1 //===- AsmParser.cpp - Parser for Assembly Files --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This class implements a parser for assembly files similar to gas syntax.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APFloat.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/ADT/StringMap.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/BinaryFormat/Dwarf.h"
25 #include "llvm/DebugInfo/CodeView/SymbolRecord.h"
26 #include "llvm/MC/MCAsmInfo.h"
27 #include "llvm/MC/MCCodeView.h"
28 #include "llvm/MC/MCContext.h"
29 #include "llvm/MC/MCDirectives.h"
30 #include "llvm/MC/MCDwarf.h"
31 #include "llvm/MC/MCExpr.h"
32 #include "llvm/MC/MCInstPrinter.h"
33 #include "llvm/MC/MCInstrDesc.h"
34 #include "llvm/MC/MCInstrInfo.h"
35 #include "llvm/MC/MCParser/AsmCond.h"
36 #include "llvm/MC/MCParser/AsmLexer.h"
37 #include "llvm/MC/MCParser/MCAsmLexer.h"
38 #include "llvm/MC/MCParser/MCAsmParser.h"
39 #include "llvm/MC/MCParser/MCAsmParserExtension.h"
40 #include "llvm/MC/MCParser/MCAsmParserUtils.h"
41 #include "llvm/MC/MCParser/MCParsedAsmOperand.h"
42 #include "llvm/MC/MCParser/MCTargetAsmParser.h"
43 #include "llvm/MC/MCRegisterInfo.h"
44 #include "llvm/MC/MCSection.h"
45 #include "llvm/MC/MCStreamer.h"
46 #include "llvm/MC/MCSymbol.h"
47 #include "llvm/MC/MCTargetOptions.h"
48 #include "llvm/MC/MCValue.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/MD5.h"
53 #include "llvm/Support/MathExtras.h"
54 #include "llvm/Support/MemoryBuffer.h"
55 #include "llvm/Support/SMLoc.h"
56 #include "llvm/Support/SourceMgr.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <cctype>
61 #include <climits>
62 #include <cstddef>
63 #include <cstdint>
64 #include <deque>
65 #include <memory>
66 #include <optional>
67 #include <sstream>
68 #include <string>
69 #include <tuple>
70 #include <utility>
71 #include <vector>
72 
73 using namespace llvm;
74 
75 MCAsmParserSemaCallback::~MCAsmParserSemaCallback() = default;
76 
77 namespace {
78 
79 /// Helper types for tracking macro definitions.
80 typedef std::vector<AsmToken> MCAsmMacroArgument;
81 typedef std::vector<MCAsmMacroArgument> MCAsmMacroArguments;
82 
83 /// Helper class for storing information about an active macro
84 /// instantiation.
85 struct MacroInstantiation {
86   /// The location of the instantiation.
87   SMLoc InstantiationLoc;
88 
89   /// The buffer where parsing should resume upon instantiation completion.
90   unsigned ExitBuffer;
91 
92   /// The location where parsing should resume upon instantiation completion.
93   SMLoc ExitLoc;
94 
95   /// The depth of TheCondStack at the start of the instantiation.
96   size_t CondStackDepth;
97 };
98 
99 struct ParseStatementInfo {
100   /// The parsed operands from the last parsed statement.
101   SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> ParsedOperands;
102 
103   /// The opcode from the last parsed instruction.
104   unsigned Opcode = ~0U;
105 
106   /// Was there an error parsing the inline assembly?
107   bool ParseError = false;
108 
109   SmallVectorImpl<AsmRewrite> *AsmRewrites = nullptr;
110 
111   ParseStatementInfo() = delete;
112   ParseStatementInfo(SmallVectorImpl<AsmRewrite> *rewrites)
113     : AsmRewrites(rewrites) {}
114 };
115 
116 /// The concrete assembly parser instance.
117 class AsmParser : public MCAsmParser {
118 private:
119   AsmLexer Lexer;
120   MCContext &Ctx;
121   MCStreamer &Out;
122   const MCAsmInfo &MAI;
123   SourceMgr &SrcMgr;
124   SourceMgr::DiagHandlerTy SavedDiagHandler;
125   void *SavedDiagContext;
126   std::unique_ptr<MCAsmParserExtension> PlatformParser;
127   SMLoc StartTokLoc;
128 
129   /// This is the current buffer index we're lexing from as managed by the
130   /// SourceMgr object.
131   unsigned CurBuffer;
132 
133   AsmCond TheCondState;
134   std::vector<AsmCond> TheCondStack;
135 
136   /// maps directive names to handler methods in parser
137   /// extensions. Extensions register themselves in this map by calling
138   /// addDirectiveHandler.
139   StringMap<ExtensionDirectiveHandler> ExtensionDirectiveMap;
140 
141   /// Stack of active macro instantiations.
142   std::vector<MacroInstantiation*> ActiveMacros;
143 
144   /// List of bodies of anonymous macros.
145   std::deque<MCAsmMacro> MacroLikeBodies;
146 
147   /// Boolean tracking whether macro substitution is enabled.
148   unsigned MacrosEnabledFlag : 1;
149 
150   /// Keeps track of how many .macro's have been instantiated.
151   unsigned NumOfMacroInstantiations;
152 
153   /// The values from the last parsed cpp hash file line comment if any.
154   struct CppHashInfoTy {
155     StringRef Filename;
156     int64_t LineNumber;
157     SMLoc Loc;
158     unsigned Buf;
159     CppHashInfoTy() : LineNumber(0), Buf(0) {}
160   };
161   CppHashInfoTy CppHashInfo;
162 
163   /// The filename from the first cpp hash file line comment, if any.
164   StringRef FirstCppHashFilename;
165 
166   /// List of forward directional labels for diagnosis at the end.
167   SmallVector<std::tuple<SMLoc, CppHashInfoTy, MCSymbol *>, 4> DirLabels;
168 
169   SmallSet<StringRef, 2> LTODiscardSymbols;
170 
171   /// AssemblerDialect. ~OU means unset value and use value provided by MAI.
172   unsigned AssemblerDialect = ~0U;
173 
174   /// is Darwin compatibility enabled?
175   bool IsDarwin = false;
176 
177   /// Are we parsing ms-style inline assembly?
178   bool ParsingMSInlineAsm = false;
179 
180   /// Did we already inform the user about inconsistent MD5 usage?
181   bool ReportedInconsistentMD5 = false;
182 
183   // Is alt macro mode enabled.
184   bool AltMacroMode = false;
185 
186 protected:
187   virtual bool parseStatement(ParseStatementInfo &Info,
188                               MCAsmParserSemaCallback *SI);
189 
190   /// This routine uses the target specific ParseInstruction function to
191   /// parse an instruction into Operands, and then call the target specific
192   /// MatchAndEmit function to match and emit the instruction.
193   bool parseAndMatchAndEmitTargetInstruction(ParseStatementInfo &Info,
194                                              StringRef IDVal, AsmToken ID,
195                                              SMLoc IDLoc);
196 
197   /// Should we emit DWARF describing this assembler source?  (Returns false if
198   /// the source has .file directives, which means we don't want to generate
199   /// info describing the assembler source itself.)
200   bool enabledGenDwarfForAssembly();
201 
202 public:
203   AsmParser(SourceMgr &SM, MCContext &Ctx, MCStreamer &Out,
204             const MCAsmInfo &MAI, unsigned CB);
205   AsmParser(const AsmParser &) = delete;
206   AsmParser &operator=(const AsmParser &) = delete;
207   ~AsmParser() override;
208 
209   bool Run(bool NoInitialTextSection, bool NoFinalize = false) override;
210 
211   void addDirectiveHandler(StringRef Directive,
212                            ExtensionDirectiveHandler Handler) override {
213     ExtensionDirectiveMap[Directive] = Handler;
214   }
215 
216   void addAliasForDirective(StringRef Directive, StringRef Alias) override {
217     DirectiveKindMap[Directive.lower()] = DirectiveKindMap[Alias.lower()];
218   }
219 
220   /// @name MCAsmParser Interface
221   /// {
222 
223   SourceMgr &getSourceManager() override { return SrcMgr; }
224   MCAsmLexer &getLexer() override { return Lexer; }
225   MCContext &getContext() override { return Ctx; }
226   MCStreamer &getStreamer() override { return Out; }
227 
228   CodeViewContext &getCVContext() { return Ctx.getCVContext(); }
229 
230   unsigned getAssemblerDialect() override {
231     if (AssemblerDialect == ~0U)
232       return MAI.getAssemblerDialect();
233     else
234       return AssemblerDialect;
235   }
236   void setAssemblerDialect(unsigned i) override {
237     AssemblerDialect = i;
238   }
239 
240   void Note(SMLoc L, const Twine &Msg, SMRange Range = std::nullopt) override;
241   bool Warning(SMLoc L, const Twine &Msg,
242                SMRange Range = std::nullopt) override;
243   bool printError(SMLoc L, const Twine &Msg,
244                   SMRange Range = std::nullopt) override;
245 
246   const AsmToken &Lex() override;
247 
248   void setParsingMSInlineAsm(bool V) override {
249     ParsingMSInlineAsm = V;
250     // When parsing MS inline asm, we must lex 0b1101 and 0ABCH as binary and
251     // hex integer literals.
252     Lexer.setLexMasmIntegers(V);
253   }
254   bool isParsingMSInlineAsm() override { return ParsingMSInlineAsm; }
255 
256   bool discardLTOSymbol(StringRef Name) const override {
257     return LTODiscardSymbols.contains(Name);
258   }
259 
260   bool parseMSInlineAsm(std::string &AsmString, unsigned &NumOutputs,
261                         unsigned &NumInputs,
262                         SmallVectorImpl<std::pair<void *, bool>> &OpDecls,
263                         SmallVectorImpl<std::string> &Constraints,
264                         SmallVectorImpl<std::string> &Clobbers,
265                         const MCInstrInfo *MII, const MCInstPrinter *IP,
266                         MCAsmParserSemaCallback &SI) override;
267 
268   bool parseExpression(const MCExpr *&Res);
269   bool parseExpression(const MCExpr *&Res, SMLoc &EndLoc) override;
270   bool parsePrimaryExpr(const MCExpr *&Res, SMLoc &EndLoc,
271                         AsmTypeInfo *TypeInfo) override;
272   bool parseParenExpression(const MCExpr *&Res, SMLoc &EndLoc) override;
273   bool parseParenExprOfDepth(unsigned ParenDepth, const MCExpr *&Res,
274                              SMLoc &EndLoc) override;
275   bool parseAbsoluteExpression(int64_t &Res) override;
276 
277   /// Parse a floating point expression using the float \p Semantics
278   /// and set \p Res to the value.
279   bool parseRealValue(const fltSemantics &Semantics, APInt &Res);
280 
281   /// Parse an identifier or string (as a quoted identifier)
282   /// and set \p Res to the identifier contents.
283   bool parseIdentifier(StringRef &Res) override;
284   void eatToEndOfStatement() override;
285 
286   bool checkForValidSection() override;
287 
288   /// }
289 
290 private:
291   bool parseCurlyBlockScope(SmallVectorImpl<AsmRewrite>& AsmStrRewrites);
292   bool parseCppHashLineFilenameComment(SMLoc L, bool SaveLocInfo = true);
293 
294   void checkForBadMacro(SMLoc DirectiveLoc, StringRef Name, StringRef Body,
295                         ArrayRef<MCAsmMacroParameter> Parameters);
296   bool expandMacro(raw_svector_ostream &OS, StringRef Body,
297                    ArrayRef<MCAsmMacroParameter> Parameters,
298                    ArrayRef<MCAsmMacroArgument> A, bool EnableAtPseudoVariable,
299                    SMLoc L);
300 
301   /// Are macros enabled in the parser?
302   bool areMacrosEnabled() {return MacrosEnabledFlag;}
303 
304   /// Control a flag in the parser that enables or disables macros.
305   void setMacrosEnabled(bool Flag) {MacrosEnabledFlag = Flag;}
306 
307   /// Are we inside a macro instantiation?
308   bool isInsideMacroInstantiation() {return !ActiveMacros.empty();}
309 
310   /// Handle entry to macro instantiation.
311   ///
312   /// \param M The macro.
313   /// \param NameLoc Instantiation location.
314   bool handleMacroEntry(const MCAsmMacro *M, SMLoc NameLoc);
315 
316   /// Handle exit from macro instantiation.
317   void handleMacroExit();
318 
319   /// Extract AsmTokens for a macro argument.
320   bool parseMacroArgument(MCAsmMacroArgument &MA, bool Vararg);
321 
322   /// Parse all macro arguments for a given macro.
323   bool parseMacroArguments(const MCAsmMacro *M, MCAsmMacroArguments &A);
324 
325   void printMacroInstantiations();
326   void printMessage(SMLoc Loc, SourceMgr::DiagKind Kind, const Twine &Msg,
327                     SMRange Range = std::nullopt) const {
328     ArrayRef<SMRange> Ranges(Range);
329     SrcMgr.PrintMessage(Loc, Kind, Msg, Ranges);
330   }
331   static void DiagHandler(const SMDiagnostic &Diag, void *Context);
332 
333   /// Enter the specified file. This returns true on failure.
334   bool enterIncludeFile(const std::string &Filename);
335 
336   /// Process the specified file for the .incbin directive.
337   /// This returns true on failure.
338   bool processIncbinFile(const std::string &Filename, int64_t Skip = 0,
339                          const MCExpr *Count = nullptr, SMLoc Loc = SMLoc());
340 
341   /// Reset the current lexer position to that given by \p Loc. The
342   /// current token is not set; clients should ensure Lex() is called
343   /// subsequently.
344   ///
345   /// \param InBuffer If not 0, should be the known buffer id that contains the
346   /// location.
347   void jumpToLoc(SMLoc Loc, unsigned InBuffer = 0);
348 
349   /// Parse up to the end of statement and a return the contents from the
350   /// current token until the end of the statement; the current token on exit
351   /// will be either the EndOfStatement or EOF.
352   StringRef parseStringToEndOfStatement() override;
353 
354   /// Parse until the end of a statement or a comma is encountered,
355   /// return the contents from the current token up to the end or comma.
356   StringRef parseStringToComma();
357 
358   enum class AssignmentKind {
359     Set,
360     Equiv,
361     Equal,
362     LTOSetConditional,
363   };
364 
365   bool parseAssignment(StringRef Name, AssignmentKind Kind);
366 
367   unsigned getBinOpPrecedence(AsmToken::TokenKind K,
368                               MCBinaryExpr::Opcode &Kind);
369 
370   bool parseBinOpRHS(unsigned Precedence, const MCExpr *&Res, SMLoc &EndLoc);
371   bool parseParenExpr(const MCExpr *&Res, SMLoc &EndLoc);
372   bool parseBracketExpr(const MCExpr *&Res, SMLoc &EndLoc);
373 
374   bool parseRegisterOrRegisterNumber(int64_t &Register, SMLoc DirectiveLoc);
375 
376   bool parseCVFunctionId(int64_t &FunctionId, StringRef DirectiveName);
377   bool parseCVFileId(int64_t &FileId, StringRef DirectiveName);
378 
379   // Generic (target and platform independent) directive parsing.
380   enum DirectiveKind {
381     DK_NO_DIRECTIVE, // Placeholder
382     DK_SET,
383     DK_EQU,
384     DK_EQUIV,
385     DK_ASCII,
386     DK_ASCIZ,
387     DK_STRING,
388     DK_BYTE,
389     DK_SHORT,
390     DK_RELOC,
391     DK_VALUE,
392     DK_2BYTE,
393     DK_LONG,
394     DK_INT,
395     DK_4BYTE,
396     DK_QUAD,
397     DK_8BYTE,
398     DK_OCTA,
399     DK_DC,
400     DK_DC_A,
401     DK_DC_B,
402     DK_DC_D,
403     DK_DC_L,
404     DK_DC_S,
405     DK_DC_W,
406     DK_DC_X,
407     DK_DCB,
408     DK_DCB_B,
409     DK_DCB_D,
410     DK_DCB_L,
411     DK_DCB_S,
412     DK_DCB_W,
413     DK_DCB_X,
414     DK_DS,
415     DK_DS_B,
416     DK_DS_D,
417     DK_DS_L,
418     DK_DS_P,
419     DK_DS_S,
420     DK_DS_W,
421     DK_DS_X,
422     DK_SINGLE,
423     DK_FLOAT,
424     DK_DOUBLE,
425     DK_ALIGN,
426     DK_ALIGN32,
427     DK_BALIGN,
428     DK_BALIGNW,
429     DK_BALIGNL,
430     DK_P2ALIGN,
431     DK_P2ALIGNW,
432     DK_P2ALIGNL,
433     DK_ORG,
434     DK_FILL,
435     DK_ENDR,
436     DK_BUNDLE_ALIGN_MODE,
437     DK_BUNDLE_LOCK,
438     DK_BUNDLE_UNLOCK,
439     DK_ZERO,
440     DK_EXTERN,
441     DK_GLOBL,
442     DK_GLOBAL,
443     DK_LAZY_REFERENCE,
444     DK_NO_DEAD_STRIP,
445     DK_SYMBOL_RESOLVER,
446     DK_PRIVATE_EXTERN,
447     DK_REFERENCE,
448     DK_WEAK_DEFINITION,
449     DK_WEAK_REFERENCE,
450     DK_WEAK_DEF_CAN_BE_HIDDEN,
451     DK_COLD,
452     DK_COMM,
453     DK_COMMON,
454     DK_LCOMM,
455     DK_ABORT,
456     DK_INCLUDE,
457     DK_INCBIN,
458     DK_CODE16,
459     DK_CODE16GCC,
460     DK_REPT,
461     DK_IRP,
462     DK_IRPC,
463     DK_IF,
464     DK_IFEQ,
465     DK_IFGE,
466     DK_IFGT,
467     DK_IFLE,
468     DK_IFLT,
469     DK_IFNE,
470     DK_IFB,
471     DK_IFNB,
472     DK_IFC,
473     DK_IFEQS,
474     DK_IFNC,
475     DK_IFNES,
476     DK_IFDEF,
477     DK_IFNDEF,
478     DK_IFNOTDEF,
479     DK_ELSEIF,
480     DK_ELSE,
481     DK_ENDIF,
482     DK_SPACE,
483     DK_SKIP,
484     DK_FILE,
485     DK_LINE,
486     DK_LOC,
487     DK_STABS,
488     DK_CV_FILE,
489     DK_CV_FUNC_ID,
490     DK_CV_INLINE_SITE_ID,
491     DK_CV_LOC,
492     DK_CV_LINETABLE,
493     DK_CV_INLINE_LINETABLE,
494     DK_CV_DEF_RANGE,
495     DK_CV_STRINGTABLE,
496     DK_CV_STRING,
497     DK_CV_FILECHECKSUMS,
498     DK_CV_FILECHECKSUM_OFFSET,
499     DK_CV_FPO_DATA,
500     DK_CFI_SECTIONS,
501     DK_CFI_STARTPROC,
502     DK_CFI_ENDPROC,
503     DK_CFI_DEF_CFA,
504     DK_CFI_DEF_CFA_OFFSET,
505     DK_CFI_ADJUST_CFA_OFFSET,
506     DK_CFI_DEF_CFA_REGISTER,
507     DK_CFI_LLVM_DEF_ASPACE_CFA,
508     DK_CFI_OFFSET,
509     DK_CFI_REL_OFFSET,
510     DK_CFI_PERSONALITY,
511     DK_CFI_LSDA,
512     DK_CFI_REMEMBER_STATE,
513     DK_CFI_RESTORE_STATE,
514     DK_CFI_SAME_VALUE,
515     DK_CFI_RESTORE,
516     DK_CFI_ESCAPE,
517     DK_CFI_RETURN_COLUMN,
518     DK_CFI_SIGNAL_FRAME,
519     DK_CFI_UNDEFINED,
520     DK_CFI_REGISTER,
521     DK_CFI_WINDOW_SAVE,
522     DK_CFI_B_KEY_FRAME,
523     DK_MACROS_ON,
524     DK_MACROS_OFF,
525     DK_ALTMACRO,
526     DK_NOALTMACRO,
527     DK_MACRO,
528     DK_EXITM,
529     DK_ENDM,
530     DK_ENDMACRO,
531     DK_PURGEM,
532     DK_SLEB128,
533     DK_ULEB128,
534     DK_ERR,
535     DK_ERROR,
536     DK_WARNING,
537     DK_PRINT,
538     DK_ADDRSIG,
539     DK_ADDRSIG_SYM,
540     DK_PSEUDO_PROBE,
541     DK_LTO_DISCARD,
542     DK_LTO_SET_CONDITIONAL,
543     DK_CFI_MTE_TAGGED_FRAME,
544     DK_MEMTAG,
545     DK_END
546   };
547 
548   /// Maps directive name --> DirectiveKind enum, for
549   /// directives parsed by this class.
550   StringMap<DirectiveKind> DirectiveKindMap;
551 
552   // Codeview def_range type parsing.
553   enum CVDefRangeType {
554     CVDR_DEFRANGE = 0, // Placeholder
555     CVDR_DEFRANGE_REGISTER,
556     CVDR_DEFRANGE_FRAMEPOINTER_REL,
557     CVDR_DEFRANGE_SUBFIELD_REGISTER,
558     CVDR_DEFRANGE_REGISTER_REL
559   };
560 
561   /// Maps Codeview def_range types --> CVDefRangeType enum, for
562   /// Codeview def_range types parsed by this class.
563   StringMap<CVDefRangeType> CVDefRangeTypeMap;
564 
565   // ".ascii", ".asciz", ".string"
566   bool parseDirectiveAscii(StringRef IDVal, bool ZeroTerminated);
567   bool parseDirectiveReloc(SMLoc DirectiveLoc); // ".reloc"
568   bool parseDirectiveValue(StringRef IDVal,
569                            unsigned Size);       // ".byte", ".long", ...
570   bool parseDirectiveOctaValue(StringRef IDVal); // ".octa", ...
571   bool parseDirectiveRealValue(StringRef IDVal,
572                                const fltSemantics &); // ".single", ...
573   bool parseDirectiveFill(); // ".fill"
574   bool parseDirectiveZero(); // ".zero"
575   // ".set", ".equ", ".equiv", ".lto_set_conditional"
576   bool parseDirectiveSet(StringRef IDVal, AssignmentKind Kind);
577   bool parseDirectiveOrg(); // ".org"
578   // ".align{,32}", ".p2align{,w,l}"
579   bool parseDirectiveAlign(bool IsPow2, unsigned ValueSize);
580 
581   // ".file", ".line", ".loc", ".stabs"
582   bool parseDirectiveFile(SMLoc DirectiveLoc);
583   bool parseDirectiveLine();
584   bool parseDirectiveLoc();
585   bool parseDirectiveStabs();
586 
587   // ".cv_file", ".cv_func_id", ".cv_inline_site_id", ".cv_loc", ".cv_linetable",
588   // ".cv_inline_linetable", ".cv_def_range", ".cv_string"
589   bool parseDirectiveCVFile();
590   bool parseDirectiveCVFuncId();
591   bool parseDirectiveCVInlineSiteId();
592   bool parseDirectiveCVLoc();
593   bool parseDirectiveCVLinetable();
594   bool parseDirectiveCVInlineLinetable();
595   bool parseDirectiveCVDefRange();
596   bool parseDirectiveCVString();
597   bool parseDirectiveCVStringTable();
598   bool parseDirectiveCVFileChecksums();
599   bool parseDirectiveCVFileChecksumOffset();
600   bool parseDirectiveCVFPOData();
601 
602   // .cfi directives
603   bool parseDirectiveCFIRegister(SMLoc DirectiveLoc);
604   bool parseDirectiveCFIWindowSave();
605   bool parseDirectiveCFISections();
606   bool parseDirectiveCFIStartProc();
607   bool parseDirectiveCFIEndProc();
608   bool parseDirectiveCFIDefCfaOffset();
609   bool parseDirectiveCFIDefCfa(SMLoc DirectiveLoc);
610   bool parseDirectiveCFIAdjustCfaOffset();
611   bool parseDirectiveCFIDefCfaRegister(SMLoc DirectiveLoc);
612   bool parseDirectiveCFILLVMDefAspaceCfa(SMLoc DirectiveLoc);
613   bool parseDirectiveCFIOffset(SMLoc DirectiveLoc);
614   bool parseDirectiveCFIRelOffset(SMLoc DirectiveLoc);
615   bool parseDirectiveCFIPersonalityOrLsda(bool IsPersonality);
616   bool parseDirectiveCFIRememberState();
617   bool parseDirectiveCFIRestoreState();
618   bool parseDirectiveCFISameValue(SMLoc DirectiveLoc);
619   bool parseDirectiveCFIRestore(SMLoc DirectiveLoc);
620   bool parseDirectiveCFIEscape();
621   bool parseDirectiveCFIReturnColumn(SMLoc DirectiveLoc);
622   bool parseDirectiveCFISignalFrame();
623   bool parseDirectiveCFIUndefined(SMLoc DirectiveLoc);
624 
625   // macro directives
626   bool parseDirectivePurgeMacro(SMLoc DirectiveLoc);
627   bool parseDirectiveExitMacro(StringRef Directive);
628   bool parseDirectiveEndMacro(StringRef Directive);
629   bool parseDirectiveMacro(SMLoc DirectiveLoc);
630   bool parseDirectiveMacrosOnOff(StringRef Directive);
631   // alternate macro mode directives
632   bool parseDirectiveAltmacro(StringRef Directive);
633   // ".bundle_align_mode"
634   bool parseDirectiveBundleAlignMode();
635   // ".bundle_lock"
636   bool parseDirectiveBundleLock();
637   // ".bundle_unlock"
638   bool parseDirectiveBundleUnlock();
639 
640   // ".space", ".skip"
641   bool parseDirectiveSpace(StringRef IDVal);
642 
643   // ".dcb"
644   bool parseDirectiveDCB(StringRef IDVal, unsigned Size);
645   bool parseDirectiveRealDCB(StringRef IDVal, const fltSemantics &);
646   // ".ds"
647   bool parseDirectiveDS(StringRef IDVal, unsigned Size);
648 
649   // .sleb128 (Signed=true) and .uleb128 (Signed=false)
650   bool parseDirectiveLEB128(bool Signed);
651 
652   /// Parse a directive like ".globl" which
653   /// accepts a single symbol (which should be a label or an external).
654   bool parseDirectiveSymbolAttribute(MCSymbolAttr Attr);
655 
656   bool parseDirectiveComm(bool IsLocal); // ".comm" and ".lcomm"
657 
658   bool parseDirectiveAbort(); // ".abort"
659   bool parseDirectiveInclude(); // ".include"
660   bool parseDirectiveIncbin(); // ".incbin"
661 
662   // ".if", ".ifeq", ".ifge", ".ifgt" , ".ifle", ".iflt" or ".ifne"
663   bool parseDirectiveIf(SMLoc DirectiveLoc, DirectiveKind DirKind);
664   // ".ifb" or ".ifnb", depending on ExpectBlank.
665   bool parseDirectiveIfb(SMLoc DirectiveLoc, bool ExpectBlank);
666   // ".ifc" or ".ifnc", depending on ExpectEqual.
667   bool parseDirectiveIfc(SMLoc DirectiveLoc, bool ExpectEqual);
668   // ".ifeqs" or ".ifnes", depending on ExpectEqual.
669   bool parseDirectiveIfeqs(SMLoc DirectiveLoc, bool ExpectEqual);
670   // ".ifdef" or ".ifndef", depending on expect_defined
671   bool parseDirectiveIfdef(SMLoc DirectiveLoc, bool expect_defined);
672   bool parseDirectiveElseIf(SMLoc DirectiveLoc); // ".elseif"
673   bool parseDirectiveElse(SMLoc DirectiveLoc); // ".else"
674   bool parseDirectiveEndIf(SMLoc DirectiveLoc); // .endif
675   bool parseEscapedString(std::string &Data) override;
676   bool parseAngleBracketString(std::string &Data) override;
677 
678   const MCExpr *applyModifierToExpr(const MCExpr *E,
679                                     MCSymbolRefExpr::VariantKind Variant);
680 
681   // Macro-like directives
682   MCAsmMacro *parseMacroLikeBody(SMLoc DirectiveLoc);
683   void instantiateMacroLikeBody(MCAsmMacro *M, SMLoc DirectiveLoc,
684                                 raw_svector_ostream &OS);
685   bool parseDirectiveRept(SMLoc DirectiveLoc, StringRef Directive);
686   bool parseDirectiveIrp(SMLoc DirectiveLoc);  // ".irp"
687   bool parseDirectiveIrpc(SMLoc DirectiveLoc); // ".irpc"
688   bool parseDirectiveEndr(SMLoc DirectiveLoc); // ".endr"
689 
690   // "_emit" or "__emit"
691   bool parseDirectiveMSEmit(SMLoc DirectiveLoc, ParseStatementInfo &Info,
692                             size_t Len);
693 
694   // "align"
695   bool parseDirectiveMSAlign(SMLoc DirectiveLoc, ParseStatementInfo &Info);
696 
697   // "end"
698   bool parseDirectiveEnd(SMLoc DirectiveLoc);
699 
700   // ".err" or ".error"
701   bool parseDirectiveError(SMLoc DirectiveLoc, bool WithMessage);
702 
703   // ".warning"
704   bool parseDirectiveWarning(SMLoc DirectiveLoc);
705 
706   // .print <double-quotes-string>
707   bool parseDirectivePrint(SMLoc DirectiveLoc);
708 
709   // .pseudoprobe
710   bool parseDirectivePseudoProbe();
711 
712   // ".lto_discard"
713   bool parseDirectiveLTODiscard();
714 
715   // Directives to support address-significance tables.
716   bool parseDirectiveAddrsig();
717   bool parseDirectiveAddrsigSym();
718 
719   void initializeDirectiveKindMap();
720   void initializeCVDefRangeTypeMap();
721 };
722 
723 class HLASMAsmParser final : public AsmParser {
724 private:
725   MCAsmLexer &Lexer;
726   MCStreamer &Out;
727 
728   void lexLeadingSpaces() {
729     while (Lexer.is(AsmToken::Space))
730       Lexer.Lex();
731   }
732 
733   bool parseAsHLASMLabel(ParseStatementInfo &Info, MCAsmParserSemaCallback *SI);
734   bool parseAsMachineInstruction(ParseStatementInfo &Info,
735                                  MCAsmParserSemaCallback *SI);
736 
737 public:
738   HLASMAsmParser(SourceMgr &SM, MCContext &Ctx, MCStreamer &Out,
739                  const MCAsmInfo &MAI, unsigned CB = 0)
740       : AsmParser(SM, Ctx, Out, MAI, CB), Lexer(getLexer()), Out(Out) {
741     Lexer.setSkipSpace(false);
742     Lexer.setAllowHashInIdentifier(true);
743     Lexer.setLexHLASMIntegers(true);
744     Lexer.setLexHLASMStrings(true);
745   }
746 
747   ~HLASMAsmParser() { Lexer.setSkipSpace(true); }
748 
749   bool parseStatement(ParseStatementInfo &Info,
750                       MCAsmParserSemaCallback *SI) override;
751 };
752 
753 } // end anonymous namespace
754 
755 namespace llvm {
756 
757 extern cl::opt<unsigned> AsmMacroMaxNestingDepth;
758 
759 extern MCAsmParserExtension *createDarwinAsmParser();
760 extern MCAsmParserExtension *createELFAsmParser();
761 extern MCAsmParserExtension *createCOFFAsmParser();
762 extern MCAsmParserExtension *createGOFFAsmParser();
763 extern MCAsmParserExtension *createXCOFFAsmParser();
764 extern MCAsmParserExtension *createWasmAsmParser();
765 
766 } // end namespace llvm
767 
768 enum { DEFAULT_ADDRSPACE = 0 };
769 
770 AsmParser::AsmParser(SourceMgr &SM, MCContext &Ctx, MCStreamer &Out,
771                      const MCAsmInfo &MAI, unsigned CB = 0)
772     : Lexer(MAI), Ctx(Ctx), Out(Out), MAI(MAI), SrcMgr(SM),
773       CurBuffer(CB ? CB : SM.getMainFileID()), MacrosEnabledFlag(true) {
774   HadError = false;
775   // Save the old handler.
776   SavedDiagHandler = SrcMgr.getDiagHandler();
777   SavedDiagContext = SrcMgr.getDiagContext();
778   // Set our own handler which calls the saved handler.
779   SrcMgr.setDiagHandler(DiagHandler, this);
780   Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer());
781   // Make MCStreamer aware of the StartTokLoc for locations in diagnostics.
782   Out.setStartTokLocPtr(&StartTokLoc);
783 
784   // Initialize the platform / file format parser.
785   switch (Ctx.getObjectFileType()) {
786   case MCContext::IsCOFF:
787     PlatformParser.reset(createCOFFAsmParser());
788     break;
789   case MCContext::IsMachO:
790     PlatformParser.reset(createDarwinAsmParser());
791     IsDarwin = true;
792     break;
793   case MCContext::IsELF:
794     PlatformParser.reset(createELFAsmParser());
795     break;
796   case MCContext::IsGOFF:
797     PlatformParser.reset(createGOFFAsmParser());
798     break;
799   case MCContext::IsSPIRV:
800     report_fatal_error(
801         "Need to implement createSPIRVAsmParser for SPIRV format.");
802     break;
803   case MCContext::IsWasm:
804     PlatformParser.reset(createWasmAsmParser());
805     break;
806   case MCContext::IsXCOFF:
807     PlatformParser.reset(createXCOFFAsmParser());
808     break;
809   case MCContext::IsDXContainer:
810     llvm_unreachable("DXContainer is not supported yet");
811     break;
812   }
813 
814   PlatformParser->Initialize(*this);
815   initializeDirectiveKindMap();
816   initializeCVDefRangeTypeMap();
817 
818   NumOfMacroInstantiations = 0;
819 }
820 
821 AsmParser::~AsmParser() {
822   assert((HadError || ActiveMacros.empty()) &&
823          "Unexpected active macro instantiation!");
824 
825   // Remove MCStreamer's reference to the parser SMLoc.
826   Out.setStartTokLocPtr(nullptr);
827   // Restore the saved diagnostics handler and context for use during
828   // finalization.
