1 //===- Construction of pass pipelines -------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// This file provides the implementation of the PassBuilder based on our
11 /// static pass registry as well as related functionality. It also provides
12 /// helpers to aid in analyzing, debugging, and testing passes and pass
13 /// pipelines.
14 ///
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/Analysis/BasicAliasAnalysis.h"
19 #include "llvm/Analysis/CGSCCPassManager.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/InlineAdvisor.h"
22 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
23 #include "llvm/Analysis/ProfileSummaryInfo.h"
24 #include "llvm/Analysis/ScopedNoAliasAA.h"
25 #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
26 #include "llvm/IR/PassManager.h"
27 #include "llvm/Passes/OptimizationLevel.h"
28 #include "llvm/Passes/PassBuilder.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/PGOOptions.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h"
34 #include "llvm/Transforms/Coroutines/CoroCleanup.h"
35 #include "llvm/Transforms/Coroutines/CoroConditionalWrapper.h"
36 #include "llvm/Transforms/Coroutines/CoroEarly.h"
37 #include "llvm/Transforms/Coroutines/CoroElide.h"
38 #include "llvm/Transforms/Coroutines/CoroSplit.h"
39 #include "llvm/Transforms/IPO/AlwaysInliner.h"
40 #include "llvm/Transforms/IPO/Annotation2Metadata.h"
41 #include "llvm/Transforms/IPO/ArgumentPromotion.h"
42 #include "llvm/Transforms/IPO/Attributor.h"
43 #include "llvm/Transforms/IPO/CalledValuePropagation.h"
44 #include "llvm/Transforms/IPO/ConstantMerge.h"
45 #include "llvm/Transforms/IPO/CrossDSOCFI.h"
46 #include "llvm/Transforms/IPO/DeadArgumentElimination.h"
47 #include "llvm/Transforms/IPO/ElimAvailExtern.h"
48 #include "llvm/Transforms/IPO/ForceFunctionAttrs.h"
49 #include "llvm/Transforms/IPO/FunctionAttrs.h"
50 #include "llvm/Transforms/IPO/GlobalDCE.h"
51 #include "llvm/Transforms/IPO/GlobalOpt.h"
52 #include "llvm/Transforms/IPO/GlobalSplit.h"
53 #include "llvm/Transforms/IPO/HotColdSplitting.h"
54 #include "llvm/Transforms/IPO/IROutliner.h"
55 #include "llvm/Transforms/IPO/InferFunctionAttrs.h"
56 #include "llvm/Transforms/IPO/Inliner.h"
57 #include "llvm/Transforms/IPO/LowerTypeTests.h"
58 #include "llvm/Transforms/IPO/MergeFunctions.h"
59 #include "llvm/Transforms/IPO/ModuleInliner.h"
60 #include "llvm/Transforms/IPO/OpenMPOpt.h"
61 #include "llvm/Transforms/IPO/PartialInlining.h"
62 #include "llvm/Transforms/IPO/SCCP.h"
63 #include "llvm/Transforms/IPO/SampleProfile.h"
64 #include "llvm/Transforms/IPO/SampleProfileProbe.h"
65 #include "llvm/Transforms/IPO/SyntheticCountsPropagation.h"
66 #include "llvm/Transforms/IPO/WholeProgramDevirt.h"
67 #include "llvm/Transforms/InstCombine/InstCombine.h"
68 #include "llvm/Transforms/Instrumentation/CGProfile.h"
69 #include "llvm/Transforms/Instrumentation/ControlHeightReduction.h"
70 #include "llvm/Transforms/Instrumentation/InstrOrderFile.h"
71 #include "llvm/Transforms/Instrumentation/InstrProfiling.h"
72 #include "llvm/Transforms/Instrumentation/MemProfiler.h"
73 #include "llvm/Transforms/Instrumentation/PGOInstrumentation.h"
74 #include "llvm/Transforms/Scalar/ADCE.h"
75 #include "llvm/Transforms/Scalar/AlignmentFromAssumptions.h"
76 #include "llvm/Transforms/Scalar/AnnotationRemarks.h"
77 #include "llvm/Transforms/Scalar/BDCE.h"
78 #include "llvm/Transforms/Scalar/CallSiteSplitting.h"
79 #include "llvm/Transforms/Scalar/ConstraintElimination.h"
80 #include "llvm/Transforms/Scalar/CorrelatedValuePropagation.h"
81 #include "llvm/Transforms/Scalar/DFAJumpThreading.h"
82 #include "llvm/Transforms/Scalar/DeadStoreElimination.h"
83 #include "llvm/Transforms/Scalar/DivRemPairs.h"
84 #include "llvm/Transforms/Scalar/EarlyCSE.h"
85 #include "llvm/Transforms/Scalar/Float2Int.h"
86 #include "llvm/Transforms/Scalar/GVN.h"
87 #include "llvm/Transforms/Scalar/IndVarSimplify.h"
88 #include "llvm/Transforms/Scalar/InstSimplifyPass.h"
89 #include "llvm/Transforms/Scalar/JumpThreading.h"
90 #include "llvm/Transforms/Scalar/LICM.h"
91 #include "llvm/Transforms/Scalar/LoopDeletion.h"
92 #include "llvm/Transforms/Scalar/LoopDistribute.h"
93 #include "llvm/Transforms/Scalar/LoopFlatten.h"
94 #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h"
95 #include "llvm/Transforms/Scalar/LoopInstSimplify.h"
96 #include "llvm/Transforms/Scalar/LoopInterchange.h"
97 #include "llvm/Transforms/Scalar/LoopLoadElimination.h"
98 #include "llvm/Transforms/Scalar/LoopPassManager.h"
99 #include "llvm/Transforms/Scalar/LoopRotation.h"
100 #include "llvm/Transforms/Scalar/LoopSimplifyCFG.h"
101 #include "llvm/Transforms/Scalar/LoopSink.h"
102 #include "llvm/Transforms/Scalar/LoopUnrollAndJamPass.h"
103 #include "llvm/Transforms/Scalar/LoopUnrollPass.h"
104 #include "llvm/Transforms/Scalar/LowerConstantIntrinsics.h"
105 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
106 #include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h"
107 #include "llvm/Transforms/Scalar/MemCpyOptimizer.h"
108 #include "llvm/Transforms/Scalar/MergedLoadStoreMotion.h"
109 #include "llvm/Transforms/Scalar/NewGVN.h"
110 #include "llvm/Transforms/Scalar/Reassociate.h"
111 #include "llvm/Transforms/Scalar/SCCP.h"
112 #include "llvm/Transforms/Scalar/SROA.h"
113 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
114 #include "llvm/Transforms/Scalar/SimplifyCFG.h"
115 #include "llvm/Transforms/Scalar/SpeculativeExecution.h"
116 #include "llvm/Transforms/Scalar/TailRecursionElimination.h"
117 #include "llvm/Transforms/Scalar/WarnMissedTransforms.h"
118 #include "llvm/Transforms/Utils/AddDiscriminators.h"
119 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
120 #include "llvm/Transforms/Utils/CanonicalizeAliases.h"
121 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
122 #include "llvm/Transforms/Utils/LibCallsShrinkWrap.h"
123 #include "llvm/Transforms/Utils/Mem2Reg.h"
124 #include "llvm/Transforms/Utils/NameAnonGlobals.h"
125 #include "llvm/Transforms/Utils/RelLookupTableConverter.h"
126 #include "llvm/Transforms/Utils/SimplifyCFGOptions.h"
127 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
128 #include "llvm/Transforms/Vectorize/SLPVectorizer.h"
129 #include "llvm/Transforms/Vectorize/VectorCombine.h"
130 
131 using namespace llvm;
132 
133 static cl::opt<InliningAdvisorMode> UseInlineAdvisor(
134     "enable-ml-inliner", cl::init(InliningAdvisorMode::Default), cl::Hidden,
135     cl::desc("Enable ML policy for inliner. Currently trained for -Oz only"),
136     cl::values(clEnumValN(InliningAdvisorMode::Default, "default",
137                           "Heuristics-based inliner version."),
138                clEnumValN(InliningAdvisorMode::Development, "development",
139                           "Use development mode (runtime-loadable model)."),
140                clEnumValN(InliningAdvisorMode::Release, "release",
141                           "Use release mode (AOT-compiled model).")));
142 
143 static cl::opt<bool> EnableSyntheticCounts(
144     "enable-npm-synthetic-counts", cl::Hidden,
145     cl::desc("Run synthetic function entry count generation "
146              "pass"));
147 
148 /// Flag to enable inline deferral during PGO.
149 static cl::opt<bool>
150     EnablePGOInlineDeferral("enable-npm-pgo-inline-deferral", cl::init(true),
151                             cl::Hidden,
152                             cl::desc("Enable inline deferral during PGO"));
153 
154 static cl::opt<bool> EnableMemProfiler("enable-mem-prof", cl::Hidden,
155                                        cl::desc("Enable memory profiler"));
156 
157 static cl::opt<bool> EnableModuleInliner("enable-module-inliner",
158                                          cl::init(false), cl::Hidden,
159                                          cl::desc("Enable module inliner"));
160 
161 static cl::opt<bool> PerformMandatoryInliningsFirst(
162     "mandatory-inlining-first", cl::init(true), cl::Hidden,
163     cl::desc("Perform mandatory inlinings module-wide, before performing "
164              "inlining."));
165 
166 static cl::opt<bool> EnableO3NonTrivialUnswitching(
167     "enable-npm-O3-nontrivial-unswitch", cl::init(true), cl::Hidden,
168     cl::desc("Enable non-trivial loop unswitching for -O3"));
169 
170 static cl::opt<bool> EnableEagerlyInvalidateAnalyses(
171     "eagerly-invalidate-analyses", cl::init(true), cl::Hidden,
172     cl::desc("Eagerly invalidate more analyses in default pipelines"));
173 
174 static cl::opt<bool> EnableNoRerunSimplificationPipeline(
175     "enable-no-rerun-simplification-pipeline", cl::init(true), cl::Hidden,
176     cl::desc(
177         "Prevent running the simplification pipeline on a function more "
178         "than once in the case that SCC mutations cause a function to be "
179         "visited multiple times as long as the function has not been changed"));
180 
181 static cl::opt<bool> EnableMergeFunctions(
182     "enable-merge-functions", cl::init(false), cl::Hidden,
183     cl::desc("Enable function merging as part of the optimization pipeline"));
184 
185 PipelineTuningOptions::PipelineTuningOptions() {
186   LoopInterleaving = true;
187   LoopVectorization = true;
188   SLPVectorization = false;
189   LoopUnrolling = true;
190   ForgetAllSCEVInLoopUnroll = ForgetSCEVInLoopUnroll;
191   LicmMssaOptCap = SetLicmMssaOptCap;
192   LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap;
193   CallGraphProfile = true;
194   MergeFunctions = EnableMergeFunctions;
195   EagerlyInvalidateAnalyses = EnableEagerlyInvalidateAnalyses;
196 }
197 
198 namespace llvm {
199 
200 extern cl::opt<unsigned> MaxDevirtIterations;
201 extern cl::opt<bool> EnableConstraintElimination;
202 extern cl::opt<bool> EnableFunctionSpecialization;
203 extern cl::opt<bool> EnableGVNHoist;
204 extern cl::opt<bool> EnableGVNSink;
205 extern cl::opt<bool> EnableHotColdSplit;
206 extern cl::opt<bool> EnableIROutliner;
207 extern cl::opt<bool> EnableOrderFileInstrumentation;
208 extern cl::opt<bool> EnableCHR;
209 extern cl::opt<bool> EnableLoopInterchange;
210 extern cl::opt<bool> EnableUnrollAndJam;
211 extern cl::opt<bool> EnableLoopFlatten;
212 extern cl::opt<bool> EnableDFAJumpThreading;
213 extern cl::opt<bool> RunNewGVN;
214 extern cl::opt<bool> RunPartialInlining;
215 extern cl::opt<bool> ExtraVectorizerPasses;
216 
217 extern cl::opt<bool> FlattenedProfileUsed;
218 
219 extern cl::opt<AttributorRunOption> AttributorRun;
220 extern cl::opt<bool> EnableKnowledgeRetention;
221 
222 extern cl::opt<bool> EnableMatrix;
223 
224 extern cl::opt<bool> DisablePreInliner;
225 extern cl::opt<int> PreInlineThreshold;
226 } // namespace llvm
227 
228 void PassBuilder::invokePeepholeEPCallbacks(FunctionPassManager &FPM,
229                                             OptimizationLevel Level) {
230   for (auto &C : PeepholeEPCallbacks)
231     C(FPM, Level);
232 }
233 
234 // Helper to add AnnotationRemarksPass.
