1 //===- CoverageMapping.cpp - Code coverage mapping support ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for clang's and llvm's instrumentation based
10 // code coverage.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ProfileData/Coverage/CoverageMapping.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/SmallBitVector.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ProfileData/Coverage/CoverageMappingReader.h"
23 #include "llvm/ProfileData/InstrProfReader.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/Errc.h"
26 #include "llvm/Support/Error.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/ManagedStatic.h"
29 #include "llvm/Support/MemoryBuffer.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include <algorithm>
32 #include <cassert>
33 #include <cstdint>
34 #include <iterator>
35 #include <map>
36 #include <memory>
37 #include <string>
38 #include <system_error>
39 #include <utility>
40 #include <vector>
41 
42 using namespace llvm;
43 using namespace coverage;
44 
45 #define DEBUG_TYPE "coverage-mapping"
46 
47 Counter CounterExpressionBuilder::get(const CounterExpression &E) {
48   auto It = ExpressionIndices.find(E);
49   if (It != ExpressionIndices.end())
50     return Counter::getExpression(It->second);
51   unsigned I = Expressions.size();
52   Expressions.push_back(E);
53   ExpressionIndices[E] = I;
54   return Counter::getExpression(I);
55 }
56 
57 void CounterExpressionBuilder::extractTerms(Counter C, int Factor,
58                                             SmallVectorImpl<Term> &Terms) {
59   switch (C.getKind()) {
60   case Counter::Zero:
61     break;
62   case Counter::CounterValueReference:
63     Terms.emplace_back(C.getCounterID(), Factor);
64     break;
65   case Counter::Expression:
66     const auto &E = Expressions[C.getExpressionID()];
67     extractTerms(E.LHS, Factor, Terms);
68     extractTerms(
69         E.RHS, E.Kind == CounterExpression::Subtract ? -Factor : Factor, Terms);
70     break;
71   }
72 }
73 
74 Counter CounterExpressionBuilder::simplify(Counter ExpressionTree) {
75   // Gather constant terms.
76   SmallVector<Term, 32> Terms;
77   extractTerms(ExpressionTree, +1, Terms);
78 
79   // If there are no terms, this is just a zero. The algorithm below assumes at
80   // least one term.
81   if (Terms.size() == 0)
82     return Counter::getZero();
83 
84   // Group the terms by counter ID.
85   llvm::sort(Terms, [](const Term &LHS, const Term &RHS) {
86     return LHS.CounterID < RHS.CounterID;
87   });
88 
89   // Combine terms by counter ID to eliminate counters that sum to zero.
90   auto Prev = Terms.begin();
91   for (auto I = Prev + 1, E = Terms.end(); I != E; ++I) {
92     if (I->CounterID == Prev->CounterID) {
93       Prev->Factor += I->Factor;
94       continue;
95     }
96     ++Prev;
97     *Prev = *I;
98   }
99   Terms.erase(++Prev, Terms.end());
100 
101   Counter C;
102   // Create additions. We do this before subtractions to avoid constructs like
103   // ((0 - X) + Y), as opposed to (Y - X).
104   for (auto T : Terms) {
105     if (T.Factor <= 0)
106       continue;
107     for (int I = 0; I < T.Factor; ++I)
108       if (C.isZero())
109         C = Counter::getCounter(T.CounterID);
110       else
111         C = get(CounterExpression(CounterExpression::Add, C,
112                                   Counter::getCounter(T.CounterID)));
113   }
114 
115   // Create subtractions.
