1 //===- InstrProfWriter.cpp - Instrumented profiling writer ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for writing profiling data for clang's
10 // instrumentation based PGO and coverage.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ProfileData/InstrProfWriter.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/StringRef.h"
17 #include "llvm/IR/ProfileSummary.h"
18 #include "llvm/ProfileData/InstrProf.h"
19 #include "llvm/ProfileData/MemProf.h"
20 #include "llvm/ProfileData/ProfileCommon.h"
21 #include "llvm/Support/Endian.h"
22 #include "llvm/Support/EndianStream.h"
23 #include "llvm/Support/Error.h"
24 #include "llvm/Support/MemoryBuffer.h"
25 #include "llvm/Support/OnDiskHashTable.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include <cstdint>
28 #include <memory>
29 #include <string>
30 #include <tuple>
31 #include <utility>
32 #include <vector>
33 
34 using namespace llvm;
35 
36 // A struct to define how the data stream should be patched. For Indexed
37 // profiling, only uint64_t data type is needed.
38 struct PatchItem {
39   uint64_t Pos; // Where to patch.
40   uint64_t *D;  // Pointer to an array of source data.
41   int N;        // Number of elements in \c D array.
42 };
43 
44 namespace llvm {
45 
46 // A wrapper class to abstract writer stream with support of bytes
47 // back patching.
48 class ProfOStream {
49 public:
50   ProfOStream(raw_fd_ostream &FD)
51       : IsFDOStream(true), OS(FD), LE(FD, support::little) {}
52   ProfOStream(raw_string_ostream &STR)
53       : IsFDOStream(false), OS(STR), LE(STR, support::little) {}
54 
55   uint64_t tell() { return OS.tell(); }
56   void write(uint64_t V) { LE.write<uint64_t>(V); }
57   void writeByte(uint8_t V) { LE.write<uint8_t>(V); }
58 
59   // \c patch can only be called when all data is written and flushed.
60   // For raw_string_ostream, the patch is done on the target string
61   // directly and it won't be reflected in the stream's internal buffer.
62   void patch(PatchItem *P, int NItems) {
63     using namespace support;
64 
65     if (IsFDOStream) {
66       raw_fd_ostream &FDOStream = static_cast<raw_fd_ostream &>(OS);
67       const uint64_t LastPos = FDOStream.tell();
68       for (int K = 0; K < NItems; K++) {
69         FDOStream.seek(P[K].Pos);
70         for (int I = 0; I < P[K].N; I++)
71           write(P[K].D[I]);
72       }
73       // Reset the stream to the last position after patching so that users
74       // don't accidentally overwrite data. This makes it consistent with
75       // the string stream below which replaces the data directly.
76       FDOStream.seek(LastPos);
77     } else {
78       raw_string_ostream &SOStream = static_cast<raw_string_ostream &>(OS);
79       std::string &Data = SOStream.str(); // with flush
80       for (int K = 0; K < NItems; K++) {
81         for (int I = 0; I < P[K].N; I++) {
82           uint64_t Bytes = endian::byte_swap<uint64_t, little>(P[K].D[I]);
83           Data.replace(P[K].Pos + I * sizeof(uint64_t), sizeof(uint64_t),
84                        (const char *)&Bytes, sizeof(uint64_t));
85         }
86       }
87     }
88   }
89 
90   // If \c OS is an instance of \c raw_fd_ostream, this field will be
91   // true. Otherwise, \c OS will be an raw_string_ostream.