235 static void addAnnotationRemarksPass(ModulePassManager &MPM) {
236   MPM.addPass(createModuleToFunctionPassAdaptor(AnnotationRemarksPass()));
237 }
238 
239 // Helper to check if the current compilation phase is preparing for LTO
240 static bool isLTOPreLink(ThinOrFullLTOPhase Phase) {
241   return Phase == ThinOrFullLTOPhase::ThinLTOPreLink ||
242          Phase == ThinOrFullLTOPhase::FullLTOPreLink;
243 }
244 
245 // TODO: Investigate the cost/benefit of tail call elimination on debugging.
246 FunctionPassManager
247 PassBuilder::buildO1FunctionSimplificationPipeline(OptimizationLevel Level,
248                                                    ThinOrFullLTOPhase Phase) {
249 
250   FunctionPassManager FPM;
251 
252   // Form SSA out of local memory accesses after breaking apart aggregates into
253   // scalars.
254   FPM.addPass(SROAPass());
255 
256   // Catch trivial redundancies
257   FPM.addPass(EarlyCSEPass(true /* Enable mem-ssa. */));
258 
259   // Hoisting of scalars and load expressions.
260   FPM.addPass(
261       SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
262   FPM.addPass(InstCombinePass());
263 
264   FPM.addPass(LibCallsShrinkWrapPass());
265 
266   invokePeepholeEPCallbacks(FPM, Level);
267 
268   FPM.addPass(
269       SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
270 
271   // Form canonically associated expression trees, and simplify the trees using
272   // basic mathematical properties. For example, this will form (nearly)
273   // minimal multiplication trees.
274   FPM.addPass(ReassociatePass());
275 
276   // Add the primary loop simplification pipeline.
277   // FIXME: Currently this is split into two loop pass pipelines because we run
278   // some function passes in between them. These can and should be removed
279   // and/or replaced by scheduling the loop pass equivalents in the correct
280   // positions. But those equivalent passes aren't powerful enough yet.
281   // Specifically, `SimplifyCFGPass` and `InstCombinePass` are currently still
282   // used. We have `LoopSimplifyCFGPass` which isn't yet powerful enough yet to
283   // fully replace `SimplifyCFGPass`, and the closest to the other we have is
284   // `LoopInstSimplify`.
285   LoopPassManager LPM1, LPM2;
286 
287   // Simplify the loop body. We do this initially to clean up after other loop
288   // passes run, either when iterating on a loop or on inner loops with
289   // implications on the outer loop.
290   LPM1.addPass(LoopInstSimplifyPass());
291   LPM1.addPass(LoopSimplifyCFGPass());
292 
293   // Try to remove as much code from the loop header as possible,
294   // to reduce amount of IR that will have to be duplicated. However,
295   // do not perform speculative hoisting the first time as LICM
296   // will destroy metadata that may not need to be destroyed if run
297   // after loop rotation.
298   // TODO: Investigate promotion cap for O1.
299   LPM1.addPass(LICMPass(PTO.LicmMssaOptCap, PTO.LicmMssaNoAccForPromotionCap,
300                         /*AllowSpeculation=*/false));
301 
302   LPM1.addPass(LoopRotatePass(/* Disable header duplication */ true,
303                               isLTOPreLink(Phase)));
304   // TODO: Investigate promotion cap for O1.
305   LPM1.addPass(LICMPass(PTO.LicmMssaOptCap, PTO.LicmMssaNoAccForPromotionCap,
306                         /*AllowSpeculation=*/true));
307   LPM1.addPass(SimpleLoopUnswitchPass());
308   if (EnableLoopFlatten)
309     LPM1.addPass(LoopFlattenPass());
310 
311   LPM2.addPass(LoopIdiomRecognizePass());
312   LPM2.addPass(IndVarSimplifyPass());
313 
314   for (auto &C : LateLoopOptimizationsEPCallbacks)
315     C(LPM2, Level);
316 
317   LPM2.addPass(LoopDeletionPass());
318 
319   if (EnableLoopInterchange)
320     LPM2.addPass(LoopInterchangePass());
321 
322   // Do not enable unrolling in PreLinkThinLTO phase during sample PGO
323   // because it changes IR to makes profile annotation in back compile
324   // inaccurate. The normal unroller doesn't pay attention to forced full unroll
325   // attributes so we need to make sure and allow the full unroll pass to pay
326   // attention to it.
327   if (Phase != ThinOrFullLTOPhase::ThinLTOPreLink || !PGOOpt ||
328       PGOOpt->Action != PGOOptions::SampleUse)
329     LPM2.addPass(LoopFullUnrollPass(Level.getSpeedupLevel(),
330                                     /* OnlyWhenForced= */ !PTO.LoopUnrolling,
331                                     PTO.ForgetAllSCEVInLoopUnroll));
332 
333   for (auto &C : LoopOptimizerEndEPCallbacks)
334     C(LPM2, Level);
335 
336   // We provide the opt remark emitter pass for LICM to use. We only need to do
337   // this once as it is immutable.
338   FPM.addPass(
339       RequireAnalysisPass<OptimizationRemarkEmitterAnalysis, Function>());
340   FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM1),
341                                               /*UseMemorySSA=*/true,
342                                               /*UseBlockFrequencyInfo=*/true));
343   FPM.addPass(
344       SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
345   FPM.addPass(InstCombinePass());
346   // The loop passes in LPM2 (LoopFullUnrollPass) do not preserve MemorySSA.
347   // *All* loop passes must preserve it, in order to be able to use it.
348   FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM2),
349                                               /*UseMemorySSA=*/false,
350                                               /*UseBlockFrequencyInfo=*/false));
351 
352   // Delete small array after loop unroll.
353   FPM.addPass(SROAPass());
354 
355   // Specially optimize memory movement as it doesn't look like dataflow in SSA.
356   FPM.addPass(MemCpyOptPass());
357 
358   // Sparse conditional constant propagation.
359   // FIXME: It isn't clear why we do this *after* loop passes rather than
360   // before...
361   FPM.addPass(SCCPPass());
362 
363   // Delete dead bit computations (instcombine runs after to fold away the dead
364   // computations, and then ADCE will run later to exploit any new DCE
365   // opportunities that creates).
366   FPM.addPass(BDCEPass());
367 
368   // Run instcombine after redundancy and dead bit elimination to exploit
369   // opportunities opened up by them.
370   FPM.addPass(InstCombinePass());
371   invokePeepholeEPCallbacks(FPM, Level);
372 
373   FPM.addPass(CoroElidePass());
374 
375   for (auto &C : ScalarOptimizerLateEPCallbacks)
376     C(FPM, Level);
377 
378   // Finally, do an expensive DCE pass to catch all the dead code exposed by
379   // the simplifications and basic cleanup after all the simplifications.
380   // TODO: Investigate if this is too expensive.
381   FPM.addPass(ADCEPass());
382   FPM.addPass(
383       SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
384   FPM.addPass(InstCombinePass());
385   invokePeepholeEPCallbacks(FPM, Level);
386 
387   return FPM;
388 }
389 
390 FunctionPassManager
391 PassBuilder::buildFunctionSimplificationPipeline(OptimizationLevel Level,
392                                                  ThinOrFullLTOPhase Phase) {
393   assert(Level != OptimizationLevel::O0 && "Must request optimizations!");
394 
395   // The O1 pipeline has a separate pipeline creation function to simplify
396   // construction readability.
397   if (Level.getSpeedupLevel() == 1)
398     return buildO1FunctionSimplificationPipeline(Level, Phase);
399 
400   FunctionPassManager FPM;
401 
402   // Form SSA out of local memory accesses after breaking apart aggregates into
403   // scalars.
404   FPM.addPass(SROAPass());
405 
406   // Catch trivial redundancies
407   FPM.addPass(EarlyCSEPass(true /* Enable mem-ssa. */));
408   if (EnableKnowledgeRetention)
409     FPM.addPass(AssumeSimplifyPass());
410 
411   // Hoisting of scalars and load expressions.
412   if (EnableGVNHoist)
413     FPM.addPass(GVNHoistPass());
414 
415   // Global value numbering based sinking.
416   if (EnableGVNSink) {
417     FPM.addPass(GVNSinkPass());
418     FPM.addPass(
419         SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
420   }
421 
422   if (EnableConstraintElimination)
423     FPM.addPass(ConstraintEliminationPass());
424 
425   // Speculative execution if the target has divergent branches; otherwise nop.
426   FPM.addPass(SpeculativeExecutionPass(/* OnlyIfDivergentTarget =*/true));
427 
428   // Optimize based on known information about branches, and cleanup afterward.
429   FPM.addPass(JumpThreadingPass());
430   FPM.addPass(CorrelatedValuePropagationPass());
431 
432   FPM.addPass(
433       SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
434   FPM.addPass(InstCombinePass());
435   if (Level == OptimizationLevel::O3)
436     FPM.addPass(AggressiveInstCombinePass());
437 
438   if (!Level.isOptimizingForSize())
439     FPM.addPass(LibCallsShrinkWrapPass());
440 
441   invokePeepholeEPCallbacks(FPM, Level);
442 
443   // For PGO use pipeline, try to optimize memory intrinsics such as memcpy
444   // using the size value profile. Don't perform this when optimizing for size.
445   if (PGOOpt && PGOOpt->Action == PGOOptions::IRUse &&
446       !Level.isOptimizingForSize())
447     FPM.addPass(PGOMemOPSizeOpt());
448 
449   FPM.addPass(TailCallElimPass());
450   FPM.addPass(
451       SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
452 
453   // Form canonically associated expression trees, and simplify the trees using
454   // basic mathematical properties. For example, this will form (nearly)
455   // minimal multiplication trees.
456   FPM.addPass(ReassociatePass());
457 
458   // Add the primary loop simplification pipeline.
459   // FIXME: Currently this is split into two loop pass pipelines because we run
460   // some function passes in between them. These can and should be removed
461   // and/or replaced by scheduling the loop pass equivalents in the correct
462   // positions. But those equivalent passes aren't powerful enough yet.
463   // Specifically, `SimplifyCFGPass` and `InstCombinePass` are currently still
464   // used. We have `LoopSimplifyCFGPass` which isn't yet powerful enough yet to
465   // fully replace `SimplifyCFGPass`, and the closest to the other we have is
466   // `LoopInstSimplify`.
467   LoopPassManager LPM1, LPM2;
468 
469   // Simplify the loop body. We do this initially to clean up after other loop
470   // passes run, either when iterating on a loop or on inner loops with
471   // implications on the outer loop.
