1 //===- InstrProf.cpp - Instrumented profiling format support --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for clang's instrumentation based PGO and
10 // coverage.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ProfileData/InstrProf.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/Triple.h"
21 #include "llvm/Config/config.h"
22 #include "llvm/IR/Constant.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/GlobalValue.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/Instruction.h"
28 #include "llvm/IR/LLVMContext.h"
29 #include "llvm/IR/MDBuilder.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/IR/Type.h"
33 #include "llvm/ProfileData/InstrProfReader.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Compiler.h"
37 #include "llvm/Support/Compression.h"
38 #include "llvm/Support/Endian.h"
39 #include "llvm/Support/Error.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/LEB128.h"
42 #include "llvm/Support/MathExtras.h"
43 #include "llvm/Support/Path.h"
44 #include "llvm/Support/SwapByteOrder.h"
45 #include <algorithm>
46 #include <cassert>
47 #include <cstddef>
48 #include <cstdint>
49 #include <cstring>
50 #include <memory>
51 #include <string>
52 #include <system_error>
53 #include <type_traits>
54 #include <utility>
55 #include <vector>
56 
57 using namespace llvm;
58 
59 static cl::opt<bool> StaticFuncFullModulePrefix(
60     "static-func-full-module-prefix", cl::init(true), cl::Hidden,
61     cl::desc("Use full module build paths in the profile counter names for "
62              "static functions."));
63 
64 // This option is tailored to users that have different top-level directory in
65 // profile-gen and profile-use compilation. Users need to specific the number
66 // of levels to strip. A value larger than the number of directories in the
67 // source file will strip all the directory names and only leave the basename.
68 //
69 // Note current ThinLTO module importing for the indirect-calls assumes
70 // the source directory name not being stripped. A non-zero option value here
71 // can potentially prevent some inter-module indirect-call-promotions.
72 static cl::opt<unsigned> StaticFuncStripDirNamePrefix(
73     "static-func-strip-dirname-prefix", cl::init(0), cl::Hidden,
74     cl::desc("Strip specified level of directory name from source path in "
75              "the profile counter name for static functions."));
76 
77 static std::string getInstrProfErrString(instrprof_error Err,
78                                          const std::string &ErrMsg = "") {
79   std::string Msg;
80   raw_string_ostream OS(Msg);
81 
82   switch (Err) {
83   case instrprof_error::success:
84     OS << "success";
85     break;
86   case instrprof_error::eof:
87     OS << "end of File";
88     break;
89   case instrprof_error::unrecognized_format:
90     OS << "unrecognized instrumentation profile encoding format";
91     break;
92   case instrprof_error::bad_magic:
93     OS << "invalid instrumentation profile data (bad magic)";
94     break;
95   case instrprof_error::bad_header:
96     OS << "invalid instrumentation profile data (file header is corrupt)";
97     break;
98   case instrprof_error::unsupported_version:
99     OS << "unsupported instrumentation profile format version";
100     break;
101   case instrprof_error::unsupported_hash_type:
102     OS << "unsupported instrumentation profile hash type";
103     break;
104   case instrprof_error::too_large:
105     OS << "too much profile data";
106     break;
107   case instrprof_error::truncated:
108     OS << "truncated profile data";
109     break;
110   case instrprof_error::malformed:
111     OS << "malformed instrumentation profile data";
112     break;
113   case instrprof_error::missing_debug_info_for_correlation:
114     OS << "debug info for correlation is required";
115     break;
116   case instrprof_error::unexpected_debug_info_for_correlation:
117     OS << "debug info for correlation is not necessary";
118     break;
119   case instrprof_error::unable_to_correlate_profile:
120     OS << "unable to correlate profile";
121     break;
122   case instrprof_error::invalid_prof:
123     OS << "invalid profile created. Please file a bug "
124           "at: " BUG_REPORT_URL
125           " and include the profraw files that caused this error.";
126     break;
127   case instrprof_error::unknown_function:
128     OS << "no profile data available for function";
129     break;
130   case instrprof_error::hash_mismatch:
131     OS << "function control flow change detected (hash mismatch)";
132     break;
133   case instrprof_error::count_mismatch:
134     OS << "function basic block count change detected (counter mismatch)";
135     break;
136   case instrprof_error::counter_overflow:
137     OS << "counter overflow";
138     break;
139   case instrprof_error::value_site_count_mismatch:
140     OS << "function value site count change detected (counter mismatch)";
141     break;
142   case instrprof_error::compress_failed:
143     OS << "failed to compress data (zlib)";
144     break;
145   case instrprof_error::uncompress_failed:
146     OS << "failed to uncompress data (zlib)";
147     break;
148   case instrprof_error::empty_raw_profile:
149     OS << "empty raw profile file";
150     break;
151   case instrprof_error::zlib_unavailable:
152     OS << "profile uses zlib compression but the profile reader was built "
153           "without zlib support";
154     break;
155   }
156 
157   // If optional error message is not empty, append it to the message.
158   if (!ErrMsg.empty())
159     OS << ": " << ErrMsg;
160 
161   return OS.str();
162 }
163 
164 namespace {
165 
166 // FIXME: This class is only here to support the transition to llvm::Error. It
167 // will be removed once this transition is complete. Clients should prefer to
168 // deal with the Error value directly, rather than converting to error_code.
169 class InstrProfErrorCategoryType : public std::error_category {
170   const char *name() const noexcept override { return "llvm.instrprof"; }
171 
172   std::string message(int IE) const override {
173     return getInstrProfErrString(static_cast<instrprof_error>(IE));
174   }
175 };
176 
177 } // end anonymous namespace
178 
179 const std::error_category &llvm::instrprof_category() {
180   static InstrProfErrorCategoryType ErrorCategory;
181   return ErrorCategory;
182 }
183 
184 namespace {
185 
186 const char *InstrProfSectNameCommon[] = {
187 #define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix)      \
188   SectNameCommon,
189 #include "llvm/ProfileData/InstrProfData.inc"
190 };
191 
192 const char *InstrProfSectNameCoff[] = {
193 #define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix)      \
194   SectNameCoff,
195 #include "llvm/ProfileData/InstrProfData.inc"
196 };
197 
198 const char *InstrProfSectNamePrefix[] = {
199 #define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix)      \
200   Prefix,
201 #include "llvm/ProfileData/InstrProfData.inc"
202 };
203 
204 } // namespace
205 
206 namespace llvm {
207 
208 cl::opt<bool> DoInstrProfNameCompression(
209     "enable-name-compression",
210     cl::desc("Enable name/filename string compression"), cl::init(true));
211 
212 std::string getInstrProfSectionName(InstrProfSectKind IPSK,
213                                     Triple::ObjectFormatType OF,
214                                     bool AddSegmentInfo) {
215   std::string SectName;
216 
217   if (OF == Triple::MachO && AddSegmentInfo)
218     SectName = InstrProfSectNamePrefix[IPSK];
219 
220   if (OF == Triple::COFF)
221     SectName += InstrProfSectNameCoff[IPSK];
222   else
223     SectName += InstrProfSectNameCommon[IPSK];
224 
225   if (OF == Triple::MachO && IPSK == IPSK_data && AddSegmentInfo)
226     SectName += ",regular,live_support";
227 
228   return SectName;
229 }
230 
231 void SoftInstrProfErrors::addError(instrprof_error IE) {
232   if (IE == instrprof_error::success)
233     return;
234 
235   if (FirstError == instrprof_error::success)
236     FirstError = IE;
237 
238   switch (IE) {
239   case instrprof_error::hash_mismatch:
240     ++NumHashMismatches;
241     break;
242   case instrprof_error::count_mismatch:
243     ++NumCountMismatches;
244     break;
245   case instrprof_error::counter_overflow:
246     ++NumCounterOverflows;
247     break;
248   case instrprof_error::value_site_count_mismatch:
249     ++NumValueSiteCountMismatches;
250     break;
251   default:
252     llvm_unreachable("Not a soft error");
253   }
254 }
255 
256 std::string InstrProfError::message() const {
257   return getInstrProfErrString(Err, Msg);
258 }
259 
260 char InstrProfError::ID = 0;
261 
262 std::string getPGOFuncName(StringRef RawFuncName,
263                            GlobalValue::LinkageTypes Linkage,
264                            StringRef FileName,
265                            uint64_t Version LLVM_ATTRIBUTE_UNUSED) {
266   return GlobalValue::getGlobalIdentifier(RawFuncName, Linkage, FileName);
267 }
268 
269 // Strip NumPrefix level of directory name from PathNameStr. If the number of
270 // directory separators is less than NumPrefix, strip all the directories and
271 // leave base file name only.