829   SrcMgr.setDiagHandler(SavedDiagHandler, SavedDiagContext);
830 }
831 
832 void AsmParser::printMacroInstantiations() {
833   // Print the active macro instantiation stack.
834   for (std::vector<MacroInstantiation *>::const_reverse_iterator
835            it = ActiveMacros.rbegin(),
836            ie = ActiveMacros.rend();
837        it != ie; ++it)
838     printMessage((*it)->InstantiationLoc, SourceMgr::DK_Note,
839                  "while in macro instantiation");
840 }
841 
842 void AsmParser::Note(SMLoc L, const Twine &Msg, SMRange Range) {
843   printPendingErrors();
844   printMessage(L, SourceMgr::DK_Note, Msg, Range);
845   printMacroInstantiations();
846 }
847 
848 bool AsmParser::Warning(SMLoc L, const Twine &Msg, SMRange Range) {
849   if(getTargetParser().getTargetOptions().MCNoWarn)
850     return false;
851   if (getTargetParser().getTargetOptions().MCFatalWarnings)
852     return Error(L, Msg, Range);
853   printMessage(L, SourceMgr::DK_Warning, Msg, Range);
854   printMacroInstantiations();
855   return false;
856 }
857 
858 bool AsmParser::printError(SMLoc L, const Twine &Msg, SMRange Range) {
859   HadError = true;
860   printMessage(L, SourceMgr::DK_Error, Msg, Range);
861   printMacroInstantiations();
862   return true;
863 }
864 
865 bool AsmParser::enterIncludeFile(const std::string &Filename) {
866   std::string IncludedFile;
867   unsigned NewBuf =
868       SrcMgr.AddIncludeFile(Filename, Lexer.getLoc(), IncludedFile);
869   if (!NewBuf)
870     return true;
871 
872   CurBuffer = NewBuf;
873   Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer());
874   return false;
875 }
876 
877 /// Process the specified .incbin file by searching for it in the include paths
878 /// then just emitting the byte contents of the file to the streamer. This
879 /// returns true on failure.
880 bool AsmParser::processIncbinFile(const std::string &Filename, int64_t Skip,
881                                   const MCExpr *Count, SMLoc Loc) {
882   std::string IncludedFile;
883   unsigned NewBuf =
884       SrcMgr.AddIncludeFile(Filename, Lexer.getLoc(), IncludedFile);
885   if (!NewBuf)
886     return true;
887 
888   // Pick up the bytes from the file and emit them.
889   StringRef Bytes = SrcMgr.getMemoryBuffer(NewBuf)->getBuffer();
890   Bytes = Bytes.drop_front(Skip);
891   if (Count) {
892     int64_t Res;
893     if (!Count->evaluateAsAbsolute(Res, getStreamer().getAssemblerPtr()))
894       return Error(Loc, "expected absolute expression");
895     if (Res < 0)
896       return Warning(Loc, "negative count has no effect");
897     Bytes = Bytes.take_front(Res);
898   }
899   getStreamer().emitBytes(Bytes);
900   return false;
901 }
902 
903 void AsmParser::jumpToLoc(SMLoc Loc, unsigned InBuffer) {
904   CurBuffer = InBuffer ? InBuffer : SrcMgr.FindBufferContainingLoc(Loc);
905   Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer(),
906                   Loc.getPointer());
907 }
908 
909 const AsmToken &AsmParser::Lex() {
910   if (Lexer.getTok().is(AsmToken::Error))
911     Error(Lexer.getErrLoc(), Lexer.getErr());
912 
913   // if it's a end of statement with a comment in it
914   if (getTok().is(AsmToken::EndOfStatement)) {
915     // if this is a line comment output it.
916     if (!getTok().getString().empty() && getTok().getString().front() != '\n' &&
917         getTok().getString().front() != '\r' && MAI.preserveAsmComments())
918       Out.addExplicitComment(Twine(getTok().getString()));
919   }
920 
921   const AsmToken *tok = &Lexer.Lex();
922 
923   // Parse comments here to be deferred until end of next statement.
924   while (tok->is(AsmToken::Comment)) {
925     if (MAI.preserveAsmComments())
926       Out.addExplicitComment(Twine(tok->getString()));
927     tok = &Lexer.Lex();
928   }
929 
930   if (tok->is(AsmToken::Eof)) {
931     // If this is the end of an included file, pop the parent file off the
932     // include stack.
933     SMLoc ParentIncludeLoc = SrcMgr.getParentIncludeLoc(CurBuffer);
934     if (ParentIncludeLoc != SMLoc()) {
935       jumpToLoc(ParentIncludeLoc);
936       return Lex();
937     }
938   }
939 
940   return *tok;
941 }
942 
943 bool AsmParser::enabledGenDwarfForAssembly() {
944   // Check whether the user specified -g.
945   if (!getContext().getGenDwarfForAssembly())
946     return false;
947   // If we haven't encountered any .file directives (which would imply that
948   // the assembler source was produced with debug info already) then emit one
949   // describing the assembler source file itself.
950   if (getContext().getGenDwarfFileNumber() == 0) {
951     // Use the first #line directive for this, if any. It's preprocessed, so
952     // there is no checksum, and of course no source directive.
953     if (!FirstCppHashFilename.empty())
954       getContext().setMCLineTableRootFile(
955           /*CUID=*/0, getContext().getCompilationDir(), FirstCppHashFilename,
956           /*Cksum=*/std::nullopt, /*Source=*/std::nullopt);
957     const MCDwarfFile &RootFile =
958         getContext().getMCDwarfLineTable(/*CUID=*/0).getRootFile();
959     getContext().setGenDwarfFileNumber(getStreamer().emitDwarfFileDirective(
960         /*CUID=*/0, getContext().getCompilationDir(), RootFile.Name,
961         RootFile.Checksum, RootFile.Source));
962   }
963   return true;
964 }
965 
966 bool AsmParser::Run(bool NoInitialTextSection, bool NoFinalize) {
967   LTODiscardSymbols.clear();
968 
969   // Create the initial section, if requested.
970   if (!NoInitialTextSection)
971     Out.initSections(false, getTargetParser().getSTI());
972 
973   // Prime the lexer.
974   Lex();
975 
976   HadError = false;
977   AsmCond StartingCondState = TheCondState;
978   SmallVector<AsmRewrite, 4> AsmStrRewrites;
979 
980   // If we are generating dwarf for assembly source files save the initial text
981   // section.  (Don't use enabledGenDwarfForAssembly() here, as we aren't
982   // emitting any actual debug info yet and haven't had a chance to parse any
983   // embedded .file directives.)
984   if (getContext().getGenDwarfForAssembly()) {
985     MCSection *Sec = getStreamer().getCurrentSectionOnly();
986     if (!Sec->getBeginSymbol()) {
987       MCSymbol *SectionStartSym = getContext().createTempSymbol();
988       getStreamer().emitLabel(SectionStartSym);
989       Sec->setBeginSymbol(SectionStartSym);
990     }
991     bool InsertResult = getContext().addGenDwarfSection(Sec);
992     assert(InsertResult && ".text section should not have debug info yet");
993     (void)InsertResult;
994   }
995 
996   getTargetParser().onBeginOfFile();
997 
998   // While we have input, parse each statement.
999   while (Lexer.isNot(AsmToken::Eof)) {
1000     ParseStatementInfo Info(&AsmStrRewrites);
1001     bool Parsed = parseStatement(Info, nullptr);
1002 
1003     // If we have a Lexer Error we are on an Error Token. Load in Lexer Error
1004     // for printing ErrMsg via Lex() only if no (presumably better) parser error
1005     // exists.
1006     if (Parsed && !hasPendingError() && Lexer.getTok().is(AsmToken::Error)) {
1007       Lex();
1008     }
1009 
1010     // parseStatement returned true so may need to emit an error.
1011     printPendingErrors();
1012 
1013     // Skipping to the next line if needed.
1014     if (Parsed && !getLexer().isAtStartOfStatement())
1015       eatToEndOfStatement();
1016   }
1017 
1018   getTargetParser().onEndOfFile();
1019   printPendingErrors();
1020 
1021   // All errors should have been emitted.
1022   assert(!hasPendingError() && "unexpected error from parseStatement");
1023 
1024   getTargetParser().flushPendingInstructions(getStreamer());
1025 
1026   if (TheCondState.TheCond != StartingCondState.TheCond ||
1027       TheCondState.Ignore != StartingCondState.Ignore)
1028     printError(getTok().getLoc(), "unmatched .ifs or .elses");
1029   // Check to see there are no empty DwarfFile slots.
1030   const auto &LineTables = getContext().getMCDwarfLineTables();
1031   if (!LineTables.empty()) {
1032     unsigned Index = 0;
1033     for (const auto &File : LineTables.begin()->second.getMCDwarfFiles()) {
1034       if (File.Name.empty() && Index != 0)
1035         printError(getTok().getLoc(), "unassigned file number: " +
1036                                           Twine(Index) +
1037                                           " for .file directives");
1038       ++Index;
1039     }
1040   }
1041 
1042   // Check to see that all assembler local symbols were actually defined.
1043   // Targets that don't do subsections via symbols may not want this, though,
1044   // so conservatively exclude them. Only do this if we're finalizing, though,
1045   // as otherwise we won't necessarilly have seen everything yet.
1046   if (!NoFinalize) {
1047     if (MAI.hasSubsectionsViaSymbols()) {
1048       for (const auto &TableEntry : getContext().getSymbols()) {
1049         MCSymbol *Sym = TableEntry.getValue();
1050         // Variable symbols may not be marked as defined, so check those
1051         // explicitly. If we know it's a variable, we have a definition for
1052         // the purposes of this check.
1053         if (Sym->isTemporary() && !Sym->isVariable() && !Sym->isDefined())
1054           // FIXME: We would really like to refer back to where the symbol was
1055           // first referenced for a source location. We need to add something
1056           // to track that. Currently, we just point to the end of the file.
1057           printError(getTok().getLoc(), "assembler local symbol '" +
1058                                             Sym->getName() + "' not defined");
1059       }
1060     }
1061 
1062     // Temporary symbols like the ones for directional jumps don't go in the
1063     // symbol table. They also need to be diagnosed in all (final) cases.
1064     for (std::tuple<SMLoc, CppHashInfoTy, MCSymbol *> &LocSym : DirLabels) {
1065       if (std::get<2>(LocSym)->isUndefined()) {
1066         // Reset the state of any "# line file" directives we've seen to the
1067         // context as it was at the diagnostic site.
1068         CppHashInfo = std::get<1>(LocSym);
1069         printError(std::get<0>(LocSym), "directional label undefined");
1070       }
1071     }
1072   }
1073   // Finalize the output stream if there are no errors and if the client wants
1074   // us to.
1075   if (!HadError && !NoFinalize) {
1076     if (auto *TS = Out.getTargetStreamer())
1077       TS->emitConstantPools();
1078 
1079     Out.finish(Lexer.getLoc());
1080   }
1081 
1082   return HadError || getContext().hadError();
1083 }
1084 
1085 bool AsmParser::checkForValidSection() {
1086   if (!ParsingMSInlineAsm && !getStreamer().getCurrentSectionOnly()) {
1087     Out.initSections(false, getTargetParser().getSTI());
1088     return Error(getTok().getLoc(),
1089                  "expected section directive before assembly directive");
1090   }
1091   return false;
1092 }
1093 
1094 /// Throw away the rest of the line for testing purposes.
1095 void AsmParser::eatToEndOfStatement() {
1096   while (Lexer.isNot(AsmToken::EndOfStatement) && Lexer.isNot(AsmToken::Eof))
1097     Lexer.Lex();
1098 
1099   // Eat EOL.
1100   if (Lexer.is(AsmToken::EndOfStatement))
1101     Lexer.Lex();
1102 }
1103 
1104 StringRef AsmParser::parseStringToEndOfStatement() {
1105   const char *Start = getTok().getLoc().getPointer();
1106 
1107   while (Lexer.isNot(AsmToken::EndOfStatement) && Lexer.isNot(AsmToken::Eof))
1108     Lexer.Lex();
1109 
1110   const char *End = getTok().getLoc().getPointer();
1111   return StringRef(Start, End - Start);
1112 }
1113 
1114 StringRef AsmParser::parseStringToComma() {
1115   const char *Start = getTok().getLoc().getPointer();
1116 
1117   while (Lexer.isNot(AsmToken::EndOfStatement) &&
1118          Lexer.isNot(AsmToken::Comma) && Lexer.isNot(AsmToken::Eof))
1119     Lexer.Lex();
1120 
1121   const char *End = getTok().getLoc().getPointer();
1122   return StringRef(Start, End - Start);
1123 }
1124 
1125 /// Parse a paren expression and return it.
1126 /// NOTE: This assumes the leading '(' has already been consumed.
1127 ///
1128 /// parenexpr ::= expr)
1129 ///
1130 bool AsmParser::parseParenExpr(const MCExpr *&Res, SMLoc &EndLoc) {
1131   if (parseExpression(Res))
1132     return true;
1133   EndLoc = Lexer.getTok().getEndLoc();
1134   return parseRParen();
1135 }
1136 
1137 /// Parse a bracket expression and return it.
1138 /// NOTE: This assumes the leading '[' has already been consumed.
1139 ///
1140 /// bracketexpr ::= expr]
1141 ///
1142 bool AsmParser::parseBracketExpr(const MCExpr *&Res, SMLoc &EndLoc) {
1143   if (parseExpression(Res))
1144     return true;
1145   EndLoc = getTok().getEndLoc();
1146   if (parseToken(AsmToken::RBrac, "expected ']' in brackets expression"))
1147     return true;
1148   return false;
1149 }
1150 
1151 /// Parse a primary expression and return it.
1152 ///  primaryexpr ::= (parenexpr
1153 ///  primaryexpr ::= symbol
1154 ///  primaryexpr ::= number
1155 ///  primaryexpr ::= '.'
1156 ///  primaryexpr ::= ~,+,- primaryexpr
1157 bool AsmParser::parsePrimaryExpr(const MCExpr *&Res, SMLoc &EndLoc,
1158                                  AsmTypeInfo *TypeInfo) {
1159   SMLoc FirstTokenLoc = getLexer().getLoc();
1160   AsmToken::TokenKind FirstTokenKind = Lexer.getKind();
1161   switch (FirstTokenKind) {
1162   default:
1163     return TokError("unknown token in expression");
1164   // If we have an error assume that we've already handled it.
1165   case AsmToken::Error:
1166     return true;
1167   case AsmToken::Exclaim:
1168     Lex(); // Eat the operator.
1169     if (parsePrimaryExpr(Res, EndLoc, TypeInfo))
1170       return true;
1171     Res = MCUnaryExpr::createLNot(Res, getContext(), FirstTokenLoc);
1172     return false;
1173   case AsmToken::Dollar:
1174   case AsmToken::Star:
1175   case AsmToken::At:
1176   case AsmToken::String:
1177   case AsmToken::Identifier: {
1178     StringRef Identifier;
1179     if (parseIdentifier(Identifier)) {
1180       // We may have failed but '$'|'*' may be a valid token in context of
1181       // the current PC.
1182       if (getTok().is(AsmToken::Dollar) || getTok().is(AsmToken::Star)) {
1183         bool ShouldGenerateTempSymbol = false;
1184         if ((getTok().is(AsmToken::Dollar) && MAI.getDollarIsPC()) ||
1185             (getTok().is(AsmToken::Star) && MAI.getStarIsPC()))
1186           ShouldGenerateTempSymbol = true;
1187 
1188         if (!ShouldGenerateTempSymbol)
1189           return Error(FirstTokenLoc, "invalid token in expression");
1190 
1191         // Eat the '$'|'*' token.
1192         Lex();
1193         // This is either a '$'|'*' reference, which references the current PC.
1194         // Emit a temporary label to the streamer and refer to it.
1195         MCSymbol *Sym = Ctx.createTempSymbol();
1196         Out.emitLabel(Sym);
1197         Res = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None,
1198                                       getContext());
1199         EndLoc = FirstTokenLoc;
1200         return false;
1201       }
1202     }
1203     // Parse symbol variant
1204     std::pair<StringRef, StringRef> Split;
1205     if (!MAI.useParensForSymbolVariant()) {
1206       if (FirstTokenKind == AsmToken::String) {
1207         if (Lexer.is(AsmToken::At)) {
1208           Lex(); // eat @
1209           SMLoc AtLoc = getLexer().getLoc();
1210           StringRef VName;
1211           if (parseIdentifier(VName))
1212             return Error(AtLoc, "expected symbol variant after '@'");
1213 
1214           Split = std::make_pair(Identifier, VName);
1215         }
1216       } else {
1217         Split = Identifier.split('@');
1218       }
1219     } else if (Lexer.is(AsmToken::LParen)) {
1220       Lex(); // eat '('.
1221       StringRef VName;
1222       parseIdentifier(VName);
1223       if (parseRParen())
1224         return true;
1225       Split = std::make_pair(Identifier, VName);
1226     }
1227 
1228     EndLoc = SMLoc::getFromPointer(Identifier.end());
1229 
1230     // This is a symbol reference.
1231     StringRef SymbolName = Identifier;
1232     if (SymbolName.empty())
1233       return Error(getLexer().getLoc(), "expected a symbol reference");
1234 
1235     MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
1236 
1237     // Lookup the symbol variant if used.
1238     if (!Split.second.empty()) {
1239       Variant = MCSymbolRefExpr::getVariantKindForName(Split.second);
1240       if (Variant != MCSymbolRefExpr::VK_Invalid) {
1241         SymbolName = Split.first;
1242       } else if (MAI.doesAllowAtInName() && !MAI.useParensForSymbolVariant()) {
1243         Variant = MCSymbolRefExpr::VK_None;
1244       } else {
1245         return Error(SMLoc::getFromPointer(Split.second.begin()),
1246                      "invalid variant '" + Split.second + "'");
1247       }
1248     }
1249 
1250     MCSymbol *Sym = getContext().getInlineAsmLabel(SymbolName);
1251     if (!Sym)
1252       Sym = getContext().getOrCreateSymbol(
1253           MAI.shouldEmitLabelsInUpperCase() ? SymbolName.upper() : SymbolName);
1254 
1255     // If this is an absolute variable reference, substitute it now to preserve
1256     // semantics in the face of reassignment.
1257     if (Sym->isVariable()) {
1258       auto V = Sym->getVariableValue(/*SetUsed*/ false);
1259       bool DoInline = isa<MCConstantExpr>(V) && !Variant;
1260       if (auto TV = dyn_cast<MCTargetExpr>(V))
1261         DoInline = TV->inlineAssignedExpr();
1262       if (DoInline) {
1263         if (Variant)
1264           return Error(EndLoc, "unexpected modifier on variable reference");
1265         Res = Sym->getVariableValue(/*SetUsed*/ false);
1266         return false;
1267       }
1268     }
1269 
1270     // Otherwise create a symbol ref.
1271     Res = MCSymbolRefExpr::create(Sym, Variant, getContext(), FirstTokenLoc);
1272     return false;
1273   }
1274   case AsmToken::BigNum:
1275     return TokError("literal value out of range for directive");
1276   case AsmToken::Integer: {
1277     SMLoc Loc = getTok().getLoc();
1278     int64_t IntVal = getTok().getIntVal();
1279     Res = MCConstantExpr::create(IntVal, getContext());
1280     EndLoc = Lexer.getTok().getEndLoc();
1281     Lex(); // Eat token.
1282     // Look for 'b' or 'f' following an Integer as a directional label
1283     if (Lexer.getKind() == AsmToken::Identifier) {
1284       StringRef IDVal = getTok().getString();
1285       // Lookup the symbol variant if used.
1286       std::pair<StringRef, StringRef> Split = IDVal.split('@');
1287       MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
1288       if (Split.first.size() != IDVal.size()) {
1289         Variant = MCSymbolRefExpr::getVariantKindForName(Split.second);
1290         if (Variant == MCSymbolRefExpr::VK_Invalid)
1291           return TokError("invalid variant '" + Split.second + "'");
1292         IDVal = Split.first;
1293       }
1294       if (IDVal == "f" || IDVal == "b") {
1295         MCSymbol *Sym =
1296             Ctx.getDirectionalLocalSymbol(IntVal, IDVal == "b");
1297         Res = MCSymbolRefExpr::create(Sym, Variant, getContext());
1298         if (IDVal == "b" && Sym->isUndefined())
1299           return Error(Loc, "directional label undefined");
1300         DirLabels.push_back(std::make_tuple(Loc, CppHashInfo, Sym));
1301         EndLoc = Lexer.getTok().getEndLoc();
1302         Lex(); // Eat identifier.
1303       }
1304     }
1305     return false;
1306   }
1307   case AsmToken::Real: {
1308     APFloat RealVal(APFloat::IEEEdouble(), getTok().getString());
1309     uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
1310     Res = MCConstantExpr::create(IntVal, getContext());
1311     EndLoc = Lexer.getTok().getEndLoc();
1312     Lex(); // Eat token.
1313     return false;
1314   }
1315   case AsmToken::Dot: {
1316     if (!MAI.getDotIsPC())
1317       return TokError("cannot use . as current PC");
1318 
1319     // This is a '.' reference, which references the current PC.  Emit a
1320     // temporary label to the streamer and refer to it.
1321     MCSymbol *Sym = Ctx.createTempSymbol();
1322     Out.emitLabel(Sym);
1323     Res = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, getContext());
1324     EndLoc = Lexer.getTok().getEndLoc();
1325     Lex(); // Eat identifier.
1326     return false;
1327   }
1328   case AsmToken::LParen:
1329     Lex(); // Eat the '('.
1330     return parseParenExpr(Res, EndLoc);
1331   case AsmToken::LBrac:
1332     if (!PlatformParser->HasBracketExpressions())
1333       return TokError("brackets expression not supported on this target");
1334     Lex(); // Eat the '['.
1335     return parseBracketExpr(Res, EndLoc);
1336   case AsmToken::Minus:
1337     Lex(); // Eat the operator.
1338     if (parsePrimaryExpr(Res, EndLoc, TypeInfo))
1339       return true;
1340     Res = MCUnaryExpr::createMinus(Res, getContext(), FirstTokenLoc);
1341     return false;
1342   case AsmToken::Plus:
1343     Lex(); // Eat the operator.
1344     if (parsePrimaryExpr(Res, EndLoc, TypeInfo))
1345       return true;
1346     Res = MCUnaryExpr::createPlus(Res, getContext(), FirstTokenLoc);
1347     return false;
1348   case AsmToken::Tilde:
1349     Lex(); // Eat the operator.
1350     if (parsePrimaryExpr(Res, EndLoc, TypeInfo))
1351       return true;
1352     Res = MCUnaryExpr::createNot(Res, getContext(), FirstTokenLoc);
1353     return false;
1354   // MIPS unary expression operators. The lexer won't generate these tokens if
1355   // MCAsmInfo::HasMipsExpressions is false for the target.
1356   case AsmToken::PercentCall16:
1357   case AsmToken::PercentCall_Hi:
1358   case AsmToken::PercentCall_Lo:
1359   case AsmToken::PercentDtprel_Hi:
1360   case AsmToken::PercentDtprel_Lo:
1361   case AsmToken::PercentGot:
1362   case AsmToken::PercentGot_Disp:
1363   case AsmToken::PercentGot_Hi:
1364   case AsmToken::PercentGot_Lo:
1365   case AsmToken::PercentGot_Ofst:
1366   case AsmToken::PercentGot_Page:
1367   case AsmToken::PercentGottprel:
1368   case AsmToken::PercentGp_Rel:
1369   case AsmToken::PercentHi:
1370   case AsmToken::PercentHigher:
1371   case AsmToken::PercentHighest:
1372   case AsmToken::PercentLo:
1373   case AsmToken::PercentNeg:
1374   case AsmToken::PercentPcrel_Hi:
1375   case AsmToken::PercentPcrel_Lo:
1376   case AsmToken::PercentTlsgd:
1377   case AsmToken::PercentTlsldm:
1378   case AsmToken::PercentTprel_Hi:
1379   case AsmToken::PercentTprel_Lo:
1380     Lex(); // Eat the operator.
1381     if (Lexer.isNot(AsmToken::LParen))
1382       return TokError("expected '(' after operator");
1383     Lex(); // Eat the operator.
1384     if (parseExpression(Res, EndLoc))
1385       return true;
1386     if (parseRParen())
1387       return true;
1388     Res = getTargetParser().createTargetUnaryExpr(Res, FirstTokenKind, Ctx);
1389     return !Res;
1390   }
1391 }
1392 
1393 bool AsmParser::parseExpression(const MCExpr *&Res) {
1394   SMLoc EndLoc;
1395   return parseExpression(Res, EndLoc);
1396 }
1397 
1398 const MCExpr *
1399 AsmParser::applyModifierToExpr(const MCExpr *E,
1400                                MCSymbolRefExpr::VariantKind Variant) {
1401   // Ask the target implementation about this expression first.
1402   const MCExpr *NewE = getTargetParser().applyModifierToExpr(E, Variant, Ctx);
1403   if (NewE)
1404     return NewE;
1405   // Recurse over the given expression, rebuilding it to apply the given variant
1406   // if there is exactly one symbol.
1407   switch (E->getKind()) {
1408   case MCExpr::Target:
1409   case MCExpr::Constant:
1410     return nullptr;
1411 
1412   case MCExpr::SymbolRef: {
1413     const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(E);
1414 
1415     if (SRE->getKind() != MCSymbolRefExpr::VK_None) {
1416       TokError("invalid variant on expression '" + getTok().getIdentifier() +
1417                "' (already modified)");
1418       return E;
1419     }
1420 
1421     return MCSymbolRefExpr::create(&SRE->getSymbol(), Variant, getContext());
1422   }
1423 
1424   case MCExpr::Unary: {
1425     const MCUnaryExpr *UE = cast<MCUnaryExpr>(E);
1426     const MCExpr *Sub = applyModifierToExpr(UE->getSubExpr(), Variant);
1427     if (!Sub)
1428       return nullptr;
1429     return MCUnaryExpr::create(UE->getOpcode(), Sub, getContext());
1430   }
1431 
1432   case MCExpr::Binary: {
1433     const MCBinaryExpr *BE = cast<MCBinaryExpr>(E);
1434     const MCExpr *LHS = applyModifierToExpr(BE->getLHS(), Variant);
1435     const MCExpr *RHS = applyModifierToExpr(BE->getRHS(), Variant);
1436 
1437     if (!LHS && !RHS)
1438       return nullptr;
1439 
1440     if (!LHS)
1441       LHS = BE->getLHS();
1442     if (!RHS)
1443       RHS = BE->getRHS();
1444 
1445     return MCBinaryExpr::create(BE->getOpcode(), LHS, RHS, getContext());
1446   }
1447   }
1448 
1449   llvm_unreachable("Invalid expression kind!");
1450 }
1451 
1452 /// This function checks if the next token is <string> type or arithmetic.
1453 /// string that begin with character '<' must end with character '>'.
1454 /// otherwise it is arithmetics.
1455 /// If the function returns a 'true' value,
1456 /// the End argument will be filled with the last location pointed to the '>'
1457 /// character.
1458 
1459 /// There is a gap between the AltMacro's documentation and the single quote
1460 /// implementation. GCC does not fully support this feature and so we will not
1461 /// support it.
1462 /// TODO: Adding single quote as a string.
1463 static bool isAngleBracketString(SMLoc &StrLoc, SMLoc &EndLoc) {
1464   assert((StrLoc.getPointer() != nullptr) &&
1465          "Argument to the function cannot be a NULL value");
1466   const char *CharPtr = StrLoc.getPointer();
1467   while ((*CharPtr != '>') && (*CharPtr != '\n') && (*CharPtr != '\r') &&
1468          (*CharPtr != '\0')) {
1469     if (*CharPtr == '!')
1470       CharPtr++;
1471     CharPtr++;
1472   }
1473   if (*CharPtr == '>') {
1474     EndLoc = StrLoc.getFromPointer(CharPtr + 1);
1475     return true;
1476   }
1477   return false;
1478 }
1479 
1480 /// creating a string without the escape characters '!'.
1481 static std::string angleBracketString(StringRef AltMacroStr) {
1482   std::string Res;
1483   for (size_t Pos = 0; Pos < AltMacroStr.size(); Pos++) {
1484     if (AltMacroStr[Pos] == '!')
1485       Pos++;
1486     Res += AltMacroStr[Pos];
1487   }
1488   return Res;
1489 }
1490 
1491 /// Parse an expression and return it.
1492 ///
1493 ///  expr ::= expr &&,|| expr               -> lowest.
1494 ///  expr ::= expr |,^,&,! expr
1495 ///  expr ::= expr ==,!=,<>,<,<=,>,>= expr
1496 ///  expr ::= expr <<,>> expr
1497 ///  expr ::= expr +,- expr
1498 ///  expr ::= expr *,/,% expr               -> highest.
1499 ///  expr ::= primaryexpr
1500 ///
1501 bool AsmParser::parseExpression(const MCExpr *&Res, SMLoc &EndLoc) {
1502   // Parse the expression.
1503   Res = nullptr;
1504   if (getTargetParser().parsePrimaryExpr(Res, EndLoc) ||
1505       parseBinOpRHS(1, Res, EndLoc))
1506     return true;
1507 
1508   // As a special case, we support 'a op b @ modifier' by rewriting the
1509   // expression to include the modifier. This is inefficient, but in general we
1510   // expect users to use 'a@modifier op b'.
1511   if (Lexer.getKind() == AsmToken::At) {
1512     Lex();
1513 
1514     if (Lexer.isNot(AsmToken::Identifier))
1515       return TokError("unexpected symbol modifier following '@'");
1516 
1517     MCSymbolRefExpr::VariantKind Variant =
1518         MCSymbolRefExpr::getVariantKindForName(getTok().getIdentifier());
1519     if (Variant == MCSymbolRefExpr::VK_Invalid)
1520       return TokError("invalid variant '" + getTok().getIdentifier() + "'");
1521 
1522     const MCExpr *ModifiedRes = applyModifierToExpr(Res, Variant);
1523     if (!ModifiedRes) {
1524       return TokError("invalid modifier '" + getTok().getIdentifier() +
1525                       "' (no symbols present)");
1526     }
1527 
1528     Res = ModifiedRes;
1529     Lex();
1530   }
1531 
1532   // Try to constant fold it up front, if possible. Do not exploit
1533   // assembler here.
1534   int64_t Value;
1535   if (Res->evaluateAsAbsolute(Value))
1536     Res = MCConstantExpr::create(Value, getContext());
1537 
1538   return false;
1539 }
1540 
1541 bool AsmParser::parseParenExpression(const MCExpr *&Res, SMLoc &EndLoc) {
1542   Res = nullptr;
1543   return parseParenExpr(Res, EndLoc) || parseBinOpRHS(1, Res, EndLoc);
1544 }
1545 
1546 bool AsmParser::parseParenExprOfDepth(unsigned ParenDepth, const MCExpr *&Res,
1547                                       SMLoc &EndLoc) {
1548   if (parseParenExpr(Res, EndLoc))
1549     return true;
1550 
1551   for (; ParenDepth > 0; --ParenDepth) {
1552     if (parseBinOpRHS(1, Res, EndLoc))
1553       return true;
1554 
1555     // We don't Lex() the last RParen.
1556     // This is the same behavior as parseParenExpression().
1557     if (ParenDepth - 1 > 0) {
1558       EndLoc = getTok().getEndLoc();
1559       if (parseRParen())
1560         return true;
1561     }
1562   }
1563   return false;
1564 }
1565 
1566 bool AsmParser::parseAbsoluteExpression(int64_t &Res) {
1567   const MCExpr *Expr;
1568 
1569   SMLoc StartLoc = Lexer.getLoc();
1570   if (parseExpression(Expr))
1571     return true;
1572 
1573   if (!Expr->evaluateAsAbsolute(Res, getStreamer().getAssemblerPtr()))
1574     return Error(StartLoc, "expected absolute expression");
1575 
1576   return false;
1577 }
1578 
1579 static unsigned getDarwinBinOpPrecedence(AsmToken::TokenKind K,
1580                                          MCBinaryExpr::Opcode &Kind,
1581                                          bool ShouldUseLogicalShr) {
1582   switch (K) {
1583   default:
1584     return 0; // not a binop.
1585 
1586   // Lowest Precedence: &&, ||
1587   case AsmToken::AmpAmp:
1588     Kind = MCBinaryExpr::LAnd;
1589     return 1;
1590   case AsmToken::PipePipe:
1591     Kind = MCBinaryExpr::LOr;
1592     return 1;
1593 
1594   // Low Precedence: |, &, ^
1595   case AsmToken::Pipe:
1596     Kind = MCBinaryExpr::Or;
1597     return 2;
1598   case AsmToken::Caret:
1599     Kind = MCBinaryExpr::Xor;
1600     return 2;
1601   case AsmToken::Amp:
1602     Kind = MCBinaryExpr::And;
1603     return 2;
1604 
1605   // Low Intermediate Precedence: ==, !=, <>, <, <=, >, >=
1606   case AsmToken::EqualEqual:
1607     Kind = MCBinaryExpr::EQ;
1608     return 3;
1609   case AsmToken::ExclaimEqual:
1610   case AsmToken::LessGreater:
1611     Kind = MCBinaryExpr::NE;
1612     return 3;
1613   case AsmToken::Less:
1614     Kind = MCBinaryExpr::LT;
1615     return 3;
1616   case AsmToken::LessEqual:
1617     Kind = MCBinaryExpr::LTE;
1618     return 3;
1619   case AsmToken::Greater:
1620     Kind = MCBinaryExpr::GT;
1621     return 3;
1622   case AsmToken::GreaterEqual:
1623     Kind = MCBinaryExpr::GTE;
1624     return 3;
1625 
1626   // Intermediate Precedence: <<, >>
1627   case AsmToken::LessLess:
1628     Kind = MCBinaryExpr::Shl;
1629     return 4;
1630   case AsmToken::GreaterGreater:
1631     Kind = ShouldUseLogicalShr ? MCBinaryExpr::LShr : MCBinaryExpr::AShr;
1632     return 4;
1633 
1634   // High Intermediate Precedence: +, -
1635   case AsmToken::Plus:
1636     Kind = MCBinaryExpr::Add;
1637     return 5;
1638   case AsmToken::Minus:
1639     Kind = MCBinaryExpr::Sub;
1640     return 5;
1641 
1642   // Highest Precedence: *, /, %
1643   case AsmToken::Star:
1644     Kind = MCBinaryExpr::Mul;
1645     return 6;
1646   case AsmToken::Slash:
1647     Kind = MCBinaryExpr::Div;
1648     return 6;
1649   case AsmToken::Percent:
1650     Kind = MCBinaryExpr::Mod;
1651     return 6;
1652   }
1653 }
1654 
1655 static unsigned getGNUBinOpPrecedence(const MCAsmInfo &MAI,
1656                                       AsmToken::TokenKind K,
1657                                       MCBinaryExpr::Opcode &Kind,
1658                                       bool ShouldUseLogicalShr) {
1659   switch (K) {
1660   default:
1661     return 0; // not a binop.