472   LPM1.addPass(LoopInstSimplifyPass());
473   LPM1.addPass(LoopSimplifyCFGPass());
474 
475   // Try to remove as much code from the loop header as possible,
476   // to reduce amount of IR that will have to be duplicated. However,
477   // do not perform speculative hoisting the first time as LICM
478   // will destroy metadata that may not need to be destroyed if run
479   // after loop rotation.
480   // TODO: Investigate promotion cap for O1.
481   LPM1.addPass(LICMPass(PTO.LicmMssaOptCap, PTO.LicmMssaNoAccForPromotionCap,
482                         /*AllowSpeculation=*/false));
483 
484   // Disable header duplication in loop rotation at -Oz.
485   LPM1.addPass(
486       LoopRotatePass(Level != OptimizationLevel::Oz, isLTOPreLink(Phase)));
487   // TODO: Investigate promotion cap for O1.
488   LPM1.addPass(LICMPass(PTO.LicmMssaOptCap, PTO.LicmMssaNoAccForPromotionCap,
489                         /*AllowSpeculation=*/true));
490   LPM1.addPass(
491       SimpleLoopUnswitchPass(/* NonTrivial */ Level == OptimizationLevel::O3 &&
492                              EnableO3NonTrivialUnswitching));
493   if (EnableLoopFlatten)
494     LPM1.addPass(LoopFlattenPass());
495 
496   LPM2.addPass(LoopIdiomRecognizePass());
497   LPM2.addPass(IndVarSimplifyPass());
498 
499   for (auto &C : LateLoopOptimizationsEPCallbacks)
500     C(LPM2, Level);
501 
502   LPM2.addPass(LoopDeletionPass());
503 
504   if (EnableLoopInterchange)
505     LPM2.addPass(LoopInterchangePass());
506 
507   // Do not enable unrolling in PreLinkThinLTO phase during sample PGO
508   // because it changes IR to makes profile annotation in back compile
509   // inaccurate. The normal unroller doesn't pay attention to forced full unroll
510   // attributes so we need to make sure and allow the full unroll pass to pay
511   // attention to it.
512   if (Phase != ThinOrFullLTOPhase::ThinLTOPreLink || !PGOOpt ||
513       PGOOpt->Action != PGOOptions::SampleUse)
514     LPM2.addPass(LoopFullUnrollPass(Level.getSpeedupLevel(),
515                                     /* OnlyWhenForced= */ !PTO.LoopUnrolling,
516                                     PTO.ForgetAllSCEVInLoopUnroll));
517 
518   for (auto &C : LoopOptimizerEndEPCallbacks)
519     C(LPM2, Level);
520 
521   // We provide the opt remark emitter pass for LICM to use. We only need to do
522   // this once as it is immutable.
523   FPM.addPass(
524       RequireAnalysisPass<OptimizationRemarkEmitterAnalysis, Function>());
525   FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM1),
526                                               /*UseMemorySSA=*/true,
527                                               /*UseBlockFrequencyInfo=*/true));
528   FPM.addPass(
529       SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
530   FPM.addPass(InstCombinePass());
531   // The loop passes in LPM2 (LoopIdiomRecognizePass, IndVarSimplifyPass,
532   // LoopDeletionPass and LoopFullUnrollPass) do not preserve MemorySSA.
533   // *All* loop passes must preserve it, in order to be able to use it.
534   FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM2),
535                                               /*UseMemorySSA=*/false,
536                                               /*UseBlockFrequencyInfo=*/false));
537 
538   // Delete small array after loop unroll.
539   FPM.addPass(SROAPass());
540 
541   // The matrix extension can introduce large vector operations early, which can
542   // benefit from running vector-combine early on.
543   if (EnableMatrix)
544     FPM.addPass(VectorCombinePass(/*ScalarizationOnly=*/true));
545 
546   // Eliminate redundancies.
547   FPM.addPass(MergedLoadStoreMotionPass());
548   if (RunNewGVN)
549     FPM.addPass(NewGVNPass());
550   else
551     FPM.addPass(GVNPass());
552 
553   // Sparse conditional constant propagation.
554   // FIXME: It isn't clear why we do this *after* loop passes rather than
555   // before...
556   FPM.addPass(SCCPPass());
557 
558   // Delete dead bit computations (instcombine runs after to fold away the dead
559   // computations, and then ADCE will run later to exploit any new DCE
560   // opportunities that creates).
561   FPM.addPass(BDCEPass());
562 
563   // Run instcombine after redundancy and dead bit elimination to exploit
564   // opportunities opened up by them.
565   FPM.addPass(InstCombinePass());
566   invokePeepholeEPCallbacks(FPM, Level);
567 
568   // Re-consider control flow based optimizations after redundancy elimination,
569   // redo DCE, etc.
570   if (EnableDFAJumpThreading && Level.getSizeLevel() == 0)
571     FPM.addPass(DFAJumpThreadingPass());
572 
573   FPM.addPass(JumpThreadingPass());
574   FPM.addPass(CorrelatedValuePropagationPass());
575 
576   // Finally, do an expensive DCE pass to catch all the dead code exposed by
577   // the simplifications and basic cleanup after all the simplifications.
578   // TODO: Investigate if this is too expensive.
579   FPM.addPass(ADCEPass());
580 
581   // Specially optimize memory movement as it doesn't look like dataflow in SSA.
582   FPM.addPass(MemCpyOptPass());
583 
584   FPM.addPass(DSEPass());
585   FPM.addPass(createFunctionToLoopPassAdaptor(
586       LICMPass(PTO.LicmMssaOptCap, PTO.LicmMssaNoAccForPromotionCap,
587                /*AllowSpeculation=*/true),
588       /*UseMemorySSA=*/true, /*UseBlockFrequencyInfo=*/true));
589 
590   FPM.addPass(CoroElidePass());
591 
592   for (auto &C : ScalarOptimizerLateEPCallbacks)
593     C(FPM, Level);
594 
595   FPM.addPass(SimplifyCFGPass(SimplifyCFGOptions()
596                                   .convertSwitchRangeToICmp(true)
597                                   .hoistCommonInsts(true)
598                                   .sinkCommonInsts(true)));
599   FPM.addPass(InstCombinePass());
600   invokePeepholeEPCallbacks(FPM, Level);
601 
602   if (EnableCHR && Level == OptimizationLevel::O3 && PGOOpt &&
603       (PGOOpt->Action == PGOOptions::IRUse ||
604        PGOOpt->Action == PGOOptions::SampleUse))
605     FPM.addPass(ControlHeightReductionPass());
606 
607   return FPM;
608 }
609 
610 void PassBuilder::addRequiredLTOPreLinkPasses(ModulePassManager &MPM) {
611   MPM.addPass(CanonicalizeAliasesPass());
612   MPM.addPass(NameAnonGlobalPass());
613 }
614 
615 void PassBuilder::addPGOInstrPasses(ModulePassManager &MPM,
616                                     OptimizationLevel Level, bool RunProfileGen,
617                                     bool IsCS, std::string ProfileFile,
618                                     std::string ProfileRemappingFile,
619                                     ThinOrFullLTOPhase LTOPhase) {
620   assert(Level != OptimizationLevel::O0 && "Not expecting O0 here!");
621   if (!IsCS && !DisablePreInliner) {
622     InlineParams IP;
623 
624     IP.DefaultThreshold = PreInlineThreshold;
625 
626     // FIXME: The hint threshold has the same value used by the regular inliner
627     // when not optimzing for size. This should probably be lowered after
628     // performance testing.
629     // FIXME: this comment is cargo culted from the old pass manager, revisit).
630     IP.HintThreshold = Level.isOptimizingForSize() ? PreInlineThreshold : 325;
631     ModuleInlinerWrapperPass MIWP(
632         IP, /* MandatoryFirst */ true,
633         InlineContext{LTOPhase, InlinePass::EarlyInliner});
634     CGSCCPassManager &CGPipeline = MIWP.getPM();
635 
636     FunctionPassManager FPM;
637     FPM.addPass(SROAPass());
638     FPM.addPass(EarlyCSEPass());    // Catch trivial redundancies.
639     FPM.addPass(SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(
640         true)));                    // Merge & remove basic blocks.
641     FPM.addPass(InstCombinePass()); // Combine silly sequences.
642     invokePeepholeEPCallbacks(FPM, Level);
643 
644     CGPipeline.addPass(createCGSCCToFunctionPassAdaptor(
645         std::move(FPM), PTO.EagerlyInvalidateAnalyses));
646 
647     MPM.addPass(std::move(MIWP));
648 
649     // Delete anything that is now dead to make sure that we don't instrument
650     // dead code. Instrumentation can end up keeping dead code around and
651     // dramatically increase code size.
652     MPM.addPass(GlobalDCEPass());
653   }
654 
655   if (!RunProfileGen) {
656     assert(!ProfileFile.empty() && "Profile use expecting a profile file!");
657     MPM.addPass(PGOInstrumentationUse(ProfileFile, ProfileRemappingFile, IsCS));
658     // Cache ProfileSummaryAnalysis once to avoid the potential need to insert
659     // RequireAnalysisPass for PSI before subsequent non-module passes.
660     MPM.addPass(RequireAnalysisPass<ProfileSummaryAnalysis, Module>());
661     return;
662   }
663 
664   // Perform PGO instrumentation.
665   MPM.addPass(PGOInstrumentationGen(IsCS));
666 
667   // Disable header duplication in loop rotation at -Oz.
668   MPM.addPass(createModuleToFunctionPassAdaptor(
669       createFunctionToLoopPassAdaptor(
670           LoopRotatePass(Level != OptimizationLevel::Oz),
671           /*UseMemorySSA=*/false,
672           /*UseBlockFrequencyInfo=*/false),
673       PTO.EagerlyInvalidateAnalyses));
674 
675   // Add the profile lowering pass.
676   InstrProfOptions Options;
677   if (!ProfileFile.empty())
678     Options.InstrProfileOutput = ProfileFile;
679   // Do counter promotion at Level greater than O0.
680   Options.DoCounterPromotion = true;
681   Options.UseBFIInPromotion = IsCS;
682   MPM.addPass(InstrProfiling(Options, IsCS));
683 }
684 
685 void PassBuilder::addPGOInstrPassesForO0(ModulePassManager &MPM,
686                                          bool RunProfileGen, bool IsCS,
687                                          std::string ProfileFile,
688                                          std::string ProfileRemappingFile) {
689   if (!RunProfileGen) {
690     assert(!ProfileFile.empty() && "Profile use expecting a profile file!");
691     MPM.addPass(PGOInstrumentationUse(ProfileFile, ProfileRemappingFile, IsCS));
692     // Cache ProfileSummaryAnalysis once to avoid the potential need to insert
693     // RequireAnalysisPass for PSI before subsequent non-module passes.
694     MPM.addPass(RequireAnalysisPass<ProfileSummaryAnalysis, Module>());
695     return;
696   }
697 
698   // Perform PGO instrumentation.
699   MPM.addPass(PGOInstrumentationGen(IsCS));
700   // Add the profile lowering pass.
701   InstrProfOptions Options;
702   if (!ProfileFile.empty())
703     Options.InstrProfileOutput = ProfileFile;
704   // Do not do counter promotion at O0.
705   Options.DoCounterPromotion = false;
706   Options.UseBFIInPromotion = IsCS;
707   MPM.addPass(InstrProfiling(Options, IsCS));
708 }
709 
710 static InlineParams getInlineParamsFromOptLevel(OptimizationLevel Level) {
711   return getInlineParams(Level.getSpeedupLevel(), Level.getSizeLevel());
712 }
713 
714 ModuleInlinerWrapperPass
715 PassBuilder::buildInlinerPipeline(OptimizationLevel Level,
716                                   ThinOrFullLTOPhase Phase) {
717   InlineParams IP = getInlineParamsFromOptLevel(Level);
718   // For PreLinkThinLTO + SamplePGO, set hot-caller threshold to 0 to
719   // disable hot callsite inline (as much as possible [1]) because it makes
720   // profile annotation in the backend inaccurate.