116   for (auto T : Terms) {
117     if (T.Factor >= 0)
118       continue;
119     for (int I = 0; I < -T.Factor; ++I)
120       C = get(CounterExpression(CounterExpression::Subtract, C,
121                                 Counter::getCounter(T.CounterID)));
122   }
123   return C;
124 }
125 
126 Counter CounterExpressionBuilder::add(Counter LHS, Counter RHS) {
127   return simplify(get(CounterExpression(CounterExpression::Add, LHS, RHS)));
128 }
129 
130 Counter CounterExpressionBuilder::subtract(Counter LHS, Counter RHS) {
131   return simplify(
132       get(CounterExpression(CounterExpression::Subtract, LHS, RHS)));
133 }
134 
135 void CounterMappingContext::dump(const Counter &C, raw_ostream &OS) const {
136   switch (C.getKind()) {
137   case Counter::Zero:
138     OS << '0';
139     return;
140   case Counter::CounterValueReference:
141     OS << '#' << C.getCounterID();
142     break;
143   case Counter::Expression: {
144     if (C.getExpressionID() >= Expressions.size())
145       return;
146     const auto &E = Expressions[C.getExpressionID()];
147     OS << '(';
148     dump(E.LHS, OS);
149     OS << (E.Kind == CounterExpression::Subtract ? " - " : " + ");
150     dump(E.RHS, OS);
151     OS << ')';
152     break;
153   }
154   }
155   if (CounterValues.empty())
156     return;
157   Expected<int64_t> Value = evaluate(C);
158   if (auto E = Value.takeError()) {
159     consumeError(std::move(E));
160     return;
161   }
162   OS << '[' << *Value << ']';
163 }
164 
165 Expected<int64_t> CounterMappingContext::evaluate(const Counter &C) const {
166   switch (C.getKind()) {
167   case Counter::Zero:
168     return 0;
169   case Counter::CounterValueReference:
170     if (C.getCounterID() >= CounterValues.size())
171       return errorCodeToError(errc::argument_out_of_domain);
172     return CounterValues[C.getCounterID()];
173   case Counter::Expression: {
174     if (C.getExpressionID() >= Expressions.size())
175       return errorCodeToError(errc::argument_out_of_domain);
176     const auto &E = Expressions[C.getExpressionID()];
177     Expected<int64_t> LHS = evaluate(E.LHS);
178     if (!LHS)
179       return LHS;
180     Expected<int64_t> RHS = evaluate(E.RHS);
181     if (!RHS)
182       return RHS;
183     return E.Kind == CounterExpression::Subtract ? *LHS - *RHS : *LHS + *RHS;
184   }
185   }
186   llvm_unreachable("Unhandled CounterKind");
187 }
188 
189 void FunctionRecordIterator::skipOtherFiles() {
190   while (Current != Records.end() && !Filename.empty() &&
191          Filename != Current->Filenames[0])
192     ++Current;
193   if (Current == Records.end())
194     *this = FunctionRecordIterator();
195 }
196 
197 ArrayRef<unsigned> CoverageMapping::getImpreciseRecordIndicesForFilename(
198     StringRef Filename) const {
199   size_t FilenameHash = hash_value(Filename);
200   auto RecordIt = FilenameHash2RecordIndices.find(FilenameHash);
201   if (RecordIt == FilenameHash2RecordIndices.end())
202     return {};
203   return RecordIt->second;
204 }
205 
206 Error CoverageMapping::loadFunctionRecord(
207     const CoverageMappingRecord &Record,
208     IndexedInstrProfReader &ProfileReader) {
209   StringRef OrigFuncName = Record.FunctionName;
210   if (OrigFuncName.empty())
211     return make_error<CoverageMapError>(coveragemap_error::malformed);
212 
213   if (Record.Filenames.empty())
214     OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName);
215   else
216     OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName, Record.Filenames[0]);
217 
218   CounterMappingContext Ctx(Record.Expressions);
219 
220   std::vector<uint64_t> Counts;
221   if (Error E = ProfileReader.getFunctionCounts(Record.FunctionName,
222                                                 Record.FunctionHash, Counts)) {
223     instrprof_error IPE = InstrProfError::take(std::move(E));
224     if (IPE == instrprof_error::hash_mismatch) {
225       FuncHashMismatches.emplace_back(Record.FunctionName, Record.FunctionHash);
226       return Error::success();
227     } else if (IPE != instrprof_error::unknown_function)
228       return make_error<InstrProfError>(IPE);
229     Counts.assign(Record.MappingRegions.size(), 0);
230   }
231   Ctx.setCounts(Counts);
232 
233   assert(!Record.MappingRegions.empty() && "Function has no regions");
234 
235   // This coverage record is a zero region for a function that's unused in
236   // some TU, but used in a different TU. Ignore it. The coverage maps from the
237   // the other TU will either be loaded (providing full region counts) or they
238   // won't (in which case we don't unintuitively report functions as uncovered
239   // when they have non-zero counts in the profile).