92   bool IsFDOStream;
93   raw_ostream &OS;
94   support::endian::Writer LE;
95 };
96 
97 class InstrProfRecordWriterTrait {
98 public:
99   using key_type = StringRef;
100   using key_type_ref = StringRef;
101 
102   using data_type = const InstrProfWriter::ProfilingData *const;
103   using data_type_ref = const InstrProfWriter::ProfilingData *const;
104 
105   using hash_value_type = uint64_t;
106   using offset_type = uint64_t;
107 
108   support::endianness ValueProfDataEndianness = support::little;
109   InstrProfSummaryBuilder *SummaryBuilder;
110   InstrProfSummaryBuilder *CSSummaryBuilder;
111 
112   InstrProfRecordWriterTrait() = default;
113 
114   static hash_value_type ComputeHash(key_type_ref K) {
115     return IndexedInstrProf::ComputeHash(K);
116   }
117 
118   static std::pair<offset_type, offset_type>
119   EmitKeyDataLength(raw_ostream &Out, key_type_ref K, data_type_ref V) {
120     using namespace support;
121 
122     endian::Writer LE(Out, little);
123 
124     offset_type N = K.size();
125     LE.write<offset_type>(N);
126 
127     offset_type M = 0;
128     for (const auto &ProfileData : *V) {
129       const InstrProfRecord &ProfRecord = ProfileData.second;
130       M += sizeof(uint64_t); // The function hash
131       M += sizeof(uint64_t); // The size of the Counts vector
132       M += ProfRecord.Counts.size() * sizeof(uint64_t);
133 
134       // Value data
135       M += ValueProfData::getSize(ProfileData.second);
136     }
137     LE.write<offset_type>(M);
138 
139     return std::make_pair(N, M);
140   }
141 
142   void EmitKey(raw_ostream &Out, key_type_ref K, offset_type N) {
143     Out.write(K.data(), N);
144   }
145 
146   void EmitData(raw_ostream &Out, key_type_ref, data_type_ref V, offset_type) {
147     using namespace support;
148 
149     endian::Writer LE(Out, little);
150     for (const auto &ProfileData : *V) {
151       const InstrProfRecord &ProfRecord = ProfileData.second;
152       if (NamedInstrProfRecord::hasCSFlagInHash(ProfileData.first))
153         CSSummaryBuilder->addRecord(ProfRecord);
154       else
155         SummaryBuilder->addRecord(ProfRecord);
156 
157       LE.write<uint64_t>(ProfileData.first); // Function hash
158       LE.write<uint64_t>(ProfRecord.Counts.size());
159       for (uint64_t I : ProfRecord.Counts)
160         LE.write<uint64_t>(I);
161 
162       // Write value data
163       std::unique_ptr<ValueProfData> VDataPtr =
164           ValueProfData::serializeFrom(ProfileData.second);
165       uint32_t S = VDataPtr->getSize();
166       VDataPtr->swapBytesFromHost(ValueProfDataEndianness);
167       Out.write((const char *)VDataPtr.get(), S);
168     }
169   }
170 };
171 
172 } // end namespace llvm
173 
174 InstrProfWriter::InstrProfWriter(bool Sparse)
175     : Sparse(Sparse), InfoObj(new InstrProfRecordWriterTrait()) {}
176 
177 InstrProfWriter::~InstrProfWriter() { delete InfoObj; }
178 
179 // Internal interface for testing purpose only.
180 void InstrProfWriter::setValueProfDataEndianness(
181     support::endianness Endianness) {
182   InfoObj->ValueProfDataEndianness = Endianness;
183 }
184 
185 void InstrProfWriter::setOutputSparse(bool Sparse) {
186   this->Sparse = Sparse;
187 }
188 
189 void InstrProfWriter::addRecord(NamedInstrProfRecord &&I, uint64_t Weight,
190                                 function_ref<void(Error)> Warn) {
191   auto Name = I.Name;
192   auto Hash = I.Hash;
193   addRecord(Name, Hash, std::move(I), Weight, Warn);
194 }
195 
196 void InstrProfWriter::overlapRecord(NamedInstrProfRecord &&Other,
197                                     OverlapStats &Overlap,
198                                     OverlapStats &FuncLevelOverlap,
199                                     const OverlapFuncFilters &FuncFilter) {
200   auto Name = Other.Name;
201   auto Hash = Other.Hash;
202   Other.accumulateCounts(FuncLevelOverlap.Test);
203   if (FunctionData.find(Name) == FunctionData.end()) {
204     Overlap.addOneUnique(FuncLevelOverlap.Test);
205     return;
206   }
207   if (FuncLevelOverlap.Test.CountSum < 1.0f) {
208     Overlap.Overlap.NumEntries += 1;
209     return;
210   }
211   auto &ProfileDataMap = FunctionData[Name];
212   bool NewFunc;
213   ProfilingData::iterator Where;
214   std::tie(Where, NewFunc) =
215       ProfileDataMap.insert(std::make_pair(Hash, InstrProfRecord()));
216   if (NewFunc) {
217     Overlap.addOneMismatch(FuncLevelOverlap.Test);
218     return;
219   }
220   InstrProfRecord &Dest = Where->second;
221 
222   uint64_t ValueCutoff = FuncFilter.ValueCutoff;
223   if (!FuncFilter.NameFilter.empty() && Name.contains(FuncFilter.NameFilter))
224     ValueCutoff = 0;
225 
226   Dest.overlap(Other, Overlap, FuncLevelOverlap, ValueCutoff);
227 }
228 
229 void InstrProfWriter::addRecord(StringRef Name, uint64_t Hash,
230                                 InstrProfRecord &&I, uint64_t Weight,
231                                 function_ref<void(Error)> Warn) {
232   auto &ProfileDataMap = FunctionData[Name];
233 
234   bool NewFunc;
235   ProfilingData::iterator Where;
236   std::tie(Where, NewFunc) =
237       ProfileDataMap.insert(std::make_pair(Hash, InstrProfRecord()));
238   InstrProfRecord &Dest = Where->second;
239 
240   auto MapWarn = [&](instrprof_error E) {
241     Warn(make_error<InstrProfError>(E));
242   };
243 
244   if (NewFunc) {
245     // We've never seen a function with this name and hash, add it.