721   //
722   // [1] Note the cost of a function could be below zero due to erased
723   // prologue / epilogue.
724   if (Phase == ThinOrFullLTOPhase::ThinLTOPreLink && PGOOpt &&
725       PGOOpt->Action == PGOOptions::SampleUse)
726     IP.HotCallSiteThreshold = 0;
727 
728   if (PGOOpt)
729     IP.EnableDeferral = EnablePGOInlineDeferral;
730 
731   ModuleInlinerWrapperPass MIWP(
732       IP, PerformMandatoryInliningsFirst,
733       InlineContext{Phase, InlinePass::CGSCCInliner},
734       UseInlineAdvisor, MaxDevirtIterations);
735 
736   // Require the GlobalsAA analysis for the module so we can query it within
737   // the CGSCC pipeline.
738   MIWP.addModulePass(RequireAnalysisPass<GlobalsAA, Module>());
739   // Invalidate AAManager so it can be recreated and pick up the newly available
740   // GlobalsAA.
741   MIWP.addModulePass(
742       createModuleToFunctionPassAdaptor(InvalidateAnalysisPass<AAManager>()));
743 
744   // Require the ProfileSummaryAnalysis for the module so we can query it within
745   // the inliner pass.
746   MIWP.addModulePass(RequireAnalysisPass<ProfileSummaryAnalysis, Module>());
747 
748   // Now begin the main postorder CGSCC pipeline.
749   // FIXME: The current CGSCC pipeline has its origins in the legacy pass
750   // manager and trying to emulate its precise behavior. Much of this doesn't
751   // make a lot of sense and we should revisit the core CGSCC structure.
752   CGSCCPassManager &MainCGPipeline = MIWP.getPM();
753 
754   // Note: historically, the PruneEH pass was run first to deduce nounwind and
755   // generally clean up exception handling overhead. It isn't clear this is
756   // valuable as the inliner doesn't currently care whether it is inlining an
757   // invoke or a call.
758 
759   if (AttributorRun & AttributorRunOption::CGSCC)
760     MainCGPipeline.addPass(AttributorCGSCCPass());
761 
762   // Now deduce any function attributes based in the current code.
763   MainCGPipeline.addPass(PostOrderFunctionAttrsPass());
764 
765   // When at O3 add argument promotion to the pass pipeline.
766   // FIXME: It isn't at all clear why this should be limited to O3.
767   if (Level == OptimizationLevel::O3)
768     MainCGPipeline.addPass(ArgumentPromotionPass());
769 
770   // Try to perform OpenMP specific optimizations. This is a (quick!) no-op if
771   // there are no OpenMP runtime calls present in the module.
772   if (Level == OptimizationLevel::O2 || Level == OptimizationLevel::O3)
773     MainCGPipeline.addPass(OpenMPOptCGSCCPass());
774 
775   for (auto &C : CGSCCOptimizerLateEPCallbacks)
776     C(MainCGPipeline, Level);
777 
778   // Lastly, add the core function simplification pipeline nested inside the
779   // CGSCC walk.
780   MainCGPipeline.addPass(createCGSCCToFunctionPassAdaptor(
781       buildFunctionSimplificationPipeline(Level, Phase),
782       PTO.EagerlyInvalidateAnalyses, EnableNoRerunSimplificationPipeline));
783 
784   MainCGPipeline.addPass(CoroSplitPass(Level != OptimizationLevel::O0));
785 
786   if (EnableNoRerunSimplificationPipeline)
787     MIWP.addLateModulePass(createModuleToFunctionPassAdaptor(
788         InvalidateAnalysisPass<ShouldNotRunFunctionPassesAnalysis>()));
789 
790   return MIWP;
791 }
792 
793 ModulePassManager
794 PassBuilder::buildModuleInlinerPipeline(OptimizationLevel Level,
795                                         ThinOrFullLTOPhase Phase) {
796   ModulePassManager MPM;
797 
798   InlineParams IP = getInlineParamsFromOptLevel(Level);
799   // For PreLinkThinLTO + SamplePGO, set hot-caller threshold to 0 to
800   // disable hot callsite inline (as much as possible [1]) because it makes
801   // profile annotation in the backend inaccurate.
802   //
803   // [1] Note the cost of a function could be below zero due to erased
804   // prologue / epilogue.
805   if (Phase == ThinOrFullLTOPhase::ThinLTOPreLink && PGOOpt &&
806       PGOOpt->Action == PGOOptions::SampleUse)
807     IP.HotCallSiteThreshold = 0;
808 
809   if (PGOOpt)
810     IP.EnableDeferral = EnablePGOInlineDeferral;
811 
812   // The inline deferral logic is used to avoid losing some
813   // inlining chance in future. It is helpful in SCC inliner, in which
814   // inlining is processed in bottom-up order.
815   // While in module inliner, the inlining order is a priority-based order
816   // by default. The inline deferral is unnecessary there. So we disable the
817   // inline deferral logic in module inliner.
818   IP.EnableDeferral = false;
819 
820   MPM.addPass(ModuleInlinerPass(IP, UseInlineAdvisor, Phase));
821 
822   MPM.addPass(createModuleToFunctionPassAdaptor(
823       buildFunctionSimplificationPipeline(Level, Phase),
824       PTO.EagerlyInvalidateAnalyses));
825 
826   MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(
827       CoroSplitPass(Level != OptimizationLevel::O0)));
828 
829   return MPM;
830 }
831 
832 ModulePassManager
833 PassBuilder::buildModuleSimplificationPipeline(OptimizationLevel Level,
834                                                ThinOrFullLTOPhase Phase) {
835   ModulePassManager MPM;
836 
837   // Place pseudo probe instrumentation as the first pass of the pipeline to
838   // minimize the impact of optimization changes.
839   if (PGOOpt && PGOOpt->PseudoProbeForProfiling &&
840       Phase != ThinOrFullLTOPhase::ThinLTOPostLink)
841     MPM.addPass(SampleProfileProbePass(TM));
842 
843   bool HasSampleProfile = PGOOpt && (PGOOpt->Action == PGOOptions::SampleUse);
844 
845   // In ThinLTO mode, when flattened profile is used, all the available
846   // profile information will be annotated in PreLink phase so there is
847   // no need to load the profile again in PostLink.
848   bool LoadSampleProfile =
849       HasSampleProfile &&
850       !(FlattenedProfileUsed && Phase == ThinOrFullLTOPhase::ThinLTOPostLink);
851 
852   // During the ThinLTO backend phase we perform early indirect call promotion
853   // here, before globalopt. Otherwise imported available_externally functions
854   // look unreferenced and are removed. If we are going to load the sample
855   // profile then defer until later.
856   // TODO: See if we can move later and consolidate with the location where
857   // we perform ICP when we are loading a sample profile.
858   // TODO: We pass HasSampleProfile (whether there was a sample profile file
859   // passed to the compile) to the SamplePGO flag of ICP. This is used to
860   // determine whether the new direct calls are annotated with prof metadata.
861   // Ideally this should be determined from whether the IR is annotated with
862   // sample profile, and not whether the a sample profile was provided on the
863   // command line. E.g. for flattened profiles where we will not be reloading
864   // the sample profile in the ThinLTO backend, we ideally shouldn't have to
865   // provide the sample profile file.
866   if (Phase == ThinOrFullLTOPhase::ThinLTOPostLink && !LoadSampleProfile)
867     MPM.addPass(PGOIndirectCallPromotion(true /* InLTO */, HasSampleProfile));
868 
869   // Do basic inference of function attributes from known properties of system
870   // libraries and other oracles.
871   MPM.addPass(InferFunctionAttrsPass());
872   MPM.addPass(CoroEarlyPass());
873 
874   // Create an early function pass manager to cleanup the output of the
875   // frontend.
876   FunctionPassManager EarlyFPM;
877   // Lower llvm.expect to metadata before attempting transforms.
878   // Compare/branch metadata may alter the behavior of passes like SimplifyCFG.
879   EarlyFPM.addPass(LowerExpectIntrinsicPass());
880   EarlyFPM.addPass(SimplifyCFGPass());
881   EarlyFPM.addPass(SROAPass());
882   EarlyFPM.addPass(EarlyCSEPass());
883   if (Level == OptimizationLevel::O3)
884     EarlyFPM.addPass(CallSiteSplittingPass());
885 
886   // In SamplePGO ThinLTO backend, we need instcombine before profile annotation
887   // to convert bitcast to direct calls so that they can be inlined during the
888   // profile annotation prepration step.
889   // More details about SamplePGO design can be found in:
890   // https://research.google.com/pubs/pub45290.html
891   // FIXME: revisit how SampleProfileLoad/Inliner/ICP is structured.
892   if (LoadSampleProfile)
893     EarlyFPM.addPass(InstCombinePass());
894   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(EarlyFPM),
895                                                 PTO.EagerlyInvalidateAnalyses));
896 
897   if (LoadSampleProfile) {
898     // Annotate sample profile right after early FPM to ensure freshness of
899     // the debug info.
900     MPM.addPass(SampleProfileLoaderPass(PGOOpt->ProfileFile,
901                                         PGOOpt->ProfileRemappingFile, Phase));
902     // Cache ProfileSummaryAnalysis once to avoid the potential need to insert
903     // RequireAnalysisPass for PSI before subsequent non-module passes.
904     MPM.addPass(RequireAnalysisPass<ProfileSummaryAnalysis, Module>());
905     // Do not invoke ICP in the LTOPrelink phase as it makes it hard
906     // for the profile annotation to be accurate in the LTO backend.
907     if (Phase != ThinOrFullLTOPhase::ThinLTOPreLink &&
908         Phase != ThinOrFullLTOPhase::FullLTOPreLink)
909       // We perform early indirect call promotion here, before globalopt.
910       // This is important for the ThinLTO backend phase because otherwise
911       // imported available_externally functions look unreferenced and are
912       // removed.
913       MPM.addPass(
914           PGOIndirectCallPromotion(true /* IsInLTO */, true /* SamplePGO */));
915   }
916 
917   // Try to perform OpenMP specific optimizations on the module. This is a
918   // (quick!) no-op if there are no OpenMP runtime calls present in the module.
919   if (Level != OptimizationLevel::O0)
920     MPM.addPass(OpenMPOptPass());
921 
922   if (AttributorRun & AttributorRunOption::MODULE)
923     MPM.addPass(AttributorPass());
924 
925   // Lower type metadata and the type.test intrinsic in the ThinLTO
926   // post link pipeline after ICP. This is to enable usage of the type
927   // tests in ICP sequences.
928   if (Phase == ThinOrFullLTOPhase::ThinLTOPostLink)
929     MPM.addPass(LowerTypeTestsPass(nullptr, nullptr, true));
930 
931   for (auto &C : PipelineEarlySimplificationEPCallbacks)
932     C(MPM, Level);
933 
934   // Specialize functions with IPSCCP.
935   if (EnableFunctionSpecialization && Level == OptimizationLevel::O3)
936     MPM.addPass(FunctionSpecializationPass());
937 
938   // Interprocedural constant propagation now that basic cleanup has occurred
939   // and prior to optimizing globals.
940   // FIXME: This position in the pipeline hasn't been carefully considered in
941   // years, it should be re-analyzed.
