool Failure = false;
2844       for (unsigned FAI = 0; FAI < NParameters; ++FAI) {
2845         if (A[FAI].empty()) {
2846           if (M->Parameters[FAI].Required) {
2847             Error(FALocs[FAI].isValid() ? FALocs[FAI] : Lexer.getLoc(),
2848                   "missing value for required parameter "
2849                   "'" + M->Parameters[FAI].Name + "' in macro '" + M->Name + "'");
2850             Failure = true;
2851           }
2852 
2853           if (!M->Parameters[FAI].Value.empty())
2854             A[FAI] = M->Parameters[FAI].Value;
2855         }
2856       }
2857       return Failure;
2858     }
2859 
2860     if (Lexer.is(AsmToken::Comma))
2861       Lex();
2862   }
2863 
2864   return TokError("too many positional arguments");
2865 }
2866 
2867 bool AsmParser::handleMacroEntry(const MCAsmMacro *M, SMLoc NameLoc) {
2868   // Arbitrarily limit macro nesting depth (default matches 'as'). We can
2869   // eliminate this, although we should protect against infinite loops.
2870   unsigned MaxNestingDepth = AsmMacroMaxNestingDepth;
2871   if (ActiveMacros.size() == MaxNestingDepth) {
2872     std::ostringstream MaxNestingDepthError;
2873     MaxNestingDepthError << "macros cannot be nested more than "
2874                          << MaxNestingDepth << " levels deep."
2875                          << " Use -asm-macro-max-nesting-depth to increase "
2876                             "this limit.";
2877     return TokError(MaxNestingDepthError.str());
2878   }
2879 
2880   MCAsmMacroArguments A;
2881   if (parseMacroArguments(M, A))
2882     return true;
2883 
2884   // Macro instantiation is lexical, unfortunately. We construct a new buffer
2885   // to hold the macro body with substitutions.
2886   SmallString<256> Buf;
2887   StringRef Body = M->Body;
2888   raw_svector_ostream OS(Buf);
2889 
2890   if (expandMacro(OS, Body, M->Parameters, A, true, getTok().getLoc()))
2891     return true;
2892 
2893   // We include the .endmacro in the buffer as our cue to exit the macro
2894   // instantiation.
2895   OS << ".endmacro\n";
2896 
2897   std::unique_ptr<MemoryBuffer> Instantiation =
2898       MemoryBuffer::getMemBufferCopy(OS.str(), "<instantiation>");
2899 
2900   // Create the macro instantiation object and add to the current macro
2901   // instantiation stack.
2902   MacroInstantiation *MI = new MacroInstantiation{
2903       NameLoc, CurBuffer, getTok().getLoc(), TheCondStack.size()};
2904   ActiveMacros.push_back(MI);
2905 
2906   ++NumOfMacroInstantiations;
2907 
2908   // Jump to the macro instantiation and prime the lexer.
2909   CurBuffer = SrcMgr.AddNewSourceBuffer(std::move(Instantiation), SMLoc());
2910   Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer());
2911   Lex();
2912 
2913   return false;
2914 }
2915 
2916 void AsmParser::handleMacroExit() {
2917   // Jump to the EndOfStatement we should return to, and consume it.
2918   jumpToLoc(ActiveMacros.back()->ExitLoc, ActiveMacros.back()->ExitBuffer);
2919   Lex();
2920 
2921   // Pop the instantiation entry.
2922   delete ActiveMacros.back();
2923   ActiveMacros.pop_back();
2924 }
2925 
2926 bool AsmParser::parseAssignment(StringRef Name, AssignmentKind Kind) {
2927   MCSymbol *Sym;
2928   const MCExpr *Value;
2929   SMLoc ExprLoc = getTok().getLoc();
2930   bool AllowRedef =
2931       Kind == AssignmentKind::Set || Kind == AssignmentKind::Equal;
2932   if (MCParserUtils::parseAssignmentExpression(Name, AllowRedef, *this, Sym,
2933                                                Value))
2934     return true;
2935 
2936   if (!Sym) {
2937     // In the case where we parse an expression starting with a '.', we will
2938     // not generate an error, nor will we create a symbol.  In this case we
2939     // should just return out.
2940     return false;
2941   }
2942 
2943   if (discardLTOSymbol(Name))
2944     return false;
2945 
2946   // Do the assignment.
2947   switch (Kind) {
2948   case AssignmentKind::Equal:
2949     Out.emitAssignment(Sym, Value);
2950     break;
2951   case AssignmentKind::Set:
2952   case AssignmentKind::Equiv:
2953     Out.emitAssignment(Sym, Value);
2954     Out.emitSymbolAttribute(Sym, MCSA_NoDeadStrip);
2955     break;
2956   case AssignmentKind::LTOSetConditional:
2957     if (Value->getKind() != MCExpr::SymbolRef)
2958       return Error(ExprLoc, "expected identifier");
2959 
2960     Out.emitConditionalAssignment(Sym, Value);
2961     break;
2962   }
2963 
2964   return false;
2965 }
2966 
2967 /// parseIdentifier:
2968 ///   ::= identifier
2969 ///   ::= string
2970 bool AsmParser::parseIdentifier(StringRef &Res) {
2971   // The assembler has relaxed rules for accepting identifiers, in particular we
2972   // allow things like '.globl $foo' and '.def @feat.00', which would normally be
2973   // separate tokens. At this level, we have already lexed so we cannot (currently)
2974   // handle this as a context dependent token, instead we detect adjacent tokens
2975   // and return the combined identifier.
2976   if (Lexer.is(AsmToken::Dollar) || Lexer.is(AsmToken::At)) {
2977     SMLoc PrefixLoc = getLexer().getLoc();
2978 
2979     // Consume the prefix character, and check for a following identifier.
2980 
2981     AsmToken Buf[1];
2982     Lexer.peekTokens(Buf, false);
2983 
2984     if (Buf[0].isNot(AsmToken::Identifier) && Buf[0].isNot(AsmToken::Integer))
2985       return true;
2986 
2987     // We have a '$' or '@' followed by an identifier or integer token, make
2988     // sure they are adjacent.
2989     if (PrefixLoc.getPointer() + 1 != Buf[0].getLoc().getPointer())
2990       return true;
2991 
2992     // eat $ or @
2993     Lexer.Lex(); // Lexer's Lex guarantees consecutive token.
2994     // Construct the joined identifier and consume the token.
2995     Res = StringRef(PrefixLoc.getPointer(), getTok().getString().size() + 1);
2996     Lex(); // Parser Lex to maintain invariants.
2997     return false;
2998   }
2999 
3000   if (Lexer.isNot(AsmToken::Identifier) && Lexer.isNot(AsmToken::String))
3001     return true;
3002 
3003   Res = getTok().getIdentifier();
3004 
3005   Lex(); // Consume the identifier token.
3006 
3007   return false;
3008 }
3009 
3010 /// parseDirectiveSet:
3011 ///   ::= .equ identifier ',' expression
3012 ///   ::= .equiv identifier ',' expression
3013 ///   ::= .set identifier ',' expression
3014 ///   ::= .lto_set_conditional identifier ',' expression
3015 bool AsmParser::parseDirectiveSet(StringRef IDVal, AssignmentKind Kind) {
3016   StringRef Name;
3017   if (check(parseIdentifier(Name), "expected identifier") || parseComma() ||
3018       parseAssignment(Name, Kind))
3019     return true;
3020   return false;
3021 }
3022 
3023 bool AsmParser::parseEscapedString(std::string &Data) {
3024   if (check(getTok().isNot(AsmToken::String), "expected string"))
3025     return true;
3026 
3027   Data = "";
3028   StringRef Str = getTok().getStringContents();
3029   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
3030     if (Str[i] != '\\') {
3031       Data += Str[i];
3032       continue;
3033     }
3034 
3035     // Recognize escaped characters. Note that this escape semantics currently
3036     // loosely follows Darwin 'as'.
3037     ++i;
3038     if (i == e)
3039       return TokError("unexpected backslash at end of string");
3040 
3041     // Recognize hex sequences similarly to GNU 'as'.
3042     if (Str[i] == 'x' || Str[i] == 'X') {
3043       size_t length = Str.size();
3044       if (i + 1 >= length || !isHexDigit(Str[i + 1]))
3045         return TokError("invalid hexadecimal escape sequence");
3046 
3047       // Consume hex characters. GNU 'as' reads all hexadecimal characters and
3048       // then truncates to the lower 16 bits. Seems reasonable.
3049       unsigned Value = 0;
3050       while (i + 1 < length && isHexDigit(Str[i + 1]))
3051         Value = Value * 16 + hexDigitValue(Str[++i]);
3052 
3053       Data += (unsigned char)(Value & 0xFF);
3054       continue;
3055     }
3056 
3057     // Recognize octal sequences.
3058     if ((unsigned)(Str[i] - '0') <= 7) {
3059       // Consume up to three octal characters.
3060       unsigned Value = Str[i] - '0';
3061 
3062       if (i + 1 != e && ((unsigned)(Str[i + 1] - '0')) <= 7) {
3063         ++i;
3064         Value = Value * 8 + (Str[i] - '0');
3065 
3066         if (i + 1 != e && ((unsigned)(Str[i + 1] - '0')) <= 7) {
3067           ++i;
3068           Value = Value * 8 + (Str[i] - '0');
3069         }
3070       }
3071 
3072       if (Value > 255)
3073         return TokError("invalid octal escape sequence (out of range)");
3074 
3075       Data += (unsigned char)Value;
3076       continue;
3077     }
3078 
3079     // Otherwise recognize individual escapes.
3080     switch (Str[i]) {
3081     default:
3082       // Just reject invalid escape sequences for now.
3083       return TokError("invalid escape sequence (unrecognized character)");
3084 
3085     case 'b': Data += '\b'; break;
3086     case 'f': Data += '\f'; break;
3087     case 'n': Data += '\n'; break;
3088     case 'r': Data += '\r'; break;
3089     case 't': Data += '\t'; break;
3090     case '"': Data += '"'; break;
3091     case '\\': Data += '\\'; break;
3092     }
3093   }
3094 
3095   Lex();
3096   return false;
3097 }
3098 
3099 bool AsmParser::parseAngleBracketString(std::string &Data) {
3100   SMLoc EndLoc, StartLoc = getTok().getLoc();
3101   if (isAngleBracketString(StartLoc, EndLoc)) {
3102     const char *StartChar = StartLoc.getPointer() + 1;
3103     const char *EndChar = EndLoc.getPointer() - 1;
3104     jumpToLoc(EndLoc, CurBuffer);
3105     /// Eat from '<' to '>'
3106     Lex();
3107 
3108     Data = angleBracketString(StringRef(StartChar, EndChar - StartChar));
3109     return false;
3110   }
3111   return true;
3112 }
3113 
3114 /// parseDirectiveAscii:
3115 //    ::= .ascii [ "string"+ ( , "string"+ )* ]
3116 ///   ::= ( .asciz | .string ) [ "string" ( , "string" )* ]
3117 bool AsmParser::parseDirectiveAscii(StringRef IDVal, bool ZeroTerminated) {
3118   auto parseOp = [&]() -> bool {
3119     std::string Data;
3120     if (checkForValidSection())
3121       return true;
3122     // Only support spaces as separators for .ascii directive for now. See the
3123     // discusssion at https://reviews.llvm.org/D91460 for more details.
3124     do {
3125       if (parseEscapedString(Data))
3126         return true;
3127       getStreamer().emitBytes(Data);
3128     } while (!ZeroTerminated && getTok().is(AsmToken::String));
3129     if (ZeroTerminated)
3130       getStreamer().emitBytes(StringRef("\0", 1));
3131     return false;
3132   };
3133 
3134   return parseMany(parseOp);
3135 }
3136 
3137 /// parseDirectiveReloc
3138 ///  ::= .reloc expression , identifier [ , expression ]
3139 bool AsmParser::parseDirectiveReloc(SMLoc DirectiveLoc) {
3140   const MCExpr *Offset;
3141   const MCExpr *Expr = nullptr;
3142   SMLoc OffsetLoc = Lexer.getTok().getLoc();
3143 
3144   if (parseExpression(Offset))
3145     return true;
3146   if (parseComma() ||
3147       check(getTok().isNot(AsmToken::Identifier), "expected relocation name"))
3148     return true;
3149 
3150   SMLoc NameLoc = Lexer.getTok().getLoc();
3151   StringRef Name = Lexer.getTok().getIdentifier();
3152   Lex();
3153 
3154   if (Lexer.is(AsmToken::Comma)) {
3155     Lex();
3156     SMLoc ExprLoc = Lexer.getLoc();
3157     if (parseExpression(Expr))
3158       return true;
3159 
3160     MCValue Value;
3161     if (!Expr->evaluateAsRelocatable(Value, nullptr, nullptr))
3162       return Error(ExprLoc, "expression must be relocatable");
3163   }
3164 
3165   if (parseEOL())
3166     return true;
3167 
3168   const MCTargetAsmParser &MCT = getTargetParser();
3169   const MCSubtargetInfo &STI = MCT.getSTI();
3170   if (std::optional<std::pair<bool, std::string>> Err =
3171           getStreamer().emitRelocDirective(*Offset, Name, Expr, DirectiveLoc,
3172                                            STI))
3173     return Error(Err->first ? NameLoc : OffsetLoc, Err->second);
3174 
3175   return false;
3176 }
3177 
3178 /// parseDirectiveValue
3179 ///  ::= (.byte | .short | ... ) [ expression (, expression)* ]
3180 bool AsmParser::parseDirectiveValue(StringRef IDVal, unsigned Size) {
3181   auto parseOp = [&]() -> bool {
3182     const MCExpr *Value;
3183     SMLoc ExprLoc = getLexer().getLoc();
3184     if (checkForValidSection() || parseExpression(Value))
3185       return true;
3186     // Special case constant expressions to match code generator.
3187     if (const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value)) {
3188       assert(Size <= 8 && "Invalid size");
3189       uint64_t IntValue = MCE->getValue();
3190       if (!isUIntN(8 * Size, IntValue) && !isIntN(8 * Size, IntValue))
3191         return Error(ExprLoc, "out of range literal value");
3192       getStreamer().emitIntValue(IntValue, Size);
3193     } else
3194       getStreamer().emitValue(Value, Size, ExprLoc);
3195     return false;
3196   };
3197 
3198   return parseMany(parseOp);
3199 }
3200 
3201 static bool parseHexOcta(AsmParser &Asm, uint64_t &hi, uint64_t &lo) {
3202   if (Asm.getTok().isNot(AsmToken::Integer) &&
3203       Asm.getTok().isNot(AsmToken::BigNum))
3204     return Asm.TokError("unknown token in expression");
3205   SMLoc ExprLoc = Asm.getTok().getLoc();
3206   APInt IntValue = Asm.getTok().getAPIntVal();
3207   Asm.Lex();
3208   if (!IntValue.isIntN(128))
3209     return Asm.Error(ExprLoc, "out of range literal value");
3210   if (!IntValue.isIntN(64)) {
3211     hi = IntValue.getHiBits(IntValue.getBitWidth() - 64).getZExtValue();
3212     lo = IntValue.getLoBits(64).getZExtValue();
3213   } else {
3214     hi = 0;
3215     lo = IntValue.getZExtValue();
3216   }
3217   return false;
3218 }
3219 
3220 /// ParseDirectiveOctaValue
3221 ///  ::= .octa [ hexconstant (, hexconstant)* ]
3222 
3223 bool AsmParser::parseDirectiveOctaValue(StringRef IDVal) {
3224   auto parseOp = [&]() -> bool {
3225     if (checkForValidSection())
3226       return true;
3227     uint64_t hi, lo;
3228     if (parseHexOcta(*this, hi, lo))
3229       return true;
3230     if (MAI.isLittleEndian()) {
3231       getStreamer().emitInt64(lo);
3232       getStreamer().emitInt64(hi);
3233     } else {
3234       getStreamer().emitInt64(hi);
3235       getStreamer().emitInt64(lo);
3236     }
3237     return false;
3238   };
3239 
3240   return parseMany(parseOp);
3241 }
3242 
3243 bool AsmParser::parseRealValue(const fltSemantics &Semantics, APInt &Res) {
3244   // We don't truly support arithmetic on floating point expressions, so we
3245   // have to manually parse unary prefixes.
3246   bool IsNeg = false;
3247   if (getLexer().is(AsmToken::Minus)) {
3248     Lexer.Lex();
3249     IsNeg = true;
3250   } else if (getLexer().is(AsmToken::Plus))
3251     Lexer.Lex();
3252 
3253   if (Lexer.is(AsmToken::Error))
3254     return TokError(Lexer.getErr());
3255   if (Lexer.isNot(AsmToken::Integer) && Lexer.isNot(AsmToken::Real) &&
3256       Lexer.isNot(AsmToken::Identifier))
3257     return TokError("unexpected token in directive");
3258 
3259   // Convert to an APFloat.
3260   APFloat Value(Semantics);
3261   StringRef IDVal = getTok().getString();
3262   if (getLexer().is(AsmToken::Identifier)) {
3263     if (!IDVal.compare_insensitive("infinity") ||
3264         !IDVal.compare_insensitive("inf"))
3265       Value = APFloat::getInf(Semantics);
3266     else if (!IDVal.compare_insensitive("nan"))
3267       Value = APFloat::getNaN(Semantics, false, ~0);
3268     else
3269       return TokError("invalid floating point literal");
3270   } else if (errorToBool(
3271                  Value.convertFromString(IDVal, APFloat::rmNearestTiesToEven)
3272                      .takeError()))
3273     return TokError("invalid floating point literal");
3274   if (IsNeg)
3275     Value.changeSign();
3276 
3277   // Consume the numeric token.