1662 
1663   // Lowest Precedence: &&, ||
1664   case AsmToken::AmpAmp:
1665     Kind = MCBinaryExpr::LAnd;
1666     return 2;
1667   case AsmToken::PipePipe:
1668     Kind = MCBinaryExpr::LOr;
1669     return 1;
1670 
1671   // Low Precedence: ==, !=, <>, <, <=, >, >=
1672   case AsmToken::EqualEqual:
1673     Kind = MCBinaryExpr::EQ;
1674     return 3;
1675   case AsmToken::ExclaimEqual:
1676   case AsmToken::LessGreater:
1677     Kind = MCBinaryExpr::NE;
1678     return 3;
1679   case AsmToken::Less:
1680     Kind = MCBinaryExpr::LT;
1681     return 3;
1682   case AsmToken::LessEqual:
1683     Kind = MCBinaryExpr::LTE;
1684     return 3;
1685   case AsmToken::Greater:
1686     Kind = MCBinaryExpr::GT;
1687     return 3;
1688   case AsmToken::GreaterEqual:
1689     Kind = MCBinaryExpr::GTE;
1690     return 3;
1691 
1692   // Low Intermediate Precedence: +, -
1693   case AsmToken::Plus:
1694     Kind = MCBinaryExpr::Add;
1695     return 4;
1696   case AsmToken::Minus:
1697     Kind = MCBinaryExpr::Sub;
1698     return 4;
1699 
1700   // High Intermediate Precedence: |, !, &, ^
1701   //
1702   case AsmToken::Pipe:
1703     Kind = MCBinaryExpr::Or;
1704     return 5;
1705   case AsmToken::Exclaim:
1706     // Hack to support ARM compatible aliases (implied 'sp' operand in 'srs*'
1707     // instructions like 'srsda #31!') and not parse ! as an infix operator.
1708     if (MAI.getCommentString() == "@")
1709       return 0;
1710     Kind = MCBinaryExpr::OrNot;
1711     return 5;
1712   case AsmToken::Caret:
1713     Kind = MCBinaryExpr::Xor;
1714     return 5;
1715   case AsmToken::Amp:
1716     Kind = MCBinaryExpr::And;
1717     return 5;
1718 
1719   // Highest Precedence: *, /, %, <<, >>
1720   case AsmToken::Star:
1721     Kind = MCBinaryExpr::Mul;
1722     return 6;
1723   case AsmToken::Slash:
1724     Kind = MCBinaryExpr::Div;
1725     return 6;
1726   case AsmToken::Percent:
1727     Kind = MCBinaryExpr::Mod;
1728     return 6;
1729   case AsmToken::LessLess:
1730     Kind = MCBinaryExpr::Shl;
1731     return 6;
1732   case AsmToken::GreaterGreater:
1733     Kind = ShouldUseLogicalShr ? MCBinaryExpr::LShr : MCBinaryExpr::AShr;
1734     return 6;
1735   }
1736 }
1737 
1738 unsigned AsmParser::getBinOpPrecedence(AsmToken::TokenKind K,
1739                                        MCBinaryExpr::Opcode &Kind) {
1740   bool ShouldUseLogicalShr = MAI.shouldUseLogicalShr();
1741   return IsDarwin ? getDarwinBinOpPrecedence(K, Kind, ShouldUseLogicalShr)
1742                   : getGNUBinOpPrecedence(MAI, K, Kind, ShouldUseLogicalShr);
1743 }
1744 
1745 /// Parse all binary operators with precedence >= 'Precedence'.
1746 /// Res contains the LHS of the expression on input.
1747 bool AsmParser::parseBinOpRHS(unsigned Precedence, const MCExpr *&Res,
1748                               SMLoc &EndLoc) {
1749   SMLoc StartLoc = Lexer.getLoc();
1750   while (true) {
1751     MCBinaryExpr::Opcode Kind = MCBinaryExpr::Add;
1752     unsigned TokPrec = getBinOpPrecedence(Lexer.getKind(), Kind);
1753 
1754     // If the next token is lower precedence than we are allowed to eat, return
1755     // successfully with what we ate already.
1756     if (TokPrec < Precedence)
1757       return false;
1758 
1759     Lex();
1760 
1761     // Eat the next primary expression.
1762     const MCExpr *RHS;
1763     if (getTargetParser().parsePrimaryExpr(RHS, EndLoc))
1764       return true;
1765 
1766     // If BinOp binds less tightly with RHS than the operator after RHS, let
1767     // the pending operator take RHS as its LHS.
1768     MCBinaryExpr::Opcode Dummy;
1769     unsigned NextTokPrec = getBinOpPrecedence(Lexer.getKind(), Dummy);
1770     if (TokPrec < NextTokPrec && parseBinOpRHS(TokPrec + 1, RHS, EndLoc))
1771       return true;
1772 
1773     // Merge LHS and RHS according to operator.
1774     Res = MCBinaryExpr::create(Kind, Res, RHS, getContext(), StartLoc);
1775   }
1776 }
1777 
1778 /// ParseStatement:
1779 ///   ::= EndOfStatement
1780 ///   ::= Label* Directive ...Operands... EndOfStatement
1781 ///   ::= Label* Identifier OperandList* EndOfStatement
1782 bool AsmParser::parseStatement(ParseStatementInfo &Info,
1783                                MCAsmParserSemaCallback *SI) {
1784   assert(!hasPendingError() && "parseStatement started with pending error");
1785   // Eat initial spaces and comments
1786   while (Lexer.is(AsmToken::Space))
1787     Lex();
1788   if (Lexer.is(AsmToken::EndOfStatement)) {
1789     // if this is a line comment we can drop it safely
1790     if (getTok().getString().empty() || getTok().getString().front() == '\r' ||
1791         getTok().getString().front() == '\n')
1792       Out.addBlankLine();
1793     Lex();
1794     return false;
1795   }
1796   // Statements always start with an identifier.
1797   AsmToken ID = getTok();
1798   SMLoc IDLoc = ID.getLoc();
1799   StringRef IDVal;
1800   int64_t LocalLabelVal = -1;
1801   StartTokLoc = ID.getLoc();
1802   if (Lexer.is(AsmToken::HashDirective))
1803     return parseCppHashLineFilenameComment(IDLoc,
1804                                            !isInsideMacroInstantiation());
1805 
1806   // Allow an integer followed by a ':' as a directional local label.
1807   if (Lexer.is(AsmToken::Integer)) {
1808     LocalLabelVal = getTok().getIntVal();
1809     if (LocalLabelVal < 0) {
1810       if (!TheCondState.Ignore) {
1811         Lex(); // always eat a token
1812         return Error(IDLoc, "unexpected token at start of statement");
1813       }
1814       IDVal = "";
1815     } else {
1816       IDVal = getTok().getString();
1817       Lex(); // Consume the integer token to be used as an identifier token.
1818       if (Lexer.getKind() != AsmToken::Colon) {
1819         if (!TheCondState.Ignore) {
1820           Lex(); // always eat a token
1821           return Error(IDLoc, "unexpected token at start of statement");
1822         }
1823       }
1824     }
1825   } else if (Lexer.is(AsmToken::Dot)) {
1826     // Treat '.' as a valid identifier in this context.
1827     Lex();
1828     IDVal = ".";
1829   } else if (Lexer.is(AsmToken::LCurly)) {
1830     // Treat '{' as a valid identifier in this context.
1831     Lex();
1832     IDVal = "{";
1833 
1834   } else if (Lexer.is(AsmToken::RCurly)) {
1835     // Treat '}' as a valid identifier in this context.
1836     Lex();
1837     IDVal = "}";
1838   } else if (Lexer.is(AsmToken::Star) &&
1839              getTargetParser().starIsStartOfStatement()) {
1840     // Accept '*' as a valid start of statement.
1841     Lex();
1842     IDVal = "*";
1843   } else if (parseIdentifier(IDVal)) {
1844     if (!TheCondState.Ignore) {
1845       Lex(); // always eat a token
1846       return Error(IDLoc, "unexpected token at start of statement");
1847     }
1848     IDVal = "";
1849   }
1850 
1851   // Handle conditional assembly here before checking for skipping.  We
1852   // have to do this so that .endif isn't skipped in a ".if 0" block for
1853   // example.
1854   StringMap<DirectiveKind>::const_iterator DirKindIt =
1855       DirectiveKindMap.find(IDVal.lower());
1856   DirectiveKind DirKind = (DirKindIt == DirectiveKindMap.end())
1857                               ? DK_NO_DIRECTIVE
1858                               : DirKindIt->getValue();
1859   switch (DirKind) {
1860   default:
1861     break;
1862   case DK_IF:
1863   case DK_IFEQ:
1864   case DK_IFGE:
1865   case DK_IFGT:
1866   case DK_IFLE:
1867   case DK_IFLT:
1868   case DK_IFNE:
1869     return parseDirectiveIf(IDLoc, DirKind);
1870   case DK_IFB:
1871     return parseDirectiveIfb(IDLoc, true);
1872   case DK_IFNB:
1873     return parseDirectiveIfb(IDLoc, false);
1874   case DK_IFC:
1875     return parseDirectiveIfc(IDLoc, true);
1876   case DK_IFEQS:
1877     return parseDirectiveIfeqs(IDLoc, true);
1878   case DK_IFNC:
1879     return parseDirectiveIfc(IDLoc, false);
1880   case DK_IFNES:
1881     return parseDirectiveIfeqs(IDLoc, false);
1882   case DK_IFDEF:
1883     return parseDirectiveIfdef(IDLoc, true);
1884   case DK_IFNDEF:
1885   case DK_IFNOTDEF:
1886     return parseDirectiveIfdef(IDLoc, false);
1887   case DK_ELSEIF:
1888     return parseDirectiveElseIf(IDLoc);
1889   case DK_ELSE:
1890     return parseDirectiveElse(IDLoc);
1891   case DK_ENDIF:
1892     return parseDirectiveEndIf(IDLoc);
1893   }
1894 
1895   // Ignore the statement if in the middle of inactive conditional
1896   // (e.g. ".if 0").
1897   if (TheCondState.Ignore) {
1898     eatToEndOfStatement();
1899     return false;
1900   }
1901 
1902   // FIXME: Recurse on local labels?
1903 
1904   // Check for a label.
1905   //   ::= identifier ':'
1906   //   ::= number ':'
1907   if (Lexer.is(AsmToken::Colon) && getTargetParser().isLabel(ID)) {
1908     if (checkForValidSection())
1909       return true;
1910 
1911     Lex(); // Consume the ':'.
1912 
1913     // Diagnose attempt to use '.' as a label.
1914     if (IDVal == ".")
1915       return Error(IDLoc, "invalid use of pseudo-symbol '.' as a label");
1916 
1917     // Diagnose attempt to use a variable as a label.
1918     //
1919     // FIXME: Diagnostics. Note the location of the definition as a label.
1920     // FIXME: This doesn't diagnose assignment to a symbol which has been
1921     // implicitly marked as external.
1922     MCSymbol *Sym;
1923     if (LocalLabelVal == -1) {
1924       if (ParsingMSInlineAsm && SI) {
1925         StringRef RewrittenLabel =
1926             SI->LookupInlineAsmLabel(IDVal, getSourceManager(), IDLoc, true);
1927         assert(!RewrittenLabel.empty() &&
1928                "We should have an internal name here.");
1929         Info.AsmRewrites->emplace_back(AOK_Label, IDLoc, IDVal.size(),
1930                                        RewrittenLabel);
1931         IDVal = RewrittenLabel;
1932       }
1933       Sym = getContext().getOrCreateSymbol(IDVal);
1934     } else
1935       Sym = Ctx.createDirectionalLocalSymbol(LocalLabelVal);
1936     // End of Labels should be treated as end of line for lexing
1937     // purposes but that information is not available to the Lexer who
1938     // does not understand Labels. This may cause us to see a Hash
1939     // here instead of a preprocessor line comment.
1940     if (getTok().is(AsmToken::Hash)) {
1941       StringRef CommentStr = parseStringToEndOfStatement();
1942       Lexer.Lex();
1943       Lexer.UnLex(AsmToken(AsmToken::EndOfStatement, CommentStr));
1944     }
1945 
1946     // Consume any end of statement token, if present, to avoid spurious
1947     // addBlankLine calls().
1948     if (getTok().is(AsmToken::EndOfStatement)) {
1949       Lex();
1950     }
1951 
1952     if (discardLTOSymbol(IDVal))
1953       return false;
1954 
1955     getTargetParser().doBeforeLabelEmit(Sym, IDLoc);
1956 
1957     // Emit the label.
1958     if (!getTargetParser().isParsingMSInlineAsm())
1959       Out.emitLabel(Sym, IDLoc);
1960 
1961     // If we are generating dwarf for assembly source files then gather the
1962     // info to make a dwarf label entry for this label if needed.
1963     if (enabledGenDwarfForAssembly())
1964       MCGenDwarfLabelEntry::Make(Sym, &getStreamer(), getSourceManager(),
1965                                  IDLoc);
1966 
1967     getTargetParser().onLabelParsed(Sym);
1968 
1969     return false;
1970   }
1971 
1972   // Check for an assignment statement.
1973   //   ::= identifier '='
1974   if (Lexer.is(AsmToken::Equal) && getTargetParser().equalIsAsmAssignment()) {
1975     Lex();
1976     return parseAssignment(IDVal, AssignmentKind::Equal);
1977   }
1978 
1979   // If macros are enabled, check to see if this is a macro instantiation.
1980   if (areMacrosEnabled())
1981     if (const MCAsmMacro *M = getContext().lookupMacro(IDVal)) {
1982       return handleMacroEntry(M, IDLoc);
1983     }
1984 
1985   // Otherwise, we have a normal instruction or directive.
1986 
1987   // Directives start with "."
1988   if (IDVal.startswith(".") && IDVal != ".") {
1989     // There are several entities interested in parsing directives:
1990     //
1991     // 1. The target-specific assembly parser. Some directives are target
1992     //    specific or may potentially behave differently on certain targets.
1993     // 2. Asm parser extensions. For example, platform-specific parsers
1994     //    (like the ELF parser) register themselves as extensions.
1995     // 3. The generic directive parser implemented by this class. These are
1996     //    all the directives that behave in a target and platform independent
1997     //    manner, or at least have a default behavior that's shared between
1998     //    all targets and platforms.
1999 
2000     getTargetParser().flushPendingInstructions(getStreamer());
2001 
2002     SMLoc StartTokLoc = getTok().getLoc();
2003     bool TPDirectiveReturn = getTargetParser().ParseDirective(ID);
2004 
2005     if (hasPendingError())
2006       return true;
2007     // Currently the return value should be true if we are
2008     // uninterested but as this is at odds with the standard parsing
2009     // convention (return true = error) we have instances of a parsed
2010     // directive that fails returning true as an error. Catch these
2011     // cases as best as possible errors here.
2012     if (TPDirectiveReturn && StartTokLoc != getTok().getLoc())
2013       return true;
2014     // Return if we did some parsing or believe we succeeded.
2015     if (!TPDirectiveReturn || StartTokLoc != getTok().getLoc())
2016       return false;
2017 
2018     // Next, check the extension directive map to see if any extension has
2019     // registered itself to parse this directive.
2020     std::pair<MCAsmParserExtension *, DirectiveHandler> Handler =
2021         ExtensionDirectiveMap.lookup(IDVal);
2022     if (Handler.first)
2023       return (*Handler.second)(Handler.first, IDVal, IDLoc);
2024 
2025     // Finally, if no one else is interested in this directive, it must be
2026     // generic and familiar to this class.
2027     switch (DirKind) {
2028     default:
2029       break;
2030     case DK_SET:
2031     case DK_EQU:
2032       return parseDirectiveSet(IDVal, AssignmentKind::Set);
2033     case DK_EQUIV:
2034       return parseDirectiveSet(IDVal, AssignmentKind::Equiv);
2035     case DK_LTO_SET_CONDITIONAL:
2036       return parseDirectiveSet(IDVal, AssignmentKind::LTOSetConditional);
2037     case DK_ASCII:
2038       return parseDirectiveAscii(IDVal, false);
2039     case DK_ASCIZ:
2040     case DK_STRING:
2041       return parseDirectiveAscii(IDVal, true);
2042     case DK_BYTE:
2043     case DK_DC_B:
2044       return parseDirectiveValue(IDVal, 1);
2045     case DK_DC:
2046     case DK_DC_W:
2047     case DK_SHORT:
2048     case DK_VALUE:
2049     case DK_2BYTE:
2050       return parseDirectiveValue(IDVal, 2);
2051     case DK_LONG:
2052     case DK_INT:
2053     case DK_4BYTE:
2054     case DK_DC_L:
2055       return parseDirectiveValue(IDVal, 4);
2056     case DK_QUAD:
2057     case DK_8BYTE:
2058       return parseDirectiveValue(IDVal, 8);
2059     case DK_DC_A:
2060       return parseDirectiveValue(
2061           IDVal, getContext().getAsmInfo()->getCodePointerSize());
2062     case DK_OCTA:
2063       return parseDirectiveOctaValue(IDVal);
2064     case DK_SINGLE:
2065     case DK_FLOAT:
2066     case DK_DC_S:
2067       return parseDirectiveRealValue(IDVal, APFloat::IEEEsingle());
2068     case DK_DOUBLE:
2069     case DK_DC_D:
2070       return parseDirectiveRealValue(IDVal, APFloat::IEEEdouble());
2071     case DK_ALIGN: {
2072       bool IsPow2 = !getContext().getAsmInfo()->getAlignmentIsInBytes();
2073       return parseDirectiveAlign(IsPow2, /*ExprSize=*/1);
2074     }
2075     case DK_ALIGN32: {
2076       bool IsPow2 = !getContext().getAsmInfo()->getAlignmentIsInBytes();
2077       return parseDirectiveAlign(IsPow2, /*ExprSize=*/4);
2078     }
2079     case DK_BALIGN:
2080       return parseDirectiveAlign(/*IsPow2=*/false, /*ExprSize=*/1);
2081     case DK_BALIGNW:
2082       return parseDirectiveAlign(/*IsPow2=*/false, /*ExprSize=*/2);
2083     case DK_BALIGNL:
2084       return parseDirectiveAlign(/*IsPow2=*/false, /*ExprSize=*/4);
2085     case DK_P2ALIGN:
2086       return parseDirectiveAlign(/*IsPow2=*/true, /*ExprSize=*/1);
2087     case DK_P2ALIGNW:
2088       return parseDirectiveAlign(/*IsPow2=*/true, /*ExprSize=*/2);
2089     case DK_P2ALIGNL:
2090       return parseDirectiveAlign(/*IsPow2=*/true, /*ExprSize=*/4);
2091     case DK_ORG:
2092       return parseDirectiveOrg();
2093     case DK_FILL:
2094       return parseDirectiveFill();
2095     case DK_ZERO:
2096       return parseDirectiveZero();
2097     case DK_EXTERN:
2098       eatToEndOfStatement(); // .extern is the default, ignore it.
2099       return false;
2100     case DK_GLOBL:
2101     case DK_GLOBAL:
2102       return parseDirectiveSymbolAttribute(MCSA_Global);
2103     case DK_LAZY_REFERENCE:
2104       return parseDirectiveSymbolAttribute(MCSA_LazyReference);
2105     case DK_NO_DEAD_STRIP:
2106       return parseDirectiveSymbolAttribute(MCSA_NoDeadStrip);
2107     case DK_SYMBOL_RESOLVER:
2108       return parseDirectiveSymbolAttribute(MCSA_SymbolResolver);
2109     case DK_PRIVATE_EXTERN:
2110       return parseDirectiveSymbolAttribute(MCSA_PrivateExtern);
2111     case DK_REFERENCE:
2112       return parseDirectiveSymbolAttribute(MCSA_Reference);
2113     case DK_WEAK_DEFINITION:
2114       return parseDirectiveSymbolAttribute(MCSA_WeakDefinition);
2115     case DK_WEAK_REFERENCE:
2116       return parseDirectiveSymbolAttribute(MCSA_WeakReference);
2117     case DK_WEAK_DEF_CAN_BE_HIDDEN:
2118       return parseDirectiveSymbolAttribute(MCSA_WeakDefAutoPrivate);
2119     case DK_COLD:
2120       return parseDirectiveSymbolAttribute(MCSA_Cold);
2121     case DK_COMM:
2122     case DK_COMMON:
2123       return parseDirectiveComm(/*IsLocal=*/false);
2124     case DK_LCOMM:
2125       return parseDirectiveComm(/*IsLocal=*/true);
2126     case DK_ABORT:
2127       return parseDirectiveAbort();
2128     case DK_INCLUDE:
2129       return parseDirectiveInclude();
2130     case DK_INCBIN:
2131       return parseDirectiveIncbin();
2132     case DK_CODE16:
2133     case DK_CODE16GCC:
2134       return TokError(Twine(IDVal) +
2135                       " not currently supported for this target");
2136     case DK_REPT:
2137       return parseDirectiveRept(IDLoc, IDVal);
2138     case DK_IRP:
2139       return parseDirectiveIrp(IDLoc);
2140     case DK_IRPC:
2141       return parseDirectiveIrpc(IDLoc);
2142     case DK_ENDR:
2143       return parseDirectiveEndr(IDLoc);
2144     case DK_BUNDLE_ALIGN_MODE:
2145       return parseDirectiveBundleAlignMode();
2146     case DK_BUNDLE_LOCK:
2147       return parseDirectiveBundleLock();
2148     case DK_BUNDLE_UNLOCK:
2149       return parseDirectiveBundleUnlock();
2150     case DK_SLEB128:
2151       return parseDirectiveLEB128(true);
2152     case DK_ULEB128:
2153       return parseDirectiveLEB128(false);
2154     case DK_SPACE:
2155     case DK_SKIP:
2156       return parseDirectiveSpace(IDVal);
2157     case DK_FILE:
2158       return parseDirectiveFile(IDLoc);
2159     case DK_LINE:
2160       return parseDirectiveLine();
2161     case DK_LOC:
2162       return parseDirectiveLoc();
2163     case DK_STABS:
2164       return parseDirectiveStabs();
2165     case DK_CV_FILE:
2166       return parseDirectiveCVFile();
2167     case DK_CV_FUNC_ID:
2168       return parseDirectiveCVFuncId();
2169     case DK_CV_INLINE_SITE_ID:
2170       return parseDirectiveCVInlineSiteId();
2171     case DK_CV_LOC:
2172       return parseDirectiveCVLoc();
2173     case DK_CV_LINETABLE:
2174       return parseDirectiveCVLinetable();
2175     case DK_CV_INLINE_LINETABLE:
2176       return parseDirectiveCVInlineLinetable();
2177     case DK_CV_DEF_RANGE:
2178       return parseDirectiveCVDefRange();
2179     case DK_CV_STRING:
2180       return parseDirectiveCVString();
2181     case DK_CV_STRINGTABLE:
2182       return parseDirectiveCVStringTable();
2183     case DK_CV_FILECHECKSUMS:
2184       return parseDirectiveCVFileChecksums();
2185     case DK_CV_FILECHECKSUM_OFFSET:
2186       return parseDirectiveCVFileChecksumOffset();
2187     case DK_CV_FPO_DATA:
2188       return parseDirectiveCVFPOData();
2189     case DK_CFI_SECTIONS:
2190       return parseDirectiveCFISections();
2191     case DK_CFI_STARTPROC:
2192       return parseDirectiveCFIStartProc();
2193     case DK_CFI_ENDPROC:
2194       return parseDirectiveCFIEndProc();
2195     case DK_CFI_DEF_CFA:
2196       return parseDirectiveCFIDefCfa(IDLoc);
2197     case DK_CFI_DEF_CFA_OFFSET:
2198       return parseDirectiveCFIDefCfaOffset();
2199     case DK_CFI_ADJUST_CFA_OFFSET:
2200       return parseDirectiveCFIAdjustCfaOffset();
2201     case DK_CFI_DEF_CFA_REGISTER:
2202       return parseDirectiveCFIDefCfaRegister(IDLoc);
2203     case DK_CFI_LLVM_DEF_ASPACE_CFA:
2204       return parseDirectiveCFILLVMDefAspaceCfa(IDLoc);
2205     case DK_CFI_OFFSET:
2206       return parseDirectiveCFIOffset(IDLoc);
2207     case DK_CFI_REL_OFFSET:
2208       return parseDirectiveCFIRelOffset(IDLoc);
2209     case DK_CFI_PERSONALITY:
2210       return parseDirectiveCFIPersonalityOrLsda(true);
2211     case DK_CFI_LSDA:
2212       return parseDirectiveCFIPersonalityOrLsda(false);
2213     case DK_CFI_REMEMBER_STATE:
2214       return parseDirectiveCFIRememberState();
2215     case DK_CFI_RESTORE_STATE:
2216       return parseDirectiveCFIRestoreState();
2217     case DK_CFI_SAME_VALUE:
2218       return parseDirectiveCFISameValue(IDLoc);
2219     case DK_CFI_RESTORE:
2220       return parseDirectiveCFIRestore(IDLoc);
2221     case DK_CFI_ESCAPE:
2222       return parseDirectiveCFIEscape();
2223     case DK_CFI_RETURN_COLUMN:
2224       return parseDirectiveCFIReturnColumn(IDLoc);
2225     case DK_CFI_SIGNAL_FRAME:
2226       return parseDirectiveCFISignalFrame();
2227     case DK_CFI_UNDEFINED:
2228       return parseDirectiveCFIUndefined(IDLoc);
2229     case DK_CFI_REGISTER:
2230       return parseDirectiveCFIRegister(IDLoc);
2231     case DK_CFI_WINDOW_SAVE:
2232       return parseDirectiveCFIWindowSave();
2233     case DK_MACROS_ON:
2234     case DK_MACROS_OFF:
2235       return parseDirectiveMacrosOnOff(IDVal);
2236     case DK_MACRO:
2237       return parseDirectiveMacro(IDLoc);
2238     case DK_ALTMACRO:
2239     case DK_NOALTMACRO:
2240       return parseDirectiveAltmacro(IDVal);
2241     case DK_EXITM:
2242       return parseDirectiveExitMacro(IDVal);
2243     case DK_ENDM:
2244     case DK_ENDMACRO:
2245       return parseDirectiveEndMacro(IDVal);
2246     case DK_PURGEM:
2247       return parseDirectivePurgeMacro(IDLoc);
2248     case DK_END:
2249       return parseDirectiveEnd(IDLoc);
2250     case DK_ERR:
2251       return parseDirectiveError(IDLoc, false);
2252     case DK_ERROR:
2253       return parseDirectiveError(IDLoc, true);
2254     case DK_WARNING:
2255       return parseDirectiveWarning(IDLoc);
2256     case DK_RELOC:
2257       return parseDirectiveReloc(IDLoc);
2258     case DK_DCB:
2259     case DK_DCB_W:
2260       return parseDirectiveDCB(IDVal, 2);
2261     case DK_DCB_B:
2262       return parseDirectiveDCB(IDVal, 1);
2263     case DK_DCB_D:
2264       return parseDirectiveRealDCB(IDVal, APFloat::IEEEdouble());
2265     case DK_DCB_L:
2266       return parseDirectiveDCB(IDVal, 4);
2267     case DK_DCB_S:
2268       return parseDirectiveRealDCB(IDVal, APFloat::IEEEsingle());
2269     case DK_DC_X:
2270     case DK_DCB_X:
2271       return TokError(Twine(IDVal) +
2272                       " not currently supported for this target");
2273     case DK_DS:
2274     case DK_DS_W:
2275       return parseDirectiveDS(IDVal, 2);
2276     case DK_DS_B:
2277       return parseDirectiveDS(IDVal, 1);
2278     case DK_DS_D:
2279       return parseDirectiveDS(IDVal, 8);
2280     case DK_DS_L:
2281     case DK_DS_S:
2282       return parseDirectiveDS(IDVal, 4);
2283     case DK_DS_P:
2284     case DK_DS_X:
2285       return parseDirectiveDS(IDVal, 12);
2286     case DK_PRINT:
2287       return parseDirectivePrint(IDLoc);
2288     case DK_ADDRSIG:
2289       return parseDirectiveAddrsig();
2290     case DK_ADDRSIG_SYM:
2291       return parseDirectiveAddrsigSym();
2292     case DK_PSEUDO_PROBE:
2293       return parseDirectivePseudoProbe();
2294     case DK_LTO_DISCARD:
2295       return parseDirectiveLTODiscard();
2296     case DK_MEMTAG:
2297       return parseDirectiveSymbolAttribute(MCSA_Memtag);
2298     }
2299 
2300     return Error(IDLoc, "unknown directive");
2301   }
2302 
2303   // __asm _emit or __asm __emit
2304   if (ParsingMSInlineAsm && (IDVal == "_emit" || IDVal == "__emit" ||
2305                              IDVal == "_EMIT" || IDVal == "__EMIT"))
2306     return parseDirectiveMSEmit(IDLoc, Info, IDVal.size());
2307 
2308   // __asm align
2309   if (ParsingMSInlineAsm && (IDVal == "align" || IDVal == "ALIGN"))
2310     return parseDirectiveMSAlign(IDLoc, Info);
2311 
2312   if (ParsingMSInlineAsm && (IDVal == "even" || IDVal == "EVEN"))
2313     Info.AsmRewrites->emplace_back(AOK_EVEN, IDLoc, 4);
2314   if (checkForValidSection())
2315     return true;
2316 
2317   return parseAndMatchAndEmitTargetInstruction(Info, IDVal, ID, IDLoc);
2318 }
2319 
2320 bool AsmParser::parseAndMatchAndEmitTargetInstruction(ParseStatementInfo &Info,
2321                                                       StringRef IDVal,
2322                                                       AsmToken ID,
2323                                                       SMLoc IDLoc) {
2324   // Canonicalize the opcode to lower case.
2325   std::string OpcodeStr = IDVal.lower();
2326   ParseInstructionInfo IInfo(Info.AsmRewrites);
2327   bool ParseHadError = getTargetParser().ParseInstruction(IInfo, OpcodeStr, ID,
2328                                                           Info.ParsedOperands);
2329   Info.ParseError = ParseHadError;
2330 
2331   // Dump the parsed representation, if requested.
2332   if (getShowParsedOperands()) {
2333     SmallString<256> Str;
2334     raw_svector_ostream OS(Str);
2335     OS << "parsed instruction: [";
2336     for (unsigned i = 0; i != Info.ParsedOperands.size(); ++i) {
2337       if (i != 0)
2338         OS << ", ";
2339       Info.ParsedOperands[i]->print(OS);
2340     }
2341     OS << "]";
2342 
2343     printMessage(IDLoc, SourceMgr::DK_Note, OS.str());
2344   }
2345 
2346   // Fail even if ParseInstruction erroneously returns false.
2347   if (hasPendingError() || ParseHadError)
2348     return true;
2349 
2350   // If we are generating dwarf for the current section then generate a .loc
2351   // directive for the instruction.
2352   if (!ParseHadError && enabledGenDwarfForAssembly() &&
2353       getContext().getGenDwarfSectionSyms().count(
2354           getStreamer().getCurrentSectionOnly())) {
2355     unsigned Line;
2356     if (ActiveMacros.empty())
2357       Line = SrcMgr.FindLineNumber(IDLoc, CurBuffer);
2358     else
2359       Line = SrcMgr.FindLineNumber(ActiveMacros.front()->InstantiationLoc,
2360                                    ActiveMacros.front()->ExitBuffer);
2361 
2362     // If we previously parsed a cpp hash file line comment then make sure the
2363     // current Dwarf File is for the CppHashFilename if not then emit the
2364     // Dwarf File table for it and adjust the line number for the .loc.
2365     if (!CppHashInfo.Filename.empty()) {
2366       unsigned FileNumber = getStreamer().emitDwarfFileDirective(
2367           0, StringRef(), CppHashInfo.Filename);
2368       getContext().setGenDwarfFileNumber(FileNumber);
2369 
2370       unsigned CppHashLocLineNo =
2371         SrcMgr.FindLineNumber(CppHashInfo.Loc, CppHashInfo.Buf);
2372       Line = CppHashInfo.LineNumber - 1 + (Line - CppHashLocLineNo);
2373     }
2374 
2375     getStreamer().emitDwarfLocDirective(
2376         getContext().getGenDwarfFileNumber(), Line, 0,
2377         DWARF2_LINE_DEFAULT_IS_STMT ? DWARF2_FLAG_IS_STMT : 0, 0, 0,
2378         StringRef());
2379   }
2380 
2381   // If parsing succeeded, match the instruction.
2382   if (!ParseHadError) {
2383     uint64_t ErrorInfo;
2384     if (getTargetParser().MatchAndEmitInstruction(
2385             IDLoc, Info.Opcode, Info.ParsedOperands, Out, ErrorInfo,
2386             getTargetParser().isParsingMSInlineAsm()))
2387       return true;
2388   }
2389   return false;
2390 }
2391 
2392 // Parse and erase curly braces marking block start/end
2393 bool
2394 AsmParser::parseCurlyBlockScope(SmallVectorImpl<AsmRewrite> &AsmStrRewrites) {
2395   // Identify curly brace marking block start/end
2396   if (Lexer.isNot(AsmToken::LCurly) && Lexer.isNot(AsmToken::RCurly))
2397     return false;
2398 
2399   SMLoc StartLoc = Lexer.getLoc();
2400   Lex(); // Eat the brace
2401   if (Lexer.is(AsmToken::EndOfStatement))
2402     Lex(); // Eat EndOfStatement following the brace
2403 
2404   // Erase the block start/end brace from the output asm string
2405   AsmStrRewrites.emplace_back(AOK_Skip, StartLoc, Lexer.getLoc().getPointer() -
2406                                                   StartLoc.getPointer());
2407   return true;
2408 }
2409 
2410 /// parseCppHashLineFilenameComment as this:
2411 ///   ::= # number "filename"
2412 bool AsmParser::parseCppHashLineFilenameComment(SMLoc L, bool SaveLocInfo) {
2413   Lex(); // Eat the hash token.
2414   // Lexer only ever emits HashDirective if it fully formed if it's
2415   // done the checking already so this is an internal error.