272 static StringRef stripDirPrefix(StringRef PathNameStr, uint32_t NumPrefix) {
273   uint32_t Count = NumPrefix;
274   uint32_t Pos = 0, LastPos = 0;
275   for (auto & CI : PathNameStr) {
276     ++Pos;
277     if (llvm::sys::path::is_separator(CI)) {
278       LastPos = Pos;
279       --Count;
280     }
281     if (Count == 0)
282       break;
283   }
284   return PathNameStr.substr(LastPos);
285 }
286 
287 // Return the PGOFuncName. This function has some special handling when called
288 // in LTO optimization. The following only applies when calling in LTO passes
289 // (when \c InLTO is true): LTO's internalization privatizes many global linkage
290 // symbols. This happens after value profile annotation, but those internal
291 // linkage functions should not have a source prefix.
292 // Additionally, for ThinLTO mode, exported internal functions are promoted
293 // and renamed. We need to ensure that the original internal PGO name is
294 // used when computing the GUID that is compared against the profiled GUIDs.
295 // To differentiate compiler generated internal symbols from original ones,
296 // PGOFuncName meta data are created and attached to the original internal
297 // symbols in the value profile annotation step
298 // (PGOUseFunc::annotateIndirectCallSites). If a symbol does not have the meta
299 // data, its original linkage must be non-internal.
300 std::string getPGOFuncName(const Function &F, bool InLTO, uint64_t Version) {
301   if (!InLTO) {
302     StringRef FileName(F.getParent()->getSourceFileName());
303     uint32_t StripLevel = StaticFuncFullModulePrefix ? 0 : (uint32_t)-1;
304     if (StripLevel < StaticFuncStripDirNamePrefix)
305       StripLevel = StaticFuncStripDirNamePrefix;
306     if (StripLevel)
307       FileName = stripDirPrefix(FileName, StripLevel);
308     return getPGOFuncName(F.getName(), F.getLinkage(), FileName, Version);
309   }
310 
311   // In LTO mode (when InLTO is true), first check if there is a meta data.
312   if (MDNode *MD = getPGOFuncNameMetadata(F)) {
313     StringRef S = cast<MDString>(MD->getOperand(0))->getString();
314     return S.str();
315   }
316 
317   // If there is no meta data, the function must be a global before the value
318   // profile annotation pass. Its current linkage may be internal if it is
319   // internalized in LTO mode.
320   return getPGOFuncName(F.getName(), GlobalValue::ExternalLinkage, "");
321 }
322 
323 StringRef getFuncNameWithoutPrefix(StringRef PGOFuncName, StringRef FileName) {
324   if (FileName.empty())
325     return PGOFuncName;
326   // Drop the file name including ':'. See also getPGOFuncName.
327   if (PGOFuncName.startswith(FileName))
328     PGOFuncName = PGOFuncName.drop_front(FileName.size() + 1);
329   return PGOFuncName;
330 }
331 
332 // \p FuncName is the string used as profile lookup key for the function. A
333 // symbol is created to hold the name. Return the legalized symbol name.
334 std::string getPGOFuncNameVarName(StringRef FuncName,
335                                   GlobalValue::LinkageTypes Linkage) {
336   std::string VarName = std::string(getInstrProfNameVarPrefix());
337   VarName += FuncName;
338 
339   if (!GlobalValue::isLocalLinkage(Linkage))
340     return VarName;
341 
342   // Now fix up illegal chars in local VarName that may upset the assembler.
343   const char *InvalidChars = "-:<>/\"'";
344   size_t found = VarName.find_first_of(InvalidChars);
345   while (found != std::string::npos) {
346     VarName[found] = '_';
347     found = VarName.find_first_of(InvalidChars, found + 1);
348   }
349   return VarName;
350 }
351 
352 GlobalVariable *createPGOFuncNameVar(Module &M,
353                                      GlobalValue::LinkageTypes Linkage,
354                                      StringRef PGOFuncName) {
355   // We generally want to match the function's linkage, but available_externally
356   // and extern_weak both have the wrong semantics, and anything that doesn't
357   // need to link across compilation units doesn't need to be visible at all.
358   if (Linkage == GlobalValue::ExternalWeakLinkage)
359     Linkage = GlobalValue::LinkOnceAnyLinkage;
360   else if (Linkage == GlobalValue::AvailableExternallyLinkage)
361     Linkage = GlobalValue::LinkOnceODRLinkage;
362   else if (Linkage == GlobalValue::InternalLinkage ||
363            Linkage == GlobalValue::ExternalLinkage)
364     Linkage = GlobalValue::PrivateLinkage;
365 
366   auto *Value =
367       ConstantDataArray::getString(M.getContext(), PGOFuncName, false);
368   auto FuncNameVar =
369       new GlobalVariable(M, Value->getType(), true, Linkage, Value,
370                          getPGOFuncNameVarName(PGOFuncName, Linkage));
371 
372   // Hide the symbol so that we correctly get a copy for each executable.
373   if (!GlobalValue::isLocalLinkage(FuncNameVar->getLinkage()))
374     FuncNameVar->setVisibility(GlobalValue::HiddenVisibility);
375 
376   return FuncNameVar;
377 }
378 
379 GlobalVariable *createPGOFuncNameVar(Function &F, StringRef PGOFuncName) {
380   return createPGOFuncNameVar(*F.getParent(), F.getLinkage(), PGOFuncName);
381 }
382 
383 Error InstrProfSymtab::create(Module &M, bool InLTO) {
384   for (Function &F : M) {
385     // Function may not have a name: like using asm("") to overwrite the name.
386     // Ignore in this case.