942   MPM.addPass(IPSCCPPass());
943 
944   // Attach metadata to indirect call sites indicating the set of functions
945   // they may target at run-time. This should follow IPSCCP.
946   MPM.addPass(CalledValuePropagationPass());
947 
948   // Optimize globals to try and fold them into constants.
949   MPM.addPass(GlobalOptPass());
950 
951   // Promote any localized globals to SSA registers.
952   // FIXME: Should this instead by a run of SROA?
953   // FIXME: We should probably run instcombine and simplifycfg afterward to
954   // delete control flows that are dead once globals have been folded to
955   // constants.
956   MPM.addPass(createModuleToFunctionPassAdaptor(PromotePass()));
957 
958   // Remove any dead arguments exposed by cleanups and constant folding
959   // globals.
960   MPM.addPass(DeadArgumentEliminationPass());
961 
962   // Create a small function pass pipeline to cleanup after all the global
963   // optimizations.
964   FunctionPassManager GlobalCleanupPM;
965   GlobalCleanupPM.addPass(InstCombinePass());
966   invokePeepholeEPCallbacks(GlobalCleanupPM, Level);
967 
968   GlobalCleanupPM.addPass(
969       SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
970   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(GlobalCleanupPM),
971                                                 PTO.EagerlyInvalidateAnalyses));
972 
973   // Add all the requested passes for instrumentation PGO, if requested.
974   if (PGOOpt && Phase != ThinOrFullLTOPhase::ThinLTOPostLink &&
975       (PGOOpt->Action == PGOOptions::IRInstr ||
976        PGOOpt->Action == PGOOptions::IRUse)) {
977     addPGOInstrPasses(MPM, Level,
978                       /* RunProfileGen */ PGOOpt->Action == PGOOptions::IRInstr,
979                       /* IsCS */ false, PGOOpt->ProfileFile,
980                       PGOOpt->ProfileRemappingFile, Phase);
981     MPM.addPass(PGOIndirectCallPromotion(false, false));
982   }
983   if (PGOOpt && Phase != ThinOrFullLTOPhase::ThinLTOPostLink &&
984       PGOOpt->CSAction == PGOOptions::CSIRInstr)
985     MPM.addPass(PGOInstrumentationGenCreateVar(PGOOpt->CSProfileGenFile));
986 
987   // Synthesize function entry counts for non-PGO compilation.
988   if (EnableSyntheticCounts && !PGOOpt)
989     MPM.addPass(SyntheticCountsPropagation());
990 
991   if (EnableModuleInliner)
992     MPM.addPass(buildModuleInlinerPipeline(Level, Phase));
993   else
994     MPM.addPass(buildInlinerPipeline(Level, Phase));
995 
996   MPM.addPass(CoroCleanupPass());
997 
998   if (EnableMemProfiler && Phase != ThinOrFullLTOPhase::ThinLTOPreLink) {
999     MPM.addPass(createModuleToFunctionPassAdaptor(MemProfilerPass()));
1000     MPM.addPass(ModuleMemProfilerPass());
1001   }
1002 
1003   return MPM;
1004 }
1005 
1006 /// TODO: Should LTO cause any differences to this set of passes?
1007 void PassBuilder::addVectorPasses(OptimizationLevel Level,
1008                                   FunctionPassManager &FPM, bool IsFullLTO) {
1009   FPM.addPass(LoopVectorizePass(
1010       LoopVectorizeOptions(!PTO.LoopInterleaving, !PTO.LoopVectorization)));
1011 
1012   if (IsFullLTO) {
1013     // The vectorizer may have significantly shortened a loop body; unroll
1014     // again. Unroll small loops to hide loop backedge latency and saturate any
1015     // parallel execution resources of an out-of-order processor. We also then
1016     // need to clean up redundancies and loop invariant code.
1017     // FIXME: It would be really good to use a loop-integrated instruction
1018     // combiner for cleanup here so that the unrolling and LICM can be pipelined
1019     // across the loop nests.
1020     // We do UnrollAndJam in a separate LPM to ensure it happens before unroll
1021     if (EnableUnrollAndJam && PTO.LoopUnrolling)
1022       FPM.addPass(createFunctionToLoopPassAdaptor(
1023           LoopUnrollAndJamPass(Level.getSpeedupLevel())));
1024     FPM.addPass(LoopUnrollPass(LoopUnrollOptions(
1025         Level.getSpeedupLevel(), /*OnlyWhenForced=*/!PTO.LoopUnrolling,
1026         PTO.ForgetAllSCEVInLoopUnroll)));
1027     FPM.addPass(WarnMissedTransformationsPass());
1028   }
1029 
1030   if (!IsFullLTO) {
1031     // Eliminate loads by forwarding stores from the previous iteration to loads
1032     // of the current iteration.
1033     FPM.addPass(LoopLoadEliminationPass());
1034   }
1035   // Cleanup after the loop optimization passes.
1036   FPM.addPass(InstCombinePass());
1037 
1038   if (Level.getSpeedupLevel() > 1 && ExtraVectorizerPasses) {
1039     ExtraVectorPassManager ExtraPasses;
1040     // At higher optimization levels, try to clean up any runtime overlap and
1041     // alignment checks inserted by the vectorizer. We want to track correlated
1042     // runtime checks for two inner loops in the same outer loop, fold any
1043     // common computations, hoist loop-invariant aspects out of any outer loop,
1044     // and unswitch the runtime checks if possible. Once hoisted, we may have
1045     // dead (or speculatable) control flows or more combining opportunities.
1046     ExtraPasses.addPass(EarlyCSEPass());
1047     ExtraPasses.addPass(CorrelatedValuePropagationPass());
1048     ExtraPasses.addPass(InstCombinePass());
1049     LoopPassManager LPM;
1050     LPM.addPass(LICMPass(PTO.LicmMssaOptCap, PTO.LicmMssaNoAccForPromotionCap,
1051                          /*AllowSpeculation=*/true));
1052     LPM.addPass(SimpleLoopUnswitchPass(/* NonTrivial */ Level ==
1053                                        OptimizationLevel::O3));
1054     ExtraPasses.addPass(
1055         RequireAnalysisPass<OptimizationRemarkEmitterAnalysis, Function>());
1056     ExtraPasses.addPass(
1057         createFunctionToLoopPassAdaptor(std::move(LPM), /*UseMemorySSA=*/true,
1058                                         /*UseBlockFrequencyInfo=*/true));
1059     ExtraPasses.addPass(
1060         SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
1061     ExtraPasses.addPass(InstCombinePass());
1062     FPM.addPass(std::move(ExtraPasses));
1063   }
1064 
1065   // Now that we've formed fast to execute loop structures, we do further
1066   // optimizations. These are run afterward as they might block doing complex
1067   // analyses and transforms such as what are needed for loop vectorization.
1068 
1069   // Cleanup after loop vectorization, etc. Simplification passes like CVP and
1070   // GVN, loop transforms, and others have already run, so it's now better to
1071   // convert to more optimized IR using more aggressive simplify CFG options.
1072   // The extra sinking transform can create larger basic blocks, so do this
1073   // before SLP vectorization.
1074   FPM.addPass(SimplifyCFGPass(SimplifyCFGOptions()
1075                                   .forwardSwitchCondToPhi(true)
1076                                   .convertSwitchRangeToICmp(true)
1077                                   .convertSwitchToLookupTable(true)
1078                                   .needCanonicalLoops(false)
1079                                   .hoistCommonInsts(true)
1080                                   .sinkCommonInsts(true)));
1081 
1082   if (IsFullLTO) {
1083     FPM.addPass(SCCPPass());
1084     FPM.addPass(InstCombinePass());
1085     FPM.addPass(BDCEPass());
1086   }
1087 
1088   // Optimize parallel scalar instruction chains into SIMD instructions.
1089   if (PTO.SLPVectorization) {
1090     FPM.addPass(SLPVectorizerPass());
1091     if (Level.getSpeedupLevel() > 1 && ExtraVectorizerPasses) {
1092       FPM.addPass(EarlyCSEPass());
1093     }
1094   }
1095   // Enhance/cleanup vector code.
1096   FPM.addPass(VectorCombinePass());
1097 
1098   if (!IsFullLTO) {
1099     FPM.addPass(InstCombinePass());
1100     // Unroll small loops to hide loop backedge latency and saturate any
1101     // parallel execution resources of an out-of-order processor. We also then
1102     // need to clean up redundancies and loop invariant code.
1103     // FIXME: It would be really good to use a loop-integrated instruction
1104     // combiner for cleanup here so that the unrolling and LICM can be pipelined
1105     // across the loop nests.
1106     // We do UnrollAndJam in a separate LPM to ensure it happens before unroll
1107     if (EnableUnrollAndJam && PTO.LoopUnrolling) {
1108       FPM.addPass(createFunctionToLoopPassAdaptor(
1109           LoopUnrollAndJamPass(Level.getSpeedupLevel())));
1110     }
1111     FPM.addPass(LoopUnrollPass(LoopUnrollOptions(
1112         Level.getSpeedupLevel(), /*OnlyWhenForced=*/!PTO.LoopUnrolling,
1113         PTO.ForgetAllSCEVInLoopUnroll)));
1114     FPM.addPass(WarnMissedTransformationsPass());
1115     FPM.addPass(InstCombinePass());
1116     FPM.addPass(
1117         RequireAnalysisPass<OptimizationRemarkEmitterAnalysis, Function>());
1118     FPM.addPass(createFunctionToLoopPassAdaptor(
1119         LICMPass(PTO.LicmMssaOptCap, PTO.LicmMssaNoAccForPromotionCap,
1120                  /*AllowSpeculation=*/true),
1121         /*UseMemorySSA=*/true, /*UseBlockFrequencyInfo=*/true));
1122   }
1123 
1124   // Now that we've vectorized and unrolled loops, we may have more refined
1125   // alignment information, try to re-derive it here.
1126   FPM.addPass(AlignmentFromAssumptionsPass());
1127 
1128   if (IsFullLTO)
1129     FPM.addPass(InstCombinePass());
1130 }
1131 
1132 ModulePassManager
1133 PassBuilder::buildModuleOptimizationPipeline(OptimizationLevel Level,
1134                                              ThinOrFullLTOPhase LTOPhase) {
1135   const bool LTOPreLink = (LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink ||
1136                            LTOPhase == ThinOrFullLTOPhase::FullLTOPreLink);
1137   ModulePassManager MPM;
1138 
1139   // Optimize globals now that the module is fully simplified.
1140   MPM.addPass(GlobalOptPass());
1141   MPM.addPass(GlobalDCEPass());
1142 
1143   // Run partial inlining pass to partially inline functions that have
1144   // large bodies.
1145   if (RunPartialInlining)
1146     MPM.addPass(PartialInlinerPass());
1147 
1148   // Remove avail extern fns and globals definitions since we aren't compiling
1149   // an object file for later LTO. For LTO we want to preserve these so they
1150   // are eligible for inlining at link-time. Note if they are unreferenced they
1151   // will be removed by GlobalDCE later, so this only impacts referenced
1152   // available externally globals. Eventually they will be suppressed during
1153   // codegen, but eliminating here enables more opportunity for GlobalDCE as it
1154   // may make globals referenced by available external functions dead and saves
1155   // running remaining passes on the eliminated functions. These should be
1156   // preserved during prelinking for link-time inlining decisions.
1157   if (!LTOPreLink)
1158     MPM.addPass(EliminateAvailableExternallyPass());
1159 
1160   if (EnableOrderFileInstrumentation)
1161     MPM.addPass(InstrOrderFilePass());
1162 
1163   // Do RPO function attribute inference across the module to forward-propagate
1164   // attributes where applicable.