3278   Lex();
3279 
3280   Res = Value.bitcastToAPInt();
3281 
3282   return false;
3283 }
3284 
3285 /// parseDirectiveRealValue
3286 ///  ::= (.single | .double) [ expression (, expression)* ]
3287 bool AsmParser::parseDirectiveRealValue(StringRef IDVal,
3288                                         const fltSemantics &Semantics) {
3289   auto parseOp = [&]() -> bool {
3290     APInt AsInt;
3291     if (checkForValidSection() || parseRealValue(Semantics, AsInt))
3292       return true;
3293     getStreamer().emitIntValue(AsInt.getLimitedValue(),
3294                                AsInt.getBitWidth() / 8);
3295     return false;
3296   };
3297 
3298   return parseMany(parseOp);
3299 }
3300 
3301 /// parseDirectiveZero
3302 ///  ::= .zero expression
3303 bool AsmParser::parseDirectiveZero() {
3304   SMLoc NumBytesLoc = Lexer.getLoc();
3305   const MCExpr *NumBytes;
3306   if (checkForValidSection() || parseExpression(NumBytes))
3307     return true;
3308 
3309   int64_t Val = 0;
3310   if (getLexer().is(AsmToken::Comma)) {
3311     Lex();
3312     if (parseAbsoluteExpression(Val))
3313       return true;
3314   }
3315 
3316   if (parseEOL())
3317     return true;
3318   getStreamer().emitFill(*NumBytes, Val, NumBytesLoc);
3319 
3320   return false;
3321 }
3322 
3323 /// parseDirectiveFill
3324 ///  ::= .fill expression [ , expression [ , expression ] ]
3325 bool AsmParser::parseDirectiveFill() {
3326   SMLoc NumValuesLoc = Lexer.getLoc();
3327   const MCExpr *NumValues;
3328   if (checkForValidSection() || parseExpression(NumValues))
3329     return true;
3330 
3331   int64_t FillSize = 1;
3332   int64_t FillExpr = 0;
3333 
3334   SMLoc SizeLoc, ExprLoc;
3335 
3336   if (parseOptionalToken(AsmToken::Comma)) {
3337     SizeLoc = getTok().getLoc();
3338     if (parseAbsoluteExpression(FillSize))
3339       return true;
3340     if (parseOptionalToken(AsmToken::Comma)) {
3341       ExprLoc = getTok().getLoc();
3342       if (parseAbsoluteExpression(FillExpr))
3343         return true;
3344     }
3345   }
3346   if (parseEOL())
3347     return true;
3348 
3349   if (FillSize < 0) {
3350     Warning(SizeLoc, "'.fill' directive with negative size has no effect");
3351     return false;
3352   }
3353   if (FillSize > 8) {
3354     Warning(SizeLoc, "'.fill' directive with size greater than 8 has been truncated to 8");
3355     FillSize = 8;
3356   }
3357 
3358   if (!isUInt<32>(FillExpr) && FillSize > 4)
3359     Warning(ExprLoc, "'.fill' directive pattern has been truncated to 32-bits");
3360 
3361   getStreamer().emitFill(*NumValues, FillSize, FillExpr, NumValuesLoc);
3362 
3363   return false;
3364 }
3365 
3366 /// parseDirectiveOrg
3367 ///  ::= .org expression [ , expression ]
3368 bool AsmParser::parseDirectiveOrg() {
3369   const MCExpr *Offset;
3370   SMLoc OffsetLoc = Lexer.getLoc();
3371   if (checkForValidSection() || parseExpression(Offset))
3372     return true;
3373 
3374   // Parse optional fill expression.
3375   int64_t FillExpr = 0;
3376   if (parseOptionalToken(AsmToken::Comma))
3377     if (parseAbsoluteExpression(FillExpr))
3378       return true;
3379   if (parseEOL())
3380     return true;
3381 
3382   getStreamer().emitValueToOffset(Offset, FillExpr, OffsetLoc);
3383   return false;
3384 }
3385 
3386 /// parseDirectiveAlign
3387 ///  ::= {.align, ...} expression [ , expression [ , expression ]]
3388 bool AsmParser::parseDirectiveAlign(bool IsPow2, unsigned ValueSize) {
3389   SMLoc AlignmentLoc = getLexer().getLoc();
3390   int64_t Alignment;
3391   SMLoc MaxBytesLoc;
3392   bool HasFillExpr = false;
3393   int64_t FillExpr = 0;
3394   int64_t MaxBytesToFill = 0;
3395 
3396   auto parseAlign = [&]() -> bool {
3397     if (parseAbsoluteExpression(Alignment))
3398       return true;
3399     if (parseOptionalToken(AsmToken::Comma)) {
3400       // The fill expression can be omitted while specifying a maximum number of
3401       // alignment bytes, e.g:
3402       //  .align 3,,4
3403       if (getTok().isNot(AsmToken::Comma)) {
3404         HasFillExpr = true;
3405         if (parseAbsoluteExpression(FillExpr))
3406           return true;
3407       }
3408       if (parseOptionalToken(AsmToken::Comma))
3409         if (parseTokenLoc(MaxBytesLoc) ||
3410             parseAbsoluteExpression(MaxBytesToFill))
3411           return true;
3412     }
3413     return parseEOL();
3414   };
3415 
3416   if (checkForValidSection())
3417     return true;
3418   // Ignore empty '.p2align' directives for GNU-as compatibility
3419   if (IsPow2 && (ValueSize == 1) && getTok().is(AsmToken::EndOfStatement)) {
3420     Warning(AlignmentLoc, "p2align directive with no operand(s) is ignored");
3421     return parseEOL();
3422   }
3423   if (parseAlign())
3424     return true;
3425 
3426   // Always emit an alignment here even if we thrown an error.
3427   bool ReturnVal = false;
3428 
3429   // Compute alignment in bytes.
3430   if (IsPow2) {
3431     // FIXME: Diagnose overflow.
3432     if (Alignment >= 32) {
3433       ReturnVal |= Error(AlignmentLoc, "invalid alignment value");
3434       Alignment = 31;
3435     }
3436 
3437     Alignment = 1ULL << Alignment;
3438   } else {
3439     // Reject alignments that aren't either a power of two or zero,
3440     // for gas compatibility. Alignment of zero is silently rounded
3441     // up to one.
3442     if (Alignment == 0)
3443       Alignment = 1;
3444     else if (!isPowerOf2_64(Alignment)) {
3445       ReturnVal |= Error(AlignmentLoc, "alignment must be a power of 2");
3446       Alignment = llvm::bit_floor<uint64_t>(Alignment);
3447     }
3448     if (!isUInt<32>(Alignment)) {
3449       ReturnVal |= Error(AlignmentLoc, "alignment must be smaller than 2**32");
3450       Alignment = 1u << 31;
3451     }
3452   }
3453 
3454   // Diagnose non-sensical max bytes to align.
3455   if (MaxBytesLoc.isValid()) {
3456     if (MaxBytesToFill < 1) {
3457       ReturnVal |= Error(MaxBytesLoc,
3458                          "alignment directive can never be satisfied in this "
3459                          "many bytes, ignoring maximum bytes expression");
3460       MaxBytesToFill = 0;
3461     }
3462 
3463     if (MaxBytesToFill >= Alignment) {
3464       Warning(MaxBytesLoc, "maximum bytes expression exceeds alignment and "
3465                            "has no effect");
3466       MaxBytesToFill = 0;
3467     }
3468   }
3469 
3470   // Check whether we should use optimal code alignment for this .align
3471   // directive.
3472   const MCSection *Section = getStreamer().getCurrentSectionOnly();
3473   assert(Section && "must have section to emit alignment");
3474   bool useCodeAlign = Section->useCodeAlign();
3475   if ((!HasFillExpr || Lexer.getMAI().getTextAlignFillValue() == FillExpr) &&
3476       ValueSize == 1 && useCodeAlign) {
3477     getStreamer().emitCodeAlignment(
3478         Align(Alignment), &getTargetParser().getSTI(), MaxBytesToFill);
3479   } else {
3480     // FIXME: Target specific behavior about how the "extra" bytes are filled.
3481     getStreamer().emitValueToAlignment(Align(Alignment), FillExpr, ValueSize,
3482                                        MaxBytesToFill);
3483   }
3484 
3485   return ReturnVal;
3486 }
3487 
3488 /// parseDirectiveFile
3489 /// ::= .file filename
3490 /// ::= .file number [directory] filename [md5 checksum] [source source-text]
3491 bool AsmParser::parseDirectiveFile(SMLoc DirectiveLoc) {
3492   // FIXME: I'm not sure what this is.
3493   int64_t FileNumber = -1;
3494   if (getLexer().is(AsmToken::Integer)) {
3495     FileNumber = getTok().getIntVal();
3496     Lex();
3497 
3498     if (FileNumber < 0)
3499       return TokError("negative file number");
3500   }
3501 
3502   std::string Path;
3503 
3504   // Usually the directory and filename together, otherwise just the directory.
3505   // Allow the strings to have escaped octal character sequence.
3506   if (parseEscapedString(Path))
3507     return true;
3508 
3509   StringRef Directory;
3510   StringRef Filename;
3511   std::string FilenameData;
3512   if (getLexer().is(AsmToken::String)) {
3513     if (check(FileNumber == -1,
3514               "explicit path specified, but no file number") ||
3515         parseEscapedString(FilenameData))
3516       return true;
3517     Filename = FilenameData;
3518     Directory = Path;
3519   } else {
3520     Filename = Path;
3521   }
3522 
3523   uint64_t MD5Hi, MD5Lo;
3524   bool HasMD5 = false;
3525 
3526   std::optional<StringRef> Source;
3527   bool HasSource = false;
3528   std::string SourceString;
3529 
3530   while (!parseOptionalToken(AsmToken::EndOfStatement)) {
3531     StringRef Keyword;
3532     if (check(getTok().isNot(AsmToken::Identifier),
3533               "unexpected token in '.file' directive") ||
3534         parseIdentifier(Keyword))
3535       return true;
3536     if (Keyword == "md5") {
3537       HasMD5 = true;
3538       if (check(FileNumber == -1,
3539                 "MD5 checksum specified, but no file number") ||
3540           parseHexOcta(*this, MD5Hi, MD5Lo))
3541         return true;
3542     } else if (Keyword == "source") {
3543       HasSource = true;
3544       if (check(FileNumber == -1,
3545                 "source specified, but no file number") ||
3546           check(getTok().isNot(AsmToken::String),
3547                 "unexpected token in '.file' directive") ||
3548           parseEscapedString(SourceString))
3549         return true;
3550     } else {
3551       return TokError("unexpected token in '.file' directive");
3552     }
3553   }
3554 
3555   if (FileNumber == -1) {
3556     // Ignore the directive if there is no number and the target doesn't support
3557     // numberless .file directives. This allows some portability of assembler
3558     // between different object file formats.
3559     if (getContext().getAsmInfo()->hasSingleParameterDotFile())
3560       getStreamer().emitFileDirective(Filename);
3561   } else {
3562     // In case there is a -g option as well as debug info from directive .file,
3563     // we turn off the -g option, directly use the existing debug info instead.
3564     // Throw away any implicit file table for the assembler source.
3565     if (Ctx.getGenDwarfForAssembly()) {
3566       Ctx.getMCDwarfLineTable(0).resetFileTable();
3567       Ctx.setGenDwarfForAssembly(false);
3568     }
3569 
3570     std::optional<MD5::MD5Result> CKMem;
3571     if (HasMD5) {
3572       MD5::MD5Result Sum;
3573       for (unsigned i = 0; i != 8; ++i) {
3574         Sum[i] = uint8_t(MD5Hi >> ((7 - i) * 8));
3575         Sum[i + 8] = uint8_t(MD5Lo >> ((7 - i) * 8));
3576       }
3577       CKMem = Sum;
3578     }
3579     if (HasSource) {
3580       char *SourceBuf = static_cast<char *>(Ctx.allocate(SourceString.size()));
3581       memcpy(SourceBuf, SourceString.data(), SourceString.size());
3582       Source = StringRef(SourceBuf, SourceString.size());
3583     }
3584     if (FileNumber == 0) {
3585       // Upgrade to Version 5 for assembly actions like clang -c a.s.
3586       if (Ctx.getDwarfVersion() < 5)
3587         Ctx.setDwarfVersion(5);
3588       getStreamer().emitDwarfFile0Directive(Directory, Filename, CKMem, Source);
3589     } else {
3590       Expected<unsigned> FileNumOrErr = getStreamer().tryEmitDwarfFileDirective(
3591           FileNumber, Directory, Filename, CKMem, Source);
3592       if (!FileNumOrErr)
3593         return Error(DirectiveLoc, toString(FileNumOrErr.takeError()));
3594     }
3595     // Alert the user if there are some .file directives with MD5 and some not.
3596     // But only do that once.
3597     if (!ReportedInconsistentMD5 && !Ctx.isDwarfMD5UsageConsistent(0)) {
3598       ReportedInconsistentMD5 = true;
3599       return Warning(DirectiveLoc, "inconsistent use of MD5 checksums");
3600     }
3601   }
3602 
3603   return false;
3604 }
3605 
3606 /// parseDirectiveLine
3607 /// ::= .line [number]
3608 bool AsmParser::parseDirectiveLine() {
3609   int64_t LineNumber;
3610   if (getLexer().is(AsmToken::Integer)) {
3611     if (parseIntToken(LineNumber, "unexpected token in '.line' directive"))
3612       return true;
3613     (void)LineNumber;
3614     // FIXME: Do something with the .line.
3615   }
3616   return parseEOL();
3617 }
3618 
3619 /// parseDirectiveLoc
3620 /// ::= .loc FileNumber [LineNumber] [ColumnPos] [basic_block] [prologue_end]
3621 ///                                [epilogue_begin] [is_stmt VALUE] [isa VALUE]
3622 /// The first number is a file number, must have been previously assigned with
3623 /// a .file directive, the second number is the line number and optionally the
3624 /// third number is a column position (zero if not specified).  The remaining
3625 /// optional items are .loc sub-directives.
3626 bool AsmParser::parseDirectiveLoc() {
3627   int64_t FileNumber = 0, LineNumber = 0;
3628   SMLoc Loc = getTok().getLoc();
3629   if (parseIntToken(FileNumber, "unexpected token in '.loc' directive") ||
3630       check(FileNumber < 1 && Ctx.getDwarfVersion() < 5, Loc,
3631             "file number less than one in '.loc' directive") ||
3632       check(!getContext().isValidDwarfFileNumber(FileNumber), Loc,
3633             "unassigned file number in '.loc' directive"))
3634     return true;
3635 
3636   // optional
3637   if (getLexer().is(AsmToken::Integer)) {
3638     LineNumber = getTok().getIntVal();
3639     if (LineNumber < 0)
3640       return TokError("line number less than zero in '.loc' directive");
3641     Lex();
3642   }
3643 
3644   int64_t ColumnPos = 0;
3645   if (getLexer().is(AsmToken::Integer)) {
3646     ColumnPos = getTok().getIntVal();
3647     if (ColumnPos < 0)
3648       return TokError("column position less than zero in '.loc' directive");
3649     Lex();
3650   }
3651 
3652   auto PrevFlags = getContext().getCurrentDwarfLoc().getFlags();
3653   unsigned Flags = PrevFlags & DWARF2_FLAG_IS_STMT;
3654   unsigned Isa = 0;
3655   int64_t Discriminator = 0;
3656 
3657   auto parseLocOp = [&]() -> bool {
3658     StringRef Name;
3659     SMLoc Loc = getTok().getLoc();
3660     if (parseIdentifier(Name))
3661       return TokError("unexpected token in '.loc' directive");
3662 
3663     if (Name == "basic_block")
3664       Flags |= DWARF2_FLAG_BASIC_BLOCK;
3665     else if (Name == "prologue_end")
3666       Flags |= DWARF2_FLAG_PROLOGUE_END;
3667     else if (Name == "epilogue_begin")
3668       Flags |= DWARF2_FLAG_EPILOGUE_BEGIN;
3669     else if (Name == "is_stmt") {
3670       Loc = getTok().getLoc();
3671       const MCExpr *Value;
3672       if (parseExpression(Value))
3673         return true;
3674       // The expression must be the constant 0 or 1.
3675       if (const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value)) {
3676         int Value = MCE->getValue();
3677         if (Value == 0)
3678           Flags &= ~DWARF2_FLAG_IS_STMT;
3679         else if (Value == 1)
3680           Flags |= DWARF2_FLAG_IS_STMT;
3681         else
3682           return Error(Loc, "is_stmt value not 0 or 1");
3683       } else {
3684         return Error(Loc, "is_stmt value not the constant value of 0 or 1");
3685       }
3686     } else if (Name == "isa") {
3687       Loc = getTok().getLoc();
3688       const MCExpr *Value;
3689       if (parseExpression(Value))
3690         return true;
3691       // The expression must be a constant greater or equal to 0.
3692       if (const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value)) {
3693         int Value = MCE->getValue();
3694         if (Value < 0)
3695           return Error(Loc, "isa number less than zero");
3696         Isa = Value;
3697       } else {
3698         return Error(Loc, "isa number not a constant value");
3699       }
3700     } else if (Name == "discriminator") {
3701       if (parseAbsoluteExpression(Discriminator))
3702         return true;
3703     } else {
3704       return Error(Loc, "unknown sub-directive in '.loc' directive");
3705     }
3706     return false;
3707   };
3708 
3709   if (parseMany(parseLocOp, false /*hasComma*/))
3710     return true;
3711 
3712   getStreamer().emitDwarfLocDirective(FileNumber, LineNumber, ColumnPos, Flags,
3713                                       Isa, Discriminator, StringRef());
3714 
3715   return false;
3716 }
3717 
3718 /// parseDirectiveStabs
3719 /// ::= .stabs string, number, number, number
3720 bool AsmParser::parseDirectiveStabs() {
3721   return TokError("unsupported directive '.stabs'");
3722 }
3723 
3724 /// parseDirectiveCVFile
3725 /// ::= .cv_file number filename [checksum] [checksumkind]
3726 bool AsmParser::parseDirectiveCVFile() {
3727   SMLoc FileNumberLoc = getTok().getLoc();
3728   int64_t FileNumber;
3729   std::string Filename;
3730   std::string Checksum;
3731   int64_t ChecksumKind = 0;
3732 
3733   if (parseIntToken(FileNumber,
3734                     "expected file number in '.cv_file' directive") ||
3735       check(FileNumber < 1, FileNumberLoc, "file number less than one") ||
3736       check(getTok().isNot(AsmToken::String),
3737             "unexpected token in '.cv_file' directive") ||
3738       parseEscapedString(Filename))
3739     return true;
3740   if (!parseOptionalToken(AsmToken::EndOfStatement)) {
3741     if (check(getTok().isNot(AsmToken::String),
3742               "unexpected token in '.cv_file' directive") ||
3743         parseEscapedString(Checksum) ||
3744         parseIntToken(ChecksumKind,
3745                       "expected checksum kind in '.cv_file' directive") ||
3746         parseEOL())
3747       return true;
3748   }
3749 
3750   Checksum = fromHex(Checksum);
3751   void *CKMem = Ctx.allocate(Checksum.size(), 1);
3752   memcpy(CKMem, Checksum.data(), Checksum.size());
3753   ArrayRef<uint8_t> ChecksumAsBytes(reinterpret_cast<const uint8_t *>(CKMem),
3754                                     Checksum.size());
3755 
3756   if (!getStreamer().emitCVFileDirective(FileNumber, Filename, ChecksumAsBytes,
3757                                          static_cast<uint8_t>(ChecksumKind)))
3758     return Error(FileNumberLoc, "file number already allocated");
3759 
3760   return false;
3761 }
3762 
3763 bool AsmParser::parseCVFunctionId(int64_t &FunctionId,
3764                                   StringRef DirectiveName) {
3765   SMLoc Loc;
3766   return parseTokenLoc(Loc) ||
3767          parseIntToken(FunctionId, "expected function id in '" + DirectiveName +
3768                                        "' directive") ||
3769          check(FunctionId < 0 || FunctionId >= UINT_MAX, Loc,
3770                "expected function id within range [0, UINT_MAX)");
3771 }
3772 
3773 bool AsmParser::parseCVFileId(int64_t &FileNumber, StringRef DirectiveName) {
3774   SMLoc Loc;
3775   return parseTokenLoc(Loc) ||
3776          parseIntToken(FileNumber, "expected integer in '" + DirectiveName +
3777                                        "' directive") ||
3778          check(FileNumber < 1, Loc, "file number less than one in '" +
3779                                         DirectiveName + "' directive") ||
3780          check(!getCVContext().isValidFileNumber(FileNumber), Loc,
3781                "unassigned file number in '" + DirectiveName + "' directive");
3782 }
3783 
3784 /// parseDirectiveCVFuncId
3785 /// ::= .cv_func_id FunctionId
3786 ///
3787 /// Introduces a function ID that can be used with .cv_loc.