387     if (!F.hasName())
388       continue;
389     const std::string &PGOFuncName = getPGOFuncName(F, InLTO);
390     if (Error E = addFuncName(PGOFuncName))
391       return E;
392     MD5FuncMap.emplace_back(Function::getGUID(PGOFuncName), &F);
393     // In ThinLTO, local function may have been promoted to global and have
394     // suffix ".llvm." added to the function name. We need to add the
395     // stripped function name to the symbol table so that we can find a match
396     // from profile.
397     //
398     // We may have other suffixes similar as ".llvm." which are needed to
399     // be stripped before the matching, but ".__uniq." suffix which is used
400     // to differentiate internal linkage functions in different modules
401     // should be kept. Now this is the only suffix with the pattern ".xxx"
402     // which is kept before matching.
403     const std::string UniqSuffix = ".__uniq.";
404     auto pos = PGOFuncName.find(UniqSuffix);
405     // Search '.' after ".__uniq." if ".__uniq." exists, otherwise
406     // search '.' from the beginning.
407     if (pos != std::string::npos)
408       pos += UniqSuffix.length();
409     else
410       pos = 0;
411     pos = PGOFuncName.find('.', pos);
412     if (pos != std::string::npos && pos != 0) {
413       const std::string &OtherFuncName = PGOFuncName.substr(0, pos);
414       if (Error E = addFuncName(OtherFuncName))
415         return E;
416       MD5FuncMap.emplace_back(Function::getGUID(OtherFuncName), &F);
417     }
418   }
419   Sorted = false;
420   finalizeSymtab();
421   return Error::success();
422 }
423 
424 uint64_t InstrProfSymtab::getFunctionHashFromAddress(uint64_t Address) {
425   finalizeSymtab();
426   auto It = partition_point(AddrToMD5Map, [=](std::pair<uint64_t, uint64_t> A) {
427     return A.first < Address;
428   });
429   // Raw function pointer collected by value profiler may be from
430   // external functions that are not instrumented. They won't have
431   // mapping data to be used by the deserializer. Force the value to
432   // be 0 in this case.
433   if (It != AddrToMD5Map.end() && It->first == Address)
434     return (uint64_t)It->second;
435   return 0;
436 }
437 
438 Error collectPGOFuncNameStrings(ArrayRef<std::string> NameStrs,
439                                 bool doCompression, std::string &Result) {
440   assert(!NameStrs.empty() && "No name data to emit");
441 
442   uint8_t Header[16], *P = Header;
443   std::string UncompressedNameStrings =
444       join(NameStrs.begin(), NameStrs.end(), getInstrProfNameSeparator());
445 
446   assert(StringRef(UncompressedNameStrings)
447                  .count(getInstrProfNameSeparator()) == (NameStrs.size() - 1) &&
448          "PGO name is invalid (contains separator token)");
449 
450   unsigned EncLen = encodeULEB128(UncompressedNameStrings.length(), P);
451   P += EncLen;
452 
453   auto WriteStringToResult = [&](size_t CompressedLen, StringRef InputStr) {
454     EncLen = encodeULEB128(CompressedLen, P);
455     P += EncLen;
456     char *HeaderStr = reinterpret_cast<char *>(&Header[0]);
457     unsigned HeaderLen = P - &Header[0];
458     Result.append(HeaderStr, HeaderLen);
459     Result += InputStr;
460     return Error::success();
461   };
462 
463   if (!doCompression) {
464     return WriteStringToResult(0, UncompressedNameStrings);
465   }
466 
467   SmallVector<uint8_t, 128> CompressedNameStrings;
468   compression::zlib::compress(arrayRefFromStringRef(UncompressedNameStrings),
469                               CompressedNameStrings,
470                               compression::zlib::BestSizeCompression);
471 
472   return WriteStringToResult(CompressedNameStrings.size(),
473                              toStringRef(CompressedNameStrings));
474 }
475 
476 StringRef getPGOFuncNameVarInitializer(GlobalVariable *NameVar) {
477   auto *Arr = cast<ConstantDataArray>(NameVar->getInitializer());
478   StringRef NameStr =
479       Arr->isCString() ? Arr->getAsCString() : Arr->getAsString();
480   return NameStr;
481 }
482 
483 Error collectPGOFuncNameStrings(ArrayRef<GlobalVariable *> NameVars,
484                                 std::string &Result, bool doCompression) {
485   std::vector<std::string> NameStrs;
486   for (auto *NameVar : NameVars) {
487     NameStrs.push_back(std::string(getPGOFuncNameVarInitializer(NameVar)));
488   }
489   return collectPGOFuncNameStrings(
490       NameStrs, compression::zlib::isAvailable() && doCompression, Result);
491 }
492 
493 Error readPGOFuncNameStrings(StringRef NameStrings, InstrProfSymtab &Symtab) {
494   const uint8_t *P = NameStrings.bytes_begin();
495   const uint8_t *EndP = NameStrings.bytes_end();
496   while (P < EndP) {
497     uint32_t N;
498     uint64_t UncompressedSize = decodeULEB128(P, &N);
499     P += N;
500     uint64_t CompressedSize = decodeULEB128(P, &N);
501     P += N;
502     bool isCompressed = (CompressedSize != 0);
503     SmallVector<uint8_t, 128> UncompressedNameStrings;
504     StringRef NameStrings;
505     if (isCompressed) {
506       if (!llvm::compression::zlib::isAvailable())
507         return make_error<InstrProfError>(instrprof_error::zlib_unavailable);
508 
509       if (Error E = compression::zlib::uncompress(
510               makeArrayRef(P, CompressedSize), UncompressedNameStrings,
511               UncompressedSize)) {
512         consumeError(std::move(E));
513         return make_error<InstrProfError>(instrprof_error::uncompress_failed);
514       }
515       P += CompressedSize;
516       NameStrings = toStringRef(UncompressedNameStrings);
517     } else {
518       NameStrings =
519           StringRef(reinterpret_cast<const char *>(P), UncompressedSize);
520       P += UncompressedSize;
521     }
522     // Now parse the name strings.
523     SmallVector<StringRef, 0> Names;
524     NameStrings.split(Names, getInstrProfNameSeparator());
525     for (StringRef &Name : Names)
526       if (Error E = Symtab.addFuncName(Name))
527         return E;
528 
529     while (P < EndP && *P == 0)
530       P++;
531   }
532   return Error::success();
533 }
534 
535 void InstrProfRecord::accumulateCounts(CountSumOrPercent &Sum) const {
536   uint64_t FuncSum = 0;
537   Sum.NumEntries += Counts.size();
538   for (uint64_t Count : Counts)
539     FuncSum += Count;
540   Sum.CountSum += FuncSum;
541 
542   for (uint32_t VK = IPVK_First; VK <= IPVK_Last; ++VK) {
543     uint64_t KindSum = 0;
544     uint32_t NumValueSites = getNumValueSites(VK);
545     for (size_t I = 0; I < NumValueSites; ++I) {
546       uint32_t NV = getNumValueDataForSite(VK, I);
547       std::unique_ptr<InstrProfValueData[]> VD = getValueForSite(VK, I);
548       for (uint32_t V = 0; V < NV; V++)
549         KindSum += VD[V].Count;
550     }
551     Sum.ValueCounts[VK] += KindSum;
552   }
553 }
554 
555 void InstrProfValueSiteRecord::overlap(InstrProfValueSiteRecord &Input,
556                                        uint32_t ValueKind,
557                                        OverlapStats &Overlap,
558                                        OverlapStats &FuncLevelOverlap) {
559   this->sortByTargetValues();
560   Input.sortByTargetValues();
561   double Score = 0.0f, FuncLevelScore = 0.0f;
562   auto I = ValueData.begin();
563   auto IE = ValueData.end();
564   auto J = Input.ValueData.begin();
565   auto JE = Input.ValueData.end();
566   while (I != IE && J != JE) {
567     if (I->Value == J->Value) {
568       Score += OverlapStats::score(I->Count, J->Count,
569                                    Overlap.Base.ValueCounts[ValueKind],
570                                    Overlap.Test.ValueCounts[ValueKind]);
571       FuncLevelScore += OverlapStats::score(
572           I->Count, J->Count, FuncLevelOverlap.Base.ValueCounts[ValueKind],
573           FuncLevelOverlap.Test.ValueCounts[ValueKind]);
574       ++I;
575     } else if (I->Value < J->Value) {
576       ++I;
577       continue;
578     }
579     ++J;
580   }
581   Overlap.Overlap.ValueCounts[ValueKind] += Score;
582   FuncLevelOverlap.Overlap.ValueCounts[ValueKind] += FuncLevelScore;
583 }
584 
585 // Return false on mismatch.