240   if (Record.MappingRegions.size() == 1 &&
241       Record.MappingRegions[0].Count.isZero() && Counts[0] > 0)
242     return Error::success();
243 
244   FunctionRecord Function(OrigFuncName, Record.Filenames);
245   for (const auto &Region : Record.MappingRegions) {
246     Expected<int64_t> ExecutionCount = Ctx.evaluate(Region.Count);
247     if (auto E = ExecutionCount.takeError()) {
248       consumeError(std::move(E));
249       return Error::success();
250     }
251     Function.pushRegion(Region, *ExecutionCount);
252   }
253 
254   // Don't create records for (filenames, function) pairs we've already seen.
255   auto FilenamesHash = hash_combine_range(Record.Filenames.begin(),
256                                           Record.Filenames.end());
257   if (!RecordProvenance[FilenamesHash].insert(hash_value(OrigFuncName)).second)
258     return Error::success();
259 
260   Functions.push_back(std::move(Function));
261 
262   // Performance optimization: keep track of the indices of the function records
263   // which correspond to each filename. This can be used to substantially speed
264   // up queries for coverage info in a file.
265   unsigned RecordIndex = Functions.size() - 1;
266   for (StringRef Filename : Record.Filenames) {
267     auto &RecordIndices = FilenameHash2RecordIndices[hash_value(Filename)];
268     // Note that there may be duplicates in the filename set for a function
269     // record, because of e.g. macro expansions in the function in which both
270     // the macro and the function are defined in the same file.
271     if (RecordIndices.empty() || RecordIndices.back() != RecordIndex)
272       RecordIndices.push_back(RecordIndex);
273   }
274 
275   return Error::success();
276 }
277 
278 Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load(
279     ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders,
280     IndexedInstrProfReader &ProfileReader) {
281   auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping());
282 
283   for (const auto &CoverageReader : CoverageReaders) {
284     for (auto RecordOrErr : *CoverageReader) {
285       if (Error E = RecordOrErr.takeError())
286         return std::move(E);
287       const auto &Record = *RecordOrErr;
288       if (Error E = Coverage->loadFunctionRecord(Record, ProfileReader))
289         return std::move(E);
290     }
291   }
292 
293   return std::move(Coverage);
294 }
295 
296 // If E is a no_data_found error, returns success. Otherwise returns E.
297 static Error handleMaybeNoDataFoundError(Error E) {
298   return handleErrors(
299       std::move(E), [](const CoverageMapError &CME) {
300         if (CME.get() == coveragemap_error::no_data_found)
301           return static_cast<Error>(Error::success());
302         return make_error<CoverageMapError>(CME.get());
303       });
304 }
305 
306 Expected<std::unique_ptr<CoverageMapping>>
307 CoverageMapping::load(ArrayRef<StringRef> ObjectFilenames,
308                       StringRef ProfileFilename, ArrayRef<StringRef> Arches) {
309   auto ProfileReaderOrErr = IndexedInstrProfReader::create(ProfileFilename);
310   if (Error E = ProfileReaderOrErr.takeError())
311     return std::move(E);
312   auto ProfileReader = std::move(ProfileReaderOrErr.get());
313 
314   SmallVector<std::unique_ptr<CoverageMappingReader>, 4> Readers;
315   SmallVector<std::unique_ptr<MemoryBuffer>, 4> Buffers;
316   for (const auto &File : llvm::enumerate(ObjectFilenames)) {
317     auto CovMappingBufOrErr = MemoryBuffer::getFileOrSTDIN(File.value());
318     if (std::error_code EC = CovMappingBufOrErr.getError())
319       return errorCodeToError(EC);
320     StringRef Arch = Arches.empty() ? StringRef() : Arches[File.index()];
321     MemoryBufferRef CovMappingBufRef =
322         CovMappingBufOrErr.get()->getMemBufferRef();
323     auto CoverageReadersOrErr =
324         BinaryCoverageReader::create(CovMappingBufRef, Arch, Buffers);
325     if (Error E = CoverageReadersOrErr.takeError()) {
326       E = handleMaybeNoDataFoundError(std::move(E));
327       if (E)
328         return std::move(E);
329       // E == success (originally a no_data_found error).
330       continue;
331     }
332     for (auto &Reader : CoverageReadersOrErr.get())
333       Readers.push_back(std::move(Reader));
334     Buffers.push_back(std::move(CovMappingBufOrErr.get()));
335   }
336   // If no readers were created, either no objects were provided or none of them
337   // had coverage data. Return an error in the latter case.
338   if (Readers.empty() && !ObjectFilenames.empty())
339     return make_error<CoverageMapError>(coveragemap_error::no_data_found);
340   return load(Readers, *ProfileReader);
341 }
342 
343 namespace {
344 
345 /// Distributes functions into instantiation sets.