3788 bool AsmParser::parseDirectiveCVFuncId() {
3789   SMLoc FunctionIdLoc = getTok().getLoc();
3790   int64_t FunctionId;
3791 
3792   if (parseCVFunctionId(FunctionId, ".cv_func_id") || parseEOL())
3793     return true;
3794 
3795   if (!getStreamer().emitCVFuncIdDirective(FunctionId))
3796     return Error(FunctionIdLoc, "function id already allocated");
3797 
3798   return false;
3799 }
3800 
3801 /// parseDirectiveCVInlineSiteId
3802 /// ::= .cv_inline_site_id FunctionId
3803 ///         "within" IAFunc
3804 ///         "inlined_at" IAFile IALine [IACol]
3805 ///
3806 /// Introduces a function ID that can be used with .cv_loc. Includes "inlined
3807 /// at" source location information for use in the line table of the caller,
3808 /// whether the caller is a real function or another inlined call site.
3809 bool AsmParser::parseDirectiveCVInlineSiteId() {
3810   SMLoc FunctionIdLoc = getTok().getLoc();
3811   int64_t FunctionId;
3812   int64_t IAFunc;
3813   int64_t IAFile;
3814   int64_t IALine;
3815   int64_t IACol = 0;
3816 
3817   // FunctionId
3818   if (parseCVFunctionId(FunctionId, ".cv_inline_site_id"))
3819     return true;
3820 
3821   // "within"
3822   if (check((getLexer().isNot(AsmToken::Identifier) ||
3823              getTok().getIdentifier() != "within"),
3824             "expected 'within' identifier in '.cv_inline_site_id' directive"))
3825     return true;
3826   Lex();
3827 
3828   // IAFunc
3829   if (parseCVFunctionId(IAFunc, ".cv_inline_site_id"))
3830     return true;
3831 
3832   // "inlined_at"
3833   if (check((getLexer().isNot(AsmToken::Identifier) ||
3834              getTok().getIdentifier() != "inlined_at"),
3835             "expected 'inlined_at' identifier in '.cv_inline_site_id' "
3836             "directive") )
3837     return true;
3838   Lex();
3839 
3840   // IAFile IALine
3841   if (parseCVFileId(IAFile, ".cv_inline_site_id") ||
3842       parseIntToken(IALine, "expected line number after 'inlined_at'"))
3843     return true;
3844 
3845   // [IACol]
3846   if (getLexer().is(AsmToken::Integer)) {
3847     IACol = getTok().getIntVal();
3848     Lex();
3849   }
3850 
3851   if (parseEOL())
3852     return true;
3853 
3854   if (!getStreamer().emitCVInlineSiteIdDirective(FunctionId, IAFunc, IAFile,
3855                                                  IALine, IACol, FunctionIdLoc))
3856     return Error(FunctionIdLoc, "function id already allocated");
3857 
3858   return false;
3859 }
3860 
3861 /// parseDirectiveCVLoc
3862 /// ::= .cv_loc FunctionId FileNumber [LineNumber] [ColumnPos] [prologue_end]
3863 ///                                [is_stmt VALUE]
3864 /// The first number is a file number, must have been previously assigned with
3865 /// a .file directive, the second number is the line number and optionally the
3866 /// third number is a column position (zero if not specified).  The remaining
3867 /// optional items are .loc sub-directives.
3868 bool AsmParser::parseDirectiveCVLoc() {
3869   SMLoc DirectiveLoc = getTok().getLoc();
3870   int64_t FunctionId, FileNumber;
3871   if (parseCVFunctionId(FunctionId, ".cv_loc") ||
3872       parseCVFileId(FileNumber, ".cv_loc"))
3873     return true;
3874 
3875   int64_t LineNumber = 0;
3876   if (getLexer().is(AsmToken::Integer)) {
3877     LineNumber = getTok().getIntVal();
3878     if (LineNumber < 0)
3879       return TokError("line number less than zero in '.cv_loc' directive");
3880     Lex();
3881   }
3882 
3883   int64_t ColumnPos = 0;
3884   if (getLexer().is(AsmToken::Integer)) {
3885     ColumnPos = getTok().getIntVal();
3886     if (ColumnPos < 0)
3887       return TokError("column position less than zero in '.cv_loc' directive");
3888     Lex();
3889   }
3890 
3891   bool PrologueEnd = false;
3892   uint64_t IsStmt = 0;
3893 
3894   auto parseOp = [&]() -> bool {
3895     StringRef Name;
3896     SMLoc Loc = getTok().getLoc();
3897     if (parseIdentifier(Name))
3898       return TokError("unexpected token in '.cv_loc' directive");
3899     if (Name == "prologue_end")
3900       PrologueEnd = true;
3901     else if (Name == "is_stmt") {
3902       Loc = getTok().getLoc();
3903       const MCExpr *Value;
3904       if (parseExpression(Value))
3905         return true;
3906       // The expression must be the constant 0 or 1.
3907       IsStmt = ~0ULL;
3908       if (const auto *MCE = dyn_cast<MCConstantExpr>(Value))
3909         IsStmt = MCE->getValue();
3910 
3911       if (IsStmt > 1)
3912         return Error(Loc, "is_stmt value not 0 or 1");
3913     } else {
3914       return Error(Loc, "unknown sub-directive in '.cv_loc' directive");
3915     }
3916     return false;
3917   };
3918 
3919   if (parseMany(parseOp, false /*hasComma*/))
3920     return true;
3921 
3922   getStreamer().emitCVLocDirective(FunctionId, FileNumber, LineNumber,
3923                                    ColumnPos, PrologueEnd, IsStmt, StringRef(),
3924                                    DirectiveLoc);
3925   return false;
3926 }
3927 
3928 /// parseDirectiveCVLinetable
3929 /// ::= .cv_linetable FunctionId, FnStart, FnEnd
3930 bool AsmParser::parseDirectiveCVLinetable() {
3931   int64_t FunctionId;
3932   StringRef FnStartName, FnEndName;
3933   SMLoc Loc = getTok().getLoc();
3934   if (parseCVFunctionId(FunctionId, ".cv_linetable") || parseComma() ||
3935       parseTokenLoc(Loc) ||
3936       check(parseIdentifier(FnStartName), Loc,
3937             "expected identifier in directive") ||
3938       parseComma() || parseTokenLoc(Loc) ||
3939       check(parseIdentifier(FnEndName), Loc,
3940             "expected identifier in directive"))
3941     return true;
3942 
3943   MCSymbol *FnStartSym = getContext().getOrCreateSymbol(FnStartName);
3944   MCSymbol *FnEndSym = getContext().getOrCreateSymbol(FnEndName);
3945 
3946   getStreamer().emitCVLinetableDirective(FunctionId, FnStartSym, FnEndSym);
3947   return false;
3948 }
3949 
3950 /// parseDirectiveCVInlineLinetable
3951 /// ::= .cv_inline_linetable PrimaryFunctionId FileId LineNum FnStart FnEnd
3952 bool AsmParser::parseDirectiveCVInlineLinetable() {
3953   int64_t PrimaryFunctionId, SourceFileId, SourceLineNum;
3954   StringRef FnStartName, FnEndName;
3955   SMLoc Loc = getTok().getLoc();
3956   if (parseCVFunctionId(PrimaryFunctionId, ".cv_inline_linetable") ||
3957       parseTokenLoc(Loc) ||
3958       parseIntToken(
3959           SourceFileId,
3960           "expected SourceField in '.cv_inline_linetable' directive") ||
3961       check(SourceFileId <= 0, Loc,
3962             "File id less than zero in '.cv_inline_linetable' directive") ||
3963       parseTokenLoc(Loc) ||
3964       parseIntToken(
3965           SourceLineNum,
3966           "expected SourceLineNum in '.cv_inline_linetable' directive") ||
3967       check(SourceLineNum < 0, Loc,
3968             "Line number less than zero in '.cv_inline_linetable' directive") ||
3969       parseTokenLoc(Loc) || check(parseIdentifier(FnStartName), Loc,
3970                                   "expected identifier in directive") ||
3971       parseTokenLoc(Loc) || check(parseIdentifier(FnEndName), Loc,
3972                                   "expected identifier in directive"))
3973     return true;
3974 
3975   if (parseEOL())
3976     return true;
3977 
3978   MCSymbol *FnStartSym = getContext().getOrCreateSymbol(FnStartName);
3979   MCSymbol *FnEndSym = getContext().getOrCreateSymbol(FnEndName);
3980   getStreamer().emitCVInlineLinetableDirective(PrimaryFunctionId, SourceFileId,
3981                                                SourceLineNum, FnStartSym,
3982                                                FnEndSym);
3983   return false;
3984 }
3985 
3986 void AsmParser::initializeCVDefRangeTypeMap() {
3987   CVDefRangeTypeMap["reg"] = CVDR_DEFRANGE_REGISTER;
3988   CVDefRangeTypeMap["frame_ptr_rel"] = CVDR_DEFRANGE_FRAMEPOINTER_REL;
3989   CVDefRangeTypeMap["subfield_reg"] = CVDR_DEFRANGE_SUBFIELD_REGISTER;
3990   CVDefRangeTypeMap["reg_rel"] = CVDR_DEFRANGE_REGISTER_REL;
3991 }
3992 
3993 /// parseDirectiveCVDefRange
3994 /// ::= .cv_def_range RangeStart RangeEnd (GapStart GapEnd)*, bytes*
3995 bool AsmParser::parseDirectiveCVDefRange() {
3996   SMLoc Loc;
3997   std::vector<std::pair<const MCSymbol *, const MCSymbol *>> Ranges;
3998   while (getLexer().is(AsmToken::Identifier)) {
3999     Loc = getLexer().getLoc();
4000     StringRef GapStartName;
4001     if (parseIdentifier(GapStartName))
4002       return Error(Loc, "expected identifier in directive");
4003     MCSymbol *GapStartSym = getContext().getOrCreateSymbol(GapStartName);
4004 
4005     Loc = getLexer().getLoc();
4006     StringRef GapEndName;
4007     if (parseIdentifier(GapEndName))
4008       return Error(Loc, "expected identifier in directive");
4009     MCSymbol *GapEndSym = getContext().getOrCreateSymbol(GapEndName);
4010 
4011     Ranges.push_back({GapStartSym, GapEndSym});
4012   }
4013 
4014   StringRef CVDefRangeTypeStr;
4015   if (parseToken(
4016           AsmToken::Comma,
4017           "expected comma before def_range type in .cv_def_range directive") ||
4018       parseIdentifier(CVDefRangeTypeStr))
4019     return Error(Loc, "expected def_range type in directive");
4020 
4021   StringMap<CVDefRangeType>::const_iterator CVTypeIt =
4022       CVDefRangeTypeMap.find(CVDefRangeTypeStr);
4023   CVDefRangeType CVDRType = (CVTypeIt == CVDefRangeTypeMap.end())
4024                                 ? CVDR_DEFRANGE
4025                                 : CVTypeIt->getValue();
4026   switch (CVDRType) {
4027   case CVDR_DEFRANGE_REGISTER: {
4028     int64_t DRRegister;
4029     if (parseToken(AsmToken::Comma, "expected comma before register number in "
4030                                     ".cv_def_range directive") ||
4031         parseAbsoluteExpression(DRRegister))
4032       return Error(Loc, "expected register number");
4033 
4034     codeview::DefRangeRegisterHeader DRHdr;
4035     DRHdr.Register = DRRegister;
4036     DRHdr.MayHaveNoName = 0;
4037     getStreamer().emitCVDefRangeDirective(Ranges, DRHdr);
4038     break;
4039   }
4040   case CVDR_DEFRANGE_FRAMEPOINTER_REL: {
4041     int64_t DROffset;
4042     if (parseToken(AsmToken::Comma,
4043                    "expected comma before offset in .cv_def_range directive") ||
4044         parseAbsoluteExpression(DROffset))
4045       return Error(Loc, "expected offset value");
4046 
4047     codeview::DefRangeFramePointerRelHeader DRHdr;
4048     DRHdr.Offset = DROffset;
4049     getStreamer().emitCVDefRangeDirective(Ranges, DRHdr);
4050     break;
4051   }
4052   case CVDR_DEFRANGE_SUBFIELD_REGISTER: {
4053     int64_t DRRegister;
4054     int64_t DROffsetInParent;
4055     if (parseToken(AsmToken::Comma, "expected comma before register number in "
4056                                     ".cv_def_range directive") ||
4057         parseAbsoluteExpression(DRRegister))
4058       return Error(Loc, "expected register number");
4059     if (parseToken(AsmToken::Comma,
4060                    "expected comma before offset in .cv_def_range directive") ||
4061         parseAbsoluteExpression(DROffsetInParent))
4062       return Error(Loc, "expected offset value");
4063 
4064     codeview::DefRangeSubfieldRegisterHeader DRHdr;
4065     DRHdr.Register = DRRegister;
4066     DRHdr.MayHaveNoName = 0;
4067     DRHdr.OffsetInParent = DROffsetInParent;
4068     getStreamer().emitCVDefRangeDirective(Ranges, DRHdr);
4069     break;
4070   }
4071   case CVDR_DEFRANGE_REGISTER_REL: {
4072     int64_t DRRegister;
4073     int64_t DRFlags;
4074     int64_t DRBasePointerOffset;
4075     if (parseToken(AsmToken::Comma, "expected comma before register number in "
4076                                     ".cv_def_range directive") ||
4077         parseAbsoluteExpression(DRRegister))
4078       return Error(Loc, "expected register value");
4079     if (parseToken(
4080             AsmToken::Comma,
4081             "expected comma before flag value in .cv_def_range directive") ||
4082         parseAbsoluteExpression(DRFlags))
4083       return Error(Loc, "expected flag value");
4084     if (parseToken(AsmToken::Comma, "expected comma before base pointer offset "
4085                                     "in .cv_def_range directive") ||
4086         parseAbsoluteExpression(DRBasePointerOffset))
4087       return Error(Loc, "expected base pointer offset value");
4088 
4089     codeview::DefRangeRegisterRelHeader DRHdr;
4090     DRHdr.Register = DRRegister;
4091     DRHdr.Flags = DRFlags;
4092     DRHdr.BasePointerOffset = DRBasePointerOffset;
4093     getStreamer().emitCVDefRangeDirective(Ranges, DRHdr);
4094     break;
4095   }
4096   default:
4097     return Error(Loc, "unexpected def_range type in .cv_def_range directive");
4098   }
4099   return true;
4100 }
4101 
4102 /// parseDirectiveCVString
4103 /// ::= .cv_stringtable "string"
4104 bool AsmParser::parseDirectiveCVString() {
4105   std::string Data;
4106   if (checkForValidSection() || parseEscapedString(Data))
4107     return true;
4108 
4109   // Put the string in the table and emit the offset.
4110   std::pair<StringRef, unsigned> Insertion =
4111       getCVContext().addToStringTable(Data);
4112   getStreamer().emitInt32(Insertion.second);
4113   return false;
4114 }
4115 
4116 /// parseDirectiveCVStringTable
4117 /// ::= .cv_stringtable
4118 bool AsmParser::parseDirectiveCVStringTable() {
4119   getStreamer().emitCVStringTableDirective();
4120   return false;
4121 }
4122 
4123 /// parseDirectiveCVFileChecksums
4124 /// ::= .cv_filechecksums
4125 bool AsmParser::parseDirectiveCVFileChecksums() {
4126   getStreamer().emitCVFileChecksumsDirective();
4127   return false;
4128 }
4129 
4130 /// parseDirectiveCVFileChecksumOffset
4131 /// ::= .cv_filechecksumoffset fileno
4132 bool AsmParser::parseDirectiveCVFileChecksumOffset() {
4133   int64_t FileNo;
4134   if (parseIntToken(FileNo, "expected identifier in directive"))
4135     return true;
4136   if (parseEOL())
4137     return true;
4138   getStreamer().emitCVFileChecksumOffsetDirective(FileNo);
4139   return false;
4140 }
4141 
4142 /// parseDirectiveCVFPOData
4143 /// ::= .cv_fpo_data procsym
4144 bool AsmParser::parseDirectiveCVFPOData() {
4145   SMLoc DirLoc = getLexer().getLoc();
4146   StringRef ProcName;
4147   if (parseIdentifier(ProcName))
4148     return TokError("expected symbol name");
4149   if (parseEOL())
4150     return true;
4151   MCSymbol *ProcSym = getContext().getOrCreateSymbol(ProcName);
4152   getStreamer().emitCVFPOData(ProcSym, DirLoc);
4153   return false;
4154 }
4155 
4156 /// parseDirectiveCFISections
4157 /// ::= .cfi_sections section [, section]
4158 bool AsmParser::parseDirectiveCFISections() {
4159   StringRef Name;
4160   bool EH = false;
4161   bool Debug = false;
4162 
4163   if (!parseOptionalToken(AsmToken::EndOfStatement)) {
4164     for (;;) {
4165       if (parseIdentifier(Name))
4166         return TokError("expected .eh_frame or .debug_frame");
4167       if (Name == ".eh_frame")
4168         EH = true;
4169       else if (Name == ".debug_frame")
4170         Debug = true;
4171       if (parseOptionalToken(AsmToken::EndOfStatement))
4172         break;
4173       if (parseComma())
4174         return true;
4175     }
4176   }
4177   getStreamer().emitCFISections(EH, Debug);
4178   return false;
4179 }
4180 
4181 /// parseDirectiveCFIStartProc
4182 /// ::= .cfi_startproc [simple]
4183 bool AsmParser::parseDirectiveCFIStartProc() {
4184   StringRef Simple;
4185   if (!parseOptionalToken(AsmToken::EndOfStatement)) {
4186     if (check(parseIdentifier(Simple) || Simple != "simple",
4187               "unexpected token") ||
4188         parseEOL())
4189       return true;
4190   }
4191 
4192   // TODO(kristina): Deal with a corner case of incorrect diagnostic context
4193   // being produced if this directive is emitted as part of preprocessor macro
4194   // expansion which can *ONLY* happen if Clang's cc1as is the API consumer.
4195   // Tools like llvm-mc on the other hand are not affected by it, and report
4196   // correct context information.
4197   getStreamer().emitCFIStartProc(!Simple.empty(), Lexer.getLoc());
4198   return false;
4199 }
4200 
4201 /// parseDirectiveCFIEndProc
4202 /// ::= .cfi_endproc
4203 bool AsmParser::parseDirectiveCFIEndProc() {
4204   if (parseEOL())
4205     return true;
4206   getStreamer().emitCFIEndProc();
4207   return false;
4208 }
4209 
4210 /// parse register name or number.