246     Dest = std::move(I);
247     if (Weight > 1)
248       Dest.scale(Weight, 1, MapWarn);
249   } else {
250     // We're updating a function we've seen before.
251     Dest.merge(I, Weight, MapWarn);
252   }
253 
254   Dest.sortValueData();
255 }
256 
257 void InstrProfWriter::addMemProfRecord(
258     const Function::GUID Id, const memprof::IndexedMemProfRecord &Record) {
259   auto Result = MemProfRecordData.insert({Id, Record});
260   // If we inserted a new record then we are done.
261   if (Result.second) {
262     return;
263   }
264   memprof::IndexedMemProfRecord &Existing = Result.first->second;
265   Existing.merge(Record);
266 }
267 
268 bool InstrProfWriter::addMemProfFrame(const memprof::FrameId Id,
269                                       const memprof::Frame &Frame,
270                                       function_ref<void(Error)> Warn) {
271   auto Result = MemProfFrameData.insert({Id, Frame});
272   // If a mapping already exists for the current frame id and it does not
273   // match the new mapping provided then reset the existing contents and bail
274   // out. We don't support the merging of memprof data whose Frame -> Id
275   // mapping across profiles is inconsistent.
276   if (!Result.second && Result.first->second != Frame) {
277     Warn(make_error<InstrProfError>(instrprof_error::malformed,
278                                     "frame to id mapping mismatch"));
279     return false;
280   }
281   return true;
282 }
283 
284 void InstrProfWriter::addBinaryIds(ArrayRef<llvm::object::BuildID> BIs) {
285   llvm::append_range(BinaryIds, BIs);
286 }
287 
288 void InstrProfWriter::mergeRecordsFromWriter(InstrProfWriter &&IPW,
289                                              function_ref<void(Error)> Warn) {
290   for (auto &I : IPW.FunctionData)
291     for (auto &Func : I.getValue())
292       addRecord(I.getKey(), Func.first, std::move(Func.second), 1, Warn);
293 
294   BinaryIds.reserve(BinaryIds.size() + IPW.BinaryIds.size());
295   for (auto &I : IPW.BinaryIds)
296     addBinaryIds(I);
297 
298   MemProfFrameData.reserve(IPW.MemProfFrameData.size());
299   for (auto &I : IPW.MemProfFrameData) {
300     // If we weren't able to add the frame mappings then it doesn't make sense
301     // to try to merge the records from this profile.