586 void InstrProfRecord::overlapValueProfData(uint32_t ValueKind,
587                                            InstrProfRecord &Other,
588                                            OverlapStats &Overlap,
589                                            OverlapStats &FuncLevelOverlap) {
590   uint32_t ThisNumValueSites = getNumValueSites(ValueKind);
591   assert(ThisNumValueSites == Other.getNumValueSites(ValueKind));
592   if (!ThisNumValueSites)
593     return;
594 
595   std::vector<InstrProfValueSiteRecord> &ThisSiteRecords =
596       getOrCreateValueSitesForKind(ValueKind);
597   MutableArrayRef<InstrProfValueSiteRecord> OtherSiteRecords =
598       Other.getValueSitesForKind(ValueKind);
599   for (uint32_t I = 0; I < ThisNumValueSites; I++)
600     ThisSiteRecords[I].overlap(OtherSiteRecords[I], ValueKind, Overlap,
601                                FuncLevelOverlap);
602 }
603 
604 void InstrProfRecord::overlap(InstrProfRecord &Other, OverlapStats &Overlap,
605                               OverlapStats &FuncLevelOverlap,
606                               uint64_t ValueCutoff) {
607   // FuncLevel CountSum for other should already computed and nonzero.
608   assert(FuncLevelOverlap.Test.CountSum >= 1.0f);
609   accumulateCounts(FuncLevelOverlap.Base);
610   bool Mismatch = (Counts.size() != Other.Counts.size());
611 
612   // Check if the value profiles mismatch.
613   if (!Mismatch) {
614     for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) {
615       uint32_t ThisNumValueSites = getNumValueSites(Kind);
616       uint32_t OtherNumValueSites = Other.getNumValueSites(Kind);
617       if (ThisNumValueSites != OtherNumValueSites) {
618         Mismatch = true;
619         break;
620       }
621     }
622   }
623   if (Mismatch) {
624     Overlap.addOneMismatch(FuncLevelOverlap.Test);
625     return;
626   }
627 
628   // Compute overlap for value counts.
629   for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
630     overlapValueProfData(Kind, Other, Overlap, FuncLevelOverlap);
631 
632   double Score = 0.0;
633   uint64_t MaxCount = 0;
634   // Compute overlap for edge counts.
635   for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) {
636     Score += OverlapStats::score(Counts[I], Other.Counts[I],
637                                  Overlap.Base.CountSum, Overlap.Test.CountSum);
638     MaxCount = std::max(Other.Counts[I], MaxCount);
639   }
640   Overlap.Overlap.CountSum += Score;
641   Overlap.Overlap.NumEntries += 1;
642 
643   if (MaxCount >= ValueCutoff) {
644     double FuncScore = 0.0;
645     for (size_t I = 0, E = Other.Counts.size(); I < E; ++I)
646       FuncScore += OverlapStats::score(Counts[I], Other.Counts[I],
647                                        FuncLevelOverlap.Base.CountSum,
648                                        FuncLevelOverlap.Test.CountSum);
649     FuncLevelOverlap.Overlap.CountSum = FuncScore;
650     FuncLevelOverlap.Overlap.NumEntries = Other.Counts.size();
651     FuncLevelOverlap.Valid = true;
652   }
653 }
654 
655 void InstrProfValueSiteRecord::merge(InstrProfValueSiteRecord &Input,
656                                      uint64_t Weight,
657                                      function_ref<void(instrprof_error)> Warn) {
658   this->sortByTargetValues();
659   Input.sortByTargetValues();
660   auto I = ValueData.begin();
661   auto IE = ValueData.end();
662   for (const InstrProfValueData &J : Input.ValueData) {
663     while (I != IE && I->Value < J.Value)
664       ++I;
665     if (I != IE && I->Value == J.Value) {
666       bool Overflowed;
667       I->Count = SaturatingMultiplyAdd(J.Count, Weight, I->Count, &Overflowed);
668       if (Overflowed)
669         Warn(instrprof_error::counter_overflow);
670       ++I;
671       continue;
672     }
673     ValueData.insert(I, J);
674   }
675 }
676 
677 void InstrProfValueSiteRecord::scale(uint64_t N, uint64_t D,
678                                      function_ref<void(instrprof_error)> Warn) {
679   for (InstrProfValueData &I : ValueData) {
680     bool Overflowed;
681     I.Count = SaturatingMultiply(I.Count, N, &Overflowed) / D;
682     if (Overflowed)
683       Warn(instrprof_error::counter_overflow);
684   }
685 }
686 
687 // Merge Value Profile data from Src record to this record for ValueKind.
688 // Scale merged value counts by \p Weight.
689 void InstrProfRecord::mergeValueProfData(
690     uint32_t ValueKind, InstrProfRecord &Src, uint64_t Weight,
691     function_ref<void(instrprof_error)> Warn) {
692   uint32_t ThisNumValueSites = getNumValueSites(ValueKind);
693   uint32_t OtherNumValueSites = Src.getNumValueSites(ValueKind);
694   if (ThisNumValueSites != OtherNumValueSites) {
695     Warn(instrprof_error::value_site_count_mismatch);
696     return;
697   }
698   if (!ThisNumValueSites)
699     return;
700   std::vector<InstrProfValueSiteRecord> &ThisSiteRecords =
701       getOrCreateValueSitesForKind(ValueKind);
702   MutableArrayRef<InstrProfValueSiteRecord> OtherSiteRecords =
703       Src.getValueSitesForKind(ValueKind);
704   for (uint32_t I = 0; I < ThisNumValueSites; I++)
705     ThisSiteRecords[I].merge(OtherSiteRecords[I], Weight, Warn);
706 }
707 
708 void InstrProfRecord::merge(InstrProfRecord &Other, uint64_t Weight,
709                             function_ref<void(instrprof_error)> Warn) {
710   // If the number of counters doesn't match we either have bad data
711   // or a hash collision.