4211 bool AsmParser::parseRegisterOrRegisterNumber(int64_t &Register,
4212                                               SMLoc DirectiveLoc) {
4213   MCRegister RegNo;
4214 
4215   if (getLexer().isNot(AsmToken::Integer)) {
4216     if (getTargetParser().parseRegister(RegNo, DirectiveLoc, DirectiveLoc))
4217       return true;
4218     Register = getContext().getRegisterInfo()->getDwarfRegNum(RegNo, true);
4219   } else
4220     return parseAbsoluteExpression(Register);
4221 
4222   return false;
4223 }
4224 
4225 /// parseDirectiveCFIDefCfa
4226 /// ::= .cfi_def_cfa register,  offset
4227 bool AsmParser::parseDirectiveCFIDefCfa(SMLoc DirectiveLoc) {
4228   int64_t Register = 0, Offset = 0;
4229   if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseComma() ||
4230       parseAbsoluteExpression(Offset) || parseEOL())
4231     return true;
4232 
4233   getStreamer().emitCFIDefCfa(Register, Offset, DirectiveLoc);
4234   return false;
4235 }
4236 
4237 /// parseDirectiveCFIDefCfaOffset
4238 /// ::= .cfi_def_cfa_offset offset
4239 bool AsmParser::parseDirectiveCFIDefCfaOffset(SMLoc DirectiveLoc) {
4240   int64_t Offset = 0;
4241   if (parseAbsoluteExpression(Offset) || parseEOL())
4242     return true;
4243 
4244   getStreamer().emitCFIDefCfaOffset(Offset, DirectiveLoc);
4245   return false;
4246 }
4247 
4248 /// parseDirectiveCFIRegister
4249 /// ::= .cfi_register register, register
4250 bool AsmParser::parseDirectiveCFIRegister(SMLoc DirectiveLoc) {
4251   int64_t Register1 = 0, Register2 = 0;
4252   if (parseRegisterOrRegisterNumber(Register1, DirectiveLoc) || parseComma() ||
4253       parseRegisterOrRegisterNumber(Register2, DirectiveLoc) || parseEOL())
4254     return true;
4255 
4256   getStreamer().emitCFIRegister(Register1, Register2, DirectiveLoc);
4257   return false;
4258 }
4259 
4260 /// parseDirectiveCFIWindowSave
4261 /// ::= .cfi_window_save
4262 bool AsmParser::parseDirectiveCFIWindowSave(SMLoc DirectiveLoc) {
4263   if (parseEOL())
4264     return true;
4265   getStreamer().emitCFIWindowSave(DirectiveLoc);
4266   return false;
4267 }
4268 
4269 /// parseDirectiveCFIAdjustCfaOffset
4270 /// ::= .cfi_adjust_cfa_offset adjustment
4271 bool AsmParser::parseDirectiveCFIAdjustCfaOffset(SMLoc DirectiveLoc) {
4272   int64_t Adjustment = 0;
4273   if (parseAbsoluteExpression(Adjustment) || parseEOL())
4274     return true;
4275 
4276   getStreamer().emitCFIAdjustCfaOffset(Adjustment, DirectiveLoc);
4277   return false;
4278 }
4279 
4280 /// parseDirectiveCFIDefCfaRegister
4281 /// ::= .cfi_def_cfa_register register
4282 bool AsmParser::parseDirectiveCFIDefCfaRegister(SMLoc DirectiveLoc) {
4283   int64_t Register = 0;
4284   if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseEOL())
4285     return true;
4286 
4287   getStreamer().emitCFIDefCfaRegister(Register, DirectiveLoc);
4288   return false;
4289 }
4290 
4291 /// parseDirectiveCFILLVMDefAspaceCfa
4292 /// ::= .cfi_llvm_def_aspace_cfa register, offset, address_space
4293 bool AsmParser::parseDirectiveCFILLVMDefAspaceCfa(SMLoc DirectiveLoc) {
4294   int64_t Register = 0, Offset = 0, AddressSpace = 0;
4295   if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseComma() ||
4296       parseAbsoluteExpression(Offset) || parseComma() ||
4297       parseAbsoluteExpression(AddressSpace) || parseEOL())
4298     return true;
4299 
4300   getStreamer().emitCFILLVMDefAspaceCfa(Register, Offset, AddressSpace,
4301                                         DirectiveLoc);
4302   return false;
4303 }
4304 
4305 /// parseDirectiveCFIOffset
4306 /// ::= .cfi_offset register, offset
4307 bool AsmParser::parseDirectiveCFIOffset(SMLoc DirectiveLoc) {
4308   int64_t Register = 0;
4309   int64_t Offset = 0;
4310 
4311   if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseComma() ||
4312       parseAbsoluteExpression(Offset) || parseEOL())
4313     return true;
4314 
4315   getStreamer().emitCFIOffset(Register, Offset, DirectiveLoc);
4316   return false;
4317 }
4318 
4319 /// parseDirectiveCFIRelOffset
4320 /// ::= .cfi_rel_offset register, offset
4321 bool AsmParser::parseDirectiveCFIRelOffset(SMLoc DirectiveLoc) {
4322   int64_t Register = 0, Offset = 0;
4323 
4324   if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseComma() ||
4325       parseAbsoluteExpression(Offset) || parseEOL())
4326     return true;
4327 
4328   getStreamer().emitCFIRelOffset(Register, Offset, DirectiveLoc);
4329   return false;
4330 }
4331 
4332 static bool isValidEncoding(int64_t Encoding) {
4333   if (Encoding & ~0xff)
4334     return false;
4335 
4336   if (Encoding == dwarf::DW_EH_PE_omit)
4337     return true;
4338 
4339   const unsigned Format = Encoding & 0xf;
4340   if (Format != dwarf::DW_EH_PE_absptr && Format != dwarf::DW_EH_PE_udata2 &&
4341       Format != dwarf::DW_EH_PE_udata4 && Format != dwarf::DW_EH_PE_udata8 &&
4342       Format != dwarf::DW_EH_PE_sdata2 && Format != dwarf::DW_EH_PE_sdata4 &&
4343       Format != dwarf::DW_EH_PE_sdata8 && Format != dwarf::DW_EH_PE_signed)
4344     return false;
4345 
4346   const unsigned Application = Encoding & 0x70;
4347   if (Application != dwarf::DW_EH_PE_absptr &&
4348       Application != dwarf::DW_EH_PE_pcrel)
4349     return false;
4350 
4351   return true;
4352 }
4353 
4354 /// parseDirectiveCFIPersonalityOrLsda
4355 /// IsPersonality true for cfi_personality, false for cfi_lsda
4356 /// ::= .cfi_personality encoding, [symbol_name]
4357 /// ::= .cfi_lsda encoding, [symbol_name]
4358 bool AsmParser::parseDirectiveCFIPersonalityOrLsda(bool IsPersonality) {
4359   int64_t Encoding = 0;
4360   if (parseAbsoluteExpression(Encoding))
4361     return true;
4362   if (Encoding == dwarf::DW_EH_PE_omit)
4363     return false;
4364 
4365   StringRef Name;
4366   if (check(!isValidEncoding(Encoding), "unsupported encoding.") ||
4367       parseComma() ||
4368       check(parseIdentifier(Name), "expected identifier in directive") ||
4369       parseEOL())
4370     return true;
4371 
4372   MCSymbol *Sym = getContext().getOrCreateSymbol(Name);
4373 
4374   if (IsPersonality)
4375     getStreamer().emitCFIPersonality(Sym, Encoding);
4376   else
4377     getStreamer().emitCFILsda(Sym, Encoding);
4378   return false;
4379 }
4380 
4381 /// parseDirectiveCFIRememberState
4382 /// ::= .cfi_remember_state
4383 bool AsmParser::parseDirectiveCFIRememberState(SMLoc DirectiveLoc) {
4384   if (parseEOL())
4385     return true;
4386   getStreamer().emitCFIRememberState(DirectiveLoc);
4387   return false;
4388 }
4389 
4390 /// parseDirectiveCFIRestoreState
4391 /// ::= .cfi_remember_state
4392 bool AsmParser::parseDirectiveCFIRestoreState(SMLoc DirectiveLoc) {
4393   if (parseEOL())
4394     return true;
4395   getStreamer().emitCFIRestoreState(DirectiveLoc);
4396   return false;
4397 }
4398 
4399 /// parseDirectiveCFISameValue
4400 /// ::= .cfi_same_value register
4401 bool AsmParser::parseDirectiveCFISameValue(SMLoc DirectiveLoc) {
4402   int64_t Register = 0;
4403 
4404   if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseEOL())
4405     return true;
4406 
4407   getStreamer().emitCFISameValue(Register, DirectiveLoc);
4408   return false;
4409 }
4410 
4411 /// parseDirectiveCFIRestore
4412 /// ::= .cfi_restore register
4413 bool AsmParser::parseDirectiveCFIRestore(SMLoc DirectiveLoc) {
4414   int64_t Register = 0;
4415   if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseEOL())
4416     return true;
4417 
4418   getStreamer().emitCFIRestore(Register, DirectiveLoc);
4419   return false;
4420 }
4421 
4422 /// parseDirectiveCFIEscape
4423 /// ::= .cfi_escape expression[,...]
4424 bool AsmParser::parseDirectiveCFIEscape(SMLoc DirectiveLoc) {
4425   std::string Values;
4426   int64_t CurrValue;
4427   if (parseAbsoluteExpression(CurrValue))
4428     return true;
4429 
4430   Values.push_back((uint8_t)CurrValue);
4431 
4432   while (getLexer().is(AsmToken::Comma)) {
4433     Lex();
4434 
4435     if (parseAbsoluteExpression(CurrValue))
4436       return true;
4437 
4438     Values.push_back((uint8_t)CurrValue);
4439   }
4440 
4441   getStreamer().emitCFIEscape(Values, DirectiveLoc);
4442   return false;
4443 }
4444 
4445 /// parseDirectiveCFIReturnColumn
4446 /// ::= .cfi_return_column register
4447 bool AsmParser::parseDirectiveCFIReturnColumn(SMLoc DirectiveLoc) {
4448   int64_t Register = 0;
4449   if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseEOL())
4450     return true;
4451   getStreamer().emitCFIReturnColumn(Register);
4452   return false;
4453 }
4454 
4455 /// parseDirectiveCFISignalFrame
4456 /// ::= .cfi_signal_frame
4457 bool AsmParser::parseDirectiveCFISignalFrame(SMLoc DirectiveLoc) {
4458   if (parseEOL())
4459     return true;
4460 
4461   getStreamer().emitCFISignalFrame();
4462   return false;
4463 }
4464 
4465 /// parseDirectiveCFIUndefined
4466 /// ::= .cfi_undefined register
4467 bool AsmParser::parseDirectiveCFIUndefined(SMLoc DirectiveLoc) {
4468   int64_t Register = 0;
4469 
4470   if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseEOL())
4471     return true;
4472 
4473   getStreamer().emitCFIUndefined(Register, DirectiveLoc);
4474   return false;
4475 }
4476 
4477 /// parseDirectiveAltmacro
4478 /// ::= .altmacro
4479 /// ::= .noaltmacro
4480 bool AsmParser::parseDirectiveAltmacro(StringRef Directive) {
4481   if (parseEOL())
4482     return true;
4483   AltMacroMode = (Directive == ".altmacro");
4484   return false;
4485 }
4486 
4487 /// parseDirectiveMacrosOnOff
4488 /// ::= .macros_on
4489 /// ::= .macros_off
4490 bool AsmParser::parseDirectiveMacrosOnOff(StringRef Directive) {
4491   if (parseEOL())
4492     return true;
4493   setMacrosEnabled(Directive == ".macros_on");
4494   return false;
4495 }
4496 
4497 /// parseDirectiveMacro
4498 /// ::= .macro name[,] [parameters]
4499 bool AsmParser::parseDirectiveMacro(SMLoc DirectiveLoc) {
4500   StringRef Name;
4501   if (parseIdentifier(Name))
4502     return TokError("expected identifier in '.macro' directive");
4503 
4504   if (getLexer().is(AsmToken::Comma))
4505     Lex();
4506 
4507   MCAsmMacroParameters Parameters;
4508   while (getLexer().isNot(AsmToken::EndOfStatement)) {
4509 
4510     if (!Parameters.empty() && Parameters.back().Vararg)
4511       return Error(Lexer.getLoc(), "vararg parameter '" +
4512                                        Parameters.back().Name +
4513                                        "' should be the last parameter");
4514 
4515     MCAsmMacroParameter Parameter;
4516     if (parseIdentifier(Parameter.Name))
4517       return TokError("expected identifier in '.macro' directive");
4518 
4519     // Emit an error if two (or more) named parameters share the same name
4520     for (const MCAsmMacroParameter& CurrParam : Parameters)
4521       if (CurrParam.Name.equals(Parameter.Name))
4522         return TokError("macro '" + Name + "' has multiple parameters"
4523                         " named '" + Parameter.Name + "'");
4524 
4525     if (Lexer.is(AsmToken::Colon)) {
4526       Lex();  // consume ':'
4527 
4528       SMLoc QualLoc;
4529       StringRef Qualifier;
4530 
4531       QualLoc = Lexer.getLoc();
4532       if (parseIdentifier(Qualifier))
4533         return Error(QualLoc, "missing parameter qualifier for "
4534                      "'" + Parameter.Name + "' in macro '" + Name + "'");
4535 
4536       if (Qualifier == "req")
4537         Parameter.Required = true;
4538       else if (Qualifier == "vararg")
4539         Parameter.Vararg = true;
4540       else
4541         return Error(QualLoc, Qualifier + " is not a valid parameter qualifier "
4542                      "for '" + Parameter.Name + "' in macro '" + Name + "'");
4543     }
4544 
4545     if (getLexer().is(AsmToken::Equal)) {
4546       Lex();
4547 
4548       SMLoc ParamLoc;
4549 
4550       ParamLoc = Lexer.getLoc();
4551       if (parseMacroArgument(Parameter.Value, /*Vararg=*/false ))
4552         return true;
4553 
4554       if (Parameter.Required)
4555         Warning(ParamLoc, "pointless default value for required parameter "
4556                 "'" + Parameter.Name + "' in macro '" + Name + "'");
4557     }
4558 
4559     Parameters.push_back(std::move(Parameter));
4560 
4561     if (getLexer().is(AsmToken::Comma))
4562       Lex();
4563   }
4564 
4565   // Eat just the end of statement.
4566   Lexer.Lex();
4567 
4568   // Consuming deferred text, so use Lexer.Lex to ignore Lexing Errors
4569   AsmToken EndToken, StartToken = getTok();
4570   unsigned MacroDepth = 0;
4571   // Lex the macro definition.
4572   while (true) {
4573     // Ignore Lexing errors in macros.
4574     while (Lexer.is(AsmToken::Error)) {
4575       Lexer.Lex();
4576     }
4577 
4578     // Check whether we have reached the end of the file.
4579     if (getLexer().is(AsmToken::Eof))
4580       return Error(DirectiveLoc, "no matching '.endmacro' in definition");
4581 
4582     // Otherwise, check whether we have reach the .endmacro or the start of a
4583     // preprocessor line marker.
4584     if (getLexer().is(AsmToken::Identifier)) {
4585       if (getTok().getIdentifier() == ".endm" ||
4586           getTok().getIdentifier() == ".endmacro") {
4587         if (MacroDepth == 0) { // Outermost macro.
4588           EndToken = getTok();
4589           Lexer.Lex();
4590           if (getLexer().isNot(AsmToken::EndOfStatement))
4591             return TokError("unexpected token in '" + EndToken.getIdentifier() +
4592                             "' directive");
4593           break;
4594         } else {
4595           // Otherwise we just found the end of an inner macro.
4596           --MacroDepth;
4597         }
4598       } else if (getTok().getIdentifier() == ".macro") {
4599         // We allow nested macros. Those aren't instantiated until the outermost
4600         // macro is expanded so just ignore them for now.
4601         ++MacroDepth;
4602       }
4603     } else if (Lexer.is(AsmToken::HashDirective)) {
4604       (void)parseCppHashLineFilenameComment(getLexer().getLoc());
4605     }
4606 
4607     // Otherwise, scan til the end of the statement.
4608     eatToEndOfStatement();
4609   }
4610 
4611   if (getContext().lookupMacro(Name)) {
4612     return Error(DirectiveLoc, "macro '" + Name + "' is already defined");
4613   }
4614 
4615   const char *BodyStart = StartToken.getLoc().getPointer();
4616   const char *BodyEnd = EndToken.getLoc().getPointer();
4617   StringRef Body = StringRef(BodyStart, BodyEnd - BodyStart);
4618   checkForBadMacro(DirectiveLoc, Name, Body, Parameters);
4619   MCAsmMacro Macro(Name, Body, std::move(Parameters));
4620   DEBUG_WITH_TYPE("asm-macros", dbgs() << "Defining new macro:\n";
4621                   Macro.dump());
4622   getContext().defineMacro(Name, std::move(Macro));
4623   return false;
4624 }
4625 
4626 /// checkForBadMacro
4627 ///
4628 /// With the support added for named parameters there may be code out there that
4629 /// is transitioning from positional parameters.  In versions of gas that did
4630 /// not support named parameters they would be ignored on the macro definition.
4631 /// But to support both styles of parameters this is not possible so if a macro
4632 /// definition has named parameters but does not use them and has what appears
4633 /// to be positional parameters, strings like $1, $2, ... and $n, then issue a
4634 /// warning that the positional parameter found in body which have no effect.
4635 /// Hoping the developer will either remove the named parameters from the macro
4636 /// definition so the positional parameters get used if that was what was
4637 /// intended or change the macro to use the named parameters.  It is possible
4638 /// this warning will trigger when the none of the named parameters are used
4639 /// and the strings like $1 are infact to simply to be passed trough unchanged.
4640 void AsmParser::checkForBadMacro(SMLoc DirectiveLoc, StringRef Name,
4641                                  StringRef Body,
4642                                  ArrayRef<MCAsmMacroParameter> Parameters) {
4643   // If this macro is not defined with named parameters the warning we are
4644   // checking for here doesn't apply.
4645   unsigned NParameters = Parameters.size();
4646   if (NParameters == 0)
4647     return;
4648 
4649   bool NamedParametersFound = false;
4650   bool PositionalParametersFound = false;
4651 
4652   // Look at the body of the macro for use of both the named parameters and what
4653   // are likely to be positional parameters.  This is what expandMacro() is
4654   // doing when it finds the parameters in the body.
4655   while (!Body.empty()) {
4656     // Scan for the next possible parameter.
4657     std::size_t End = Body.size(), Pos = 0;
4658     for (; Pos != End; ++Pos) {
4659       // Check for a substitution or escape.
4660       // This macro is defined with parameters, look for \foo, \bar, etc.
4661       if (Body[Pos] == '\\' && Pos + 1 != End)
4662         break;
4663 
4664       // This macro should have parameters, but look for $0, $1, ..., $n too.
4665       if (Body[Pos] != '$' || Pos + 1 == End)
4666         continue;
4667       char Next = Body[Pos + 1];
4668       if (Next == '$' || Next == 'n' ||
4669           isdigit(static_cast<unsigned char>(Next)))
4670         break;
4671     }
4672 
4673     // Check if we reached the end.
4674     if (Pos == End)
4675       break;
4676 
4677     if (Body[Pos] == '$') {
4678       switch (Body[Pos + 1]) {
4679       // $$ => $
4680       case '$':
4681         break;
4682 
4683       // $n => number of arguments
4684       case 'n':
4685         PositionalParametersFound = true;
4686         break;
4687 
4688       // $[0-9] => argument
4689       default: {
4690         PositionalParametersFound = true;
4691         break;
4692       }
4693       }
4694       Pos += 2;
4695     } else {
4696       unsigned I = Pos + 1;
4697       while (isIdentifierChar(Body[I]) && I + 1 != End)
4698         ++I;
4699 
4700       const char *Begin = Body.data() + Pos + 1;
4701       StringRef Argument(Begin, I - (Pos + 1));
4702       unsigned Index = 0;
4703       for (; Index < NParameters; ++Index)
4704         if (Parameters[Index].Name == Argument)
4705           break;
4706 
4707       if (Index == NParameters) {
4708         if (Body[Pos + 1] == '(' && Body[Pos + 2] == ')')
4709           Pos += 3;
4710         else {
4711           Pos = I;
4712         }
4713       } else {
4714         NamedParametersFound = true;
4715         Pos += 1 + Argument.size();
4716       }
4717     }
4718     // Update the scan point.