1165   // FIXME: Is this really an optimization rather than a canonicalization?
1166   MPM.addPass(ReversePostOrderFunctionAttrsPass());
1167 
1168   // Do a post inline PGO instrumentation and use pass. This is a context
1169   // sensitive PGO pass. We don't want to do this in LTOPreLink phrase as
1170   // cross-module inline has not been done yet. The context sensitive
1171   // instrumentation is after all the inlines are done.
1172   if (!LTOPreLink && PGOOpt) {
1173     if (PGOOpt->CSAction == PGOOptions::CSIRInstr)
1174       addPGOInstrPasses(MPM, Level, /* RunProfileGen */ true,
1175                         /* IsCS */ true, PGOOpt->CSProfileGenFile,
1176                         PGOOpt->ProfileRemappingFile, LTOPhase);
1177     else if (PGOOpt->CSAction == PGOOptions::CSIRUse)
1178       addPGOInstrPasses(MPM, Level, /* RunProfileGen */ false,
1179                         /* IsCS */ true, PGOOpt->ProfileFile,
1180                         PGOOpt->ProfileRemappingFile, LTOPhase);
1181   }
1182 
1183   // Re-compute GlobalsAA here prior to function passes. This is particularly
1184   // useful as the above will have inlined, DCE'ed, and function-attr
1185   // propagated everything. We should at this point have a reasonably minimal
1186   // and richly annotated call graph. By computing aliasing and mod/ref
1187   // information for all local globals here, the late loop passes and notably
1188   // the vectorizer will be able to use them to help recognize vectorizable
1189   // memory operations.
1190   MPM.addPass(RecomputeGlobalsAAPass());
1191 
1192   for (auto &C : OptimizerEarlyEPCallbacks)
1193     C(MPM, Level);
1194 
1195   FunctionPassManager OptimizePM;
1196   OptimizePM.addPass(Float2IntPass());
1197   OptimizePM.addPass(LowerConstantIntrinsicsPass());
1198 
1199   if (EnableMatrix) {
1200     OptimizePM.addPass(LowerMatrixIntrinsicsPass());
1201     OptimizePM.addPass(EarlyCSEPass());
1202   }
1203 
1204   // FIXME: We need to run some loop optimizations to re-rotate loops after
1205   // simplifycfg and others undo their rotation.
1206 
1207   // Optimize the loop execution. These passes operate on entire loop nests
1208   // rather than on each loop in an inside-out manner, and so they are actually
1209   // function passes.
1210 
1211   for (auto &C : VectorizerStartEPCallbacks)
1212     C(OptimizePM, Level);
1213 
1214   LoopPassManager LPM;
1215   // First rotate loops that may have been un-rotated by prior passes.
1216   // Disable header duplication at -Oz.
1217   LPM.addPass(LoopRotatePass(Level != OptimizationLevel::Oz, LTOPreLink));
1218   // Some loops may have become dead by now. Try to delete them.
1219   // FIXME: see discussion in https://reviews.llvm.org/D112851,
1220   //        this may need to be revisited once we run GVN before loop deletion
1221   //        in the simplification pipeline.
1222   LPM.addPass(LoopDeletionPass());
1223   OptimizePM.addPass(createFunctionToLoopPassAdaptor(
1224       std::move(LPM), /*UseMemorySSA=*/false, /*UseBlockFrequencyInfo=*/false));
1225 
1226   // Distribute loops to allow partial vectorization.  I.e. isolate dependences
1227   // into separate loop that would otherwise inhibit vectorization.  This is
1228   // currently only performed for loops marked with the metadata
1229   // llvm.loop.distribute=true or when -enable-loop-distribute is specified.
1230   OptimizePM.addPass(LoopDistributePass());
1231 
1232   // Populates the VFABI attribute with the scalar-to-vector mappings
1233   // from the TargetLibraryInfo.
1234   OptimizePM.addPass(InjectTLIMappings());
1235 
1236   addVectorPasses(Level, OptimizePM, /* IsFullLTO */ false);
1237 
1238   // LoopSink pass sinks instructions hoisted by LICM, which serves as a
1239   // canonicalization pass that enables other optimizations. As a result,
1240   // LoopSink pass needs to be a very late IR pass to avoid undoing LICM
1241   // result too early.
1242   OptimizePM.addPass(LoopSinkPass());
1243 
1244   // And finally clean up LCSSA form before generating code.
1245   OptimizePM.addPass(InstSimplifyPass());
1246 
1247   // This hoists/decomposes div/rem ops. It should run after other sink/hoist
1248   // passes to avoid re-sinking, but before SimplifyCFG because it can allow
1249   // flattening of blocks.
1250   OptimizePM.addPass(DivRemPairsPass());
1251 
1252   // Try to annotate calls that were created during optimization.
1253   OptimizePM.addPass(TailCallElimPass());
1254 
1255   // LoopSink (and other loop passes since the last simplifyCFG) might have
1256   // resulted in single-entry-single-exit or empty blocks. Clean up the CFG.
1257   OptimizePM.addPass(
1258       SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
1259 
1260   // Add the core optimizing pipeline.
1261   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(OptimizePM),
1262                                                 PTO.EagerlyInvalidateAnalyses));
1263 
1264   for (auto &C : OptimizerLastEPCallbacks)
1265     C(MPM, Level);
1266 
1267   // Split out cold code. Splitting is done late to avoid hiding context from
1268   // other optimizations and inadvertently regressing performance. The tradeoff
1269   // is that this has a higher code size cost than splitting early.
1270   if (EnableHotColdSplit && !LTOPreLink)
1271     MPM.addPass(HotColdSplittingPass());
1272 
1273   // Search the code for similar regions of code. If enough similar regions can
1274   // be found where extracting the regions into their own function will decrease
1275   // the size of the program, we extract the regions, a deduplicate the
1276   // structurally similar regions.
1277   if (EnableIROutliner)
1278     MPM.addPass(IROutlinerPass());
1279 
1280   // Merge functions if requested.
1281   if (PTO.MergeFunctions)
1282     MPM.addPass(MergeFunctionsPass());
1283 
1284   // Now we need to do some global optimization transforms.
1285   // FIXME: It would seem like these should come first in the optimization
1286   // pipeline and maybe be the bottom of the canonicalization pipeline? Weird
1287   // ordering here.
1288   MPM.addPass(GlobalDCEPass());
1289   MPM.addPass(ConstantMergePass());
1290 
1291   if (PTO.CallGraphProfile && !LTOPreLink)
1292     MPM.addPass(CGProfilePass());
1293 
1294   // TODO: Relative look table converter pass caused an issue when full lto is
1295   // enabled. See https://reviews.llvm.org/D94355 for more details.
1296   // Until the issue fixed, disable this pass during pre-linking phase.
1297   if (!LTOPreLink)
1298     MPM.addPass(RelLookupTableConverterPass());
1299 
1300   return MPM;
1301 }
1302 
1303 ModulePassManager
1304 PassBuilder::buildPerModuleDefaultPipeline(OptimizationLevel Level,
1305                                            bool LTOPreLink) {
1306   assert(Level != OptimizationLevel::O0 &&
1307          "Must request optimizations for the default pipeline!");
1308 
1309   ModulePassManager MPM;
1310 
1311   // Convert @llvm.global.annotations to !annotation metadata.
1312   MPM.addPass(Annotation2MetadataPass());
1313 
1314   // Force any function attributes we want the rest of the pipeline to observe.
1315   MPM.addPass(ForceFunctionAttrsPass());
1316 
1317   // Apply module pipeline start EP callback.
1318   for (auto &C : PipelineStartEPCallbacks)
1319     C(MPM, Level);
1320 
1321   if (PGOOpt && PGOOpt->DebugInfoForProfiling)
1322     MPM.addPass(createModuleToFunctionPassAdaptor(AddDiscriminatorsPass()));
1323 
1324   const ThinOrFullLTOPhase LTOPhase = LTOPreLink
1325                                           ? ThinOrFullLTOPhase::FullLTOPreLink
1326                                           : ThinOrFullLTOPhase::None;
1327   // Add the core simplification pipeline.
1328   MPM.addPass(buildModuleSimplificationPipeline(Level, LTOPhase));
1329 
1330   // Now add the optimization pipeline.
1331   MPM.addPass(buildModuleOptimizationPipeline(Level, LTOPhase));
1332 
1333   if (PGOOpt && PGOOpt->PseudoProbeForProfiling &&
1334       PGOOpt->Action == PGOOptions::SampleUse)
1335     MPM.addPass(PseudoProbeUpdatePass());
1336 
1337   // Emit annotation remarks.
1338   addAnnotationRemarksPass(MPM);
1339 
1340   if (LTOPreLink)
1341     addRequiredLTOPreLinkPasses(MPM);
1342 
1343   return MPM;
1344 }
1345 
1346 ModulePassManager
1347 PassBuilder::buildThinLTOPreLinkDefaultPipeline(OptimizationLevel Level) {
1348   assert(Level != OptimizationLevel::O0 &&
1349          "Must request optimizations for the default pipeline!");
1350 
1351   ModulePassManager MPM;
1352 
1353   // Convert @llvm.global.annotations to !annotation metadata.
1354   MPM.addPass(Annotation2MetadataPass());
1355 
1356   // Force any function attributes we want the rest of the pipeline to observe.
1357   MPM.addPass(ForceFunctionAttrsPass());
1358 
1359   if (PGOOpt && PGOOpt->DebugInfoForProfiling)
1360     MPM.addPass(createModuleToFunctionPassAdaptor(AddDiscriminatorsPass()));
1361 
1362   // Apply module pipeline start EP callback.
1363   for (auto &C : PipelineStartEPCallbacks)
1364     C(MPM, Level);
1365 
1366   // If we are planning to perform ThinLTO later, we don't bloat the code with
1367   // unrolling/vectorization/... now. Just simplify the module as much as we
1368   // can.
1369   MPM.addPass(buildModuleSimplificationPipeline(
1370       Level, ThinOrFullLTOPhase::ThinLTOPreLink));
1371 
1372   // Run partial inlining pass to partially inline functions that have
1373   // large bodies.
1374   // FIXME: It isn't clear whether this is really the right place to run this
1375   // in ThinLTO. Because there is another canonicalization and simplification
1376   // phase that will run after the thin link, running this here ends up with
1377   // less information than will be available later and it may grow functions in
1378   // ways that aren't beneficial.
1379   if (RunPartialInlining)
1380     MPM.addPass(PartialInlinerPass());
1381 
1382   // Reduce the size of the IR as much as possible.
1383   MPM.addPass(GlobalOptPass());
1384 
1385   if (PGOOpt && PGOOpt->PseudoProbeForProfiling &&
1386       PGOOpt->Action == PGOOptions::SampleUse)
1387     MPM.addPass(PseudoProbeUpdatePass());
1388 
1389   // Handle OptimizerLastEPCallbacks added by clang on PreLink. Actual
1390   // optimization is going to be done in PostLink stage, but clang can't
1391   // add callbacks there in case of in-process ThinLTO called by linker.
1392   for (auto &C : OptimizerLastEPCallbacks)
1393     C(MPM, Level);
1394 
1395   // Emit annotation remarks.
1396   addAnnotationRemarksPass(MPM);
1397 
1398   addRequiredLTOPreLinkPasses(MPM);
1399 
1400   return MPM;
1401 }
1402 
1403 ModulePassManager PassBuilder::buildThinLTODefaultPipeline(
1404     OptimizationLevel Level, const ModuleSummaryIndex *ImportSummary) {
1405   ModulePassManager MPM;
1406 
1407   // Convert @llvm.global.annotations to !annotation metadata.