2416   assert(getTok().is(AsmToken::Integer) &&
2417          "Lexing Cpp line comment: Expected Integer");
2418   int64_t LineNumber = getTok().getIntVal();
2419   Lex();
2420   assert(getTok().is(AsmToken::String) &&
2421          "Lexing Cpp line comment: Expected String");
2422   StringRef Filename = getTok().getString();
2423   Lex();
2424 
2425   if (!SaveLocInfo)
2426     return false;
2427 
2428   // Get rid of the enclosing quotes.
2429   Filename = Filename.substr(1, Filename.size() - 2);
2430 
2431   // Save the SMLoc, Filename and LineNumber for later use by diagnostics
2432   // and possibly DWARF file info.
2433   CppHashInfo.Loc = L;
2434   CppHashInfo.Filename = Filename;
2435   CppHashInfo.LineNumber = LineNumber;
2436   CppHashInfo.Buf = CurBuffer;
2437   if (FirstCppHashFilename.empty())
2438     FirstCppHashFilename = Filename;
2439   return false;
2440 }
2441 
2442 /// will use the last parsed cpp hash line filename comment
2443 /// for the Filename and LineNo if any in the diagnostic.
2444 void AsmParser::DiagHandler(const SMDiagnostic &Diag, void *Context) {
2445   auto *Parser = static_cast<AsmParser *>(Context);
2446   raw_ostream &OS = errs();
2447 
2448   const SourceMgr &DiagSrcMgr = *Diag.getSourceMgr();
2449   SMLoc DiagLoc = Diag.getLoc();
2450   unsigned DiagBuf = DiagSrcMgr.FindBufferContainingLoc(DiagLoc);
2451   unsigned CppHashBuf =
2452       Parser->SrcMgr.FindBufferContainingLoc(Parser->CppHashInfo.Loc);
2453 
2454   // Like SourceMgr::printMessage() we need to print the include stack if any
2455   // before printing the message.
2456   unsigned DiagCurBuffer = DiagSrcMgr.FindBufferContainingLoc(DiagLoc);
2457   if (!Parser->SavedDiagHandler && DiagCurBuffer &&
2458       DiagCurBuffer != DiagSrcMgr.getMainFileID()) {
2459     SMLoc ParentIncludeLoc = DiagSrcMgr.getParentIncludeLoc(DiagCurBuffer);
2460     DiagSrcMgr.PrintIncludeStack(ParentIncludeLoc, OS);
2461   }
2462 
2463   // If we have not parsed a cpp hash line filename comment or the source
2464   // manager changed or buffer changed (like in a nested include) then just
2465   // print the normal diagnostic using its Filename and LineNo.
2466   if (!Parser->CppHashInfo.LineNumber || DiagBuf != CppHashBuf) {
2467     if (Parser->SavedDiagHandler)
2468       Parser->SavedDiagHandler(Diag, Parser->SavedDiagContext);
2469     else
2470       Parser->getContext().diagnose(Diag);
2471     return;
2472   }
2473 
2474   // Use the CppHashFilename and calculate a line number based on the
2475   // CppHashInfo.Loc and CppHashInfo.LineNumber relative to this Diag's SMLoc
2476   // for the diagnostic.
2477   const std::string &Filename = std::string(Parser->CppHashInfo.Filename);
2478 
2479   int DiagLocLineNo = DiagSrcMgr.FindLineNumber(DiagLoc, DiagBuf);
2480   int CppHashLocLineNo =
2481       Parser->SrcMgr.FindLineNumber(Parser->CppHashInfo.Loc, CppHashBuf);
2482   int LineNo =
2483       Parser->CppHashInfo.LineNumber - 1 + (DiagLocLineNo - CppHashLocLineNo);
2484 
2485   SMDiagnostic NewDiag(*Diag.getSourceMgr(), Diag.getLoc(), Filename, LineNo,
2486                        Diag.getColumnNo(), Diag.getKind(), Diag.getMessage(),
2487                        Diag.getLineContents(), Diag.getRanges());
2488 
2489   if (Parser->SavedDiagHandler)
2490     Parser->SavedDiagHandler(Diag, Parser->SavedDiagContext);
2491   else
2492     Parser->getContext().diagnose(NewDiag);
2493 }
2494 
2495 // FIXME: This is mostly duplicated from the function in AsmLexer.cpp. The
2496 // difference being that that function accepts '@' as part of identifiers and
2497 // we can't do that. AsmLexer.cpp should probably be changed to handle
2498 // '@' as a special case when needed.
2499 static bool isIdentifierChar(char c) {
2500   return isalnum(static_cast<unsigned char>(c)) || c == '_' || c == '$' ||
2501          c == '.';
2502 }
2503 
2504 bool AsmParser::expandMacro(raw_svector_ostream &OS, StringRef Body,
2505                             ArrayRef<MCAsmMacroParameter> Parameters,
2506                             ArrayRef<MCAsmMacroArgument> A,
2507                             bool EnableAtPseudoVariable, SMLoc L) {
2508   unsigned NParameters = Parameters.size();
2509   bool HasVararg = NParameters ? Parameters.back().Vararg : false;
2510   if ((!IsDarwin || NParameters != 0) && NParameters != A.size())
2511     return Error(L, "Wrong number of arguments");
2512 
2513   // A macro without parameters is handled differently on Darwin:
2514   // gas accepts no arguments and does no substitutions
2515   while (!Body.empty()) {
2516     // Scan for the next substitution.
2517     std::size_t End = Body.size(), Pos = 0;
2518     for (; Pos != End; ++Pos) {
2519       // Check for a substitution or escape.
2520       if (IsDarwin && !NParameters) {
2521         // This macro has no parameters, look for $0, $1, etc.
2522         if (Body[Pos] != '$' || Pos + 1 == End)
2523           continue;
2524 
2525         char Next = Body[Pos + 1];
2526         if (Next == '$' || Next == 'n' ||
2527             isdigit(static_cast<unsigned char>(Next)))
2528           break;
2529       } else {
2530         // This macro has parameters, look for \foo, \bar, etc.
2531         if (Body[Pos] == '\\' && Pos + 1 != End)
2532           break;
2533       }
2534     }
2535 
2536     // Add the prefix.
2537     OS << Body.slice(0, Pos);
2538 
2539     // Check if we reached the end.
2540     if (Pos == End)
2541       break;
2542 
2543     if (IsDarwin && !NParameters) {
2544       switch (Body[Pos + 1]) {
2545       // $$ => $
2546       case '$':
2547         OS << '$';
2548         break;
2549 
2550       // $n => number of arguments
2551       case 'n':
2552         OS << A.size();
2553         break;
2554 
2555       // $[0-9] => argument
2556       default: {
2557         // Missing arguments are ignored.
2558         unsigned Index = Body[Pos + 1] - '0';
2559         if (Index >= A.size())
2560           break;
2561 
2562         // Otherwise substitute with the token values, with spaces eliminated.
2563         for (const AsmToken &Token : A[Index])
2564           OS << Token.getString();
2565         break;
2566       }
2567       }
2568       Pos += 2;
2569     } else {
2570       unsigned I = Pos + 1;
2571 
2572       // Check for the \@ pseudo-variable.
2573       if (EnableAtPseudoVariable && Body[I] == '@' && I + 1 != End)
2574         ++I;
2575       else
2576         while (isIdentifierChar(Body[I]) && I + 1 != End)
2577           ++I;
2578 
2579       const char *Begin = Body.data() + Pos + 1;
2580       StringRef Argument(Begin, I - (Pos + 1));
2581       unsigned Index = 0;
2582 
2583       if (Argument == "@") {
2584         OS << NumOfMacroInstantiations;
2585         Pos += 2;
2586       } else {
2587         for (; Index < NParameters; ++Index)
2588           if (Parameters[Index].Name == Argument)
2589             break;
2590 
2591         if (Index == NParameters) {
2592           if (Body[Pos + 1] == '(' && Body[Pos + 2] == ')')
2593             Pos += 3;
2594           else {
2595             OS << '\\' << Argument;
2596             Pos = I;
2597           }
2598         } else {
2599           bool VarargParameter = HasVararg && Index == (NParameters - 1);
2600           for (const AsmToken &Token : A[Index])
2601             // For altmacro mode, you can write '%expr'.
2602             // The prefix '%' evaluates the expression 'expr'
2603             // and uses the result as a string (e.g. replace %(1+2) with the
2604             // string "3").
2605             // Here, we identify the integer token which is the result of the
2606             // absolute expression evaluation and replace it with its string
2607             // representation.
2608             if (AltMacroMode && Token.getString().front() == '%' &&
2609                 Token.is(AsmToken::Integer))
2610               // Emit an integer value to the buffer.
2611               OS << Token.getIntVal();
2612             // Only Token that was validated as a string and begins with '<'
2613             // is considered altMacroString!!!
2614             else if (AltMacroMode && Token.getString().front() == '<' &&
2615                      Token.is(AsmToken::String)) {
2616               OS << angleBracketString(Token.getStringContents());
2617             }
2618             // We expect no quotes around the string's contents when
2619             // parsing for varargs.
2620             else if (Token.isNot(AsmToken::String) || VarargParameter)
2621               OS << Token.getString();
2622             else
2623               OS << Token.getStringContents();
2624 
2625           Pos += 1 + Argument.size();
2626         }
2627       }
2628     }
2629     // Update the scan point.
2630     Body = Body.substr(Pos);
2631   }
2632 
2633   return false;
2634 }
2635 
2636 static bool isOperator(AsmToken::TokenKind kind) {
2637   switch (kind) {
2638   default:
2639     return false;
2640   case AsmToken::Plus:
2641   case AsmToken::Minus:
2642   case AsmToken::Tilde:
2643   case AsmToken::Slash:
2644   case AsmToken::Star:
2645   case AsmToken::Dot:
2646   case AsmToken::Equal:
2647   case AsmToken::EqualEqual:
2648   case AsmToken::Pipe:
2649   case AsmToken::PipePipe:
2650   case AsmToken::Caret:
2651   case AsmToken::Amp:
2652   case AsmToken::AmpAmp:
2653   case AsmToken::Exclaim:
2654   case AsmToken::ExclaimEqual:
2655   case AsmToken::Less:
2656   case AsmToken::LessEqual:
2657   case AsmToken::LessLess:
2658   case AsmToken::LessGreater:
2659   case AsmToken::Greater:
2660   case AsmToken::GreaterEqual:
2661   case AsmToken::GreaterGreater:
2662     return true;
2663   }
2664 }
2665 
2666 namespace {
2667 
2668 class AsmLexerSkipSpaceRAII {
2669 public:
2670   AsmLexerSkipSpaceRAII(AsmLexer &Lexer, bool SkipSpace) : Lexer(Lexer) {
2671     Lexer.setSkipSpace(SkipSpace);
2672   }
2673 
2674   ~AsmLexerSkipSpaceRAII() {
2675     Lexer.setSkipSpace(true);
2676   }
2677 
2678 private:
2679   AsmLexer &Lexer;
2680 };
2681 
2682 } // end anonymous namespace
2683 
2684 bool AsmParser::parseMacroArgument(MCAsmMacroArgument &MA, bool Vararg) {
2685 
2686   if (Vararg) {
2687     if (Lexer.isNot(AsmToken::EndOfStatement)) {
2688       StringRef Str = parseStringToEndOfStatement();
2689       MA.emplace_back(AsmToken::String, Str);
2690     }
2691     return false;
2692   }
2693 
2694   unsigned ParenLevel = 0;
2695 
2696   // Darwin doesn't use spaces to delmit arguments.
2697   AsmLexerSkipSpaceRAII ScopedSkipSpace(Lexer, IsDarwin);
2698 
2699   bool SpaceEaten;
2700 
2701   while (true) {
2702     SpaceEaten = false;
2703     if (Lexer.is(AsmToken::Eof) || Lexer.is(AsmToken::Equal))
2704       return TokError("unexpected token in macro instantiation");
2705 
2706     if (ParenLevel == 0) {
2707 
2708       if (Lexer.is(AsmToken::Comma))
2709         break;
2710 
2711       if (Lexer.is(AsmToken::Space)) {
2712         SpaceEaten = true;
2713         Lexer.Lex(); // Eat spaces
2714       }
2715 
2716       // Spaces can delimit parameters, but could also be part an expression.
2717       // If the token after a space is an operator, add the token and the next
2718       // one into this argument
2719       if (!IsDarwin) {
2720         if (isOperator(Lexer.getKind())) {
2721           MA.push_back(getTok());
2722           Lexer.Lex();
2723 
2724           // Whitespace after an operator can be ignored.
2725           if (Lexer.is(AsmToken::Space))
2726             Lexer.Lex();
2727 
2728           continue;
2729         }
2730       }
2731       if (SpaceEaten)
2732         break;
2733     }
2734 
2735     // handleMacroEntry relies on not advancing the lexer here
2736     // to be able to fill in the remaining default parameter values
2737     if (Lexer.is(AsmToken::EndOfStatement))
2738       break;
2739 
2740     // Adjust the current parentheses level.
2741     if (Lexer.is(AsmToken::LParen))
2742       ++ParenLevel;
2743     else if (Lexer.is(AsmToken::RParen) && ParenLevel)
2744       --ParenLevel;
2745 
2746     // Append the token to the current argument list.
2747     MA.push_back(getTok());
2748     Lexer.Lex();
2749   }
2750 
2751   if (ParenLevel != 0)
2752     return TokError("unbalanced parentheses in macro argument");
2753   return false;
2754 }
2755 
2756 // Parse the macro instantiation arguments.
2757 bool AsmParser::parseMacroArguments(const MCAsmMacro *M,
2758                                     MCAsmMacroArguments &A) {
2759   const unsigned NParameters = M ? M->Parameters.size() : 0;
2760   bool NamedParametersFound = false;
2761   SmallVector<SMLoc, 4> FALocs;
2762 
2763   A.resize(NParameters);
2764   FALocs.resize(NParameters);
2765 
2766   // Parse two kinds of macro invocations:
2767   // - macros defined without any parameters accept an arbitrary number of them
2768   // - macros defined with parameters accept at most that many of them
2769   bool HasVararg = NParameters ? M->Parameters.back().Vararg : false;
2770   for (unsigned Parameter = 0; !NParameters || Parameter < NParameters;
2771        ++Parameter) {
2772     SMLoc IDLoc = Lexer.getLoc();
2773     MCAsmMacroParameter FA;
2774 
2775     if (Lexer.is(AsmToken::Identifier) && Lexer.peekTok().is(AsmToken::Equal)) {
2776       if (parseIdentifier(FA.Name))
2777         return Error(IDLoc, "invalid argument identifier for formal argument");
2778 
2779       if (Lexer.isNot(AsmToken::Equal))
2780         return TokError("expected '=' after formal parameter identifier");
2781 
2782       Lex();
2783 
2784       NamedParametersFound = true;
2785     }
2786     bool Vararg = HasVararg && Parameter == (NParameters - 1);
2787 
2788     if (NamedParametersFound && FA.Name.empty())
2789       return Error(IDLoc, "cannot mix positional and keyword arguments");
2790 
2791     SMLoc StrLoc = Lexer.getLoc();
2792     SMLoc EndLoc;
2793     if (AltMacroMode && Lexer.is(AsmToken::Percent)) {
2794       const MCExpr *AbsoluteExp;
2795       int64_t Value;
2796       /// Eat '%'
2797       Lex();
2798       if (parseExpression(AbsoluteExp, EndLoc))
2799         return false;
2800       if (!AbsoluteExp->evaluateAsAbsolute(Value,
2801                                            getStreamer().getAssemblerPtr()))
2802         return Error(StrLoc, "expected absolute expression");
2803       const char *StrChar = StrLoc.getPointer();
2804       const char *EndChar = EndLoc.getPointer();
2805       AsmToken newToken(AsmToken::Integer,
2806                         StringRef(StrChar, EndChar - StrChar), Value);
2807       FA.Value.push_back(newToken);
2808     } else if (AltMacroMode && Lexer.is(AsmToken::Less) &&
2809                isAngleBracketString(StrLoc, EndLoc)) {
2810       const char *StrChar = StrLoc.getPointer();
2811       const char *EndChar = EndLoc.getPointer();
2812       jumpToLoc(EndLoc, CurBuffer);
2813       /// Eat from '<' to '>'
2814       Lex();
2815       AsmToken newToken(AsmToken::String,
2816                         StringRef(StrChar, EndChar - StrChar));
2817       FA.Value.push_back(newToken);
2818     } else if(parseMacroArgument(FA.Value, Vararg))
2819       return true;
2820 
2821     unsigned PI = Parameter;
2822     if (!FA.Name.empty()) {
2823       unsigned FAI = 0;
2824       for (FAI = 0; FAI < NParameters; ++FAI)
2825         if (M->Parameters[FAI].Name == FA.Name)
2826           break;
2827 
2828       if (FAI >= NParameters) {
2829         assert(M && "expected macro to be defined");
2830         return Error(IDLoc, "parameter named '" + FA.Name +
2831                                 "' does not exist for macro '" + M->Name + "'");
2832       }
2833       PI = FAI;
2834     }
2835 
2836     if (!FA.Value.empty()) {
2837       if (A.size() <= PI)
2838         A.resize(PI + 1);
2839       A[PI] = FA.Value;
2840 
2841       if (FALocs.size() <= PI)
2842         FALocs.resize(PI + 1);
2843 
2844       FALocs[PI] = Lexer.getLoc();
2845     }
2846 
2847     // At the end of the statement, fill in remaining arguments that have
2848     // default values. If there aren't any, then the next argument is
2849     // required but missing
2850     if (Lexer.is(AsmToken::EndOfStatement)) {
2851       bool Failure = false;
2852       for (unsigned FAI = 0; FAI < NParameters; ++FAI) {
2853         if (A[FAI].empty()) {
2854           if (M->Parameters[FAI].Required) {
2855             Error(FALocs[FAI].isValid() ? FALocs[FAI] : Lexer.getLoc(),
2856                   "missing value for required parameter "
2857                   "'" + M->Parameters[FAI].Name + "' in macro '" + M->Name + "'");
2858             Failure = true;
2859           }
2860 
2861           if (!M->Parameters[FAI].Value.empty())
2862             A[FAI] = M->Parameters[FAI].Value;
2863         }
2864       }
2865       return Failure;
2866     }
2867 
2868     if (Lexer.is(AsmToken::Comma))
2869       Lex();
2870   }
2871 
2872   return TokError("too many positional arguments");
2873 }
2874 
2875 bool AsmParser::handleMacroEntry(const MCAsmMacro *M, SMLoc NameLoc) {
2876   // Arbitrarily limit macro nesting depth (default matches 'as'). We can
2877   // eliminate this, although we should protect against infinite loops.
2878   unsigned MaxNestingDepth = AsmMacroMaxNestingDepth;
2879   if (ActiveMacros.size() == MaxNestingDepth) {
2880     std::ostringstream MaxNestingDepthError;
2881     MaxNestingDepthError << "macros cannot be nested more than "
2882                          << MaxNestingDepth << " levels deep."
2883                          << " Use -asm-macro-max-nesting-depth to increase "
2884                             "this limit.";
2885     return TokError(MaxNestingDepthError.str());
2886   }
2887 
2888   MCAsmMacroArguments A;
2889   if (parseMacroArguments(M, A))
2890     return true;
2891 
2892   // Macro instantiation is lexical, unfortunately. We construct a new buffer
2893   // to hold the macro body with substitutions.
2894   SmallString<256> Buf;
2895   StringRef Body = M->Body;
2896   raw_svector_ostream OS(Buf);
2897 
2898   if (expandMacro(OS, Body, M->Parameters, A, true, getTok().getLoc()))
2899     return true;
2900 
2901   // We include the .endmacro in the buffer as our cue to exit the macro
2902   // instantiation.
2903   OS << ".endmacro\n";
2904 
2905   std::unique_ptr<MemoryBuffer> Instantiation =
2906       MemoryBuffer::getMemBufferCopy(OS.str(), "<instantiation>");
2907 
2908   // Create the macro instantiation object and add to the current macro
2909   // instantiation stack.
2910   MacroInstantiation *MI = new MacroInstantiation{
2911       NameLoc, CurBuffer, getTok().getLoc(), TheCondStack.size()};
2912   ActiveMacros.push_back(MI);
2913 
2914   ++NumOfMacroInstantiations;
2915 
2916   // Jump to the macro instantiation and prime the lexer.
2917   CurBuffer = SrcMgr.AddNewSourceBuffer(std::move(Instantiation), SMLoc());
2918   Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer());
2919   Lex();
2920 
2921   return false;
2922 }
2923 
2924 void AsmParser::handleMacroExit() {
2925   // Jump to the EndOfStatement we should return to, and consume it.
2926   jumpToLoc(ActiveMacros.back()->ExitLoc, ActiveMacros.back()->ExitBuffer);
2927   Lex();
2928 
2929   // Pop the instantiation entry.
2930   delete ActiveMacros.back();
2931   ActiveMacros.pop_back();
2932 }
2933 
2934 bool AsmParser::parseAssignment(StringRef Name, AssignmentKind Kind) {
2935   MCSymbol *Sym;
2936   const MCExpr *Value;
2937   SMLoc ExprLoc = getTok().getLoc();
2938   bool AllowRedef =
2939       Kind == AssignmentKind::Set || Kind == AssignmentKind::Equal;
2940   if (MCParserUtils::parseAssignmentExpression(Name, AllowRedef, *this, Sym,
2941                                                Value))
2942     return true;
2943 
2944   if (!Sym) {
2945     // In the case where we parse an expression starting with a '.', we will
2946     // not generate an error, nor will we create a symbol.  In this case we
2947     // should just return out.
2948     return false;
2949   }
2950 
2951   if (discardLTOSymbol(Name))
2952     return false;
2953 
2954   // Do the assignment.
2955   switch (Kind) {
2956   case AssignmentKind::Equal:
2957     Out.emitAssignment(Sym, Value);
2958     break;
2959   case AssignmentKind::Set:
2960   case AssignmentKind::Equiv:
2961     Out.emitAssignment(Sym, Value);
2962     Out.emitSymbolAttribute(Sym, MCSA_NoDeadStrip);
2963     break;
2964   case AssignmentKind::LTOSetConditional:
2965     if (Value->getKind() != MCExpr::SymbolRef)
2966       return Error(ExprLoc, "expected identifier");
2967 
2968     Out.emitConditionalAssignment(Sym, Value);
2969     break;
2970   }
2971 
2972   return false;
2973 }
2974 
2975 /// parseIdentifier:
2976 ///   ::= identifier
2977 ///   ::= string
2978 bool AsmParser::parseIdentifier(StringRef &Res) {
2979   // The assembler has relaxed rules for accepting identifiers, in particular we
2980   // allow things like '.globl $foo' and '.def @feat.00', which would normally be
2981   // separate tokens. At this level, we have already lexed so we cannot (currently)
2982   // handle this as a context dependent token, instead we detect adjacent tokens
2983   // and return the combined identifier.
2984   if (Lexer.is(AsmToken::Dollar) || Lexer.is(AsmToken::At)) {
2985     SMLoc PrefixLoc = getLexer().getLoc();
2986 
2987     // Consume the prefix character, and check for a following identifier.
2988 
2989     AsmToken Buf[1];
2990     Lexer.peekTokens(Buf, false);
2991 
2992     if (Buf[0].isNot(AsmToken::Identifier) && Buf[0].isNot(AsmToken::Integer))
2993       return true;
2994 
2995     // We have a '$' or '@' followed by an identifier or integer token, make
2996     // sure they are adjacent.
2997     if (PrefixLoc.getPointer() + 1 != Buf[0].getLoc().getPointer())
2998       return true;
2999 
3000     // eat $ or @
3001     Lexer.Lex(); // Lexer's Lex guarantees consecutive token.
3002     // Construct the joined identifier and consume the token.
3003     Res = StringRef(PrefixLoc.getPointer(), getTok().getString().size() + 1);
3004     Lex(); // Parser Lex to maintain invariants.
3005     return false;
3006   }
3007 
3008   if (Lexer.isNot(AsmToken::Identifier) && Lexer.isNot(AsmToken::String))
3009     return true;
3010 
3011   Res = getTok().getIdentifier();
3012 
3013   Lex(); // Consume the identifier token.
3014 
3015   return false;
3016 }
3017 
3018 /// parseDirectiveSet:
3019 ///   ::= .equ identifier ',' expression
3020 ///   ::= .equiv identifier ',' expression
3021 ///   ::= .set identifier ',' expression
3022 ///   ::= .lto_set_conditional identifier ',' expression
3023 bool AsmParser::parseDirectiveSet(StringRef IDVal, AssignmentKind Kind) {
3024   StringRef Name;
3025   if (check(parseIdentifier(Name), "expected identifier") || parseComma() ||
3026       parseAssignment(Name, Kind))
3027     return true;
3028   return false;
3029 }
3030 
3031 bool AsmParser::parseEscapedString(std::string &Data) {
3032   if (check(getTok().isNot(AsmToken::String), "expected string"))
3033     return true;
3034 
3035   Data = "";
3036   StringRef Str = getTok().getStringContents();
3037   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
3038     if (Str[i] != '\\') {
3039       Data += Str[i];
3040       continue;
3041     }
3042 
3043     // Recognize escaped characters. Note that this escape semantics currently
3044     // loosely follows Darwin 'as'.
3045     ++i;
3046     if (i == e)
3047       return TokError("unexpected backslash at end of string");
3048 
3049     // Recognize hex sequences similarly to GNU 'as'.
3050     if (Str[i] == 'x' || Str[i] == 'X') {
3051       size_t length = Str.size();
3052       if (i + 1 >= length || !isHexDigit(Str[i + 1]))
3053         return TokError("invalid hexadecimal escape sequence");
3054 
3055       // Consume hex characters. GNU 'as' reads all hexadecimal characters and
3056       // then truncates to the lower 16 bits. Seems reasonable.
3057       unsigned Value = 0;
3058       while (i + 1 < length && isHexDigit(Str[i + 1]))
3059         Value = Value * 16 + hexDigitValue(Str[++i]);
3060 
3061       Data += (unsigned char)(Value & 0xFF);
3062       continue;
3063     }
3064 
3065     // Recognize octal sequences.
3066     if ((unsigned)(Str[i] - '0') <= 7) {
3067       // Consume up to three octal characters.
3068       unsigned Value = Str[i] - '0';
3069 
3070       if (i + 1 != e && ((unsigned)(Str[i + 1] - '0')) <= 7) {
3071         ++i;
3072         Value = Value * 8 + (Str[i] - '0');
3073 
3074         if (i + 1 != e && ((unsigned)(Str[i + 1] - '0')) <= 7) {
3075           ++i;
3076           Value = Value * 8 + (Str[i] - '0');
3077         }
3078       }
3079 
3080       if (Value > 255)
3081         return TokError("invalid octal escape sequence (out of range)");
3082 
3083       Data += (unsigned char)Value;
3084       continue;
3085     }
3086 
3087     // Otherwise recognize individual escapes.
3088     switch (Str[i]) {
3089     default:
3090       // Just reject invalid escape sequences for now.
3091       return TokError("invalid escape sequence (unrecognized character)");
3092 
3093     case 'b': Data += '\b'; break;
3094     case 'f': Data += '\f'; break;
3095     case 'n': Data += '\n'; break;
3096     case 'r': Data += '\r'; break;
3097     case 't': Data += '\t'; break;
3098     case '"': Data += '"'; break;
3099     case '\\': Data += '\\'; break;
3100     }
3101   }
3102 
3103   Lex();
3104   return false;
3105 }
3106 
3107 bool AsmParser::parseAngleBracketString(std::string &Data) {
3108   SMLoc EndLoc, StartLoc = getTok().getLoc();
3109   if (isAngleBracketString(StartLoc, EndLoc)) {
3110     const char *StartChar = StartLoc.getPointer() + 1;
3111     const char *EndChar = EndLoc.getPointer() - 1;
3112     jumpToLoc(EndLoc, CurBuffer);
3113     /// Eat from '<' to '>'
3114     Lex();
3115 
3116     Data = angleBracketString(StringRef(StartChar, EndChar - StartChar));
3117     return false;
3118   }
3119   return true;
3120 }
3121 
3122 /// parseDirectiveAscii:
3123 //    ::= .ascii [ "string"+ ( , "string"+ )* ]
3124 ///   ::= ( .asciz | .string ) [ "string" ( , "string" )* ]
3125 bool AsmParser::parseDirectiveAscii(StringRef IDVal, bool ZeroTerminated) {
3126   auto parseOp = [&]() -> bool {
3127     std::string Data;
3128     if (checkForValidSection())
3129       return true;
3130     // Only support spaces as separators for .ascii directive for now. See the
3131     // discusssion at https://reviews.llvm.org/D91460 for more details.
3132     do {
3133       if (parseEscapedString(Data))
3134         return true;
3135       getStreamer().emitBytes(Data);
3136     } while (!ZeroTerminated && getTok().is(AsmToken::String));
3137     if (ZeroTerminated)
3138       getStreamer().emitBytes(StringRef("\0", 1));
3139     return false;
3140   };
3141 
3142   return parseMany(parseOp);
3143 }
3144 
3145 /// parseDirectiveReloc
3146 ///  ::= .reloc expression , identifier [ , expression ]
3147 bool AsmParser::parseDirectiveReloc(SMLoc DirectiveLoc) {
3148   const MCExpr *Offset;
3149   const MCExpr *Expr = nullptr;
3150   SMLoc OffsetLoc = Lexer.getTok().getLoc();
3151 
3152   if (parseExpression(Offset))
3153     return true;
3154   if (parseComma() ||
3155       check(getTok().isNot(AsmToken::Identifier), "expected relocation name"))
3156     return true;
3157 
3158   SMLoc NameLoc = Lexer.getTok().getLoc();
3159   StringRef Name = Lexer.getTok().getIdentifier();
3160   Lex();
3161 
3162   if (Lexer.is(AsmToken::Comma)) {
3163     Lex();
3164     SMLoc ExprLoc = Lexer.getLoc();
3165     if (parseExpression(Expr))
3166       return true;
3167 
3168     MCValue Value;
3169     if (!Expr->evaluateAsRelocatable(Value, nullptr, nullptr))
3170       return Error(ExprLoc, "expression must be relocatable");
3171   }
3172 
3173   if (parseEOL())
3174     return true;
3175 
3176   const MCTargetAsmParser &MCT = getTargetParser();
3177   const MCSubtargetInfo &STI = MCT.getSTI();
3178   if (std::optional<std::pair<bool, std::string>> Err =
3179           getStreamer().emitRelocDirective(*Offset, Name, Expr, DirectiveLoc,
3180                                            STI))
3181     return Error(Err->first ? NameLoc : OffsetLoc, Err->second);
3182 
3183   return false;
3184 }
3185 
3186 /// parseDirectiveValue
3187 ///  ::= (.byte | .short | ... ) [ expression (, expression)* ]
3188 bool AsmParser::parseDirectiveValue(StringRef IDVal, unsigned Size) {
3189   auto parseOp = [&]() -> bool {
3190     const MCExpr *Value;
3191     SMLoc ExprLoc = getLexer().getLoc();
3192     if (checkForValidSection() || parseExpression(Value))
3193       return true;
3194     // Special case constant expressions to match code generator.
3195     if (const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value)) {
3196       assert(Size <= 8 && "Invalid size");
3197       uint64_t IntValue = MCE->getValue();
3198       if (!isUIntN(8 * Size, IntValue) && !isIntN(8 * Size, IntValue))
3199         return Error(ExprLoc, "out of range literal value");
3200       getStreamer().emitIntValue(IntValue, Size);
3201     } else
3202       getStreamer().emitValue(Value, Size, ExprLoc);
3203     return false;
3204   };
3205 
3206   return parseMany(parseOp);
3207 }
3208 
3209 static bool parseHexOcta(AsmParser &Asm, uint64_t &hi, uint64_t &lo) {
3210   if (Asm.getTok().isNot(AsmToken::Integer) &&
3211       Asm.getTok().isNot(AsmToken::BigNum))
3212     return Asm.TokError("unknown token in expression");
3213   SMLoc ExprLoc = Asm.getTok().getLoc();
3214   APInt IntValue = Asm.getTok().getAPIntVal();
3215   Asm.Lex();
3216   if (!IntValue.isIntN(128))
3217     return Asm.Error(ExprLoc, "out of range literal value");
3218   if (!IntValue.isIntN(64)) {
3219     hi = IntValue.getHiBits(IntValue.getBitWidth() - 64).getZExtValue();
3220     lo = IntValue.getLoBits(64).getZExtValue();
3221   } else {
3222     hi = 0;
3223     lo = IntValue.getZExtValue();
3224   }
3225   return false;
3226 }
3227 
3228 /// ParseDirectiveOctaValue
3229 ///  ::= .octa [ hexconstant (, hexconstant)* ]
3230 
3231 bool AsmParser::parseDirectiveOctaValue(StringRef IDVal) {
3232   auto parseOp = [&]() -> bool {
3233     if (checkForValidSection())
3234       return true;
3235     uint64_t hi, lo;
3236     if (parseHexOcta(*this, hi, lo))
3237       return true;
3238     if (MAI.isLittleEndian()) {
3239       getStreamer().emitInt64(lo);
3240       getStreamer().emitInt64(hi);
3241     } else {
3242       getStreamer().emitInt64(hi);
3243       getStreamer().emitInt64(lo);
3244     }
3245     return false;
3246   };
3247 
3248   return parseMany(parseOp);
3249 }
3250 
3251 bool AsmParser::parseRealValue(const fltSemantics &Semantics, APInt &Res) {
3252   // We don't truly support arithmetic on floating point expressions, so we
3253   // have to manually parse unary prefixes.