4719     Body = Body.substr(Pos);
4720   }
4721 
4722   if (!NamedParametersFound && PositionalParametersFound)
4723     Warning(DirectiveLoc, "macro defined with named parameters which are not "
4724                           "used in macro body, possible positional parameter "
4725                           "found in body which will have no effect");
4726 }
4727 
4728 /// parseDirectiveExitMacro
4729 /// ::= .exitm
4730 bool AsmParser::parseDirectiveExitMacro(StringRef Directive) {
4731   if (parseEOL())
4732     return true;
4733 
4734   if (!isInsideMacroInstantiation())
4735     return TokError("unexpected '" + Directive + "' in file, "
4736                                                  "no current macro definition");
4737 
4738   // Exit all conditionals that are active in the current macro.
4739   while (TheCondStack.size() != ActiveMacros.back()->CondStackDepth) {
4740     TheCondState = TheCondStack.back();
4741     TheCondStack.pop_back();
4742   }
4743 
4744   handleMacroExit();
4745   return false;
4746 }
4747 
4748 /// parseDirectiveEndMacro
4749 /// ::= .endm
4750 /// ::= .endmacro
4751 bool AsmParser::parseDirectiveEndMacro(StringRef Directive) {
4752   if (getLexer().isNot(AsmToken::EndOfStatement))
4753     return TokError("unexpected token in '" + Directive + "' directive");
4754 
4755   // If we are inside a macro instantiation, terminate the current
4756   // instantiation.
4757   if (isInsideMacroInstantiation()) {
4758     handleMacroExit();
4759     return false;
4760   }
4761 
4762   // Otherwise, this .endmacro is a stray entry in the file; well formed
4763   // .endmacro directives are handled during the macro definition parsing.
4764   return TokError("unexpected '" + Directive + "' in file, "
4765                                                "no current macro definition");
4766 }
4767 
4768 /// parseDirectivePurgeMacro
4769 /// ::= .purgem name
4770 bool AsmParser::parseDirectivePurgeMacro(SMLoc DirectiveLoc) {
4771   StringRef Name;
4772   SMLoc Loc;
4773   if (parseTokenLoc(Loc) ||
4774       check(parseIdentifier(Name), Loc,
4775             "expected identifier in '.purgem' directive") ||
4776       parseEOL())
4777     return true;
4778 
4779   if (!getContext().lookupMacro(Name))
4780     return Error(DirectiveLoc, "macro '" + Name + "' is not defined");
4781 
4782   getContext().undefineMacro(Name);
4783   DEBUG_WITH_TYPE("asm-macros", dbgs()
4784                                     << "Un-defining macro: " << Name << "\n");
4785   return false;
4786 }
4787 
4788 /// parseDirectiveBundleAlignMode
4789 /// ::= {.bundle_align_mode} expression
4790 bool AsmParser::parseDirectiveBundleAlignMode() {
4791   // Expect a single argument: an expression that evaluates to a constant
4792   // in the inclusive range 0-30.
4793   SMLoc ExprLoc = getLexer().getLoc();
4794   int64_t AlignSizePow2;
4795   if (checkForValidSection() || parseAbsoluteExpression(AlignSizePow2) ||
4796       parseEOL() ||
4797       check(AlignSizePow2 < 0 || AlignSizePow2 > 30, ExprLoc,
4798             "invalid bundle alignment size (expected between 0 and 30)"))
4799     return true;
4800 
4801   getStreamer().emitBundleAlignMode(Align(1ULL << AlignSizePow2));
4802   return false;
4803 }
4804 
4805 /// parseDirectiveBundleLock
4806 /// ::= {.bundle_lock} [align_to_end]
4807 bool AsmParser::parseDirectiveBundleLock() {
4808   if (checkForValidSection())
4809     return true;
4810   bool AlignToEnd = false;
4811 
4812   StringRef Option;
4813   SMLoc Loc = getTok().getLoc();
4814   const char *kInvalidOptionError =
4815       "invalid option for '.bundle_lock' directive";
4816 
4817   if (!parseOptionalToken(AsmToken::EndOfStatement)) {
4818     if (check(parseIdentifier(Option), Loc, kInvalidOptionError) ||
4819         check(Option != "align_to_end", Loc, kInvalidOptionError) || parseEOL())
4820       return true;
4821     AlignToEnd = true;
4822   }
4823 
4824   getStreamer().emitBundleLock(AlignToEnd);
4825   return false;
4826 }
4827 
4828 /// parseDirectiveBundleLock
4829 /// ::= {.bundle_lock}
4830 bool AsmParser::parseDirectiveBundleUnlock() {
4831   if (checkForValidSection() || parseEOL())
4832     return true;
4833 
4834   getStreamer().emitBundleUnlock();
4835   return false;
4836 }
4837 
4838 /// parseDirectiveSpace
4839 /// ::= (.skip | .space) expression [ , expression ]
4840 bool AsmParser::parseDirectiveSpace(StringRef IDVal) {
4841   SMLoc NumBytesLoc = Lexer.getLoc();
4842   const MCExpr *NumBytes;
4843   if (checkForValidSection() || parseExpression(NumBytes))
4844     return true;
4845 
4846   int64_t FillExpr = 0;
4847   if (parseOptionalToken(AsmToken::Comma))
4848     if (parseAbsoluteExpression(FillExpr))
4849       return true;
4850   if (parseEOL())
4851     return true;
4852 
4853   // FIXME: Sometimes the fill expr is 'nop' if it isn't supplied, instead of 0.
4854   getStreamer().emitFill(*NumBytes, FillExpr, NumBytesLoc);
4855 
4856   return false;
4857 }
4858 
4859 /// parseDirectiveDCB
4860 /// ::= .dcb.{b, l, w} expression, expression
4861 bool AsmParser::parseDirectiveDCB(StringRef IDVal, unsigned Size) {
4862   SMLoc NumValuesLoc = Lexer.getLoc();
4863   int64_t NumValues;
4864   if (checkForValidSection() || parseAbsoluteExpression(NumValues))
4865     return true;
4866 
4867   if (NumValues < 0) {
4868     Warning(NumValuesLoc, "'" + Twine(IDVal) + "' directive with negative repeat count has no effect");
4869     return false;
4870   }
4871 
4872   if (parseComma())
4873     return true;
4874 
4875   const MCExpr *Value;
4876   SMLoc ExprLoc = getLexer().getLoc();
4877   if (parseExpression(Value))
4878     return true;
4879 
4880   // Special case constant expressions to match code generator.
4881   if (const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value)) {
4882     assert(Size <= 8 && "Invalid size");
4883     uint64_t IntValue = MCE->getValue();
4884     if (!isUIntN(8 * Size, IntValue) && !isIntN(8 * Size, IntValue))
4885       return Error(ExprLoc, "literal value out of range for directive");
4886     for (uint64_t i = 0, e = NumValues; i != e; ++i)
4887       getStreamer().emitIntValue(IntValue, Size);
4888   } else {
4889     for (uint64_t i = 0, e = NumValues; i != e; ++i)
4890       getStreamer().emitValue(Value, Size, ExprLoc);
4891   }
4892 
4893   return parseEOL();
4894 }
4895 
4896 /// parseDirectiveRealDCB
4897 /// ::= .dcb.{d, s} expression, expression
4898 bool AsmParser::parseDirectiveRealDCB(StringRef IDVal, const fltSemantics &Semantics) {
4899   SMLoc NumValuesLoc = Lexer.getLoc();
4900   int64_t NumValues;
4901   if (checkForValidSection() || parseAbsoluteExpression(NumValues))
4902     return true;
4903 
4904   if (NumValues < 0) {
4905     Warning(NumValuesLoc, "'" + Twine(IDVal) + "' directive with negative repeat count has no effect");
4906     return false;
4907   }
4908 
4909   if (parseComma())
4910     return true;
4911 
4912   APInt AsInt;
4913   if (parseRealValue(Semantics, AsInt) || parseEOL())
4914     return true;
4915 
4916   for (uint64_t i = 0, e = NumValues; i != e; ++i)
4917     getStreamer().emitIntValue(AsInt.getLimitedValue(),
4918                                AsInt.getBitWidth() / 8);
4919 
4920   return false;
4921 }
4922 
4923 /// parseDirectiveDS
4924 /// ::= .ds.{b, d, l, p, s, w, x} expression
4925 bool AsmParser::parseDirectiveDS(StringRef IDVal, unsigned Size) {
4926   SMLoc NumValuesLoc = Lexer.getLoc();
4927   int64_t NumValues;
4928   if (checkForValidSection() || parseAbsoluteExpression(NumValues) ||
4929       parseEOL())
4930     return true;
4931 
4932   if (NumValues < 0) {
4933     Warning(NumValuesLoc, "'" + Twine(IDVal) + "' directive with negative repeat count has no effect");
4934     return false;
4935   }
4936 
4937   for (uint64_t i = 0, e = NumValues; i != e; ++i)
4938     getStreamer().emitFill(Size, 0);
4939 
4940   return false;
4941 }
4942 
4943 /// parseDirectiveLEB128
4944 /// ::= (.sleb128 | .uleb128) [ expression (, expression)* ]
4945 bool AsmParser::parseDirectiveLEB128(bool Signed) {
4946   if (checkForValidSection())
4947     return true;
4948 
4949   auto parseOp = [&]() -> bool {
4950     const MCExpr *Value;
4951     if (parseExpression(Value))
4952       return true;
4953     if (Signed)
4954       getStreamer().emitSLEB128Value(Value);
4955     else
4956       getStreamer().emitULEB128Value(Value);
4957     return false;
4958   };
4959 
4960   return parseMany(parseOp);
4961 }
4962 
4963 /// parseDirectiveSymbolAttribute
4964 ///  ::= { ".globl", ".weak", ... } [ identifier ( , identifier )* ]
4965 bool AsmParser::parseDirectiveSymbolAttribute(MCSymbolAttr Attr) {
4966   auto parseOp = [&]() -> bool {
4967     StringRef Name;
4968     SMLoc Loc = getTok().getLoc();
4969     if (parseIdentifier(Name))
4970       return Error(Loc, "expected identifier");
4971 
4972     if (discardLTOSymbol(Name))
4973       return false;
4974 
4975     MCSymbol *Sym = getContext().getOrCreateSymbol(Name);
4976 
4977     // Assembler local symbols don't make any sense here, except for directives
4978     // that the symbol should be tagged.
4979     if (Sym->isTemporary() && Attr != MCSA_Memtag)
4980       return Error(Loc, "non-local symbol required");
4981 
4982     if (!getStreamer().emitSymbolAttribute(Sym, Attr))
4983       return Error(Loc, "unable to emit symbol attribute");
4984     return false;
4985   };
4986 
4987   return parseMany(parseOp);
4988 }
4989 
4990 /// parseDirectiveComm
4991 ///  ::= ( .comm | .lcomm ) identifier , size_expression [ , align_expression ]
4992 bool AsmParser::parseDirectiveComm(bool IsLocal) {
4993   if (checkForValidSection())
4994     return true;
4995 
4996   SMLoc IDLoc = getLexer().getLoc();
4997   StringRef Name;
4998   if (parseIdentifier(Name))
4999     return TokError("expected identifier in directive");
5000 
5001   // Handle the identifier as the key symbol.
5002   MCSymbol *Sym = getContext().getOrCreateSymbol(Name);
5003 
5004   if (parseComma())
5005     return true;
5006 
5007   int64_t Size;
5008   SMLoc SizeLoc = getLexer().getLoc();
5009   if (parseAbsoluteExpression(Size))
5010     return true;
5011 
5012   int64_t Pow2Alignment = 0;
5013   SMLoc Pow2AlignmentLoc;
5014   if (getLexer().is(AsmToken::Comma)) {
5015     Lex();
5016     Pow2AlignmentLoc = getLexer().getLoc();
5017     if (parseAbsoluteExpression(Pow2Alignment))
5018       return true;
5019 
5020     LCOMM::LCOMMType LCOMM = Lexer.getMAI().getLCOMMDirectiveAlignmentType();
5021     if (IsLocal && LCOMM == LCOMM::NoAlignment)
5022       return Error(Pow2AlignmentLoc, "alignment not supported on this target");
5023 
5024     // If this target takes alignments in bytes (not log) validate and convert.
5025     if ((!IsLocal && Lexer.getMAI().getCOMMDirectiveAlignmentIsInBytes()) ||
5026         (IsLocal && LCOMM == LCOMM::ByteAlignment)) {
5027       if (!isPowerOf2_64(Pow2Alignment))
5028         return Error(Pow2AlignmentLoc, "alignment must be a power of 2");
5029       Pow2Alignment = Log2_64(Pow2Alignment);
5030     }
5031   }
5032 
5033   if (parseEOL())
5034     return true;
5035 
5036   // NOTE: a size of zero for a .comm should create a undefined symbol
5037   // but a size of .lcomm creates a bss symbol of size zero.
5038   if (Size < 0)
5039     return Error(SizeLoc, "size must be non-negative");
5040 
5041   Sym->redefineIfPossible();
5042   if (!Sym->isUndefined())
5043     return Error(IDLoc, "invalid symbol redefinition");
5044 
5045   // Create the Symbol as a common or local common with Size and Pow2Alignment
5046   if (IsLocal) {
5047     getStreamer().emitLocalCommonSymbol(Sym, Size,
5048                                         Align(1ULL << Pow2Alignment));
5049     return false;
5050   }
5051 
5052   getStreamer().emitCommonSymbol(Sym, Size, Align(1ULL << Pow2Alignment));
5053   return false;
5054 }
5055 
5056 /// parseDirectiveAbort
5057 ///  ::= .abort [... message ...]
5058 bool AsmParser::parseDirectiveAbort() {
5059   // FIXME: Use loc from directive.
5060   SMLoc Loc = getLexer().getLoc();
5061 
5062   StringRef Str = parseStringToEndOfStatement();
5063   if (parseEOL())
5064     return true;
5065 
5066   if (Str.empty())
5067     return Error(Loc, ".abort detected. Assembly stopping.");
5068   else
5069     return Error(Loc, ".abort '" + Str + "' detected. Assembly stopping.");
5070   // FIXME: Actually abort assembly here.
5071 
5072   return false;
5073 }
5074 
5075 /// parseDirectiveInclude
5076 ///  ::= .include "filename"
5077 bool AsmParser::parseDirectiveInclude() {
5078   // Allow the strings to have escaped octal character sequence.
5079   std::string Filename;
5080   SMLoc IncludeLoc = getTok().getLoc();
5081 
5082   if (check(getTok().isNot(AsmToken::String),
5083             "expected string in '.include' directive") ||
5084       parseEscapedString(Filename) ||
5085       check(getTok().isNot(AsmToken::EndOfStatement),
5086             "unexpected token in '.include' directive") ||
5087       // Attempt to switch the lexer to the included file before consuming the
5088       // end of statement to avoid losing it when we switch.
5089       check(enterIncludeFile(Filename), IncludeLoc,
5090             "Could not find include file '" + Filename + "'"))
5091     return true;
5092 
5093   return false;
5094 }
5095 
5096 /// parseDirectiveIncbin
5097 ///  ::= .incbin "filename" [ , skip [ , count ] ]
5098 bool AsmParser::parseDirectiveIncbin() {
5099   // Allow the strings to have escaped octal character sequence.
5100   std::string Filename;
5101   SMLoc IncbinLoc = getTok().getLoc();
5102   if (check(getTok().isNot(AsmToken::String),
5103             "expected string in '.incbin' directive") ||
5104       parseEscapedString(Filename))
5105     return true;
5106 
5107   int64_t Skip = 0;
5108   const MCExpr *Count = nullptr;
5109   SMLoc SkipLoc, CountLoc;
5110   if (parseOptionalToken(AsmToken::Comma)) {
5111     // The skip expression can be omitted while specifying the count, e.g:
5112     //  .incbin "filename",,4
5113     if (getTok().isNot(AsmToken::Comma)) {
5114       if (parseTokenLoc(SkipLoc) || parseAbsoluteExpression(Skip))
5115         return true;
5116     }
5117     if (parseOptionalToken(AsmToken::Comma)) {
5118       CountLoc = getTok().getLoc();
5119       if (parseExpression(Count))
5120         return true;
5121     }
5122   }
5123 
5124   if (parseEOL())
5125     return true;
5126 
5127   if (check(Skip < 0, SkipLoc, "skip is negative"))
5128     return true;
5129 
5130   // Attempt to process the included file.