1408   MPM.addPass(Annotation2MetadataPass());
1409 
1410   if (ImportSummary) {
1411     // These passes import type identifier resolutions for whole-program
1412     // devirtualization and CFI. They must run early because other passes may
1413     // disturb the specific instruction patterns that these passes look for,
1414     // creating dependencies on resolutions that may not appear in the summary.
1415     //
1416     // For example, GVN may transform the pattern assume(type.test) appearing in
1417     // two basic blocks into assume(phi(type.test, type.test)), which would
1418     // transform a dependency on a WPD resolution into a dependency on a type
1419     // identifier resolution for CFI.
1420     //
1421     // Also, WPD has access to more precise information than ICP and can
1422     // devirtualize more effectively, so it should operate on the IR first.
1423     //
1424     // The WPD and LowerTypeTest passes need to run at -O0 to lower type
1425     // metadata and intrinsics.
1426     MPM.addPass(WholeProgramDevirtPass(nullptr, ImportSummary));
1427     MPM.addPass(LowerTypeTestsPass(nullptr, ImportSummary));
1428   }
1429 
1430   if (Level == OptimizationLevel::O0) {
1431     // Run a second time to clean up any type tests left behind by WPD for use
1432     // in ICP.
1433     MPM.addPass(LowerTypeTestsPass(nullptr, nullptr, true));
1434     // Drop available_externally and unreferenced globals. This is necessary
1435     // with ThinLTO in order to avoid leaving undefined references to dead
1436     // globals in the object file.
1437     MPM.addPass(EliminateAvailableExternallyPass());
1438     MPM.addPass(GlobalDCEPass());
1439     return MPM;
1440   }
1441 
1442   // Force any function attributes we want the rest of the pipeline to observe.
1443   MPM.addPass(ForceFunctionAttrsPass());
1444 
1445   // Add the core simplification pipeline.
1446   MPM.addPass(buildModuleSimplificationPipeline(
1447       Level, ThinOrFullLTOPhase::ThinLTOPostLink));
1448 
1449   // Now add the optimization pipeline.
1450   MPM.addPass(buildModuleOptimizationPipeline(
1451       Level, ThinOrFullLTOPhase::ThinLTOPostLink));
1452 
1453   // Emit annotation remarks.
1454   addAnnotationRemarksPass(MPM);
1455 
1456   return MPM;
1457 }
1458 
1459 ModulePassManager
1460 PassBuilder::buildLTOPreLinkDefaultPipeline(OptimizationLevel Level) {
1461   assert(Level != OptimizationLevel::O0 &&
1462          "Must request optimizations for the default pipeline!");
1463   // FIXME: We should use a customized pre-link pipeline!
1464   return buildPerModuleDefaultPipeline(Level,
1465                                        /* LTOPreLink */ true);
1466 }
1467 
1468 ModulePassManager
1469 PassBuilder::buildLTODefaultPipeline(OptimizationLevel Level,
1470                                      ModuleSummaryIndex *ExportSummary) {
1471   ModulePassManager MPM;
1472 
1473   // Convert @llvm.global.annotations to !annotation metadata.
1474   MPM.addPass(Annotation2MetadataPass());
1475 
1476   for (auto &C : FullLinkTimeOptimizationEarlyEPCallbacks)
1477     C(MPM, Level);
1478 
1479   // Create a function that performs CFI checks for cross-DSO calls with targets
1480   // in the current module.
1481   MPM.addPass(CrossDSOCFIPass());
1482 
1483   if (Level == OptimizationLevel::O0) {
1484     // The WPD and LowerTypeTest passes need to run at -O0 to lower type
1485     // metadata and intrinsics.
1486     MPM.addPass(WholeProgramDevirtPass(ExportSummary, nullptr));
1487     MPM.addPass(LowerTypeTestsPass(ExportSummary, nullptr));
1488     // Run a second time to clean up any type tests left behind by WPD for use
1489     // in ICP.
1490     MPM.addPass(LowerTypeTestsPass(nullptr, nullptr, true));
1491 
1492     for (auto &C : FullLinkTimeOptimizationLastEPCallbacks)
1493       C(MPM, Level);
1494 
1495     // Emit annotation remarks.
1496     addAnnotationRemarksPass(MPM);
1497 
1498     return MPM;
1499   }
1500 
1501   if (PGOOpt && PGOOpt->Action == PGOOptions::SampleUse) {
1502     // Load sample profile before running the LTO optimization pipeline.
1503     MPM.addPass(SampleProfileLoaderPass(PGOOpt->ProfileFile,
1504                                         PGOOpt->ProfileRemappingFile,
1505                                         ThinOrFullLTOPhase::FullLTOPostLink));
1506     // Cache ProfileSummaryAnalysis once to avoid the potential need to insert
1507     // RequireAnalysisPass for PSI before subsequent non-module passes.
1508     MPM.addPass(RequireAnalysisPass<ProfileSummaryAnalysis, Module>());
1509   }
1510 
1511   // Try to run OpenMP optimizations, quick no-op if no OpenMP metadata present.
1512   MPM.addPass(OpenMPOptPass());
1513 
1514   // Remove unused virtual tables to improve the quality of code generated by
1515   // whole-program devirtualization and bitset lowering.
1516   MPM.addPass(GlobalDCEPass());
1517 
1518   // Force any function attributes we want the rest of the pipeline to observe.
1519   MPM.addPass(ForceFunctionAttrsPass());
1520 
1521   // Do basic inference of function attributes from known properties of system
1522   // libraries and other oracles.
1523   MPM.addPass(InferFunctionAttrsPass());
1524 
1525   if (Level.getSpeedupLevel() > 1) {
1526     MPM.addPass(createModuleToFunctionPassAdaptor(
1527         CallSiteSplittingPass(), PTO.EagerlyInvalidateAnalyses));
1528 
1529     // Indirect call promotion. This should promote all the targets that are
1530     // left by the earlier promotion pass that promotes intra-module targets.
1531     // This two-step promotion is to save the compile time. For LTO, it should
1532     // produce the same result as if we only do promotion here.
1533     MPM.addPass(PGOIndirectCallPromotion(
1534         true /* InLTO */, PGOOpt && PGOOpt->Action == PGOOptions::SampleUse));
1535 
1536     if (EnableFunctionSpecialization && Level == OptimizationLevel::O3)
1537       MPM.addPass(FunctionSpecializationPass());
1538     // Propagate constants at call sites into the functions they call.  This
1539     // opens opportunities for globalopt (and inlining) by substituting function
1540     // pointers passed as arguments to direct uses of functions.
1541     MPM.addPass(IPSCCPPass());
1542 
1543     // Attach metadata to indirect call sites indicating the set of functions
1544     // they may target at run-time. This should follow IPSCCP.
1545     MPM.addPass(CalledValuePropagationPass());
1546   }
1547 
1548   // Now deduce any function attributes based in the current code.
1549   MPM.addPass(
1550       createModuleToPostOrderCGSCCPassAdaptor(PostOrderFunctionAttrsPass()));
1551 
1552   // Do RPO function attribute inference across the module to forward-propagate
1553   // attributes where applicable.
1554   // FIXME: Is this really an optimization rather than a canonicalization?
1555   MPM.addPass(ReversePostOrderFunctionAttrsPass());
1556 
1557   // Use in-range annotations on GEP indices to split globals where beneficial.
1558   MPM.addPass(GlobalSplitPass());
1559 
1560   // Run whole program optimization of virtual call when the list of callees
1561   // is fixed.
1562   MPM.addPass(WholeProgramDevirtPass(ExportSummary, nullptr));
1563 
1564   // Stop here at -O1.
1565   if (Level == OptimizationLevel::O1) {
1566     // The LowerTypeTestsPass needs to run to lower type metadata and the
1567     // type.test intrinsics. The pass does nothing if CFI is disabled.
1568     MPM.addPass(LowerTypeTestsPass(ExportSummary, nullptr));
1569     // Run a second time to clean up any type tests left behind by WPD for use
1570     // in ICP (which is performed earlier than this in the regular LTO
1571     // pipeline).
1572     MPM.addPass(LowerTypeTestsPass(nullptr, nullptr, true));
1573 
1574     for (auto &C : FullLinkTimeOptimizationLastEPCallbacks)
1575       C(MPM, Level);
1576 
1577     // Emit annotation remarks.
1578     addAnnotationRemarksPass(MPM);
1579 
1580     return MPM;
1581   }
1582 
1583   // Optimize globals to try and fold them into constants.
1584   MPM.addPass(GlobalOptPass());
1585 
1586   // Promote any localized globals to SSA registers.
1587   MPM.addPass(createModuleToFunctionPassAdaptor(PromotePass()));
1588 
1589   // Linking modules together can lead to duplicate global constant, only
1590   // keep one copy of each constant.
1591   MPM.addPass(ConstantMergePass());
1592 
1593   // Remove unused arguments from functions.
1594   MPM.addPass(DeadArgumentEliminationPass());
1595 
1596   // Reduce the code after globalopt and ipsccp.  Both can open up significant
1597   // simplification opportunities, and both can propagate functions through
1598   // function pointers.  When this happens, we often have to resolve varargs
1599   // calls, etc, so let instcombine do this.
1600   FunctionPassManager PeepholeFPM;
1601   PeepholeFPM.addPass(InstCombinePass());
1602   if (Level == OptimizationLevel::O3)
1603     PeepholeFPM.addPass(AggressiveInstCombinePass());
1604   invokePeepholeEPCallbacks(PeepholeFPM, Level);
1605 
1606   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(PeepholeFPM),
1607                                                 PTO.EagerlyInvalidateAnalyses));
1608 
1609   // Note: historically, the PruneEH pass was run first to deduce nounwind and
1610   // generally clean up exception handling overhead. It isn't clear this is
1611   // valuable as the inliner doesn't currently care whether it is inlining an
1612   // invoke or a call.
1613   // Run the inliner now.
1614   MPM.addPass(ModuleInlinerWrapperPass(
1615       getInlineParamsFromOptLevel(Level),
1616       /* MandatoryFirst */ true,
1617       InlineContext{ThinOrFullLTOPhase::FullLTOPostLink,
1618                           InlinePass::CGSCCInliner}));
1619 
1620   // Optimize globals again after we ran the inliner.
1621   MPM.addPass(GlobalOptPass());
1622 
1623   // Garbage collect dead functions.
1624   MPM.addPass(GlobalDCEPass());
1625 
1626   // If we didn't decide to inline a function, check to see if we can
1627   // transform it to pass arguments by value instead of by reference.
1628   MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(ArgumentPromotionPass()));
1629 
1630   FunctionPassManager FPM;
1631   // The IPO Passes may leave cruft around. Clean up after them.
1632   FPM.addPass(InstCombinePass());
1633   invokePeepholeEPCallbacks(FPM, Level);
1634 
1635   FPM.addPass(JumpThreadingPass());
1636 
1637   // Do a post inline PGO instrumentation and use pass. This is a context
1638   // sensitive PGO pass.
1639   if (PGOOpt) {
1640     if (PGOOpt->CSAction == PGOOptions::CSIRInstr)
1641       addPGOInstrPasses(MPM, Level, /* RunProfileGen */ true,
1642                         /* IsCS */ true, PGOOpt->CSProfileGenFile,
1643                         PGOOpt->ProfileRemappingFile,
1644                         ThinOrFullLTOPhase::FullLTOPostLink);
1645     else if (PGOOpt->CSAction == PGOOptions::CSIRUse)
1646       addPGOInstrPasses(MPM, Level, /* RunProfileGen */ false,
1647                         /* IsCS */ true, PGOOpt->ProfileFile,
1648                         PGOOpt->ProfileRemappingFile,
1649                         ThinOrFullLTOPhase::FullLTOPostLink);
1650   }
1651 
1652   // Break up allocas
1653   FPM.addPass(SROAPass());
1654 
1655   // LTO provides additional opportunities for tailcall elimination due to
1656   // link-time inlining, and visibility of nocapture attribute.