302     if (!addMemProfFrame(I.first, I.second, Warn))
303       return;
304   }
305 
306   MemProfRecordData.reserve(IPW.MemProfRecordData.size());
307   for (auto &I : IPW.MemProfRecordData) {
308     addMemProfRecord(I.first, I.second);
309   }
310 }
311 
312 bool InstrProfWriter::shouldEncodeData(const ProfilingData &PD) {
313   if (!Sparse)
314     return true;
315   for (const auto &Func : PD) {
316     const InstrProfRecord &IPR = Func.second;
317     if (llvm::any_of(IPR.Counts, [](uint64_t Count) { return Count > 0; }))
318       return true;
319   }
320   return false;
321 }
322 
323 static void setSummary(IndexedInstrProf::Summary *TheSummary,
324                        ProfileSummary &PS) {
325   using namespace IndexedInstrProf;
326 
327   const std::vector<ProfileSummaryEntry> &Res = PS.getDetailedSummary();
328   TheSummary->NumSummaryFields = Summary::NumKinds;
329   TheSummary->NumCutoffEntries = Res.size();
330   TheSummary->set(Summary::MaxFunctionCount, PS.getMaxFunctionCount());
331   TheSummary->set(Summary::MaxBlockCount, PS.getMaxCount());
332   TheSummary->set(Summary::MaxInternalBlockCount, PS.getMaxInternalCount());
333   TheSummary->set(Summary::TotalBlockCount, PS.getTotalCount());
334   TheSummary->set(Summary::TotalNumBlocks, PS.getNumCounts());
335   TheSummary->set(Summary::TotalNumFunctions, PS.getNumFunctions());
336   for (unsigned I = 0; I < Res.size(); I++)
337     TheSummary->setEntry(I, Res[I]);
338 }
339 
340 Error InstrProfWriter::writeImpl(ProfOStream &OS) {
341   using namespace IndexedInstrProf;
342   using namespace support;
343 
344   OnDiskChainedHashTableGenerator<InstrProfRecordWriterTrait> Generator;
345 
346   InstrProfSummaryBuilder ISB(ProfileSummaryBuilder::DefaultCutoffs);
347   InfoObj->SummaryBuilder = &ISB;
348   InstrProfSummaryBuilder CSISB(ProfileSummaryBuilder::DefaultCutoffs);
349   InfoObj->CSSummaryBuilder = &CSISB;
350 
351   // Populate the hash table generator.
352   for (const auto &I : FunctionData)
353     if (shouldEncodeData(I.getValue()))
354       Generator.insert(I.getKey(), &I.getValue());
355 
356   // Write the header.
357   IndexedInstrProf::Header Header;
358   Header.Magic = IndexedInstrProf::Magic;
359   Header.Version = IndexedInstrProf::ProfVersion::CurrentVersion;
360   if (static_cast<bool>(ProfileKind & InstrProfKind::IRInstrumentation))
361     Header.Version |= VARIANT_MASK_IR_PROF;
362   if (static_cast<bool>(ProfileKind & InstrProfKind::ContextSensitive))
363     Header.Version |= VARIANT_MASK_CSIR_PROF;
364   if (static_cast<bool>(ProfileKind &
365                         InstrProfKind::FunctionEntryInstrumentation))
366     Header.Version |= VARIANT_MASK_INSTR_ENTRY;
367   if (static_cast<bool>(ProfileKind & InstrProfKind::SingleByteCoverage))
368     Header.Version |= VARIANT_MASK_BYTE_COVERAGE;
369   if (static_cast<bool>(ProfileKind & InstrProfKind::FunctionEntryOnly))
370     Header.Version |= VARIANT_MASK_FUNCTION_ENTRY_ONLY;
371   if (static_cast<bool>(ProfileKind & InstrProfKind::MemProf))
372     Header.Version |= VARIANT_MASK_MEMPROF;
373 
374   Header.Unused = 0;
375   Header.HashType = static_cast<uint64_t>(IndexedInstrProf::HashType);
376   Header.HashOffset = 0;
377   Header.MemProfOffset = 0;
378   Header.BinaryIdOffset = 0;
379   int N = sizeof(IndexedInstrProf::Header) / sizeof(uint64_t);
380 
381   // Only write out all the fields except 'HashOffset', 'MemProfOffset' and
382   // 'BinaryIdOffset'. We need to remember the offset of these fields to allow
383   // back patching later.
384   for (int I = 0; I < N - 3; I++)
385     OS.write(reinterpret_cast<uint64_t *>(&Header)[I]);
386 
387   // Save the location of Header.HashOffset field in \c OS.
388   uint64_t HashTableStartFieldOffset = OS.tell();
389   // Reserve the space for HashOffset field.
390   OS.write(0);
391 
392   // Save the location of MemProf profile data. This is stored in two parts as
393   // the schema and as a separate on-disk chained hashtable.
394   uint64_t MemProfSectionOffset = OS.tell();
395   // Reserve space for the MemProf table field to be patched later if this
396   // profile contains memory profile information.
397   OS.write(0);
398 
399   // Save the location of binary ids section.
400   uint64_t BinaryIdSectionOffset = OS.tell();
401   // Reserve space for the BinaryIdOffset field to be patched later if this
402   // profile contains binary ids.
403   OS.write(0);
404 
405   // Reserve space to write profile summary data.