5131   if (processIncbinFile(Filename, Skip, Count, CountLoc))
5132     return Error(IncbinLoc, "Could not find incbin file '" + Filename + "'");
5133   return false;
5134 }
5135 
5136 /// parseDirectiveIf
5137 /// ::= .if{,eq,ge,gt,le,lt,ne} expression
5138 bool AsmParser::parseDirectiveIf(SMLoc DirectiveLoc, DirectiveKind DirKind) {
5139   TheCondStack.push_back(TheCondState);
5140   TheCondState.TheCond = AsmCond::IfCond;
5141   if (TheCondState.Ignore) {
5142     eatToEndOfStatement();
5143   } else {
5144     int64_t ExprValue;
5145     if (parseAbsoluteExpression(ExprValue) || parseEOL())
5146       return true;
5147 
5148     switch (DirKind) {
5149     default:
5150       llvm_unreachable("unsupported directive");
5151     case DK_IF:
5152     case DK_IFNE:
5153       break;
5154     case DK_IFEQ:
5155       ExprValue = ExprValue == 0;
5156       break;
5157     case DK_IFGE:
5158       ExprValue = ExprValue >= 0;
5159       break;
5160     case DK_IFGT:
5161       ExprValue = ExprValue > 0;
5162       break;
5163     case DK_IFLE:
5164       ExprValue = ExprValue <= 0;
5165       break;
5166     case DK_IFLT:
5167       ExprValue = ExprValue < 0;
5168       break;
5169     }
5170 
5171     TheCondState.CondMet = ExprValue;
5172     TheCondState.Ignore = !TheCondState.CondMet;
5173   }
5174 
5175   return false;
5176 }
5177 
5178 /// parseDirectiveIfb
5179 /// ::= .ifb string
5180 bool AsmParser::parseDirectiveIfb(SMLoc DirectiveLoc, bool ExpectBlank) {
5181   TheCondStack.push_back(TheCondState);
5182   TheCondState.TheCond = AsmCond::IfCond;
5183 
5184   if (TheCondState.Ignore) {
5185     eatToEndOfStatement();
5186   } else {
5187     StringRef Str = parseStringToEndOfStatement();
5188 
5189     if (parseEOL())
5190       return true;
5191 
5192     TheCondState.CondMet = ExpectBlank == Str.empty();
5193     TheCondState.Ignore = !TheCondState.CondMet;
5194   }
5195 
5196   return false;
5197 }
5198 
5199 /// parseDirectiveIfc
5200 /// ::= .ifc string1, string2
5201 /// ::= .ifnc string1, string2
5202 bool AsmParser::parseDirectiveIfc(SMLoc DirectiveLoc, bool ExpectEqual) {
5203   TheCondStack.push_back(TheCondState);
5204   TheCondState.TheCond = AsmCond::IfCond;
5205 
5206   if (TheCondState.Ignore) {
5207     eatToEndOfStatement();
5208   } else {
5209     StringRef Str1 = parseStringToComma();
5210 
5211     if (parseComma())
5212       return true;
5213 
5214     StringRef Str2 = parseStringToEndOfStatement();
5215 
5216     if (parseEOL())
5217       return true;
5218 
5219     TheCondState.CondMet = ExpectEqual == (Str1.trim() == Str2.trim());
5220     TheCondState.Ignore = !TheCondState.CondMet;
5221   }
5222 
5223   return false;
5224 }
5225 
5226 /// parseDirectiveIfeqs
5227 ///   ::= .ifeqs string1, string2
5228 bool AsmParser::parseDirectiveIfeqs(SMLoc DirectiveLoc, bool ExpectEqual) {
5229   if (Lexer.isNot(AsmToken::String)) {
5230     if (ExpectEqual)
5231       return TokError("expected string parameter for '.ifeqs' directive");
5232     return TokError("expected string parameter for '.ifnes' directive");
5233   }
5234 
5235   StringRef String1 = getTok().getStringContents();
5236   Lex();
5237 
5238   if (Lexer.isNot(AsmToken::Comma)) {
5239     if (ExpectEqual)
5240       return TokError(
5241           "expected comma after first string for '.ifeqs' directive");
5242     return TokError("expected comma after first string for '.ifnes' directive");
5243   }
5244 
5245   Lex();
5246 
5247   if (Lexer.isNot(AsmToken::String)) {
5248     if (ExpectEqual)
5249       return TokError("expected string parameter for '.ifeqs' directive");
5250     return TokError("expected string parameter for '.ifnes' directive");
5251   }
5252 
5253   StringRef String2 = getTok().getStringContents();
5254   Lex();
5255 
5256   TheCondStack.push_back(TheCondState);
5257   TheCondState.TheCond = AsmCond::IfCond;
5258   TheCondState.CondMet = ExpectEqual == (String1 == String2);
5259   TheCondState.Ignore = !TheCondState.CondMet;
5260 
5261   return false;
5262 }
5263 
5264 /// parseDirectiveIfdef
5265 /// ::= .ifdef symbol
5266 bool AsmParser::parseDirectiveIfdef(SMLoc DirectiveLoc, bool expect_defined) {
5267   StringRef Name;
5268   TheCondStack.push_back(TheCondState);
5269   TheCondState.TheCond = AsmCond::IfCond;
5270 
5271   if (TheCondState.Ignore) {
5272     eatToEndOfStatement();
5273   } else {
5274     if (check(parseIdentifier(Name), "expected identifier after '.ifdef'") ||
5275         parseEOL())
5276       return true;
5277 
5278     MCSymbol *Sym = getContext().lookupSymbol(Name);
5279 
5280     if (expect_defined)
5281       TheCondState.CondMet = (Sym && !Sym->isUndefined(false));
5282     else
5283       TheCondState.CondMet = (!Sym || Sym->isUndefined(false));
5284     TheCondState.Ignore = !TheCondState.CondMet;
5285   }
5286 
5287   return false;
5288 }
5289 
5290 /// parseDirectiveElseIf
5291 /// ::= .elseif expression
5292 bool AsmParser::parseDirectiveElseIf(SMLoc DirectiveLoc) {
5293   if (TheCondState.TheCond != AsmCond::IfCond &&
5294       TheCondState.TheCond != AsmCond::ElseIfCond)
5295     return Error(DirectiveLoc, "Encountered a .elseif that doesn't follow an"
5296                                " .if or  an .elseif");
5297   TheCondState.TheCond = AsmCond::ElseIfCond;
5298 
5299   bool LastIgnoreState = false;
5300   if (!TheCondStack.empty())
5301     LastIgnoreState = TheCondStack.back().Ignore;
5302   if (LastIgnoreState || TheCondState.CondMet) {
5303     TheCondState.Ignore = true;
5304     eatToEndOfStatement();
5305   } else {
5306     int64_t ExprValue;
5307     if (parseAbsoluteExpression(ExprValue))
5308       return true;
5309 
5310     if (parseEOL())
5311       return true;
5312 
5313     TheCondState.CondMet = ExprValue;
5314     TheCondState.Ignore = !TheCondState.CondMet;
5315   }
5316 
5317   return false;
5318 }
5319 
5320 /// parseDirectiveElse
5321 /// ::= .else
5322 bool AsmParser::parseDirectiveElse(SMLoc DirectiveLoc) {
5323   if (parseEOL())
5324     return true;
5325 
5326   if (TheCondState.TheCond != AsmCond::IfCond &&
5327       TheCondState.TheCond != AsmCond::ElseIfCond)
5328     return Error(DirectiveLoc, "Encountered a .else that doesn't follow "
5329                                " an .if or an .elseif");
5330   TheCondState.TheCond = AsmCond::ElseCond;
5331   bool LastIgnoreState = false;
5332   if (!TheCondStack.empty())
5333     LastIgnoreState = TheCondStack.back().Ignore;
5334   if (LastIgnoreState || TheCondState.CondMet)
5335     TheCondState.Ignore = true;
5336   else
5337     TheCondState.Ignore = false;
5338 
5339   return false;
5340 }
5341 
5342 /// parseDirectiveEnd
5343 /// ::= .end
5344 bool AsmParser::parseDirectiveEnd(SMLoc DirectiveLoc) {
5345   if (parseEOL())
5346     return true;
5347 
5348   while (Lexer.isNot(AsmToken::Eof))
5349     Lexer.Lex();
5350 
5351   return false;
5352 }
5353 
5354 /// parseDirectiveError
5355 ///   ::= .err
5356 ///   ::= .error [string]
5357 bool AsmParser::parseDirectiveError(SMLoc L, bool WithMessage) {
5358   if (!TheCondStack.empty()) {
5359     if (TheCondStack.back().Ignore) {
5360       eatToEndOfStatement();
5361       return false;
5362     }
5363   }
5364 
5365   if (!WithMessage)
5366     return Error(L, ".err encountered");
5367 
5368   StringRef Message = ".error directive invoked in source file";
5369   if (Lexer.isNot(AsmToken::EndOfStatement)) {
5370     if (Lexer.isNot(AsmToken::String))
5371       return TokError(".error argument must be a string");
5372 
5373     Message = getTok().getStringContents();
5374     Lex();
5375   }
5376 
5377   return Error(L, Message);
5378 }
5379 
5380 /// parseDirectiveWarning
5381 ///   ::= .warning [string]
5382 bool AsmParser::parseDirectiveWarning(SMLoc L) {
5383   if (!TheCondStack.empty()) {
5384     if (TheCondStack.back().Ignore) {
5385       eatToEndOfStatement();
5386       return false;
5387     }
5388   }
5389 
5390   StringRef Message = ".warning directive invoked in source file";
5391 
5392   if (!parseOptionalToken(AsmToken::EndOfStatement)) {
5393     if (Lexer.isNot(AsmToken::String))
5394       return TokError(".warning argument must be a string");
5395 
5396     Message = getTok().getStringContents();
5397     Lex();
5398     if (parseEOL())
5399       return true;
5400   }
5401 
5402   return Warning(L, Message);
5403 }
5404 
5405 /// parseDirectiveEndIf
5406 /// ::= .endif
5407 bool AsmParser::parseDirectiveEndIf(SMLoc DirectiveLoc) {
5408   if (parseEOL())
5409     return true;
5410 
5411   if ((TheCondState.TheCond == AsmCond::NoCond) || TheCondStack.empty())
5412     return Error(DirectiveLoc, "Encountered a .endif that doesn't follow "
5413                                "an .if or .else");
5414   if (!TheCondStack.empty()) {
5415     TheCondState = TheCondStack.back();
5416     TheCondStack.pop_back();
5417   }
5418 
5419   return false;
5420 }
5421 
5422 void AsmParser::initializeDirectiveKindMap() {
5423   /* Lookup will be done with the directive
5424    * converted to lower case, so all these
5425    * keys should be lower case.
5426    * (target specific directives are handled
5427    *  elsewhere)
5428    */
5429   DirectiveKindMap[".set"] = DK_SET;
5430   DirectiveKindMap[".equ"] = DK_EQU;
5431   DirectiveKindMap[".equiv"] = DK_EQUIV;
5432   DirectiveKindMap[".ascii"] = DK_ASCII;
5433   DirectiveKindMap[".asciz"] = DK_ASCIZ;
5434   DirectiveKindMap[".string"] = DK_STRING;
5435   DirectiveKindMap[".byte"] = DK_BYTE;
5436   DirectiveKindMap[".short"] = DK_SHORT;
5437   DirectiveKindMap[".value"] = DK_VALUE;
5438   DirectiveKindMap[".2byte"] = DK_2BYTE;
5439   DirectiveKindMap[".long"] = DK_LONG;
5440   DirectiveKindMap[".int"] = DK_INT;
5441   DirectiveKindMap[".4byte"] = DK_4BYTE;
5442   DirectiveKindMap[".quad"] = DK_QUAD;
5443   DirectiveKindMap[".8byte"] = DK_8BYTE;
5444   DirectiveKindMap[".octa"] = DK_OCTA;
5445   DirectiveKindMap[".single"] = DK_SINGLE;
5446   DirectiveKindMap[".float"] = DK_FLOAT;
5447   DirectiveKindMap[".double"] = DK_DOUBLE;
5448   DirectiveKindMap[".align"] = DK_ALIGN;
5449   DirectiveKindMap[".align32"] = DK_ALIGN32;
5450   DirectiveKindMap[".balign"] = DK_BALIGN;
5451   DirectiveKindMap[".balignw"] = DK_BALIGNW;
5452   DirectiveKindMap[".balignl"] = DK_BALIGNL;
5453   DirectiveKindMap[".p2align"] = DK_P2ALIGN;
5454   DirectiveKindMap[".p2alignw"] = DK_P2ALIGNW;
5455   DirectiveKindMap[".p2alignl"] = DK_P2ALIGNL;
5456   DirectiveKindMap[".org"] = DK_ORG;
5457   DirectiveKindMap[".fill"] = DK_FILL;
5458   DirectiveKindMap[".zero"] = DK_ZERO;
5459   DirectiveKindMap[".extern"] = DK_EXTERN;
5460   DirectiveKindMap[".globl"] = DK_GLOBL;
5461   DirectiveKindMap[".global"] = DK_GLOBAL;
5462   DirectiveKindMap[".lazy_reference"] = DK_LAZY_REFERENCE;
5463   DirectiveKindMap[".no_dead_strip"] = DK_NO_DEAD_STRIP;
5464   DirectiveKindMap[".symbol_resolver"] = DK_SYMBOL_RESOLVER;
5465   DirectiveKindMap[".private_extern"] = DK_PRIVATE_EXTERN;
5466   DirectiveKindMap[".reference"] = DK_REFERENCE;
5467   DirectiveKindMap[".weak_definition"] = DK_WEAK_DEFINITION;
5468   DirectiveKindMap[".weak_reference"] = DK_WEAK_REFERENCE;
5469   DirectiveKindMap[".weak_def_can_be_hidden"] = DK_WEAK_DEF_CAN_BE_HIDDEN;
5470   DirectiveKindMap[".cold"] = DK_COLD;
5471   DirectiveKindMap[".comm"] = DK_COMM;
5472   DirectiveKindMap[".common"] = DK_COMMON;
5473   DirectiveKindMap[".lcomm"] = DK_LCOMM;
5474   DirectiveKindMap[".abort"] = DK_ABORT;
5475   DirectiveKindMap[".include"] = DK_INCLUDE;
5476   DirectiveKindMap[".incbin"] = DK_INCBIN;
5477   DirectiveKindMap[".code16"] = DK_CODE16;
5478   DirectiveKindMap[".code16gcc"] = DK_CODE16GCC;
5479   DirectiveKindMap[".rept"] = DK_REPT;
5480   DirectiveKindMap[".rep"] = DK_REPT;
5481   DirectiveKindMap[".irp"] = DK_IRP;
5482   DirectiveKindMap[".irpc"] = DK_IRPC;
5483   DirectiveKindMap[".endr"] = DK_ENDR;
5484   DirectiveKindMap[".bundle_align_mode"] = DK_BUNDLE_ALIGN_MODE;
5485   DirectiveKindMap[".bundle_lock"] = DK_BUNDLE_LOCK;
5486   DirectiveKindMap[".bundle_unlock"] = DK_BUNDLE_UNLOCK;
5487   DirectiveKindMap[".if"] = DK_IF;
5488   DirectiveKindMap[".ifeq"] = DK_IFEQ;
5489   DirectiveKindMap[".ifge"] = DK_IFGE;
5490   DirectiveKindMap[".ifgt"] = DK_IFGT;
5491   DirectiveKindMap[".ifle"] = DK_IFLE;
5492   DirectiveKindMap[".iflt"] = DK_IFLT;
5493   DirectiveKindMap[".ifne"] = DK_IFNE;
5494   DirectiveKindMap[".ifb"] = DK_IFB;
5495   DirectiveKindMap[".ifnb"] = DK_IFNB;
5496   DirectiveKindMap[".ifc"] = DK_IFC;
5497   DirectiveKindMap[".ifeqs"] = DK_IFEQS;
5498   DirectiveKindMap[".ifnc"] = DK_IFNC;
5499   DirectiveKindMap[".ifnes"] = DK_IFNES;
5500   DirectiveKindMap[".ifdef"] = DK_IFDEF;
5501   DirectiveKindMap[".ifndef"] = DK_IFNDEF;
5502   DirectiveKindMap[".ifnotdef"] = DK_IFNOTDEF;
5503   DirectiveKindMap[".elseif"] = DK_ELSEIF;
5504   DirectiveKindMap[".else"] = DK_ELSE;
5505   DirectiveKindMap[".end"] = DK_END;
5506   DirectiveKindMap[".endif"] = DK_ENDIF;
5507   DirectiveKindMap[".skip"] = DK_SKIP;
5508   DirectiveKindMap[".space"] = DK_SPACE;
5509   DirectiveKindMap[".file"] = DK_FILE;
5510   DirectiveKindMap[".line"] = DK_LINE;
5511   DirectiveKindMap[".loc"] = DK_LOC;
5512   DirectiveKindMap[".stabs"] = DK_STABS;
5513   DirectiveKindMap[".cv_file"] = DK_CV_FILE;
5514   DirectiveKindMap[".cv_func_id"] = DK_CV_FUNC_ID;
5515   DirectiveKindMap[".cv_loc"] = DK_CV_LOC;
5516   DirectiveKindMap[".cv_linetable"] = DK_CV_LINETABLE;
5517   DirectiveKindMap[".cv_inline_linetable"] = DK_CV_INLINE_LINETABLE;
5518   DirectiveKindMap[".cv_inline_site_id"] = DK_CV_INLINE_SITE_ID;
5519   DirectiveKindMap[".cv_def_range"] = DK_CV_DEF_RANGE;
5520   DirectiveKindMap[".cv_string"] = DK_CV_STRING;
5521   DirectiveKindMap[".cv_stringtable"] = DK_CV_STRINGTABLE;
5522   DirectiveKindMap[".cv_filechecksums"] = DK_CV_FILECHECKSUMS;
5523   DirectiveKindMap[".cv_filechecksumoffset"] = DK_CV_FILECHECKSUM_OFFSET;
5524   DirectiveKindMap[".cv_fpo_data"] = DK_CV_FPO_DATA;
5525   DirectiveKindMap[".sleb128"] = DK_SLEB128;
5526   DirectiveKindMap[".uleb128"] = DK_ULEB128;
5527   DirectiveKindMap[".cfi_sections"] = DK_CFI_SECTIONS;
5528   DirectiveKindMap[".cfi_startproc"] = DK_CFI_STARTPROC;
5529   DirectiveKindMap[".cfi_endproc"] = DK_CFI_ENDPROC;
5530   DirectiveKindMap[".cfi_def_cfa"] = DK_CFI_DEF_CFA;
5531   DirectiveKindMap[".cfi_def_cfa_offset"] = DK_CFI_DEF_CFA_OFFSET;
5532   DirectiveKindMap[".cfi_adjust_cfa_offset"] = DK_CFI_ADJUST_CFA_OFFSET;
5533   DirectiveKindMap[".cfi_def_cfa_register"] = DK_CFI_DEF_CFA_REGISTER;
5534   DirectiveKindMap[".cfi_llvm_def_aspace_cfa"] = DK_CFI_LLVM_DEF_ASPACE_CFA;
5535   DirectiveKindMap[".cfi_offset"] = DK_CFI_OFFSET;
5536   DirectiveKindMap[".cfi_rel_offset"] = DK_CFI_REL_OFFSET;
5537   DirectiveKindMap[".cfi_personality"] = DK_CFI_PERSONALITY;
5538   DirectiveKindMap[".cfi_lsda"] = DK_CFI_LSDA;
5539   DirectiveKindMap[".cfi_remember_state"] = DK_CFI_REMEMBER_STATE;
5540   DirectiveKindMap[".cfi_restore_state"] = DK_CFI_RESTORE_STATE;
5541   DirectiveKindMap[".cfi_same_value"] = DK_CFI_SAME_VALUE;
5542   DirectiveKindMap[".cfi_restore"] = DK_CFI_RESTORE;
5543   DirectiveKindMap[".cfi_escape"] = DK_CFI_ESCAPE;
5544   DirectiveKindMap[".cfi_return_column"] = DK_CFI_RETURN_COLUMN;
5545   DirectiveKindMap[".cfi_signal_frame"] = DK_CFI_SIGNAL_FRAME;
5546   DirectiveKindMap[".cfi_undefined"] = DK_CFI_UNDEFINED;
5547   DirectiveKindMap[".cfi_register"] = DK_CFI_REGISTER;
5548   DirectiveKindMap[".cfi_window_save"] = DK_CFI_WINDOW_SAVE;
5549   DirectiveKindMap[".cfi_b_key_frame"] = DK_CFI_B_KEY_FRAME;
5550   DirectiveKindMap[".cfi_mte_tagged_frame"] = DK_CFI_MTE_TAGGED_FRAME;
5551   DirectiveKindMap[".macros_on"] = DK_MACROS_ON;
5552   DirectiveKindMap[".macros_off"] = DK_MACROS_OFF;
5553   DirectiveKindMap[".macro"] = DK_MACRO;
5554   DirectiveKindMap[".exitm"] = DK_EXITM;
5555   DirectiveKindMap[".endm"] = DK_ENDM;
5556   DirectiveKindMap[".endmacro"] = DK_ENDMACRO;
5557   DirectiveKindMap[".purgem"] = DK_PURGEM;
5558   DirectiveKindMap[".err"] = DK_ERR;
5559   DirectiveKindMap[".error"] = DK_ERROR;
5560   DirectiveKindMap[".warning"] = DK_WARNING;
5561   DirectiveKindMap[".altmacro"] = DK_ALTMACRO;
5562   DirectiveKindMap[".noaltmacro"] = DK_NOALTMACRO;
5563   DirectiveKindMap[".reloc"] = DK_RELOC;
5564   DirectiveKindMap[".dc"] = DK_DC;
5565   DirectiveKindMap[".dc.a"] = DK_DC_A;
5566   DirectiveKindMap[".dc.b"] = DK_DC_B;
5567   DirectiveKindMap[".dc.d"] = DK_DC_D;
5568   DirectiveKindMap[".dc.l"] = DK_DC_L;
5569   DirectiveKindMap[".dc.s"] = DK_DC_S;
5570   DirectiveKindMap[".dc.w"] = DK_DC_W;
5571   DirectiveKindMap[".dc.x"] = DK_DC_X;
5572   DirectiveKindMap[".dcb"] = DK_DCB;
5573   DirectiveKindMap[".dcb.b"] = DK_DCB_B;
5574   DirectiveKindMap[".dcb.d"] = DK_DCB_D;
5575   DirectiveKindMap[".dcb.l"] = DK_DCB_L;
5576   DirectiveKindMap[".dcb.s"] = DK_DCB_S;
5577   DirectiveKindMap[".dcb.w"] = DK_DCB_W;
5578   DirectiveKindMap[".dcb.x"] = DK_DCB_X;
5579   DirectiveKindMap[".ds"] = DK_DS;
5580   DirectiveKindMap[".ds.b"] = DK_DS_B;
5581   DirectiveKindMap[".ds.d"] = DK_DS_D;
5582   DirectiveKindMap[".ds.l"] = DK_DS_L;
5583   DirectiveKindMap[".ds.p"] = DK_DS_P;
5584   DirectiveKindMap[".ds.s"] = DK_DS_S;
5585   DirectiveKindMap[".ds.w"] = DK_DS_W;
5586   DirectiveKindMap[".ds.x"] = DK_DS_X;
5587   DirectiveKindMap[".print"] = DK_PRINT;
5588   DirectiveKindMap[".addrsig"] = DK_ADDRSIG;
5589   DirectiveKindMap[".addrsig_sym"] = DK_ADDRSIG_SYM;
5590   DirectiveKindMap[".pseudoprobe"] = DK_PSEUDO_PROBE;
5591   DirectiveKindMap[".lto_discard"] = DK_LTO_DISCARD;
5592   DirectiveKindMap[".lto_set_conditional"] = DK_LTO_SET_CONDITIONAL;
5593   DirectiveKindMap[".memtag"] = DK_MEMTAG;
5594 }
5595 
5596 MCAsmMacro *AsmParser::parseMacroLikeBody(SMLoc DirectiveLoc) {
5597   AsmToken EndToken, StartToken = getTok();
5598 
5599   unsigned NestLevel = 0;
5600   while (true) {
5601     // Check whether we have reached the end of the file.