346 ///
347 /// An instantiation set is a collection of functions that have the same source
348 /// code, ie, template functions specializations.
349 class FunctionInstantiationSetCollector {
350   using MapT = std::map<LineColPair, std::vector<const FunctionRecord *>>;
351   MapT InstantiatedFunctions;
352 
353 public:
354   void insert(const FunctionRecord &Function, unsigned FileID) {
355     auto I = Function.CountedRegions.begin(), E = Function.CountedRegions.end();
356     while (I != E && I->FileID != FileID)
357       ++I;
358     assert(I != E && "function does not cover the given file");
359     auto &Functions = InstantiatedFunctions[I->startLoc()];
360     Functions.push_back(&Function);
361   }
362 
363   MapT::iterator begin() { return InstantiatedFunctions.begin(); }
364   MapT::iterator end() { return InstantiatedFunctions.end(); }
365 };
366 
367 class SegmentBuilder {
368   std::vector<CoverageSegment> &Segments;
369   SmallVector<const CountedRegion *, 8> ActiveRegions;
370 
371   SegmentBuilder(std::vector<CoverageSegment> &Segments) : Segments(Segments) {}
372 
373   /// Emit a segment with the count from \p Region starting at \p StartLoc.
374   //
375   /// \p IsRegionEntry: The segment is at the start of a new non-gap region.
376   /// \p EmitSkippedRegion: The segment must be emitted as a skipped region.
377   void startSegment(const CountedRegion &Region, LineColPair StartLoc,
378                     bool IsRegionEntry, bool EmitSkippedRegion = false) {
379     bool HasCount = !EmitSkippedRegion &&
380                     (Region.Kind != CounterMappingRegion::SkippedRegion);
381 
382     // If the new segment wouldn't affect coverage rendering, skip it.
383     if (!Segments.empty() && !IsRegionEntry && !EmitSkippedRegion) {
384       const auto &Last = Segments.back();
385       if (Last.HasCount == HasCount && Last.Count == Region.ExecutionCount &&
386           !Last.IsRegionEntry)
387         return;
388     }
389 
390     if (HasCount)
391       Segments.emplace_back(StartLoc.first, StartLoc.second,
392                             Region.ExecutionCount, IsRegionEntry,
393                             Region.Kind == CounterMappingRegion::GapRegion);
394     else
395       Segments.emplace_back(StartLoc.first, StartLoc.second, IsRegionEntry);
396 
397     LLVM_DEBUG({
398       const auto &Last = Segments.back();
399       dbgs() << "Segment at " << Last.Line << ":" << Last.Col
400              << " (count = " << Last.Count << ")"
401              << (Last.IsRegionEntry ? ", RegionEntry" : "")
402              << (!Last.HasCount ? ", Skipped" : "")
403              << (Last.IsGapRegion ? ", Gap" : "") << "\n";
404     });
405   }
406 
407   /// Emit segments for active regions which end before \p Loc.
408   ///
409   /// \p Loc: The start location of the next region. If None, all active
410   /// regions are completed.
411   /// \p FirstCompletedRegion: Index of the first completed region.
412   void completeRegionsUntil(Optional<LineColPair> Loc,
413                             unsigned FirstCompletedRegion) {
414     // Sort the completed regions by end location. This makes it simple to
415     // emit closing segments in sorted order.
416     auto CompletedRegionsIt = ActiveRegions.begin() + FirstCompletedRegion;
417     std::stable_sort(CompletedRegionsIt, ActiveRegions.end(),
418                       [](const CountedRegion *L, const CountedRegion *R) {
419                         return L->endLoc() < R->endLoc();
420                       });
421 
422     // Emit segments for all completed regions.
423     for (unsigned I = FirstCompletedRegion + 1, E = ActiveRegions.size(); I < E;
424          ++I) {
425       const auto *CompletedRegion = ActiveRegions[I];
426       assert((!Loc || CompletedRegion->endLoc() <= *Loc) &&
427              "Completed region ends after start of new region");
428 
429       const auto *PrevCompletedRegion = ActiveRegions[I - 1];
430       auto CompletedSegmentLoc = PrevCompletedRegion->endLoc();
431 
432       // Don't emit any more segments if they start where the new region begins.