712   if (Counts.size() != Other.Counts.size()) {
713     Warn(instrprof_error::count_mismatch);
714     return;
715   }
716 
717   for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) {
718     bool Overflowed;
719     Counts[I] =
720         SaturatingMultiplyAdd(Other.Counts[I], Weight, Counts[I], &Overflowed);
721     if (Overflowed)
722       Warn(instrprof_error::counter_overflow);
723   }
724 
725   for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
726     mergeValueProfData(Kind, Other, Weight, Warn);
727 }
728 
729 void InstrProfRecord::scaleValueProfData(
730     uint32_t ValueKind, uint64_t N, uint64_t D,
731     function_ref<void(instrprof_error)> Warn) {
732   for (auto &R : getValueSitesForKind(ValueKind))
733     R.scale(N, D, Warn);
734 }
735 
736 void InstrProfRecord::scale(uint64_t N, uint64_t D,
737                             function_ref<void(instrprof_error)> Warn) {
738   assert(D != 0 && "D cannot be 0");
739   for (auto &Count : this->Counts) {
740     bool Overflowed;
741     Count = SaturatingMultiply(Count, N, &Overflowed) / D;
742     if (Overflowed)
743       Warn(instrprof_error::counter_overflow);
744   }
745   for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
746     scaleValueProfData(Kind, N, D, Warn);
747 }
748 
749 // Map indirect call target name hash to name string.
750 uint64_t InstrProfRecord::remapValue(uint64_t Value, uint32_t ValueKind,
751                                      InstrProfSymtab *SymTab) {
752   if (!SymTab)
753     return Value;
754 
755   if (ValueKind == IPVK_IndirectCallTarget)
756     return SymTab->getFunctionHashFromAddress(Value);
757 
758   return Value;
759 }
760 
761 void InstrProfRecord::addValueData(uint32_t ValueKind, uint32_t Site,
762                                    InstrProfValueData *VData, uint32_t N,
763                                    InstrProfSymtab *ValueMap) {
764   for (uint32_t I = 0; I < N; I++) {
765     VData[I].Value = remapValue(VData[I].Value, ValueKind, ValueMap);
766   }
767   std::vector<InstrProfValueSiteRecord> &ValueSites =
768       getOrCreateValueSitesForKind(ValueKind);
769   if (N == 0)
770     ValueSites.emplace_back();
771   else
772     ValueSites.emplace_back(VData, VData + N);
773 }
774 
775 #define INSTR_PROF_COMMON_API_IMPL
776 #include "llvm/ProfileData/InstrProfData.inc"
777 
778 /*!
779  * ValueProfRecordClosure Interface implementation for  InstrProfRecord
780  *  class. These C wrappers are used as adaptors so that C++ code can be
781  *  invoked as callbacks.
782  */
783 uint32_t getNumValueKindsInstrProf(const void *Record) {
784   return reinterpret_cast<const InstrProfRecord *>(Record)->getNumValueKinds();
785 }
786 
787 uint32_t getNumValueSitesInstrProf(const void *Record, uint32_t VKind) {
788   return reinterpret_cast<const InstrProfRecord *>(Record)
789       ->getNumValueSites(VKind);
790 }
791 
792 uint32_t getNumValueDataInstrProf(const void *Record, uint32_t VKind) {
793   return reinterpret_cast<const InstrProfRecord *>(Record)
794       ->getNumValueData(VKind);
795 }
796 
797 uint32_t getNumValueDataForSiteInstrProf(const void *R, uint32_t VK,
798                                          uint32_t S) {
799   return reinterpret_cast<const InstrProfRecord *>(R)
800       ->getNumValueDataForSite(VK, S);
801 }
802 
803 void getValueForSiteInstrProf(const void *R, InstrProfValueData *Dst,
804                               uint32_t K, uint32_t S) {
805   reinterpret_cast<const InstrProfRecord *>(R)->getValueForSite(Dst, K, S);
806 }
807 
808 ValueProfData *allocValueProfDataInstrProf(size_t TotalSizeInBytes) {
809   ValueProfData *VD =
810       (ValueProfData *)(new (::operator new(TotalSizeInBytes)) ValueProfData());
811   memset(VD, 0, TotalSizeInBytes);
812   return VD;
813 }
814 
815 static ValueProfRecordClosure InstrProfRecordClosure = {
816     nullptr,
817     getNumValueKindsInstrProf,
818     getNumValueSitesInstrProf,
819     getNumValueDataInstrProf,
820     getNumValueDataForSiteInstrProf,
821     nullptr,
822     getValueForSiteInstrProf,
823     allocValueProfDataInstrProf};
824 
825 // Wrapper implementation using the closure mechanism.
826 uint32_t ValueProfData::getSize(const InstrProfRecord &Record) {
827   auto Closure = InstrProfRecordClosure;
828   Closure.Record = &Record;
829   return getValueProfDataSize(&Closure);
830 }
831 
832 // Wrapper implementation using the closure mechanism.
833 std::unique_ptr<ValueProfData>
834 ValueProfData::serializeFrom(const InstrProfRecord &Record) {
835   InstrProfRecordClosure.Record = &Record;
836 
837   std::unique_ptr<ValueProfData> VPD(
838       serializeValueProfDataFrom(&InstrProfRecordClosure, nullptr));
839   return VPD;
840 }
841 
842 void ValueProfRecord::deserializeTo(InstrProfRecord &Record,
843                                     InstrProfSymtab *SymTab) {
844   Record.reserveSites(Kind, NumValueSites);
845 
846   InstrProfValueData *ValueData = getValueProfRecordValueData(this);
847   for (uint64_t VSite = 0; VSite < NumValueSites; ++VSite) {
848     uint8_t ValueDataCount = this->SiteCountArray[VSite];
849     Record.addValueData(Kind, VSite, ValueData, ValueDataCount, SymTab);
850     ValueData += ValueDataCount;
851   }
852 }
853 
854 // For writing/serializing,  Old is the host endianness, and  New is
855 // byte order intended on disk. For Reading/deserialization, Old
856 // is the on-disk source endianness, and New is the host endianness.
857 void ValueProfRecord::swapBytes(support::endianness Old,
858                                 support::endianness New) {
859   using namespace support;
860 
861   if (Old == New)
862     return;
863 
864   if (getHostEndianness() != Old) {
865     sys::swapByteOrder<uint32_t>(NumValueSites);
866     sys::swapByteOrder<uint32_t>(Kind);
867   }
868   uint32_t ND = getValueProfRecordNumValueData(this);
869   InstrProfValueData *VD = getValueProfRecordValueData(this);
870 
871   // No need to swap byte array: SiteCountArrray.