5602     if (getLexer().is(AsmToken::Eof)) {
5603       printError(DirectiveLoc, "no matching '.endr' in definition");
5604       return nullptr;
5605     }
5606 
5607     if (Lexer.is(AsmToken::Identifier) &&
5608         (getTok().getIdentifier() == ".rep" ||
5609          getTok().getIdentifier() == ".rept" ||
5610          getTok().getIdentifier() == ".irp" ||
5611          getTok().getIdentifier() == ".irpc")) {
5612       ++NestLevel;
5613     }
5614 
5615     // Otherwise, check whether we have reached the .endr.
5616     if (Lexer.is(AsmToken::Identifier) && getTok().getIdentifier() == ".endr") {
5617       if (NestLevel == 0) {
5618         EndToken = getTok();
5619         Lex();
5620         if (Lexer.isNot(AsmToken::EndOfStatement)) {
5621           printError(getTok().getLoc(),
5622                      "unexpected token in '.endr' directive");
5623           return nullptr;
5624         }
5625         break;
5626       }
5627       --NestLevel;
5628     }
5629 
5630     // Otherwise, scan till the end of the statement.
5631     eatToEndOfStatement();
5632   }
5633 
5634   const char *BodyStart = StartToken.getLoc().getPointer();
5635   const char *BodyEnd = EndToken.getLoc().getPointer();
5636   StringRef Body = StringRef(BodyStart, BodyEnd - BodyStart);
5637 
5638   // We Are Anonymous.
5639   MacroLikeBodies.emplace_back(StringRef(), Body, MCAsmMacroParameters());
5640   return &MacroLikeBodies.back();
5641 }
5642 
5643 void AsmParser::instantiateMacroLikeBody(MCAsmMacro *M, SMLoc DirectiveLoc,
5644                                          raw_svector_ostream &OS) {
5645   OS << ".endr\n";
5646 
5647   std::unique_ptr<MemoryBuffer> Instantiation =
5648       MemoryBuffer::getMemBufferCopy(OS.str(), "<instantiation>");
5649 
5650   // Create the macro instantiation object and add to the current macro
5651   // instantiation stack.
5652   MacroInstantiation *MI = new MacroInstantiation{
5653       DirectiveLoc, CurBuffer, getTok().getLoc(), TheCondStack.size()};
5654   ActiveMacros.push_back(MI);
5655 
5656   // Jump to the macro instantiation and prime the lexer.
5657   CurBuffer = SrcMgr.AddNewSourceBuffer(std::move(Instantiation), SMLoc());
5658   Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer());
5659   Lex();
5660 }
5661 
5662 /// parseDirectiveRept
5663 ///   ::= .rep | .rept count
5664 bool AsmParser::parseDirectiveRept(SMLoc DirectiveLoc, StringRef Dir) {
5665   const MCExpr *CountExpr;
5666   SMLoc CountLoc = getTok().getLoc();
5667   if (parseExpression(CountExpr))
5668     return true;
5669 
5670   int64_t Count;
5671   if (!CountExpr->evaluateAsAbsolute(Count, getStreamer().getAssemblerPtr())) {
5672     return Error(CountLoc, "unexpected token in '" + Dir + "' directive");
5673   }
5674 
5675   if (check(Count < 0, CountLoc, "Count is negative") || parseEOL())
5676     return true;
5677 
5678   // Lex the rept definition.
5679   MCAsmMacro *M = parseMacroLikeBody(DirectiveLoc);
5680   if (!M)
5681     return true;
5682 
5683   // Macro instantiation is lexical, unfortunately. We construct a new buffer
5684   // to hold the macro body with substitutions.
5685   SmallString<256> Buf;
5686   raw_svector_ostream OS(Buf);
5687   while (Count--) {
5688     // Note that the AtPseudoVariable is disabled for instantiations of .rep(t).
5689     if (expandMacro(OS, M->Body, std::nullopt, std::nullopt, false,
5690                     getTok().getLoc()))
5691       return true;
5692   }
5693   instantiateMacroLikeBody(M, DirectiveLoc, OS);
5694 
5695   return false;
5696 }
5697 
5698 /// parseDirectiveIrp
5699 /// ::= .irp symbol,values
5700 bool AsmParser::parseDirectiveIrp(SMLoc DirectiveLoc) {
5701   MCAsmMacroParameter Parameter;
5702   MCAsmMacroArguments A;
5703   if (check(parseIdentifier(Parameter.Name),
5704             "expected identifier in '.irp' directive") ||
5705       parseComma() || parseMacroArguments(nullptr, A) || parseEOL())
5706     return true;
5707 
5708   // Lex the irp definition.
5709   MCAsmMacro *M = parseMacroLikeBody(DirectiveLoc);
5710   if (!M)
5711     return true;
5712 
5713   // Macro instantiation is lexical, unfortunately. We construct a new buffer
5714   // to hold the macro body with substitutions.
5715   SmallString<256> Buf;
5716   raw_svector_ostream OS(Buf);
5717 
5718   for (const MCAsmMacroArgument &Arg : A) {
5719     // Note that the AtPseudoVariable is enabled for instantiations of .irp.
5720     // This is undocumented, but GAS seems to support it.
5721     if (expandMacro(OS, M->Body, Parameter, Arg, true, getTok().getLoc()))
5722       return true;
5723   }
5724 
5725   instantiateMacroLikeBody(M, DirectiveLoc, OS);
5726 
5727   return false;
5728 }
5729 
5730 /// parseDirectiveIrpc
5731 /// ::= .irpc symbol,values
5732 bool AsmParser::parseDirectiveIrpc(SMLoc DirectiveLoc) {
5733   MCAsmMacroParameter Parameter;
5734   MCAsmMacroArguments A;
5735 
5736   if (check(parseIdentifier(Parameter.Name),
5737             "expected identifier in '.irpc' directive") ||
5738       parseComma() || parseMacroArguments(nullptr, A))
5739     return true;
5740 
5741   if (A.size() != 1 || A.front().size() != 1)
5742     return TokError("unexpected token in '.irpc' directive");
5743   if (parseEOL())
5744     return true;
5745 
5746   // Lex the irpc definition.
5747   MCAsmMacro *M = parseMacroLikeBody(DirectiveLoc);
5748   if (!M)
5749     return true;
5750 
5751   // Macro instantiation is lexical, unfortunately. We construct a new buffer
5752   // to hold the macro body with substitutions.
5753   SmallString<256> Buf;
5754   raw_svector_ostream OS(Buf);
5755 
5756   StringRef Values = A.front().front().getString();
5757   for (std::size_t I = 0, End = Values.size(); I != End; ++I) {
5758     MCAsmMacroArgument Arg;
5759     Arg.emplace_back(AsmToken::Identifier, Values.slice(I, I + 1));
5760 
5761     // Note that the AtPseudoVariable is enabled for instantiations of .irpc.
5762     // This is undocumented, but GAS seems to support it.
5763     if (expandMacro(OS, M->Body, Parameter, Arg, true, getTok().getLoc()))
5764       return true;
5765   }
5766 
5767   instantiateMacroLikeBody(M, DirectiveLoc, OS);
5768 
5769   return false;
5770 }
5771 
5772 bool AsmParser::parseDirectiveEndr(SMLoc DirectiveLoc) {
5773   if (ActiveMacros.empty())
5774     return TokError("unmatched '.endr' directive");
5775 
5776   // The only .repl that should get here are the ones created by
5777   // instantiateMacroLikeBody.
5778   assert(getLexer().is(AsmToken::EndOfStatement));
5779 
5780   handleMacroExit();
5781   return false;
5782 }
5783 
5784 bool AsmParser::parseDirectiveMSEmit(SMLoc IDLoc, ParseStatementInfo &Info,
5785                                      size_t Len) {
5786   const MCExpr *Value;
5787   SMLoc ExprLoc = getLexer().getLoc();
5788   if (parseExpression(Value))
5789     return true;
5790   const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value);
5791   if (!MCE)
5792     return Error(ExprLoc, "unexpected expression in _emit");
5793   uint64_t IntValue = MCE->getValue();
5794   if (!isUInt<8>(IntValue) && !isInt<8>(IntValue))
5795     return Error(ExprLoc, "literal value out of range for directive");
5796 
5797   Info.AsmRewrites->emplace_back(AOK_Emit, IDLoc, Len);
5798   return false;
5799 }
5800 
5801 bool AsmParser::parseDirectiveMSAlign(SMLoc IDLoc, ParseStatementInfo &Info) {
5802   const MCExpr *Value;
5803   SMLoc ExprLoc = getLexer().getLoc();
5804   if (parseExpression(Value))
5805     return true;
5806   const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value);
5807   if (!MCE)
5808     return Error(ExprLoc, "unexpected expression in align");
5809   uint64_t IntValue = MCE->getValue();
5810   if (!isPowerOf2_64(IntValue))
5811     return Error(ExprLoc, "literal value not a power of two greater then zero");
5812 
5813   Info.AsmRewrites->emplace_back(AOK_Align, IDLoc, 5, Log2_64(IntValue));
5814   return false;
5815 }
5816 
5817 bool AsmParser::parseDirectivePrint(SMLoc DirectiveLoc) {
5818   const AsmToken StrTok = getTok();
5819   Lex();
5820   if (StrTok.isNot(AsmToken::String) || StrTok.getString().front() != '"')
5821     return Error(DirectiveLoc, "expected double quoted string after .print");
5822   if (parseEOL())
5823     return true;
5824   llvm::outs() << StrTok.getStringContents() << '\n';
5825   return false;
5826 }
5827 
5828 bool AsmParser::parseDirectiveAddrsig() {
5829   if (parseEOL())
5830     return true;
5831   getStreamer().emitAddrsig();
5832   return false;
5833 }
5834 
5835 bool AsmParser::parseDirectiveAddrsigSym() {
5836   StringRef Name;
5837   if (check(parseIdentifier(Name), "expected identifier") || parseEOL())
5838     return true;
5839   MCSymbol *Sym = getContext().getOrCreateSymbol(Name);
5840   getStreamer().emitAddrsigSym(Sym);
5841   return false;
5842 }
5843 
5844 bool AsmParser::parseDirectivePseudoProbe() {
5845   int64_t Guid;
5846   int64_t Index;
5847   int64_t Type;
5848   int64_t Attr;
5849   int64_t Discriminator = 0;
5850 
5851   if (parseIntToken(Guid, "unexpected token in '.pseudoprobe' directive"))
5852     return true;
5853 
5854   if (parseIntToken(Index, "unexpected token in '.pseudoprobe' directive"))
5855     return true;
5856 
5857   if (parseIntToken(Type, "unexpected token in '.pseudoprobe' directive"))
5858     return true;
5859 
5860   if (parseIntToken(Attr, "unexpected token in '.pseudoprobe' directive"))
5861     return true;
5862 
5863   if (hasDiscriminator(Attr)) {
5864     if (parseIntToken(Discriminator,
5865                       "unexpected token in '.pseudoprobe' directive"))
5866       return true;
5867   }
5868 
5869   // Parse inline stack like @ GUID:11:12 @ GUID:1:11 @ GUID:3:21
5870   MCPseudoProbeInlineStack InlineStack;
5871 
5872   while (getLexer().is(AsmToken::At)) {
5873     // eat @
5874     Lex();
5875 
5876     int64_t CallerGuid = 0;
5877     if (getLexer().is(AsmToken::Integer)) {
5878       if (parseIntToken(CallerGuid,
5879                         "unexpected token in '.pseudoprobe' directive"))
5880         return true;
5881     }
5882 
5883     // eat colon
5884     if (getLexer().is(AsmToken::Colon))
5885       Lex();
5886 
5887     int64_t CallerProbeId = 0;
5888     if (getLexer().is(AsmToken::Integer)) {
5889       if (parseIntToken(CallerProbeId,
5890                         "unexpected token in '.pseudoprobe' directive"))
5891         return true;
5892     }
5893 
5894     InlineSite Site(CallerGuid, CallerProbeId);
5895     InlineStack.push_back(Site);
5896   }
5897 
5898   // Parse function entry name
5899   StringRef FnName;
5900   if (parseIdentifier(FnName))
5901     return Error(getLexer().getLoc(), "unexpected token in '.pseudoprobe' directive");
5902   MCSymbol *FnSym = getContext().lookupSymbol(FnName);
5903 
5904   if (parseEOL())
5905     return true;
5906 
5907   getStreamer().emitPseudoProbe(Guid, Index, Type, Attr, Discriminator,
5908                                 InlineStack, FnSym);
5909   return false;
5910 }
5911 
5912 /// parseDirectiveLTODiscard
5913 ///  ::= ".lto_discard" [ identifier ( , identifier )* ]
5914 /// The LTO library emits this directive to discard non-prevailing symbols.
5915 /// We ignore symbol assignments and attribute changes for the specified
5916 /// symbols.
5917 bool AsmParser::parseDirectiveLTODiscard() {
5918   auto ParseOp = [&]() -> bool {
5919     StringRef Name;
5920     SMLoc Loc = getTok().getLoc();
5921     if (parseIdentifier(Name))
5922       return Error(Loc, "expected identifier");
5923     LTODiscardSymbols.insert(Name);
5924     return false;
5925   };
5926 
5927   LTODiscardSymbols.clear();
5928   return parseMany(ParseOp);
5929 }
5930 
5931 // We are comparing pointers, but the pointers are relative to a single string.
5932 // Thus, this should always be deterministic.
5933 static int rewritesSort(const AsmRewrite *AsmRewriteA,
5934                         const AsmRewrite *AsmRewriteB) {
5935   if (AsmRewriteA->Loc.getPointer() < AsmRewriteB->Loc.getPointer())
5936     return -1;
5937   if (AsmRewriteB->Loc.getPointer() < AsmRewriteA->Loc.getPointer())
5938     return 1;
5939 
5940   // It's possible to have a SizeDirective, Imm/ImmPrefix and an Input/Output
5941   // rewrite to the same location.  Make sure the SizeDirective rewrite is
5942   // performed first, then the Imm/ImmPrefix and finally the Input/Output.  This
5943   // ensures the sort algorithm is stable.
5944   if (AsmRewritePrecedence[AsmRewriteA->Kind] >
5945       AsmRewritePrecedence[AsmRewriteB->Kind])
5946     return -1;
5947 
5948   if (AsmRewritePrecedence[AsmRewriteA->Kind] <
5949       AsmRewritePrecedence[AsmRewriteB->Kind])
5950     return 1;
5951   llvm_unreachable("Unstable rewrite sort.");
5952 }
5953 
5954 bool AsmParser::parseMSInlineAsm(
5955     std::string &AsmString, unsigned &NumOutputs, unsigned &NumInputs,
5956     SmallVectorImpl<std::pair<void *, bool>> &OpDecls,
5957     SmallVectorImpl<std::string> &Constraints,
5958     SmallVectorImpl<std::string> &Clobbers, const MCInstrInfo *MII,
5959     const MCInstPrinter *IP, MCAsmParserSemaCallback &SI) {
5960   SmallVector<void *, 4> InputDecls;
5961   SmallVector<void *, 4> OutputDecls;
5962   SmallVector<bool, 4> InputDeclsAddressOf;
5963   SmallVector<bool, 4> OutputDeclsAddressOf;
5964   SmallVector<std::string, 4> InputConstraints;
5965   SmallVector<std::string, 4> OutputConstraints;
5966   SmallVector<unsigned, 4> ClobberRegs;
5967 
5968   SmallVector<AsmRewrite, 4> AsmStrRewrites;
5969 
5970   // Prime the lexer.
5971   Lex();
5972 
5973   // While we have input, parse each statement.
5974   unsigned InputIdx = 0;
5975   unsigned OutputIdx = 0;
5976   while (getLexer().isNot(AsmToken::Eof)) {
5977     // Parse curly braces marking block start/end
5978     if (parseCurlyBlockScope(AsmStrRewrites))
5979       continue;
5980 
5981     ParseStatementInfo Info(&AsmStrRewrites);
5982     bool StatementErr = parseStatement(Info, &SI);
5983 
5984     if (StatementErr || Info.ParseError) {
5985       // Emit pending errors if any exist.
5986       printPendingErrors();
5987       return true;
5988     }
5989 
5990     // No pending error should exist here.
5991     assert(!hasPendingError() && "unexpected error from parseStatement");
5992 
5993     if (Info.Opcode == ~0U)
5994       continue;
5995 
5996     const MCInstrDesc &Desc = MII->get(Info.Opcode);
5997 
5998     // Build the list of clobbers, outputs and inputs.