433       if (Loc && CompletedSegmentLoc == *Loc)
434         break;
435 
436       // Don't emit a segment if the next completed region ends at the same
437       // location as this one.
438       if (CompletedSegmentLoc == CompletedRegion->endLoc())
439         continue;
440 
441       // Use the count from the last completed region which ends at this loc.
442       for (unsigned J = I + 1; J < E; ++J)
443         if (CompletedRegion->endLoc() == ActiveRegions[J]->endLoc())
444           CompletedRegion = ActiveRegions[J];
445 
446       startSegment(*CompletedRegion, CompletedSegmentLoc, false);
447     }
448 
449     auto Last = ActiveRegions.back();
450     if (FirstCompletedRegion && Last->endLoc() != *Loc) {
451       // If there's a gap after the end of the last completed region and the
452       // start of the new region, use the last active region to fill the gap.
453       startSegment(*ActiveRegions[FirstCompletedRegion - 1], Last->endLoc(),
454                    false);
455     } else if (!FirstCompletedRegion && (!Loc || *Loc != Last->endLoc())) {
456       // Emit a skipped segment if there are no more active regions. This
457       // ensures that gaps between functions are marked correctly.
458       startSegment(*Last, Last->endLoc(), false, true);
459     }
460 
461     // Pop the completed regions.
462     ActiveRegions.erase(CompletedRegionsIt, ActiveRegions.end());
463   }
464 
465   void buildSegmentsImpl(ArrayRef<CountedRegion> Regions) {
466     for (const auto &CR : enumerate(Regions)) {
467       auto CurStartLoc = CR.value().startLoc();
468 
469       // Active regions which end before the current region need to be popped.
470       auto CompletedRegions =
471           std::stable_partition(ActiveRegions.begin(), ActiveRegions.end(),
472                                 [&](const CountedRegion *Region) {
473                                   return !(Region->endLoc() <= CurStartLoc);
474                                 });
475       if (CompletedRegions != ActiveRegions.end()) {
476         unsigned FirstCompletedRegion =
477             std::distance(ActiveRegions.begin(), CompletedRegions);
478         completeRegionsUntil(CurStartLoc, FirstCompletedRegion);
479       }
480 
481       bool GapRegion = CR.value().Kind == CounterMappingRegion::GapRegion;
482 
483       // Try to emit a segment for the current region.
484       if (CurStartLoc == CR.value().endLoc()) {
485         // Avoid making zero-length regions active. If it's the last region,
486         // emit a skipped segment. Otherwise use its predecessor's count.
487         const bool Skipped = (CR.index() + 1) == Regions.size();
488         startSegment(ActiveRegions.empty() ? CR.value() : *ActiveRegions.back(),
489                      CurStartLoc, !GapRegion, Skipped);
490         continue;
491       }
492       if (CR.index() + 1 == Regions.size() ||
493           CurStartLoc != Regions[CR.index() + 1].startLoc()) {
494         // Emit a segment if the next region doesn't start at the same location
495         // as this one.
496         startSegment(CR.value(), CurStartLoc, !GapRegion);
497       }
498 
499       // This region is active (i.e not completed).
500       ActiveRegions.push_back(&CR.value());
501     }
502 
503     // Complete any remaining active regions.
504     if (!ActiveRegions.empty())
505       completeRegionsUntil(None, 0);
506   }
507 
508   /// Sort a nested sequence of regions from a single file.
509   static void sortNestedRegions(MutableArrayRef<CountedRegion> Regions) {
510     llvm::sort(Regions, [](const CountedRegion &LHS, const CountedRegion &RHS) {
511       if (LHS.startLoc() != RHS.startLoc())
512         return LHS.startLoc() < RHS.startLoc();
513       if (LHS.endLoc() != RHS.endLoc())
514         // When LHS completely contains RHS, we sort LHS first.
515         return RHS.endLoc() < LHS.endLoc();
516       // If LHS and RHS cover the same area, we need to sort them according
517       // to their kinds so that the most suitable region will become "active"
518       // in combineRegions(). Because we accumulate counter values only from
519       // regions of the same kind as the first region of the area, prefer
520       // CodeRegion to ExpansionRegion and ExpansionRegion to SkippedRegion.
521       static_assert(CounterMappingRegion::CodeRegion <
522                             CounterMappingRegion::ExpansionRegion &&
523                         CounterMappingRegion::ExpansionRegion <
524                             CounterMappingRegion::SkippedRegion,
525                     "Unexpected order of region kind values");
526       return LHS.Kind < RHS.Kind;
527     });
528   }
529 
530   /// Combine counts of regions which cover the same area.