872   for (uint32_t I = 0; I < ND; I++) {
873     sys::swapByteOrder<uint64_t>(VD[I].Value);
874     sys::swapByteOrder<uint64_t>(VD[I].Count);
875   }
876   if (getHostEndianness() == Old) {
877     sys::swapByteOrder<uint32_t>(NumValueSites);
878     sys::swapByteOrder<uint32_t>(Kind);
879   }
880 }
881 
882 void ValueProfData::deserializeTo(InstrProfRecord &Record,
883                                   InstrProfSymtab *SymTab) {
884   if (NumValueKinds == 0)
885     return;
886 
887   ValueProfRecord *VR = getFirstValueProfRecord(this);
888   for (uint32_t K = 0; K < NumValueKinds; K++) {
889     VR->deserializeTo(Record, SymTab);
890     VR = getValueProfRecordNext(VR);
891   }
892 }
893 
894 template <class T>
895 static T swapToHostOrder(const unsigned char *&D, support::endianness Orig) {
896   using namespace support;
897 
898   if (Orig == little)
899     return endian::readNext<T, little, unaligned>(D);
900   else
901     return endian::readNext<T, big, unaligned>(D);
902 }
903 
904 static std::unique_ptr<ValueProfData> allocValueProfData(uint32_t TotalSize) {
905   return std::unique_ptr<ValueProfData>(new (::operator new(TotalSize))
906                                             ValueProfData());
907 }
908 
909 Error ValueProfData::checkIntegrity() {
910   if (NumValueKinds > IPVK_Last + 1)
911     return make_error<InstrProfError>(
912         instrprof_error::malformed, "number of value profile kinds is invalid");
913   // Total size needs to be multiple of quadword size.
914   if (TotalSize % sizeof(uint64_t))
915     return make_error<InstrProfError>(
916         instrprof_error::malformed, "total size is not multiples of quardword");
917 
918   ValueProfRecord *VR = getFirstValueProfRecord(this);
919   for (uint32_t K = 0; K < this->NumValueKinds; K++) {
920     if (VR->Kind > IPVK_Last)
921       return make_error<InstrProfError>(instrprof_error::malformed,
922                                         "value kind is invalid");
923     VR = getValueProfRecordNext(VR);
924     if ((char *)VR - (char *)this > (ptrdiff_t)TotalSize)
925       return make_error<InstrProfError>(
926           instrprof_error::malformed,
927           "value profile address is greater than total size");
928   }
929   return Error::success();
930 }
931 
932 Expected<std::unique_ptr<ValueProfData>>
933 ValueProfData::getValueProfData(const unsigned char *D,
934                                 const unsigned char *const BufferEnd,
935                                 support::endianness Endianness) {
936   using namespace support;
937 
938   if (D + sizeof(ValueProfData) > BufferEnd)
939     return make_error<InstrProfError>(instrprof_error::truncated);
940 
941   const unsigned char *Header = D;
942   uint32_t TotalSize = swapToHostOrder<uint32_t>(Header, Endianness);
943   if (D + TotalSize > BufferEnd)
944     return make_error<InstrProfError>(instrprof_error::too_large);
945 
946   std::unique_ptr<ValueProfData> VPD = allocValueProfData(TotalSize);
947   memcpy(VPD.get(), D, TotalSize);
948   // Byte swap.
949   VPD->swapBytesToHost(Endianness);
950 
951   Error E = VPD->checkIntegrity();
952   if (E)
953     return std::move(E);
954 
955   return std::move(VPD);
956 }
957 
958 void ValueProfData::swapBytesToHost(support::endianness Endianness) {
959   using namespace support;
960 
961   if (Endianness == getHostEndianness())
962     return;
963 
964   sys::swapByteOrder<uint32_t>(TotalSize);
965   sys::swapByteOrder<uint32_t>(NumValueKinds);
966 
967   ValueProfRecord *VR = getFirstValueProfRecord(this);
968   for (uint32_t K = 0; K < NumValueKinds; K++) {
969     VR->swapBytes(Endianness, getHostEndianness());
970     VR = getValueProfRecordNext(VR);
971   }
972 }
973 
974 void ValueProfData::swapBytesFromHost(support::endianness Endianness) {
975   using namespace support;
976 
977   if (Endianness == getHostEndianness())
978     return;
979 
980   ValueProfRecord *VR = getFirstValueProfRecord(this);
981   for (uint32_t K = 0; K < NumValueKinds; K++) {
982     ValueProfRecord *NVR = getValueProfRecordNext(VR);
983     VR->swapBytes(getHostEndianness(), Endianness);
984     VR = NVR;
985   }
986   sys::swapByteOrder<uint32_t>(TotalSize);
987   sys::swapByteOrder<uint32_t>(NumValueKinds);
988 }
989 
990 void annotateValueSite(Module &M, Instruction &Inst,
991                        const InstrProfRecord &InstrProfR,
992                        InstrProfValueKind ValueKind, uint32_t SiteIdx,
993                        uint32_t MaxMDCount) {
994   uint32_t NV = InstrProfR.getNumValueDataForSite(ValueKind, SiteIdx);
995   if (!NV)
996     return;
997 
998   uint64_t Sum = 0;
999   std::unique_ptr<InstrProfValueData[]> VD =
1000       InstrProfR.getValueForSite(ValueKind, SiteIdx, &Sum);
1001 
1002   ArrayRef<InstrProfValueData> VDs(VD.get(), NV);
1003   annotateValueSite(M, Inst, VDs, Sum, ValueKind, MaxMDCount);
1004 }
1005 
1006 void annotateValueSite(Module &M, Instruction &Inst,
1007                        ArrayRef<InstrProfValueData> VDs,
1008                        uint64_t Sum, InstrProfValueKind ValueKind,
1009                        uint32_t MaxMDCount) {
1010   LLVMContext &Ctx = M.getContext();
1011   MDBuilder MDHelper(Ctx);
1012   SmallVector<Metadata *, 3> Vals;
1013   // Tag
1014   Vals.push_back(MDHelper.createString("VP"));
1015   // Value Kind
1016   Vals.push_back(MDHelper.createConstant(
1017       ConstantInt::get(Type::getInt32Ty(Ctx), ValueKind)));
1018   // Total Count
1019   Vals.push_back(
1020       MDHelper.createConstant(ConstantInt::get(Type::getInt64Ty(Ctx), Sum)));
1021 
1022   // Value Profile Data
1023   uint32_t MDCount = MaxMDCount;
1024   for (auto &VD : VDs) {
1025     Vals.push_back(MDHelper.createConstant(
1026         ConstantInt::get(Type::getInt64Ty(Ctx), VD.Value)));
1027     Vals.push_back(MDHelper.createConstant(
1028         ConstantInt::get(Type::getInt64Ty(Ctx), VD.Count)));
1029     if (--MDCount == 0)
1030       break;
1031   }
1032   Inst.setMetadata(LLVMContext::MD_prof, MDNode::get(Ctx, Vals));
1033 }
1034 
1035 bool getValueProfDataFromInst(const Instruction &Inst,
1036                               InstrProfValueKind ValueKind,
1037                               uint32_t MaxNumValueData,
1038                               InstrProfValueData ValueData[],
1039                               uint32_t &ActualNumValueData, uint64_t &TotalC,
1040                               bool GetNoICPValue) {
1041   MDNode *MD = Inst.getMetadata(LLVMContext::MD_prof);
1042   if (!MD)
1043     return false;
1044 
1045   unsigned NOps = MD->getNumOperands();
1046 
1047   if (NOps < 5)
1048     return false;
1049 
1050   // Operand 0 is a string tag "VP":
1051   MDString *Tag = cast<MDString>(MD->getOperand(0));
1052   if (!Tag)
1053     return false;
1054 
1055   if (!Tag->getString().equals("VP"))
1056     return false;
1057 
1058   // Now check kind:
1059   ConstantInt *KindInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
1060   if (!KindInt)
1061     return false;
1062   if (KindInt->getZExtValue() != ValueKind)
1063     return false;
1064 
1065   // Get total count
1066   ConstantInt *TotalCInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
1067   if (!TotalCInt)
1068     return false;
1069   TotalC = TotalCInt->getZExtValue();
1070 
1071   ActualNumValueData = 0;
1072 
1073   for (unsigned I = 3; I < NOps; I += 2) {
1074     if (ActualNumValueData >= MaxNumValueData)
1075       break;
1076     ConstantInt *Value = mdconst::dyn_extract<ConstantInt>(MD->getOperand(I));
1077     ConstantInt *Count =
1078         mdconst::dyn_extract<ConstantInt>(MD->getOperand(I + 1));
1079     if (!Value || !Count)
1080       return false;
1081     uint64_t CntValue = Count->getZExtValue();
1082     if (!GetNoICPValue && (CntValue == NOMORE_ICP_MAGICNUM))
1083       continue;
1084     ValueData[ActualNumValueData].Value = Value->getZExtValue();
1085     ValueData[ActualNumValueData].Count = CntValue;
1086     ActualNumValueData++;
1087   }
1088   return true;
1089 }
1090 
1091 MDNode *getPGOFuncNameMetadata(const Function &F) {
1092   return F.getMetadata(getPGOFuncNameMetadataName());
1093 }
1094 
1095 void createPGOFuncNameMetadata(Function &F, StringRef PGOFuncName) {
1096   // Only for internal linkage functions.