3254   bool IsNeg = false;
3255   if (getLexer().is(AsmToken::Minus)) {
3256     Lexer.Lex();
3257     IsNeg = true;
3258   } else if (getLexer().is(AsmToken::Plus))
3259     Lexer.Lex();
3260 
3261   if (Lexer.is(AsmToken::Error))
3262     return TokError(Lexer.getErr());
3263   if (Lexer.isNot(AsmToken::Integer) && Lexer.isNot(AsmToken::Real) &&
3264       Lexer.isNot(AsmToken::Identifier))
3265     return TokError("unexpected token in directive");
3266 
3267   // Convert to an APFloat.
3268   APFloat Value(Semantics);
3269   StringRef IDVal = getTok().getString();
3270   if (getLexer().is(AsmToken::Identifier)) {
3271     if (!IDVal.compare_insensitive("infinity") ||
3272         !IDVal.compare_insensitive("inf"))
3273       Value = APFloat::getInf(Semantics);
3274     else if (!IDVal.compare_insensitive("nan"))
3275       Value = APFloat::getNaN(Semantics, false, ~0);
3276     else
3277       return TokError("invalid floating point literal");
3278   } else if (errorToBool(
3279                  Value.convertFromString(IDVal, APFloat::rmNearestTiesToEven)
3280                      .takeError()))
3281     return TokError("invalid floating point literal");
3282   if (IsNeg)
3283     Value.changeSign();
3284 
3285   // Consume the numeric token.
3286   Lex();
3287 
3288   Res = Value.bitcastToAPInt();
3289 
3290   return false;
3291 }
3292 
3293 /// parseDirectiveRealValue
3294 ///  ::= (.single | .double) [ expression (, expression)* ]
3295 bool AsmParser::parseDirectiveRealValue(StringRef IDVal,
3296                                         const fltSemantics &Semantics) {
3297   auto parseOp = [&]() -> bool {
3298     APInt AsInt;
3299     if (checkForValidSection() || parseRealValue(Semantics, AsInt))
3300       return true;
3301     getStreamer().emitIntValue(AsInt.getLimitedValue(),
3302                                AsInt.getBitWidth() / 8);
3303     return false;
3304   };
3305 
3306   return parseMany(parseOp);
3307 }
3308 
3309 /// parseDirectiveZero
3310 ///  ::= .zero expression
3311 bool AsmParser::parseDirectiveZero() {
3312   SMLoc NumBytesLoc = Lexer.getLoc();
3313   const MCExpr *NumBytes;
3314   if (checkForValidSection() || parseExpression(NumBytes))
3315     return true;
3316 
3317   int64_t Val = 0;
3318   if (getLexer().is(AsmToken::Comma)) {
3319     Lex();
3320     if (parseAbsoluteExpression(Val))
3321       return true;
3322   }
3323 
3324   if (parseEOL())
3325     return true;
3326   getStreamer().emitFill(*NumBytes, Val, NumBytesLoc);
3327 
3328   return false;
3329 }
3330 
3331 /// parseDirectiveFill
3332 ///  ::= .fill expression [ , expression [ , expression ] ]
3333 bool AsmParser::parseDirectiveFill() {
3334   SMLoc NumValuesLoc = Lexer.getLoc();
3335   const MCExpr *NumValues;
3336   if (checkForValidSection() || parseExpression(NumValues))
3337     return true;
3338 
3339   int64_t FillSize = 1;
3340   int64_t FillExpr = 0;
3341 
3342   SMLoc SizeLoc, ExprLoc;
3343 
3344   if (parseOptionalToken(AsmToken::Comma)) {
3345     SizeLoc = getTok().getLoc();
3346     if (parseAbsoluteExpression(FillSize))
3347       return true;
3348     if (parseOptionalToken(AsmToken::Comma)) {
3349       ExprLoc = getTok().getLoc();
3350       if (parseAbsoluteExpression(FillExpr))
3351         return true;
3352     }
3353   }
3354   if (parseEOL())
3355     return true;
3356 
3357   if (FillSize < 0) {
3358     Warning(SizeLoc, "'.fill' directive with negative size has no effect");
3359     return false;
3360   }
3361   if (FillSize > 8) {
3362     Warning(SizeLoc, "'.fill' directive with size greater than 8 has been truncated to 8");
3363     FillSize = 8;
3364   }
3365 
3366   if (!isUInt<32>(FillExpr) && FillSize > 4)
3367     Warning(ExprLoc, "'.fill' directive pattern has been truncated to 32-bits");
3368 
3369   getStreamer().emitFill(*NumValues, FillSize, FillExpr, NumValuesLoc);
3370 
3371   return false;
3372 }
3373 
3374 /// parseDirectiveOrg
3375 ///  ::= .org expression [ , expression ]
3376 bool AsmParser::parseDirectiveOrg() {
3377   const MCExpr *Offset;
3378   SMLoc OffsetLoc = Lexer.getLoc();
3379   if (checkForValidSection() || parseExpression(Offset))
3380     return true;
3381 
3382   // Parse optional fill expression.
3383   int64_t FillExpr = 0;
3384   if (parseOptionalToken(AsmToken::Comma))
3385     if (parseAbsoluteExpression(FillExpr))
3386       return true;
3387   if (parseEOL())
3388     return true;
3389 
3390   getStreamer().emitValueToOffset(Offset, FillExpr, OffsetLoc);
3391   return false;
3392 }
3393 
3394 /// parseDirectiveAlign
3395 ///  ::= {.align, ...} expression [ , expression [ , expression ]]
3396 bool AsmParser::parseDirectiveAlign(bool IsPow2, unsigned ValueSize) {
3397   SMLoc AlignmentLoc = getLexer().getLoc();
3398   int64_t Alignment;
3399   SMLoc MaxBytesLoc;
3400   bool HasFillExpr = false;
3401   int64_t FillExpr = 0;
3402   int64_t MaxBytesToFill = 0;
3403 
3404   auto parseAlign = [&]() -> bool {
3405     if (parseAbsoluteExpression(Alignment))
3406       return true;
3407     if (parseOptionalToken(AsmToken::Comma)) {
3408       // The fill expression can be omitted while specifying a maximum number of
3409       // alignment bytes, e.g:
3410       //  .align 3,,4
3411       if (getTok().isNot(AsmToken::Comma)) {
3412         HasFillExpr = true;
3413         if (parseAbsoluteExpression(FillExpr))
3414           return true;
3415       }
3416       if (parseOptionalToken(AsmToken::Comma))
3417         if (parseTokenLoc(MaxBytesLoc) ||
3418             parseAbsoluteExpression(MaxBytesToFill))
3419           return true;
3420     }
3421     return parseEOL();
3422   };
3423 
3424   if (checkForValidSection())
3425     return true;
3426   // Ignore empty '.p2align' directives for GNU-as compatibility
3427   if (IsPow2 && (ValueSize == 1) && getTok().is(AsmToken::EndOfStatement)) {
3428     Warning(AlignmentLoc, "p2align directive with no operand(s) is ignored");
3429     return parseEOL();
3430   }
3431   if (parseAlign())
3432     return true;
3433 
3434   // Always emit an alignment here even if we thrown an error.
3435   bool ReturnVal = false;
3436 
3437   // Compute alignment in bytes.
3438   if (IsPow2) {
3439     // FIXME: Diagnose overflow.
3440     if (Alignment >= 32) {
3441       ReturnVal |= Error(AlignmentLoc, "invalid alignment value");
3442       Alignment = 31;
3443     }
3444 
3445     Alignment = 1ULL << Alignment;
3446   } else {
3447     // Reject alignments that aren't either a power of two or zero,
3448     // for gas compatibility. Alignment of zero is silently rounded
3449     // up to one.
3450     if (Alignment == 0)
3451       Alignment = 1;
3452     else if (!isPowerOf2_64(Alignment)) {
3453       ReturnVal |= Error(AlignmentLoc, "alignment must be a power of 2");
3454       Alignment = PowerOf2Floor(Alignment);
3455     }
3456     if (!isUInt<32>(Alignment)) {
3457       ReturnVal |= Error(AlignmentLoc, "alignment must be smaller than 2**32");
3458       Alignment = 1u << 31;
3459     }
3460   }
3461 
3462   // Diagnose non-sensical max bytes to align.
3463   if (MaxBytesLoc.isValid()) {
3464     if (MaxBytesToFill < 1) {
3465       ReturnVal |= Error(MaxBytesLoc,
3466                          "alignment directive can never be satisfied in this "
3467                          "many bytes, ignoring maximum bytes expression");
3468       MaxBytesToFill = 0;
3469     }
3470 
3471     if (MaxBytesToFill >= Alignment) {
3472       Warning(MaxBytesLoc, "maximum bytes expression exceeds alignment and "
3473                            "has no effect");
3474       MaxBytesToFill = 0;
3475     }
3476   }
3477 
3478   // Check whether we should use optimal code alignment for this .align
3479   // directive.
3480   const MCSection *Section = getStreamer().getCurrentSectionOnly();
3481   assert(Section && "must have section to emit alignment");
3482   bool useCodeAlign = Section->useCodeAlign();
3483   if ((!HasFillExpr || Lexer.getMAI().getTextAlignFillValue() == FillExpr) &&
3484       ValueSize == 1 && useCodeAlign) {
3485     getStreamer().emitCodeAlignment(
3486         Align(Alignment), &getTargetParser().getSTI(), MaxBytesToFill);
3487   } else {
3488     // FIXME: Target specific behavior about how the "extra" bytes are filled.
3489     getStreamer().emitValueToAlignment(Align(Alignment), FillExpr, ValueSize,
3490                                        MaxBytesToFill);
3491   }
3492 
3493   return ReturnVal;
3494 }
3495 
3496 /// parseDirectiveFile
3497 /// ::= .file filename
3498 /// ::= .file number [directory] filename [md5 checksum] [source source-text]
3499 bool AsmParser::parseDirectiveFile(SMLoc DirectiveLoc) {
3500   // FIXME: I'm not sure what this is.
3501   int64_t FileNumber = -1;
3502   if (getLexer().is(AsmToken::Integer)) {
3503     FileNumber = getTok().getIntVal();
3504     Lex();
3505 
3506     if (FileNumber < 0)
3507       return TokError("negative file number");
3508   }
3509 
3510   std::string Path;
3511 
3512   // Usually the directory and filename together, otherwise just the directory.
3513   // Allow the strings to have escaped octal character sequence.
3514   if (parseEscapedString(Path))
3515     return true;
3516 
3517   StringRef Directory;
3518   StringRef Filename;
3519   std::string FilenameData;
3520   if (getLexer().is(AsmToken::String)) {
3521     if (check(FileNumber == -1,
3522               "explicit path specified, but no file number") ||
3523         parseEscapedString(FilenameData))
3524       return true;
3525     Filename = FilenameData;
3526     Directory = Path;
3527   } else {
3528     Filename = Path;
3529   }
3530 
3531   uint64_t MD5Hi, MD5Lo;
3532   bool HasMD5 = false;
3533 
3534   std::optional<StringRef> Source;
3535   bool HasSource = false;
3536   std::string SourceString;
3537 
3538   while (!parseOptionalToken(AsmToken::EndOfStatement)) {
3539     StringRef Keyword;
3540     if (check(getTok().isNot(AsmToken::Identifier),
3541               "unexpected token in '.file' directive") ||
3542         parseIdentifier(Keyword))
3543       return true;
3544     if (Keyword == "md5") {
3545       HasMD5 = true;
3546       if (check(FileNumber == -1,
3547                 "MD5 checksum specified, but no file number") ||
3548           parseHexOcta(*this, MD5Hi, MD5Lo))
3549         return true;
3550     } else if (Keyword == "source") {
3551       HasSource = true;
3552       if (check(FileNumber == -1,
3553                 "source specified, but no file number") ||
3554           check(getTok().isNot(AsmToken::String),
3555                 "unexpected token in '.file' directive") ||
3556           parseEscapedString(SourceString))
3557         return true;
3558     } else {
3559       return TokError("unexpected token in '.file' directive");
3560     }
3561   }
3562 
3563   if (FileNumber == -1) {
3564     // Ignore the directive if there is no number and the target doesn't support
3565     // numberless .file directives. This allows some portability of assembler
3566     // between different object file formats.
3567     if (getContext().getAsmInfo()->hasSingleParameterDotFile())
3568       getStreamer().emitFileDirective(Filename);
3569   } else {
3570     // In case there is a -g option as well as debug info from directive .file,
3571     // we turn off the -g option, directly use the existing debug info instead.
3572     // Throw away any implicit file table for the assembler source.
3573     if (Ctx.getGenDwarfForAssembly()) {
3574       Ctx.getMCDwarfLineTable(0).resetFileTable();
3575       Ctx.setGenDwarfForAssembly(false);
3576     }
3577 
3578     std::optional<MD5::MD5Result> CKMem;
3579     if (HasMD5) {
3580       MD5::MD5Result Sum;
3581       for (unsigned i = 0; i != 8; ++i) {
3582         Sum[i] = uint8_t(MD5Hi >> ((7 - i) * 8));
3583         Sum[i + 8] = uint8_t(MD5Lo >> ((7 - i) * 8));
3584       }
3585       CKMem = Sum;
3586     }
3587     if (HasSource) {
3588       char *SourceBuf = static_cast<char *>(Ctx.allocate(SourceString.size()));
3589       memcpy(SourceBuf, SourceString.data(), SourceString.size());
3590       Source = StringRef(SourceBuf, SourceString.size());
3591     }
3592     if (FileNumber == 0) {
3593       // Upgrade to Version 5 for assembly actions like clang -c a.s.
3594       if (Ctx.getDwarfVersion() < 5)
3595         Ctx.setDwarfVersion(5);
3596       getStreamer().emitDwarfFile0Directive(Directory, Filename, CKMem, Source);
3597     } else {
3598       Expected<unsigned> FileNumOrErr = getStreamer().tryEmitDwarfFileDirective(
3599           FileNumber, Directory, Filename, CKMem, Source);
3600       if (!FileNumOrErr)
3601         return Error(DirectiveLoc, toString(FileNumOrErr.takeError()));
3602     }
3603     // Alert the user if there are some .file directives with MD5 and some not.
3604     // But only do that once.
3605     if (!ReportedInconsistentMD5 && !Ctx.isDwarfMD5UsageConsistent(0)) {
3606       ReportedInconsistentMD5 = true;
3607       return Warning(DirectiveLoc, "inconsistent use of MD5 checksums");
3608     }
3609   }
3610 
3611   return false;
3612 }
3613 
3614 /// parseDirectiveLine
3615 /// ::= .line [number]
3616 bool AsmParser::parseDirectiveLine() {
3617   int64_t LineNumber;
3618   if (getLexer().is(AsmToken::Integer)) {
3619     if (parseIntToken(LineNumber, "unexpected token in '.line' directive"))
3620       return true;
3621     (void)LineNumber;
3622     // FIXME: Do something with the .line.
3623   }
3624   return parseEOL();
3625 }
3626 
3627 /// parseDirectiveLoc
3628 /// ::= .loc FileNumber [LineNumber] [ColumnPos] [basic_block] [prologue_end]
3629 ///                                [epilogue_begin] [is_stmt VALUE] [isa VALUE]
3630 /// The first number is a file number, must have been previously assigned with
3631 /// a .file directive, the second number is the line number and optionally the
3632 /// third number is a column position (zero if not specified).  The remaining
3633 /// optional items are .loc sub-directives.
3634 bool AsmParser::parseDirectiveLoc() {
3635   int64_t FileNumber = 0, LineNumber = 0;
3636   SMLoc Loc = getTok().getLoc();
3637   if (parseIntToken(FileNumber, "unexpected token in '.loc' directive") ||
3638       check(FileNumber < 1 && Ctx.getDwarfVersion() < 5, Loc,
3639             "file number less than one in '.loc' directive") ||
3640       check(!getContext().isValidDwarfFileNumber(FileNumber), Loc,
3641             "unassigned file number in '.loc' directive"))
3642     return true;
3643 
3644   // optional
3645   if (getLexer().is(AsmToken::Integer)) {
3646     LineNumber = getTok().getIntVal();
3647     if (LineNumber < 0)
3648       return TokError("line number less than zero in '.loc' directive");
3649     Lex();
3650   }
3651 
3652   int64_t ColumnPos = 0;
3653   if (getLexer().is(AsmToken::Integer)) {
3654     ColumnPos = getTok().getIntVal();
3655     if (ColumnPos < 0)
3656       return TokError("column position less than zero in '.loc' directive");
3657     Lex();
3658   }
3659 
3660   auto PrevFlags = getContext().getCurrentDwarfLoc().getFlags();
3661   unsigned Flags = PrevFlags & DWARF2_FLAG_IS_STMT;
3662   unsigned Isa = 0;
3663   int64_t Discriminator = 0;
3664 
3665   auto parseLocOp = [&]() -> bool {
3666     StringRef Name;
3667     SMLoc Loc = getTok().getLoc();
3668     if (parseIdentifier(Name))
3669       return TokError("unexpected token in '.loc' directive");
3670 
3671     if (Name == "basic_block")
3672       Flags |= DWARF2_FLAG_BASIC_BLOCK;
3673     else if (Name == "prologue_end")
3674       Flags |= DWARF2_FLAG_PROLOGUE_END;
3675     else if (Name == "epilogue_begin")
3676       Flags |= DWARF2_FLAG_EPILOGUE_BEGIN;
3677     else if (Name == "is_stmt") {
3678       Loc = getTok().getLoc();
3679       const MCExpr *Value;
3680       if (parseExpression(Value))
3681         return true;
3682       // The expression must be the constant 0 or 1.
3683       if (const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value)) {
3684         int Value = MCE->getValue();
3685         if (Value == 0)
3686           Flags &= ~DWARF2_FLAG_IS_STMT;
3687         else if (Value == 1)
3688           Flags |= DWARF2_FLAG_IS_STMT;
3689         else
3690           return Error(Loc, "is_stmt value not 0 or 1");
3691       } else {
3692         return Error(Loc, "is_stmt value not the constant value of 0 or 1");
3693       }
3694     } else if (Name == "isa") {
3695       Loc = getTok().getLoc();
3696       const MCExpr *Value;
3697       if (parseExpression(Value))
3698         return true;
3699       // The expression must be a constant greater or equal to 0.
3700       if (const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value)) {
3701         int Value = MCE->getValue();
3702         if (Value < 0)
3703           return Error(Loc, "isa number less than zero");
3704         Isa = Value;
3705       } else {
3706         return Error(Loc, "isa number not a constant value");
3707       }
3708     } else if (Name == "discriminator") {
3709       if (parseAbsoluteExpression(Discriminator))
3710         return true;
3711     } else {
3712       return Error(Loc, "unknown sub-directive in '.loc' directive");
3713     }
3714     return false;
3715   };
3716 
3717   if (parseMany(parseLocOp, false /*hasComma*/))
3718     return true;
3719 
3720   getStreamer().emitDwarfLocDirective(FileNumber, LineNumber, ColumnPos, Flags,
3721                                       Isa, Discriminator, StringRef());
3722 
3723   return false;
3724 }
3725 
3726 /// parseDirectiveStabs
3727 /// ::= .stabs string, number, number, number
3728 bool AsmParser::parseDirectiveStabs() {
3729   return TokError("unsupported directive '.stabs'");
3730 }
3731 
3732 /// parseDirectiveCVFile
3733 /// ::= .cv_file number filename [checksum] [checksumkind]
3734 bool AsmParser::parseDirectiveCVFile() {
3735   SMLoc FileNumberLoc = getTok().getLoc();
3736   int64_t FileNumber;
3737   std::string Filename;
3738   std::string Checksum;
3739   int64_t ChecksumKind = 0;
3740 
3741   if (parseIntToken(FileNumber,
3742                     "expected file number in '.cv_file' directive") ||
3743       check(FileNumber < 1, FileNumberLoc, "file number less than one") ||
3744       check(getTok().isNot(AsmToken::String),
3745             "unexpected token in '.cv_file' directive") ||
3746       parseEscapedString(Filename))
3747     return true;
3748   if (!parseOptionalToken(AsmToken::EndOfStatement)) {
3749     if (check(getTok().isNot(AsmToken::String),
3750               "unexpected token in '.cv_file' directive") ||
3751         parseEscapedString(Checksum) ||
3752         parseIntToken(ChecksumKind,
3753                       "expected checksum kind in '.cv_file' directive") ||
3754         parseEOL())
3755       return true;
3756   }
3757 
3758   Checksum = fromHex(Checksum);
3759   void *CKMem = Ctx.allocate(Checksum.size(), 1);
3760   memcpy(CKMem, Checksum.data(), Checksum.size());
3761   ArrayRef<uint8_t> ChecksumAsBytes(reinterpret_cast<const uint8_t *>(CKMem),
3762                                     Checksum.size());
3763 
3764   if (!getStreamer().emitCVFileDirective(FileNumber, Filename, ChecksumAsBytes,
3765                                          static_cast<uint8_t>(ChecksumKind)))
3766     return Error(FileNumberLoc, "file number already allocated");
3767 
3768   return false;
3769 }
3770 
3771 bool AsmParser::parseCVFunctionId(int64_t &FunctionId,
3772                                   StringRef DirectiveName) {
3773   SMLoc Loc;
3774   return parseTokenLoc(Loc) ||
3775          parseIntToken(FunctionId, "expected function id in '" + DirectiveName +
3776                                        "' directive") ||
3777          check(FunctionId < 0 || FunctionId >= UINT_MAX, Loc,
3778                "expected function id within range [0, UINT_MAX)");
3779 }
3780 
3781 bool AsmParser::parseCVFileId(int64_t &FileNumber, StringRef DirectiveName) {
3782   SMLoc Loc;
3783   return parseTokenLoc(Loc) ||
3784          parseIntToken(FileNumber, "expected integer in '" + DirectiveName +
3785                                        "' directive") ||
3786          check(FileNumber < 1, Loc, "file number less than one in '" +
3787                                         DirectiveName + "' directive") ||
3788          check(!getCVContext().isValidFileNumber(FileNumber), Loc,
3789                "unassigned file number in '" + DirectiveName + "' directive");
3790 }
3791 
3792 /// parseDirectiveCVFuncId
3793 /// ::= .cv_func_id FunctionId
3794 ///
3795 /// Introduces a function ID that can be used with .cv_loc.
3796 bool AsmParser::parseDirectiveCVFuncId() {
3797   SMLoc FunctionIdLoc = getTok().getLoc();
3798   int64_t FunctionId;
3799 
3800   if (parseCVFunctionId(FunctionId, ".cv_func_id") || parseEOL())
3801     return true;
3802 
3803   if (!getStreamer().emitCVFuncIdDirective(FunctionId))
3804     return Error(FunctionIdLoc, "function id already allocated");
3805 
3806   return false;
3807 }
3808 
3809 /// parseDirectiveCVInlineSiteId
3810 /// ::= .cv_inline_site_id FunctionId
3811 ///         "within" IAFunc
3812 ///         "inlined_at" IAFile IALine [IACol]
3813 ///
3814 /// Introduces a function ID that can be used with .cv_loc. Includes "inlined
3815 /// at" source location information for use in the line table of the caller,
3816 /// whether the caller is a real function or another inlined call site.
3817 bool AsmParser::parseDirectiveCVInlineSiteId() {
3818   SMLoc FunctionIdLoc = getTok().getLoc();
3819   int64_t FunctionId;
3820   int64_t IAFunc;
3821   int64_t IAFile;
3822   int64_t IALine;
3823   int64_t IACol = 0;
3824 
3825   // FunctionId
3826   if (parseCVFunctionId(FunctionId, ".cv_inline_site_id"))
3827     return true;
3828 
3829   // "within"
3830   if (check((getLexer().isNot(AsmToken::Identifier) ||
3831              getTok().getIdentifier() != "within"),
3832             "expected 'within' identifier in '.cv_inline_site_id' directive"))
3833     return true;
3834   Lex();
3835 
3836   // IAFunc
3837   if (parseCVFunctionId(IAFunc, ".cv_inline_site_id"))
3838     return true;
3839 
3840   // "inlined_at"
3841   if (check((getLexer().isNot(AsmToken::Identifier) ||
3842              getTok().getIdentifier() != "inlined_at"),
3843             "expected 'inlined_at' identifier in '.cv_inline_site_id' "
3844             "directive") )
3845     return true;
3846   Lex();
3847 
3848   // IAFile IALine
3849   if (parseCVFileId(IAFile, ".cv_inline_site_id") ||
3850       parseIntToken(IALine, "expected line number after 'inlined_at'"))
3851     return true;
3852 
3853   // [IACol]
3854   if (getLexer().is(AsmToken::Integer)) {
3855     IACol = getTok().getIntVal();
3856     Lex();
3857   }
3858 
3859   if (parseEOL())
3860     return true;
3861 
3862   if (!getStreamer().emitCVInlineSiteIdDirective(FunctionId, IAFunc, IAFile,
3863                                                  IALine, IACol, FunctionIdLoc))
3864     return Error(FunctionIdLoc, "function id already allocated");
3865 
3866   return false;
3867 }
3868 
3869 /// parseDirectiveCVLoc
3870 /// ::= .cv_loc FunctionId FileNumber [LineNumber] [ColumnPos] [prologue_end]
3871 ///                                [is_stmt VALUE]
3872 /// The first number is a file number, must have been previously assigned with
3873 /// a .file directive, the second number is the line number and optionally the
3874 /// third number is a column position (zero if not specified).  The remaining
3875 /// optional items are .loc sub-directives.
3876 bool AsmParser::parseDirectiveCVLoc() {
3877   SMLoc DirectiveLoc = getTok().getLoc();
3878   int64_t FunctionId, FileNumber;
3879   if (parseCVFunctionId(FunctionId, ".cv_loc") ||
3880       parseCVFileId(FileNumber, ".cv_loc"))
3881     return true;
3882 
3883   int64_t LineNumber = 0;
3884   if (getLexer().is(AsmToken::Integer)) {
3885     LineNumber = getTok().getIntVal();
3886     if (LineNumber < 0)
3887       return TokError("line number less than zero in '.cv_loc' directive");
3888     Lex();
3889   }
3890 
3891   int64_t ColumnPos = 0;
3892   if (getLexer().is(AsmToken::Integer)) {
3893     ColumnPos = getTok().getIntVal();
3894     if (ColumnPos < 0)
3895       return TokError("column position less than zero in '.cv_loc' directive");
3896     Lex();
3897   }
3898 
3899   bool PrologueEnd = false;
3900   uint64_t IsStmt = 0;
3901 
3902   auto parseOp = [&]() -> bool {
3903     StringRef Name;
3904     SMLoc Loc = getTok().getLoc();
3905     if (parseIdentifier(Name))
3906       return TokError("unexpected token in '.cv_loc' directive");
3907     if (Name == "prologue_end")
3908       PrologueEnd = true;
3909     else if (Name == "is_stmt") {
3910       Loc = getTok().getLoc();
3911       const MCExpr *Value;
3912       if (parseExpression(Value))
3913         return true;
3914       // The expression must be the constant 0 or 1.
3915       IsStmt = ~0ULL;
3916       if (const auto *MCE = dyn_cast<MCConstantExpr>(Value))
3917         IsStmt = MCE->getValue();
3918 
3919       if (IsStmt > 1)
3920         return Error(Loc, "is_stmt value not 0 or 1");
3921     } else {
3922       return Error(Loc, "unknown sub-directive in '.cv_loc' directive");
3923     }
3924     return false;
3925   };
3926 
3927   if (parseMany(parseOp, false /*hasComma*/))
3928     return true;
3929 
3930   getStreamer().emitCVLocDirective(FunctionId, FileNumber, LineNumber,
3931                                    ColumnPos, PrologueEnd, IsStmt, StringRef(),
3932                                    DirectiveLoc);
3933   return false;
3934 }
3935 
3936 /// parseDirectiveCVLinetable
3937 /// ::= .cv_linetable FunctionId, FnStart, FnEnd
3938 bool AsmParser::parseDirectiveCVLinetable() {
3939   int64_t FunctionId;
3940   StringRef FnStartName, FnEndName;
3941   SMLoc Loc = getTok().getLoc();
3942   if (parseCVFunctionId(FunctionId, ".cv_linetable") || parseComma() ||
3943       parseTokenLoc(Loc) ||
3944       check(parseIdentifier(FnStartName), Loc,
3945             "expected identifier in directive") ||
3946       parseComma() || parseTokenLoc(Loc) ||
3947       check(parseIdentifier(FnEndName), Loc,
3948             "expected identifier in directive"))
3949     return true;
3950 
3951   MCSymbol *FnStartSym = getContext().getOrCreateSymbol(FnStartName);
3952   MCSymbol *FnEndSym = getContext().getOrCreateSymbol(FnEndName);
3953 
3954   getStreamer().emitCVLinetableDirective(FunctionId, FnStartSym, FnEndSym);
3955   return false;
3956 }
3957 
3958 /// parseDirectiveCVInlineLinetable
3959 /// ::= .cv_inline_linetable PrimaryFunctionId FileId LineNum FnStart FnEnd
3960 bool AsmParser::parseDirectiveCVInlineLinetable() {
3961   int64_t PrimaryFunctionId, SourceFileId, SourceLineNum;
3962   StringRef FnStartName, FnEndName;
3963   SMLoc Loc = getTok().getLoc();
3964   if (parseCVFunctionId(PrimaryFunctionId, ".cv_inline_linetable") ||
3965       parseTokenLoc(Loc) ||
3966       parseIntToken(
3967           SourceFileId,
3968           "expected SourceField in '.cv_inline_linetable' directive") ||
3969       check(SourceFileId <= 0, Loc,
3970             "File id less than zero in '.cv_inline_linetable' directive") ||
3971       parseTokenLoc(Loc) ||
3972       parseIntToken(
3973           SourceLineNum,
3974           "expected SourceLineNum in '.cv_inline_linetable' directive") ||
3975       check(SourceLineNum < 0, Loc,
3976             "Line number less than zero in '.cv_inline_linetable' directive") ||
3977       parseTokenLoc(Loc) || check(parseIdentifier(FnStartName), Loc,
3978                                   "expected identifier in directive") ||
3979       parseTokenLoc(Loc) || check(parseIdentifier(FnEndName), Loc,
3980                                   "expected identifier in directive"))
3981     return true;
3982 
3983   if (parseEOL())
3984     return true;
3985 
3986   MCSymbol *FnStartSym = getContext().getOrCreateSymbol(FnStartName);
3987   MCSymbol *FnEndSym = getContext().getOrCreateSymbol(FnEndName);
3988   getStreamer().emitCVInlineLinetableDirective(PrimaryFunctionId, SourceFileId,
3989                                                SourceLineNum, FnStartSym,
3990                                                FnEndSym);
3991   return false;
3992 }
3993 
3994 void AsmParser::initializeCVDefRangeTypeMap() {
3995   CVDefRangeTypeMap["reg"] = CVDR_DEFRANGE_REGISTER;
3996   CVDefRangeTypeMap["frame_ptr_rel"] = CVDR_DEFRANGE_FRAMEPOINTER_REL;
3997   CVDefRangeTypeMap["subfield_reg"] = CVDR_DEFRANGE_SUBFIELD_REGISTER;
3998   CVDefRangeTypeMap["reg_rel"] = CVDR_DEFRANGE_REGISTER_REL;
3999 }
4000 
4001 /// parseDirectiveCVDefRange
4002 /// ::= .cv_def_range RangeStart RangeEnd (GapStart GapEnd)*, bytes*
4003 bool AsmParser::parseDirectiveCVDefRange() {
4004   SMLoc Loc;
4005   std::vector<std::pair<const MCSymbol *, const MCSymbol *>> Ranges;
4006   while (getLexer().is(AsmToken::Identifier)) {
4007     Loc = getLexer().getLoc();
4008     StringRef GapStartName;
4009     if (parseIdentifier(GapStartName))
4010       return Error(Loc, "expected identifier in directive");
4011     MCSymbol *GapStartSym = getContext().getOrCreateSymbol(GapStartName);
4012 
4013     Loc = getLexer().getLoc();
4014     StringRef GapEndName;
4015     if (parseIdentifier(GapEndName))
4016       return Error(Loc, "expected identifier in directive");
4017     MCSymbol *GapEndSym = getContext().getOrCreateSymbol(GapEndName);
4018 
4019     Ranges.push_back({GapStartSym, GapEndSym});
4020   }
4021 
4022   StringRef CVDefRangeTypeStr;
4023   if (parseToken(
4024           AsmToken::Comma,
4025           "expected comma before def_range type in .cv_def_range directive") ||
4026       parseIdentifier(CVDefRangeTypeStr))
4027     return Error(Loc, "expected def_range type in directive");
4028 
4029   StringMap<CVDefRangeType>::const_iterator CVTypeIt =
4030       CVDefRangeTypeMap.find(CVDefRangeTypeStr);
4031   CVDefRangeType CVDRType = (CVTypeIt == CVDefRangeTypeMap.end())
4032                                 ? CVDR_DEFRANGE
4033                                 : CVTypeIt->getValue();
4034   switch (CVDRType) {
4035   case CVDR_DEFRANGE_REGISTER: {
4036     int64_t DRRegister;
4037     if (parseToken(AsmToken::Comma, "expected comma before register number in "
4038                                     ".cv_def_range directive") ||
4039         parseAbsoluteExpression(DRRegister))
4040       return Error(Loc, "expected register number");
4041 
4042     codeview::DefRangeRegisterHeader DRHdr;
4043     DRHdr.Register = DRRegister;
4044     DRHdr.MayHaveNoName = 0;
4045     getStreamer().emitCVDefRangeDirective(Ranges, DRHdr);
4046     break;
4047   }
4048   case CVDR_DEFRANGE_FRAMEPOINTER_REL: {
4049     int64_t DROffset;
4050     if (parseToken(AsmToken::Comma,
4051                    "expected comma before offset in .cv_def_range directive") ||
4052         parseAbsoluteExpression(DROffset))
4053       return Error(Loc, "expected offset value");
4054 
4055     codeview::DefRangeFramePointerRelHeader DRHdr;
4056     DRHdr.Offset = DROffset;
4057     getStreamer().emitCVDefRangeDirective(Ranges, DRHdr);
4058     break;
4059   }
4060   case CVDR_DEFRANGE_SUBFIELD_REGISTER: {
4061     int64_t DRRegister;
4062     int64_t DROffsetInParent;
4063     if (parseToken(AsmToken::Comma, "expected comma before register number in "
4064                                     ".cv_def_range directive") ||
4065         parseAbsoluteExpression(DRRegister))
4066       return Error(Loc, "expected register number");
4067     if (parseToken(AsmToken::Comma,
4068                    "expected comma before offset in .cv_def_range directive") ||
4069         parseAbsoluteExpression(DROffsetInParent))
4070       return Error(Loc, "expected offset value");
4071 
4072     codeview::DefRangeSubfieldRegisterHeader DRHdr;
4073     DRHdr.Register = DRRegister;
4074     DRHdr.MayHaveNoName = 0;
4075     DRHdr.OffsetInParent = DROffsetInParent;
4076     getStreamer().emitCVDefRangeDirective(Ranges, DRHdr);
4077     break;
4078   }
4079   case CVDR_DEFRANGE_REGISTER_REL: {
4080     int64_t DRRegister;
4081     int64_t DRFlags;
4082     int64_t DRBasePointerOffset;
4083     if (parseToken(AsmToken::Comma, "expected comma before register number in "
4084                                     ".cv_def_range directive") ||
4085         parseAbsoluteExpression(DRRegister))
4086       return Error(Loc, "expected register value");
4087     if (parseToken(
4088             AsmToken::Comma,
4089             "expected comma before flag value in .cv_def_range directive") ||
4090         parseAbsoluteExpression(DRFlags))
4091       return Error(Loc, "expected flag value");
4092     if (parseToken(AsmToken::Comma, "expected comma before base pointer offset "
4093                                     "in .cv_def_range directive") ||
4094         parseAbsoluteExpression(DRBasePointerOffset))
4095       return Error(Loc, "expected base pointer offset value");
4096 
4097     codeview::DefRangeRegisterRelHeader DRHdr;
4098     DRHdr.Register = DRRegister;
4099     DRHdr.Flags = DRFlags;
4100     DRHdr.BasePointerOffset = DRBasePointerOffset;
4101     getStreamer().emitCVDefRangeDirective(Ranges, DRHdr);
4102     break;
4103   }
4104   default:
4105     return Error(Loc, "unexpected def_range type in .cv_def_range directive");
4106   }
4107   return true;
4108 }
4109 
4110 /// parseDirectiveCVString
4111 /// ::= .cv_stringtable "string"
4112 bool AsmParser::parseDirectiveCVString() {
4113   std::string Data;
4114   if (checkForValidSection() || parseEscapedString(Data))
4115     return true;
4116 
4117   // Put the string in the table and emit the offset.