531   static ArrayRef<CountedRegion>
532   combineRegions(MutableArrayRef<CountedRegion> Regions) {
533     if (Regions.empty())
534       return Regions;
535     auto Active = Regions.begin();
536     auto End = Regions.end();
537     for (auto I = Regions.begin() + 1; I != End; ++I) {
538       if (Active->startLoc() != I->startLoc() ||
539           Active->endLoc() != I->endLoc()) {
540         // Shift to the next region.
541         ++Active;
542         if (Active != I)
543           *Active = *I;
544         continue;
545       }
546       // Merge duplicate region.
547       // If CodeRegions and ExpansionRegions cover the same area, it's probably
548       // a macro which is fully expanded to another macro. In that case, we need
549       // to accumulate counts only from CodeRegions, or else the area will be
550       // counted twice.
551       // On the other hand, a macro may have a nested macro in its body. If the
552       // outer macro is used several times, the ExpansionRegion for the nested
553       // macro will also be added several times. These ExpansionRegions cover
554       // the same source locations and have to be combined to reach the correct
555       // value for that area.
556       // We add counts of the regions of the same kind as the active region
557       // to handle the both situations.
558       if (I->Kind == Active->Kind)
559         Active->ExecutionCount += I->ExecutionCount;
560     }
561     return Regions.drop_back(std::distance(++Active, End));
562   }
563 
564 public:
565   /// Build a sorted list of CoverageSegments from a list of Regions.
566   static std::vector<CoverageSegment>
567   buildSegments(MutableArrayRef<CountedRegion> Regions) {
568     std::vector<CoverageSegment> Segments;
569     SegmentBuilder Builder(Segments);
570 
571     sortNestedRegions(Regions);
572     ArrayRef<CountedRegion> CombinedRegions = combineRegions(Regions);
573 
574     LLVM_DEBUG({
575       dbgs() << "Combined regions:\n";
576       for (const auto &CR : CombinedRegions)
577         dbgs() << "  " << CR.LineStart << ":" << CR.ColumnStart << " -> "
578                << CR.LineEnd << ":" << CR.ColumnEnd
579                << " (count=" << CR.ExecutionCount << ")\n";
580     });
581 
582     Builder.buildSegmentsImpl(CombinedRegions);
583 
584 #ifndef NDEBUG
585     for (unsigned I = 1, E = Segments.size(); I < E; ++I) {
586       const auto &L = Segments[I - 1];
587       const auto &R = Segments[I];
588       if (!(L.Line < R.Line) && !(L.Line == R.Line && L.Col < R.Col)) {
589         LLVM_DEBUG(dbgs() << " ! Segment " << L.Line << ":" << L.Col
590                           << " followed by " << R.Line << ":" << R.Col << "\n");
591         assert(false && "Coverage segments not unique or sorted");
592       }
593     }
594 #endif
595 
596     return Segments;
597   }
598 };
599 
600 } // end anonymous namespace
601 
602 std::vector<StringRef> CoverageMapping::getUniqueSourceFiles() const {
603   std::vector<StringRef> Filenames;
604   for (const auto &Function : getCoveredFunctions())
605     Filenames.insert(Filenames.end(), Function.Filenames.begin(),
606                      Function.Filenames.end());
607   llvm::sort(Filenames);
608   auto Last = std::unique(Filenames.begin(), Filenames.end());
609   Filenames.erase(Last, Filenames.end());
610   return Filenames;
611 }
612 
613 static SmallBitVector gatherFileIDs(StringRef SourceFile,
614                                     const FunctionRecord &Function) {
615   SmallBitVector FilenameEquivalence(Function.Filenames.size(), false);
616   for (unsigned I = 0, E = Function.Filenames.size(); I < E; ++I)
617     if (SourceFile == Function.Filenames[I])
618       FilenameEquivalence[I] = true;
619   return FilenameEquivalence;
620 }
621 
622 /// Return the ID of the file where the definition of the function is located.