1097   if (PGOFuncName == F.getName())
1098       return;
1099   // Don't create duplicated meta-data.
1100   if (getPGOFuncNameMetadata(F))
1101     return;
1102   LLVMContext &C = F.getContext();
1103   MDNode *N = MDNode::get(C, MDString::get(C, PGOFuncName));
1104   F.setMetadata(getPGOFuncNameMetadataName(), N);
1105 }
1106 
1107 bool needsComdatForCounter(const Function &F, const Module &M) {
1108   if (F.hasComdat())
1109     return true;
1110 
1111   if (!Triple(M.getTargetTriple()).supportsCOMDAT())
1112     return false;
1113 
1114   // See createPGOFuncNameVar for more details. To avoid link errors, profile
1115   // counters for function with available_externally linkage needs to be changed
1116   // to linkonce linkage. On ELF based systems, this leads to weak symbols to be
1117   // created. Without using comdat, duplicate entries won't be removed by the
1118   // linker leading to increased data segement size and raw profile size. Even
1119   // worse, since the referenced counter from profile per-function data object
1120   // will be resolved to the common strong definition, the profile counts for
1121   // available_externally functions will end up being duplicated in raw profile
1122   // data. This can result in distorted profile as the counts of those dups
1123   // will be accumulated by the profile merger.
1124   GlobalValue::LinkageTypes Linkage = F.getLinkage();
1125   if (Linkage != GlobalValue::ExternalWeakLinkage &&
1126       Linkage != GlobalValue::AvailableExternallyLinkage)
1127     return false;
1128 
1129   return true;
1130 }
1131 
1132 // Check if INSTR_PROF_RAW_VERSION_VAR is defined.
1133 bool isIRPGOFlagSet(const Module *M) {
1134   auto IRInstrVar =
1135       M->getNamedGlobal(INSTR_PROF_QUOTE(INSTR_PROF_RAW_VERSION_VAR));
1136   if (!IRInstrVar || IRInstrVar->hasLocalLinkage())
1137     return false;
1138 
1139   // For CSPGO+LTO, this variable might be marked as non-prevailing and we only
1140   // have the decl.
1141   if (IRInstrVar->isDeclaration())
1142     return true;
1143 
1144   // Check if the flag is set.
1145   if (!IRInstrVar->hasInitializer())
1146     return false;
1147 
1148   auto *InitVal = dyn_cast_or_null<ConstantInt>(IRInstrVar->getInitializer());
1149   if (!InitVal)
1150     return false;
1151   return (InitVal->getZExtValue() & VARIANT_MASK_IR_PROF) != 0;
1152 }
1153 
1154 // Check if we can safely rename this Comdat function.
1155 bool canRenameComdatFunc(const Function &F, bool CheckAddressTaken) {
1156   if (F.getName().empty())
1157     return false;
1158   if (!needsComdatForCounter(F, *(F.getParent())))
1159     return false;
1160   // Unsafe to rename the address-taken function (which can be used in
1161   // function comparison).
1162   if (CheckAddressTaken && F.hasAddressTaken())
1163     return false;
1164   // Only safe to do if this function may be discarded if it is not used
1165   // in the compilation unit.
1166   if (!GlobalValue::isDiscardableIfUnused(F.getLinkage()))
1167     return false;
1168 
1169   // For AvailableExternallyLinkage functions.
1170   if (!F.hasComdat()) {
1171     assert(F.getLinkage() == GlobalValue::AvailableExternallyLinkage);
1172     return true;
1173   }
1174   return true;
1175 }
1176 
1177 // Create the variable for the profile file name.
1178 void createProfileFileNameVar(Module &M, StringRef InstrProfileOutput) {
1179   if (InstrProfileOutput.empty())
1180     return;
1181   Constant *ProfileNameConst =
1182       ConstantDataArray::getString(M.getContext(), InstrProfileOutput, true);
1183   GlobalVariable *ProfileNameVar = new GlobalVariable(
1184       M, ProfileNameConst->getType(), true, GlobalValue::WeakAnyLinkage,
1185       ProfileNameConst, INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_NAME_VAR));
1186   Triple TT(M.getTargetTriple());
1187   if (TT.supportsCOMDAT()) {
1188     ProfileNameVar->setLinkage(GlobalValue::ExternalLinkage);
1189     ProfileNameVar->setComdat(M.getOrInsertComdat(
1190         StringRef(INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_NAME_VAR))));
1191   }
1192 }
1193 
1194 Error OverlapStats::accumulateCounts(const std::string &BaseFilename,
1195                                      const std::string &TestFilename,
1196                                      bool IsCS) {
1197   auto getProfileSum = [IsCS](const std::string &Filename,
1198                               CountSumOrPercent &Sum) -> Error {
1199     auto ReaderOrErr = InstrProfReader::create(Filename);
1200     if (Error E = ReaderOrErr.takeError()) {
1201       return E;
1202     }
1203     auto Reader = std::move(ReaderOrErr.get());
1204     Reader->accumulateCounts(Sum, IsCS);
1205     return Error::success();
1206   };
1207   auto Ret = getProfileSum(BaseFilename, Base);
1208   if (Ret)
1209     return Ret;
1210   Ret = getProfileSum(TestFilename, Test);
1211   if (Ret)
1212     return Ret;
1213   this->BaseFilename = &BaseFilename;
1214   this->TestFilename = &TestFilename;
1215   Valid = true;
1216   return Error::success();
1217 }
1218 
1219 void OverlapStats::addOneMismatch(const CountSumOrPercent &MismatchFunc) {
1220   Mismatch.NumEntries += 1;
1221   Mismatch.CountSum += MismatchFunc.CountSum / Test.CountSum;
1222   for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) {
1223     if (Test.ValueCounts[I] >= 1.0f)
1224       Mismatch.ValueCounts[I] +=
1225           MismatchFunc.ValueCounts[I] / Test.ValueCounts[I];
1226   }
1227 }
1228 
1229 void OverlapStats::addOneUnique(const CountSumOrPercent &UniqueFunc) {
1230   Unique.NumEntries += 1;
1231   Unique.CountSum += UniqueFunc.CountSum / Test.CountSum;
1232   for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) {
1233     if (Test.ValueCounts[I] >= 1.0f)
1234       Unique.ValueCounts[I] += UniqueFunc.ValueCounts[I] / Test.ValueCounts[I];
1235   }
1236 }
1237 
1238 void OverlapStats::dump(raw_fd_ostream &OS) const {
1239   if (!Valid)
1240     return;
1241 
1242   const char *EntryName =