1657   FPM.addPass(TailCallElimPass());
1658 
1659   // Run a few AA driver optimizations here and now to cleanup the code.
1660   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM),
1661                                                 PTO.EagerlyInvalidateAnalyses));
1662 
1663   MPM.addPass(
1664       createModuleToPostOrderCGSCCPassAdaptor(PostOrderFunctionAttrsPass()));
1665 
1666   // Require the GlobalsAA analysis for the module so we can query it within
1667   // MainFPM.
1668   MPM.addPass(RequireAnalysisPass<GlobalsAA, Module>());
1669   // Invalidate AAManager so it can be recreated and pick up the newly available
1670   // GlobalsAA.
1671   MPM.addPass(
1672       createModuleToFunctionPassAdaptor(InvalidateAnalysisPass<AAManager>()));
1673 
1674   FunctionPassManager MainFPM;
1675   MainFPM.addPass(createFunctionToLoopPassAdaptor(
1676       LICMPass(PTO.LicmMssaOptCap, PTO.LicmMssaNoAccForPromotionCap,
1677                /*AllowSpeculation=*/true),
1678       /*USeMemorySSA=*/true, /*UseBlockFrequencyInfo=*/true));
1679 
1680   if (RunNewGVN)
1681     MainFPM.addPass(NewGVNPass());
1682   else
1683     MainFPM.addPass(GVNPass());
1684 
1685   // Remove dead memcpy()'s.
1686   MainFPM.addPass(MemCpyOptPass());
1687 
1688   // Nuke dead stores.
1689   MainFPM.addPass(DSEPass());
1690   MainFPM.addPass(MergedLoadStoreMotionPass());
1691 
1692 
1693   if (EnableConstraintElimination)
1694     MainFPM.addPass(ConstraintEliminationPass());
1695 
1696   LoopPassManager LPM;
1697   if (EnableLoopFlatten && Level.getSpeedupLevel() > 1)
1698     LPM.addPass(LoopFlattenPass());
1699   LPM.addPass(IndVarSimplifyPass());
1700   LPM.addPass(LoopDeletionPass());
1701   // FIXME: Add loop interchange.
1702 
1703   // Unroll small loops and perform peeling.
1704   LPM.addPass(LoopFullUnrollPass(Level.getSpeedupLevel(),
1705                                  /* OnlyWhenForced= */ !PTO.LoopUnrolling,
1706                                  PTO.ForgetAllSCEVInLoopUnroll));
1707   // The loop passes in LPM (LoopFullUnrollPass) do not preserve MemorySSA.
1708   // *All* loop passes must preserve it, in order to be able to use it.
1709   MainFPM.addPass(createFunctionToLoopPassAdaptor(
1710       std::move(LPM), /*UseMemorySSA=*/false, /*UseBlockFrequencyInfo=*/true));
1711 
1712   MainFPM.addPass(LoopDistributePass());
1713 
1714   addVectorPasses(Level, MainFPM, /* IsFullLTO */ true);
1715 
1716   // Run the OpenMPOpt CGSCC pass again late.
1717   MPM.addPass(
1718       createModuleToPostOrderCGSCCPassAdaptor(OpenMPOptCGSCCPass()));
1719 
1720   invokePeepholeEPCallbacks(MainFPM, Level);
1721   MainFPM.addPass(JumpThreadingPass());
1722   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(MainFPM),
1723                                                 PTO.EagerlyInvalidateAnalyses));
1724 
1725   // Lower type metadata and the type.test intrinsic. This pass supports
1726   // clang's control flow integrity mechanisms (-fsanitize=cfi*) and needs
1727   // to be run at link time if CFI is enabled. This pass does nothing if
1728   // CFI is disabled.
1729   MPM.addPass(LowerTypeTestsPass(ExportSummary, nullptr));
1730   // Run a second time to clean up any type tests left behind by WPD for use
1731   // in ICP (which is performed earlier than this in the regular LTO pipeline).
1732   MPM.addPass(LowerTypeTestsPass(nullptr, nullptr, true));
1733 
1734   // Enable splitting late in the FullLTO post-link pipeline.
1735   if (EnableHotColdSplit)
1736     MPM.addPass(HotColdSplittingPass());
1737 
1738   // Add late LTO optimization passes.
1739   // Delete basic blocks, which optimization passes may have killed.
1740   MPM.addPass(createModuleToFunctionPassAdaptor(SimplifyCFGPass(
1741       SimplifyCFGOptions().convertSwitchRangeToICmp(true).hoistCommonInsts(
1742           true))));
1743 
1744   // Drop bodies of available eternally objects to improve GlobalDCE.
1745   MPM.addPass(EliminateAvailableExternallyPass());
1746 
1747   // Now that we have optimized the program, discard unreachable functions.
1748   MPM.addPass(GlobalDCEPass());
1749 
1750   if (PTO.MergeFunctions)
1751     MPM.addPass(MergeFunctionsPass());
1752 
1753   if (PTO.CallGraphProfile)
1754     MPM.addPass(CGProfilePass());
1755 
1756   for (auto &C : FullLinkTimeOptimizationLastEPCallbacks)
1757     C(MPM, Level);
1758 
1759   // Emit annotation remarks.
1760   addAnnotationRemarksPass(MPM);
1761 
1762   return MPM;
1763 }
1764 
1765 ModulePassManager PassBuilder::buildO0DefaultPipeline(OptimizationLevel Level,
1766                                                       bool LTOPreLink) {
1767   assert(Level == OptimizationLevel::O0 &&
1768          "buildO0DefaultPipeline should only be used with O0");
1769 
1770   ModulePassManager MPM;
1771 
1772   // Perform pseudo probe instrumentation in O0 mode. This is for the
1773   // consistency between different build modes. For example, a LTO build can be
1774   // mixed with an O0 prelink and an O2 postlink. Loading a sample profile in
1775   // the postlink will require pseudo probe instrumentation in the prelink.
1776   if (PGOOpt && PGOOpt->PseudoProbeForProfiling)
1777     MPM.addPass(SampleProfileProbePass(TM));
1778 
1779   if (PGOOpt && (PGOOpt->Action == PGOOptions::IRInstr ||
1780                  PGOOpt->Action == PGOOptions::IRUse))
1781     addPGOInstrPassesForO0(
1782         MPM,
1783         /* RunProfileGen */ (PGOOpt->Action == PGOOptions::IRInstr),
1784         /* IsCS */ false, PGOOpt->ProfileFile, PGOOpt->ProfileRemappingFile);
1785 
1786   for (auto &C : PipelineStartEPCallbacks)
1787     C(MPM, Level);
1788 
1789   if (PGOOpt && PGOOpt->DebugInfoForProfiling)
1790     MPM.addPass(createModuleToFunctionPassAdaptor(AddDiscriminatorsPass()));
1791 
1792   for (auto &C : PipelineEarlySimplificationEPCallbacks)
1793     C(MPM, Level);
1794 
1795   // Build a minimal pipeline based on the semantics required by LLVM,
1796   // which is just that always inlining occurs. Further, disable generating
1797   // lifetime intrinsics to avoid enabling further optimizations during
1798   // code generation.
1799   MPM.addPass(AlwaysInlinerPass(
1800       /*InsertLifetimeIntrinsics=*/false));
1801 
1802   if (PTO.MergeFunctions)
1803     MPM.addPass(MergeFunctionsPass());
1804 
1805   if (EnableMatrix)
1806     MPM.addPass(
1807         createModuleToFunctionPassAdaptor(LowerMatrixIntrinsicsPass(true)));
1808 
1809   if (!CGSCCOptimizerLateEPCallbacks.empty()) {
1810     CGSCCPassManager CGPM;
1811     for (auto &C : CGSCCOptimizerLateEPCallbacks)
1812       C(CGPM, Level);
1813     if (!CGPM.isEmpty())
1814       MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
1815   }
1816   if (!LateLoopOptimizationsEPCallbacks.empty()) {
1817     LoopPassManager LPM;
1818     for (auto &C : LateLoopOptimizationsEPCallbacks)
1819       C(LPM, Level);
1820     if (!LPM.isEmpty()) {
1821       MPM.addPass(createModuleToFunctionPassAdaptor(
1822           createFunctionToLoopPassAdaptor(std::move(LPM))));
1823     }
1824   }
1825   if (!LoopOptimizerEndEPCallbacks.empty()) {
1826     LoopPassManager LPM;
1827     for (auto &C : LoopOptimizerEndEPCallbacks)
1828       C(LPM, Level);
1829     if (!LPM.isEmpty()) {
1830       MPM.addPass(createModuleToFunctionPassAdaptor(
1831           createFunctionToLoopPassAdaptor(std::move(LPM))));
1832     }
1833   }
1834   if (!ScalarOptimizerLateEPCallbacks.empty()) {
1835     FunctionPassManager FPM;
1836     for (auto &C : ScalarOptimizerLateEPCallbacks)
1837       C(FPM, Level);
1838     if (!FPM.isEmpty())
1839       MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
1840   }
1841 
1842   for (auto &C : OptimizerEarlyEPCallbacks)
1843     C(MPM, Level);
1844 
1845   if (!VectorizerStartEPCallbacks.empty()) {
1846     FunctionPassManager FPM;
1847     for (auto &C : VectorizerStartEPCallbacks)
1848       C(FPM, Level);
1849     if (!FPM.isEmpty())
1850       MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
1851   }
1852 
1853   ModulePassManager CoroPM;
1854   CoroPM.addPass(CoroEarlyPass());
1855   CGSCCPassManager CGPM;
1856   CGPM.addPass(CoroSplitPass());
1857   CoroPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
1858   CoroPM.addPass(CoroCleanupPass());
1859   CoroPM.addPass(GlobalDCEPass());
1860   MPM.addPass(CoroConditionalWrapper(std::move(CoroPM)));
1861 
1862   for (auto &C : OptimizerLastEPCallbacks)
1863     C(MPM, Level);
1864 
1865   if (LTOPreLink)
1866     addRequiredLTOPreLinkPasses(MPM);
1867 
1868   MPM.addPass(createModuleToFunctionPassAdaptor(AnnotationRemarksPass()));
1869 
1870   return MPM;
1871 }
1872 
1873 AAManager PassBuilder::buildDefaultAAPipeline() {
1874   AAManager AA;
1875 
1876   // The order in which these are registered determines their priority when
1877   // being queried.
1878 
1879   // First we register the basic alias analysis that provides the majority of
1880   // per-function local AA logic. This is a stateless, on-demand local set of
1881   // AA techniques.
1882   AA.registerFunctionAnalysis<BasicAA>();
1883 
1884   // Next we query fast, specialized alias analyses that wrap IR-embedded
1885   // information about aliasing.
1886   AA.registerFunctionAnalysis<ScopedNoAliasAA>();
1887   AA.registerFunctionAnalysis<TypeBasedAA>();
1888 
1889   // Add support for querying global aliasing information when available.
1890   // Because the `AAManager` is a function analysis and `GlobalsAA` is a module
1891   // analysis, all that the `AAManager` can do is query for any *cached*
1892   // results from `GlobalsAA` through a readonly proxy.
1893   AA.registerModuleAnalysis<GlobalsAA>();
1894 
1895   // Add target-specific alias analyses.
1896   if (TM)
1897     TM->registerDefaultAliasAnalyses(AA);
1898 
1899   return AA;
1900 }
1901