623 static Optional<unsigned> findMainViewFileID(const FunctionRecord &Function) {
624   SmallBitVector IsNotExpandedFile(Function.Filenames.size(), true);
625   for (const auto &CR : Function.CountedRegions)
626     if (CR.Kind == CounterMappingRegion::ExpansionRegion)
627       IsNotExpandedFile[CR.ExpandedFileID] = false;
628   int I = IsNotExpandedFile.find_first();
629   if (I == -1)
630     return None;
631   return I;
632 }
633 
634 /// Check if SourceFile is the file that contains the definition of
635 /// the Function. Return the ID of the file in that case or None otherwise.
636 static Optional<unsigned> findMainViewFileID(StringRef SourceFile,
637                                              const FunctionRecord &Function) {
638   Optional<unsigned> I = findMainViewFileID(Function);
639   if (I && SourceFile == Function.Filenames[*I])
640     return I;
641   return None;
642 }
643 
644 static bool isExpansion(const CountedRegion &R, unsigned FileID) {
645   return R.Kind == CounterMappingRegion::ExpansionRegion && R.FileID == FileID;
646 }
647 
648 CoverageData CoverageMapping::getCoverageForFile(StringRef Filename) const {
649   CoverageData FileCoverage(Filename);
650   std::vector<CountedRegion> Regions;
651 
652   // Look up the function records in the given file. Due to hash collisions on
653   // the filename, we may get back some records that are not in the file.
654   ArrayRef<unsigned> RecordIndices =
655       getImpreciseRecordIndicesForFilename(Filename);
656   for (unsigned RecordIndex : RecordIndices) {
657     const FunctionRecord &Function = Functions[RecordIndex];
658     auto MainFileID = findMainViewFileID(Filename, Function);
659     auto FileIDs = gatherFileIDs(Filename, Function);
660     for (const auto &CR : Function.CountedRegions)
661       if (FileIDs.test(CR.FileID)) {
662         Regions.push_back(CR);
663         if (MainFileID && isExpansion(CR, *MainFileID))
664           FileCoverage.Expansions.emplace_back(CR, Function);
665       }
666   }
667 
668   LLVM_DEBUG(dbgs() << "Emitting segments for file: " << Filename << "\n");
669   FileCoverage.Segments = SegmentBuilder::buildSegments(Regions);
670 
671   return FileCoverage;
672 }
673 
674 std::vector<InstantiationGroup>
675 CoverageMapping::getInstantiationGroups(StringRef Filename) const {
676   FunctionInstantiationSetCollector InstantiationSetCollector;
677   // Look up the function records in the given file. Due to hash collisions on
678   // the filename, we may get back some records that are not in the file.
679   ArrayRef<unsigned> RecordIndices =
680       getImpreciseRecordIndicesForFilename(Filename);
681   for (unsigned RecordIndex : RecordIndices) {
682     const FunctionRecord &Function = Functions[RecordIndex];
683     auto MainFileID = findMainViewFileID(Filename, Function);
684     if (!MainFileID)
685       continue;
686     InstantiationSetCollector.insert(Function, *MainFileID);
687   }
688 
689   std::vector<InstantiationGroup> Result;
690   for (auto &InstantiationSet : InstantiationSetCollector) {
691     InstantiationGroup IG{InstantiationSet.first.first,
692                           InstantiationSet.first.second,
693                           std::move(InstantiationSet.second)};
694     Result.emplace_back(std::move(IG));
695   }
696   return Result;
697 }
698 
699 CoverageData
700 CoverageMapping::getCoverageForFunction(const FunctionRecord &Function) const {
701   auto MainFileID = findMainViewFileID(Function);
702   if (!MainFileID)
703     return CoverageData();
704 
705   CoverageData FunctionCoverage(Function.Filenames[*MainFileID]);
706   std::vector<CountedRegion> Regions;
707   for (const auto &CR : Function.CountedRegions)
708     if (CR.FileID == *MainFileID) {
709       Regions.push_back(CR);
710       if (isExpansion(CR, *MainFileID))
711         FunctionCoverage.Expansions.emplace_back(CR, Function);
712     }
713 
714   LLVM_DEBUG(dbgs() << "Emitting segments for function: " << Function.Name
715                     << "\n");
716   FunctionCoverage.Segments = SegmentBuilder::buildSegments(Regions);
717 
718   return FunctionCoverage;
719 }
720 
721 CoverageData CoverageMapping::getCoverageForExpansion(
722     const ExpansionRecord &Expansion) const {
723   CoverageData ExpansionCoverage(
724       Expansion.Function.Filenames[Expansion.FileID]);
725   std::vector<CountedRegion> Regions;
726   for (const auto &CR : Expansion.Function.CountedRegions)
727     if (CR.FileID == Expansion.FileID) {
728       Regions.push_back(CR);
729       if (isExpansion(CR, Expansion.FileID))
730         ExpansionCoverage.Expansions.emplace_back(CR, Expansion.Function);
731     }
732 
733   LLVM_DEBUG(dbgs() << "Emitting segments for expansion of file "
734                     << Expansion.FileID << "\n");
735   ExpansionCoverage.Segments = SegmentBuilder::buildSegments(Regions);
736 
737   return ExpansionCoverage;
738 }
739 
740 LineCoverageStats::LineCoverageStats(
741     ArrayRef<const CoverageSegment *> LineSegments,
742     const CoverageSegment *WrappedSegment, unsigned Line)
743     : ExecutionCount(0), HasMultipleRegions(false), Mapped(false), Line(Line),
744       LineSegments(LineSegments), WrappedSegment(WrappedSegment) {
745   // Find the minimum number of regions which start in this line.