1243       (Level == ProgramLevel ? "functions" : "edge counters");
1244   if (Level == ProgramLevel) {
1245     OS << "Profile overlap infomation for base_profile: " << *BaseFilename
1246        << " and test_profile: " << *TestFilename << "\nProgram level:\n";
1247   } else {
1248     OS << "Function level:\n"
1249        << "  Function: " << FuncName << " (Hash=" << FuncHash << ")\n";
1250   }
1251 
1252   OS << "  # of " << EntryName << " overlap: " << Overlap.NumEntries << "\n";
1253   if (Mismatch.NumEntries)
1254     OS << "  # of " << EntryName << " mismatch: " << Mismatch.NumEntries
1255        << "\n";
1256   if (Unique.NumEntries)
1257     OS << "  # of " << EntryName
1258        << " only in test_profile: " << Unique.NumEntries << "\n";
1259 
1260   OS << "  Edge profile overlap: " << format("%.3f%%", Overlap.CountSum * 100)
1261      << "\n";
1262   if (Mismatch.NumEntries)
1263     OS << "  Mismatched count percentage (Edge): "
1264        << format("%.3f%%", Mismatch.CountSum * 100) << "\n";
1265   if (Unique.NumEntries)
1266     OS << "  Percentage of Edge profile only in test_profile: "
1267        << format("%.3f%%", Unique.CountSum * 100) << "\n";
1268   OS << "  Edge profile base count sum: " << format("%.0f", Base.CountSum)
1269      << "\n"
1270      << "  Edge profile test count sum: " << format("%.0f", Test.CountSum)
1271      << "\n";
1272 
1273   for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) {
1274     if (Base.ValueCounts[I] < 1.0f && Test.ValueCounts[I] < 1.0f)
1275       continue;
1276     char ProfileKindName[20];
1277     switch (I) {
1278     case IPVK_IndirectCallTarget:
1279       strncpy(ProfileKindName, "IndirectCall", 19);
1280       break;
1281     case IPVK_MemOPSize:
1282       strncpy(ProfileKindName, "MemOP", 19);
1283       break;
1284     default:
1285       snprintf(ProfileKindName, 19, "VP[%d]", I);
1286       break;
1287     }
1288     OS << "  " << ProfileKindName
1289        << " profile overlap: " << format("%.3f%%", Overlap.ValueCounts[I] * 100)
1290        << "\n";
1291     if (Mismatch.NumEntries)
1292       OS << "  Mismatched count percentage (" << ProfileKindName
1293          << "): " << format("%.3f%%", Mismatch.ValueCounts[I] * 100) << "\n";
1294     if (Unique.NumEntries)
1295       OS << "  Percentage of " << ProfileKindName
1296          << " profile only in test_profile: "
1297          << format("%.3f%%", Unique.ValueCounts[I] * 100) << "\n";
1298     OS << "  " << ProfileKindName
1299        << " profile base count sum: " << format("%.0f", Base.ValueCounts[I])
1300        << "\n"
1301        << "  " << ProfileKindName
1302        << " profile test count sum: " << format("%.0f", Test.ValueCounts[I])
1303        << "\n";
1304   }
1305 }
1306 
1307 namespace IndexedInstrProf {
1308 // A C++14 compatible version of the offsetof macro.
1309 template <typename T1, typename T2>
1310 inline size_t constexpr offsetOf(T1 T2::*Member) {
1311   constexpr T2 Object{};
1312   return size_t(&(Object.*Member)) - size_t(&Object);
1313 }
1314 
1315 static inline uint64_t read(const unsigned char *Buffer, size_t Offset) {
1316   return *reinterpret_cast<const uint64_t *>(Buffer + Offset);
1317 }
1318 
1319 uint64_t Header::formatVersion() const {
1320   using namespace support;
1321   return endian::byte_swap<uint64_t, little>(Version);
1322 }
1323 
1324 Expected<Header> Header::readFromBuffer(const unsigned char *Buffer) {
1325   using namespace support;
1326   static_assert(std::is_standard_layout<Header>::value,
1327                 "The header should be standard layout type since we use offset "
1328                 "of fields to read.");
1329   Header H;
1330 
1331   H.Magic = read(Buffer, offsetOf(&Header::Magic));
1332   // Check the magic number.
1333   uint64_t Magic = endian::byte_swap<uint64_t, little>(H.Magic);
1334   if (Magic != IndexedInstrProf::Magic)
1335     return make_error<InstrProfError>(instrprof_error::bad_magic);
1336 
1337   // Read the version.
1338   H.Version = read(Buffer, offsetOf(&Header::Version));
1339   if (GET_VERSION(H.formatVersion()) >
1340       IndexedInstrProf::ProfVersion::CurrentVersion)
1341     return make_error<InstrProfError>(instrprof_error::unsupported_version);
1342 
1343   switch (GET_VERSION(H.formatVersion())) {
1344     // When a new field is added in the header add a case statement here to
1345     // populate it.
1346     static_assert(
1347         IndexedInstrProf::ProfVersion::CurrentVersion == Version8,
1348         "Please update the reading code below if a new field has been added, "
1349         "if not add a case statement to fall through to the latest version.");
1350   case 8ull:
1351     H.MemProfOffset = read(Buffer, offsetOf(&Header::MemProfOffset));
1352     LLVM_FALLTHROUGH;
1353   default: // Version7 (when the backwards compatible header was introduced).
1354     H.HashType = read(Buffer, offsetOf(&Header::HashType));
1355     H.HashOffset = read(Buffer, offsetOf(&Header::HashOffset));
1356   }
1357 
1358   return H;
1359 }
1360 
1361 size_t Header::size() const {
1362   switch (GET_VERSION(formatVersion())) {
1363     // When a new field is added to the header add a case statement here to
1364     // compute the size as offset of the new field + size of the new field. This
1365     // relies on the field being added to the end of the list.
1366     static_assert(IndexedInstrProf::ProfVersion::CurrentVersion == Version8,
1367                   "Please update the size computation below if a new field has "
1368                   "been added to the header, if not add a case statement to "
1369                   "fall through to the latest version.");
1370   case 8ull:
1371     return offsetOf(&Header::MemProfOffset) + sizeof(Header::MemProfOffset);
1372   default: // Version7 (when the backwards compatible header was introduced).
1373     return offsetOf(&Header::HashOffset) + sizeof(Header::HashOffset);
1374   }
1375 }
1376 
1377 } // namespace IndexedInstrProf
1378 
1379 } // end namespace llvm
1380