406   uint32_t NumEntries = ProfileSummaryBuilder::DefaultCutoffs.size();
407   uint32_t SummarySize = Summary::getSize(Summary::NumKinds, NumEntries);
408   // Remember the summary offset.
409   uint64_t SummaryOffset = OS.tell();
410   for (unsigned I = 0; I < SummarySize / sizeof(uint64_t); I++)
411     OS.write(0);
412   uint64_t CSSummaryOffset = 0;
413   uint64_t CSSummarySize = 0;
414   if (static_cast<bool>(ProfileKind & InstrProfKind::ContextSensitive)) {
415     CSSummaryOffset = OS.tell();
416     CSSummarySize = SummarySize / sizeof(uint64_t);
417     for (unsigned I = 0; I < CSSummarySize; I++)
418       OS.write(0);
419   }
420 
421   // Write the hash table.
422   uint64_t HashTableStart = Generator.Emit(OS.OS, *InfoObj);
423 
424   // Write the MemProf profile data if we have it. This includes a simple schema
425   // with the format described below followed by the hashtable:
426   // uint64_t RecordTableOffset = RecordTableGenerator.Emit
427   // uint64_t FramePayloadOffset = Stream offset before emitting the frame table
428   // uint64_t FrameTableOffset = FrameTableGenerator.Emit
429   // uint64_t Num schema entries
430   // uint64_t Schema entry 0
431   // uint64_t Schema entry 1
432   // ....
433   // uint64_t Schema entry N - 1
434   // OnDiskChainedHashTable MemProfRecordData
435   // OnDiskChainedHashTable MemProfFrameData
436   uint64_t MemProfSectionStart = 0;
437   if (static_cast<bool>(ProfileKind & InstrProfKind::MemProf)) {
438     MemProfSectionStart = OS.tell();
439     OS.write(0ULL); // Reserve space for the memprof record table offset.
440     OS.write(0ULL); // Reserve space for the memprof frame payload offset.
441     OS.write(0ULL); // Reserve space for the memprof frame table offset.
442 
443     auto Schema = memprof::PortableMemInfoBlock::getSchema();
444     OS.write(static_cast<uint64_t>(Schema.size()));
445     for (const auto Id : Schema) {
446       OS.write(static_cast<uint64_t>(Id));
447     }
448 
449     auto RecordWriter = std::make_unique<memprof::RecordWriterTrait>();
450     RecordWriter->Schema = &Schema;
451     OnDiskChainedHashTableGenerator<memprof::RecordWriterTrait>
452         RecordTableGenerator;
453     for (auto &I : MemProfRecordData) {
454       // Insert the key (func hash) and value (memprof record).
455       RecordTableGenerator.insert(I.first, I.second);
456     }
457 
458     uint64_t RecordTableOffset =
459         RecordTableGenerator.Emit(OS.OS, *RecordWriter);
460 
461     uint64_t FramePayloadOffset = OS.tell();
462 
463     auto FrameWriter = std::make_unique<memprof::FrameWriterTrait>();
464     OnDiskChainedHashTableGenerator<memprof::FrameWriterTrait>
465         FrameTableGenerator;
466     for (auto &I : MemProfFrameData) {
467       // Insert the key (frame id) and value (frame contents).
468       FrameTableGenerator.insert(I.first, I.second);
469     }
470 
471     uint64_t FrameTableOffset = FrameTableGenerator.Emit(OS.OS, *FrameWriter);
472 
473     PatchItem PatchItems[] = {
474         {MemProfSectionStart, &RecordTableOffset, 1},
475         {MemProfSectionStart + sizeof(uint64_t), &FramePayloadOffset, 1},
476         {MemProfSectionStart + 2 * sizeof(uint64_t), &FrameTableOffset, 1},
477     };
478     OS.patch(PatchItems, 3);
479   }
480 
481   // BinaryIdSection has two parts:
482   // 1. uint64_t BinaryIdsSectionSize
483   // 2. list of binary ids that consist of:
484   //    a. uint64_t BinaryIdLength
485   //    b. uint8_t  BinaryIdData
486   //    c. uint8_t  Padding (if necessary)
487   uint64_t BinaryIdSectionStart = OS.tell();
488   // Calculate size of binary section.
489   uint64_t BinaryIdsSectionSize = 0;
490 
491   // Remove duplicate binary ids.