5999     for (unsigned i = 1, e = Info.ParsedOperands.size(); i != e; ++i) {
6000       MCParsedAsmOperand &Operand = *Info.ParsedOperands[i];
6001 
6002       // Register operand.
6003       if (Operand.isReg() && !Operand.needAddressOf() &&
6004           !getTargetParser().OmitRegisterFromClobberLists(Operand.getReg())) {
6005         unsigned NumDefs = Desc.getNumDefs();
6006         // Clobber.
6007         if (NumDefs && Operand.getMCOperandNum() < NumDefs)
6008           ClobberRegs.push_back(Operand.getReg());
6009         continue;
6010       }
6011 
6012       // Expr/Input or Output.
6013       StringRef SymName = Operand.getSymName();
6014       if (SymName.empty())
6015         continue;
6016 
6017       void *OpDecl = Operand.getOpDecl();
6018       if (!OpDecl)
6019         continue;
6020 
6021       StringRef Constraint = Operand.getConstraint();
6022       if (Operand.isImm()) {
6023         // Offset as immediate
6024         if (Operand.isOffsetOfLocal())
6025           Constraint = "r";
6026         else
6027           Constraint = "i";
6028       }
6029 
6030       bool isOutput = (i == 1) && Desc.mayStore();
6031       bool Restricted = Operand.isMemUseUpRegs();
6032       SMLoc Start = SMLoc::getFromPointer(SymName.data());
6033       if (isOutput) {
6034         ++InputIdx;
6035         OutputDecls.push_back(OpDecl);
6036         OutputDeclsAddressOf.push_back(Operand.needAddressOf());
6037         OutputConstraints.push_back(("=" + Constraint).str());
6038         AsmStrRewrites.emplace_back(AOK_Output, Start, SymName.size(), 0,
6039                                     Restricted);
6040       } else {
6041         InputDecls.push_back(OpDecl);
6042         InputDeclsAddressOf.push_back(Operand.needAddressOf());
6043         InputConstraints.push_back(Constraint.str());
6044         if (Desc.operands()[i - 1].isBranchTarget())
6045           AsmStrRewrites.emplace_back(AOK_CallInput, Start, SymName.size(), 0,
6046                                       Restricted);
6047         else
6048           AsmStrRewrites.emplace_back(AOK_Input, Start, SymName.size(), 0,
6049                                       Restricted);
6050       }
6051     }
6052 
6053     // Consider implicit defs to be clobbers.  Think of cpuid and push.
6054     llvm::append_range(ClobberRegs, Desc.implicit_defs());
6055   }
6056 
6057   // Set the number of Outputs and Inputs.
6058   NumOutputs = OutputDecls.size();
6059   NumInputs = InputDecls.size();
6060 
6061   // Set the unique clobbers.
6062   array_pod_sort(ClobberRegs.begin(), ClobberRegs.end());
6063   ClobberRegs.erase(std::unique(ClobberRegs.begin(), ClobberRegs.end()),
6064                     ClobberRegs.end());
6065   Clobbers.assign(ClobberRegs.size(), std::string());
6066   for (unsigned I = 0, E = ClobberRegs.size(); I != E; ++I) {
6067     raw_string_ostream OS(Clobbers[I]);
6068     IP->printRegName(OS, ClobberRegs[I]);
6069   }
6070 
6071   // Merge the various outputs and inputs.  Output are expected first.
6072   if (NumOutputs || NumInputs) {
6073     unsigned NumExprs = NumOutputs + NumInputs;
6074     OpDecls.resize(NumExprs);
6075     Constraints.resize(NumExprs);
6076     for (unsigned i = 0; i < NumOutputs; ++i) {
6077       OpDecls[i] = std::make_pair(OutputDecls[i], OutputDeclsAddressOf[i]);
6078       Constraints[i] = OutputConstraints[i];
6079     }
6080     for (unsigned i = 0, j = NumOutputs; i < NumInputs; ++i, ++j) {
6081       OpDecls[j] = std::make_pair(InputDecls[i], InputDeclsAddressOf[i]);
6082       Constraints[j] = InputConstraints[i];
6083     }
6084   }
6085 
6086   // Build the IR assembly string.
6087   std::string AsmStringIR;
6088   raw_string_ostream OS(AsmStringIR);
6089   StringRef ASMString =
6090       SrcMgr.getMemoryBuffer(SrcMgr.getMainFileID())->getBuffer();
6091   const char *AsmStart = ASMString.begin();
6092   const char *AsmEnd = ASMString.end();
6093   array_pod_sort(AsmStrRewrites.begin(), AsmStrRewrites.end(), rewritesSort);
6094   for (auto it = AsmStrRewrites.begin(); it != AsmStrRewrites.end(); ++it) {
6095     const AsmRewrite &AR = *it;
6096     // Check if this has already been covered by another rewrite...
6097     if (AR.Done)
6098       continue;
6099     AsmRewriteKind Kind = AR.Kind;
6100 
6101     const char *Loc = AR.Loc.getPointer();
6102     assert(Loc >= AsmStart && "Expected Loc to be at or after Start!");
6103 
6104     // Emit everything up to the immediate/expression.
6105     if (unsigned Len = Loc - AsmStart)
6106       OS << StringRef(AsmStart, Len);
6107 
6108     // Skip the original expression.
6109     if (Kind == AOK_Skip) {
6110       AsmStart = Loc + AR.Len;
6111       continue;
6112     }
6113 
6114     unsigned AdditionalSkip = 0;
6115     // Rewrite expressions in $N notation.
6116     switch (Kind) {
6117     default:
6118       break;
6119     case AOK_IntelExpr:
6120       assert(AR.IntelExp.isValid() && "cannot write invalid intel expression");
6121       if (AR.IntelExp.NeedBracs)
6122         OS << "[";
6123       if (AR.IntelExp.hasBaseReg())
6124         OS << AR.IntelExp.BaseReg;
6125       if (AR.IntelExp.hasIndexReg())
6126         OS << (AR.IntelExp.hasBaseReg() ? " + " : "")
6127            << AR.IntelExp.IndexReg;
6128       if (AR.IntelExp.Scale > 1)
6129         OS << " * $$" << AR.IntelExp.Scale;
6130       if (AR.IntelExp.hasOffset()) {
6131         if (AR.IntelExp.hasRegs())
6132           OS << " + ";
6133         // Fuse this rewrite with a rewrite of the offset name, if present.
6134         StringRef OffsetName = AR.IntelExp.OffsetName;
6135         SMLoc OffsetLoc = SMLoc::getFromPointer(AR.IntelExp.OffsetName.data());
6136         size_t OffsetLen = OffsetName.size();
6137         auto rewrite_it = std::find_if(
6138             it, AsmStrRewrites.end(), [&](const AsmRewrite &FusingAR) {
6139               return FusingAR.Loc == OffsetLoc && FusingAR.Len == OffsetLen &&
6140                      (FusingAR.Kind == AOK_Input ||
6141                       FusingAR.Kind == AOK_CallInput);
6142             });
6143         if (rewrite_it == AsmStrRewrites.end()) {
6144           OS << "offset " << OffsetName;
6145         } else if (rewrite_it->Kind == AOK_CallInput) {
6146           OS << "${" << InputIdx++ << ":P}";
6147           rewrite_it->Done = true;
6148         } else {
6149           OS << '$' << InputIdx++;
6150           rewrite_it->Done = true;
6151         }
6152       }
6153       if (AR.IntelExp.Imm || AR.IntelExp.emitImm())
6154         OS << (AR.IntelExp.emitImm() ? "$$" : " + $$") << AR.IntelExp.Imm;
6155       if (AR.IntelExp.NeedBracs)
6156         OS << "]";
6157       break;
6158     case AOK_Label:
6159       OS << Ctx.getAsmInfo()->getPrivateLabelPrefix() << AR.Label;
6160       break;
6161     case AOK_Input:
6162       if (AR.IntelExpRestricted)
6163         OS << "${" << InputIdx++ << ":P}";
6164       else
6165         OS << '$' << InputIdx++;
6166       break;
6167     case AOK_CallInput:
6168       OS << "${" << InputIdx++ << ":P}";
6169       break;
6170     case AOK_Output:
6171       if (AR.IntelExpRestricted)
6172         OS << "${" << OutputIdx++ << ":P}";
6173       else
6174         OS << '$' << OutputIdx++;
6175       break;
6176     case AOK_SizeDirective:
6177       switch (AR.Val) {
6178       default: break;
6179       case 8:  OS << "byte ptr "; break;
6180       case 16: OS << "word ptr "; break;
6181       case 32: OS << "dword ptr "; break;
6182       case 64: OS << "qword ptr "; break;
6183       case 80: OS << "xword ptr "; break;
6184       case 128: OS << "xmmword ptr "; break;
6185       case 256: OS << "ymmword ptr "; break;
6186       }
6187       break;
6188     case AOK_Emit:
6189       OS << ".byte";
6190       break;
6191     case AOK_Align: {
6192       // MS alignment directives are measured in bytes. If the native assembler
6193       // measures alignment in bytes, we can pass it straight through.
6194       OS << ".align";
6195       if (getContext().getAsmInfo()->getAlignmentIsInBytes())
6196         break;
6197 
6198       // Alignment is in log2 form, so print that instead and skip the original
6199       // immediate.
6200       unsigned Val = AR.Val;
6201       OS << ' ' << Val;
6202       assert(Val < 10 && "Expected alignment less then 2^10.");
6203       AdditionalSkip = (Val < 4) ? 2 : Val < 7 ? 3 : 4;
6204       break;
6205     }
6206     case AOK_EVEN:
6207       OS << ".even";
6208       break;
6209     case AOK_EndOfStatement:
6210       OS << "\n\t";
6211       break;
6212     }
6213 
6214     // Skip the original expression.
6215     AsmStart = Loc + AR.Len + AdditionalSkip;
6216   }
6217 
6218   // Emit the remainder of the asm string.
6219   if (AsmStart != AsmEnd)
6220     OS << StringRef(AsmStart, AsmEnd - AsmStart);
6221 
6222   AsmString = OS.str();
6223   return false;
6224 }
6225 
6226 bool HLASMAsmParser::parseAsHLASMLabel(ParseStatementInfo &Info,
6227                                        MCAsmParserSemaCallback *SI) {
6228   AsmToken LabelTok = getTok();
6229   SMLoc LabelLoc = LabelTok.getLoc();
6230   StringRef LabelVal;
6231 
6232   if (parseIdentifier(LabelVal))
6233     return Error(LabelLoc, "The HLASM Label has to be an Identifier");
6234 
6235   // We have validated whether the token is an Identifier.
6236   // Now we have to validate whether the token is a
6237   // valid HLASM Label.
6238   if (!getTargetParser().isLabel(LabelTok) || checkForValidSection())
6239     return true;
6240 
6241   // Lex leading spaces to get to the next operand.
6242   lexLeadingSpaces();
6243 
6244   // We shouldn't emit the label if there is nothing else after the label.
6245   // i.e asm("<token>\n")
6246   if (getTok().is(AsmToken::EndOfStatement))
6247     return Error(LabelLoc,
6248                  "Cannot have just a label for an HLASM inline asm statement");
6249 
6250   MCSymbol *Sym = getContext().getOrCreateSymbol(
6251       getContext().getAsmInfo()->shouldEmitLabelsInUpperCase()
6252           ? LabelVal.upper()
6253           : LabelVal);
6254 
6255   getTargetParser().doBeforeLabelEmit(Sym, LabelLoc);
6256 
6257   // Emit the label.
6258   Out.emitLabel(Sym, LabelLoc);
6259 
6260   // If we are generating dwarf for assembly source files then gather the
6261   // info to make a dwarf label entry for this label if needed.
6262   if (enabledGenDwarfForAssembly())
6263     MCGenDwarfLabelEntry::Make(Sym, &getStreamer(), getSourceManager(),
6264                                LabelLoc);
6265 
6266   getTargetParser().onLabelParsed(Sym);
6267 
6268   return false;
6269 }
6270 
6271 bool HLASMAsmParser::parseAsMachineInstruction(ParseStatementInfo &Info,
6272                                                MCAsmParserSemaCallback *SI) {
6273   AsmToken OperationEntryTok = Lexer.getTok();
6274   SMLoc OperationEntryLoc = OperationEntryTok.getLoc();
6275   StringRef OperationEntryVal;
6276 
6277   // Attempt to parse the first token as an Identifier
6278   if (parseIdentifier(OperationEntryVal))
6279     return Error(OperationEntryLoc, "unexpected token at start of statement");
6280 
6281   // Once we've parsed the operation entry successfully, lex
6282   // any spaces to get to the OperandEntries.
6283   lexLeadingSpaces();
6284 
6285   return parseAndMatchAndEmitTargetInstruction(
6286       Info, OperationEntryVal, OperationEntryTok, OperationEntryLoc);
6287 }
6288 
6289 bool HLASMAsmParser::parseStatement(ParseStatementInfo &Info,
6290                                     MCAsmParserSemaCallback *SI) {
6291   assert(!hasPendingError() && "parseStatement started with pending error");
6292 
6293   // Should the first token be interpreted as a HLASM Label.
6294   bool ShouldParseAsHLASMLabel = false;
6295 
6296   // If a Name Entry exists, it should occur at the very
6297   // start of the string. In this case, we should parse the
6298   // first non-space token as a Label.
6299   // If the Name entry is missing (i.e. there's some other
6300   // token), then we attempt to parse the first non-space
6301   // token as a Machine Instruction.
6302   if (getTok().isNot(AsmToken::Space))
6303     ShouldParseAsHLASMLabel = true;
6304 
6305   // If we have an EndOfStatement (which includes the target's comment
6306   // string) we can appropriately lex it early on)
6307   if (Lexer.is(AsmToken::EndOfStatement)) {
6308     // if this is a line comment we can drop it safely
6309     if (getTok().getString().empty() || getTok().getString().front() == '\r' ||
6310         getTok().getString().front() == '\n')
6311       Out.addBlankLine();
6312     Lex();
6313     return false;
6314   }
6315 
6316   // We have established how to parse the inline asm statement.
6317   // Now we can safely lex any leading spaces to get to the
6318   // first token.
6319   lexLeadingSpaces();
6320 
6321   // If we see a new line or carriage return as the first operand,
6322   // after lexing leading spaces, emit the new line and lex the
6323   // EndOfStatement token.
6324   if (Lexer.is(AsmToken::EndOfStatement)) {
6325     if (getTok().getString().front() == '\n' ||
6326         getTok().getString().front() == '\r') {
6327       Out.addBlankLine();
6328       Lex();
6329       return false;
6330     }
6331   }
6332 
6333   // Handle the label first if we have to before processing the rest
6334   // of the tokens as a machine instruction.
6335   if (ShouldParseAsHLASMLabel) {
6336     // If there were any errors while handling and emitting the label,
6337     // early return.
6338     if (parseAsHLASMLabel(Info, SI)) {
6339       // If we know we've failed in parsing, simply eat until end of the
6340       // statement. This ensures that we don't process any other statements.
6341       eatToEndOfStatement();
6342       return true;
6343     }
6344   }
6345 
6346   return parseAsMachineInstruction(Info, SI);
6347 }
6348 
6349 namespace llvm {
6350 namespace MCParserUtils {
6351 
6352 /// Returns whether the given symbol is used anywhere in the given expression,
6353 /// or subexpressions.
6354 static bool isSymbolUsedInExpression(const MCSymbol *Sym, const MCExpr *Value) {
6355   switch (Value->getKind()) {
6356   case MCExpr::Binary: {
6357     const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Value);
6358     return isSymbolUsedInExpression(Sym, BE->getLHS()) ||
6359            isSymbolUsedInExpression(Sym, BE->getRHS());
6360   }
6361   case MCExpr::Target:
6362   case MCExpr::Constant:
6363     return false;
6364   case MCExpr::SymbolRef: {
6365     const MCSymbol &S =
6366         static_cast<const MCSymbolRefExpr *>(Value)->getSymbol();
6367     if (S.isVariable() && !S.isWeakExternal())
6368       return isSymbolUsedInExpression(Sym, S.getVariableValue());
6369     return &S == Sym;
6370   }
6371   case MCExpr::Unary:
6372     return isSymbolUsedInExpression(
6373         Sym, static_cast<const MCUnaryExpr *>(Value)->getSubExpr());
6374   }
6375 
6376   llvm_unreachable("Unknown expr kind!");
6377 }
6378 
6379 bool parseAssignmentExpression(StringRef Name, bool allow_redef,
6380                                MCAsmParser &Parser, MCSymbol *&Sym,
6381                                const MCExpr *&Value) {
6382 
6383   // FIXME: Use better location, we should use proper tokens.
6384   SMLoc EqualLoc = Parser.getTok().getLoc();
6385   if (Parser.parseExpression(Value))
6386     return Parser.TokError("missing expression");
6387 
6388   // Note: we don't count b as used in "a = b". This is to allow
6389   // a = b
6390   // b = c
6391 
6392   if (Parser.parseEOL())
6393     return true;
6394 
6395   // Validate that the LHS is allowed to be a variable (either it has not been
6396   // used as a symbol, or it is an absolute symbol).
6397   Sym = Parser.getContext().lookupSymbol(Name);
6398   if (Sym) {
6399     // Diagnose assignment to a label.
6400     //
6401     // FIXME: Diagnostics. Note the location of the definition as a label.
6402     // FIXME: Diagnose assignment to protected identifier (e.g., register name).
6403     if (isSymbolUsedInExpression(Sym, Value))
6404       return Parser.Error(EqualLoc, "Recursive use of '" + Name + "'");
6405     else if (Sym->isUndefined(/*SetUsed*/ false) && !Sym->isUsed() &&
6406              !Sym->isVariable())
6407       ; // Allow redefinitions of undefined symbols only used in directives.
6408     else if (Sym->isVariable() && !Sym->isUsed() && allow_redef)
6409       ; // Allow redefinitions of variables that haven't yet been used.
6410     else if (!Sym->isUndefined() && (!Sym->isVariable() || !allow_redef))
6411       return Parser.Error(EqualLoc, "redefinition of '" + Name + "'");
6412     else if (!Sym->isVariable())
6413       return Parser.Error(EqualLoc, "invalid assignment to '" + Name + "'");
6414     else if (!isa<MCConstantExpr>(Sym->getVariableValue()))
6415       return Parser.Error(EqualLoc,
6416                           "invalid reassignment of non-absolute variable '" +
6417                               Name + "'");
6418   } else if (Name == ".") {
6419     Parser.getStreamer().emitValueToOffset(Value, 0, EqualLoc);
6420     return false;
6421   } else
6422     Sym = Parser.getContext().getOrCreateSymbol(Name);
6423 
6424   Sym->setRedefinable(allow_redef);
6425 
6426   return false;
6427 }
6428 
6429 } // end namespace MCParserUtils
6430 } // end namespace llvm
6431 
6432 /// Create an MCAsmParser instance.
6433 MCAsmParser *llvm::createMCAsmParser(SourceMgr &SM, MCContext &C,
6434                                      MCStreamer &Out, const MCAsmInfo &MAI,
6435                                      unsigned CB) {
6436   if (C.getTargetTriple().isSystemZ() && C.getTargetTriple().isOSzOS())
6437     return new HLASMAsmParser(SM, C, Out, MAI, CB);
6438 
6439   return new AsmParser(SM, C, Out, MAI, CB);
6440 }
6441