4118   std::pair<StringRef, unsigned> Insertion =
4119       getCVContext().addToStringTable(Data);
4120   getStreamer().emitInt32(Insertion.second);
4121   return false;
4122 }
4123 
4124 /// parseDirectiveCVStringTable
4125 /// ::= .cv_stringtable
4126 bool AsmParser::parseDirectiveCVStringTable() {
4127   getStreamer().emitCVStringTableDirective();
4128   return false;
4129 }
4130 
4131 /// parseDirectiveCVFileChecksums
4132 /// ::= .cv_filechecksums
4133 bool AsmParser::parseDirectiveCVFileChecksums() {
4134   getStreamer().emitCVFileChecksumsDirective();
4135   return false;
4136 }
4137 
4138 /// parseDirectiveCVFileChecksumOffset
4139 /// ::= .cv_filechecksumoffset fileno
4140 bool AsmParser::parseDirectiveCVFileChecksumOffset() {
4141   int64_t FileNo;
4142   if (parseIntToken(FileNo, "expected identifier in directive"))
4143     return true;
4144   if (parseEOL())
4145     return true;
4146   getStreamer().emitCVFileChecksumOffsetDirective(FileNo);
4147   return false;
4148 }
4149 
4150 /// parseDirectiveCVFPOData
4151 /// ::= .cv_fpo_data procsym
4152 bool AsmParser::parseDirectiveCVFPOData() {
4153   SMLoc DirLoc = getLexer().getLoc();
4154   StringRef ProcName;
4155   if (parseIdentifier(ProcName))
4156     return TokError("expected symbol name");
4157   if (parseEOL())
4158     return true;
4159   MCSymbol *ProcSym = getContext().getOrCreateSymbol(ProcName);
4160   getStreamer().emitCVFPOData(ProcSym, DirLoc);
4161   return false;
4162 }
4163 
4164 /// parseDirectiveCFISections
4165 /// ::= .cfi_sections section [, section]
4166 bool AsmParser::parseDirectiveCFISections() {
4167   StringRef Name;
4168   bool EH = false;
4169   bool Debug = false;
4170 
4171   if (!parseOptionalToken(AsmToken::EndOfStatement)) {
4172     for (;;) {
4173       if (parseIdentifier(Name))
4174         return TokError("expected .eh_frame or .debug_frame");
4175       if (Name == ".eh_frame")
4176         EH = true;
4177       else if (Name == ".debug_frame")
4178         Debug = true;
4179       if (parseOptionalToken(AsmToken::EndOfStatement))
4180         break;
4181       if (parseComma())
4182         return true;
4183     }
4184   }
4185   getStreamer().emitCFISections(EH, Debug);
4186   return false;
4187 }
4188 
4189 /// parseDirectiveCFIStartProc
4190 /// ::= .cfi_startproc [simple]
4191 bool AsmParser::parseDirectiveCFIStartProc() {
4192   StringRef Simple;
4193   if (!parseOptionalToken(AsmToken::EndOfStatement)) {
4194     if (check(parseIdentifier(Simple) || Simple != "simple",
4195               "unexpected token") ||
4196         parseEOL())
4197       return true;
4198   }
4199 
4200   // TODO(kristina): Deal with a corner case of incorrect diagnostic context
4201   // being produced if this directive is emitted as part of preprocessor macro
4202   // expansion which can *ONLY* happen if Clang's cc1as is the API consumer.
4203   // Tools like llvm-mc on the other hand are not affected by it, and report
4204   // correct context information.
4205   getStreamer().emitCFIStartProc(!Simple.empty(), Lexer.getLoc());
4206   return false;
4207 }
4208 
4209 /// parseDirectiveCFIEndProc
4210 /// ::= .cfi_endproc
4211 bool AsmParser::parseDirectiveCFIEndProc() {
4212   if (parseEOL())
4213     return true;
4214   getStreamer().emitCFIEndProc();
4215   return false;
4216 }
4217 
4218 /// parse register name or number.
4219 bool AsmParser::parseRegisterOrRegisterNumber(int64_t &Register,
4220                                               SMLoc DirectiveLoc) {
4221   MCRegister RegNo;
4222 
4223   if (getLexer().isNot(AsmToken::Integer)) {
4224     if (getTargetParser().parseRegister(RegNo, DirectiveLoc, DirectiveLoc))
4225       return true;
4226     Register = getContext().getRegisterInfo()->getDwarfRegNum(RegNo, true);
4227   } else
4228     return parseAbsoluteExpression(Register);
4229 
4230   return false;
4231 }
4232 
4233 /// parseDirectiveCFIDefCfa
4234 /// ::= .cfi_def_cfa register,  offset
4235 bool AsmParser::parseDirectiveCFIDefCfa(SMLoc DirectiveLoc) {
4236   int64_t Register = 0, Offset = 0;
4237   if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseComma() ||
4238       parseAbsoluteExpression(Offset) || parseEOL())
4239     return true;
4240 
4241   getStreamer().emitCFIDefCfa(Register, Offset);
4242   return false;
4243 }
4244 
4245 /// parseDirectiveCFIDefCfaOffset
4246 /// ::= .cfi_def_cfa_offset offset
4247 bool AsmParser::parseDirectiveCFIDefCfaOffset() {
4248   int64_t Offset = 0;
4249   if (parseAbsoluteExpression(Offset) || parseEOL())
4250     return true;
4251 
4252   getStreamer().emitCFIDefCfaOffset(Offset);
4253   return false;
4254 }
4255 
4256 /// parseDirectiveCFIRegister
4257 /// ::= .cfi_register register, register
4258 bool AsmParser::parseDirectiveCFIRegister(SMLoc DirectiveLoc) {
4259   int64_t Register1 = 0, Register2 = 0;
4260   if (parseRegisterOrRegisterNumber(Register1, DirectiveLoc) || parseComma() ||
4261       parseRegisterOrRegisterNumber(Register2, DirectiveLoc) || parseEOL())
4262     return true;
4263 
4264   getStreamer().emitCFIRegister(Register1, Register2);
4265   return false;
4266 }
4267 
4268 /// parseDirectiveCFIWindowSave
4269 /// ::= .cfi_window_save
4270 bool AsmParser::parseDirectiveCFIWindowSave() {
4271   if (parseEOL())
4272     return true;
4273   getStreamer().emitCFIWindowSave();
4274   return false;
4275 }
4276 
4277 /// parseDirectiveCFIAdjustCfaOffset
4278 /// ::= .cfi_adjust_cfa_offset adjustment
4279 bool AsmParser::parseDirectiveCFIAdjustCfaOffset() {
4280   int64_t Adjustment = 0;
4281   if (parseAbsoluteExpression(Adjustment) || parseEOL())
4282     return true;
4283 
4284   getStreamer().emitCFIAdjustCfaOffset(Adjustment);
4285   return false;
4286 }
4287 
4288 /// parseDirectiveCFIDefCfaRegister
4289 /// ::= .cfi_def_cfa_register register
4290 bool AsmParser::parseDirectiveCFIDefCfaRegister(SMLoc DirectiveLoc) {
4291   int64_t Register = 0;
4292   if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseEOL())
4293     return true;
4294 
4295   getStreamer().emitCFIDefCfaRegister(Register);
4296   return false;
4297 }
4298 
4299 /// parseDirectiveCFILLVMDefAspaceCfa
4300 /// ::= .cfi_llvm_def_aspace_cfa register, offset, address_space
4301 bool AsmParser::parseDirectiveCFILLVMDefAspaceCfa(SMLoc DirectiveLoc) {
4302   int64_t Register = 0, Offset = 0, AddressSpace = 0;
4303   if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseComma() ||
4304       parseAbsoluteExpression(Offset) || parseComma() ||
4305       parseAbsoluteExpression(AddressSpace) || parseEOL())
4306     return true;
4307 
4308   getStreamer().emitCFILLVMDefAspaceCfa(Register, Offset, AddressSpace);
4309   return false;
4310 }
4311 
4312 /// parseDirectiveCFIOffset
4313 /// ::= .cfi_offset register, offset
4314 bool AsmParser::parseDirectiveCFIOffset(SMLoc DirectiveLoc) {
4315   int64_t Register = 0;
4316   int64_t Offset = 0;
4317 
4318   if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseComma() ||
4319       parseAbsoluteExpression(Offset) || parseEOL())
4320     return true;
4321 
4322   getStreamer().emitCFIOffset(Register, Offset);
4323   return false;
4324 }
4325 
4326 /// parseDirectiveCFIRelOffset
4327 /// ::= .cfi_rel_offset register, offset
4328 bool AsmParser::parseDirectiveCFIRelOffset(SMLoc DirectiveLoc) {
4329   int64_t Register = 0, Offset = 0;
4330 
4331   if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseComma() ||
4332       parseAbsoluteExpression(Offset) || parseEOL())
4333     return true;
4334 
4335   getStreamer().emitCFIRelOffset(Register, Offset);
4336   return false;
4337 }
4338 
4339 static bool isValidEncoding(int64_t Encoding) {
4340   if (Encoding & ~0xff)
4341     return false;
4342 
4343   if (Encoding == dwarf::DW_EH_PE_omit)
4344     return true;
4345 
4346   const unsigned Format = Encoding & 0xf;
4347   if (Format != dwarf::DW_EH_PE_absptr && Format != dwarf::DW_EH_PE_udata2 &&
4348       Format != dwarf::DW_EH_PE_udata4 && Format != dwarf::DW_EH_PE_udata8 &&
4349       Format != dwarf::DW_EH_PE_sdata2 && Format != dwarf::DW_EH_PE_sdata4 &&
4350       Format != dwarf::DW_EH_PE_sdata8 && Format != dwarf::DW_EH_PE_signed)
4351     return false;
4352 
4353   const unsigned Application = Encoding & 0x70;
4354   if (Application != dwarf::DW_EH_PE_absptr &&
4355       Application != dwarf::DW_EH_PE_pcrel)
4356     return false;
4357 
4358   return true;
4359 }
4360 
4361 /// parseDirectiveCFIPersonalityOrLsda
4362 /// IsPersonality true for cfi_personality, false for cfi_lsda
4363 /// ::= .cfi_personality encoding, [symbol_name]
4364 /// ::= .cfi_lsda encoding, [symbol_name]
4365 bool AsmParser::parseDirectiveCFIPersonalityOrLsda(bool IsPersonality) {
4366   int64_t Encoding = 0;
4367   if (parseAbsoluteExpression(Encoding))
4368     return true;
4369   if (Encoding == dwarf::DW_EH_PE_omit)
4370     return false;
4371 
4372   StringRef Name;
4373   if (check(!isValidEncoding(Encoding), "unsupported encoding.") ||
4374       parseComma() ||
4375       check(parseIdentifier(Name), "expected identifier in directive") ||
4376       parseEOL())
4377     return true;
4378 
4379   MCSymbol *Sym = getContext().getOrCreateSymbol(Name);
4380 
4381   if (IsPersonality)
4382     getStreamer().emitCFIPersonality(Sym, Encoding);
4383   else
4384     getStreamer().emitCFILsda(Sym, Encoding);
4385   return false;
4386 }
4387 
4388 /// parseDirectiveCFIRememberState
4389 /// ::= .cfi_remember_state
4390 bool AsmParser::parseDirectiveCFIRememberState() {
4391   if (parseEOL())
4392     return true;
4393   getStreamer().emitCFIRememberState();
4394   return false;
4395 }
4396 
4397 /// parseDirectiveCFIRestoreState
4398 /// ::= .cfi_remember_state
4399 bool AsmParser::parseDirectiveCFIRestoreState() {
4400   if (parseEOL())
4401     return true;
4402   getStreamer().emitCFIRestoreState();
4403   return false;
4404 }
4405 
4406 /// parseDirectiveCFISameValue
4407 /// ::= .cfi_same_value register
4408 bool AsmParser::parseDirectiveCFISameValue(SMLoc DirectiveLoc) {
4409   int64_t Register = 0;
4410 
4411   if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseEOL())
4412     return true;
4413 
4414   getStreamer().emitCFISameValue(Register);
4415   return false;
4416 }
4417 
4418 /// parseDirectiveCFIRestore
4419 /// ::= .cfi_restore register
4420 bool AsmParser::parseDirectiveCFIRestore(SMLoc DirectiveLoc) {
4421   int64_t Register = 0;
4422   if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseEOL())
4423     return true;
4424 
4425   getStreamer().emitCFIRestore(Register);
4426   return false;
4427 }
4428 
4429 /// parseDirectiveCFIEscape
4430 /// ::= .cfi_escape expression[,...]
4431 bool AsmParser::parseDirectiveCFIEscape() {
4432   std::string Values;
4433   int64_t CurrValue;
4434   if (parseAbsoluteExpression(CurrValue))
4435     return true;
4436 
4437   Values.push_back((uint8_t)CurrValue);
4438 
4439   while (getLexer().is(AsmToken::Comma)) {
4440     Lex();
4441 
4442     if (parseAbsoluteExpression(CurrValue))
4443       return true;
4444 
4445     Values.push_back((uint8_t)CurrValue);
4446   }
4447 
4448   getStreamer().emitCFIEscape(Values);
4449   return false;
4450 }
4451 
4452 /// parseDirectiveCFIReturnColumn
4453 /// ::= .cfi_return_column register
4454 bool AsmParser::parseDirectiveCFIReturnColumn(SMLoc DirectiveLoc) {
4455   int64_t Register = 0;
4456   if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseEOL())
4457     return true;
4458   getStreamer().emitCFIReturnColumn(Register);
4459   return false;
4460 }
4461 
4462 /// parseDirectiveCFISignalFrame
4463 /// ::= .cfi_signal_frame
4464 bool AsmParser::parseDirectiveCFISignalFrame() {
4465   if (parseEOL())
4466     return true;
4467 
4468   getStreamer().emitCFISignalFrame();
4469   return false;
4470 }
4471 
4472 /// parseDirectiveCFIUndefined
4473 /// ::= .cfi_undefined register
4474 bool AsmParser::parseDirectiveCFIUndefined(SMLoc DirectiveLoc) {
4475   int64_t Register = 0;
4476 
4477   if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseEOL())
4478     return true;
4479 
4480   getStreamer().emitCFIUndefined(Register);
4481   return false;
4482 }
4483 
4484 /// parseDirectiveAltmacro
4485 /// ::= .altmacro
4486 /// ::= .noaltmacro
4487 bool AsmParser::parseDirectiveAltmacro(StringRef Directive) {
4488   if (parseEOL())
4489     return true;
4490   AltMacroMode = (Directive == ".altmacro");
4491   return false;
4492 }
4493 
4494 /// parseDirectiveMacrosOnOff
4495 /// ::= .macros_on
4496 /// ::= .macros_off
4497 bool AsmParser::parseDirectiveMacrosOnOff(StringRef Directive) {
4498   if (parseEOL())
4499     return true;
4500   setMacrosEnabled(Directive == ".macros_on");
4501   return false;
4502 }
4503 
4504 /// parseDirectiveMacro
4505 /// ::= .macro name[,] [parameters]
4506 bool AsmParser::parseDirectiveMacro(SMLoc DirectiveLoc) {
4507   StringRef Name;
4508   if (parseIdentifier(Name))
4509     return TokError("expected identifier in '.macro' directive");
4510 
4511   if (getLexer().is(AsmToken::Comma))
4512     Lex();
4513 
4514   MCAsmMacroParameters Parameters;
4515   while (getLexer().isNot(AsmToken::EndOfStatement)) {
4516 
4517     if (!Parameters.empty() && Parameters.back().Vararg)
4518       return Error(Lexer.getLoc(), "vararg parameter '" +
4519                                        Parameters.back().Name +
4520                                        "' should be the last parameter");
4521 
4522     MCAsmMacroParameter Parameter;
4523     if (parseIdentifier(Parameter.Name))
4524       return TokError("expected identifier in '.macro' directive");
4525 
4526     // Emit an error if two (or more) named parameters share the same name
4527     for (const MCAsmMacroParameter& CurrParam : Parameters)
4528       if (CurrParam.Name.equals(Parameter.Name))
4529         return TokError("macro '" + Name + "' has multiple parameters"
4530                         " named '" + Parameter.Name + "'");
4531 
4532     if (Lexer.is(AsmToken::Colon)) {
4533       Lex();  // consume ':'
4534 
4535       SMLoc QualLoc;
4536       StringRef Qualifier;
4537 
4538       QualLoc = Lexer.getLoc();
4539       if (parseIdentifier(Qualifier))
4540         return Error(QualLoc, "missing parameter qualifier for "
4541                      "'" + Parameter.Name + "' in macro '" + Name + "'");
4542 
4543       if (Qualifier == "req")
4544         Parameter.Required = true;
4545       else if (Qualifier == "vararg")
4546         Parameter.Vararg = true;
4547       else
4548         return Error(QualLoc, Qualifier + " is not a valid parameter qualifier "
4549                      "for '" + Parameter.Name + "' in macro '" + Name + "'");
4550     }
4551 
4552     if (getLexer().is(AsmToken::Equal)) {
4553       Lex();
4554 
4555       SMLoc ParamLoc;
4556 
4557       ParamLoc = Lexer.getLoc();
4558       if (parseMacroArgument(Parameter.Value, /*Vararg=*/false ))
4559         return true;
4560 
4561       if (Parameter.Required)
4562         Warning(ParamLoc, "pointless default value for required parameter "
4563                 "'" + Parameter.Name + "' in macro '" + Name + "'");
4564     }
4565 
4566     Parameters.push_back(std::move(Parameter));
4567 
4568     if (getLexer().is(AsmToken::Comma))
4569       Lex();
4570   }
4571 
4572   // Eat just the end of statement.
4573   Lexer.Lex();
4574 
4575   // Consuming deferred text, so use Lexer.Lex to ignore Lexing Errors
4576   AsmToken EndToken, StartToken = getTok();
4577   unsigned MacroDepth = 0;
4578   // Lex the macro definition.
4579   while (true) {
4580     // Ignore Lexing errors in macros.
4581     while (Lexer.is(AsmToken::Error)) {
4582       Lexer.Lex();
4583     }
4584 
4585     // Check whether we have reached the end of the file.
4586     if (getLexer().is(AsmToken::Eof))
4587       return Error(DirectiveLoc, "no matching '.endmacro' in definition");
4588 
4589     // Otherwise, check whether we have reach the .endmacro or the start of a
4590     // preprocessor line marker.
4591     if (getLexer().is(AsmToken::Identifier)) {
4592       if (getTok().getIdentifier() == ".endm" ||
4593           getTok().getIdentifier() == ".endmacro") {
4594         if (MacroDepth == 0) { // Outermost macro.
4595           EndToken = getTok();
4596           Lexer.Lex();
4597           if (getLexer().isNot(AsmToken::EndOfStatement))
4598             return TokError("unexpected token in '" + EndToken.getIdentifier() +
4599                             "' directive");
4600           break;
4601         } else {
4602           // Otherwise we just found the end of an inner macro.
4603           --MacroDepth;
4604         }
4605       } else if (getTok().getIdentifier() == ".macro") {
4606         // We allow nested macros. Those aren't instantiated until the outermost
4607         // macro is expanded so just ignore them for now.
4608         ++MacroDepth;
4609       }
4610     } else if (Lexer.is(AsmToken::HashDirective)) {
4611       (void)parseCppHashLineFilenameComment(getLexer().getLoc());
4612     }
4613 
4614     // Otherwise, scan til the end of the statement.
4615     eatToEndOfStatement();
4616   }
4617 
4618   if (getContext().lookupMacro(Name)) {
4619     return Error(DirectiveLoc, "macro '" + Name + "' is already defined");
4620   }
4621 
4622   const char *BodyStart = StartToken.getLoc().getPointer();
4623   const char *BodyEnd = EndToken.getLoc().getPointer();
4624   StringRef Body = StringRef(BodyStart, BodyEnd - BodyStart);
4625   checkForBadMacro(DirectiveLoc, Name, Body, Parameters);
4626   MCAsmMacro Macro(Name, Body, std::move(Parameters));
4627   DEBUG_WITH_TYPE("asm-macros", dbgs() << "Defining new macro:\n";
4628                   Macro.dump());
4629   getContext().defineMacro(Name, std::move(Macro));
4630   return false;
4631 }
4632 
4633 /// checkForBadMacro
4634 ///
4635 /// With the support added for named parameters there may be code out there that
4636 /// is transitioning from positional parameters.  In versions of gas that did
4637 /// not support named parameters they would be ignored on the macro definition.
4638 /// But to support both styles of parameters this is not possible so if a macro
4639 /// definition has named parameters but does not use them and has what appears
4640 /// to be positional parameters, strings like $1, $2, ... and $n, then issue a
4641 /// warning that the positional parameter found in body which have no effect.
4642 /// Hoping the developer will either remove the named parameters from the macro
4643 /// definition so the positional parameters get used if that was what was
4644 /// intended or change the macro to use the named parameters.  It is possible
4645 /// this warning will trigger when the none of the named parameters are used
4646 /// and the strings like $1 are infact to simply to be passed trough unchanged.
4647 void AsmParser::checkForBadMacro(SMLoc DirectiveLoc, StringRef Name,
4648                                  StringRef Body,
4649                                  ArrayRef<MCAsmMacroParameter> Parameters) {
4650   // If this macro is not defined with named parameters the warning we are
4651   // checking for here doesn't apply.
4652   unsigned NParameters = Parameters.size();
4653   if (NParameters == 0)
4654     return;
4655 
4656   bool NamedParametersFound = false;
4657   bool PositionalParametersFound = false;
4658 
4659   // Look at the body of the macro for use of both the named parameters and what
4660   // are likely to be positional parameters.  This is what expandMacro() is
4661   // doing when it finds the parameters in the body.
4662   while (!Body.empty()) {
4663     // Scan for the next possible parameter.
4664     std::size_t End = Body.size(), Pos = 0;
4665     for (; Pos != End; ++Pos) {
4666       // Check for a substitution or escape.
4667       // This macro is defined with parameters, look for \foo, \bar, etc.
4668       if (Body[Pos] == '\\' && Pos + 1 != End)
4669         break;
4670 
4671       // This macro should have parameters, but look for $0, $1, ..., $n too.
4672       if (Body[Pos] != '$' || Pos + 1 == End)
4673         continue;
4674       char Next = Body[Pos + 1];
4675       if (Next == '$' || Next == 'n' ||
4676           isdigit(static_cast<unsigned char>(Next)))
4677         break;
4678     }
4679 
4680     // Check if we reached the end.
4681     if (Pos == End)
4682       break;
4683 
4684     if (Body[Pos] == '$') {
4685       switch (Body[Pos + 1]) {
4686       // $$ => $
4687       case '$':
4688         break;
4689 
4690       // $n => number of arguments
4691       case 'n':
4692         PositionalParametersFound = true;
4693         break;
4694 
4695       // $[0-9] => argument
4696       default: {
4697         PositionalParametersFound = true;
4698         break;
4699       }
4700       }
4701       Pos += 2;
4702     } else {
4703       unsigned I = Pos + 1;
4704       while (isIdentifierChar(Body[I]) && I + 1 != End)
4705         ++I;
4706 
4707       const char *Begin = Body.data() + Pos + 1;
4708       StringRef Argument(Begin, I - (Pos + 1));
4709       unsigned Index = 0;
4710       for (; Index < NParameters; ++Index)
4711         if (Parameters[Index].Name == Argument)
4712           break;
4713 
4714       if (Index == NParameters) {
4715         if (Body[Pos + 1] == '(' && Body[Pos + 2] == ')')
4716           Pos += 3;
4717         else {
4718           Pos = I;
4719         }
4720       } else {
4721         NamedParametersFound = true;
4722         Pos += 1 + Argument.size();
4723       }
4724     }
4725     // Update the scan point.
4726     Body = Body.substr(Pos);
4727   }
4728 
4729   if (!NamedParametersFound && PositionalParametersFound)
4730     Warning(DirectiveLoc, "macro defined with named parameters which are not "
4731                           "used in macro body, possible positional parameter "
4732                           "found in body which will have no effect");
4733 }
4734 
4735 /// parseDirectiveExitMacro
4736 /// ::= .exitm
4737 bool AsmParser::parseDirectiveExitMacro(StringRef Directive) {
4738   if (parseEOL())
4739     return true;
4740 
4741   if (!isInsideMacroInstantiation())
4742     return TokError("unexpected '" + Directive + "' in file, "
4743                                                  "no current macro definition");
4744 
4745   // Exit all conditionals that are active in the current macro.
4746   while (TheCondStack.size() != ActiveMacros.back()->CondStackDepth) {
4747     TheCondState = TheCondStack.back();
4748     TheCondStack.pop_back();
4749   }
4750 
4751   handleMacroExit();
4752   return false;
4753 }
4754 
4755 /// parseDirectiveEndMacro
4756 /// ::= .endm
4757 /// ::= .endmacro
4758 bool AsmParser::parseDirectiveEndMacro(StringRef Directive) {
4759   if (getLexer().isNot(AsmToken::EndOfStatement))
4760     return TokError("unexpected token in '" + Directive + "' directive");
4761 
4762   // If we are inside a macro instantiation, terminate the current
4763   // instantiation.
4764   if (isInsideMacroInstantiation()) {
4765     handleMacroExit();
4766     return false;
4767   }
4768 
4769   // Otherwise, this .endmacro is a stray entry in the file; well formed
4770   // .endmacro directives are handled during the macro definition parsing.
4771   return TokError("unexpected '" + Directive + "' in file, "
4772                                                "no current macro definition");
4773 }
4774 
4775 /// parseDirectivePurgeMacro
4776 /// ::= .purgem name
4777 bool AsmParser::parseDirectivePurgeMacro(SMLoc DirectiveLoc) {
4778   StringRef Name;
4779   SMLoc Loc;
4780   if (parseTokenLoc(Loc) ||
4781       check(parseIdentifier(Name), Loc,
4782             "expected identifier in '.purgem' directive") ||
4783       parseEOL())
4784     return true;
4785 
4786   if (!getContext().lookupMacro(Name))
4787     return Error(DirectiveLoc, "macro '" + Name + "' is not defined");
4788 
4789   getContext().undefineMacro(Name);
4790   DEBUG_WITH_TYPE("asm-macros", dbgs()
4791                                     << "Un-defining macro: " << Name << "\n");
4792   return false;
4793 }
4794 
4795 /// parseDirectiveBundleAlignMode
4796 /// ::= {.bundle_align_mode} expression
4797 bool AsmParser::parseDirectiveBundleAlignMode() {
4798   // Expect a single argument: an expression that evaluates to a constant
4799   // in the inclusive range 0-30.
4800   SMLoc ExprLoc = getLexer().getLoc();
4801   int64_t AlignSizePow2;
4802   if (checkForValidSection() || parseAbsoluteExpression(AlignSizePow2) ||
4803       parseEOL() ||
4804       check(AlignSizePow2 < 0 || AlignSizePow2 > 30, ExprLoc,
4805             "invalid bundle alignment size (expected between 0 and 30)"))
4806     return true;
4807 
4808   getStreamer().emitBundleAlignMode(Align(1ULL << AlignSizePow2));
4809   return false;
4810 }
4811 
4812 /// parseDirectiveBundleLock
4813 /// ::= {.bundle_lock} [align_to_end]
4814 bool AsmParser::parseDirectiveBundleLock() {
4815   if (checkForValidSection())
4816     return true;
4817   bool AlignToEnd = false;
4818 
4819   StringRef Option;
4820   SMLoc Loc = getTok().getLoc();
4821   const char *kInvalidOptionError =
4822       "invalid option for '.bundle_lock' directive";
4823 
4824   if (!parseOptionalToken(AsmToken::EndOfStatement)) {
4825     if (check(parseIdentifier(Option), Loc, kInvalidOptionError) ||
4826         check(Option != "align_to_end", Loc, kInvalidOptionError) || parseEOL())
4827       return true;
4828     AlignToEnd = true;
4829   }
4830 
4831   getStreamer().emitBundleLock(AlignToEnd);
4832   return false;
4833 }
4834 
4835 /// parseDirectiveBundleLock
4836 /// ::= {.bundle_lock}
4837 bool AsmParser::parseDirectiveBundleUnlock() {
4838   if (checkForValidSection() || parseEOL())
4839     return true;
4840 
4841   getStreamer().emitBundleUnlock();
4842   return false;
4843 }
4844 
4845 /// parseDirectiveSpace
4846 /// ::= (.skip | .space) expression [ , expression ]
4847 bool AsmParser::parseDirectiveSpace(StringRef IDVal) {
4848   SMLoc NumBytesLoc = Lexer.getLoc();
4849   const MCExpr *NumBytes;
4850   if (checkForValidSection() || parseExpression(NumBytes))
4851     return true;
4852 
4853   int64_t FillExpr = 0;
4854   if (parseOptionalToken(AsmToken::Comma))
4855     if (parseAbsoluteExpression(FillExpr))
4856       return true;
4857   if (parseEOL())
4858     return true;
4859 
4860   // FIXME: Sometimes the fill expr is 'nop' if it isn't supplied, instead of 0.
4861   getStreamer().emitFill(*NumBytes, FillExpr, NumBytesLoc);
4862 
4863   return false;
4864 }
4865 
4866 /// parseDirectiveDCB
4867 /// ::= .dcb.{b, l, w} expression, expression
4868 bool AsmParser::parseDirectiveDCB(StringRef IDVal, unsigned Size) {
4869   SMLoc NumValuesLoc = Lexer.getLoc();
4870   int64_t NumValues;
4871   if (checkForValidSection() || parseAbsoluteExpression(NumValues))
4872     return true;
4873 
4874   if (NumValues < 0) {
4875     Warning(NumValuesLoc, "'" + Twine(IDVal) + "' directive with negative repeat count has no effect");
4876     return false;
4877   }
4878 
4879   if (parseComma())
4880     return true;
4881 
4882   const MCExpr *Value;
4883   SMLoc ExprLoc = getLexer().getLoc();
4884   if (parseExpression(Value))
4885     return true;
4886 
4887   // Special case constant expressions to match code generator.