492   llvm::sort(BinaryIds);
493   BinaryIds.erase(std::unique(BinaryIds.begin(), BinaryIds.end()),
494                   BinaryIds.end());
495 
496   for (auto BI : BinaryIds) {
497     // Increment by binary id length data type size.
498     BinaryIdsSectionSize += sizeof(uint64_t);
499     // Increment by binary id data length, aligned to 8 bytes.
500     BinaryIdsSectionSize += alignToPowerOf2(BI.size(), sizeof(uint64_t));
501   }
502   // Write binary ids section size.
503   OS.write(BinaryIdsSectionSize);
504 
505   for (auto BI : BinaryIds) {
506     uint64_t BILen = BI.size();
507     // Write binary id length.
508     OS.write(BILen);
509     // Write binary id data.
510     for (unsigned K = 0; K < BILen; K++)
511       OS.writeByte(BI[K]);
512     // Write padding if necessary.
513     uint64_t PaddingSize = alignToPowerOf2(BILen, sizeof(uint64_t)) - BILen;
514     for (unsigned K = 0; K < PaddingSize; K++)
515       OS.writeByte(0);
516   }
517 
518   // Allocate space for data to be serialized out.
519   std::unique_ptr<IndexedInstrProf::Summary> TheSummary =
520       IndexedInstrProf::allocSummary(SummarySize);
521   // Compute the Summary and copy the data to the data
522   // structure to be serialized out (to disk or buffer).
523   std::unique_ptr<ProfileSummary> PS = ISB.getSummary();
524   setSummary(TheSummary.get(), *PS);
525   InfoObj->SummaryBuilder = nullptr;
526 
527   // For Context Sensitive summary.
528   std::unique_ptr<IndexedInstrProf::Summary> TheCSSummary = nullptr;
529   if (static_cast<bool>(ProfileKind & InstrProfKind::ContextSensitive)) {
530     TheCSSummary = IndexedInstrProf::allocSummary(SummarySize);
531     std::unique_ptr<ProfileSummary> CSPS = CSISB.getSummary();
532     setSummary(TheCSSummary.get(), *CSPS);
533   }
534   InfoObj->CSSummaryBuilder = nullptr;
535 
536   // Now do the final patch:
537   PatchItem PatchItems[] = {
538       // Patch the Header.HashOffset field.
539       {HashTableStartFieldOffset, &HashTableStart, 1},
540       // Patch the Header.MemProfOffset (=0 for profiles without MemProf
541       // data).
542       {MemProfSectionOffset, &MemProfSectionStart, 1},
543       // Patch the Header.BinaryIdSectionOffset.
544       {BinaryIdSectionOffset, &BinaryIdSectionStart, 1},
545       // Patch the summary data.
546       {SummaryOffset, reinterpret_cast<uint64_t *>(TheSummary.get()),
547        (int)(SummarySize / sizeof(uint64_t))},
548       {CSSummaryOffset, reinterpret_cast<uint64_t *>(TheCSSummary.get()),
549        (int)CSSummarySize}};
550 
551   OS.patch(PatchItems, std::size(PatchItems));
552 
553   for (const auto &I : FunctionData)
554     for (const auto &F : I.getValue())
555       if (Error E = validateRecord(F.second))
556         return E;
557 
558   return Error::success();
559 }
560 
561 Error InstrProfWriter::write(raw_fd_ostream &OS) {
562   // Write the hash table.
563   ProfOStream POS(OS);
564   return writeImpl(POS);
565 }
566 
567 std::unique_ptr<MemoryBuffer> InstrProfWriter::writeBuffer() {
568   std::string Data;
569   raw_string_ostream OS(Data);
570   ProfOStream POS(OS);
571   // Write the hash table.
572   if (Error E = writeImpl(POS))
573     return nullptr;
574   // Return this in an aligned memory buffer.