746   unsigned MinRegionCount = 0;
747   auto isStartOfRegion = [](const CoverageSegment *S) {
748     return !S->IsGapRegion && S->HasCount && S->IsRegionEntry;
749   };
750   for (unsigned I = 0; I < LineSegments.size() && MinRegionCount < 2; ++I)
751     if (isStartOfRegion(LineSegments[I]))
752       ++MinRegionCount;
753 
754   bool StartOfSkippedRegion = !LineSegments.empty() &&
755                               !LineSegments.front()->HasCount &&
756                               LineSegments.front()->IsRegionEntry;
757 
758   HasMultipleRegions = MinRegionCount > 1;
759   Mapped =
760       !StartOfSkippedRegion &&
761       ((WrappedSegment && WrappedSegment->HasCount) || (MinRegionCount > 0));
762 
763   if (!Mapped)
764     return;
765 
766   // Pick the max count from the non-gap, region entry segments and the
767   // wrapped count.
768   if (WrappedSegment)
769     ExecutionCount = WrappedSegment->Count;
770   if (!MinRegionCount)
771     return;
772   for (const auto *LS : LineSegments)
773     if (isStartOfRegion(LS))
774       ExecutionCount = std::max(ExecutionCount, LS->Count);
775 }
776 
777 LineCoverageIterator &LineCoverageIterator::operator++() {
778   if (Next == CD.end()) {
779     Stats = LineCoverageStats();
780     Ended = true;
781     return *this;
782   }
783   if (Segments.size())
784     WrappedSegment = Segments.back();
785   Segments.clear();
786   while (Next != CD.end() && Next->Line == Line)
787     Segments.push_back(&*Next++);
788   Stats = LineCoverageStats(Segments, WrappedSegment, Line);
789   ++Line;
790   return *this;
791 }
792 
793 static std::string getCoverageMapErrString(coveragemap_error Err) {
794   switch (Err) {
795   case coveragemap_error::success:
796     return "Success";
797   case coveragemap_error::eof:
798     return "End of File";
799   case coveragemap_error::no_data_found:
800     return "No coverage data found";
801   case coveragemap_error::unsupported_version:
802     return "Unsupported coverage format version";
803   case coveragemap_error::truncated:
804     return "Truncated coverage data";
805   case coveragemap_error::malformed:
806     return "Malformed coverage data";
807   }
808   llvm_unreachable("A value of coveragemap_error has no message.");
809 }
810 
811 namespace {
812 
813 // FIXME: This class is only here to support the transition to llvm::Error. It
814 // will be removed once this transition is complete. Clients should prefer to
815 // deal with the Error value directly, rather than converting to error_code.
816 class CoverageMappingErrorCategoryType : public std::error_category {
817   const char *name() const noexcept override { return "llvm.coveragemap"; }
818   std::string message(int IE) const override {
819     return getCoverageMapErrString(static_cast<coveragemap_error>(IE));
820   }
821 };
822 
823 } // end anonymous namespace
824 
825 std::string CoverageMapError::message() const {
826   return getCoverageMapErrString(Err);
827 }
828 
829 static ManagedStatic<CoverageMappingErrorCategoryType> ErrorCategory;
830 
831 const std::error_category &llvm::coverage::coveragemap_category() {
832   return *ErrorCategory;
833 }
834 
835 char CoverageMapError::ID = 0;
836