4888   if (const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value)) {
4889     assert(Size <= 8 && "Invalid size");
4890     uint64_t IntValue = MCE->getValue();
4891     if (!isUIntN(8 * Size, IntValue) && !isIntN(8 * Size, IntValue))
4892       return Error(ExprLoc, "literal value out of range for directive");
4893     for (uint64_t i = 0, e = NumValues; i != e; ++i)
4894       getStreamer().emitIntValue(IntValue, Size);
4895   } else {
4896     for (uint64_t i = 0, e = NumValues; i != e; ++i)
4897       getStreamer().emitValue(Value, Size, ExprLoc);
4898   }
4899 
4900   return parseEOL();
4901 }
4902 
4903 /// parseDirectiveRealDCB
4904 /// ::= .dcb.{d, s} expression, expression
4905 bool AsmParser::parseDirectiveRealDCB(StringRef IDVal, const fltSemantics &Semantics) {
4906   SMLoc NumValuesLoc = Lexer.getLoc();
4907   int64_t NumValues;
4908   if (checkForValidSection() || parseAbsoluteExpression(NumValues))
4909     return true;
4910 
4911   if (NumValues < 0) {
4912     Warning(NumValuesLoc, "'" + Twine(IDVal) + "' directive with negative repeat count has no effect");
4913     return false;
4914   }
4915 
4916   if (parseComma())
4917     return true;
4918 
4919   APInt AsInt;
4920   if (parseRealValue(Semantics, AsInt) || parseEOL())
4921     return true;
4922 
4923   for (uint64_t i = 0, e = NumValues; i != e; ++i)
4924     getStreamer().emitIntValue(AsInt.getLimitedValue(),
4925                                AsInt.getBitWidth() / 8);
4926 
4927   return false;
4928 }
4929 
4930 /// parseDirectiveDS
4931 /// ::= .ds.{b, d, l, p, s, w, x} expression
4932 bool AsmParser::parseDirectiveDS(StringRef IDVal, unsigned Size) {
4933   SMLoc NumValuesLoc = Lexer.getLoc();
4934   int64_t NumValues;
4935   if (checkForValidSection() || parseAbsoluteExpression(NumValues) ||
4936       parseEOL())
4937     return true;
4938 
4939   if (NumValues < 0) {
4940     Warning(NumValuesLoc, "'" + Twine(IDVal) + "' directive with negative repeat count has no effect");
4941     return false;
4942   }
4943 
4944   for (uint64_t i = 0, e = NumValues; i != e; ++i)
4945     getStreamer().emitFill(Size, 0);
4946 
4947   return false;
4948 }
4949 
4950 /// parseDirectiveLEB128
4951 /// ::= (.sleb128 | .uleb128) [ expression (, expression)* ]
4952 bool AsmParser::parseDirectiveLEB128(bool Signed) {
4953   if (checkForValidSection())
4954     return true;
4955 
4956   auto parseOp = [&]() -> bool {
4957     const MCExpr *Value;
4958     if (parseExpression(Value))
4959       return true;
4960     if (Signed)
4961       getStreamer().emitSLEB128Value(Value);
4962     else
4963       getStreamer().emitULEB128Value(Value);
4964     return false;
4965   };
4966 
4967   return parseMany(parseOp);
4968 }
4969 
4970 /// parseDirectiveSymbolAttribute
4971 ///  ::= { ".globl", ".weak", ... } [ identifier ( , identifier )* ]
4972 bool AsmParser::parseDirectiveSymbolAttribute(MCSymbolAttr Attr) {
4973   auto parseOp = [&]() -> bool {
4974     StringRef Name;
4975     SMLoc Loc = getTok().getLoc();
4976     if (parseIdentifier(Name))
4977       return Error(Loc, "expected identifier");
4978 
4979     if (discardLTOSymbol(Name))
4980       return false;
4981 
4982     MCSymbol *Sym = getContext().getOrCreateSymbol(Name);
4983 
4984     // Assembler local symbols don't make any sense here, except for directives
4985     // that the symbol should be tagged.
4986     if (Sym->isTemporary() && Attr != MCSA_Memtag)
4987       return Error(Loc, "non-local symbol required");
4988 
4989     if (!getStreamer().emitSymbolAttribute(Sym, Attr))
4990       return Error(Loc, "unable to emit symbol attribute");
4991     return false;
4992   };
4993 
4994   return parseMany(parseOp);
4995 }
4996 
4997 /// parseDirectiveComm
4998 ///  ::= ( .comm | .lcomm ) identifier , size_expression [ , align_expression ]
4999 bool AsmParser::parseDirectiveComm(bool IsLocal) {
5000   if (checkForValidSection())
5001     return true;
5002 
5003   SMLoc IDLoc = getLexer().getLoc();
5004   StringRef Name;
5005   if (parseIdentifier(Name))
5006     return TokError("expected identifier in directive");
5007 
5008   // Handle the identifier as the key symbol.
5009   MCSymbol *Sym = getContext().getOrCreateSymbol(Name);
5010 
5011   if (parseComma())
5012     return true;
5013 
5014   int64_t Size;
5015   SMLoc SizeLoc = getLexer().getLoc();
5016   if (parseAbsoluteExpression(Size))
5017     return true;
5018 
5019   int64_t Pow2Alignment = 0;
5020   SMLoc Pow2AlignmentLoc;
5021   if (getLexer().is(AsmToken::Comma)) {
5022     Lex();
5023     Pow2AlignmentLoc = getLexer().getLoc();
5024     if (parseAbsoluteExpression(Pow2Alignment))
5025       return true;
5026 
5027     LCOMM::LCOMMType LCOMM = Lexer.getMAI().getLCOMMDirectiveAlignmentType();
5028     if (IsLocal && LCOMM == LCOMM::NoAlignment)
5029       return Error(Pow2AlignmentLoc, "alignment not supported on this target");
5030 
5031     // If this target takes alignments in bytes (not log) validate and convert.
5032     if ((!IsLocal && Lexer.getMAI().getCOMMDirectiveAlignmentIsInBytes()) ||
5033         (IsLocal && LCOMM == LCOMM::ByteAlignment)) {
5034       if (!isPowerOf2_64(Pow2Alignment))
5035         return Error(Pow2AlignmentLoc, "alignment must be a power of 2");
5036       Pow2Alignment = Log2_64(Pow2Alignment);
5037     }
5038   }
5039 
5040   if (parseEOL())
5041     return true;
5042 
5043   // NOTE: a size of zero for a .comm should create a undefined symbol
5044   // but a size of .lcomm creates a bss symbol of size zero.
5045   if (Size < 0)
5046     return Error(SizeLoc, "size must be non-negative");
5047 
5048   Sym->redefineIfPossible();
5049   if (!Sym->isUndefined())
5050     return Error(IDLoc, "invalid symbol redefinition");
5051 
5052   // Create the Symbol as a common or local common with Size and Pow2Alignment
5053   if (IsLocal) {
5054     getStreamer().emitLocalCommonSymbol(Sym, Size,
5055                                         Align(1ULL << Pow2Alignment));
5056     return false;
5057   }
5058 
5059   getStreamer().emitCommonSymbol(Sym, Size, Align(1ULL << Pow2Alignment));
5060   return false;
5061 }
5062 
5063 /// parseDirectiveAbort
5064 ///  ::= .abort [... message ...]
5065 bool AsmParser::parseDirectiveAbort() {
5066   // FIXME: Use loc from directive.
5067   SMLoc Loc = getLexer().getLoc();
5068 
5069   StringRef Str = parseStringToEndOfStatement();
5070   if (parseEOL())
5071     return true;
5072 
5073   if (Str.empty())
5074     return Error(Loc, ".abort detected. Assembly stopping.");
5075   else
5076     return Error(Loc, ".abort '" + Str + "' detected. Assembly stopping.");
5077   // FIXME: Actually abort assembly here.
5078 
5079   return false;
5080 }
5081 
5082 /// parseDirectiveInclude
5083 ///  ::= .include "filename"
5084 bool AsmParser::parseDirectiveInclude() {
5085   // Allow the strings to have escaped octal character sequence.
5086   std::string Filename;
5087   SMLoc IncludeLoc = getTok().getLoc();
5088 
5089   if (check(getTok().isNot(AsmToken::String),
5090             "expected string in '.include' directive") ||
5091       parseEscapedString(Filename) ||
5092       check(getTok().isNot(AsmToken::EndOfStatement),
5093             "unexpected token in '.include' directive") ||
5094       // Attempt to switch the lexer to the included file before consuming the
5095       // end of statement to avoid losing it when we switch.
5096       check(enterIncludeFile(Filename), IncludeLoc,
5097             "Could not find include file '" + Filename + "'"))
5098     return true;
5099 
5100   return false;
5101 }
5102 
5103 /// parseDirectiveIncbin
5104 ///  ::= .incbin "filename" [ , skip [ , count ] ]
5105 bool AsmParser::parseDirectiveIncbin() {
5106   // Allow the strings to have escaped octal character sequence.
5107   std::string Filename;
5108   SMLoc IncbinLoc = getTok().getLoc();
5109   if (check(getTok().isNot(AsmToken::String),
5110             "expected string in '.incbin' directive") ||
5111       parseEscapedString(Filename))
5112     return true;
5113 
5114   int64_t Skip = 0;
5115   const MCExpr *Count = nullptr;
5116   SMLoc SkipLoc, CountLoc;
5117   if (parseOptionalToken(AsmToken::Comma)) {
5118     // The skip expression can be omitted while specifying the count, e.g:
5119     //  .incbin "filename",,4
5120     if (getTok().isNot(AsmToken::Comma)) {
5121       if (parseTokenLoc(SkipLoc) || parseAbsoluteExpression(Skip))
5122         return true;
5123     }
5124     if (parseOptionalToken(AsmToken::Comma)) {
5125       CountLoc = getTok().getLoc();
5126       if (parseExpression(Count))
5127         return true;
5128     }
5129   }
5130 
5131   if (parseEOL())
5132     return true;
5133 
5134   if (check(Skip < 0, SkipLoc, "skip is negative"))
5135     return true;
5136 
5137   // Attempt to process the included file.
5138   if (processIncbinFile(Filename, Skip, Count, CountLoc))
5139     return Error(IncbinLoc, "Could not find incbin file '" + Filename + "'");
5140   return false;
5141 }
5142 
5143 /// parseDirectiveIf
5144 /// ::= .if{,eq,ge,gt,le,lt,ne} expression
5145 bool AsmParser::parseDirectiveIf(SMLoc DirectiveLoc, DirectiveKind DirKind) {
5146   TheCondStack.push_back(TheCondState);
5147   TheCondState.TheCond = AsmCond::IfCond;
5148   if (TheCondState.Ignore) {
5149     eatToEndOfStatement();
5150   } else {
5151     int64_t ExprValue;
5152     if (parseAbsoluteExpression(ExprValue) || parseEOL())
5153       return true;
5154 
5155     switch (DirKind) {
5156     default:
5157       llvm_unreachable("unsupported directive");
5158     case DK_IF:
5159     case DK_IFNE:
5160       break;
5161     case DK_IFEQ:
5162       ExprValue = ExprValue == 0;
5163       break;
5164     case DK_IFGE:
5165       ExprValue = ExprValue >= 0;
5166       break;
5167     case DK_IFGT:
5168       ExprValue = ExprValue > 0;
5169       break;
5170     case DK_IFLE:
5171       ExprValue = ExprValue <= 0;
5172       break;
5173     case DK_IFLT:
5174       ExprValue = ExprValue < 0;
5175       break;
5176     }
5177 
5178     TheCondState.CondMet = ExprValue;
5179     TheCondState.Ignore = !TheCondState.CondMet;
5180   }
5181 
5182   return false;
5183 }
5184 
5185 /// parseDirectiveIfb
5186 /// ::= .ifb string
5187 bool AsmParser::parseDirectiveIfb(SMLoc DirectiveLoc, bool ExpectBlank) {
5188   TheCondStack.push_back(TheCondState);
5189   TheCondState.TheCond = AsmCond::IfCond;
5190 
5191   if (TheCondState.Ignore) {
5192     eatToEndOfStatement();
5193   } else {
5194     StringRef Str = parseStringToEndOfStatement();
5195 
5196     if (parseEOL())
5197       return true;
5198 
5199     TheCondState.CondMet = ExpectBlank == Str.empty();
5200     TheCondState.Ignore = !TheCondState.CondMet;
5201   }
5202 
5203   return false;
5204 }
5205 
5206 /// parseDirectiveIfc
5207 /// ::= .ifc string1, string2
5208 /// ::= .ifnc string1, string2
5209 bool AsmParser::parseDirectiveIfc(SMLoc DirectiveLoc, bool ExpectEqual) {
5210   TheCondStack.push_back(TheCondState);
5211   TheCondState.TheCond = AsmCond::IfCond;
5212 
5213   if (TheCondState.Ignore) {
5214     eatToEndOfStatement();
5215   } else {
5216     StringRef Str1 = parseStringToComma();
5217 
5218     if (parseComma())
5219       return true;
5220 
5221     StringRef Str2 = parseStringToEndOfStatement();
5222 
5223     if (parseEOL())
5224       return true;
5225 
5226     TheCondState.CondMet = ExpectEqual == (Str1.trim() == Str2.trim());
5227     TheCondState.Ignore = !TheCondState.CondMet;
5228   }
5229 
5230   return false;
5231 }
5232 
5233 /// parseDirectiveIfeqs
5234 ///   ::= .ifeqs string1, string2
5235 bool AsmParser::parseDirectiveIfeqs(SMLoc DirectiveLoc, bool ExpectEqual) {
5236   if (Lexer.isNot(AsmToken::String)) {
5237     if (ExpectEqual)
5238       return TokError("expected string parameter for '.ifeqs' directive");
5239     return TokError("expected string parameter for '.ifnes' directive");
5240   }
5241 
5242   StringRef String1 = getTok().getStringContents();
5243   Lex();
5244 
5245   if (Lexer.isNot(AsmToken::Comma)) {
5246     if (ExpectEqual)
5247       return TokError(
5248           "expected comma after first string for '.ifeqs' directive");
5249     return TokError("expected comma after first string for '.ifnes' directive");
5250   }
5251 
5252   Lex();
5253 
5254   if (Lexer.isNot(AsmToken::String)) {
5255     if (ExpectEqual)
5256       return TokError("expected string parameter for '.ifeqs' directive");
5257     return TokError("expected string parameter for '.ifnes' directive");
5258   }
5259 
5260   StringRef String2 = getTok().getStringContents();
5261   Lex();
5262 
5263   TheCondStack.push_back(TheCondState);
5264   TheCondState.TheCond = AsmCond::IfCond;
5265   TheCondState.CondMet = ExpectEqual == (String1 == String2);
5266   TheCondState.Ignore = !TheCondState.CondMet;
5267 
5268   return false;
5269 }
5270 
5271 /// parseDirectiveIfdef
5272 /// ::= .ifdef symbol
5273 bool AsmParser::parseDirectiveIfdef(SMLoc DirectiveLoc, bool expect_defined) {
5274   StringRef Name;
5275   TheCondStack.push_back(TheCondState);
5276   TheCondState.TheCond = AsmCond::IfCond;
5277 
5278   if (TheCondState.Ignore) {
5279     eatToEndOfStatement();
5280   } else {
5281     if (check(parseIdentifier(Name), "expected identifier after '.ifdef'") ||
5282         parseEOL())
5283       return true;
5284 
5285     MCSymbol *Sym = getContext().lookupSymbol(Name);
5286 
5287     if (expect_defined)
5288       TheCondState.CondMet = (Sym && !Sym->isUndefined(false));
5289     else
5290       TheCondState.CondMet = (!Sym || Sym->isUndefined(false));
5291     TheCondState.Ignore = !TheCondState.CondMet;
5292   }
5293 
5294   return false;
5295 }
5296 
5297 /// parseDirectiveElseIf
5298 /// ::= .elseif expression
5299 bool AsmParser::parseDirectiveElseIf(SMLoc DirectiveLoc) {
5300   if (TheCondState.TheCond != AsmCond::IfCond &&
5301       TheCondState.TheCond != AsmCond::ElseIfCond)
5302     return Error(DirectiveLoc, "Encountered a .elseif that doesn't follow an"
5303                                " .if or  an .elseif");
5304   TheCondState.TheCond = AsmCond::ElseIfCond;
5305 
5306   bool LastIgnoreState = false;
5307   if (!TheCondStack.empty())
5308     LastIgnoreState = TheCondStack.back().Ignore;
5309   if (LastIgnoreState || TheCondState.CondMet) {
5310     TheCondState.Ignore = true;
5311     eatToEndOfStatement();
5312   } else {
5313     int64_t ExprValue;
5314     if (parseAbsoluteExpression(ExprValue))
5315       return true;
5316 
5317     if (parseEOL())
5318       return true;
5319 
5320     TheCondState.CondMet = ExprValue;
5321     TheCondState.Ignore = !TheCondState.CondMet;
5322   }
5323 
5324   return false;
5325 }
5326 
5327 /// parseDirectiveElse
5328 /// ::= .else
5329 bool AsmParser::parseDirectiveElse(SMLoc DirectiveLoc) {
5330   if (parseEOL())
5331     return true;
5332 
5333   if (TheCondState.TheCond != AsmCond::IfCond &&
5334       TheCondState.TheCond != AsmCond::ElseIfCond)
5335     return Error(DirectiveLoc, "Encountered a .else that doesn't follow "
5336                                " an .if or an .elseif");
5337   TheCondState.TheCond = AsmCond::ElseCond;
5338   bool LastIgnoreState = false;
5339   if (!TheCondStack.empty())
5340     LastIgnoreState = TheCondStack.back().Ignore;
5341   if (LastIgnoreState || TheCondState.CondMet)
5342     TheCondState.Ignore = true;
5343   else
5344     TheCondState.Ignore = false;
5345 
5346   return false;
5347 }
5348 
5349 /// parseDirectiveEnd
5350 /// ::= .end
5351 bool AsmParser::parseDirectiveEnd(SMLoc DirectiveLoc) {
5352   if (parseEOL())
5353     return true;
5354 
5355   while (Lexer.isNot(AsmToken::Eof))
5356     Lexer.Lex();
5357 
5358   return false;
5359 }
5360 
5361 /// parseDirectiveError
5362 ///   ::= .err
5363 ///   ::= .error [string]
5364 bool AsmParser::parseDirectiveError(SMLoc L, bool WithMessage) {
5365   if (!TheCondStack.empty()) {
5366     if (TheCondStack.back().Ignore) {
5367       eatToEndOfStatement();
5368       return false;
5369     }
5370   }
5371 
5372   if (!WithMessage)
5373     return Error(L, ".err encountered");
5374 
5375   StringRef Message = ".error directive invoked in source file";
5376   if (Lexer.isNot(AsmToken::EndOfStatement)) {
5377     if (Lexer.isNot(AsmToken::String))
5378       return TokError(".error argument must be a string");
5379 
5380     Message = getTok().getStringContents();
5381     Lex();
5382   }
5383 
5384   return Error(L, Message);
5385 }
5386 
5387 /// parseDirectiveWarning
5388 ///   ::= .warning [string]
5389 bool AsmParser::parseDirectiveWarning(SMLoc L) {
5390   if (!TheCondStack.empty()) {
5391     if (TheCondStack.back().Ignore) {
5392       eatToEndOfStatement();
5393       return false;
5394     }
5395   }
5396 
5397   StringRef Message = ".warning directive invoked in source file";
5398 
5399   if (!parseOptionalToken(AsmToken::EndOfStatement)) {
5400     if (Lexer.isNot(AsmToken::String))
5401       return TokError(".warning argument must be a string");
5402 
5403     Message = getTok().getStringContents();
5404     Lex();
5405     if (parseEOL())
5406       return true;
5407   }
5408 
5409   return Warning(L, Message);
5410 }
5411 
5412 /// parseDirectiveEndIf
5413 /// ::= .endif
5414 bool AsmParser::parseDirectiveEndIf(SMLoc DirectiveLoc) {
5415   if (parseEOL())
5416     return true;
5417 
5418   if ((TheCondState.TheCond == AsmCond::NoCond) || TheCondStack.empty())
5419     return Error(DirectiveLoc, "Encountered a .endif that doesn't follow "
5420                                "an .if or .else");
5421   if (!TheCondStack.empty()) {
5422     TheCondState = TheCondStack.back();
5423     TheCondStack.pop_back();
5424   }
5425 
5426   return false;
5427 }
5428 
5429 void AsmParser::initializeDirectiveKindMap() {
5430   /* Lookup will be done with the directive
5431    * converted to lower case, so all these
5432    * keys should be lower case.
5433    * (target specific directives are handled
5434    *  elsewhere)
5435    */
5436   DirectiveKindMap[".set"] = DK_SET;
5437   DirectiveKindMap[".equ"] = DK_EQU;
5438   DirectiveKindMap[".equiv"] = DK_EQUIV;
5439   DirectiveKindMap[".ascii"] = DK_ASCII;
5440   DirectiveKindMap[".asciz"] = DK_ASCIZ;
5441   DirectiveKindMap[".string"] = DK_STRING;
5442   DirectiveKindMap[".byte"] = DK_BYTE;
5443   DirectiveKindMap[".short"] = DK_SHORT;
5444   DirectiveKindMap[".value"] = DK_VALUE;
5445   DirectiveKindMap[".2byte"] = DK_2BYTE;
5446   DirectiveKindMap[".long"] = DK_LONG;
5447   DirectiveKindMap[".int"] = DK_INT;
5448   DirectiveKindMap[".4byte"] = DK_4BYTE;
5449   DirectiveKindMap[".quad"] = DK_QUAD;
5450   DirectiveKindMap[".8byte"] = DK_8BYTE;
5451   DirectiveKindMap[".octa"] = DK_OCTA;
5452   DirectiveKindMap[".single"] = DK_SINGLE;
5453   DirectiveKindMap[".float"] = DK_FLOAT;
5454   DirectiveKindMap[".double"] = DK_DOUBLE;
5455   DirectiveKindMap[".align"] = DK_ALIGN;
5456   DirectiveKindMap[".align32"] = DK_ALIGN32;
5457   DirectiveKindMap[".balign"] = DK_BALIGN;
5458   DirectiveKindMap[".balignw"] = DK_BALIGNW;
5459   DirectiveKindMap[".balignl"] = DK_BALIGNL;
5460   DirectiveKindMap[".p2align"] = DK_P2ALIGN;
5461   DirectiveKindMap[".p2alignw"] = DK_P2ALIGNW;
5462   DirectiveKindMap[".p2alignl"] = DK_P2ALIGNL;
5463   DirectiveKindMap[".org"] = DK_ORG;
5464   DirectiveKindMap[".fill"] = DK_FILL;
5465   DirectiveKindMap[".zero"] = DK_ZERO;
5466   DirectiveKindMap[".extern"] = DK_EXTERN;
5467   DirectiveKindMap[".globl"] = DK_GLOBL;
5468   DirectiveKindMap[".global"] = DK_GLOBAL;
5469   DirectiveKindMap[".lazy_reference"] = DK_LAZY_REFERENCE;
5470   DirectiveKindMap[".no_dead_strip"] = DK_NO_DEAD_STRIP;
5471   DirectiveKindMap[".symbol_resolver"] = DK_SYMBOL_RESOLVER;
5472   DirectiveKindMap[".private_extern"] = DK_PRIVATE_EXTERN;
5473   DirectiveKindMap[".reference"] = DK_REFERENCE;
5474   DirectiveKindMap[".weak_definition"] = DK_WEAK_DEFINITION;
5475   DirectiveKindMap[".weak_reference"] = DK_WEAK_REFERENCE;
5476   DirectiveKindMap[".weak_def_can_be_hidden"] = DK_WEAK_DEF_CAN_BE_HIDDEN;
5477   DirectiveKindMap[".cold"] = DK_COLD;
5478   DirectiveKindMap[".comm"] = DK_COMM;
5479   DirectiveKindMap[".common"] = DK_COMMON;
5480   DirectiveKindMap[".lcomm"] = DK_LCOMM;
5481   DirectiveKindMap[".abort"] = DK_ABORT;
5482   DirectiveKindMap[".include"] = DK_INCLUDE;
5483   DirectiveKindMap[".incbin"] = DK_INCBIN;
5484   DirectiveKindMap[".code16"] = DK_CODE16;
5485   DirectiveKindMap[".code16gcc"] = DK_CODE16GCC;
5486   DirectiveKindMap[".rept"] = DK_REPT;
5487   DirectiveKindMap[".rep"] = DK_REPT;
5488   DirectiveKindMap[".irp"] = DK_IRP;
5489   DirectiveKindMap[".irpc"] = DK_IRPC;
5490   DirectiveKindMap[".endr"] = DK_ENDR;
5491   DirectiveKindMap[".bundle_align_mode"] = DK_BUNDLE_ALIGN_MODE;
5492   DirectiveKindMap[".bundle_lock"] = DK_BUNDLE_LOCK;
5493   DirectiveKindMap[".bundle_unlock"] = DK_BUNDLE_UNLOCK;
5494   DirectiveKindMap[".if"] = DK_IF;
5495   DirectiveKindMap[".ifeq"] = DK_IFEQ;
5496   DirectiveKindMap[".ifge"] = DK_IFGE;
5497   DirectiveKindMap[".ifgt"] = DK_IFGT;
5498   DirectiveKindMap[".ifle"] = DK_IFLE;
5499   DirectiveKindMap[".iflt"] = DK_IFLT;
5500   DirectiveKindMap[".ifne"] = DK_IFNE;
5501   DirectiveKindMap[".ifb"] = DK_IFB;
5502   DirectiveKindMap[".ifnb"] = DK_IFNB;
5503   DirectiveKindMap[".ifc"] = DK_IFC;
5504   DirectiveKindMap[".ifeqs"] = DK_IFEQS;
5505   DirectiveKindMap[".ifnc"] = DK_IFNC;
5506   DirectiveKindMap[".ifnes"] = DK_IFNES;
5507   DirectiveKindMap[".ifdef"] = DK_IFDEF;
5508   DirectiveKindMap[".ifndef"] = DK_IFNDEF;
5509   DirectiveKindMap[".ifnotdef"] = DK_IFNOTDEF;
5510   DirectiveKindMap[".elseif"] = DK_ELSEIF;
5511   DirectiveKindMap[".else"] = DK_ELSE;
5512   DirectiveKindMap[".end"] = DK_END;
5513   DirectiveKindMap[".endif"] = DK_ENDIF;
5514   DirectiveKindMap[".skip"] = DK_SKIP;
5515   DirectiveKindMap[".space"] = DK_SPACE;
5516   DirectiveKindMap[".file"] = DK_FILE;
5517   DirectiveKindMap[".line"] = DK_LINE;
5518   DirectiveKindMap[".loc"] = DK_LOC;
5519   DirectiveKindMap[".stabs"] = DK_STABS;
5520   DirectiveKindMap[".cv_file"] = DK_CV_FILE;
5521   DirectiveKindMap[".cv_func_id"] = DK_CV_FUNC_ID;
5522   DirectiveKindMap[".cv_loc"] = DK_CV_LOC;
5523   DirectiveKindMap[".cv_linetable"] = DK_CV_LINETABLE;
5524   DirectiveKindMap[".cv_inline_linetable"] = DK_CV_INLINE_LINETABLE;
5525   DirectiveKindMap[".cv_inline_site_id"] = DK_CV_INLINE_SITE_ID;
5526   DirectiveKindMap[".cv_def_range"] = DK_CV_DEF_RANGE;
5527   DirectiveKindMap[".cv_string"] = DK_CV_STRING;
5528   DirectiveKindMap[".cv_stringtable"] = DK_CV_STRINGTABLE;
5529   DirectiveKindMap[".cv_filechecksums"] = DK_CV_FILECHECKSUMS;
5530   DirectiveKindMap[".cv_filechecksumoffset"] = DK_CV_FILECHECKSUM_OFFSET;
5531   DirectiveKindMap[".cv_fpo_data"] = DK_CV_FPO_DATA;
5532   DirectiveKindMap[".sleb128"] = DK_SLEB128;
5533   DirectiveKindMap[".uleb128"] = DK_ULEB128;
5534   DirectiveKindMap[".cfi_sections"] = DK_CFI_SECTIONS;
5535   DirectiveKindMap[".cfi_startproc"] = DK_CFI_STARTPROC;
5536   DirectiveKindMap[".cfi_endproc"] = DK_CFI_ENDPROC;
5537   DirectiveKindMap[".cfi_def_cfa"] = DK_CFI_DEF_CFA;
5538   DirectiveKindMap[".cfi_def_cfa_offset"] = DK_CFI_DEF_CFA_OFFSET;
5539   DirectiveKindMap[".cfi_adjust_cfa_offset"] = DK_CFI_ADJUST_CFA_OFFSET;
5540   DirectiveKindMap[".cfi_def_cfa_register"] = DK_CFI_DEF_CFA_REGISTER;
5541   DirectiveKindMap[".cfi_llvm_def_aspace_cfa"] = DK_CFI_LLVM_DEF_ASPACE_CFA;
5542   DirectiveKindMap[".cfi_offset"] = DK_CFI_OFFSET;
5543   DirectiveKindMap[".cfi_rel_offset"] = DK_CFI_REL_OFFSET;
5544   DirectiveKindMap[".cfi_personality"] = DK_CFI_PERSONALITY;
5545   DirectiveKindMap[".cfi_lsda"] = DK_CFI_LSDA;
5546   DirectiveKindMap[".cfi_remember_state"] = DK_CFI_REMEMBER_STATE;
5547   DirectiveKindMap[".cfi_restore_state"] = DK_CFI_RESTORE_STATE;
5548   DirectiveKindMap[".cfi_same_value"] = DK_CFI_SAME_VALUE;
5549   DirectiveKindMap[".cfi_restore"] = DK_CFI_RESTORE;
5550   DirectiveKindMap[".cfi_escape"] = DK_CFI_ESCAPE;
5551   DirectiveKindMap[".cfi_return_column"] = DK_CFI_RETURN_COLUMN;
5552   DirectiveKindMap[".cfi_signal_frame"] = DK_CFI_SIGNAL_FRAME;
5553   DirectiveKindMap[".cfi_undefined"] = DK_CFI_UNDEFINED;
5554   DirectiveKindMap[".cfi_register"] = DK_CFI_REGISTER;
5555   DirectiveKindMap[".cfi_window_save"] = DK_CFI_WINDOW_SAVE;
5556   DirectiveKindMap[".cfi_b_key_frame"] = DK_CFI_B_KEY_FRAME;
5557   DirectiveKindMap[".cfi_mte_tagged_frame"] = DK_CFI_MTE_TAGGED_FRAME;
5558   DirectiveKindMap[".macros_on"] = DK_MACROS_ON;
5559   DirectiveKindMap[".macros_off"] = DK_MACROS_OFF;
5560   DirectiveKindMap[".macro"] = DK_MACRO;
5561   DirectiveKindMap[".exitm"] = DK_EXITM;
5562   DirectiveKindMap[".endm"] = DK_ENDM;
5563   DirectiveKindMap[".endmacro"] = DK_ENDMACRO;
5564   DirectiveKindMap[".purgem"] = DK_PURGEM;
5565   DirectiveKindMap[".err"] = DK_ERR;
5566   DirectiveKindMap[".error"] = DK_ERROR;
5567   DirectiveKindMap[".warning"] = DK_WARNING;
5568   DirectiveKindMap[".altmacro"] = DK_ALTMACRO;
5569   DirectiveKindMap[".noaltmacro"] = DK_NOALTMACRO;
5570   DirectiveKindMap[".reloc"] = DK_RELOC;
5571   DirectiveKindMap[".dc"] = DK_DC;
5572   DirectiveKindMap[".dc.a"] = DK_DC_A;
5573   DirectiveKindMap[".dc.b"] = DK_DC_B;
5574   DirectiveKindMap[".dc.d"] = DK_DC_D;
5575   DirectiveKindMap[".dc.l"] = DK_DC_L;
5576   DirectiveKindMap[".dc.s"] = DK_DC_S;
5577   DirectiveKindMap[".dc.w"] = DK_DC_W;
5578   DirectiveKindMap[".dc.x"] = DK_DC_X;
5579   DirectiveKindMap[".dcb"] = DK_DCB;
5580   DirectiveKindMap[".dcb.b"] = DK_DCB_B;
5581   DirectiveKindMap[".dcb.d"] = DK_DCB_D;
5582   DirectiveKindMap[".dcb.l"] = DK_DCB_L;
5583   DirectiveKindMap[".dcb.s"] = DK_DCB_S;
5584   DirectiveKindMap[".dcb.w"] = DK_DCB_W;
5585   DirectiveKindMap[".dcb.x"] = DK_DCB_X;
5586   DirectiveKindMap[".ds"] = DK_DS;
5587   DirectiveKindMap[".ds.b"] = DK_DS_B;
5588   DirectiveKindMap[".ds.d"] = DK_DS_D;
5589   DirectiveKindMap[".ds.l"] = DK_DS_L;
5590   DirectiveKindMap[".ds.p"] = DK_DS_P;
5591   DirectiveKindMap[".ds.s"] = DK_DS_S;
5592   DirectiveKindMap[".ds.w"] = DK_DS_W;
5593   DirectiveKindMap[".ds.x"] = DK_DS_X;
5594   DirectiveKindMap[".print"] = DK_PRINT;
5595   DirectiveKindMap[".addrsig"] = DK_ADDRSIG;
5596   DirectiveKindMap[".addrsig_sym"] = DK_ADDRSIG_SYM;
5597   DirectiveKindMap[".pseudoprobe"] = DK_PSEUDO_PROBE;
5598   DirectiveKindMap[".lto_discard"] = DK_LTO_DISCARD;
5599   DirectiveKindMap[".lto_set_conditional"] = DK_LTO_SET_CONDITIONAL;
5600   DirectiveKindMap[".memtag"] = DK_MEMTAG;
5601 }
5602 
5603 MCAsmMacro *AsmParser::parseMacroLikeBody(SMLoc DirectiveLoc) {
5604   AsmToken EndToken, StartToken = getTok();
5605 
5606   unsigned NestLevel = 0;
5607   while (true) {
5608     // Check whether we have reached the end of the file.
5609     if (getLexer().is(AsmToken::Eof)) {
5610       printError(DirectiveLoc, "no matching '.endr' in definition");
5611       return nullptr;
5612     }
5613 
5614     if (Lexer.is(AsmToken::Identifier) &&
5615         (getTok().getIdentifier() == ".rep" ||
5616          getTok().getIdentifier() == ".rept" ||
5617          getTok().getIdentifier() == ".irp" ||
5618          getTok().getIdentifier() == ".irpc")) {
5619       ++NestLevel;
5620     }
5621 
5622     // Otherwise, check whether we have reached the .endr.
5623     if (Lexer.is(AsmToken::Identifier) && getTok().getIdentifier() == ".endr") {
5624       if (NestLevel == 0) {
5625         EndToken = getTok();
5626         Lex();
5627         if (Lexer.isNot(AsmToken::EndOfStatement)) {
5628           printError(getTok().getLoc(),
5629                      "unexpected token in '.endr' directive");
5630           return nullptr;
5631         }
5632         break;
5633       }
5634       --NestLevel;
5635     }
5636 
5637     // Otherwise, scan till the end of the statement.
5638     eatToEndOfStatement();
5639   }
5640 
5641   const char *BodyStart = StartToken.getLoc().getPointer();
5642   const char *BodyEnd = EndToken.getLoc().getPointer();
5643   StringRef Body = StringRef(BodyStart, BodyEnd - BodyStart);
5644 
5645   // We Are Anonymous.