575   return MemoryBuffer::getMemBufferCopy(Data);
576 }
577 
578 static const char *ValueProfKindStr[] = {
579 #define VALUE_PROF_KIND(Enumerator, Value, Descr) #Enumerator,
580 #include "llvm/ProfileData/InstrProfData.inc"
581 };
582 
583 Error InstrProfWriter::validateRecord(const InstrProfRecord &Func) {
584   for (uint32_t VK = 0; VK <= IPVK_Last; VK++) {
585     uint32_t NS = Func.getNumValueSites(VK);
586     if (!NS)
587       continue;
588     for (uint32_t S = 0; S < NS; S++) {
589       uint32_t ND = Func.getNumValueDataForSite(VK, S);
590       std::unique_ptr<InstrProfValueData[]> VD = Func.getValueForSite(VK, S);
591       DenseSet<uint64_t> SeenValues;
592       for (uint32_t I = 0; I < ND; I++)
593         if ((VK != IPVK_IndirectCallTarget) && !SeenValues.insert(VD[I].Value).second)
594           return make_error<InstrProfError>(instrprof_error::invalid_prof);
595     }
596   }
597 
598   return Error::success();
599 }
600 
601 void InstrProfWriter::writeRecordInText(StringRef Name, uint64_t Hash,
602                                         const InstrProfRecord &Func,
603                                         InstrProfSymtab &Symtab,
604                                         raw_fd_ostream &OS) {
605   OS << Name << "\n";
606   OS << "# Func Hash:\n" << Hash << "\n";
607   OS << "# Num Counters:\n" << Func.Counts.size() << "\n";
608   OS << "# Counter Values:\n";
609   for (uint64_t Count : Func.Counts)
610     OS << Count << "\n";
611 
612   uint32_t NumValueKinds = Func.getNumValueKinds();
613   if (!NumValueKinds) {
614     OS << "\n";
615     return;
616   }
617 
618   OS << "# Num Value Kinds:\n" << Func.getNumValueKinds() << "\n";
619   for (uint32_t VK = 0; VK < IPVK_Last + 1; VK++) {
620     uint32_t NS = Func.getNumValueSites(VK);
621     if (!NS)
622       continue;
623     OS << "# ValueKind = " << ValueProfKindStr[VK] << ":\n" << VK << "\n";
624     OS << "# NumValueSites:\n" << NS << "\n";
625     for (uint32_t S = 0; S < NS; S++) {
626       uint32_t ND = Func.getNumValueDataForSite(VK, S);
627       OS << ND << "\n";
628       std::unique_ptr<InstrProfValueData[]> VD = Func.getValueForSite(VK, S);
629       for (uint32_t I = 0; I < ND; I++) {
630         if (VK == IPVK_IndirectCallTarget)
631           OS << Symtab.getFuncNameOrExternalSymbol(VD[I].Value) << ":"
632              << VD[I].Count << "\n";
633         else
634           OS << VD[I].Value << ":" << VD[I].Count << "\n";
635       }
636     }
637   }
638 
639   OS << "\n";
640 }
641 
642 Error InstrProfWriter::writeText(raw_fd_ostream &OS) {
643   // Check CS first since it implies an IR level profile.
644   if (static_cast<bool>(ProfileKind & InstrProfKind::ContextSensitive))
645     OS << "# CSIR level Instrumentation Flag\n:csir\n";
646   else if (static_cast<bool>(ProfileKind & InstrProfKind::IRInstrumentation))
647     OS << "# IR level Instrumentation Flag\n:ir\n";
648 
649   if (static_cast<bool>(ProfileKind &
650                         InstrProfKind::FunctionEntryInstrumentation))
651     OS << "# Always instrument the function entry block\n:entry_first\n";
652   InstrProfSymtab Symtab;
653 
654   using FuncPair = detail::DenseMapPair<uint64_t, InstrProfRecord>;
655   using RecordType = std::pair<StringRef, FuncPair>;
656   SmallVector<RecordType, 4> OrderedFuncData;
657 
658   for (const auto &I : FunctionData) {
659     if (shouldEncodeData(I.getValue())) {
660       if (Error E = Symtab.addFuncName(I.getKey()))
661         return E;
662       for (const auto &Func : I.getValue())
663         OrderedFuncData.push_back(std::make_pair(I.getKey(), Func));
664     }
665   }
666 
667   llvm::sort(OrderedFuncData, [](const RecordType &A, const RecordType &B) {
668     return std::tie(A.first, A.second.first) <
669            std::tie(B.first, B.second.first);
670   });
671 
672   for (const auto &record : OrderedFuncData) {
673     const StringRef &Name = record.first;
674     const FuncPair &Func = record.second;
675     writeRecordInText(Name, Func.first, Func.second, Symtab, OS);
676   }
677 
678   for (const auto &record : OrderedFuncData) {
679     const FuncPair &Func = record.second;
680     if (Error E = validateRecord(Func.second))
681       return E;
682   }
683 
684   return Error::success();
685 }
686