5646   MacroLikeBodies.emplace_back(StringRef(), Body, MCAsmMacroParameters());
5647   return &MacroLikeBodies.back();
5648 }
5649 
5650 void AsmParser::instantiateMacroLikeBody(MCAsmMacro *M, SMLoc DirectiveLoc,
5651                                          raw_svector_ostream &OS) {
5652   OS << ".endr\n";
5653 
5654   std::unique_ptr<MemoryBuffer> Instantiation =
5655       MemoryBuffer::getMemBufferCopy(OS.str(), "<instantiation>");
5656 
5657   // Create the macro instantiation object and add to the current macro
5658   // instantiation stack.
5659   MacroInstantiation *MI = new MacroInstantiation{
5660       DirectiveLoc, CurBuffer, getTok().getLoc(), TheCondStack.size()};
5661   ActiveMacros.push_back(MI);
5662 
5663   // Jump to the macro instantiation and prime the lexer.
5664   CurBuffer = SrcMgr.AddNewSourceBuffer(std::move(Instantiation), SMLoc());
5665   Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer());
5666   Lex();
5667 }
5668 
5669 /// parseDirectiveRept
5670 ///   ::= .rep | .rept count
5671 bool AsmParser::parseDirectiveRept(SMLoc DirectiveLoc, StringRef Dir) {
5672   const MCExpr *CountExpr;
5673   SMLoc CountLoc = getTok().getLoc();
5674   if (parseExpression(CountExpr))
5675     return true;
5676 
5677   int64_t Count;
5678   if (!CountExpr->evaluateAsAbsolute(Count, getStreamer().getAssemblerPtr())) {
5679     return Error(CountLoc, "unexpected token in '" + Dir + "' directive");
5680   }
5681 
5682   if (check(Count < 0, CountLoc, "Count is negative") || parseEOL())
5683     return true;
5684 
5685   // Lex the rept definition.
5686   MCAsmMacro *M = parseMacroLikeBody(DirectiveLoc);
5687   if (!M)
5688     return true;
5689 
5690   // Macro instantiation is lexical, unfortunately. We construct a new buffer
5691   // to hold the macro body with substitutions.
5692   SmallString<256> Buf;
5693   raw_svector_ostream OS(Buf);
5694   while (Count--) {
5695     // Note that the AtPseudoVariable is disabled for instantiations of .rep(t).
5696     if (expandMacro(OS, M->Body, std::nullopt, std::nullopt, false,
5697                     getTok().getLoc()))
5698       return true;
5699   }
5700   instantiateMacroLikeBody(M, DirectiveLoc, OS);
5701 
5702   return false;
5703 }
5704 
5705 /// parseDirectiveIrp
5706 /// ::= .irp symbol,values
5707 bool AsmParser::parseDirectiveIrp(SMLoc DirectiveLoc) {
5708   MCAsmMacroParameter Parameter;
5709   MCAsmMacroArguments A;
5710   if (check(parseIdentifier(Parameter.Name),
5711             "expected identifier in '.irp' directive") ||
5712       parseComma() || parseMacroArguments(nullptr, A) || parseEOL())
5713     return true;
5714 
5715   // Lex the irp definition.
5716   MCAsmMacro *M = parseMacroLikeBody(DirectiveLoc);
5717   if (!M)
5718     return true;
5719 
5720   // Macro instantiation is lexical, unfortunately. We construct a new buffer
5721   // to hold the macro body with substitutions.
5722   SmallString<256> Buf;
5723   raw_svector_ostream OS(Buf);
5724 
5725   for (const MCAsmMacroArgument &Arg : A) {
5726     // Note that the AtPseudoVariable is enabled for instantiations of .irp.
5727     // This is undocumented, but GAS seems to support it.
5728     if (expandMacro(OS, M->Body, Parameter, Arg, true, getTok().getLoc()))
5729       return true;
5730   }
5731 
5732   instantiateMacroLikeBody(M, DirectiveLoc, OS);
5733 
5734   return false;
5735 }
5736 
5737 /// parseDirectiveIrpc
5738 /// ::= .irpc symbol,values
5739 bool AsmParser::parseDirectiveIrpc(SMLoc DirectiveLoc) {
5740   MCAsmMacroParameter Parameter;
5741   MCAsmMacroArguments A;
5742 
5743   if (check(parseIdentifier(Parameter.Name),
5744             "expected identifier in '.irpc' directive") ||
5745       parseComma() || parseMacroArguments(nullptr, A))
5746     return true;
5747 
5748   if (A.size() != 1 || A.front().size() != 1)
5749     return TokError("unexpected token in '.irpc' directive");
5750   if (parseEOL())
5751     return true;
5752 
5753   // Lex the irpc definition.
5754   MCAsmMacro *M = parseMacroLikeBody(DirectiveLoc);
5755   if (!M)
5756     return true;
5757 
5758   // Macro instantiation is lexical, unfortunately. We construct a new buffer
5759   // to hold the macro body with substitutions.
5760   SmallString<256> Buf;
5761   raw_svector_ostream OS(Buf);
5762 
5763   StringRef Values = A.front().front().getString();
5764   for (std::size_t I = 0, End = Values.size(); I != End; ++I) {
5765     MCAsmMacroArgument Arg;
5766     Arg.emplace_back(AsmToken::Identifier, Values.slice(I, I + 1));
5767 
5768     // Note that the AtPseudoVariable is enabled for instantiations of .irpc.
5769     // This is undocumented, but GAS seems to support it.
5770     if (expandMacro(OS, M->Body, Parameter, Arg, true, getTok().getLoc()))
5771       return true;
5772   }
5773 
5774   instantiateMacroLikeBody(M, DirectiveLoc, OS);
5775 
5776   return false;
5777 }
5778 
5779 bool AsmParser::parseDirectiveEndr(SMLoc DirectiveLoc) {
5780   if (ActiveMacros.empty())
5781     return TokError("unmatched '.endr' directive");
5782 
5783   // The only .repl that should get here are the ones created by
5784   // instantiateMacroLikeBody.
5785   assert(getLexer().is(AsmToken::EndOfStatement));
5786 
5787   handleMacroExit();
5788   return false;
5789 }
5790 
5791 bool AsmParser::parseDirectiveMSEmit(SMLoc IDLoc, ParseStatementInfo &Info,
5792                                      size_t Len) {
5793   const MCExpr *Value;
5794   SMLoc ExprLoc = getLexer().getLoc();
5795   if (parseExpression(Value))
5796     return true;
5797   const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value);
5798   if (!MCE)
5799     return Error(ExprLoc, "unexpected expression in _emit");
5800   uint64_t IntValue = MCE->getValue();
5801   if (!isUInt<8>(IntValue) && !isInt<8>(IntValue))
5802     return Error(ExprLoc, "literal value out of range for directive");
5803 
5804   Info.AsmRewrites->emplace_back(AOK_Emit, IDLoc, Len);
5805   return false;
5806 }
5807 
5808 bool AsmParser::parseDirectiveMSAlign(SMLoc IDLoc, ParseStatementInfo &Info) {
5809   const MCExpr *Value;
5810   SMLoc ExprLoc = getLexer().getLoc();
5811   if (parseExpression(Value))
5812     return true;
5813   const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value);
5814   if (!MCE)
5815     return Error(ExprLoc, "unexpected expression in align");
5816   uint64_t IntValue = MCE->getValue();
5817   if (!isPowerOf2_64(IntValue))
5818     return Error(ExprLoc, "literal value not a power of two greater then zero");
5819 
5820   Info.AsmRewrites->emplace_back(AOK_Align, IDLoc, 5, Log2_64(IntValue));
5821   return false;
5822 }
5823 
5824 bool AsmParser::parseDirectivePrint(SMLoc DirectiveLoc) {
5825   const AsmToken StrTok = getTok();
5826   Lex();
5827   if (StrTok.isNot(AsmToken::String) || StrTok.getString().front() != '"')
5828     return Error(DirectiveLoc, "expected double quoted string after .print");
5829   if (parseEOL())
5830     return true;
5831   llvm::outs() << StrTok.getStringContents() << '\n';
5832   return false;
5833 }
5834 
5835 bool AsmParser::parseDirectiveAddrsig() {
5836   if (parseEOL())
5837     return true;
5838   getStreamer().emitAddrsig();
5839   return false;
5840 }
5841 
5842 bool AsmParser::parseDirectiveAddrsigSym() {
5843   StringRef Name;
5844   if (check(parseIdentifier(Name), "expected identifier") || parseEOL())
5845     return true;
5846   MCSymbol *Sym = getContext().getOrCreateSymbol(Name);
5847   getStreamer().emitAddrsigSym(Sym);
5848   return false;
5849 }
5850 
5851 bool AsmParser::parseDirectivePseudoProbe() {
5852   int64_t Guid;
5853   int64_t Index;
5854   int64_t Type;
5855   int64_t Attr;
5856 
5857   if (getLexer().is(AsmToken::Integer)) {
5858     if (parseIntToken(Guid, "unexpected token in '.pseudoprobe' directive"))
5859       return true;
5860   }
5861 
5862   if (getLexer().is(AsmToken::Integer)) {
5863     if (parseIntToken(Index, "unexpected token in '.pseudoprobe' directive"))
5864       return true;
5865   }
5866 
5867   if (getLexer().is(AsmToken::Integer)) {
5868     if (parseIntToken(Type, "unexpected token in '.pseudoprobe' directive"))
5869       return true;
5870   }
5871 
5872   if (getLexer().is(AsmToken::Integer)) {
5873     if (parseIntToken(Attr, "unexpected token in '.pseudoprobe' directive"))
5874       return true;
5875   }
5876 
5877   // Parse inline stack like @ GUID:11:12 @ GUID:1:11 @ GUID:3:21
5878   MCPseudoProbeInlineStack InlineStack;
5879 
5880   while (getLexer().is(AsmToken::At)) {
5881     // eat @
5882     Lex();
5883 
5884     int64_t CallerGuid = 0;
5885     if (getLexer().is(AsmToken::Integer)) {
5886       if (parseIntToken(CallerGuid,
5887                         "unexpected token in '.pseudoprobe' directive"))
5888         return true;
5889     }
5890 
5891     // eat colon
5892     if (getLexer().is(AsmToken::Colon))
5893       Lex();
5894 
5895     int64_t CallerProbeId = 0;
5896     if (getLexer().is(AsmToken::Integer)) {
5897       if (parseIntToken(CallerProbeId,
5898                         "unexpected token in '.pseudoprobe' directive"))
5899         return true;
5900     }
5901 
5902     InlineSite Site(CallerGuid, CallerProbeId);
5903     InlineStack.push_back(Site);
5904   }
5905 
5906   // Parse function entry name
5907   StringRef FnName;
5908   if (parseIdentifier(FnName))
5909     return Error(getLexer().getLoc(), "unexpected token in '.pseudoprobe' directive");
5910   MCSymbol *FnSym = getContext().lookupSymbol(FnName);
5911 
5912   if (parseEOL())
5913     return true;
5914 
5915   getStreamer().emitPseudoProbe(Guid, Index, Type, Attr, InlineStack, FnSym);
5916   return false;
5917 }
5918 
5919 /// parseDirectiveLTODiscard
5920 ///  ::= ".lto_discard" [ identifier ( , identifier )* ]
5921 /// The LTO library emits this directive to discard non-prevailing symbols.
5922 /// We ignore symbol assignments and attribute changes for the specified
5923 /// symbols.
5924 bool AsmParser::parseDirectiveLTODiscard() {
5925   auto ParseOp = [&]() -> bool {
5926     StringRef Name;
5927     SMLoc Loc = getTok().getLoc();
5928     if (parseIdentifier(Name))
5929       return Error(Loc, "expected identifier");
5930     LTODiscardSymbols.insert(Name);
5931     return false;
5932   };
5933 
5934   LTODiscardSymbols.clear();
5935   return parseMany(ParseOp);
5936 }
5937 
5938 // We are comparing pointers, but the pointers are relative to a single string.
5939 // Thus, this should always be deterministic.
5940 static int rewritesSort(const AsmRewrite *AsmRewriteA,
5941                         const AsmRewrite *AsmRewriteB) {
5942   if (AsmRewriteA->Loc.getPointer() < AsmRewriteB->Loc.getPointer())
5943     return -1;
5944   if (AsmRewriteB->Loc.getPointer() < AsmRewriteA->Loc.getPointer())
5945     return 1;
5946 
5947   // It's possible to have a SizeDirective, Imm/ImmPrefix and an Input/Output
5948   // rewrite to the same location.  Make sure the SizeDirective rewrite is
5949   // performed first, then the Imm/ImmPrefix and finally the Input/Output.  This
5950   // ensures the sort algorithm is stable.
5951   if (AsmRewritePrecedence[AsmRewriteA->Kind] >
5952       AsmRewritePrecedence[AsmRewriteB->Kind])
5953     return -1;
5954 
5955   if (AsmRewritePrecedence[AsmRewriteA->Kind] <
5956       AsmRewritePrecedence[AsmRewriteB->Kind])
5957     return 1;
5958   llvm_unreachable("Unstable rewrite sort.");
5959 }
5960 
5961 bool AsmParser::parseMSInlineAsm(
5962     std::string &AsmString, unsigned &NumOutputs, unsigned &NumInputs,
5963     SmallVectorImpl<std::pair<void *, bool>> &OpDecls,
5964     SmallVectorImpl<std::string> &Constraints,
5965     SmallVectorImpl<std::string> &Clobbers, const MCInstrInfo *MII,
5966     const MCInstPrinter *IP, MCAsmParserSemaCallback &SI) {
5967   SmallVector<void *, 4> InputDecls;
5968   SmallVector<void *, 4> OutputDecls;
5969   SmallVector<bool, 4> InputDeclsAddressOf;
5970   SmallVector<bool, 4> OutputDeclsAddressOf;
5971   SmallVector<std::string, 4> InputConstraints;
5972   SmallVector<std::string, 4> OutputConstraints;
5973   SmallVector<unsigned, 4> ClobberRegs;
5974 
5975   SmallVector<AsmRewrite, 4> AsmStrRewrites;
5976 
5977   // Prime the lexer.
5978   Lex();
5979 
5980   // While we have input, parse each statement.
5981   unsigned InputIdx = 0;
5982   unsigned OutputIdx = 0;
5983   while (getLexer().isNot(AsmToken::Eof)) {
5984     // Parse curly braces marking block start/end
5985     if (parseCurlyBlockScope(AsmStrRewrites))
5986       continue;
5987 
5988     ParseStatementInfo Info(&AsmStrRewrites);
5989     bool StatementErr = parseStatement(Info, &SI);
5990 
5991     if (StatementErr || Info.ParseError) {
5992       // Emit pending errors if any exist.
5993       printPendingErrors();
5994       return true;
5995     }
5996 
5997     // No pending error should exist here.
5998     assert(!hasPendingError() && "unexpected error from parseStatement");
5999 
6000     if (Info.Opcode == ~0U)
6001       continue;
6002 
6003     const MCInstrDesc &Desc = MII->get(Info.Opcode);
6004 
6005     // Build the list of clobbers, outputs and inputs.
6006     for (unsigned i = 1, e = Info.ParsedOperands.size(); i != e; ++i) {
6007       MCParsedAsmOperand &Operand = *Info.ParsedOperands[i];
6008 
6009       // Register operand.
6010       if (Operand.isReg() && !Operand.needAddressOf() &&
6011           !getTargetParser().OmitRegisterFromClobberLists(Operand.getReg())) {
6012         unsigned NumDefs = Desc.getNumDefs();
6013         // Clobber.
6014         if (NumDefs && Operand.getMCOperandNum() < NumDefs)
6015           ClobberRegs.push_back(Operand.getReg());
6016         continue;
6017       }
6018 
6019       // Expr/Input or Output.
6020       StringRef SymName = Operand.getSymName();
6021       if (SymName.empty())
6022         continue;
6023 
6024       void *OpDecl = Operand.getOpDecl();
6025       if (!OpDecl)
6026         continue;
6027 
6028       StringRef Constraint = Operand.getConstraint();
6029       if (Operand.isImm()) {
6030         // Offset as immediate
6031         if (Operand.isOffsetOfLocal())
6032           Constraint = "r";
6033         else
6034           Constraint = "i";
6035       }
6036 
6037       bool isOutput = (i == 1) && Desc.mayStore();
6038       bool Restricted = Operand.isMemUseUpRegs();
6039       SMLoc Start = SMLoc::getFromPointer(SymName.data());
6040       if (isOutput) {
6041         ++InputIdx;
6042         OutputDecls.push_back(OpDecl);
6043         OutputDeclsAddressOf.push_back(Operand.needAddressOf());
6044         OutputConstraints.push_back(("=" + Constraint).str());
6045         AsmStrRewrites.emplace_back(AOK_Output, Start, SymName.size(), 0,
6046                                     Restricted);
6047       } else {
6048         InputDecls.push_back(OpDecl);
6049         InputDeclsAddressOf.push_back(Operand.needAddressOf());
6050         InputConstraints.push_back(Constraint.str());
6051         if (Desc.operands()[i - 1].isBranchTarget())
6052           AsmStrRewrites.emplace_back(AOK_CallInput, Start, SymName.size(), 0,
6053                                       Restricted);
6054         else
6055           AsmStrRewrites.emplace_back(AOK_Input, Start, SymName.size(), 0,
6056                                       Restricted);
6057       }
6058     }
6059 
6060     // Consider implicit defs to be clobbers.  Think of cpuid and push.
6061     llvm::append_range(ClobberRegs, Desc.implicit_defs());
6062   }
6063 
6064   // Set the number of Outputs and Inputs.
6065   NumOutputs = OutputDecls.size();
6066   NumInputs = InputDecls.size();
6067 
6068   // Set the unique clobbers.
6069   array_pod_sort(ClobberRegs.begin(), ClobberRegs.end());
6070   ClobberRegs.erase(std::unique(ClobberRegs.begin(), ClobberRegs.end()),
6071                     ClobberRegs.end());
6072   Clobbers.assign(ClobberRegs.size(), std::string());
6073   for (unsigned I = 0, E = ClobberRegs.size(); I != E; ++I) {
6074     raw_string_ostream OS(Clobbers[I]);
6075     IP->printRegName(OS, ClobberRegs[I]);
6076   }
6077 
6078   // Merge the various outputs and inputs.  Output are expected first.
6079   if (NumOutputs || NumInputs) {
6080     unsigned NumExprs = NumOutputs + NumInputs;
6081     OpDecls.resize(NumExprs);
6082     Constraints.resize(NumExprs);
6083     for (unsigned i = 0; i < NumOutputs; ++i) {
6084       OpDecls[i] = std::make_pair(OutputDecls[i], OutputDeclsAddressOf[i]);
6085       Constraints[i] = OutputConstraints[i];
6086     }
6087     for (unsigned i = 0, j = NumOutputs; i < NumInputs; ++i, ++j) {
6088       OpDecls[j] = std::make_pair(InputDecls[i], InputDeclsAddressOf[i]);
6089       Constraints[j] = InputConstraints[i];
6090     }
6091   }
6092 
6093   // Build the IR assembly string.
6094   std::string AsmStringIR;
6095   raw_string_ostream OS(AsmStringIR);
6096   StringRef ASMString =
6097       SrcMgr.getMemoryBuffer(SrcMgr.getMainFileID())->getBuffer();
6098   const char *AsmStart = ASMString.begin();
6099   const char *AsmEnd = ASMString.end();
6100   array_pod_sort(AsmStrRewrites.begin(), AsmStrRewrites.end(), rewritesSort);
6101   for (auto it = AsmStrRewrites.begin(); it != AsmStrRewrites.end(); ++it) {
6102     const AsmRewrite &AR = *it;
6103     // Check if this has already been covered by another rewrite...
6104     if (AR.Done)
6105       continue;
6106     AsmRewriteKind Kind = AR.Kind;
6107 
6108     const char *Loc = AR.Loc.getPointer();
6109     assert(Loc >= AsmStart && "Expected Loc to be at or after Start!");
6110 
6111     // Emit everything up to the immediate/expression.
6112     if (unsigned Len = Loc - AsmStart)
6113       OS << StringRef(AsmStart, Len);
6114 
6115     // Skip the original expression.
6116     if (Kind == AOK_Skip) {
6117       AsmStart = Loc + AR.Len;
6118       continue;
6119     }
6120 
6121     unsigned AdditionalSkip = 0;
6122     // Rewrite expressions in $N notation.
6123     switch (Kind) {
6124     default:
6125       break;
6126     case AOK_IntelExpr:
6127       assert(AR.IntelExp.isValid() && "cannot write invalid intel expression");
6128       if (AR.IntelExp.NeedBracs)
6129         OS << "[";
6130       if (AR.IntelExp.hasBaseReg())
6131         OS << AR.IntelExp.BaseReg;
6132       if (AR.IntelExp.hasIndexReg())
6133         OS << (AR.IntelExp.hasBaseReg() ? " + " : "")
6134            << AR.IntelExp.IndexReg;
6135       if (AR.IntelExp.Scale > 1)
6136         OS << " * $$" << AR.IntelExp.Scale;
6137       if (AR.IntelExp.hasOffset()) {
6138         if (AR.IntelExp.hasRegs())
6139           OS << " + ";
6140         // Fuse this rewrite with a rewrite of the offset name, if present.
6141         StringRef OffsetName = AR.IntelExp.OffsetName;
6142         SMLoc OffsetLoc = SMLoc::getFromPointer(AR.IntelExp.OffsetName.data());
6143         size_t OffsetLen = OffsetName.size();
6144         auto rewrite_it = std::find_if(
6145             it, AsmStrRewrites.end(), [&](const AsmRewrite &FusingAR) {
6146               return FusingAR.Loc == OffsetLoc && FusingAR.Len == OffsetLen &&
6147                      (FusingAR.Kind == AOK_Input ||
6148                       FusingAR.Kind == AOK_CallInput);
6149             });
6150         if (rewrite_it == AsmStrRewrites.end()) {
6151           OS << "offset " << OffsetName;
6152         } else if (rewrite_it->Kind == AOK_CallInput) {
6153           OS << "${" << InputIdx++ << ":P}";
6154           rewrite_it->Done = true;
6155         } else {
6156           OS << '$' << InputIdx++;
6157           rewrite_it->Done = true;
6158         }
6159       }
6160       if (AR.IntelExp.Imm || AR.IntelExp.emitImm())
6161         OS << (AR.IntelExp.emitImm() ? "$$" : " + $$") << AR.IntelExp.Imm;
6162       if (AR.IntelExp.NeedBracs)
6163         OS << "]";
6164       break;
6165     case AOK_Label:
6166       OS << Ctx.getAsmInfo()->getPrivateLabelPrefix() << AR.Label;
6167       break;
6168     case AOK_Input:
6169       if (AR.IntelExpRestricted)
6170         OS << "${" << InputIdx++ << ":P}";
6171       else
6172         OS << '$' << InputIdx++;
6173       break;
6174     case AOK_CallInput:
6175       OS << "${" << InputIdx++ << ":P}";
6176       break;
6177     case AOK_Output:
6178       if (AR.IntelExpRestricted)
6179         OS << "${" << OutputIdx++ << ":P}";
6180       else
6181         OS << '$' << OutputIdx++;
6182       break;
6183     case AOK_SizeDirective:
6184       switch (AR.Val) {
6185       default: break;
6186       case 8:  OS << "byte ptr "; break;
6187       case 16: OS << "word ptr "; break;
6188       case 32: OS << "dword ptr "; break;
6189       case 64: OS << "qword ptr "; break;
6190       case 80: OS << "xword ptr "; break;
6191       case 128: OS << "xmmword ptr "; break;
6192       case 256: OS << "ymmword ptr "; break;
6193       }
6194       break;
6195     case AOK_Emit:
6196       OS << ".byte";
6197       break;
6198     case AOK_Align: {
6199       // MS alignment directives are measured in bytes. If the native assembler
6200       // measures alignment in bytes, we can pass it straight through.
6201       OS << ".align";
6202       if (getContext().getAsmInfo()->getAlignmentIsInBytes())
6203         break;
6204 
6205       // Alignment is in log2 form, so print that instead and skip the original
6206       // immediate.
6207       unsigned Val = AR.Val;
6208       OS << ' ' << Val;
6209       assert(Val < 10 && "Expected alignment less then 2^10.");
6210       AdditionalSkip = (Val < 4) ? 2 : Val < 7 ? 3 : 4;
6211       break;
6212     }
6213     case AOK_EVEN:
6214       OS << ".even";
6215       break;
6216     case AOK_EndOfStatement:
6217       OS << "\n\t";
6218       break;
6219     }
6220 
6221     // Skip the original expression.
6222     AsmStart = Loc + AR.Len + AdditionalSkip;
6223   }
6224 
6225   // Emit the remainder of the asm string.
6226   if (AsmStart != AsmEnd)
6227     OS << StringRef(AsmStart, AsmEnd - AsmStart);
6228 
6229   AsmString = OS.str();
6230   return false;
6231 }
6232 
6233 bool HLASMAsmParser::parseAsHLASMLabel(ParseStatementInfo &Info,
6234                                        MCAsmParserSemaCallback *SI) {
6235   AsmToken LabelTok = getTok();
6236   SMLoc LabelLoc = LabelTok.getLoc();
6237   StringRef LabelVal;
6238 
6239   if (parseIdentifier(LabelVal))
6240     return Error(LabelLoc, "The HLASM Label has to be an Identifier");
6241 
6242   // We have validated whether the token is an Identifier.
6243   // Now we have to validate whether the token is a
6244   // valid HLASM Label.
6245   if (!getTargetParser().isLabel(LabelTok) || checkForValidSection())
6246     return true;
6247 
6248   // Lex leading spaces to get to the next operand.
6249   lexLeadingSpaces();
6250 
6251   // We shouldn't emit the label if there is nothing else after the label.
6252   // i.e asm("<token>\n")
6253   if (getTok().is(AsmToken::EndOfStatement))
6254     return Error(LabelLoc,
6255                  "Cannot have just a label for an HLASM inline asm statement");
6256 
6257   MCSymbol *Sym = getContext().getOrCreateSymbol(
6258       getContext().getAsmInfo()->shouldEmitLabelsInUpperCase()
6259           ? LabelVal.upper()
6260           : LabelVal);
6261 
6262   getTargetParser().doBeforeLabelEmit(Sym, LabelLoc);
6263 
6264   // Emit the label.
6265   Out.emitLabel(Sym, LabelLoc);
6266 
6267   // If we are generating dwarf for assembly source files then gather the
6268   // info to make a dwarf label entry for this label if needed.
6269   if (enabledGenDwarfForAssembly())
6270     MCGenDwarfLabelEntry::Make(Sym, &getStreamer(), getSourceManager(),
6271                                LabelLoc);
6272 
6273   getTargetParser().onLabelParsed(Sym);
6274 
6275   return false;
6276 }
6277 
6278 bool HLASMAsmParser::parseAsMachineInstruction(ParseStatementInfo &Info,
6279                                                MCAsmParserSemaCallback *SI) {
6280   AsmToken OperationEntryTok = Lexer.getTok();
6281   SMLoc OperationEntryLoc = OperationEntryTok.getLoc();
6282   StringRef OperationEntryVal;
6283 
6284   // Attempt to parse the first token as an Identifier
6285   if (parseIdentifier(OperationEntryVal))
6286     return Error(OperationEntryLoc, "unexpected token at start of statement");
6287 
6288   // Once we've parsed the operation entry successfully, lex
6289   // any spaces to get to the OperandEntries.
6290   lexLeadingSpaces();
6291 
6292   return parseAndMatchAndEmitTargetInstruction(
6293       Info, OperationEntryVal, OperationEntryTok, OperationEntryLoc);
6294 }
6295 
6296 bool HLASMAsmParser::parseStatement(ParseStatementInfo &Info,
6297                                     MCAsmParserSemaCallback *SI) {
6298   assert(!hasPendingError() && "parseStatement started with pending error");
6299 
6300   // Should the first token be interpreted as a HLASM Label.
6301   bool ShouldParseAsHLASMLabel = false;
6302 
6303   // If a Name Entry exists, it should occur at the very
6304   // start of the string. In this case, we should parse the
6305   // first non-space token as a Label.
6306   // If the Name entry is missing (i.e. there's some other
6307   // token), then we attempt to parse the first non-space
6308   // token as a Machine Instruction.
6309   if (getTok().isNot(AsmToken::Space))
6310     ShouldParseAsHLASMLabel = true;
6311 
6312   // If we have an EndOfStatement (which includes the target's comment
6313   // string) we can appropriately lex it early on)
6314   if (Lexer.is(AsmToken::EndOfStatement)) {
6315     // if this is a line comment we can drop it safely
6316     if (getTok().getString().empty() || getTok().getString().front() == '\r' ||
6317         getTok().getString().front() == '\n')
6318       Out.addBlankLine();
6319     Lex();
6320     return false;
6321   }
6322 
6323   // We have established how to parse the inline asm statement.
6324   // Now we can safely lex any leading spaces to get to the
6325   // first token.
6326   lexLeadingSpaces();
6327 
6328   // If we see a new line or carriage return as the first operand,
6329   // after lexing leading spaces, emit the new line and lex the
6330   // EndOfStatement token.
6331   if (Lexer.is(AsmToken::EndOfStatement)) {
6332     if (getTok().getString().front() == '\n' ||
6333         getTok().getString().front() == '\r') {
6334       Out.addBlankLine();
6335       Lex();
6336       return false;
6337     }
6338   }
6339 
6340   // Handle the label first if we have to before processing the rest
6341   // of the tokens as a machine instruction.
6342   if (ShouldParseAsHLASMLabel) {
6343     // If there were any errors while handling and emitting the label,
6344     // early return.
6345     if (parseAsHLASMLabel(Info, SI)) {
6346       // If we know we've failed in parsing, simply eat until end of the
6347       // statement. This ensures that we don't process any other statements.
6348       eatToEndOfStatement();
6349       return true;
6350     }
6351   }
6352 
6353   return parseAsMachineInstruction(Info, SI);
6354 }
6355 
6356 namespace llvm {
6357 namespace MCParserUtils {
6358 
6359 /// Returns whether the given symbol is used anywhere in the given expression,
6360 /// or subexpressions.
6361 static bool isSymbolUsedInExpression(const MCSymbol *Sym, const MCExpr *Value) {
6362   switch (Value->getKind()) {
6363   case MCExpr::Binary: {
6364     const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Value);
6365     return isSymbolUsedInExpression(Sym, BE->getLHS()) ||
6366            isSymbolUsedInExpression(Sym, BE->getRHS());
6367   }
6368   case MCExpr::Target:
6369   case MCExpr::Constant:
6370     return false;
6371   case MCExpr::SymbolRef: {
6372     const MCSymbol &S =
6373         static_cast<const MCSymbolRefExpr *>(Value)->getSymbol();
6374     if (S.isVariable())
6375       return isSymbolUsedInExpression(Sym, S.getVariableValue());
6376     return &S == Sym;
6377   }
6378   case MCExpr::Unary:
6379     return isSymbolUsedInExpression(
6380         Sym, static_cast<const MCUnaryExpr *>(Value)->getSubExpr());
6381   }
6382 
6383   llvm_unreachable("Unknown expr kind!");
6384 }
6385 
6386 bool parseAssignmentExpression(StringRef Name, bool allow_redef,
6387                                MCAsmParser &Parser, MCSymbol *&Sym,
6388                                const MCExpr *&Value) {
6389 
6390   // FIXME: Use better location, we should use proper tokens.
6391   SMLoc EqualLoc = Parser.getTok().getLoc();
6392   if (Parser.parseExpression(Value))
6393     return Parser.TokError("missing expression");
6394 
6395   // Note: we don't count b as used in "a = b". This is to allow
6396   // a = b
6397   // b = c
6398 
6399   if (Parser.parseEOL())
6400     return true;
6401 
6402   // Validate that the LHS is allowed to be a variable (either it has not been
6403   // used as a symbol, or it is an absolute symbol).
6404   Sym = Parser.getContext().lookupSymbol(Name);
6405   if (Sym) {
6406     // Diagnose assignment to a label.
6407     //
6408     // FIXME: Diagnostics. Note the location of the definition as a label.
6409     // FIXME: Diagnose assignment to protected identifier (e.g., register name).
6410     if (isSymbolUsedInExpression(Sym, Value))
6411       return Parser.Error(EqualLoc, "Recursive use of '" + Name + "'");
6412     else if (Sym->isUndefined(/*SetUsed*/ false) && !Sym->isUsed() &&
6413              !Sym->isVariable())
6414       ; // Allow redefinitions of undefined symbols only used in directives.
6415     else if (Sym->isVariable() && !Sym->isUsed() && allow_redef)
6416       ; // Allow redefinitions of variables that haven't yet been used.
6417     else if (!Sym->isUndefined() && (!Sym->isVariable() || !allow_redef))
6418       return Parser.Error(EqualLoc, "redefinition of '" + Name + "'");
6419     else if (!Sym->isVariable())
6420       return Parser.Error(EqualLoc, "invalid assignment to '" + Name + "'");
6421     else if (!isa<MCConstantExpr>(Sym->getVariableValue()))
6422       return Parser.Error(EqualLoc,
6423                           "invalid reassignment of non-absolute variable '" +
6424                               Name + "'");
6425   } else if (Name == ".") {
6426     Parser.getStreamer().emitValueToOffset(Value, 0, EqualLoc);
6427     return false;
6428   } else
6429     Sym = Parser.getContext().getOrCreateSymbol(Name);
6430 
6431   Sym->setRedefinable(allow_redef);
6432 
6433   return false;
6434 }
6435 
6436 } // end namespace MCParserUtils
6437 } // end namespace llvm
6438 
6439 /// Create an MCAsmParser instance.
6440 MCAsmParser *llvm::createMCAsmParser(SourceMgr &SM, MCContext &C,
6441                                      MCStreamer &Out, const MCAsmInfo &MAI,
6442                                      unsigned CB) {
6443   if (C.getTargetTriple().isSystemZ() && C.getTargetTriple().isOSzOS())
6444     return new HLASMAsmParser(SM, C, Out, MAI, CB);
6445 
6446   return new AsmParser(SM, C, Out, MAI, CB);
6447 }
6448